1 /*
2 * GTT virtualization
3 *
4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 * Zhi Wang <zhi.a.wang@intel.com>
27 * Zhenyu Wang <zhenyuw@linux.intel.com>
28 * Xiao Zheng <xiao.zheng@intel.com>
29 *
30 * Contributors:
31 * Min He <min.he@intel.com>
32 * Bing Niu <bing.niu@intel.com>
33 *
34 */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49
50 /*
51 * validate a gm address and related range size,
52 * translate it to host gm address
53 */
intel_gvt_ggtt_validate_range(struct intel_vgpu * vgpu,u64 addr,u32 size)54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56 if (size == 0)
57 return vgpu_gmadr_is_valid(vgpu, addr);
58
59 if (vgpu_gmadr_is_aperture(vgpu, addr) &&
60 vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
61 return true;
62 else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
63 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
64 return true;
65
66 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
67 addr, size);
68 return false;
69 }
70
71 /* translate a guest gmadr to host gmadr */
intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu * vgpu,u64 g_addr,u64 * h_addr)72 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
73 {
74 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
75
76 if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
77 "invalid guest gmadr %llx\n", g_addr))
78 return -EACCES;
79
80 if (vgpu_gmadr_is_aperture(vgpu, g_addr))
81 *h_addr = vgpu_aperture_gmadr_base(vgpu)
82 + (g_addr - vgpu_aperture_offset(vgpu));
83 else
84 *h_addr = vgpu_hidden_gmadr_base(vgpu)
85 + (g_addr - vgpu_hidden_offset(vgpu));
86 return 0;
87 }
88
89 /* translate a host gmadr to guest gmadr */
intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu * vgpu,u64 h_addr,u64 * g_addr)90 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
91 {
92 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
93
94 if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
95 "invalid host gmadr %llx\n", h_addr))
96 return -EACCES;
97
98 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
99 *g_addr = vgpu_aperture_gmadr_base(vgpu)
100 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
101 else
102 *g_addr = vgpu_hidden_gmadr_base(vgpu)
103 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
104 return 0;
105 }
106
intel_gvt_ggtt_index_g2h(struct intel_vgpu * vgpu,unsigned long g_index,unsigned long * h_index)107 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
108 unsigned long *h_index)
109 {
110 u64 h_addr;
111 int ret;
112
113 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
114 &h_addr);
115 if (ret)
116 return ret;
117
118 *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
119 return 0;
120 }
121
intel_gvt_ggtt_h2g_index(struct intel_vgpu * vgpu,unsigned long h_index,unsigned long * g_index)122 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
123 unsigned long *g_index)
124 {
125 u64 g_addr;
126 int ret;
127
128 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
129 &g_addr);
130 if (ret)
131 return ret;
132
133 *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
134 return 0;
135 }
136
137 #define gtt_type_is_entry(type) \
138 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
139 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
140 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
141
142 #define gtt_type_is_pt(type) \
143 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
144
145 #define gtt_type_is_pte_pt(type) \
146 (type == GTT_TYPE_PPGTT_PTE_PT)
147
148 #define gtt_type_is_root_pointer(type) \
149 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
150
151 #define gtt_init_entry(e, t, p, v) do { \
152 (e)->type = t; \
153 (e)->pdev = p; \
154 memcpy(&(e)->val64, &v, sizeof(v)); \
155 } while (0)
156
157 /*
158 * Mappings between GTT_TYPE* enumerations.
159 * Following information can be found according to the given type:
160 * - type of next level page table
161 * - type of entry inside this level page table
162 * - type of entry with PSE set
163 *
164 * If the given type doesn't have such a kind of information,
165 * e.g. give a l4 root entry type, then request to get its PSE type,
166 * give a PTE page table type, then request to get its next level page
167 * table type, as we know l4 root entry doesn't have a PSE bit,
168 * and a PTE page table doesn't have a next level page table type,
169 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
170 * page table.
171 */
172
173 struct gtt_type_table_entry {
174 int entry_type;
175 int pt_type;
176 int next_pt_type;
177 int pse_entry_type;
178 };
179
180 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
181 [type] = { \
182 .entry_type = e_type, \
183 .pt_type = cpt_type, \
184 .next_pt_type = npt_type, \
185 .pse_entry_type = pse_type, \
186 }
187
188 static struct gtt_type_table_entry gtt_type_table[] = {
189 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
190 GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
191 GTT_TYPE_INVALID,
192 GTT_TYPE_PPGTT_PML4_PT,
193 GTT_TYPE_INVALID),
194 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
195 GTT_TYPE_PPGTT_PML4_ENTRY,
196 GTT_TYPE_PPGTT_PML4_PT,
197 GTT_TYPE_PPGTT_PDP_PT,
198 GTT_TYPE_INVALID),
199 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
200 GTT_TYPE_PPGTT_PML4_ENTRY,
201 GTT_TYPE_PPGTT_PML4_PT,
202 GTT_TYPE_PPGTT_PDP_PT,
203 GTT_TYPE_INVALID),
204 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
205 GTT_TYPE_PPGTT_PDP_ENTRY,
206 GTT_TYPE_PPGTT_PDP_PT,
207 GTT_TYPE_PPGTT_PDE_PT,
208 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
210 GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
211 GTT_TYPE_INVALID,
212 GTT_TYPE_PPGTT_PDE_PT,
213 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
214 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
215 GTT_TYPE_PPGTT_PDP_ENTRY,
216 GTT_TYPE_PPGTT_PDP_PT,
217 GTT_TYPE_PPGTT_PDE_PT,
218 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
220 GTT_TYPE_PPGTT_PDE_ENTRY,
221 GTT_TYPE_PPGTT_PDE_PT,
222 GTT_TYPE_PPGTT_PTE_PT,
223 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
224 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
225 GTT_TYPE_PPGTT_PDE_ENTRY,
226 GTT_TYPE_PPGTT_PDE_PT,
227 GTT_TYPE_PPGTT_PTE_PT,
228 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
229 /* We take IPS bit as 'PSE' for PTE level. */
230 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
231 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 GTT_TYPE_PPGTT_PTE_PT,
233 GTT_TYPE_INVALID,
234 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
236 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
237 GTT_TYPE_PPGTT_PTE_PT,
238 GTT_TYPE_INVALID,
239 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
240 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
241 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
242 GTT_TYPE_PPGTT_PTE_PT,
243 GTT_TYPE_INVALID,
244 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
245 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
246 GTT_TYPE_PPGTT_PDE_ENTRY,
247 GTT_TYPE_PPGTT_PDE_PT,
248 GTT_TYPE_INVALID,
249 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
250 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
251 GTT_TYPE_PPGTT_PDP_ENTRY,
252 GTT_TYPE_PPGTT_PDP_PT,
253 GTT_TYPE_INVALID,
254 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
255 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
256 GTT_TYPE_GGTT_PTE,
257 GTT_TYPE_INVALID,
258 GTT_TYPE_INVALID,
259 GTT_TYPE_INVALID),
260 };
261
get_next_pt_type(int type)262 static inline int get_next_pt_type(int type)
263 {
264 return gtt_type_table[type].next_pt_type;
265 }
266
get_pt_type(int type)267 static inline int get_pt_type(int type)
268 {
269 return gtt_type_table[type].pt_type;
270 }
271
get_entry_type(int type)272 static inline int get_entry_type(int type)
273 {
274 return gtt_type_table[type].entry_type;
275 }
276
get_pse_type(int type)277 static inline int get_pse_type(int type)
278 {
279 return gtt_type_table[type].pse_entry_type;
280 }
281
read_pte64(struct i915_ggtt * ggtt,unsigned long index)282 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
283 {
284 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
285
286 return readq(addr);
287 }
288
ggtt_invalidate(struct intel_gt * gt)289 static void ggtt_invalidate(struct intel_gt *gt)
290 {
291 mmio_hw_access_pre(gt);
292 intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
293 mmio_hw_access_post(gt);
294 }
295
write_pte64(struct i915_ggtt * ggtt,unsigned long index,u64 pte)296 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
297 {
298 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
299
300 writeq(pte, addr);
301 }
302
gtt_get_entry64(void * pt,struct intel_gvt_gtt_entry * e,unsigned long index,bool hypervisor_access,unsigned long gpa,struct intel_vgpu * vgpu)303 static inline int gtt_get_entry64(void *pt,
304 struct intel_gvt_gtt_entry *e,
305 unsigned long index, bool hypervisor_access, unsigned long gpa,
306 struct intel_vgpu *vgpu)
307 {
308 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
309 int ret;
310
311 if (WARN_ON(info->gtt_entry_size != 8))
312 return -EINVAL;
313
314 if (hypervisor_access) {
315 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
316 (index << info->gtt_entry_size_shift),
317 &e->val64, 8);
318 if (WARN_ON(ret))
319 return ret;
320 } else if (!pt) {
321 e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
322 } else {
323 e->val64 = *((u64 *)pt + index);
324 }
325 return 0;
326 }
327
gtt_set_entry64(void * pt,struct intel_gvt_gtt_entry * e,unsigned long index,bool hypervisor_access,unsigned long gpa,struct intel_vgpu * vgpu)328 static inline int gtt_set_entry64(void *pt,
329 struct intel_gvt_gtt_entry *e,
330 unsigned long index, bool hypervisor_access, unsigned long gpa,
331 struct intel_vgpu *vgpu)
332 {
333 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
334 int ret;
335
336 if (WARN_ON(info->gtt_entry_size != 8))
337 return -EINVAL;
338
339 if (hypervisor_access) {
340 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
341 (index << info->gtt_entry_size_shift),
342 &e->val64, 8);
343 if (WARN_ON(ret))
344 return ret;
345 } else if (!pt) {
346 write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
347 } else {
348 *((u64 *)pt + index) = e->val64;
349 }
350 return 0;
351 }
352
353 #define GTT_HAW 46
354
355 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30)
356 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21)
357 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16)
358 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12)
359
360 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
361 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
362
363 #define GTT_64K_PTE_STRIDE 16
364
gen8_gtt_get_pfn(struct intel_gvt_gtt_entry * e)365 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
366 {
367 unsigned long pfn;
368
369 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
370 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
371 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
372 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
373 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
374 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
375 else
376 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
377 return pfn;
378 }
379
gen8_gtt_set_pfn(struct intel_gvt_gtt_entry * e,unsigned long pfn)380 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
381 {
382 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
383 e->val64 &= ~ADDR_1G_MASK;
384 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
385 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
386 e->val64 &= ~ADDR_2M_MASK;
387 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
388 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
389 e->val64 &= ~ADDR_64K_MASK;
390 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
391 } else {
392 e->val64 &= ~ADDR_4K_MASK;
393 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
394 }
395
396 e->val64 |= (pfn << PAGE_SHIFT);
397 }
398
gen8_gtt_test_pse(struct intel_gvt_gtt_entry * e)399 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
400 {
401 return !!(e->val64 & _PAGE_PSE);
402 }
403
gen8_gtt_clear_pse(struct intel_gvt_gtt_entry * e)404 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
405 {
406 if (gen8_gtt_test_pse(e)) {
407 switch (e->type) {
408 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
409 e->val64 &= ~_PAGE_PSE;
410 e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
411 break;
412 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
413 e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
414 e->val64 &= ~_PAGE_PSE;
415 break;
416 default:
417 WARN_ON(1);
418 }
419 }
420 }
421
gen8_gtt_test_ips(struct intel_gvt_gtt_entry * e)422 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
423 {
424 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
425 return false;
426
427 return !!(e->val64 & GEN8_PDE_IPS_64K);
428 }
429
gen8_gtt_clear_ips(struct intel_gvt_gtt_entry * e)430 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
431 {
432 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
433 return;
434
435 e->val64 &= ~GEN8_PDE_IPS_64K;
436 }
437
gen8_gtt_test_present(struct intel_gvt_gtt_entry * e)438 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
439 {
440 /*
441 * i915 writes PDP root pointer registers without present bit,
442 * it also works, so we need to treat root pointer entry
443 * specifically.
444 */
445 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
446 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
447 return (e->val64 != 0);
448 else
449 return (e->val64 & _PAGE_PRESENT);
450 }
451
gtt_entry_clear_present(struct intel_gvt_gtt_entry * e)452 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
453 {
454 e->val64 &= ~_PAGE_PRESENT;
455 }
456
gtt_entry_set_present(struct intel_gvt_gtt_entry * e)457 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
458 {
459 e->val64 |= _PAGE_PRESENT;
460 }
461
gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry * e)462 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
463 {
464 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
465 }
466
gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry * e)467 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
468 {
469 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
470 }
471
gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry * e)472 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
473 {
474 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
475 }
476
477 /*
478 * Per-platform GMA routines.
479 */
gma_to_ggtt_pte_index(unsigned long gma)480 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
481 {
482 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
483
484 trace_gma_index(__func__, gma, x);
485 return x;
486 }
487
488 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
489 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
490 { \
491 unsigned long x = (exp); \
492 trace_gma_index(__func__, gma, x); \
493 return x; \
494 }
495
496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
501
502 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
503 .get_entry = gtt_get_entry64,
504 .set_entry = gtt_set_entry64,
505 .clear_present = gtt_entry_clear_present,
506 .set_present = gtt_entry_set_present,
507 .test_present = gen8_gtt_test_present,
508 .test_pse = gen8_gtt_test_pse,
509 .clear_pse = gen8_gtt_clear_pse,
510 .clear_ips = gen8_gtt_clear_ips,
511 .test_ips = gen8_gtt_test_ips,
512 .clear_64k_splited = gen8_gtt_clear_64k_splited,
513 .set_64k_splited = gen8_gtt_set_64k_splited,
514 .test_64k_splited = gen8_gtt_test_64k_splited,
515 .get_pfn = gen8_gtt_get_pfn,
516 .set_pfn = gen8_gtt_set_pfn,
517 };
518
519 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
520 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
521 .gma_to_pte_index = gen8_gma_to_pte_index,
522 .gma_to_pde_index = gen8_gma_to_pde_index,
523 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
524 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
525 .gma_to_pml4_index = gen8_gma_to_pml4_index,
526 };
527
528 /* Update entry type per pse and ips bit. */
update_entry_type_for_real(struct intel_gvt_gtt_pte_ops * pte_ops,struct intel_gvt_gtt_entry * entry,bool ips)529 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
530 struct intel_gvt_gtt_entry *entry, bool ips)
531 {
532 switch (entry->type) {
533 case GTT_TYPE_PPGTT_PDE_ENTRY:
534 case GTT_TYPE_PPGTT_PDP_ENTRY:
535 if (pte_ops->test_pse(entry))
536 entry->type = get_pse_type(entry->type);
537 break;
538 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
539 if (ips)
540 entry->type = get_pse_type(entry->type);
541 break;
542 default:
543 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
544 }
545
546 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
547 }
548
549 /*
550 * MM helpers.
551 */
_ppgtt_get_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index,bool guest)552 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
553 struct intel_gvt_gtt_entry *entry, unsigned long index,
554 bool guest)
555 {
556 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
557
558 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
559
560 entry->type = mm->ppgtt_mm.root_entry_type;
561 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
562 mm->ppgtt_mm.shadow_pdps,
563 entry, index, false, 0, mm->vgpu);
564 update_entry_type_for_real(pte_ops, entry, false);
565 }
566
ppgtt_get_guest_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)567 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
568 struct intel_gvt_gtt_entry *entry, unsigned long index)
569 {
570 _ppgtt_get_root_entry(mm, entry, index, true);
571 }
572
ppgtt_get_shadow_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)573 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
574 struct intel_gvt_gtt_entry *entry, unsigned long index)
575 {
576 _ppgtt_get_root_entry(mm, entry, index, false);
577 }
578
_ppgtt_set_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index,bool guest)579 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
580 struct intel_gvt_gtt_entry *entry, unsigned long index,
581 bool guest)
582 {
583 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
584
585 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
586 mm->ppgtt_mm.shadow_pdps,
587 entry, index, false, 0, mm->vgpu);
588 }
589
ppgtt_set_shadow_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)590 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
591 struct intel_gvt_gtt_entry *entry, unsigned long index)
592 {
593 _ppgtt_set_root_entry(mm, entry, index, false);
594 }
595
ggtt_get_guest_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)596 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
597 struct intel_gvt_gtt_entry *entry, unsigned long index)
598 {
599 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
600
601 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
602
603 entry->type = GTT_TYPE_GGTT_PTE;
604 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
605 false, 0, mm->vgpu);
606 }
607
ggtt_set_guest_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)608 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
609 struct intel_gvt_gtt_entry *entry, unsigned long index)
610 {
611 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
612
613 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
614
615 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
616 false, 0, mm->vgpu);
617 }
618
ggtt_get_host_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)619 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
620 struct intel_gvt_gtt_entry *entry, unsigned long index)
621 {
622 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
623
624 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
625
626 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
627 }
628
ggtt_set_host_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)629 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
630 struct intel_gvt_gtt_entry *entry, unsigned long index)
631 {
632 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
633 unsigned long offset = index;
634
635 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
636
637 if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
638 offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
639 mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64;
640 } else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
641 offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
642 mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64;
643 }
644
645 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
646 }
647
648 /*
649 * PPGTT shadow page table helpers.
650 */
ppgtt_spt_get_entry(struct intel_vgpu_ppgtt_spt * spt,void * page_table,int type,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)651 static inline int ppgtt_spt_get_entry(
652 struct intel_vgpu_ppgtt_spt *spt,
653 void *page_table, int type,
654 struct intel_gvt_gtt_entry *e, unsigned long index,
655 bool guest)
656 {
657 struct intel_gvt *gvt = spt->vgpu->gvt;
658 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
659 int ret;
660
661 e->type = get_entry_type(type);
662
663 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
664 return -EINVAL;
665
666 ret = ops->get_entry(page_table, e, index, guest,
667 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
668 spt->vgpu);
669 if (ret)
670 return ret;
671
672 update_entry_type_for_real(ops, e, guest ?
673 spt->guest_page.pde_ips : false);
674
675 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
676 type, e->type, index, e->val64);
677 return 0;
678 }
679
ppgtt_spt_set_entry(struct intel_vgpu_ppgtt_spt * spt,void * page_table,int type,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)680 static inline int ppgtt_spt_set_entry(
681 struct intel_vgpu_ppgtt_spt *spt,
682 void *page_table, int type,
683 struct intel_gvt_gtt_entry *e, unsigned long index,
684 bool guest)
685 {
686 struct intel_gvt *gvt = spt->vgpu->gvt;
687 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
688
689 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
690 return -EINVAL;
691
692 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
693 type, e->type, index, e->val64);
694
695 return ops->set_entry(page_table, e, index, guest,
696 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
697 spt->vgpu);
698 }
699
700 #define ppgtt_get_guest_entry(spt, e, index) \
701 ppgtt_spt_get_entry(spt, NULL, \
702 spt->guest_page.type, e, index, true)
703
704 #define ppgtt_set_guest_entry(spt, e, index) \
705 ppgtt_spt_set_entry(spt, NULL, \
706 spt->guest_page.type, e, index, true)
707
708 #define ppgtt_get_shadow_entry(spt, e, index) \
709 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
710 spt->shadow_page.type, e, index, false)
711
712 #define ppgtt_set_shadow_entry(spt, e, index) \
713 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
714 spt->shadow_page.type, e, index, false)
715
alloc_spt(gfp_t gfp_mask)716 static void *alloc_spt(gfp_t gfp_mask)
717 {
718 struct intel_vgpu_ppgtt_spt *spt;
719
720 spt = kzalloc(sizeof(*spt), gfp_mask);
721 if (!spt)
722 return NULL;
723
724 spt->shadow_page.page = alloc_page(gfp_mask);
725 if (!spt->shadow_page.page) {
726 kfree(spt);
727 return NULL;
728 }
729 return spt;
730 }
731
free_spt(struct intel_vgpu_ppgtt_spt * spt)732 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
733 {
734 __free_page(spt->shadow_page.page);
735 kfree(spt);
736 }
737
738 static int detach_oos_page(struct intel_vgpu *vgpu,
739 struct intel_vgpu_oos_page *oos_page);
740
ppgtt_free_spt(struct intel_vgpu_ppgtt_spt * spt)741 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
742 {
743 struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev;
744
745 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
746
747 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
748 PCI_DMA_BIDIRECTIONAL);
749
750 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
751
752 if (spt->guest_page.gfn) {
753 if (spt->guest_page.oos_page)
754 detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
755
756 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
757 }
758
759 list_del_init(&spt->post_shadow_list);
760 free_spt(spt);
761 }
762
ppgtt_free_all_spt(struct intel_vgpu * vgpu)763 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
764 {
765 struct intel_vgpu_ppgtt_spt *spt, *spn;
766 struct radix_tree_iter iter;
767 LIST_HEAD(all_spt);
768 void __rcu **slot;
769
770 rcu_read_lock();
771 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
772 spt = radix_tree_deref_slot(slot);
773 list_move(&spt->post_shadow_list, &all_spt);
774 }
775 rcu_read_unlock();
776
777 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
778 ppgtt_free_spt(spt);
779 }
780
781 static int ppgtt_handle_guest_write_page_table_bytes(
782 struct intel_vgpu_ppgtt_spt *spt,
783 u64 pa, void *p_data, int bytes);
784
ppgtt_write_protection_handler(struct intel_vgpu_page_track * page_track,u64 gpa,void * data,int bytes)785 static int ppgtt_write_protection_handler(
786 struct intel_vgpu_page_track *page_track,
787 u64 gpa, void *data, int bytes)
788 {
789 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
790
791 int ret;
792
793 if (bytes != 4 && bytes != 8)
794 return -EINVAL;
795
796 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
797 if (ret)
798 return ret;
799 return ret;
800 }
801
802 /* Find a spt by guest gfn. */
intel_vgpu_find_spt_by_gfn(struct intel_vgpu * vgpu,unsigned long gfn)803 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
804 struct intel_vgpu *vgpu, unsigned long gfn)
805 {
806 struct intel_vgpu_page_track *track;
807
808 track = intel_vgpu_find_page_track(vgpu, gfn);
809 if (track && track->handler == ppgtt_write_protection_handler)
810 return track->priv_data;
811
812 return NULL;
813 }
814
815 /* Find the spt by shadow page mfn. */
intel_vgpu_find_spt_by_mfn(struct intel_vgpu * vgpu,unsigned long mfn)816 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
817 struct intel_vgpu *vgpu, unsigned long mfn)
818 {
819 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
820 }
821
822 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
823
824 /* Allocate shadow page table without guest page. */
ppgtt_alloc_spt(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type)825 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
826 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
827 {
828 struct device *kdev = vgpu->gvt->gt->i915->drm.dev;
829 struct intel_vgpu_ppgtt_spt *spt = NULL;
830 dma_addr_t daddr;
831 int ret;
832
833 retry:
834 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
835 if (!spt) {
836 if (reclaim_one_ppgtt_mm(vgpu->gvt))
837 goto retry;
838
839 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
840 return ERR_PTR(-ENOMEM);
841 }
842
843 spt->vgpu = vgpu;
844 atomic_set(&spt->refcount, 1);
845 INIT_LIST_HEAD(&spt->post_shadow_list);
846
847 /*
848 * Init shadow_page.
849 */
850 spt->shadow_page.type = type;
851 daddr = dma_map_page(kdev, spt->shadow_page.page,
852 0, 4096, PCI_DMA_BIDIRECTIONAL);
853 if (dma_mapping_error(kdev, daddr)) {
854 gvt_vgpu_err("fail to map dma addr\n");
855 ret = -EINVAL;
856 goto err_free_spt;
857 }
858 spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
859 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
860
861 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
862 if (ret)
863 goto err_unmap_dma;
864
865 return spt;
866
867 err_unmap_dma:
868 dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
869 err_free_spt:
870 free_spt(spt);
871 return ERR_PTR(ret);
872 }
873
874 /* Allocate shadow page table associated with specific gfn. */
ppgtt_alloc_spt_gfn(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type,unsigned long gfn,bool guest_pde_ips)875 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
876 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
877 unsigned long gfn, bool guest_pde_ips)
878 {
879 struct intel_vgpu_ppgtt_spt *spt;
880 int ret;
881
882 spt = ppgtt_alloc_spt(vgpu, type);
883 if (IS_ERR(spt))
884 return spt;
885
886 /*
887 * Init guest_page.
888 */
889 ret = intel_vgpu_register_page_track(vgpu, gfn,
890 ppgtt_write_protection_handler, spt);
891 if (ret) {
892 ppgtt_free_spt(spt);
893 return ERR_PTR(ret);
894 }
895
896 spt->guest_page.type = type;
897 spt->guest_page.gfn = gfn;
898 spt->guest_page.pde_ips = guest_pde_ips;
899
900 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
901
902 return spt;
903 }
904
905 #define pt_entry_size_shift(spt) \
906 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
907
908 #define pt_entries(spt) \
909 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
910
911 #define for_each_present_guest_entry(spt, e, i) \
912 for (i = 0; i < pt_entries(spt); \
913 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
914 if (!ppgtt_get_guest_entry(spt, e, i) && \
915 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
916
917 #define for_each_present_shadow_entry(spt, e, i) \
918 for (i = 0; i < pt_entries(spt); \
919 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
920 if (!ppgtt_get_shadow_entry(spt, e, i) && \
921 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
922
923 #define for_each_shadow_entry(spt, e, i) \
924 for (i = 0; i < pt_entries(spt); \
925 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
926 if (!ppgtt_get_shadow_entry(spt, e, i))
927
ppgtt_get_spt(struct intel_vgpu_ppgtt_spt * spt)928 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
929 {
930 int v = atomic_read(&spt->refcount);
931
932 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
933 atomic_inc(&spt->refcount);
934 }
935
ppgtt_put_spt(struct intel_vgpu_ppgtt_spt * spt)936 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
937 {
938 int v = atomic_read(&spt->refcount);
939
940 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
941 return atomic_dec_return(&spt->refcount);
942 }
943
944 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
945
ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * e)946 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
947 struct intel_gvt_gtt_entry *e)
948 {
949 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
950 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
951 struct intel_vgpu_ppgtt_spt *s;
952 enum intel_gvt_gtt_type cur_pt_type;
953
954 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
955
956 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
957 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
958 cur_pt_type = get_next_pt_type(e->type);
959
960 if (!gtt_type_is_pt(cur_pt_type) ||
961 !gtt_type_is_pt(cur_pt_type + 1)) {
962 drm_WARN(&i915->drm, 1,
963 "Invalid page table type, cur_pt_type is: %d\n",
964 cur_pt_type);
965 return -EINVAL;
966 }
967
968 cur_pt_type += 1;
969
970 if (ops->get_pfn(e) ==
971 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
972 return 0;
973 }
974 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
975 if (!s) {
976 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
977 ops->get_pfn(e));
978 return -ENXIO;
979 }
980 return ppgtt_invalidate_spt(s);
981 }
982
ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * entry)983 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
984 struct intel_gvt_gtt_entry *entry)
985 {
986 struct intel_vgpu *vgpu = spt->vgpu;
987 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
988 unsigned long pfn;
989 int type;
990
991 pfn = ops->get_pfn(entry);
992 type = spt->shadow_page.type;
993
994 /* Uninitialized spte or unshadowed spte. */
995 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
996 return;
997
998 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
999 }
1000
ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt * spt)1001 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
1002 {
1003 struct intel_vgpu *vgpu = spt->vgpu;
1004 struct intel_gvt_gtt_entry e;
1005 unsigned long index;
1006 int ret;
1007
1008 trace_spt_change(spt->vgpu->id, "die", spt,
1009 spt->guest_page.gfn, spt->shadow_page.type);
1010
1011 if (ppgtt_put_spt(spt) > 0)
1012 return 0;
1013
1014 for_each_present_shadow_entry(spt, &e, index) {
1015 switch (e.type) {
1016 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1017 gvt_vdbg_mm("invalidate 4K entry\n");
1018 ppgtt_invalidate_pte(spt, &e);
1019 break;
1020 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1021 /* We don't setup 64K shadow entry so far. */
1022 WARN(1, "suspicious 64K gtt entry\n");
1023 continue;
1024 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1025 gvt_vdbg_mm("invalidate 2M entry\n");
1026 continue;
1027 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1028 WARN(1, "GVT doesn't support 1GB page\n");
1029 continue;
1030 case GTT_TYPE_PPGTT_PML4_ENTRY:
1031 case GTT_TYPE_PPGTT_PDP_ENTRY:
1032 case GTT_TYPE_PPGTT_PDE_ENTRY:
1033 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1034 ret = ppgtt_invalidate_spt_by_shadow_entry(
1035 spt->vgpu, &e);
1036 if (ret)
1037 goto fail;
1038 break;
1039 default:
1040 GEM_BUG_ON(1);
1041 }
1042 }
1043
1044 trace_spt_change(spt->vgpu->id, "release", spt,
1045 spt->guest_page.gfn, spt->shadow_page.type);
1046 ppgtt_free_spt(spt);
1047 return 0;
1048 fail:
1049 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1050 spt, e.val64, e.type);
1051 return ret;
1052 }
1053
vgpu_ips_enabled(struct intel_vgpu * vgpu)1054 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1055 {
1056 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1057
1058 if (GRAPHICS_VER(dev_priv) == 9) {
1059 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1060 GAMW_ECO_ENABLE_64K_IPS_FIELD;
1061
1062 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1063 } else if (GRAPHICS_VER(dev_priv) >= 11) {
1064 /* 64K paging only controlled by IPS bit in PTE now. */
1065 return true;
1066 } else
1067 return false;
1068 }
1069
1070 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1071
ppgtt_populate_spt_by_guest_entry(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * we)1072 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1073 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1074 {
1075 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1076 struct intel_vgpu_ppgtt_spt *spt = NULL;
1077 bool ips = false;
1078 int ret;
1079
1080 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1081
1082 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1083 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1084
1085 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1086 if (spt) {
1087 ppgtt_get_spt(spt);
1088
1089 if (ips != spt->guest_page.pde_ips) {
1090 spt->guest_page.pde_ips = ips;
1091
1092 gvt_dbg_mm("reshadow PDE since ips changed\n");
1093 clear_page(spt->shadow_page.vaddr);
1094 ret = ppgtt_populate_spt(spt);
1095 if (ret) {
1096 ppgtt_put_spt(spt);
1097 goto err;
1098 }
1099 }
1100 } else {
1101 int type = get_next_pt_type(we->type);
1102
1103 if (!gtt_type_is_pt(type)) {
1104 ret = -EINVAL;
1105 goto err;
1106 }
1107
1108 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1109 if (IS_ERR(spt)) {
1110 ret = PTR_ERR(spt);
1111 goto err;
1112 }
1113
1114 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1115 if (ret)
1116 goto err_free_spt;
1117
1118 ret = ppgtt_populate_spt(spt);
1119 if (ret)
1120 goto err_free_spt;
1121
1122 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1123 spt->shadow_page.type);
1124 }
1125 return spt;
1126
1127 err_free_spt:
1128 ppgtt_free_spt(spt);
1129 spt = NULL;
1130 err:
1131 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1132 spt, we->val64, we->type);
1133 return ERR_PTR(ret);
1134 }
1135
ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry * se,struct intel_vgpu_ppgtt_spt * s,struct intel_gvt_gtt_entry * ge)1136 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1137 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1138 {
1139 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1140
1141 se->type = ge->type;
1142 se->val64 = ge->val64;
1143
1144 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1145 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1146 ops->clear_ips(se);
1147
1148 ops->set_pfn(se, s->shadow_page.mfn);
1149 }
1150
1151 /**
1152 * Check if can do 2M page
1153 * @vgpu: target vgpu
1154 * @entry: target pfn's gtt entry
1155 *
1156 * Return 1 if 2MB huge gtt shadowing is possible, 0 if miscondition,
1157 * negative if found err.
1158 */
is_2MB_gtt_possible(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * entry)1159 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1160 struct intel_gvt_gtt_entry *entry)
1161 {
1162 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1163 unsigned long pfn;
1164
1165 if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1166 return 0;
1167
1168 pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1169 if (pfn == INTEL_GVT_INVALID_ADDR)
1170 return -EINVAL;
1171
1172 return PageTransHuge(pfn_to_page(pfn));
1173 }
1174
split_2MB_gtt_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * se)1175 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1176 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1177 struct intel_gvt_gtt_entry *se)
1178 {
1179 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1180 struct intel_vgpu_ppgtt_spt *sub_spt;
1181 struct intel_gvt_gtt_entry sub_se;
1182 unsigned long start_gfn;
1183 dma_addr_t dma_addr;
1184 unsigned long sub_index;
1185 int ret;
1186
1187 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1188
1189 start_gfn = ops->get_pfn(se);
1190
1191 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1192 if (IS_ERR(sub_spt))
1193 return PTR_ERR(sub_spt);
1194
1195 for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1196 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1197 start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1198 if (ret)
1199 goto err;
1200 sub_se.val64 = se->val64;
1201
1202 /* Copy the PAT field from PDE. */
1203 sub_se.val64 &= ~_PAGE_PAT;
1204 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1205
1206 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1207 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1208 }
1209
1210 /* Clear dirty field. */
1211 se->val64 &= ~_PAGE_DIRTY;
1212
1213 ops->clear_pse(se);
1214 ops->clear_ips(se);
1215 ops->set_pfn(se, sub_spt->shadow_page.mfn);
1216 ppgtt_set_shadow_entry(spt, se, index);
1217 return 0;
1218 err:
1219 /* Cancel the existing addess mappings of DMA addr. */
1220 for_each_present_shadow_entry(sub_spt, &sub_se, sub_index) {
1221 gvt_vdbg_mm("invalidate 4K entry\n");
1222 ppgtt_invalidate_pte(sub_spt, &sub_se);
1223 }
1224 /* Release the new allocated spt. */
1225 trace_spt_change(sub_spt->vgpu->id, "release", sub_spt,
1226 sub_spt->guest_page.gfn, sub_spt->shadow_page.type);
1227 ppgtt_free_spt(sub_spt);
1228 return ret;
1229 }
1230
split_64KB_gtt_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * se)1231 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1232 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1233 struct intel_gvt_gtt_entry *se)
1234 {
1235 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1236 struct intel_gvt_gtt_entry entry = *se;
1237 unsigned long start_gfn;
1238 dma_addr_t dma_addr;
1239 int i, ret;
1240
1241 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1242
1243 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1244
1245 start_gfn = ops->get_pfn(se);
1246
1247 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1248 ops->set_64k_splited(&entry);
1249
1250 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1251 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1252 start_gfn + i, PAGE_SIZE, &dma_addr);
1253 if (ret)
1254 return ret;
1255
1256 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1257 ppgtt_set_shadow_entry(spt, &entry, index + i);
1258 }
1259 return 0;
1260 }
1261
ppgtt_populate_shadow_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * ge)1262 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1263 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1264 struct intel_gvt_gtt_entry *ge)
1265 {
1266 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1267 struct intel_gvt_gtt_entry se = *ge;
1268 unsigned long gfn, page_size = PAGE_SIZE;
1269 dma_addr_t dma_addr;
1270 int ret;
1271
1272 if (!pte_ops->test_present(ge))
1273 return 0;
1274
1275 gfn = pte_ops->get_pfn(ge);
1276
1277 switch (ge->type) {
1278 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1279 gvt_vdbg_mm("shadow 4K gtt entry\n");
1280 break;
1281 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1282 gvt_vdbg_mm("shadow 64K gtt entry\n");
1283 /*
1284 * The layout of 64K page is special, the page size is
1285 * controlled by uper PDE. To be simple, we always split
1286 * 64K page to smaller 4K pages in shadow PT.
1287 */
1288 return split_64KB_gtt_entry(vgpu, spt, index, &se);
1289 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1290 gvt_vdbg_mm("shadow 2M gtt entry\n");
1291 ret = is_2MB_gtt_possible(vgpu, ge);
1292 if (ret == 0)
1293 return split_2MB_gtt_entry(vgpu, spt, index, &se);
1294 else if (ret < 0)
1295 return ret;
1296 page_size = I915_GTT_PAGE_SIZE_2M;
1297 break;
1298 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1299 gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1300 return -EINVAL;
1301 default:
1302 GEM_BUG_ON(1);
1303 }
1304
1305 /* direct shadow */
1306 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1307 &dma_addr);
1308 if (ret)
1309 return -ENXIO;
1310
1311 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1312 ppgtt_set_shadow_entry(spt, &se, index);
1313 return 0;
1314 }
1315
ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt * spt)1316 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1317 {
1318 struct intel_vgpu *vgpu = spt->vgpu;
1319 struct intel_gvt *gvt = vgpu->gvt;
1320 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1321 struct intel_vgpu_ppgtt_spt *s;
1322 struct intel_gvt_gtt_entry se, ge;
1323 unsigned long gfn, i;
1324 int ret;
1325
1326 trace_spt_change(spt->vgpu->id, "born", spt,
1327 spt->guest_page.gfn, spt->shadow_page.type);
1328
1329 for_each_present_guest_entry(spt, &ge, i) {
1330 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1331 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1332 if (IS_ERR(s)) {
1333 ret = PTR_ERR(s);
1334 goto fail;
1335 }
1336 ppgtt_get_shadow_entry(spt, &se, i);
1337 ppgtt_generate_shadow_entry(&se, s, &ge);
1338 ppgtt_set_shadow_entry(spt, &se, i);
1339 } else {
1340 gfn = ops->get_pfn(&ge);
1341 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1342 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1343 ppgtt_set_shadow_entry(spt, &se, i);
1344 continue;
1345 }
1346
1347 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1348 if (ret)
1349 goto fail;
1350 }
1351 }
1352 return 0;
1353 fail:
1354 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1355 spt, ge.val64, ge.type);
1356 return ret;
1357 }
1358
ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * se,unsigned long index)1359 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1360 struct intel_gvt_gtt_entry *se, unsigned long index)
1361 {
1362 struct intel_vgpu *vgpu = spt->vgpu;
1363 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1364 int ret;
1365
1366 trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1367 spt->shadow_page.type, se->val64, index);
1368
1369 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1370 se->type, index, se->val64);
1371
1372 if (!ops->test_present(se))
1373 return 0;
1374
1375 if (ops->get_pfn(se) ==
1376 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1377 return 0;
1378
1379 if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1380 struct intel_vgpu_ppgtt_spt *s =
1381 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1382 if (!s) {
1383 gvt_vgpu_err("fail to find guest page\n");
1384 ret = -ENXIO;
1385 goto fail;
1386 }
1387 ret = ppgtt_invalidate_spt(s);
1388 if (ret)
1389 goto fail;
1390 } else {
1391 /* We don't setup 64K shadow entry so far. */
1392 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1393 "suspicious 64K entry\n");
1394 ppgtt_invalidate_pte(spt, se);
1395 }
1396
1397 return 0;
1398 fail:
1399 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1400 spt, se->val64, se->type);
1401 return ret;
1402 }
1403
ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * we,unsigned long index)1404 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1405 struct intel_gvt_gtt_entry *we, unsigned long index)
1406 {
1407 struct intel_vgpu *vgpu = spt->vgpu;
1408 struct intel_gvt_gtt_entry m;
1409 struct intel_vgpu_ppgtt_spt *s;
1410 int ret;
1411
1412 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1413 we->val64, index);
1414
1415 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1416 we->type, index, we->val64);
1417
1418 if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1419 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1420 if (IS_ERR(s)) {
1421 ret = PTR_ERR(s);
1422 goto fail;
1423 }
1424 ppgtt_get_shadow_entry(spt, &m, index);
1425 ppgtt_generate_shadow_entry(&m, s, we);
1426 ppgtt_set_shadow_entry(spt, &m, index);
1427 } else {
1428 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1429 if (ret)
1430 goto fail;
1431 }
1432 return 0;
1433 fail:
1434 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1435 spt, we->val64, we->type);
1436 return ret;
1437 }
1438
sync_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_oos_page * oos_page)1439 static int sync_oos_page(struct intel_vgpu *vgpu,
1440 struct intel_vgpu_oos_page *oos_page)
1441 {
1442 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1443 struct intel_gvt *gvt = vgpu->gvt;
1444 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1445 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1446 struct intel_gvt_gtt_entry old, new;
1447 int index;
1448 int ret;
1449
1450 trace_oos_change(vgpu->id, "sync", oos_page->id,
1451 spt, spt->guest_page.type);
1452
1453 old.type = new.type = get_entry_type(spt->guest_page.type);
1454 old.val64 = new.val64 = 0;
1455
1456 for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1457 info->gtt_entry_size_shift); index++) {
1458 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1459 ops->get_entry(NULL, &new, index, true,
1460 spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1461
1462 if (old.val64 == new.val64
1463 && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1464 continue;
1465
1466 trace_oos_sync(vgpu->id, oos_page->id,
1467 spt, spt->guest_page.type,
1468 new.val64, index);
1469
1470 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1471 if (ret)
1472 return ret;
1473
1474 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1475 }
1476
1477 spt->guest_page.write_cnt = 0;
1478 list_del_init(&spt->post_shadow_list);
1479 return 0;
1480 }
1481
detach_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_oos_page * oos_page)1482 static int detach_oos_page(struct intel_vgpu *vgpu,
1483 struct intel_vgpu_oos_page *oos_page)
1484 {
1485 struct intel_gvt *gvt = vgpu->gvt;
1486 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1487
1488 trace_oos_change(vgpu->id, "detach", oos_page->id,
1489 spt, spt->guest_page.type);
1490
1491 spt->guest_page.write_cnt = 0;
1492 spt->guest_page.oos_page = NULL;
1493 oos_page->spt = NULL;
1494
1495 list_del_init(&oos_page->vm_list);
1496 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1497
1498 return 0;
1499 }
1500
attach_oos_page(struct intel_vgpu_oos_page * oos_page,struct intel_vgpu_ppgtt_spt * spt)1501 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1502 struct intel_vgpu_ppgtt_spt *spt)
1503 {
1504 struct intel_gvt *gvt = spt->vgpu->gvt;
1505 int ret;
1506
1507 ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1508 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1509 oos_page->mem, I915_GTT_PAGE_SIZE);
1510 if (ret)
1511 return ret;
1512
1513 oos_page->spt = spt;
1514 spt->guest_page.oos_page = oos_page;
1515
1516 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1517
1518 trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1519 spt, spt->guest_page.type);
1520 return 0;
1521 }
1522
ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt * spt)1523 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1524 {
1525 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1526 int ret;
1527
1528 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1529 if (ret)
1530 return ret;
1531
1532 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1533 spt, spt->guest_page.type);
1534
1535 list_del_init(&oos_page->vm_list);
1536 return sync_oos_page(spt->vgpu, oos_page);
1537 }
1538
ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt * spt)1539 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1540 {
1541 struct intel_gvt *gvt = spt->vgpu->gvt;
1542 struct intel_gvt_gtt *gtt = &gvt->gtt;
1543 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1544 int ret;
1545
1546 WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1547
1548 if (list_empty(>t->oos_page_free_list_head)) {
1549 oos_page = container_of(gtt->oos_page_use_list_head.next,
1550 struct intel_vgpu_oos_page, list);
1551 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1552 if (ret)
1553 return ret;
1554 ret = detach_oos_page(spt->vgpu, oos_page);
1555 if (ret)
1556 return ret;
1557 } else
1558 oos_page = container_of(gtt->oos_page_free_list_head.next,
1559 struct intel_vgpu_oos_page, list);
1560 return attach_oos_page(oos_page, spt);
1561 }
1562
ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt * spt)1563 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1564 {
1565 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1566
1567 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1568 return -EINVAL;
1569
1570 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1571 spt, spt->guest_page.type);
1572
1573 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1574 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1575 }
1576
1577 /**
1578 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1579 * @vgpu: a vGPU
1580 *
1581 * This function is called before submitting a guest workload to host,
1582 * to sync all the out-of-synced shadow for vGPU
1583 *
1584 * Returns:
1585 * Zero on success, negative error code if failed.
1586 */
intel_vgpu_sync_oos_pages(struct intel_vgpu * vgpu)1587 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1588 {
1589 struct list_head *pos, *n;
1590 struct intel_vgpu_oos_page *oos_page;
1591 int ret;
1592
1593 if (!enable_out_of_sync)
1594 return 0;
1595
1596 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1597 oos_page = container_of(pos,
1598 struct intel_vgpu_oos_page, vm_list);
1599 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1600 if (ret)
1601 return ret;
1602 }
1603 return 0;
1604 }
1605
1606 /*
1607 * The heart of PPGTT shadow page table.
1608 */
ppgtt_handle_guest_write_page_table(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * we,unsigned long index)1609 static int ppgtt_handle_guest_write_page_table(
1610 struct intel_vgpu_ppgtt_spt *spt,
1611 struct intel_gvt_gtt_entry *we, unsigned long index)
1612 {
1613 struct intel_vgpu *vgpu = spt->vgpu;
1614 int type = spt->shadow_page.type;
1615 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1616 struct intel_gvt_gtt_entry old_se;
1617 int new_present;
1618 int i, ret;
1619
1620 new_present = ops->test_present(we);
1621
1622 /*
1623 * Adding the new entry first and then removing the old one, that can
1624 * guarantee the ppgtt table is validated during the window between
1625 * adding and removal.
1626 */
1627 ppgtt_get_shadow_entry(spt, &old_se, index);
1628
1629 if (new_present) {
1630 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1631 if (ret)
1632 goto fail;
1633 }
1634
1635 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1636 if (ret)
1637 goto fail;
1638
1639 if (!new_present) {
1640 /* For 64KB splited entries, we need clear them all. */
1641 if (ops->test_64k_splited(&old_se) &&
1642 !(index % GTT_64K_PTE_STRIDE)) {
1643 gvt_vdbg_mm("remove splited 64K shadow entries\n");
1644 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1645 ops->clear_64k_splited(&old_se);
1646 ops->set_pfn(&old_se,
1647 vgpu->gtt.scratch_pt[type].page_mfn);
1648 ppgtt_set_shadow_entry(spt, &old_se, index + i);
1649 }
1650 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1651 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1652 ops->clear_pse(&old_se);
1653 ops->set_pfn(&old_se,
1654 vgpu->gtt.scratch_pt[type].page_mfn);
1655 ppgtt_set_shadow_entry(spt, &old_se, index);
1656 } else {
1657 ops->set_pfn(&old_se,
1658 vgpu->gtt.scratch_pt[type].page_mfn);
1659 ppgtt_set_shadow_entry(spt, &old_se, index);
1660 }
1661 }
1662
1663 return 0;
1664 fail:
1665 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1666 spt, we->val64, we->type);
1667 return ret;
1668 }
1669
1670
1671
can_do_out_of_sync(struct intel_vgpu_ppgtt_spt * spt)1672 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1673 {
1674 return enable_out_of_sync
1675 && gtt_type_is_pte_pt(spt->guest_page.type)
1676 && spt->guest_page.write_cnt >= 2;
1677 }
1678
ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt * spt,unsigned long index)1679 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1680 unsigned long index)
1681 {
1682 set_bit(index, spt->post_shadow_bitmap);
1683 if (!list_empty(&spt->post_shadow_list))
1684 return;
1685
1686 list_add_tail(&spt->post_shadow_list,
1687 &spt->vgpu->gtt.post_shadow_list_head);
1688 }
1689
1690 /**
1691 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1692 * @vgpu: a vGPU
1693 *
1694 * This function is called before submitting a guest workload to host,
1695 * to flush all the post shadows for a vGPU.
1696 *
1697 * Returns:
1698 * Zero on success, negative error code if failed.
1699 */
intel_vgpu_flush_post_shadow(struct intel_vgpu * vgpu)1700 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1701 {
1702 struct list_head *pos, *n;
1703 struct intel_vgpu_ppgtt_spt *spt;
1704 struct intel_gvt_gtt_entry ge;
1705 unsigned long index;
1706 int ret;
1707
1708 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1709 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1710 post_shadow_list);
1711
1712 for_each_set_bit(index, spt->post_shadow_bitmap,
1713 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1714 ppgtt_get_guest_entry(spt, &ge, index);
1715
1716 ret = ppgtt_handle_guest_write_page_table(spt,
1717 &ge, index);
1718 if (ret)
1719 return ret;
1720 clear_bit(index, spt->post_shadow_bitmap);
1721 }
1722 list_del_init(&spt->post_shadow_list);
1723 }
1724 return 0;
1725 }
1726
ppgtt_handle_guest_write_page_table_bytes(struct intel_vgpu_ppgtt_spt * spt,u64 pa,void * p_data,int bytes)1727 static int ppgtt_handle_guest_write_page_table_bytes(
1728 struct intel_vgpu_ppgtt_spt *spt,
1729 u64 pa, void *p_data, int bytes)
1730 {
1731 struct intel_vgpu *vgpu = spt->vgpu;
1732 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1733 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1734 struct intel_gvt_gtt_entry we, se;
1735 unsigned long index;
1736 int ret;
1737
1738 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1739
1740 ppgtt_get_guest_entry(spt, &we, index);
1741
1742 /*
1743 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1744 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1745 * ignored.
1746 */
1747 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1748 (index % GTT_64K_PTE_STRIDE)) {
1749 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1750 index);
1751 return 0;
1752 }
1753
1754 if (bytes == info->gtt_entry_size) {
1755 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1756 if (ret)
1757 return ret;
1758 } else {
1759 if (!test_bit(index, spt->post_shadow_bitmap)) {
1760 int type = spt->shadow_page.type;
1761
1762 ppgtt_get_shadow_entry(spt, &se, index);
1763 ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1764 if (ret)
1765 return ret;
1766 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1767 ppgtt_set_shadow_entry(spt, &se, index);
1768 }
1769 ppgtt_set_post_shadow(spt, index);
1770 }
1771
1772 if (!enable_out_of_sync)
1773 return 0;
1774
1775 spt->guest_page.write_cnt++;
1776
1777 if (spt->guest_page.oos_page)
1778 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1779 false, 0, vgpu);
1780
1781 if (can_do_out_of_sync(spt)) {
1782 if (!spt->guest_page.oos_page)
1783 ppgtt_allocate_oos_page(spt);
1784
1785 ret = ppgtt_set_guest_page_oos(spt);
1786 if (ret < 0)
1787 return ret;
1788 }
1789 return 0;
1790 }
1791
invalidate_ppgtt_mm(struct intel_vgpu_mm * mm)1792 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1793 {
1794 struct intel_vgpu *vgpu = mm->vgpu;
1795 struct intel_gvt *gvt = vgpu->gvt;
1796 struct intel_gvt_gtt *gtt = &gvt->gtt;
1797 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1798 struct intel_gvt_gtt_entry se;
1799 int index;
1800
1801 if (!mm->ppgtt_mm.shadowed)
1802 return;
1803
1804 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1805 ppgtt_get_shadow_root_entry(mm, &se, index);
1806
1807 if (!ops->test_present(&se))
1808 continue;
1809
1810 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1811 se.val64 = 0;
1812 ppgtt_set_shadow_root_entry(mm, &se, index);
1813
1814 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1815 NULL, se.type, se.val64, index);
1816 }
1817
1818 mm->ppgtt_mm.shadowed = false;
1819 }
1820
1821
shadow_ppgtt_mm(struct intel_vgpu_mm * mm)1822 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1823 {
1824 struct intel_vgpu *vgpu = mm->vgpu;
1825 struct intel_gvt *gvt = vgpu->gvt;
1826 struct intel_gvt_gtt *gtt = &gvt->gtt;
1827 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1828 struct intel_vgpu_ppgtt_spt *spt;
1829 struct intel_gvt_gtt_entry ge, se;
1830 int index, ret;
1831
1832 if (mm->ppgtt_mm.shadowed)
1833 return 0;
1834
1835 mm->ppgtt_mm.shadowed = true;
1836
1837 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1838 ppgtt_get_guest_root_entry(mm, &ge, index);
1839
1840 if (!ops->test_present(&ge))
1841 continue;
1842
1843 trace_spt_guest_change(vgpu->id, __func__, NULL,
1844 ge.type, ge.val64, index);
1845
1846 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1847 if (IS_ERR(spt)) {
1848 gvt_vgpu_err("fail to populate guest root pointer\n");
1849 ret = PTR_ERR(spt);
1850 goto fail;
1851 }
1852 ppgtt_generate_shadow_entry(&se, spt, &ge);
1853 ppgtt_set_shadow_root_entry(mm, &se, index);
1854
1855 trace_spt_guest_change(vgpu->id, "populate root pointer",
1856 NULL, se.type, se.val64, index);
1857 }
1858
1859 return 0;
1860 fail:
1861 invalidate_ppgtt_mm(mm);
1862 return ret;
1863 }
1864
vgpu_alloc_mm(struct intel_vgpu * vgpu)1865 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1866 {
1867 struct intel_vgpu_mm *mm;
1868
1869 mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1870 if (!mm)
1871 return NULL;
1872
1873 mm->vgpu = vgpu;
1874 kref_init(&mm->ref);
1875 atomic_set(&mm->pincount, 0);
1876
1877 return mm;
1878 }
1879
vgpu_free_mm(struct intel_vgpu_mm * mm)1880 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1881 {
1882 kfree(mm);
1883 }
1884
1885 /**
1886 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1887 * @vgpu: a vGPU
1888 * @root_entry_type: ppgtt root entry type
1889 * @pdps: guest pdps.
1890 *
1891 * This function is used to create a ppgtt mm object for a vGPU.
1892 *
1893 * Returns:
1894 * Zero on success, negative error code in pointer if failed.
1895 */
intel_vgpu_create_ppgtt_mm(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type root_entry_type,u64 pdps[])1896 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1897 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1898 {
1899 struct intel_gvt *gvt = vgpu->gvt;
1900 struct intel_vgpu_mm *mm;
1901 int ret;
1902
1903 mm = vgpu_alloc_mm(vgpu);
1904 if (!mm)
1905 return ERR_PTR(-ENOMEM);
1906
1907 mm->type = INTEL_GVT_MM_PPGTT;
1908
1909 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1910 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1911 mm->ppgtt_mm.root_entry_type = root_entry_type;
1912
1913 INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1914 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1915 INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1916
1917 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1918 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1919 else
1920 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1921 sizeof(mm->ppgtt_mm.guest_pdps));
1922
1923 ret = shadow_ppgtt_mm(mm);
1924 if (ret) {
1925 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1926 vgpu_free_mm(mm);
1927 return ERR_PTR(ret);
1928 }
1929
1930 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1931
1932 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1933 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1934 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1935
1936 return mm;
1937 }
1938
intel_vgpu_create_ggtt_mm(struct intel_vgpu * vgpu)1939 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1940 {
1941 struct intel_vgpu_mm *mm;
1942 unsigned long nr_entries;
1943
1944 mm = vgpu_alloc_mm(vgpu);
1945 if (!mm)
1946 return ERR_PTR(-ENOMEM);
1947
1948 mm->type = INTEL_GVT_MM_GGTT;
1949
1950 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1951 mm->ggtt_mm.virtual_ggtt =
1952 vzalloc(array_size(nr_entries,
1953 vgpu->gvt->device_info.gtt_entry_size));
1954 if (!mm->ggtt_mm.virtual_ggtt) {
1955 vgpu_free_mm(mm);
1956 return ERR_PTR(-ENOMEM);
1957 }
1958
1959 mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1960 if (!mm->ggtt_mm.host_ggtt_aperture) {
1961 vfree(mm->ggtt_mm.virtual_ggtt);
1962 vgpu_free_mm(mm);
1963 return ERR_PTR(-ENOMEM);
1964 }
1965
1966 mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1967 if (!mm->ggtt_mm.host_ggtt_hidden) {
1968 vfree(mm->ggtt_mm.host_ggtt_aperture);
1969 vfree(mm->ggtt_mm.virtual_ggtt);
1970 vgpu_free_mm(mm);
1971 return ERR_PTR(-ENOMEM);
1972 }
1973
1974 return mm;
1975 }
1976
1977 /**
1978 * _intel_vgpu_mm_release - destroy a mm object
1979 * @mm_ref: a kref object
1980 *
1981 * This function is used to destroy a mm object for vGPU
1982 *
1983 */
_intel_vgpu_mm_release(struct kref * mm_ref)1984 void _intel_vgpu_mm_release(struct kref *mm_ref)
1985 {
1986 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1987
1988 if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1989 gvt_err("vgpu mm pin count bug detected\n");
1990
1991 if (mm->type == INTEL_GVT_MM_PPGTT) {
1992 list_del(&mm->ppgtt_mm.list);
1993
1994 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1995 list_del(&mm->ppgtt_mm.lru_list);
1996 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1997
1998 invalidate_ppgtt_mm(mm);
1999 } else {
2000 vfree(mm->ggtt_mm.virtual_ggtt);
2001 vfree(mm->ggtt_mm.host_ggtt_aperture);
2002 vfree(mm->ggtt_mm.host_ggtt_hidden);
2003 }
2004
2005 vgpu_free_mm(mm);
2006 }
2007
2008 /**
2009 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
2010 * @mm: a vGPU mm object
2011 *
2012 * This function is called when user doesn't want to use a vGPU mm object
2013 */
intel_vgpu_unpin_mm(struct intel_vgpu_mm * mm)2014 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
2015 {
2016 atomic_dec_if_positive(&mm->pincount);
2017 }
2018
2019 /**
2020 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
2021 * @mm: target vgpu mm
2022 *
2023 * This function is called when user wants to use a vGPU mm object. If this
2024 * mm object hasn't been shadowed yet, the shadow will be populated at this
2025 * time.
2026 *
2027 * Returns:
2028 * Zero on success, negative error code if failed.
2029 */
intel_vgpu_pin_mm(struct intel_vgpu_mm * mm)2030 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2031 {
2032 int ret;
2033
2034 atomic_inc(&mm->pincount);
2035
2036 if (mm->type == INTEL_GVT_MM_PPGTT) {
2037 ret = shadow_ppgtt_mm(mm);
2038 if (ret)
2039 return ret;
2040
2041 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2042 list_move_tail(&mm->ppgtt_mm.lru_list,
2043 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2044 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2045 }
2046
2047 return 0;
2048 }
2049
reclaim_one_ppgtt_mm(struct intel_gvt * gvt)2050 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2051 {
2052 struct intel_vgpu_mm *mm;
2053 struct list_head *pos, *n;
2054
2055 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2056
2057 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2058 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2059
2060 if (atomic_read(&mm->pincount))
2061 continue;
2062
2063 list_del_init(&mm->ppgtt_mm.lru_list);
2064 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2065 invalidate_ppgtt_mm(mm);
2066 return 1;
2067 }
2068 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2069 return 0;
2070 }
2071
2072 /*
2073 * GMA translation APIs.
2074 */
ppgtt_get_next_level_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)2075 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2076 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2077 {
2078 struct intel_vgpu *vgpu = mm->vgpu;
2079 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2080 struct intel_vgpu_ppgtt_spt *s;
2081
2082 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2083 if (!s)
2084 return -ENXIO;
2085
2086 if (!guest)
2087 ppgtt_get_shadow_entry(s, e, index);
2088 else
2089 ppgtt_get_guest_entry(s, e, index);
2090 return 0;
2091 }
2092
2093 /**
2094 * intel_vgpu_gma_to_gpa - translate a gma to GPA
2095 * @mm: mm object. could be a PPGTT or GGTT mm object
2096 * @gma: graphics memory address in this mm object
2097 *
2098 * This function is used to translate a graphics memory address in specific
2099 * graphics memory space to guest physical address.
2100 *
2101 * Returns:
2102 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2103 */
intel_vgpu_gma_to_gpa(struct intel_vgpu_mm * mm,unsigned long gma)2104 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2105 {
2106 struct intel_vgpu *vgpu = mm->vgpu;
2107 struct intel_gvt *gvt = vgpu->gvt;
2108 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2109 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2110 unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2111 unsigned long gma_index[4];
2112 struct intel_gvt_gtt_entry e;
2113 int i, levels = 0;
2114 int ret;
2115
2116 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2117 mm->type != INTEL_GVT_MM_PPGTT);
2118
2119 if (mm->type == INTEL_GVT_MM_GGTT) {
2120 if (!vgpu_gmadr_is_valid(vgpu, gma))
2121 goto err;
2122
2123 ggtt_get_guest_entry(mm, &e,
2124 gma_ops->gma_to_ggtt_pte_index(gma));
2125
2126 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2127 + (gma & ~I915_GTT_PAGE_MASK);
2128
2129 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2130 } else {
2131 switch (mm->ppgtt_mm.root_entry_type) {
2132 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2133 ppgtt_get_shadow_root_entry(mm, &e, 0);
2134
2135 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2136 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2137 gma_index[2] = gma_ops->gma_to_pde_index(gma);
2138 gma_index[3] = gma_ops->gma_to_pte_index(gma);
2139 levels = 4;
2140 break;
2141 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2142 ppgtt_get_shadow_root_entry(mm, &e,
2143 gma_ops->gma_to_l3_pdp_index(gma));
2144
2145 gma_index[0] = gma_ops->gma_to_pde_index(gma);
2146 gma_index[1] = gma_ops->gma_to_pte_index(gma);
2147 levels = 2;
2148 break;
2149 default:
2150 GEM_BUG_ON(1);
2151 }
2152
2153 /* walk the shadow page table and get gpa from guest entry */
2154 for (i = 0; i < levels; i++) {
2155 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2156 (i == levels - 1));
2157 if (ret)
2158 goto err;
2159
2160 if (!pte_ops->test_present(&e)) {
2161 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2162 goto err;
2163 }
2164 }
2165
2166 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2167 (gma & ~I915_GTT_PAGE_MASK);
2168 trace_gma_translate(vgpu->id, "ppgtt", 0,
2169 mm->ppgtt_mm.root_entry_type, gma, gpa);
2170 }
2171
2172 return gpa;
2173 err:
2174 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2175 return INTEL_GVT_INVALID_ADDR;
2176 }
2177
emulate_ggtt_mmio_read(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2178 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2179 unsigned int off, void *p_data, unsigned int bytes)
2180 {
2181 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2182 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2183 unsigned long index = off >> info->gtt_entry_size_shift;
2184 unsigned long gma;
2185 struct intel_gvt_gtt_entry e;
2186
2187 if (bytes != 4 && bytes != 8)
2188 return -EINVAL;
2189
2190 gma = index << I915_GTT_PAGE_SHIFT;
2191 if (!intel_gvt_ggtt_validate_range(vgpu,
2192 gma, 1 << I915_GTT_PAGE_SHIFT)) {
2193 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2194 memset(p_data, 0, bytes);
2195 return 0;
2196 }
2197
2198 ggtt_get_guest_entry(ggtt_mm, &e, index);
2199 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2200 bytes);
2201 return 0;
2202 }
2203
2204 /**
2205 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2206 * @vgpu: a vGPU
2207 * @off: register offset
2208 * @p_data: data will be returned to guest
2209 * @bytes: data length
2210 *
2211 * This function is used to emulate the GTT MMIO register read
2212 *
2213 * Returns:
2214 * Zero on success, error code if failed.
2215 */
intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2216 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2217 void *p_data, unsigned int bytes)
2218 {
2219 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2220 int ret;
2221
2222 if (bytes != 4 && bytes != 8)
2223 return -EINVAL;
2224
2225 off -= info->gtt_start_offset;
2226 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2227 return ret;
2228 }
2229
ggtt_invalidate_pte(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * entry)2230 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2231 struct intel_gvt_gtt_entry *entry)
2232 {
2233 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2234 unsigned long pfn;
2235
2236 pfn = pte_ops->get_pfn(entry);
2237 if (pfn != vgpu->gvt->gtt.scratch_mfn)
2238 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2239 pfn << PAGE_SHIFT);
2240 }
2241
emulate_ggtt_mmio_write(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2242 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2243 void *p_data, unsigned int bytes)
2244 {
2245 struct intel_gvt *gvt = vgpu->gvt;
2246 const struct intel_gvt_device_info *info = &gvt->device_info;
2247 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2248 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2249 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2250 unsigned long gma, gfn;
2251 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2252 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2253 dma_addr_t dma_addr;
2254 int ret;
2255 struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2256 bool partial_update = false;
2257
2258 if (bytes != 4 && bytes != 8)
2259 return -EINVAL;
2260
2261 gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2262
2263 /* the VM may configure the whole GM space when ballooning is used */
2264 if (!vgpu_gmadr_is_valid(vgpu, gma))
2265 return 0;
2266
2267 e.type = GTT_TYPE_GGTT_PTE;
2268 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2269 bytes);
2270
2271 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2272 * write, save the first 4 bytes in a list and update virtual
2273 * PTE. Only update shadow PTE when the second 4 bytes comes.
2274 */
2275 if (bytes < info->gtt_entry_size) {
2276 bool found = false;
2277
2278 list_for_each_entry_safe(pos, n,
2279 &ggtt_mm->ggtt_mm.partial_pte_list, list) {
2280 if (g_gtt_index == pos->offset >>
2281 info->gtt_entry_size_shift) {
2282 if (off != pos->offset) {
2283 /* the second partial part*/
2284 int last_off = pos->offset &
2285 (info->gtt_entry_size - 1);
2286
2287 memcpy((void *)&e.val64 + last_off,
2288 (void *)&pos->data + last_off,
2289 bytes);
2290
2291 list_del(&pos->list);
2292 kfree(pos);
2293 found = true;
2294 break;
2295 }
2296
2297 /* update of the first partial part */
2298 pos->data = e.val64;
2299 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2300 return 0;
2301 }
2302 }
2303
2304 if (!found) {
2305 /* the first partial part */
2306 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2307 if (!partial_pte)
2308 return -ENOMEM;
2309 partial_pte->offset = off;
2310 partial_pte->data = e.val64;
2311 list_add_tail(&partial_pte->list,
2312 &ggtt_mm->ggtt_mm.partial_pte_list);
2313 partial_update = true;
2314 }
2315 }
2316
2317 if (!partial_update && (ops->test_present(&e))) {
2318 gfn = ops->get_pfn(&e);
2319 m.val64 = e.val64;
2320 m.type = e.type;
2321
2322 /* one PTE update may be issued in multiple writes and the
2323 * first write may not construct a valid gfn
2324 */
2325 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2326 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2327 goto out;
2328 }
2329
2330 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2331 PAGE_SIZE, &dma_addr);
2332 if (ret) {
2333 gvt_vgpu_err("fail to populate guest ggtt entry\n");
2334 /* guest driver may read/write the entry when partial
2335 * update the entry in this situation p2m will fail
2336 * settting the shadow entry to point to a scratch page
2337 */
2338 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2339 } else
2340 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2341 } else {
2342 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2343 ops->clear_present(&m);
2344 }
2345
2346 out:
2347 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2348
2349 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2350 ggtt_invalidate_pte(vgpu, &e);
2351
2352 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2353 ggtt_invalidate(gvt->gt);
2354 return 0;
2355 }
2356
2357 /*
2358 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2359 * @vgpu: a vGPU
2360 * @off: register offset
2361 * @p_data: data from guest write
2362 * @bytes: data length
2363 *
2364 * This function is used to emulate the GTT MMIO register write
2365 *
2366 * Returns:
2367 * Zero on success, error code if failed.
2368 */
intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2369 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2370 unsigned int off, void *p_data, unsigned int bytes)
2371 {
2372 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2373 int ret;
2374 struct intel_vgpu_submission *s = &vgpu->submission;
2375 struct intel_engine_cs *engine;
2376 int i;
2377
2378 if (bytes != 4 && bytes != 8)
2379 return -EINVAL;
2380
2381 off -= info->gtt_start_offset;
2382 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2383
2384 /* if ggtt of last submitted context is written,
2385 * that context is probably got unpinned.
2386 * Set last shadowed ctx to invalid.
2387 */
2388 for_each_engine(engine, vgpu->gvt->gt, i) {
2389 if (!s->last_ctx[i].valid)
2390 continue;
2391
2392 if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2393 s->last_ctx[i].valid = false;
2394 }
2395 return ret;
2396 }
2397
alloc_scratch_pages(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type)2398 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2399 enum intel_gvt_gtt_type type)
2400 {
2401 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2402 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2403 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2404 int page_entry_num = I915_GTT_PAGE_SIZE >>
2405 vgpu->gvt->device_info.gtt_entry_size_shift;
2406 void *scratch_pt;
2407 int i;
2408 struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2409 dma_addr_t daddr;
2410
2411 if (drm_WARN_ON(&i915->drm,
2412 type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2413 return -EINVAL;
2414
2415 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2416 if (!scratch_pt) {
2417 gvt_vgpu_err("fail to allocate scratch page\n");
2418 return -ENOMEM;
2419 }
2420
2421 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2422 4096, PCI_DMA_BIDIRECTIONAL);
2423 if (dma_mapping_error(dev, daddr)) {
2424 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2425 __free_page(virt_to_page(scratch_pt));
2426 return -ENOMEM;
2427 }
2428 gtt->scratch_pt[type].page_mfn =
2429 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2430 gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2431 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2432 vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2433
2434 /* Build the tree by full filled the scratch pt with the entries which
2435 * point to the next level scratch pt or scratch page. The
2436 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2437 * 'type' pt.
2438 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2439 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2440 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2441 */
2442 if (type > GTT_TYPE_PPGTT_PTE_PT) {
2443 struct intel_gvt_gtt_entry se;
2444
2445 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2446 se.type = get_entry_type(type - 1);
2447 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2448
2449 /* The entry parameters like present/writeable/cache type
2450 * set to the same as i915's scratch page tree.
2451 */
2452 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2453 if (type == GTT_TYPE_PPGTT_PDE_PT)
2454 se.val64 |= PPAT_CACHED;
2455
2456 for (i = 0; i < page_entry_num; i++)
2457 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2458 }
2459
2460 return 0;
2461 }
2462
release_scratch_page_tree(struct intel_vgpu * vgpu)2463 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2464 {
2465 int i;
2466 struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2467 dma_addr_t daddr;
2468
2469 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2470 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2471 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2472 I915_GTT_PAGE_SHIFT);
2473 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2474 __free_page(vgpu->gtt.scratch_pt[i].page);
2475 vgpu->gtt.scratch_pt[i].page = NULL;
2476 vgpu->gtt.scratch_pt[i].page_mfn = 0;
2477 }
2478 }
2479
2480 return 0;
2481 }
2482
create_scratch_page_tree(struct intel_vgpu * vgpu)2483 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2484 {
2485 int i, ret;
2486
2487 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2488 ret = alloc_scratch_pages(vgpu, i);
2489 if (ret)
2490 goto err;
2491 }
2492
2493 return 0;
2494
2495 err:
2496 release_scratch_page_tree(vgpu);
2497 return ret;
2498 }
2499
2500 /**
2501 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2502 * @vgpu: a vGPU
2503 *
2504 * This function is used to initialize per-vGPU graphics memory virtualization
2505 * components.
2506 *
2507 * Returns:
2508 * Zero on success, error code if failed.
2509 */
intel_vgpu_init_gtt(struct intel_vgpu * vgpu)2510 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2511 {
2512 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2513
2514 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL);
2515
2516 INIT_LIST_HEAD(>t->ppgtt_mm_list_head);
2517 INIT_LIST_HEAD(>t->oos_page_list_head);
2518 INIT_LIST_HEAD(>t->post_shadow_list_head);
2519
2520 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2521 if (IS_ERR(gtt->ggtt_mm)) {
2522 gvt_vgpu_err("fail to create mm for ggtt.\n");
2523 return PTR_ERR(gtt->ggtt_mm);
2524 }
2525
2526 intel_vgpu_reset_ggtt(vgpu, false);
2527
2528 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list);
2529
2530 return create_scratch_page_tree(vgpu);
2531 }
2532
intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu * vgpu)2533 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2534 {
2535 struct list_head *pos, *n;
2536 struct intel_vgpu_mm *mm;
2537
2538 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2539 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2540 intel_vgpu_destroy_mm(mm);
2541 }
2542
2543 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2544 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2545
2546 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2547 gvt_err("Why we still has spt not freed?\n");
2548 ppgtt_free_all_spt(vgpu);
2549 }
2550 }
2551
intel_vgpu_destroy_ggtt_mm(struct intel_vgpu * vgpu)2552 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2553 {
2554 struct intel_gvt_partial_pte *pos, *next;
2555
2556 list_for_each_entry_safe(pos, next,
2557 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2558 list) {
2559 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2560 pos->offset, pos->data);
2561 kfree(pos);
2562 }
2563 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2564 vgpu->gtt.ggtt_mm = NULL;
2565 }
2566
2567 /**
2568 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2569 * @vgpu: a vGPU
2570 *
2571 * This function is used to clean up per-vGPU graphics memory virtualization
2572 * components.
2573 *
2574 * Returns:
2575 * Zero on success, error code if failed.
2576 */
intel_vgpu_clean_gtt(struct intel_vgpu * vgpu)2577 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2578 {
2579 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2580 intel_vgpu_destroy_ggtt_mm(vgpu);
2581 release_scratch_page_tree(vgpu);
2582 }
2583
clean_spt_oos(struct intel_gvt * gvt)2584 static void clean_spt_oos(struct intel_gvt *gvt)
2585 {
2586 struct intel_gvt_gtt *gtt = &gvt->gtt;
2587 struct list_head *pos, *n;
2588 struct intel_vgpu_oos_page *oos_page;
2589
2590 WARN(!list_empty(>t->oos_page_use_list_head),
2591 "someone is still using oos page\n");
2592
2593 list_for_each_safe(pos, n, >t->oos_page_free_list_head) {
2594 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2595 list_del(&oos_page->list);
2596 free_page((unsigned long)oos_page->mem);
2597 kfree(oos_page);
2598 }
2599 }
2600
setup_spt_oos(struct intel_gvt * gvt)2601 static int setup_spt_oos(struct intel_gvt *gvt)
2602 {
2603 struct intel_gvt_gtt *gtt = &gvt->gtt;
2604 struct intel_vgpu_oos_page *oos_page;
2605 int i;
2606 int ret;
2607
2608 INIT_LIST_HEAD(>t->oos_page_free_list_head);
2609 INIT_LIST_HEAD(>t->oos_page_use_list_head);
2610
2611 for (i = 0; i < preallocated_oos_pages; i++) {
2612 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2613 if (!oos_page) {
2614 ret = -ENOMEM;
2615 goto fail;
2616 }
2617 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2618 if (!oos_page->mem) {
2619 ret = -ENOMEM;
2620 kfree(oos_page);
2621 goto fail;
2622 }
2623
2624 INIT_LIST_HEAD(&oos_page->list);
2625 INIT_LIST_HEAD(&oos_page->vm_list);
2626 oos_page->id = i;
2627 list_add_tail(&oos_page->list, >t->oos_page_free_list_head);
2628 }
2629
2630 gvt_dbg_mm("%d oos pages preallocated\n", i);
2631
2632 return 0;
2633 fail:
2634 clean_spt_oos(gvt);
2635 return ret;
2636 }
2637
2638 /**
2639 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2640 * @vgpu: a vGPU
2641 * @pdps: pdp root array
2642 *
2643 * This function is used to find a PPGTT mm object from mm object pool
2644 *
2645 * Returns:
2646 * pointer to mm object on success, NULL if failed.
2647 */
intel_vgpu_find_ppgtt_mm(struct intel_vgpu * vgpu,u64 pdps[])2648 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2649 u64 pdps[])
2650 {
2651 struct intel_vgpu_mm *mm;
2652 struct list_head *pos;
2653
2654 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2655 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2656
2657 switch (mm->ppgtt_mm.root_entry_type) {
2658 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2659 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2660 return mm;
2661 break;
2662 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2663 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2664 sizeof(mm->ppgtt_mm.guest_pdps)))
2665 return mm;
2666 break;
2667 default:
2668 GEM_BUG_ON(1);
2669 }
2670 }
2671 return NULL;
2672 }
2673
2674 /**
2675 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2676 * @vgpu: a vGPU
2677 * @root_entry_type: ppgtt root entry type
2678 * @pdps: guest pdps
2679 *
2680 * This function is used to find or create a PPGTT mm object from a guest.
2681 *
2682 * Returns:
2683 * Zero on success, negative error code if failed.
2684 */
intel_vgpu_get_ppgtt_mm(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type root_entry_type,u64 pdps[])2685 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2686 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2687 {
2688 struct intel_vgpu_mm *mm;
2689
2690 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2691 if (mm) {
2692 intel_vgpu_mm_get(mm);
2693 } else {
2694 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2695 if (IS_ERR(mm))
2696 gvt_vgpu_err("fail to create mm\n");
2697 }
2698 return mm;
2699 }
2700
2701 /**
2702 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2703 * @vgpu: a vGPU
2704 * @pdps: guest pdps
2705 *
2706 * This function is used to find a PPGTT mm object from a guest and destroy it.
2707 *
2708 * Returns:
2709 * Zero on success, negative error code if failed.
2710 */
intel_vgpu_put_ppgtt_mm(struct intel_vgpu * vgpu,u64 pdps[])2711 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2712 {
2713 struct intel_vgpu_mm *mm;
2714
2715 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2716 if (!mm) {
2717 gvt_vgpu_err("fail to find ppgtt instance.\n");
2718 return -EINVAL;
2719 }
2720 intel_vgpu_mm_put(mm);
2721 return 0;
2722 }
2723
2724 /**
2725 * intel_gvt_init_gtt - initialize mm components of a GVT device
2726 * @gvt: GVT device
2727 *
2728 * This function is called at the initialization stage, to initialize
2729 * the mm components of a GVT device.
2730 *
2731 * Returns:
2732 * zero on success, negative error code if failed.
2733 */
intel_gvt_init_gtt(struct intel_gvt * gvt)2734 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2735 {
2736 int ret;
2737 void *page;
2738 struct device *dev = gvt->gt->i915->drm.dev;
2739 dma_addr_t daddr;
2740
2741 gvt_dbg_core("init gtt\n");
2742
2743 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2744 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2745
2746 page = (void *)get_zeroed_page(GFP_KERNEL);
2747 if (!page) {
2748 gvt_err("fail to allocate scratch ggtt page\n");
2749 return -ENOMEM;
2750 }
2751
2752 daddr = dma_map_page(dev, virt_to_page(page), 0,
2753 4096, PCI_DMA_BIDIRECTIONAL);
2754 if (dma_mapping_error(dev, daddr)) {
2755 gvt_err("fail to dmamap scratch ggtt page\n");
2756 __free_page(virt_to_page(page));
2757 return -ENOMEM;
2758 }
2759
2760 gvt->gtt.scratch_page = virt_to_page(page);
2761 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2762
2763 if (enable_out_of_sync) {
2764 ret = setup_spt_oos(gvt);
2765 if (ret) {
2766 gvt_err("fail to initialize SPT oos\n");
2767 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2768 __free_page(gvt->gtt.scratch_page);
2769 return ret;
2770 }
2771 }
2772 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2773 mutex_init(&gvt->gtt.ppgtt_mm_lock);
2774 return 0;
2775 }
2776
2777 /**
2778 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2779 * @gvt: GVT device
2780 *
2781 * This function is called at the driver unloading stage, to clean up the
2782 * the mm components of a GVT device.
2783 *
2784 */
intel_gvt_clean_gtt(struct intel_gvt * gvt)2785 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2786 {
2787 struct device *dev = gvt->gt->i915->drm.dev;
2788 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2789 I915_GTT_PAGE_SHIFT);
2790
2791 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2792
2793 __free_page(gvt->gtt.scratch_page);
2794
2795 if (enable_out_of_sync)
2796 clean_spt_oos(gvt);
2797 }
2798
2799 /**
2800 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2801 * @vgpu: a vGPU
2802 *
2803 * This function is called when invalidate all PPGTT instances of a vGPU.
2804 *
2805 */
intel_vgpu_invalidate_ppgtt(struct intel_vgpu * vgpu)2806 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2807 {
2808 struct list_head *pos, *n;
2809 struct intel_vgpu_mm *mm;
2810
2811 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2812 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2813 if (mm->type == INTEL_GVT_MM_PPGTT) {
2814 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2815 list_del_init(&mm->ppgtt_mm.lru_list);
2816 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2817 if (mm->ppgtt_mm.shadowed)
2818 invalidate_ppgtt_mm(mm);
2819 }
2820 }
2821 }
2822
2823 /**
2824 * intel_vgpu_reset_ggtt - reset the GGTT entry
2825 * @vgpu: a vGPU
2826 * @invalidate_old: invalidate old entries
2827 *
2828 * This function is called at the vGPU create stage
2829 * to reset all the GGTT entries.
2830 *
2831 */
intel_vgpu_reset_ggtt(struct intel_vgpu * vgpu,bool invalidate_old)2832 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2833 {
2834 struct intel_gvt *gvt = vgpu->gvt;
2835 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2836 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2837 struct intel_gvt_gtt_entry old_entry;
2838 u32 index;
2839 u32 num_entries;
2840
2841 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2842 pte_ops->set_present(&entry);
2843
2844 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2845 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2846 while (num_entries--) {
2847 if (invalidate_old) {
2848 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2849 ggtt_invalidate_pte(vgpu, &old_entry);
2850 }
2851 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2852 }
2853
2854 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2855 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2856 while (num_entries--) {
2857 if (invalidate_old) {
2858 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2859 ggtt_invalidate_pte(vgpu, &old_entry);
2860 }
2861 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2862 }
2863
2864 ggtt_invalidate(gvt->gt);
2865 }
2866
2867 /**
2868 * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries
2869 * @gvt: intel gvt device
2870 *
2871 * This function is called at driver resume stage to restore
2872 * GGTT entries of every vGPU.
2873 *
2874 */
intel_gvt_restore_ggtt(struct intel_gvt * gvt)2875 void intel_gvt_restore_ggtt(struct intel_gvt *gvt)
2876 {
2877 struct intel_vgpu *vgpu;
2878 struct intel_vgpu_mm *mm;
2879 int id;
2880 gen8_pte_t pte;
2881 u32 idx, num_low, num_hi, offset;
2882
2883 /* Restore dirty host ggtt for all vGPUs */
2884 idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
2885 mm = vgpu->gtt.ggtt_mm;
2886
2887 num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2888 offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2889 for (idx = 0; idx < num_low; idx++) {
2890 pte = mm->ggtt_mm.host_ggtt_aperture[idx];
2891 if (pte & _PAGE_PRESENT)
2892 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2893 }
2894
2895 num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2896 offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2897 for (idx = 0; idx < num_hi; idx++) {
2898 pte = mm->ggtt_mm.host_ggtt_hidden[idx];
2899 if (pte & _PAGE_PRESENT)
2900 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2901 }
2902 }
2903 }
2904