• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46 
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49 
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
intel_gvt_ggtt_validate_range(struct intel_vgpu * vgpu,u64 addr,u32 size)54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56 	if (size == 0)
57 		return vgpu_gmadr_is_valid(vgpu, addr);
58 
59 	if (vgpu_gmadr_is_aperture(vgpu, addr) &&
60 	    vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
61 		return true;
62 	else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
63 		 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
64 		return true;
65 
66 	gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
67 		     addr, size);
68 	return false;
69 }
70 
71 /* translate a guest gmadr to host gmadr */
intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu * vgpu,u64 g_addr,u64 * h_addr)72 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
73 {
74 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
75 
76 	if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
77 		     "invalid guest gmadr %llx\n", g_addr))
78 		return -EACCES;
79 
80 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
81 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
82 			  + (g_addr - vgpu_aperture_offset(vgpu));
83 	else
84 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
85 			  + (g_addr - vgpu_hidden_offset(vgpu));
86 	return 0;
87 }
88 
89 /* translate a host gmadr to guest gmadr */
intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu * vgpu,u64 h_addr,u64 * g_addr)90 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
91 {
92 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
93 
94 	if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
95 		     "invalid host gmadr %llx\n", h_addr))
96 		return -EACCES;
97 
98 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
99 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
100 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
101 	else
102 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
103 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
104 	return 0;
105 }
106 
intel_gvt_ggtt_index_g2h(struct intel_vgpu * vgpu,unsigned long g_index,unsigned long * h_index)107 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
108 			     unsigned long *h_index)
109 {
110 	u64 h_addr;
111 	int ret;
112 
113 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
114 				       &h_addr);
115 	if (ret)
116 		return ret;
117 
118 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
119 	return 0;
120 }
121 
intel_gvt_ggtt_h2g_index(struct intel_vgpu * vgpu,unsigned long h_index,unsigned long * g_index)122 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
123 			     unsigned long *g_index)
124 {
125 	u64 g_addr;
126 	int ret;
127 
128 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
129 				       &g_addr);
130 	if (ret)
131 		return ret;
132 
133 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
134 	return 0;
135 }
136 
137 #define gtt_type_is_entry(type) \
138 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
139 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
140 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
141 
142 #define gtt_type_is_pt(type) \
143 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
144 
145 #define gtt_type_is_pte_pt(type) \
146 	(type == GTT_TYPE_PPGTT_PTE_PT)
147 
148 #define gtt_type_is_root_pointer(type) \
149 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
150 
151 #define gtt_init_entry(e, t, p, v) do { \
152 	(e)->type = t; \
153 	(e)->pdev = p; \
154 	memcpy(&(e)->val64, &v, sizeof(v)); \
155 } while (0)
156 
157 /*
158  * Mappings between GTT_TYPE* enumerations.
159  * Following information can be found according to the given type:
160  * - type of next level page table
161  * - type of entry inside this level page table
162  * - type of entry with PSE set
163  *
164  * If the given type doesn't have such a kind of information,
165  * e.g. give a l4 root entry type, then request to get its PSE type,
166  * give a PTE page table type, then request to get its next level page
167  * table type, as we know l4 root entry doesn't have a PSE bit,
168  * and a PTE page table doesn't have a next level page table type,
169  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
170  * page table.
171  */
172 
173 struct gtt_type_table_entry {
174 	int entry_type;
175 	int pt_type;
176 	int next_pt_type;
177 	int pse_entry_type;
178 };
179 
180 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
181 	[type] = { \
182 		.entry_type = e_type, \
183 		.pt_type = cpt_type, \
184 		.next_pt_type = npt_type, \
185 		.pse_entry_type = pse_type, \
186 	}
187 
188 static struct gtt_type_table_entry gtt_type_table[] = {
189 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
190 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
191 			GTT_TYPE_INVALID,
192 			GTT_TYPE_PPGTT_PML4_PT,
193 			GTT_TYPE_INVALID),
194 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
195 			GTT_TYPE_PPGTT_PML4_ENTRY,
196 			GTT_TYPE_PPGTT_PML4_PT,
197 			GTT_TYPE_PPGTT_PDP_PT,
198 			GTT_TYPE_INVALID),
199 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
200 			GTT_TYPE_PPGTT_PML4_ENTRY,
201 			GTT_TYPE_PPGTT_PML4_PT,
202 			GTT_TYPE_PPGTT_PDP_PT,
203 			GTT_TYPE_INVALID),
204 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
205 			GTT_TYPE_PPGTT_PDP_ENTRY,
206 			GTT_TYPE_PPGTT_PDP_PT,
207 			GTT_TYPE_PPGTT_PDE_PT,
208 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
210 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
211 			GTT_TYPE_INVALID,
212 			GTT_TYPE_PPGTT_PDE_PT,
213 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
214 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
215 			GTT_TYPE_PPGTT_PDP_ENTRY,
216 			GTT_TYPE_PPGTT_PDP_PT,
217 			GTT_TYPE_PPGTT_PDE_PT,
218 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
220 			GTT_TYPE_PPGTT_PDE_ENTRY,
221 			GTT_TYPE_PPGTT_PDE_PT,
222 			GTT_TYPE_PPGTT_PTE_PT,
223 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
224 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
225 			GTT_TYPE_PPGTT_PDE_ENTRY,
226 			GTT_TYPE_PPGTT_PDE_PT,
227 			GTT_TYPE_PPGTT_PTE_PT,
228 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
229 	/* We take IPS bit as 'PSE' for PTE level. */
230 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
231 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 			GTT_TYPE_PPGTT_PTE_PT,
233 			GTT_TYPE_INVALID,
234 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
236 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
237 			GTT_TYPE_PPGTT_PTE_PT,
238 			GTT_TYPE_INVALID,
239 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
240 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
241 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
242 			GTT_TYPE_PPGTT_PTE_PT,
243 			GTT_TYPE_INVALID,
244 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
245 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
246 			GTT_TYPE_PPGTT_PDE_ENTRY,
247 			GTT_TYPE_PPGTT_PDE_PT,
248 			GTT_TYPE_INVALID,
249 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
250 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
251 			GTT_TYPE_PPGTT_PDP_ENTRY,
252 			GTT_TYPE_PPGTT_PDP_PT,
253 			GTT_TYPE_INVALID,
254 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
255 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
256 			GTT_TYPE_GGTT_PTE,
257 			GTT_TYPE_INVALID,
258 			GTT_TYPE_INVALID,
259 			GTT_TYPE_INVALID),
260 };
261 
get_next_pt_type(int type)262 static inline int get_next_pt_type(int type)
263 {
264 	return gtt_type_table[type].next_pt_type;
265 }
266 
get_pt_type(int type)267 static inline int get_pt_type(int type)
268 {
269 	return gtt_type_table[type].pt_type;
270 }
271 
get_entry_type(int type)272 static inline int get_entry_type(int type)
273 {
274 	return gtt_type_table[type].entry_type;
275 }
276 
get_pse_type(int type)277 static inline int get_pse_type(int type)
278 {
279 	return gtt_type_table[type].pse_entry_type;
280 }
281 
read_pte64(struct i915_ggtt * ggtt,unsigned long index)282 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
283 {
284 	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
285 
286 	return readq(addr);
287 }
288 
ggtt_invalidate(struct intel_gt * gt)289 static void ggtt_invalidate(struct intel_gt *gt)
290 {
291 	mmio_hw_access_pre(gt);
292 	intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
293 	mmio_hw_access_post(gt);
294 }
295 
write_pte64(struct i915_ggtt * ggtt,unsigned long index,u64 pte)296 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
297 {
298 	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
299 
300 	writeq(pte, addr);
301 }
302 
gtt_get_entry64(void * pt,struct intel_gvt_gtt_entry * e,unsigned long index,bool hypervisor_access,unsigned long gpa,struct intel_vgpu * vgpu)303 static inline int gtt_get_entry64(void *pt,
304 		struct intel_gvt_gtt_entry *e,
305 		unsigned long index, bool hypervisor_access, unsigned long gpa,
306 		struct intel_vgpu *vgpu)
307 {
308 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
309 	int ret;
310 
311 	if (WARN_ON(info->gtt_entry_size != 8))
312 		return -EINVAL;
313 
314 	if (hypervisor_access) {
315 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
316 				(index << info->gtt_entry_size_shift),
317 				&e->val64, 8);
318 		if (WARN_ON(ret))
319 			return ret;
320 	} else if (!pt) {
321 		e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
322 	} else {
323 		e->val64 = *((u64 *)pt + index);
324 	}
325 	return 0;
326 }
327 
gtt_set_entry64(void * pt,struct intel_gvt_gtt_entry * e,unsigned long index,bool hypervisor_access,unsigned long gpa,struct intel_vgpu * vgpu)328 static inline int gtt_set_entry64(void *pt,
329 		struct intel_gvt_gtt_entry *e,
330 		unsigned long index, bool hypervisor_access, unsigned long gpa,
331 		struct intel_vgpu *vgpu)
332 {
333 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
334 	int ret;
335 
336 	if (WARN_ON(info->gtt_entry_size != 8))
337 		return -EINVAL;
338 
339 	if (hypervisor_access) {
340 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
341 				(index << info->gtt_entry_size_shift),
342 				&e->val64, 8);
343 		if (WARN_ON(ret))
344 			return ret;
345 	} else if (!pt) {
346 		write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
347 	} else {
348 		*((u64 *)pt + index) = e->val64;
349 	}
350 	return 0;
351 }
352 
353 #define GTT_HAW 46
354 
355 #define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
356 #define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
357 #define ADDR_64K_MASK	GENMASK_ULL(GTT_HAW - 1, 16)
358 #define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
359 
360 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
361 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
362 
363 #define GTT_64K_PTE_STRIDE 16
364 
gen8_gtt_get_pfn(struct intel_gvt_gtt_entry * e)365 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
366 {
367 	unsigned long pfn;
368 
369 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
370 		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
371 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
372 		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
373 	else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
374 		pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
375 	else
376 		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
377 	return pfn;
378 }
379 
gen8_gtt_set_pfn(struct intel_gvt_gtt_entry * e,unsigned long pfn)380 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
381 {
382 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
383 		e->val64 &= ~ADDR_1G_MASK;
384 		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
385 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
386 		e->val64 &= ~ADDR_2M_MASK;
387 		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
388 	} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
389 		e->val64 &= ~ADDR_64K_MASK;
390 		pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
391 	} else {
392 		e->val64 &= ~ADDR_4K_MASK;
393 		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
394 	}
395 
396 	e->val64 |= (pfn << PAGE_SHIFT);
397 }
398 
gen8_gtt_test_pse(struct intel_gvt_gtt_entry * e)399 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
400 {
401 	return !!(e->val64 & _PAGE_PSE);
402 }
403 
gen8_gtt_clear_pse(struct intel_gvt_gtt_entry * e)404 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
405 {
406 	if (gen8_gtt_test_pse(e)) {
407 		switch (e->type) {
408 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
409 			e->val64 &= ~_PAGE_PSE;
410 			e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
411 			break;
412 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
413 			e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
414 			e->val64 &= ~_PAGE_PSE;
415 			break;
416 		default:
417 			WARN_ON(1);
418 		}
419 	}
420 }
421 
gen8_gtt_test_ips(struct intel_gvt_gtt_entry * e)422 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
423 {
424 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
425 		return false;
426 
427 	return !!(e->val64 & GEN8_PDE_IPS_64K);
428 }
429 
gen8_gtt_clear_ips(struct intel_gvt_gtt_entry * e)430 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
431 {
432 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
433 		return;
434 
435 	e->val64 &= ~GEN8_PDE_IPS_64K;
436 }
437 
gen8_gtt_test_present(struct intel_gvt_gtt_entry * e)438 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
439 {
440 	/*
441 	 * i915 writes PDP root pointer registers without present bit,
442 	 * it also works, so we need to treat root pointer entry
443 	 * specifically.
444 	 */
445 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
446 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
447 		return (e->val64 != 0);
448 	else
449 		return (e->val64 & _PAGE_PRESENT);
450 }
451 
gtt_entry_clear_present(struct intel_gvt_gtt_entry * e)452 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
453 {
454 	e->val64 &= ~_PAGE_PRESENT;
455 }
456 
gtt_entry_set_present(struct intel_gvt_gtt_entry * e)457 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
458 {
459 	e->val64 |= _PAGE_PRESENT;
460 }
461 
gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry * e)462 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
463 {
464 	return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
465 }
466 
gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry * e)467 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
468 {
469 	e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
470 }
471 
gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry * e)472 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
473 {
474 	e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
475 }
476 
477 /*
478  * Per-platform GMA routines.
479  */
gma_to_ggtt_pte_index(unsigned long gma)480 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
481 {
482 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
483 
484 	trace_gma_index(__func__, gma, x);
485 	return x;
486 }
487 
488 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
489 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
490 { \
491 	unsigned long x = (exp); \
492 	trace_gma_index(__func__, gma, x); \
493 	return x; \
494 }
495 
496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
501 
502 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
503 	.get_entry = gtt_get_entry64,
504 	.set_entry = gtt_set_entry64,
505 	.clear_present = gtt_entry_clear_present,
506 	.set_present = gtt_entry_set_present,
507 	.test_present = gen8_gtt_test_present,
508 	.test_pse = gen8_gtt_test_pse,
509 	.clear_pse = gen8_gtt_clear_pse,
510 	.clear_ips = gen8_gtt_clear_ips,
511 	.test_ips = gen8_gtt_test_ips,
512 	.clear_64k_splited = gen8_gtt_clear_64k_splited,
513 	.set_64k_splited = gen8_gtt_set_64k_splited,
514 	.test_64k_splited = gen8_gtt_test_64k_splited,
515 	.get_pfn = gen8_gtt_get_pfn,
516 	.set_pfn = gen8_gtt_set_pfn,
517 };
518 
519 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
520 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
521 	.gma_to_pte_index = gen8_gma_to_pte_index,
522 	.gma_to_pde_index = gen8_gma_to_pde_index,
523 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
524 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
525 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
526 };
527 
528 /* Update entry type per pse and ips bit. */
update_entry_type_for_real(struct intel_gvt_gtt_pte_ops * pte_ops,struct intel_gvt_gtt_entry * entry,bool ips)529 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
530 	struct intel_gvt_gtt_entry *entry, bool ips)
531 {
532 	switch (entry->type) {
533 	case GTT_TYPE_PPGTT_PDE_ENTRY:
534 	case GTT_TYPE_PPGTT_PDP_ENTRY:
535 		if (pte_ops->test_pse(entry))
536 			entry->type = get_pse_type(entry->type);
537 		break;
538 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
539 		if (ips)
540 			entry->type = get_pse_type(entry->type);
541 		break;
542 	default:
543 		GEM_BUG_ON(!gtt_type_is_entry(entry->type));
544 	}
545 
546 	GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
547 }
548 
549 /*
550  * MM helpers.
551  */
_ppgtt_get_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index,bool guest)552 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
553 		struct intel_gvt_gtt_entry *entry, unsigned long index,
554 		bool guest)
555 {
556 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
557 
558 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
559 
560 	entry->type = mm->ppgtt_mm.root_entry_type;
561 	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
562 			   mm->ppgtt_mm.shadow_pdps,
563 			   entry, index, false, 0, mm->vgpu);
564 	update_entry_type_for_real(pte_ops, entry, false);
565 }
566 
ppgtt_get_guest_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)567 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
568 		struct intel_gvt_gtt_entry *entry, unsigned long index)
569 {
570 	_ppgtt_get_root_entry(mm, entry, index, true);
571 }
572 
ppgtt_get_shadow_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)573 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
574 		struct intel_gvt_gtt_entry *entry, unsigned long index)
575 {
576 	_ppgtt_get_root_entry(mm, entry, index, false);
577 }
578 
_ppgtt_set_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index,bool guest)579 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
580 		struct intel_gvt_gtt_entry *entry, unsigned long index,
581 		bool guest)
582 {
583 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
584 
585 	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
586 			   mm->ppgtt_mm.shadow_pdps,
587 			   entry, index, false, 0, mm->vgpu);
588 }
589 
ppgtt_set_shadow_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)590 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
591 		struct intel_gvt_gtt_entry *entry, unsigned long index)
592 {
593 	_ppgtt_set_root_entry(mm, entry, index, false);
594 }
595 
ggtt_get_guest_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)596 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
597 		struct intel_gvt_gtt_entry *entry, unsigned long index)
598 {
599 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
600 
601 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
602 
603 	entry->type = GTT_TYPE_GGTT_PTE;
604 	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
605 			   false, 0, mm->vgpu);
606 }
607 
ggtt_set_guest_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)608 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
609 		struct intel_gvt_gtt_entry *entry, unsigned long index)
610 {
611 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
612 
613 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
614 
615 	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
616 			   false, 0, mm->vgpu);
617 }
618 
ggtt_get_host_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)619 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
620 		struct intel_gvt_gtt_entry *entry, unsigned long index)
621 {
622 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
623 
624 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
625 
626 	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
627 }
628 
ggtt_set_host_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)629 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
630 		struct intel_gvt_gtt_entry *entry, unsigned long index)
631 {
632 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
633 	unsigned long offset = index;
634 
635 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
636 
637 	if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
638 		offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
639 		mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64;
640 	} else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
641 		offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
642 		mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64;
643 	}
644 
645 	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
646 }
647 
648 /*
649  * PPGTT shadow page table helpers.
650  */
ppgtt_spt_get_entry(struct intel_vgpu_ppgtt_spt * spt,void * page_table,int type,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)651 static inline int ppgtt_spt_get_entry(
652 		struct intel_vgpu_ppgtt_spt *spt,
653 		void *page_table, int type,
654 		struct intel_gvt_gtt_entry *e, unsigned long index,
655 		bool guest)
656 {
657 	struct intel_gvt *gvt = spt->vgpu->gvt;
658 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
659 	int ret;
660 
661 	e->type = get_entry_type(type);
662 
663 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
664 		return -EINVAL;
665 
666 	ret = ops->get_entry(page_table, e, index, guest,
667 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
668 			spt->vgpu);
669 	if (ret)
670 		return ret;
671 
672 	update_entry_type_for_real(ops, e, guest ?
673 				   spt->guest_page.pde_ips : false);
674 
675 	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
676 		    type, e->type, index, e->val64);
677 	return 0;
678 }
679 
ppgtt_spt_set_entry(struct intel_vgpu_ppgtt_spt * spt,void * page_table,int type,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)680 static inline int ppgtt_spt_set_entry(
681 		struct intel_vgpu_ppgtt_spt *spt,
682 		void *page_table, int type,
683 		struct intel_gvt_gtt_entry *e, unsigned long index,
684 		bool guest)
685 {
686 	struct intel_gvt *gvt = spt->vgpu->gvt;
687 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
688 
689 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
690 		return -EINVAL;
691 
692 	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
693 		    type, e->type, index, e->val64);
694 
695 	return ops->set_entry(page_table, e, index, guest,
696 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
697 			spt->vgpu);
698 }
699 
700 #define ppgtt_get_guest_entry(spt, e, index) \
701 	ppgtt_spt_get_entry(spt, NULL, \
702 		spt->guest_page.type, e, index, true)
703 
704 #define ppgtt_set_guest_entry(spt, e, index) \
705 	ppgtt_spt_set_entry(spt, NULL, \
706 		spt->guest_page.type, e, index, true)
707 
708 #define ppgtt_get_shadow_entry(spt, e, index) \
709 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
710 		spt->shadow_page.type, e, index, false)
711 
712 #define ppgtt_set_shadow_entry(spt, e, index) \
713 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
714 		spt->shadow_page.type, e, index, false)
715 
alloc_spt(gfp_t gfp_mask)716 static void *alloc_spt(gfp_t gfp_mask)
717 {
718 	struct intel_vgpu_ppgtt_spt *spt;
719 
720 	spt = kzalloc(sizeof(*spt), gfp_mask);
721 	if (!spt)
722 		return NULL;
723 
724 	spt->shadow_page.page = alloc_page(gfp_mask);
725 	if (!spt->shadow_page.page) {
726 		kfree(spt);
727 		return NULL;
728 	}
729 	return spt;
730 }
731 
free_spt(struct intel_vgpu_ppgtt_spt * spt)732 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
733 {
734 	__free_page(spt->shadow_page.page);
735 	kfree(spt);
736 }
737 
738 static int detach_oos_page(struct intel_vgpu *vgpu,
739 		struct intel_vgpu_oos_page *oos_page);
740 
ppgtt_free_spt(struct intel_vgpu_ppgtt_spt * spt)741 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
742 {
743 	struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev;
744 
745 	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
746 
747 	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
748 		       PCI_DMA_BIDIRECTIONAL);
749 
750 	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
751 
752 	if (spt->guest_page.gfn) {
753 		if (spt->guest_page.oos_page)
754 			detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
755 
756 		intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
757 	}
758 
759 	list_del_init(&spt->post_shadow_list);
760 	free_spt(spt);
761 }
762 
ppgtt_free_all_spt(struct intel_vgpu * vgpu)763 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
764 {
765 	struct intel_vgpu_ppgtt_spt *spt, *spn;
766 	struct radix_tree_iter iter;
767 	LIST_HEAD(all_spt);
768 	void __rcu **slot;
769 
770 	rcu_read_lock();
771 	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
772 		spt = radix_tree_deref_slot(slot);
773 		list_move(&spt->post_shadow_list, &all_spt);
774 	}
775 	rcu_read_unlock();
776 
777 	list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
778 		ppgtt_free_spt(spt);
779 }
780 
781 static int ppgtt_handle_guest_write_page_table_bytes(
782 		struct intel_vgpu_ppgtt_spt *spt,
783 		u64 pa, void *p_data, int bytes);
784 
ppgtt_write_protection_handler(struct intel_vgpu_page_track * page_track,u64 gpa,void * data,int bytes)785 static int ppgtt_write_protection_handler(
786 		struct intel_vgpu_page_track *page_track,
787 		u64 gpa, void *data, int bytes)
788 {
789 	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
790 
791 	int ret;
792 
793 	if (bytes != 4 && bytes != 8)
794 		return -EINVAL;
795 
796 	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
797 	if (ret)
798 		return ret;
799 	return ret;
800 }
801 
802 /* Find a spt by guest gfn. */
intel_vgpu_find_spt_by_gfn(struct intel_vgpu * vgpu,unsigned long gfn)803 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
804 		struct intel_vgpu *vgpu, unsigned long gfn)
805 {
806 	struct intel_vgpu_page_track *track;
807 
808 	track = intel_vgpu_find_page_track(vgpu, gfn);
809 	if (track && track->handler == ppgtt_write_protection_handler)
810 		return track->priv_data;
811 
812 	return NULL;
813 }
814 
815 /* Find the spt by shadow page mfn. */
intel_vgpu_find_spt_by_mfn(struct intel_vgpu * vgpu,unsigned long mfn)816 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
817 		struct intel_vgpu *vgpu, unsigned long mfn)
818 {
819 	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
820 }
821 
822 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
823 
824 /* Allocate shadow page table without guest page. */
ppgtt_alloc_spt(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type)825 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
826 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
827 {
828 	struct device *kdev = vgpu->gvt->gt->i915->drm.dev;
829 	struct intel_vgpu_ppgtt_spt *spt = NULL;
830 	dma_addr_t daddr;
831 	int ret;
832 
833 retry:
834 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
835 	if (!spt) {
836 		if (reclaim_one_ppgtt_mm(vgpu->gvt))
837 			goto retry;
838 
839 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
840 		return ERR_PTR(-ENOMEM);
841 	}
842 
843 	spt->vgpu = vgpu;
844 	atomic_set(&spt->refcount, 1);
845 	INIT_LIST_HEAD(&spt->post_shadow_list);
846 
847 	/*
848 	 * Init shadow_page.
849 	 */
850 	spt->shadow_page.type = type;
851 	daddr = dma_map_page(kdev, spt->shadow_page.page,
852 			     0, 4096, PCI_DMA_BIDIRECTIONAL);
853 	if (dma_mapping_error(kdev, daddr)) {
854 		gvt_vgpu_err("fail to map dma addr\n");
855 		ret = -EINVAL;
856 		goto err_free_spt;
857 	}
858 	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
859 	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
860 
861 	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
862 	if (ret)
863 		goto err_unmap_dma;
864 
865 	return spt;
866 
867 err_unmap_dma:
868 	dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
869 err_free_spt:
870 	free_spt(spt);
871 	return ERR_PTR(ret);
872 }
873 
874 /* Allocate shadow page table associated with specific gfn. */
ppgtt_alloc_spt_gfn(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type,unsigned long gfn,bool guest_pde_ips)875 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
876 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
877 		unsigned long gfn, bool guest_pde_ips)
878 {
879 	struct intel_vgpu_ppgtt_spt *spt;
880 	int ret;
881 
882 	spt = ppgtt_alloc_spt(vgpu, type);
883 	if (IS_ERR(spt))
884 		return spt;
885 
886 	/*
887 	 * Init guest_page.
888 	 */
889 	ret = intel_vgpu_register_page_track(vgpu, gfn,
890 			ppgtt_write_protection_handler, spt);
891 	if (ret) {
892 		ppgtt_free_spt(spt);
893 		return ERR_PTR(ret);
894 	}
895 
896 	spt->guest_page.type = type;
897 	spt->guest_page.gfn = gfn;
898 	spt->guest_page.pde_ips = guest_pde_ips;
899 
900 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
901 
902 	return spt;
903 }
904 
905 #define pt_entry_size_shift(spt) \
906 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
907 
908 #define pt_entries(spt) \
909 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
910 
911 #define for_each_present_guest_entry(spt, e, i) \
912 	for (i = 0; i < pt_entries(spt); \
913 	     i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
914 		if (!ppgtt_get_guest_entry(spt, e, i) && \
915 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
916 
917 #define for_each_present_shadow_entry(spt, e, i) \
918 	for (i = 0; i < pt_entries(spt); \
919 	     i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
920 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
921 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
922 
923 #define for_each_shadow_entry(spt, e, i) \
924 	for (i = 0; i < pt_entries(spt); \
925 	     i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
926 		if (!ppgtt_get_shadow_entry(spt, e, i))
927 
ppgtt_get_spt(struct intel_vgpu_ppgtt_spt * spt)928 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
929 {
930 	int v = atomic_read(&spt->refcount);
931 
932 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
933 	atomic_inc(&spt->refcount);
934 }
935 
ppgtt_put_spt(struct intel_vgpu_ppgtt_spt * spt)936 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
937 {
938 	int v = atomic_read(&spt->refcount);
939 
940 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
941 	return atomic_dec_return(&spt->refcount);
942 }
943 
944 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
945 
ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * e)946 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
947 		struct intel_gvt_gtt_entry *e)
948 {
949 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
950 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
951 	struct intel_vgpu_ppgtt_spt *s;
952 	enum intel_gvt_gtt_type cur_pt_type;
953 
954 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
955 
956 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
957 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
958 		cur_pt_type = get_next_pt_type(e->type);
959 
960 		if (!gtt_type_is_pt(cur_pt_type) ||
961 				!gtt_type_is_pt(cur_pt_type + 1)) {
962 			drm_WARN(&i915->drm, 1,
963 				 "Invalid page table type, cur_pt_type is: %d\n",
964 				 cur_pt_type);
965 			return -EINVAL;
966 		}
967 
968 		cur_pt_type += 1;
969 
970 		if (ops->get_pfn(e) ==
971 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
972 			return 0;
973 	}
974 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
975 	if (!s) {
976 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
977 				ops->get_pfn(e));
978 		return -ENXIO;
979 	}
980 	return ppgtt_invalidate_spt(s);
981 }
982 
ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * entry)983 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
984 		struct intel_gvt_gtt_entry *entry)
985 {
986 	struct intel_vgpu *vgpu = spt->vgpu;
987 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
988 	unsigned long pfn;
989 	int type;
990 
991 	pfn = ops->get_pfn(entry);
992 	type = spt->shadow_page.type;
993 
994 	/* Uninitialized spte or unshadowed spte. */
995 	if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
996 		return;
997 
998 	intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
999 }
1000 
ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt * spt)1001 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
1002 {
1003 	struct intel_vgpu *vgpu = spt->vgpu;
1004 	struct intel_gvt_gtt_entry e;
1005 	unsigned long index;
1006 	int ret;
1007 
1008 	trace_spt_change(spt->vgpu->id, "die", spt,
1009 			spt->guest_page.gfn, spt->shadow_page.type);
1010 
1011 	if (ppgtt_put_spt(spt) > 0)
1012 		return 0;
1013 
1014 	for_each_present_shadow_entry(spt, &e, index) {
1015 		switch (e.type) {
1016 		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1017 			gvt_vdbg_mm("invalidate 4K entry\n");
1018 			ppgtt_invalidate_pte(spt, &e);
1019 			break;
1020 		case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1021 			/* We don't setup 64K shadow entry so far. */
1022 			WARN(1, "suspicious 64K gtt entry\n");
1023 			continue;
1024 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1025 			gvt_vdbg_mm("invalidate 2M entry\n");
1026 			continue;
1027 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1028 			WARN(1, "GVT doesn't support 1GB page\n");
1029 			continue;
1030 		case GTT_TYPE_PPGTT_PML4_ENTRY:
1031 		case GTT_TYPE_PPGTT_PDP_ENTRY:
1032 		case GTT_TYPE_PPGTT_PDE_ENTRY:
1033 			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1034 			ret = ppgtt_invalidate_spt_by_shadow_entry(
1035 					spt->vgpu, &e);
1036 			if (ret)
1037 				goto fail;
1038 			break;
1039 		default:
1040 			GEM_BUG_ON(1);
1041 		}
1042 	}
1043 
1044 	trace_spt_change(spt->vgpu->id, "release", spt,
1045 			 spt->guest_page.gfn, spt->shadow_page.type);
1046 	ppgtt_free_spt(spt);
1047 	return 0;
1048 fail:
1049 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1050 			spt, e.val64, e.type);
1051 	return ret;
1052 }
1053 
vgpu_ips_enabled(struct intel_vgpu * vgpu)1054 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1055 {
1056 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1057 
1058 	if (GRAPHICS_VER(dev_priv) == 9) {
1059 		u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1060 			GAMW_ECO_ENABLE_64K_IPS_FIELD;
1061 
1062 		return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1063 	} else if (GRAPHICS_VER(dev_priv) >= 11) {
1064 		/* 64K paging only controlled by IPS bit in PTE now. */
1065 		return true;
1066 	} else
1067 		return false;
1068 }
1069 
1070 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1071 
ppgtt_populate_spt_by_guest_entry(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * we)1072 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1073 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1074 {
1075 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1076 	struct intel_vgpu_ppgtt_spt *spt = NULL;
1077 	bool ips = false;
1078 	int ret;
1079 
1080 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1081 
1082 	if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1083 		ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1084 
1085 	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1086 	if (spt) {
1087 		ppgtt_get_spt(spt);
1088 
1089 		if (ips != spt->guest_page.pde_ips) {
1090 			spt->guest_page.pde_ips = ips;
1091 
1092 			gvt_dbg_mm("reshadow PDE since ips changed\n");
1093 			clear_page(spt->shadow_page.vaddr);
1094 			ret = ppgtt_populate_spt(spt);
1095 			if (ret) {
1096 				ppgtt_put_spt(spt);
1097 				goto err;
1098 			}
1099 		}
1100 	} else {
1101 		int type = get_next_pt_type(we->type);
1102 
1103 		if (!gtt_type_is_pt(type)) {
1104 			ret = -EINVAL;
1105 			goto err;
1106 		}
1107 
1108 		spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1109 		if (IS_ERR(spt)) {
1110 			ret = PTR_ERR(spt);
1111 			goto err;
1112 		}
1113 
1114 		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1115 		if (ret)
1116 			goto err_free_spt;
1117 
1118 		ret = ppgtt_populate_spt(spt);
1119 		if (ret)
1120 			goto err_free_spt;
1121 
1122 		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1123 				 spt->shadow_page.type);
1124 	}
1125 	return spt;
1126 
1127 err_free_spt:
1128 	ppgtt_free_spt(spt);
1129 	spt = NULL;
1130 err:
1131 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1132 		     spt, we->val64, we->type);
1133 	return ERR_PTR(ret);
1134 }
1135 
ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry * se,struct intel_vgpu_ppgtt_spt * s,struct intel_gvt_gtt_entry * ge)1136 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1137 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1138 {
1139 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1140 
1141 	se->type = ge->type;
1142 	se->val64 = ge->val64;
1143 
1144 	/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1145 	if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1146 		ops->clear_ips(se);
1147 
1148 	ops->set_pfn(se, s->shadow_page.mfn);
1149 }
1150 
1151 /**
1152  * Check if can do 2M page
1153  * @vgpu: target vgpu
1154  * @entry: target pfn's gtt entry
1155  *
1156  * Return 1 if 2MB huge gtt shadowing is possible, 0 if miscondition,
1157  * negative if found err.
1158  */
is_2MB_gtt_possible(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * entry)1159 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1160 	struct intel_gvt_gtt_entry *entry)
1161 {
1162 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1163 	unsigned long pfn;
1164 
1165 	if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1166 		return 0;
1167 
1168 	pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1169 	if (pfn == INTEL_GVT_INVALID_ADDR)
1170 		return -EINVAL;
1171 
1172 	return PageTransHuge(pfn_to_page(pfn));
1173 }
1174 
split_2MB_gtt_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * se)1175 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1176 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1177 	struct intel_gvt_gtt_entry *se)
1178 {
1179 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1180 	struct intel_vgpu_ppgtt_spt *sub_spt;
1181 	struct intel_gvt_gtt_entry sub_se;
1182 	unsigned long start_gfn;
1183 	dma_addr_t dma_addr;
1184 	unsigned long sub_index;
1185 	int ret;
1186 
1187 	gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1188 
1189 	start_gfn = ops->get_pfn(se);
1190 
1191 	sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1192 	if (IS_ERR(sub_spt))
1193 		return PTR_ERR(sub_spt);
1194 
1195 	for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1196 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1197 				start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1198 		if (ret)
1199 			goto err;
1200 		sub_se.val64 = se->val64;
1201 
1202 		/* Copy the PAT field from PDE. */
1203 		sub_se.val64 &= ~_PAGE_PAT;
1204 		sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1205 
1206 		ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1207 		ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1208 	}
1209 
1210 	/* Clear dirty field. */
1211 	se->val64 &= ~_PAGE_DIRTY;
1212 
1213 	ops->clear_pse(se);
1214 	ops->clear_ips(se);
1215 	ops->set_pfn(se, sub_spt->shadow_page.mfn);
1216 	ppgtt_set_shadow_entry(spt, se, index);
1217 	return 0;
1218 err:
1219 	/* Cancel the existing addess mappings of DMA addr. */
1220 	for_each_present_shadow_entry(sub_spt, &sub_se, sub_index) {
1221 		gvt_vdbg_mm("invalidate 4K entry\n");
1222 		ppgtt_invalidate_pte(sub_spt, &sub_se);
1223 	}
1224 	/* Release the new allocated spt. */
1225 	trace_spt_change(sub_spt->vgpu->id, "release", sub_spt,
1226 		sub_spt->guest_page.gfn, sub_spt->shadow_page.type);
1227 	ppgtt_free_spt(sub_spt);
1228 	return ret;
1229 }
1230 
split_64KB_gtt_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * se)1231 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1232 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1233 	struct intel_gvt_gtt_entry *se)
1234 {
1235 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1236 	struct intel_gvt_gtt_entry entry = *se;
1237 	unsigned long start_gfn;
1238 	dma_addr_t dma_addr;
1239 	int i, ret;
1240 
1241 	gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1242 
1243 	GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1244 
1245 	start_gfn = ops->get_pfn(se);
1246 
1247 	entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1248 	ops->set_64k_splited(&entry);
1249 
1250 	for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1251 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1252 					start_gfn + i, PAGE_SIZE, &dma_addr);
1253 		if (ret)
1254 			return ret;
1255 
1256 		ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1257 		ppgtt_set_shadow_entry(spt, &entry, index + i);
1258 	}
1259 	return 0;
1260 }
1261 
ppgtt_populate_shadow_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * ge)1262 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1263 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1264 	struct intel_gvt_gtt_entry *ge)
1265 {
1266 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1267 	struct intel_gvt_gtt_entry se = *ge;
1268 	unsigned long gfn, page_size = PAGE_SIZE;
1269 	dma_addr_t dma_addr;
1270 	int ret;
1271 
1272 	if (!pte_ops->test_present(ge))
1273 		return 0;
1274 
1275 	gfn = pte_ops->get_pfn(ge);
1276 
1277 	switch (ge->type) {
1278 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1279 		gvt_vdbg_mm("shadow 4K gtt entry\n");
1280 		break;
1281 	case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1282 		gvt_vdbg_mm("shadow 64K gtt entry\n");
1283 		/*
1284 		 * The layout of 64K page is special, the page size is
1285 		 * controlled by uper PDE. To be simple, we always split
1286 		 * 64K page to smaller 4K pages in shadow PT.
1287 		 */
1288 		return split_64KB_gtt_entry(vgpu, spt, index, &se);
1289 	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1290 		gvt_vdbg_mm("shadow 2M gtt entry\n");
1291 		ret = is_2MB_gtt_possible(vgpu, ge);
1292 		if (ret == 0)
1293 			return split_2MB_gtt_entry(vgpu, spt, index, &se);
1294 		else if (ret < 0)
1295 			return ret;
1296 		page_size = I915_GTT_PAGE_SIZE_2M;
1297 		break;
1298 	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1299 		gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1300 		return -EINVAL;
1301 	default:
1302 		GEM_BUG_ON(1);
1303 	}
1304 
1305 	/* direct shadow */
1306 	ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1307 						      &dma_addr);
1308 	if (ret)
1309 		return -ENXIO;
1310 
1311 	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1312 	ppgtt_set_shadow_entry(spt, &se, index);
1313 	return 0;
1314 }
1315 
ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt * spt)1316 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1317 {
1318 	struct intel_vgpu *vgpu = spt->vgpu;
1319 	struct intel_gvt *gvt = vgpu->gvt;
1320 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1321 	struct intel_vgpu_ppgtt_spt *s;
1322 	struct intel_gvt_gtt_entry se, ge;
1323 	unsigned long gfn, i;
1324 	int ret;
1325 
1326 	trace_spt_change(spt->vgpu->id, "born", spt,
1327 			 spt->guest_page.gfn, spt->shadow_page.type);
1328 
1329 	for_each_present_guest_entry(spt, &ge, i) {
1330 		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1331 			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1332 			if (IS_ERR(s)) {
1333 				ret = PTR_ERR(s);
1334 				goto fail;
1335 			}
1336 			ppgtt_get_shadow_entry(spt, &se, i);
1337 			ppgtt_generate_shadow_entry(&se, s, &ge);
1338 			ppgtt_set_shadow_entry(spt, &se, i);
1339 		} else {
1340 			gfn = ops->get_pfn(&ge);
1341 			if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1342 				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1343 				ppgtt_set_shadow_entry(spt, &se, i);
1344 				continue;
1345 			}
1346 
1347 			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1348 			if (ret)
1349 				goto fail;
1350 		}
1351 	}
1352 	return 0;
1353 fail:
1354 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1355 			spt, ge.val64, ge.type);
1356 	return ret;
1357 }
1358 
ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * se,unsigned long index)1359 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1360 		struct intel_gvt_gtt_entry *se, unsigned long index)
1361 {
1362 	struct intel_vgpu *vgpu = spt->vgpu;
1363 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1364 	int ret;
1365 
1366 	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1367 			       spt->shadow_page.type, se->val64, index);
1368 
1369 	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1370 		    se->type, index, se->val64);
1371 
1372 	if (!ops->test_present(se))
1373 		return 0;
1374 
1375 	if (ops->get_pfn(se) ==
1376 	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1377 		return 0;
1378 
1379 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1380 		struct intel_vgpu_ppgtt_spt *s =
1381 			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1382 		if (!s) {
1383 			gvt_vgpu_err("fail to find guest page\n");
1384 			ret = -ENXIO;
1385 			goto fail;
1386 		}
1387 		ret = ppgtt_invalidate_spt(s);
1388 		if (ret)
1389 			goto fail;
1390 	} else {
1391 		/* We don't setup 64K shadow entry so far. */
1392 		WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1393 		     "suspicious 64K entry\n");
1394 		ppgtt_invalidate_pte(spt, se);
1395 	}
1396 
1397 	return 0;
1398 fail:
1399 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1400 			spt, se->val64, se->type);
1401 	return ret;
1402 }
1403 
ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * we,unsigned long index)1404 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1405 		struct intel_gvt_gtt_entry *we, unsigned long index)
1406 {
1407 	struct intel_vgpu *vgpu = spt->vgpu;
1408 	struct intel_gvt_gtt_entry m;
1409 	struct intel_vgpu_ppgtt_spt *s;
1410 	int ret;
1411 
1412 	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1413 			       we->val64, index);
1414 
1415 	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1416 		    we->type, index, we->val64);
1417 
1418 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1419 		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1420 		if (IS_ERR(s)) {
1421 			ret = PTR_ERR(s);
1422 			goto fail;
1423 		}
1424 		ppgtt_get_shadow_entry(spt, &m, index);
1425 		ppgtt_generate_shadow_entry(&m, s, we);
1426 		ppgtt_set_shadow_entry(spt, &m, index);
1427 	} else {
1428 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1429 		if (ret)
1430 			goto fail;
1431 	}
1432 	return 0;
1433 fail:
1434 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1435 		spt, we->val64, we->type);
1436 	return ret;
1437 }
1438 
sync_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_oos_page * oos_page)1439 static int sync_oos_page(struct intel_vgpu *vgpu,
1440 		struct intel_vgpu_oos_page *oos_page)
1441 {
1442 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1443 	struct intel_gvt *gvt = vgpu->gvt;
1444 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1445 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1446 	struct intel_gvt_gtt_entry old, new;
1447 	int index;
1448 	int ret;
1449 
1450 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1451 			 spt, spt->guest_page.type);
1452 
1453 	old.type = new.type = get_entry_type(spt->guest_page.type);
1454 	old.val64 = new.val64 = 0;
1455 
1456 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1457 				info->gtt_entry_size_shift); index++) {
1458 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1459 		ops->get_entry(NULL, &new, index, true,
1460 			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1461 
1462 		if (old.val64 == new.val64
1463 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1464 			continue;
1465 
1466 		trace_oos_sync(vgpu->id, oos_page->id,
1467 				spt, spt->guest_page.type,
1468 				new.val64, index);
1469 
1470 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1471 		if (ret)
1472 			return ret;
1473 
1474 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1475 	}
1476 
1477 	spt->guest_page.write_cnt = 0;
1478 	list_del_init(&spt->post_shadow_list);
1479 	return 0;
1480 }
1481 
detach_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_oos_page * oos_page)1482 static int detach_oos_page(struct intel_vgpu *vgpu,
1483 		struct intel_vgpu_oos_page *oos_page)
1484 {
1485 	struct intel_gvt *gvt = vgpu->gvt;
1486 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1487 
1488 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1489 			 spt, spt->guest_page.type);
1490 
1491 	spt->guest_page.write_cnt = 0;
1492 	spt->guest_page.oos_page = NULL;
1493 	oos_page->spt = NULL;
1494 
1495 	list_del_init(&oos_page->vm_list);
1496 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1497 
1498 	return 0;
1499 }
1500 
attach_oos_page(struct intel_vgpu_oos_page * oos_page,struct intel_vgpu_ppgtt_spt * spt)1501 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1502 		struct intel_vgpu_ppgtt_spt *spt)
1503 {
1504 	struct intel_gvt *gvt = spt->vgpu->gvt;
1505 	int ret;
1506 
1507 	ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1508 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1509 			oos_page->mem, I915_GTT_PAGE_SIZE);
1510 	if (ret)
1511 		return ret;
1512 
1513 	oos_page->spt = spt;
1514 	spt->guest_page.oos_page = oos_page;
1515 
1516 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1517 
1518 	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1519 			 spt, spt->guest_page.type);
1520 	return 0;
1521 }
1522 
ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt * spt)1523 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1524 {
1525 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1526 	int ret;
1527 
1528 	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1529 	if (ret)
1530 		return ret;
1531 
1532 	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1533 			 spt, spt->guest_page.type);
1534 
1535 	list_del_init(&oos_page->vm_list);
1536 	return sync_oos_page(spt->vgpu, oos_page);
1537 }
1538 
ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt * spt)1539 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1540 {
1541 	struct intel_gvt *gvt = spt->vgpu->gvt;
1542 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1543 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1544 	int ret;
1545 
1546 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1547 
1548 	if (list_empty(&gtt->oos_page_free_list_head)) {
1549 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1550 			struct intel_vgpu_oos_page, list);
1551 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1552 		if (ret)
1553 			return ret;
1554 		ret = detach_oos_page(spt->vgpu, oos_page);
1555 		if (ret)
1556 			return ret;
1557 	} else
1558 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1559 			struct intel_vgpu_oos_page, list);
1560 	return attach_oos_page(oos_page, spt);
1561 }
1562 
ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt * spt)1563 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1564 {
1565 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1566 
1567 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1568 		return -EINVAL;
1569 
1570 	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1571 			 spt, spt->guest_page.type);
1572 
1573 	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1574 	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1575 }
1576 
1577 /**
1578  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1579  * @vgpu: a vGPU
1580  *
1581  * This function is called before submitting a guest workload to host,
1582  * to sync all the out-of-synced shadow for vGPU
1583  *
1584  * Returns:
1585  * Zero on success, negative error code if failed.
1586  */
intel_vgpu_sync_oos_pages(struct intel_vgpu * vgpu)1587 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1588 {
1589 	struct list_head *pos, *n;
1590 	struct intel_vgpu_oos_page *oos_page;
1591 	int ret;
1592 
1593 	if (!enable_out_of_sync)
1594 		return 0;
1595 
1596 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1597 		oos_page = container_of(pos,
1598 				struct intel_vgpu_oos_page, vm_list);
1599 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1600 		if (ret)
1601 			return ret;
1602 	}
1603 	return 0;
1604 }
1605 
1606 /*
1607  * The heart of PPGTT shadow page table.
1608  */
ppgtt_handle_guest_write_page_table(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * we,unsigned long index)1609 static int ppgtt_handle_guest_write_page_table(
1610 		struct intel_vgpu_ppgtt_spt *spt,
1611 		struct intel_gvt_gtt_entry *we, unsigned long index)
1612 {
1613 	struct intel_vgpu *vgpu = spt->vgpu;
1614 	int type = spt->shadow_page.type;
1615 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1616 	struct intel_gvt_gtt_entry old_se;
1617 	int new_present;
1618 	int i, ret;
1619 
1620 	new_present = ops->test_present(we);
1621 
1622 	/*
1623 	 * Adding the new entry first and then removing the old one, that can
1624 	 * guarantee the ppgtt table is validated during the window between
1625 	 * adding and removal.
1626 	 */
1627 	ppgtt_get_shadow_entry(spt, &old_se, index);
1628 
1629 	if (new_present) {
1630 		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1631 		if (ret)
1632 			goto fail;
1633 	}
1634 
1635 	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1636 	if (ret)
1637 		goto fail;
1638 
1639 	if (!new_present) {
1640 		/* For 64KB splited entries, we need clear them all. */
1641 		if (ops->test_64k_splited(&old_se) &&
1642 		    !(index % GTT_64K_PTE_STRIDE)) {
1643 			gvt_vdbg_mm("remove splited 64K shadow entries\n");
1644 			for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1645 				ops->clear_64k_splited(&old_se);
1646 				ops->set_pfn(&old_se,
1647 					vgpu->gtt.scratch_pt[type].page_mfn);
1648 				ppgtt_set_shadow_entry(spt, &old_se, index + i);
1649 			}
1650 		} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1651 			   old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1652 			ops->clear_pse(&old_se);
1653 			ops->set_pfn(&old_se,
1654 				     vgpu->gtt.scratch_pt[type].page_mfn);
1655 			ppgtt_set_shadow_entry(spt, &old_se, index);
1656 		} else {
1657 			ops->set_pfn(&old_se,
1658 				     vgpu->gtt.scratch_pt[type].page_mfn);
1659 			ppgtt_set_shadow_entry(spt, &old_se, index);
1660 		}
1661 	}
1662 
1663 	return 0;
1664 fail:
1665 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1666 			spt, we->val64, we->type);
1667 	return ret;
1668 }
1669 
1670 
1671 
can_do_out_of_sync(struct intel_vgpu_ppgtt_spt * spt)1672 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1673 {
1674 	return enable_out_of_sync
1675 		&& gtt_type_is_pte_pt(spt->guest_page.type)
1676 		&& spt->guest_page.write_cnt >= 2;
1677 }
1678 
ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt * spt,unsigned long index)1679 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1680 		unsigned long index)
1681 {
1682 	set_bit(index, spt->post_shadow_bitmap);
1683 	if (!list_empty(&spt->post_shadow_list))
1684 		return;
1685 
1686 	list_add_tail(&spt->post_shadow_list,
1687 			&spt->vgpu->gtt.post_shadow_list_head);
1688 }
1689 
1690 /**
1691  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1692  * @vgpu: a vGPU
1693  *
1694  * This function is called before submitting a guest workload to host,
1695  * to flush all the post shadows for a vGPU.
1696  *
1697  * Returns:
1698  * Zero on success, negative error code if failed.
1699  */
intel_vgpu_flush_post_shadow(struct intel_vgpu * vgpu)1700 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1701 {
1702 	struct list_head *pos, *n;
1703 	struct intel_vgpu_ppgtt_spt *spt;
1704 	struct intel_gvt_gtt_entry ge;
1705 	unsigned long index;
1706 	int ret;
1707 
1708 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1709 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1710 				post_shadow_list);
1711 
1712 		for_each_set_bit(index, spt->post_shadow_bitmap,
1713 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1714 			ppgtt_get_guest_entry(spt, &ge, index);
1715 
1716 			ret = ppgtt_handle_guest_write_page_table(spt,
1717 							&ge, index);
1718 			if (ret)
1719 				return ret;
1720 			clear_bit(index, spt->post_shadow_bitmap);
1721 		}
1722 		list_del_init(&spt->post_shadow_list);
1723 	}
1724 	return 0;
1725 }
1726 
ppgtt_handle_guest_write_page_table_bytes(struct intel_vgpu_ppgtt_spt * spt,u64 pa,void * p_data,int bytes)1727 static int ppgtt_handle_guest_write_page_table_bytes(
1728 		struct intel_vgpu_ppgtt_spt *spt,
1729 		u64 pa, void *p_data, int bytes)
1730 {
1731 	struct intel_vgpu *vgpu = spt->vgpu;
1732 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1733 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1734 	struct intel_gvt_gtt_entry we, se;
1735 	unsigned long index;
1736 	int ret;
1737 
1738 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1739 
1740 	ppgtt_get_guest_entry(spt, &we, index);
1741 
1742 	/*
1743 	 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1744 	 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1745 	 * ignored.
1746 	 */
1747 	if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1748 	    (index % GTT_64K_PTE_STRIDE)) {
1749 		gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1750 			    index);
1751 		return 0;
1752 	}
1753 
1754 	if (bytes == info->gtt_entry_size) {
1755 		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1756 		if (ret)
1757 			return ret;
1758 	} else {
1759 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1760 			int type = spt->shadow_page.type;
1761 
1762 			ppgtt_get_shadow_entry(spt, &se, index);
1763 			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1764 			if (ret)
1765 				return ret;
1766 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1767 			ppgtt_set_shadow_entry(spt, &se, index);
1768 		}
1769 		ppgtt_set_post_shadow(spt, index);
1770 	}
1771 
1772 	if (!enable_out_of_sync)
1773 		return 0;
1774 
1775 	spt->guest_page.write_cnt++;
1776 
1777 	if (spt->guest_page.oos_page)
1778 		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1779 				false, 0, vgpu);
1780 
1781 	if (can_do_out_of_sync(spt)) {
1782 		if (!spt->guest_page.oos_page)
1783 			ppgtt_allocate_oos_page(spt);
1784 
1785 		ret = ppgtt_set_guest_page_oos(spt);
1786 		if (ret < 0)
1787 			return ret;
1788 	}
1789 	return 0;
1790 }
1791 
invalidate_ppgtt_mm(struct intel_vgpu_mm * mm)1792 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1793 {
1794 	struct intel_vgpu *vgpu = mm->vgpu;
1795 	struct intel_gvt *gvt = vgpu->gvt;
1796 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1797 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1798 	struct intel_gvt_gtt_entry se;
1799 	int index;
1800 
1801 	if (!mm->ppgtt_mm.shadowed)
1802 		return;
1803 
1804 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1805 		ppgtt_get_shadow_root_entry(mm, &se, index);
1806 
1807 		if (!ops->test_present(&se))
1808 			continue;
1809 
1810 		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1811 		se.val64 = 0;
1812 		ppgtt_set_shadow_root_entry(mm, &se, index);
1813 
1814 		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1815 				       NULL, se.type, se.val64, index);
1816 	}
1817 
1818 	mm->ppgtt_mm.shadowed = false;
1819 }
1820 
1821 
shadow_ppgtt_mm(struct intel_vgpu_mm * mm)1822 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1823 {
1824 	struct intel_vgpu *vgpu = mm->vgpu;
1825 	struct intel_gvt *gvt = vgpu->gvt;
1826 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1827 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1828 	struct intel_vgpu_ppgtt_spt *spt;
1829 	struct intel_gvt_gtt_entry ge, se;
1830 	int index, ret;
1831 
1832 	if (mm->ppgtt_mm.shadowed)
1833 		return 0;
1834 
1835 	mm->ppgtt_mm.shadowed = true;
1836 
1837 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1838 		ppgtt_get_guest_root_entry(mm, &ge, index);
1839 
1840 		if (!ops->test_present(&ge))
1841 			continue;
1842 
1843 		trace_spt_guest_change(vgpu->id, __func__, NULL,
1844 				       ge.type, ge.val64, index);
1845 
1846 		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1847 		if (IS_ERR(spt)) {
1848 			gvt_vgpu_err("fail to populate guest root pointer\n");
1849 			ret = PTR_ERR(spt);
1850 			goto fail;
1851 		}
1852 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1853 		ppgtt_set_shadow_root_entry(mm, &se, index);
1854 
1855 		trace_spt_guest_change(vgpu->id, "populate root pointer",
1856 				       NULL, se.type, se.val64, index);
1857 	}
1858 
1859 	return 0;
1860 fail:
1861 	invalidate_ppgtt_mm(mm);
1862 	return ret;
1863 }
1864 
vgpu_alloc_mm(struct intel_vgpu * vgpu)1865 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1866 {
1867 	struct intel_vgpu_mm *mm;
1868 
1869 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1870 	if (!mm)
1871 		return NULL;
1872 
1873 	mm->vgpu = vgpu;
1874 	kref_init(&mm->ref);
1875 	atomic_set(&mm->pincount, 0);
1876 
1877 	return mm;
1878 }
1879 
vgpu_free_mm(struct intel_vgpu_mm * mm)1880 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1881 {
1882 	kfree(mm);
1883 }
1884 
1885 /**
1886  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1887  * @vgpu: a vGPU
1888  * @root_entry_type: ppgtt root entry type
1889  * @pdps: guest pdps.
1890  *
1891  * This function is used to create a ppgtt mm object for a vGPU.
1892  *
1893  * Returns:
1894  * Zero on success, negative error code in pointer if failed.
1895  */
intel_vgpu_create_ppgtt_mm(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type root_entry_type,u64 pdps[])1896 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1897 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1898 {
1899 	struct intel_gvt *gvt = vgpu->gvt;
1900 	struct intel_vgpu_mm *mm;
1901 	int ret;
1902 
1903 	mm = vgpu_alloc_mm(vgpu);
1904 	if (!mm)
1905 		return ERR_PTR(-ENOMEM);
1906 
1907 	mm->type = INTEL_GVT_MM_PPGTT;
1908 
1909 	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1910 		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1911 	mm->ppgtt_mm.root_entry_type = root_entry_type;
1912 
1913 	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1914 	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1915 	INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1916 
1917 	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1918 		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1919 	else
1920 		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1921 		       sizeof(mm->ppgtt_mm.guest_pdps));
1922 
1923 	ret = shadow_ppgtt_mm(mm);
1924 	if (ret) {
1925 		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1926 		vgpu_free_mm(mm);
1927 		return ERR_PTR(ret);
1928 	}
1929 
1930 	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1931 
1932 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1933 	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1934 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1935 
1936 	return mm;
1937 }
1938 
intel_vgpu_create_ggtt_mm(struct intel_vgpu * vgpu)1939 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1940 {
1941 	struct intel_vgpu_mm *mm;
1942 	unsigned long nr_entries;
1943 
1944 	mm = vgpu_alloc_mm(vgpu);
1945 	if (!mm)
1946 		return ERR_PTR(-ENOMEM);
1947 
1948 	mm->type = INTEL_GVT_MM_GGTT;
1949 
1950 	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1951 	mm->ggtt_mm.virtual_ggtt =
1952 		vzalloc(array_size(nr_entries,
1953 				   vgpu->gvt->device_info.gtt_entry_size));
1954 	if (!mm->ggtt_mm.virtual_ggtt) {
1955 		vgpu_free_mm(mm);
1956 		return ERR_PTR(-ENOMEM);
1957 	}
1958 
1959 	mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1960 	if (!mm->ggtt_mm.host_ggtt_aperture) {
1961 		vfree(mm->ggtt_mm.virtual_ggtt);
1962 		vgpu_free_mm(mm);
1963 		return ERR_PTR(-ENOMEM);
1964 	}
1965 
1966 	mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1967 	if (!mm->ggtt_mm.host_ggtt_hidden) {
1968 		vfree(mm->ggtt_mm.host_ggtt_aperture);
1969 		vfree(mm->ggtt_mm.virtual_ggtt);
1970 		vgpu_free_mm(mm);
1971 		return ERR_PTR(-ENOMEM);
1972 	}
1973 
1974 	return mm;
1975 }
1976 
1977 /**
1978  * _intel_vgpu_mm_release - destroy a mm object
1979  * @mm_ref: a kref object
1980  *
1981  * This function is used to destroy a mm object for vGPU
1982  *
1983  */
_intel_vgpu_mm_release(struct kref * mm_ref)1984 void _intel_vgpu_mm_release(struct kref *mm_ref)
1985 {
1986 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1987 
1988 	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1989 		gvt_err("vgpu mm pin count bug detected\n");
1990 
1991 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1992 		list_del(&mm->ppgtt_mm.list);
1993 
1994 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1995 		list_del(&mm->ppgtt_mm.lru_list);
1996 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1997 
1998 		invalidate_ppgtt_mm(mm);
1999 	} else {
2000 		vfree(mm->ggtt_mm.virtual_ggtt);
2001 		vfree(mm->ggtt_mm.host_ggtt_aperture);
2002 		vfree(mm->ggtt_mm.host_ggtt_hidden);
2003 	}
2004 
2005 	vgpu_free_mm(mm);
2006 }
2007 
2008 /**
2009  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
2010  * @mm: a vGPU mm object
2011  *
2012  * This function is called when user doesn't want to use a vGPU mm object
2013  */
intel_vgpu_unpin_mm(struct intel_vgpu_mm * mm)2014 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
2015 {
2016 	atomic_dec_if_positive(&mm->pincount);
2017 }
2018 
2019 /**
2020  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
2021  * @mm: target vgpu mm
2022  *
2023  * This function is called when user wants to use a vGPU mm object. If this
2024  * mm object hasn't been shadowed yet, the shadow will be populated at this
2025  * time.
2026  *
2027  * Returns:
2028  * Zero on success, negative error code if failed.
2029  */
intel_vgpu_pin_mm(struct intel_vgpu_mm * mm)2030 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2031 {
2032 	int ret;
2033 
2034 	atomic_inc(&mm->pincount);
2035 
2036 	if (mm->type == INTEL_GVT_MM_PPGTT) {
2037 		ret = shadow_ppgtt_mm(mm);
2038 		if (ret)
2039 			return ret;
2040 
2041 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2042 		list_move_tail(&mm->ppgtt_mm.lru_list,
2043 			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2044 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2045 	}
2046 
2047 	return 0;
2048 }
2049 
reclaim_one_ppgtt_mm(struct intel_gvt * gvt)2050 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2051 {
2052 	struct intel_vgpu_mm *mm;
2053 	struct list_head *pos, *n;
2054 
2055 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2056 
2057 	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2058 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2059 
2060 		if (atomic_read(&mm->pincount))
2061 			continue;
2062 
2063 		list_del_init(&mm->ppgtt_mm.lru_list);
2064 		mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2065 		invalidate_ppgtt_mm(mm);
2066 		return 1;
2067 	}
2068 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2069 	return 0;
2070 }
2071 
2072 /*
2073  * GMA translation APIs.
2074  */
ppgtt_get_next_level_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)2075 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2076 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2077 {
2078 	struct intel_vgpu *vgpu = mm->vgpu;
2079 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2080 	struct intel_vgpu_ppgtt_spt *s;
2081 
2082 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2083 	if (!s)
2084 		return -ENXIO;
2085 
2086 	if (!guest)
2087 		ppgtt_get_shadow_entry(s, e, index);
2088 	else
2089 		ppgtt_get_guest_entry(s, e, index);
2090 	return 0;
2091 }
2092 
2093 /**
2094  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2095  * @mm: mm object. could be a PPGTT or GGTT mm object
2096  * @gma: graphics memory address in this mm object
2097  *
2098  * This function is used to translate a graphics memory address in specific
2099  * graphics memory space to guest physical address.
2100  *
2101  * Returns:
2102  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2103  */
intel_vgpu_gma_to_gpa(struct intel_vgpu_mm * mm,unsigned long gma)2104 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2105 {
2106 	struct intel_vgpu *vgpu = mm->vgpu;
2107 	struct intel_gvt *gvt = vgpu->gvt;
2108 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2109 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2110 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2111 	unsigned long gma_index[4];
2112 	struct intel_gvt_gtt_entry e;
2113 	int i, levels = 0;
2114 	int ret;
2115 
2116 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2117 		   mm->type != INTEL_GVT_MM_PPGTT);
2118 
2119 	if (mm->type == INTEL_GVT_MM_GGTT) {
2120 		if (!vgpu_gmadr_is_valid(vgpu, gma))
2121 			goto err;
2122 
2123 		ggtt_get_guest_entry(mm, &e,
2124 			gma_ops->gma_to_ggtt_pte_index(gma));
2125 
2126 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2127 			+ (gma & ~I915_GTT_PAGE_MASK);
2128 
2129 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2130 	} else {
2131 		switch (mm->ppgtt_mm.root_entry_type) {
2132 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2133 			ppgtt_get_shadow_root_entry(mm, &e, 0);
2134 
2135 			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2136 			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2137 			gma_index[2] = gma_ops->gma_to_pde_index(gma);
2138 			gma_index[3] = gma_ops->gma_to_pte_index(gma);
2139 			levels = 4;
2140 			break;
2141 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2142 			ppgtt_get_shadow_root_entry(mm, &e,
2143 					gma_ops->gma_to_l3_pdp_index(gma));
2144 
2145 			gma_index[0] = gma_ops->gma_to_pde_index(gma);
2146 			gma_index[1] = gma_ops->gma_to_pte_index(gma);
2147 			levels = 2;
2148 			break;
2149 		default:
2150 			GEM_BUG_ON(1);
2151 		}
2152 
2153 		/* walk the shadow page table and get gpa from guest entry */
2154 		for (i = 0; i < levels; i++) {
2155 			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2156 				(i == levels - 1));
2157 			if (ret)
2158 				goto err;
2159 
2160 			if (!pte_ops->test_present(&e)) {
2161 				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2162 				goto err;
2163 			}
2164 		}
2165 
2166 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2167 					(gma & ~I915_GTT_PAGE_MASK);
2168 		trace_gma_translate(vgpu->id, "ppgtt", 0,
2169 				    mm->ppgtt_mm.root_entry_type, gma, gpa);
2170 	}
2171 
2172 	return gpa;
2173 err:
2174 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2175 	return INTEL_GVT_INVALID_ADDR;
2176 }
2177 
emulate_ggtt_mmio_read(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2178 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2179 	unsigned int off, void *p_data, unsigned int bytes)
2180 {
2181 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2182 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2183 	unsigned long index = off >> info->gtt_entry_size_shift;
2184 	unsigned long gma;
2185 	struct intel_gvt_gtt_entry e;
2186 
2187 	if (bytes != 4 && bytes != 8)
2188 		return -EINVAL;
2189 
2190 	gma = index << I915_GTT_PAGE_SHIFT;
2191 	if (!intel_gvt_ggtt_validate_range(vgpu,
2192 					   gma, 1 << I915_GTT_PAGE_SHIFT)) {
2193 		gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2194 		memset(p_data, 0, bytes);
2195 		return 0;
2196 	}
2197 
2198 	ggtt_get_guest_entry(ggtt_mm, &e, index);
2199 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2200 			bytes);
2201 	return 0;
2202 }
2203 
2204 /**
2205  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2206  * @vgpu: a vGPU
2207  * @off: register offset
2208  * @p_data: data will be returned to guest
2209  * @bytes: data length
2210  *
2211  * This function is used to emulate the GTT MMIO register read
2212  *
2213  * Returns:
2214  * Zero on success, error code if failed.
2215  */
intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2216 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2217 	void *p_data, unsigned int bytes)
2218 {
2219 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2220 	int ret;
2221 
2222 	if (bytes != 4 && bytes != 8)
2223 		return -EINVAL;
2224 
2225 	off -= info->gtt_start_offset;
2226 	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2227 	return ret;
2228 }
2229 
ggtt_invalidate_pte(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * entry)2230 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2231 		struct intel_gvt_gtt_entry *entry)
2232 {
2233 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2234 	unsigned long pfn;
2235 
2236 	pfn = pte_ops->get_pfn(entry);
2237 	if (pfn != vgpu->gvt->gtt.scratch_mfn)
2238 		intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2239 						pfn << PAGE_SHIFT);
2240 }
2241 
emulate_ggtt_mmio_write(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2242 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2243 	void *p_data, unsigned int bytes)
2244 {
2245 	struct intel_gvt *gvt = vgpu->gvt;
2246 	const struct intel_gvt_device_info *info = &gvt->device_info;
2247 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2248 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2249 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2250 	unsigned long gma, gfn;
2251 	struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2252 	struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2253 	dma_addr_t dma_addr;
2254 	int ret;
2255 	struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2256 	bool partial_update = false;
2257 
2258 	if (bytes != 4 && bytes != 8)
2259 		return -EINVAL;
2260 
2261 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2262 
2263 	/* the VM may configure the whole GM space when ballooning is used */
2264 	if (!vgpu_gmadr_is_valid(vgpu, gma))
2265 		return 0;
2266 
2267 	e.type = GTT_TYPE_GGTT_PTE;
2268 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2269 			bytes);
2270 
2271 	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2272 	 * write, save the first 4 bytes in a list and update virtual
2273 	 * PTE. Only update shadow PTE when the second 4 bytes comes.
2274 	 */
2275 	if (bytes < info->gtt_entry_size) {
2276 		bool found = false;
2277 
2278 		list_for_each_entry_safe(pos, n,
2279 				&ggtt_mm->ggtt_mm.partial_pte_list, list) {
2280 			if (g_gtt_index == pos->offset >>
2281 					info->gtt_entry_size_shift) {
2282 				if (off != pos->offset) {
2283 					/* the second partial part*/
2284 					int last_off = pos->offset &
2285 						(info->gtt_entry_size - 1);
2286 
2287 					memcpy((void *)&e.val64 + last_off,
2288 						(void *)&pos->data + last_off,
2289 						bytes);
2290 
2291 					list_del(&pos->list);
2292 					kfree(pos);
2293 					found = true;
2294 					break;
2295 				}
2296 
2297 				/* update of the first partial part */
2298 				pos->data = e.val64;
2299 				ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2300 				return 0;
2301 			}
2302 		}
2303 
2304 		if (!found) {
2305 			/* the first partial part */
2306 			partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2307 			if (!partial_pte)
2308 				return -ENOMEM;
2309 			partial_pte->offset = off;
2310 			partial_pte->data = e.val64;
2311 			list_add_tail(&partial_pte->list,
2312 				&ggtt_mm->ggtt_mm.partial_pte_list);
2313 			partial_update = true;
2314 		}
2315 	}
2316 
2317 	if (!partial_update && (ops->test_present(&e))) {
2318 		gfn = ops->get_pfn(&e);
2319 		m.val64 = e.val64;
2320 		m.type = e.type;
2321 
2322 		/* one PTE update may be issued in multiple writes and the
2323 		 * first write may not construct a valid gfn
2324 		 */
2325 		if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2326 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2327 			goto out;
2328 		}
2329 
2330 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2331 							PAGE_SIZE, &dma_addr);
2332 		if (ret) {
2333 			gvt_vgpu_err("fail to populate guest ggtt entry\n");
2334 			/* guest driver may read/write the entry when partial
2335 			 * update the entry in this situation p2m will fail
2336 			 * settting the shadow entry to point to a scratch page
2337 			 */
2338 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2339 		} else
2340 			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2341 	} else {
2342 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2343 		ops->clear_present(&m);
2344 	}
2345 
2346 out:
2347 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2348 
2349 	ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2350 	ggtt_invalidate_pte(vgpu, &e);
2351 
2352 	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2353 	ggtt_invalidate(gvt->gt);
2354 	return 0;
2355 }
2356 
2357 /*
2358  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2359  * @vgpu: a vGPU
2360  * @off: register offset
2361  * @p_data: data from guest write
2362  * @bytes: data length
2363  *
2364  * This function is used to emulate the GTT MMIO register write
2365  *
2366  * Returns:
2367  * Zero on success, error code if failed.
2368  */
intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2369 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2370 		unsigned int off, void *p_data, unsigned int bytes)
2371 {
2372 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2373 	int ret;
2374 	struct intel_vgpu_submission *s = &vgpu->submission;
2375 	struct intel_engine_cs *engine;
2376 	int i;
2377 
2378 	if (bytes != 4 && bytes != 8)
2379 		return -EINVAL;
2380 
2381 	off -= info->gtt_start_offset;
2382 	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2383 
2384 	/* if ggtt of last submitted context is written,
2385 	 * that context is probably got unpinned.
2386 	 * Set last shadowed ctx to invalid.
2387 	 */
2388 	for_each_engine(engine, vgpu->gvt->gt, i) {
2389 		if (!s->last_ctx[i].valid)
2390 			continue;
2391 
2392 		if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2393 			s->last_ctx[i].valid = false;
2394 	}
2395 	return ret;
2396 }
2397 
alloc_scratch_pages(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type)2398 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2399 		enum intel_gvt_gtt_type type)
2400 {
2401 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2402 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2403 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2404 	int page_entry_num = I915_GTT_PAGE_SIZE >>
2405 				vgpu->gvt->device_info.gtt_entry_size_shift;
2406 	void *scratch_pt;
2407 	int i;
2408 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2409 	dma_addr_t daddr;
2410 
2411 	if (drm_WARN_ON(&i915->drm,
2412 			type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2413 		return -EINVAL;
2414 
2415 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2416 	if (!scratch_pt) {
2417 		gvt_vgpu_err("fail to allocate scratch page\n");
2418 		return -ENOMEM;
2419 	}
2420 
2421 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2422 			4096, PCI_DMA_BIDIRECTIONAL);
2423 	if (dma_mapping_error(dev, daddr)) {
2424 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2425 		__free_page(virt_to_page(scratch_pt));
2426 		return -ENOMEM;
2427 	}
2428 	gtt->scratch_pt[type].page_mfn =
2429 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2430 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2431 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2432 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2433 
2434 	/* Build the tree by full filled the scratch pt with the entries which
2435 	 * point to the next level scratch pt or scratch page. The
2436 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2437 	 * 'type' pt.
2438 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2439 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2440 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2441 	 */
2442 	if (type > GTT_TYPE_PPGTT_PTE_PT) {
2443 		struct intel_gvt_gtt_entry se;
2444 
2445 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2446 		se.type = get_entry_type(type - 1);
2447 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2448 
2449 		/* The entry parameters like present/writeable/cache type
2450 		 * set to the same as i915's scratch page tree.
2451 		 */
2452 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2453 		if (type == GTT_TYPE_PPGTT_PDE_PT)
2454 			se.val64 |= PPAT_CACHED;
2455 
2456 		for (i = 0; i < page_entry_num; i++)
2457 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2458 	}
2459 
2460 	return 0;
2461 }
2462 
release_scratch_page_tree(struct intel_vgpu * vgpu)2463 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2464 {
2465 	int i;
2466 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2467 	dma_addr_t daddr;
2468 
2469 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2470 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2471 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2472 					I915_GTT_PAGE_SHIFT);
2473 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2474 			__free_page(vgpu->gtt.scratch_pt[i].page);
2475 			vgpu->gtt.scratch_pt[i].page = NULL;
2476 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2477 		}
2478 	}
2479 
2480 	return 0;
2481 }
2482 
create_scratch_page_tree(struct intel_vgpu * vgpu)2483 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2484 {
2485 	int i, ret;
2486 
2487 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2488 		ret = alloc_scratch_pages(vgpu, i);
2489 		if (ret)
2490 			goto err;
2491 	}
2492 
2493 	return 0;
2494 
2495 err:
2496 	release_scratch_page_tree(vgpu);
2497 	return ret;
2498 }
2499 
2500 /**
2501  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2502  * @vgpu: a vGPU
2503  *
2504  * This function is used to initialize per-vGPU graphics memory virtualization
2505  * components.
2506  *
2507  * Returns:
2508  * Zero on success, error code if failed.
2509  */
intel_vgpu_init_gtt(struct intel_vgpu * vgpu)2510 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2511 {
2512 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2513 
2514 	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2515 
2516 	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2517 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2518 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2519 
2520 	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2521 	if (IS_ERR(gtt->ggtt_mm)) {
2522 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2523 		return PTR_ERR(gtt->ggtt_mm);
2524 	}
2525 
2526 	intel_vgpu_reset_ggtt(vgpu, false);
2527 
2528 	INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2529 
2530 	return create_scratch_page_tree(vgpu);
2531 }
2532 
intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu * vgpu)2533 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2534 {
2535 	struct list_head *pos, *n;
2536 	struct intel_vgpu_mm *mm;
2537 
2538 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2539 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2540 		intel_vgpu_destroy_mm(mm);
2541 	}
2542 
2543 	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2544 		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2545 
2546 	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2547 		gvt_err("Why we still has spt not freed?\n");
2548 		ppgtt_free_all_spt(vgpu);
2549 	}
2550 }
2551 
intel_vgpu_destroy_ggtt_mm(struct intel_vgpu * vgpu)2552 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2553 {
2554 	struct intel_gvt_partial_pte *pos, *next;
2555 
2556 	list_for_each_entry_safe(pos, next,
2557 				 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2558 				 list) {
2559 		gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2560 			pos->offset, pos->data);
2561 		kfree(pos);
2562 	}
2563 	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2564 	vgpu->gtt.ggtt_mm = NULL;
2565 }
2566 
2567 /**
2568  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2569  * @vgpu: a vGPU
2570  *
2571  * This function is used to clean up per-vGPU graphics memory virtualization
2572  * components.
2573  *
2574  * Returns:
2575  * Zero on success, error code if failed.
2576  */
intel_vgpu_clean_gtt(struct intel_vgpu * vgpu)2577 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2578 {
2579 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2580 	intel_vgpu_destroy_ggtt_mm(vgpu);
2581 	release_scratch_page_tree(vgpu);
2582 }
2583 
clean_spt_oos(struct intel_gvt * gvt)2584 static void clean_spt_oos(struct intel_gvt *gvt)
2585 {
2586 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2587 	struct list_head *pos, *n;
2588 	struct intel_vgpu_oos_page *oos_page;
2589 
2590 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2591 		"someone is still using oos page\n");
2592 
2593 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2594 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2595 		list_del(&oos_page->list);
2596 		free_page((unsigned long)oos_page->mem);
2597 		kfree(oos_page);
2598 	}
2599 }
2600 
setup_spt_oos(struct intel_gvt * gvt)2601 static int setup_spt_oos(struct intel_gvt *gvt)
2602 {
2603 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2604 	struct intel_vgpu_oos_page *oos_page;
2605 	int i;
2606 	int ret;
2607 
2608 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2609 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2610 
2611 	for (i = 0; i < preallocated_oos_pages; i++) {
2612 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2613 		if (!oos_page) {
2614 			ret = -ENOMEM;
2615 			goto fail;
2616 		}
2617 		oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2618 		if (!oos_page->mem) {
2619 			ret = -ENOMEM;
2620 			kfree(oos_page);
2621 			goto fail;
2622 		}
2623 
2624 		INIT_LIST_HEAD(&oos_page->list);
2625 		INIT_LIST_HEAD(&oos_page->vm_list);
2626 		oos_page->id = i;
2627 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2628 	}
2629 
2630 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2631 
2632 	return 0;
2633 fail:
2634 	clean_spt_oos(gvt);
2635 	return ret;
2636 }
2637 
2638 /**
2639  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2640  * @vgpu: a vGPU
2641  * @pdps: pdp root array
2642  *
2643  * This function is used to find a PPGTT mm object from mm object pool
2644  *
2645  * Returns:
2646  * pointer to mm object on success, NULL if failed.
2647  */
intel_vgpu_find_ppgtt_mm(struct intel_vgpu * vgpu,u64 pdps[])2648 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2649 		u64 pdps[])
2650 {
2651 	struct intel_vgpu_mm *mm;
2652 	struct list_head *pos;
2653 
2654 	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2655 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2656 
2657 		switch (mm->ppgtt_mm.root_entry_type) {
2658 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2659 			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2660 				return mm;
2661 			break;
2662 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2663 			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2664 				    sizeof(mm->ppgtt_mm.guest_pdps)))
2665 				return mm;
2666 			break;
2667 		default:
2668 			GEM_BUG_ON(1);
2669 		}
2670 	}
2671 	return NULL;
2672 }
2673 
2674 /**
2675  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2676  * @vgpu: a vGPU
2677  * @root_entry_type: ppgtt root entry type
2678  * @pdps: guest pdps
2679  *
2680  * This function is used to find or create a PPGTT mm object from a guest.
2681  *
2682  * Returns:
2683  * Zero on success, negative error code if failed.
2684  */
intel_vgpu_get_ppgtt_mm(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type root_entry_type,u64 pdps[])2685 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2686 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2687 {
2688 	struct intel_vgpu_mm *mm;
2689 
2690 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2691 	if (mm) {
2692 		intel_vgpu_mm_get(mm);
2693 	} else {
2694 		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2695 		if (IS_ERR(mm))
2696 			gvt_vgpu_err("fail to create mm\n");
2697 	}
2698 	return mm;
2699 }
2700 
2701 /**
2702  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2703  * @vgpu: a vGPU
2704  * @pdps: guest pdps
2705  *
2706  * This function is used to find a PPGTT mm object from a guest and destroy it.
2707  *
2708  * Returns:
2709  * Zero on success, negative error code if failed.
2710  */
intel_vgpu_put_ppgtt_mm(struct intel_vgpu * vgpu,u64 pdps[])2711 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2712 {
2713 	struct intel_vgpu_mm *mm;
2714 
2715 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2716 	if (!mm) {
2717 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2718 		return -EINVAL;
2719 	}
2720 	intel_vgpu_mm_put(mm);
2721 	return 0;
2722 }
2723 
2724 /**
2725  * intel_gvt_init_gtt - initialize mm components of a GVT device
2726  * @gvt: GVT device
2727  *
2728  * This function is called at the initialization stage, to initialize
2729  * the mm components of a GVT device.
2730  *
2731  * Returns:
2732  * zero on success, negative error code if failed.
2733  */
intel_gvt_init_gtt(struct intel_gvt * gvt)2734 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2735 {
2736 	int ret;
2737 	void *page;
2738 	struct device *dev = gvt->gt->i915->drm.dev;
2739 	dma_addr_t daddr;
2740 
2741 	gvt_dbg_core("init gtt\n");
2742 
2743 	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2744 	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2745 
2746 	page = (void *)get_zeroed_page(GFP_KERNEL);
2747 	if (!page) {
2748 		gvt_err("fail to allocate scratch ggtt page\n");
2749 		return -ENOMEM;
2750 	}
2751 
2752 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2753 			4096, PCI_DMA_BIDIRECTIONAL);
2754 	if (dma_mapping_error(dev, daddr)) {
2755 		gvt_err("fail to dmamap scratch ggtt page\n");
2756 		__free_page(virt_to_page(page));
2757 		return -ENOMEM;
2758 	}
2759 
2760 	gvt->gtt.scratch_page = virt_to_page(page);
2761 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2762 
2763 	if (enable_out_of_sync) {
2764 		ret = setup_spt_oos(gvt);
2765 		if (ret) {
2766 			gvt_err("fail to initialize SPT oos\n");
2767 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2768 			__free_page(gvt->gtt.scratch_page);
2769 			return ret;
2770 		}
2771 	}
2772 	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2773 	mutex_init(&gvt->gtt.ppgtt_mm_lock);
2774 	return 0;
2775 }
2776 
2777 /**
2778  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2779  * @gvt: GVT device
2780  *
2781  * This function is called at the driver unloading stage, to clean up the
2782  * the mm components of a GVT device.
2783  *
2784  */
intel_gvt_clean_gtt(struct intel_gvt * gvt)2785 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2786 {
2787 	struct device *dev = gvt->gt->i915->drm.dev;
2788 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2789 					I915_GTT_PAGE_SHIFT);
2790 
2791 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2792 
2793 	__free_page(gvt->gtt.scratch_page);
2794 
2795 	if (enable_out_of_sync)
2796 		clean_spt_oos(gvt);
2797 }
2798 
2799 /**
2800  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2801  * @vgpu: a vGPU
2802  *
2803  * This function is called when invalidate all PPGTT instances of a vGPU.
2804  *
2805  */
intel_vgpu_invalidate_ppgtt(struct intel_vgpu * vgpu)2806 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2807 {
2808 	struct list_head *pos, *n;
2809 	struct intel_vgpu_mm *mm;
2810 
2811 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2812 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2813 		if (mm->type == INTEL_GVT_MM_PPGTT) {
2814 			mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2815 			list_del_init(&mm->ppgtt_mm.lru_list);
2816 			mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2817 			if (mm->ppgtt_mm.shadowed)
2818 				invalidate_ppgtt_mm(mm);
2819 		}
2820 	}
2821 }
2822 
2823 /**
2824  * intel_vgpu_reset_ggtt - reset the GGTT entry
2825  * @vgpu: a vGPU
2826  * @invalidate_old: invalidate old entries
2827  *
2828  * This function is called at the vGPU create stage
2829  * to reset all the GGTT entries.
2830  *
2831  */
intel_vgpu_reset_ggtt(struct intel_vgpu * vgpu,bool invalidate_old)2832 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2833 {
2834 	struct intel_gvt *gvt = vgpu->gvt;
2835 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2836 	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2837 	struct intel_gvt_gtt_entry old_entry;
2838 	u32 index;
2839 	u32 num_entries;
2840 
2841 	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2842 	pte_ops->set_present(&entry);
2843 
2844 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2845 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2846 	while (num_entries--) {
2847 		if (invalidate_old) {
2848 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2849 			ggtt_invalidate_pte(vgpu, &old_entry);
2850 		}
2851 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2852 	}
2853 
2854 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2855 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2856 	while (num_entries--) {
2857 		if (invalidate_old) {
2858 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2859 			ggtt_invalidate_pte(vgpu, &old_entry);
2860 		}
2861 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2862 	}
2863 
2864 	ggtt_invalidate(gvt->gt);
2865 }
2866 
2867 /**
2868  * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries
2869  * @gvt: intel gvt device
2870  *
2871  * This function is called at driver resume stage to restore
2872  * GGTT entries of every vGPU.
2873  *
2874  */
intel_gvt_restore_ggtt(struct intel_gvt * gvt)2875 void intel_gvt_restore_ggtt(struct intel_gvt *gvt)
2876 {
2877 	struct intel_vgpu *vgpu;
2878 	struct intel_vgpu_mm *mm;
2879 	int id;
2880 	gen8_pte_t pte;
2881 	u32 idx, num_low, num_hi, offset;
2882 
2883 	/* Restore dirty host ggtt for all vGPUs */
2884 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
2885 		mm = vgpu->gtt.ggtt_mm;
2886 
2887 		num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2888 		offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2889 		for (idx = 0; idx < num_low; idx++) {
2890 			pte = mm->ggtt_mm.host_ggtt_aperture[idx];
2891 			if (pte & _PAGE_PRESENT)
2892 				write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2893 		}
2894 
2895 		num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2896 		offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2897 		for (idx = 0; idx < num_hi; idx++) {
2898 			pte = mm->ggtt_mm.host_ggtt_hidden[idx];
2899 			if (pte & _PAGE_PRESENT)
2900 				write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2901 		}
2902 	}
2903 }
2904