1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Broadcom
4 */
5
6 /**
7 * DOC: VC4 KMS
8 *
9 * This is the general code for implementing KMS mode setting that
10 * doesn't clearly associate with any of the other objects (plane,
11 * crtc, HDMI encoder).
12 */
13
14 #include <linux/clk.h>
15
16 #include <drm/drm_atomic.h>
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_gem_framebuffer_helper.h>
20 #include <drm/drm_plane_helper.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_vblank.h>
23
24 #include "vc4_drv.h"
25 #include "vc4_regs.h"
26
27 #define HVS_NUM_CHANNELS 3
28
29 struct vc4_ctm_state {
30 struct drm_private_state base;
31 struct drm_color_ctm *ctm;
32 int fifo;
33 };
34
to_vc4_ctm_state(struct drm_private_state * priv)35 static struct vc4_ctm_state *to_vc4_ctm_state(struct drm_private_state *priv)
36 {
37 return container_of(priv, struct vc4_ctm_state, base);
38 }
39
40 struct vc4_hvs_state {
41 struct drm_private_state base;
42
43 struct {
44 unsigned in_use: 1;
45 struct drm_crtc_commit *pending_commit;
46 } fifo_state[HVS_NUM_CHANNELS];
47 };
48
49 static struct vc4_hvs_state *
to_vc4_hvs_state(struct drm_private_state * priv)50 to_vc4_hvs_state(struct drm_private_state *priv)
51 {
52 return container_of(priv, struct vc4_hvs_state, base);
53 }
54
55 struct vc4_load_tracker_state {
56 struct drm_private_state base;
57 u64 hvs_load;
58 u64 membus_load;
59 };
60
61 static struct vc4_load_tracker_state *
to_vc4_load_tracker_state(struct drm_private_state * priv)62 to_vc4_load_tracker_state(struct drm_private_state *priv)
63 {
64 return container_of(priv, struct vc4_load_tracker_state, base);
65 }
66
vc4_get_ctm_state(struct drm_atomic_state * state,struct drm_private_obj * manager)67 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
68 struct drm_private_obj *manager)
69 {
70 struct drm_device *dev = state->dev;
71 struct vc4_dev *vc4 = to_vc4_dev(dev);
72 struct drm_private_state *priv_state;
73 int ret;
74
75 ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
76 if (ret)
77 return ERR_PTR(ret);
78
79 priv_state = drm_atomic_get_private_obj_state(state, manager);
80 if (IS_ERR(priv_state))
81 return ERR_CAST(priv_state);
82
83 return to_vc4_ctm_state(priv_state);
84 }
85
86 static struct drm_private_state *
vc4_ctm_duplicate_state(struct drm_private_obj * obj)87 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
88 {
89 struct vc4_ctm_state *state;
90
91 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
92 if (!state)
93 return NULL;
94
95 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
96
97 return &state->base;
98 }
99
vc4_ctm_destroy_state(struct drm_private_obj * obj,struct drm_private_state * state)100 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
101 struct drm_private_state *state)
102 {
103 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
104
105 kfree(ctm_state);
106 }
107
108 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
109 .atomic_duplicate_state = vc4_ctm_duplicate_state,
110 .atomic_destroy_state = vc4_ctm_destroy_state,
111 };
112
vc4_ctm_obj_fini(struct drm_device * dev,void * unused)113 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
114 {
115 struct vc4_dev *vc4 = to_vc4_dev(dev);
116
117 drm_atomic_private_obj_fini(&vc4->ctm_manager);
118 }
119
vc4_ctm_obj_init(struct vc4_dev * vc4)120 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
121 {
122 struct vc4_ctm_state *ctm_state;
123
124 drm_modeset_lock_init(&vc4->ctm_state_lock);
125
126 ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
127 if (!ctm_state)
128 return -ENOMEM;
129
130 drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
131 &vc4_ctm_state_funcs);
132
133 return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
134 }
135
136 /* Converts a DRM S31.32 value to the HW S0.9 format. */
vc4_ctm_s31_32_to_s0_9(u64 in)137 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
138 {
139 u16 r;
140
141 /* Sign bit. */
142 r = in & BIT_ULL(63) ? BIT(9) : 0;
143
144 if ((in & GENMASK_ULL(62, 32)) > 0) {
145 /* We have zero integer bits so we can only saturate here. */
146 r |= GENMASK(8, 0);
147 } else {
148 /* Otherwise take the 9 most important fractional bits. */
149 r |= (in >> 23) & GENMASK(8, 0);
150 }
151
152 return r;
153 }
154
155 static void
vc4_ctm_commit(struct vc4_dev * vc4,struct drm_atomic_state * state)156 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
157 {
158 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
159 struct drm_color_ctm *ctm = ctm_state->ctm;
160
161 if (ctm_state->fifo) {
162 HVS_WRITE(SCALER_OLEDCOEF2,
163 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
164 SCALER_OLEDCOEF2_R_TO_R) |
165 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
166 SCALER_OLEDCOEF2_R_TO_G) |
167 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
168 SCALER_OLEDCOEF2_R_TO_B));
169 HVS_WRITE(SCALER_OLEDCOEF1,
170 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
171 SCALER_OLEDCOEF1_G_TO_R) |
172 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
173 SCALER_OLEDCOEF1_G_TO_G) |
174 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
175 SCALER_OLEDCOEF1_G_TO_B));
176 HVS_WRITE(SCALER_OLEDCOEF0,
177 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
178 SCALER_OLEDCOEF0_B_TO_R) |
179 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
180 SCALER_OLEDCOEF0_B_TO_G) |
181 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
182 SCALER_OLEDCOEF0_B_TO_B));
183 }
184
185 HVS_WRITE(SCALER_OLEDOFFS,
186 VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
187 }
188
189 static struct vc4_hvs_state *
vc4_hvs_get_new_global_state(struct drm_atomic_state * state)190 vc4_hvs_get_new_global_state(struct drm_atomic_state *state)
191 {
192 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
193 struct drm_private_state *priv_state;
194
195 priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
196 if (!priv_state)
197 return ERR_PTR(-EINVAL);
198
199 return to_vc4_hvs_state(priv_state);
200 }
201
202 static struct vc4_hvs_state *
vc4_hvs_get_old_global_state(struct drm_atomic_state * state)203 vc4_hvs_get_old_global_state(struct drm_atomic_state *state)
204 {
205 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
206 struct drm_private_state *priv_state;
207
208 priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
209 if (!priv_state)
210 return ERR_PTR(-EINVAL);
211
212 return to_vc4_hvs_state(priv_state);
213 }
214
215 static struct vc4_hvs_state *
vc4_hvs_get_global_state(struct drm_atomic_state * state)216 vc4_hvs_get_global_state(struct drm_atomic_state *state)
217 {
218 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
219 struct drm_private_state *priv_state;
220
221 priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
222 if (IS_ERR(priv_state))
223 return ERR_CAST(priv_state);
224
225 return to_vc4_hvs_state(priv_state);
226 }
227
vc4_hvs_pv_muxing_commit(struct vc4_dev * vc4,struct drm_atomic_state * state)228 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
229 struct drm_atomic_state *state)
230 {
231 struct drm_crtc_state *crtc_state;
232 struct drm_crtc *crtc;
233 unsigned int i;
234
235 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
236 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
237 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
238 u32 dispctrl;
239 u32 dsp3_mux;
240
241 if (!crtc_state->active)
242 continue;
243
244 if (vc4_state->assigned_channel != 2)
245 continue;
246
247 /*
248 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
249 * FIFO X'.
250 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
251 *
252 * DSP3 is connected to FIFO2 unless the transposer is
253 * enabled. In this case, FIFO 2 is directly accessed by the
254 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
255 * route.
256 */
257 if (vc4_crtc->feeds_txp)
258 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
259 else
260 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
261
262 dispctrl = HVS_READ(SCALER_DISPCTRL) &
263 ~SCALER_DISPCTRL_DSP3_MUX_MASK;
264 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
265 }
266 }
267
vc5_hvs_pv_muxing_commit(struct vc4_dev * vc4,struct drm_atomic_state * state)268 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
269 struct drm_atomic_state *state)
270 {
271 struct drm_crtc_state *crtc_state;
272 struct drm_crtc *crtc;
273 unsigned char mux;
274 unsigned int i;
275 u32 reg;
276
277 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
278 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
279 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
280
281 if (!vc4_state->update_muxing)
282 continue;
283
284 switch (vc4_crtc->data->hvs_output) {
285 case 2:
286 mux = (vc4_state->assigned_channel == 2) ? 0 : 1;
287 reg = HVS_READ(SCALER_DISPECTRL);
288 HVS_WRITE(SCALER_DISPECTRL,
289 (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
290 VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
291 break;
292
293 case 3:
294 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
295 mux = 3;
296 else
297 mux = vc4_state->assigned_channel;
298
299 reg = HVS_READ(SCALER_DISPCTRL);
300 HVS_WRITE(SCALER_DISPCTRL,
301 (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
302 VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
303 break;
304
305 case 4:
306 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
307 mux = 3;
308 else
309 mux = vc4_state->assigned_channel;
310
311 reg = HVS_READ(SCALER_DISPEOLN);
312 HVS_WRITE(SCALER_DISPEOLN,
313 (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
314 VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
315
316 break;
317
318 case 5:
319 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
320 mux = 3;
321 else
322 mux = vc4_state->assigned_channel;
323
324 reg = HVS_READ(SCALER_DISPDITHER);
325 HVS_WRITE(SCALER_DISPDITHER,
326 (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
327 VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
328 break;
329
330 default:
331 break;
332 }
333 }
334 }
335
vc4_atomic_commit_tail(struct drm_atomic_state * state)336 static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
337 {
338 struct drm_device *dev = state->dev;
339 struct vc4_dev *vc4 = to_vc4_dev(dev);
340 struct vc4_hvs *hvs = vc4->hvs;
341 struct drm_crtc_state *new_crtc_state;
342 struct drm_crtc *crtc;
343 struct vc4_hvs_state *old_hvs_state;
344 unsigned int channel;
345 int i;
346
347 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
348 struct vc4_crtc_state *vc4_crtc_state;
349
350 if (!new_crtc_state->commit)
351 continue;
352
353 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
354 vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel);
355 }
356
357 old_hvs_state = vc4_hvs_get_old_global_state(state);
358 if (IS_ERR(old_hvs_state))
359 return;
360
361 for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) {
362 struct drm_crtc_commit *commit;
363 int ret;
364
365 if (!old_hvs_state->fifo_state[channel].in_use)
366 continue;
367
368 commit = old_hvs_state->fifo_state[channel].pending_commit;
369 if (!commit)
370 continue;
371
372 ret = drm_crtc_commit_wait(commit);
373 if (ret)
374 drm_err(dev, "Timed out waiting for commit\n");
375
376 drm_crtc_commit_put(commit);
377 old_hvs_state->fifo_state[channel].pending_commit = NULL;
378 }
379
380 if (vc4->hvs->hvs5)
381 clk_set_min_rate(hvs->core_clk, 500000000);
382
383 drm_atomic_helper_commit_modeset_disables(dev, state);
384
385 vc4_ctm_commit(vc4, state);
386
387 if (vc4->hvs->hvs5)
388 vc5_hvs_pv_muxing_commit(vc4, state);
389 else
390 vc4_hvs_pv_muxing_commit(vc4, state);
391
392 drm_atomic_helper_commit_planes(dev, state, 0);
393
394 drm_atomic_helper_commit_modeset_enables(dev, state);
395
396 drm_atomic_helper_fake_vblank(state);
397
398 drm_atomic_helper_commit_hw_done(state);
399
400 drm_atomic_helper_wait_for_flip_done(dev, state);
401
402 drm_atomic_helper_cleanup_planes(dev, state);
403
404 if (vc4->hvs->hvs5)
405 clk_set_min_rate(hvs->core_clk, 0);
406 }
407
vc4_atomic_commit_setup(struct drm_atomic_state * state)408 static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
409 {
410 struct drm_crtc_state *crtc_state;
411 struct vc4_hvs_state *hvs_state;
412 struct drm_crtc *crtc;
413 unsigned int i;
414
415 hvs_state = vc4_hvs_get_new_global_state(state);
416 if (WARN_ON(IS_ERR(hvs_state)))
417 return PTR_ERR(hvs_state);
418
419 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
420 struct vc4_crtc_state *vc4_crtc_state =
421 to_vc4_crtc_state(crtc_state);
422 unsigned int channel =
423 vc4_crtc_state->assigned_channel;
424
425 if (channel == VC4_HVS_CHANNEL_DISABLED)
426 continue;
427
428 if (!hvs_state->fifo_state[channel].in_use)
429 continue;
430
431 hvs_state->fifo_state[channel].pending_commit =
432 drm_crtc_commit_get(crtc_state->commit);
433 }
434
435 return 0;
436 }
437
vc4_fb_create(struct drm_device * dev,struct drm_file * file_priv,const struct drm_mode_fb_cmd2 * mode_cmd)438 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
439 struct drm_file *file_priv,
440 const struct drm_mode_fb_cmd2 *mode_cmd)
441 {
442 struct drm_mode_fb_cmd2 mode_cmd_local;
443
444 /* If the user didn't specify a modifier, use the
445 * vc4_set_tiling_ioctl() state for the BO.
446 */
447 if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
448 struct drm_gem_object *gem_obj;
449 struct vc4_bo *bo;
450
451 gem_obj = drm_gem_object_lookup(file_priv,
452 mode_cmd->handles[0]);
453 if (!gem_obj) {
454 DRM_DEBUG("Failed to look up GEM BO %d\n",
455 mode_cmd->handles[0]);
456 return ERR_PTR(-ENOENT);
457 }
458 bo = to_vc4_bo(gem_obj);
459
460 mode_cmd_local = *mode_cmd;
461
462 if (bo->t_format) {
463 mode_cmd_local.modifier[0] =
464 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
465 } else {
466 mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
467 }
468
469 drm_gem_object_put(gem_obj);
470
471 mode_cmd = &mode_cmd_local;
472 }
473
474 return drm_gem_fb_create(dev, file_priv, mode_cmd);
475 }
476
477 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
478 * at a time and the HW only supports S0.9 scalars. To account for the latter,
479 * we don't allow userland to set a CTM that we have no hope of approximating.
480 */
481 static int
vc4_ctm_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)482 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
483 {
484 struct vc4_dev *vc4 = to_vc4_dev(dev);
485 struct vc4_ctm_state *ctm_state = NULL;
486 struct drm_crtc *crtc;
487 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
488 struct drm_color_ctm *ctm;
489 int i;
490
491 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
492 /* CTM is being disabled. */
493 if (!new_crtc_state->ctm && old_crtc_state->ctm) {
494 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
495 if (IS_ERR(ctm_state))
496 return PTR_ERR(ctm_state);
497 ctm_state->fifo = 0;
498 }
499 }
500
501 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
502 if (new_crtc_state->ctm == old_crtc_state->ctm)
503 continue;
504
505 if (!ctm_state) {
506 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
507 if (IS_ERR(ctm_state))
508 return PTR_ERR(ctm_state);
509 }
510
511 /* CTM is being enabled or the matrix changed. */
512 if (new_crtc_state->ctm) {
513 struct vc4_crtc_state *vc4_crtc_state =
514 to_vc4_crtc_state(new_crtc_state);
515
516 /* fifo is 1-based since 0 disables CTM. */
517 int fifo = vc4_crtc_state->assigned_channel + 1;
518
519 /* Check userland isn't trying to turn on CTM for more
520 * than one CRTC at a time.
521 */
522 if (ctm_state->fifo && ctm_state->fifo != fifo) {
523 DRM_DEBUG_DRIVER("Too many CTM configured\n");
524 return -EINVAL;
525 }
526
527 /* Check we can approximate the specified CTM.
528 * We disallow scalars |c| > 1.0 since the HW has
529 * no integer bits.
530 */
531 ctm = new_crtc_state->ctm->data;
532 for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
533 u64 val = ctm->matrix[i];
534
535 val &= ~BIT_ULL(63);
536 if (val > BIT_ULL(32))
537 return -EINVAL;
538 }
539
540 ctm_state->fifo = fifo;
541 ctm_state->ctm = ctm;
542 }
543 }
544
545 return 0;
546 }
547
vc4_load_tracker_atomic_check(struct drm_atomic_state * state)548 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
549 {
550 struct drm_plane_state *old_plane_state, *new_plane_state;
551 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
552 struct vc4_load_tracker_state *load_state;
553 struct drm_private_state *priv_state;
554 struct drm_plane *plane;
555 int i;
556
557 if (!vc4->load_tracker_available)
558 return 0;
559
560 priv_state = drm_atomic_get_private_obj_state(state,
561 &vc4->load_tracker);
562 if (IS_ERR(priv_state))
563 return PTR_ERR(priv_state);
564
565 load_state = to_vc4_load_tracker_state(priv_state);
566 for_each_oldnew_plane_in_state(state, plane, old_plane_state,
567 new_plane_state, i) {
568 struct vc4_plane_state *vc4_plane_state;
569
570 if (old_plane_state->fb && old_plane_state->crtc) {
571 vc4_plane_state = to_vc4_plane_state(old_plane_state);
572 load_state->membus_load -= vc4_plane_state->membus_load;
573 load_state->hvs_load -= vc4_plane_state->hvs_load;
574 }
575
576 if (new_plane_state->fb && new_plane_state->crtc) {
577 vc4_plane_state = to_vc4_plane_state(new_plane_state);
578 load_state->membus_load += vc4_plane_state->membus_load;
579 load_state->hvs_load += vc4_plane_state->hvs_load;
580 }
581 }
582
583 /* Don't check the load when the tracker is disabled. */
584 if (!vc4->load_tracker_enabled)
585 return 0;
586
587 /* The absolute limit is 2Gbyte/sec, but let's take a margin to let
588 * the system work when other blocks are accessing the memory.
589 */
590 if (load_state->membus_load > SZ_1G + SZ_512M)
591 return -ENOSPC;
592
593 /* HVS clock is supposed to run @ 250Mhz, let's take a margin and
594 * consider the maximum number of cycles is 240M.
595 */
596 if (load_state->hvs_load > 240000000ULL)
597 return -ENOSPC;
598
599 return 0;
600 }
601
602 static struct drm_private_state *
vc4_load_tracker_duplicate_state(struct drm_private_obj * obj)603 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
604 {
605 struct vc4_load_tracker_state *state;
606
607 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
608 if (!state)
609 return NULL;
610
611 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
612
613 return &state->base;
614 }
615
vc4_load_tracker_destroy_state(struct drm_private_obj * obj,struct drm_private_state * state)616 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
617 struct drm_private_state *state)
618 {
619 struct vc4_load_tracker_state *load_state;
620
621 load_state = to_vc4_load_tracker_state(state);
622 kfree(load_state);
623 }
624
625 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
626 .atomic_duplicate_state = vc4_load_tracker_duplicate_state,
627 .atomic_destroy_state = vc4_load_tracker_destroy_state,
628 };
629
vc4_load_tracker_obj_fini(struct drm_device * dev,void * unused)630 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
631 {
632 struct vc4_dev *vc4 = to_vc4_dev(dev);
633
634 if (!vc4->load_tracker_available)
635 return;
636
637 drm_atomic_private_obj_fini(&vc4->load_tracker);
638 }
639
vc4_load_tracker_obj_init(struct vc4_dev * vc4)640 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
641 {
642 struct vc4_load_tracker_state *load_state;
643
644 if (!vc4->load_tracker_available)
645 return 0;
646
647 load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
648 if (!load_state)
649 return -ENOMEM;
650
651 drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
652 &load_state->base,
653 &vc4_load_tracker_state_funcs);
654
655 return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
656 }
657
658 static struct drm_private_state *
vc4_hvs_channels_duplicate_state(struct drm_private_obj * obj)659 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
660 {
661 struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
662 struct vc4_hvs_state *state;
663 unsigned int i;
664
665 state = kzalloc(sizeof(*state), GFP_KERNEL);
666 if (!state)
667 return NULL;
668
669 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
670
671
672 for (i = 0; i < HVS_NUM_CHANNELS; i++) {
673 state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
674 }
675
676 return &state->base;
677 }
678
vc4_hvs_channels_destroy_state(struct drm_private_obj * obj,struct drm_private_state * state)679 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
680 struct drm_private_state *state)
681 {
682 struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
683 unsigned int i;
684
685 for (i = 0; i < HVS_NUM_CHANNELS; i++) {
686 if (!hvs_state->fifo_state[i].pending_commit)
687 continue;
688
689 drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
690 }
691
692 kfree(hvs_state);
693 }
694
695 static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
696 .atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
697 .atomic_destroy_state = vc4_hvs_channels_destroy_state,
698 };
699
vc4_hvs_channels_obj_fini(struct drm_device * dev,void * unused)700 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
701 {
702 struct vc4_dev *vc4 = to_vc4_dev(dev);
703
704 drm_atomic_private_obj_fini(&vc4->hvs_channels);
705 }
706
vc4_hvs_channels_obj_init(struct vc4_dev * vc4)707 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
708 {
709 struct vc4_hvs_state *state;
710
711 state = kzalloc(sizeof(*state), GFP_KERNEL);
712 if (!state)
713 return -ENOMEM;
714
715 drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
716 &state->base,
717 &vc4_hvs_state_funcs);
718
719 return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
720 }
721
722 /*
723 * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
724 * the TXP (and therefore all the CRTCs found on that platform).
725 *
726 * The naive (and our initial) implementation would just iterate over
727 * all the active CRTCs, try to find a suitable FIFO, and then remove it
728 * from the pool of available FIFOs. However, there are a few corner
729 * cases that need to be considered:
730 *
731 * - When running in a dual-display setup (so with two CRTCs involved),
732 * we can update the state of a single CRTC (for example by changing
733 * its mode using xrandr under X11) without affecting the other. In
734 * this case, the other CRTC wouldn't be in the state at all, so we
735 * need to consider all the running CRTCs in the DRM device to assign
736 * a FIFO, not just the one in the state.
737 *
738 * - To fix the above, we can't use drm_atomic_get_crtc_state on all
739 * enabled CRTCs to pull their CRTC state into the global state, since
740 * a page flip would start considering their vblank to complete. Since
741 * we don't have a guarantee that they are actually active, that
742 * vblank might never happen, and shouldn't even be considered if we
743 * want to do a page flip on a single CRTC. That can be tested by
744 * doing a modetest -v first on HDMI1 and then on HDMI0.
745 *
746 * - Since we need the pixelvalve to be disabled and enabled back when
747 * the FIFO is changed, we should keep the FIFO assigned for as long
748 * as the CRTC is enabled, only considering it free again once that
749 * CRTC has been disabled. This can be tested by booting X11 on a
750 * single display, and changing the resolution down and then back up.
751 */
vc4_pv_muxing_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)752 static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
753 struct drm_atomic_state *state)
754 {
755 struct vc4_hvs_state *hvs_new_state;
756 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
757 struct drm_crtc *crtc;
758 unsigned int unassigned_channels = 0;
759 unsigned int i;
760
761 hvs_new_state = vc4_hvs_get_global_state(state);
762 if (IS_ERR(hvs_new_state))
763 return PTR_ERR(hvs_new_state);
764
765 for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
766 if (!hvs_new_state->fifo_state[i].in_use)
767 unassigned_channels |= BIT(i);
768
769 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
770 struct vc4_crtc_state *old_vc4_crtc_state =
771 to_vc4_crtc_state(old_crtc_state);
772 struct vc4_crtc_state *new_vc4_crtc_state =
773 to_vc4_crtc_state(new_crtc_state);
774 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
775 unsigned int matching_channels;
776 unsigned int channel;
777
778 /* Nothing to do here, let's skip it */
779 if (old_crtc_state->enable == new_crtc_state->enable)
780 continue;
781
782 /* Muxing will need to be modified, mark it as such */
783 new_vc4_crtc_state->update_muxing = true;
784
785 /* If we're disabling our CRTC, we put back our channel */
786 if (!new_crtc_state->enable) {
787 channel = old_vc4_crtc_state->assigned_channel;
788 hvs_new_state->fifo_state[channel].in_use = false;
789 new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
790 continue;
791 }
792
793 /*
794 * The problem we have to solve here is that we have
795 * up to 7 encoders, connected to up to 6 CRTCs.
796 *
797 * Those CRTCs, depending on the instance, can be
798 * routed to 1, 2 or 3 HVS FIFOs, and we need to set
799 * the change the muxing between FIFOs and outputs in
800 * the HVS accordingly.
801 *
802 * It would be pretty hard to come up with an
803 * algorithm that would generically solve
804 * this. However, the current routing trees we support
805 * allow us to simplify a bit the problem.
806 *
807 * Indeed, with the current supported layouts, if we
808 * try to assign in the ascending crtc index order the
809 * FIFOs, we can't fall into the situation where an
810 * earlier CRTC that had multiple routes is assigned
811 * one that was the only option for a later CRTC.
812 *
813 * If the layout changes and doesn't give us that in
814 * the future, we will need to have something smarter,
815 * but it works so far.
816 */
817 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
818 if (!matching_channels)
819 return -EINVAL;
820
821 channel = ffs(matching_channels) - 1;
822 new_vc4_crtc_state->assigned_channel = channel;
823 unassigned_channels &= ~BIT(channel);
824 hvs_new_state->fifo_state[channel].in_use = true;
825 }
826
827 return 0;
828 }
829
830 static int
vc4_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)831 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
832 {
833 int ret;
834
835 ret = vc4_pv_muxing_atomic_check(dev, state);
836 if (ret)
837 return ret;
838
839 ret = vc4_ctm_atomic_check(dev, state);
840 if (ret < 0)
841 return ret;
842
843 ret = drm_atomic_helper_check(dev, state);
844 if (ret)
845 return ret;
846
847 return vc4_load_tracker_atomic_check(state);
848 }
849
850 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
851 .atomic_commit_setup = vc4_atomic_commit_setup,
852 .atomic_commit_tail = vc4_atomic_commit_tail,
853 };
854
855 static const struct drm_mode_config_funcs vc4_mode_funcs = {
856 .atomic_check = vc4_atomic_check,
857 .atomic_commit = drm_atomic_helper_commit,
858 .fb_create = vc4_fb_create,
859 };
860
vc4_kms_load(struct drm_device * dev)861 int vc4_kms_load(struct drm_device *dev)
862 {
863 struct vc4_dev *vc4 = to_vc4_dev(dev);
864 bool is_vc5 = of_device_is_compatible(dev->dev->of_node,
865 "brcm,bcm2711-vc5");
866 int ret;
867
868 if (!is_vc5) {
869 vc4->load_tracker_available = true;
870
871 /* Start with the load tracker enabled. Can be
872 * disabled through the debugfs load_tracker file.
873 */
874 vc4->load_tracker_enabled = true;
875 }
876
877 /* Set support for vblank irq fast disable, before drm_vblank_init() */
878 dev->vblank_disable_immediate = true;
879
880 ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
881 if (ret < 0) {
882 dev_err(dev->dev, "failed to initialize vblank\n");
883 return ret;
884 }
885
886 if (is_vc5) {
887 dev->mode_config.max_width = 7680;
888 dev->mode_config.max_height = 7680;
889 } else {
890 dev->mode_config.max_width = 2048;
891 dev->mode_config.max_height = 2048;
892 }
893
894 dev->mode_config.funcs = &vc4_mode_funcs;
895 dev->mode_config.helper_private = &vc4_mode_config_helpers;
896 dev->mode_config.preferred_depth = 24;
897 dev->mode_config.async_page_flip = true;
898
899 ret = vc4_ctm_obj_init(vc4);
900 if (ret)
901 return ret;
902
903 ret = vc4_load_tracker_obj_init(vc4);
904 if (ret)
905 return ret;
906
907 ret = vc4_hvs_channels_obj_init(vc4);
908 if (ret)
909 return ret;
910
911 drm_mode_config_reset(dev);
912
913 drm_kms_helper_poll_init(dev);
914
915 return 0;
916 }
917