• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31 
32 static const struct ttm_place vram_placement_flags = {
33 	.fpfn = 0,
34 	.lpfn = 0,
35 	.mem_type = TTM_PL_VRAM,
36 	.flags = 0
37 };
38 
39 static const struct ttm_place sys_placement_flags = {
40 	.fpfn = 0,
41 	.lpfn = 0,
42 	.mem_type = TTM_PL_SYSTEM,
43 	.flags = 0
44 };
45 
46 static const struct ttm_place gmr_placement_flags = {
47 	.fpfn = 0,
48 	.lpfn = 0,
49 	.mem_type = VMW_PL_GMR,
50 	.flags = 0
51 };
52 
53 static const struct ttm_place mob_placement_flags = {
54 	.fpfn = 0,
55 	.lpfn = 0,
56 	.mem_type = VMW_PL_MOB,
57 	.flags = 0
58 };
59 
60 struct ttm_placement vmw_vram_placement = {
61 	.num_placement = 1,
62 	.placement = &vram_placement_flags,
63 	.num_busy_placement = 1,
64 	.busy_placement = &vram_placement_flags
65 };
66 
67 static const struct ttm_place vram_gmr_placement_flags[] = {
68 	{
69 		.fpfn = 0,
70 		.lpfn = 0,
71 		.mem_type = TTM_PL_VRAM,
72 		.flags = 0
73 	}, {
74 		.fpfn = 0,
75 		.lpfn = 0,
76 		.mem_type = VMW_PL_GMR,
77 		.flags = 0
78 	}
79 };
80 
81 static const struct ttm_place gmr_vram_placement_flags[] = {
82 	{
83 		.fpfn = 0,
84 		.lpfn = 0,
85 		.mem_type = VMW_PL_GMR,
86 		.flags = 0
87 	}, {
88 		.fpfn = 0,
89 		.lpfn = 0,
90 		.mem_type = TTM_PL_VRAM,
91 		.flags = 0
92 	}
93 };
94 
95 static const struct ttm_place vmw_sys_placement_flags = {
96 	.fpfn = 0,
97 	.lpfn = 0,
98 	.mem_type = VMW_PL_SYSTEM,
99 	.flags = 0
100 };
101 
102 struct ttm_placement vmw_vram_gmr_placement = {
103 	.num_placement = 2,
104 	.placement = vram_gmr_placement_flags,
105 	.num_busy_placement = 1,
106 	.busy_placement = &gmr_placement_flags
107 };
108 
109 struct ttm_placement vmw_vram_sys_placement = {
110 	.num_placement = 1,
111 	.placement = &vram_placement_flags,
112 	.num_busy_placement = 1,
113 	.busy_placement = &sys_placement_flags
114 };
115 
116 struct ttm_placement vmw_sys_placement = {
117 	.num_placement = 1,
118 	.placement = &sys_placement_flags,
119 	.num_busy_placement = 1,
120 	.busy_placement = &sys_placement_flags
121 };
122 
123 struct ttm_placement vmw_pt_sys_placement = {
124 	.num_placement = 1,
125 	.placement = &vmw_sys_placement_flags,
126 	.num_busy_placement = 1,
127 	.busy_placement = &vmw_sys_placement_flags
128 };
129 
130 static const struct ttm_place nonfixed_placement_flags[] = {
131 	{
132 		.fpfn = 0,
133 		.lpfn = 0,
134 		.mem_type = TTM_PL_SYSTEM,
135 		.flags = 0
136 	}, {
137 		.fpfn = 0,
138 		.lpfn = 0,
139 		.mem_type = VMW_PL_GMR,
140 		.flags = 0
141 	}, {
142 		.fpfn = 0,
143 		.lpfn = 0,
144 		.mem_type = VMW_PL_MOB,
145 		.flags = 0
146 	}
147 };
148 
149 struct ttm_placement vmw_srf_placement = {
150 	.num_placement = 1,
151 	.num_busy_placement = 2,
152 	.placement = &gmr_placement_flags,
153 	.busy_placement = gmr_vram_placement_flags
154 };
155 
156 struct ttm_placement vmw_mob_placement = {
157 	.num_placement = 1,
158 	.num_busy_placement = 1,
159 	.placement = &mob_placement_flags,
160 	.busy_placement = &mob_placement_flags
161 };
162 
163 struct ttm_placement vmw_nonfixed_placement = {
164 	.num_placement = 3,
165 	.placement = nonfixed_placement_flags,
166 	.num_busy_placement = 1,
167 	.busy_placement = &sys_placement_flags
168 };
169 
170 struct vmw_ttm_tt {
171 	struct ttm_tt dma_ttm;
172 	struct vmw_private *dev_priv;
173 	int gmr_id;
174 	struct vmw_mob *mob;
175 	int mem_type;
176 	struct sg_table sgt;
177 	struct vmw_sg_table vsgt;
178 	uint64_t sg_alloc_size;
179 	bool mapped;
180 	bool bound;
181 };
182 
183 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
184 
185 /**
186  * __vmw_piter_non_sg_next: Helper functions to advance
187  * a struct vmw_piter iterator.
188  *
189  * @viter: Pointer to the iterator.
190  *
191  * These functions return false if past the end of the list,
192  * true otherwise. Functions are selected depending on the current
193  * DMA mapping mode.
194  */
__vmw_piter_non_sg_next(struct vmw_piter * viter)195 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
196 {
197 	return ++(viter->i) < viter->num_pages;
198 }
199 
__vmw_piter_sg_next(struct vmw_piter * viter)200 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
201 {
202 	bool ret = __vmw_piter_non_sg_next(viter);
203 
204 	return __sg_page_iter_dma_next(&viter->iter) && ret;
205 }
206 
207 
__vmw_piter_dma_addr(struct vmw_piter * viter)208 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
209 {
210 	return viter->addrs[viter->i];
211 }
212 
__vmw_piter_sg_addr(struct vmw_piter * viter)213 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
214 {
215 	return sg_page_iter_dma_address(&viter->iter);
216 }
217 
218 
219 /**
220  * vmw_piter_start - Initialize a struct vmw_piter.
221  *
222  * @viter: Pointer to the iterator to initialize
223  * @vsgt: Pointer to a struct vmw_sg_table to initialize from
224  * @p_offset: Pointer offset used to update current array position
225  *
226  * Note that we're following the convention of __sg_page_iter_start, so that
227  * the iterator doesn't point to a valid page after initialization; it has
228  * to be advanced one step first.
229  */
vmw_piter_start(struct vmw_piter * viter,const struct vmw_sg_table * vsgt,unsigned long p_offset)230 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
231 		     unsigned long p_offset)
232 {
233 	viter->i = p_offset - 1;
234 	viter->num_pages = vsgt->num_pages;
235 	viter->pages = vsgt->pages;
236 	switch (vsgt->mode) {
237 	case vmw_dma_alloc_coherent:
238 		viter->next = &__vmw_piter_non_sg_next;
239 		viter->dma_address = &__vmw_piter_dma_addr;
240 		viter->addrs = vsgt->addrs;
241 		break;
242 	case vmw_dma_map_populate:
243 	case vmw_dma_map_bind:
244 		viter->next = &__vmw_piter_sg_next;
245 		viter->dma_address = &__vmw_piter_sg_addr;
246 		__sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
247 				     vsgt->sgt->orig_nents, p_offset);
248 		break;
249 	default:
250 		BUG();
251 	}
252 }
253 
254 /**
255  * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
256  * TTM pages
257  *
258  * @vmw_tt: Pointer to a struct vmw_ttm_backend
259  *
260  * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
261  */
vmw_ttm_unmap_from_dma(struct vmw_ttm_tt * vmw_tt)262 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
263 {
264 	struct device *dev = vmw_tt->dev_priv->drm.dev;
265 
266 	dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
267 	vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
268 }
269 
270 /**
271  * vmw_ttm_map_for_dma - map TTM pages to get device addresses
272  *
273  * @vmw_tt: Pointer to a struct vmw_ttm_backend
274  *
275  * This function is used to get device addresses from the kernel DMA layer.
276  * However, it's violating the DMA API in that when this operation has been
277  * performed, it's illegal for the CPU to write to the pages without first
278  * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
279  * therefore only legal to call this function if we know that the function
280  * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
281  * a CPU write buffer flush.
282  */
vmw_ttm_map_for_dma(struct vmw_ttm_tt * vmw_tt)283 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
284 {
285 	struct device *dev = vmw_tt->dev_priv->drm.dev;
286 
287 	return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
288 }
289 
290 /**
291  * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
292  *
293  * @vmw_tt: Pointer to a struct vmw_ttm_tt
294  *
295  * Select the correct function for and make sure the TTM pages are
296  * visible to the device. Allocate storage for the device mappings.
297  * If a mapping has already been performed, indicated by the storage
298  * pointer being non NULL, the function returns success.
299  */
vmw_ttm_map_dma(struct vmw_ttm_tt * vmw_tt)300 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
301 {
302 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
303 	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
304 	struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
305 	struct ttm_operation_ctx ctx = {
306 		.interruptible = true,
307 		.no_wait_gpu = false
308 	};
309 	struct vmw_piter iter;
310 	dma_addr_t old;
311 	int ret = 0;
312 	static size_t sgl_size;
313 	static size_t sgt_size;
314 
315 	if (vmw_tt->mapped)
316 		return 0;
317 
318 	vsgt->mode = dev_priv->map_mode;
319 	vsgt->pages = vmw_tt->dma_ttm.pages;
320 	vsgt->num_pages = vmw_tt->dma_ttm.num_pages;
321 	vsgt->addrs = vmw_tt->dma_ttm.dma_address;
322 	vsgt->sgt = &vmw_tt->sgt;
323 
324 	switch (dev_priv->map_mode) {
325 	case vmw_dma_map_bind:
326 	case vmw_dma_map_populate:
327 		if (unlikely(!sgl_size)) {
328 			sgl_size = ttm_round_pot(sizeof(struct scatterlist));
329 			sgt_size = ttm_round_pot(sizeof(struct sg_table));
330 		}
331 		vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
332 		ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
333 		if (unlikely(ret != 0))
334 			return ret;
335 
336 		ret = sg_alloc_table_from_pages_segment(
337 			&vmw_tt->sgt, vsgt->pages, vsgt->num_pages, 0,
338 			(unsigned long)vsgt->num_pages << PAGE_SHIFT,
339 			dma_get_max_seg_size(dev_priv->drm.dev), GFP_KERNEL);
340 		if (ret)
341 			goto out_sg_alloc_fail;
342 
343 		if (vsgt->num_pages > vmw_tt->sgt.orig_nents) {
344 			uint64_t over_alloc =
345 				sgl_size * (vsgt->num_pages -
346 					    vmw_tt->sgt.orig_nents);
347 
348 			ttm_mem_global_free(glob, over_alloc);
349 			vmw_tt->sg_alloc_size -= over_alloc;
350 		}
351 
352 		ret = vmw_ttm_map_for_dma(vmw_tt);
353 		if (unlikely(ret != 0))
354 			goto out_map_fail;
355 
356 		break;
357 	default:
358 		break;
359 	}
360 
361 	old = ~((dma_addr_t) 0);
362 	vmw_tt->vsgt.num_regions = 0;
363 	for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
364 		dma_addr_t cur = vmw_piter_dma_addr(&iter);
365 
366 		if (cur != old + PAGE_SIZE)
367 			vmw_tt->vsgt.num_regions++;
368 		old = cur;
369 	}
370 
371 	vmw_tt->mapped = true;
372 	return 0;
373 
374 out_map_fail:
375 	sg_free_table(vmw_tt->vsgt.sgt);
376 	vmw_tt->vsgt.sgt = NULL;
377 out_sg_alloc_fail:
378 	ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
379 	return ret;
380 }
381 
382 /**
383  * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
384  *
385  * @vmw_tt: Pointer to a struct vmw_ttm_tt
386  *
387  * Tear down any previously set up device DMA mappings and free
388  * any storage space allocated for them. If there are no mappings set up,
389  * this function is a NOP.
390  */
vmw_ttm_unmap_dma(struct vmw_ttm_tt * vmw_tt)391 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
392 {
393 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
394 
395 	if (!vmw_tt->vsgt.sgt)
396 		return;
397 
398 	switch (dev_priv->map_mode) {
399 	case vmw_dma_map_bind:
400 	case vmw_dma_map_populate:
401 		vmw_ttm_unmap_from_dma(vmw_tt);
402 		sg_free_table(vmw_tt->vsgt.sgt);
403 		vmw_tt->vsgt.sgt = NULL;
404 		ttm_mem_global_free(vmw_mem_glob(dev_priv),
405 				    vmw_tt->sg_alloc_size);
406 		break;
407 	default:
408 		break;
409 	}
410 	vmw_tt->mapped = false;
411 }
412 
413 /**
414  * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
415  * TTM buffer object
416  *
417  * @bo: Pointer to a struct ttm_buffer_object
418  *
419  * Returns a pointer to a struct vmw_sg_table object. The object should
420  * not be freed after use.
421  * Note that for the device addresses to be valid, the buffer object must
422  * either be reserved or pinned.
423  */
vmw_bo_sg_table(struct ttm_buffer_object * bo)424 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
425 {
426 	struct vmw_ttm_tt *vmw_tt =
427 		container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
428 
429 	return &vmw_tt->vsgt;
430 }
431 
432 
vmw_ttm_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)433 static int vmw_ttm_bind(struct ttm_device *bdev,
434 			struct ttm_tt *ttm, struct ttm_resource *bo_mem)
435 {
436 	struct vmw_ttm_tt *vmw_be =
437 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
438 	int ret = 0;
439 
440 	if (!bo_mem)
441 		return -EINVAL;
442 
443 	if (vmw_be->bound)
444 		return 0;
445 
446 	ret = vmw_ttm_map_dma(vmw_be);
447 	if (unlikely(ret != 0))
448 		return ret;
449 
450 	vmw_be->gmr_id = bo_mem->start;
451 	vmw_be->mem_type = bo_mem->mem_type;
452 
453 	switch (bo_mem->mem_type) {
454 	case VMW_PL_GMR:
455 		ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
456 				    ttm->num_pages, vmw_be->gmr_id);
457 		break;
458 	case VMW_PL_MOB:
459 		if (unlikely(vmw_be->mob == NULL)) {
460 			vmw_be->mob =
461 				vmw_mob_create(ttm->num_pages);
462 			if (unlikely(vmw_be->mob == NULL))
463 				return -ENOMEM;
464 		}
465 
466 		ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
467 				    &vmw_be->vsgt, ttm->num_pages,
468 				    vmw_be->gmr_id);
469 		break;
470 	case VMW_PL_SYSTEM:
471 		/* Nothing to be done for a system bind */
472 		break;
473 	default:
474 		BUG();
475 	}
476 	vmw_be->bound = true;
477 	return ret;
478 }
479 
vmw_ttm_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)480 static void vmw_ttm_unbind(struct ttm_device *bdev,
481 			   struct ttm_tt *ttm)
482 {
483 	struct vmw_ttm_tt *vmw_be =
484 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
485 
486 	if (!vmw_be->bound)
487 		return;
488 
489 	switch (vmw_be->mem_type) {
490 	case VMW_PL_GMR:
491 		vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
492 		break;
493 	case VMW_PL_MOB:
494 		vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
495 		break;
496 	case VMW_PL_SYSTEM:
497 		break;
498 	default:
499 		BUG();
500 	}
501 
502 	if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
503 		vmw_ttm_unmap_dma(vmw_be);
504 	vmw_be->bound = false;
505 }
506 
507 
vmw_ttm_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)508 static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
509 {
510 	struct vmw_ttm_tt *vmw_be =
511 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
512 
513 	vmw_ttm_unbind(bdev, ttm);
514 	ttm_tt_destroy_common(bdev, ttm);
515 	vmw_ttm_unmap_dma(vmw_be);
516 	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
517 		ttm_tt_fini(&vmw_be->dma_ttm);
518 	else
519 		ttm_tt_fini(ttm);
520 
521 	if (vmw_be->mob)
522 		vmw_mob_destroy(vmw_be->mob);
523 
524 	kfree(vmw_be);
525 }
526 
527 
vmw_ttm_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)528 static int vmw_ttm_populate(struct ttm_device *bdev,
529 			    struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
530 {
531 	unsigned int i;
532 	int ret;
533 
534 	/* TODO: maybe completely drop this ? */
535 	if (ttm_tt_is_populated(ttm))
536 		return 0;
537 
538 	ret = ttm_pool_alloc(&bdev->pool, ttm, ctx);
539 	if (ret)
540 		return ret;
541 
542 	for (i = 0; i < ttm->num_pages; ++i) {
543 		ret = ttm_mem_global_alloc_page(&ttm_mem_glob, ttm->pages[i],
544 						PAGE_SIZE, ctx);
545 		if (ret)
546 			goto error;
547 	}
548 	return 0;
549 
550 error:
551 	while (i--)
552 		ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i],
553 					 PAGE_SIZE);
554 	ttm_pool_free(&bdev->pool, ttm);
555 	return ret;
556 }
557 
vmw_ttm_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)558 static void vmw_ttm_unpopulate(struct ttm_device *bdev,
559 			       struct ttm_tt *ttm)
560 {
561 	struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
562 						 dma_ttm);
563 	unsigned int i;
564 
565 	if (vmw_tt->mob) {
566 		vmw_mob_destroy(vmw_tt->mob);
567 		vmw_tt->mob = NULL;
568 	}
569 
570 	vmw_ttm_unmap_dma(vmw_tt);
571 
572 	for (i = 0; i < ttm->num_pages; ++i)
573 		ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i],
574 					 PAGE_SIZE);
575 
576 	ttm_pool_free(&bdev->pool, ttm);
577 }
578 
vmw_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)579 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
580 					uint32_t page_flags)
581 {
582 	struct vmw_ttm_tt *vmw_be;
583 	int ret;
584 
585 	vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
586 	if (!vmw_be)
587 		return NULL;
588 
589 	vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
590 	vmw_be->mob = NULL;
591 
592 	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
593 		ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags,
594 				     ttm_cached);
595 	else
596 		ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags,
597 				  ttm_cached);
598 	if (unlikely(ret != 0))
599 		goto out_no_init;
600 
601 	return &vmw_be->dma_ttm;
602 out_no_init:
603 	kfree(vmw_be);
604 	return NULL;
605 }
606 
vmw_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)607 static void vmw_evict_flags(struct ttm_buffer_object *bo,
608 		     struct ttm_placement *placement)
609 {
610 	*placement = vmw_sys_placement;
611 }
612 
vmw_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)613 static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
614 {
615 	struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
616 
617 	switch (mem->mem_type) {
618 	case TTM_PL_SYSTEM:
619 	case VMW_PL_SYSTEM:
620 	case VMW_PL_GMR:
621 	case VMW_PL_MOB:
622 		return 0;
623 	case TTM_PL_VRAM:
624 		mem->bus.offset = (mem->start << PAGE_SHIFT) +
625 			dev_priv->vram_start;
626 		mem->bus.is_iomem = true;
627 		mem->bus.caching = ttm_cached;
628 		break;
629 	default:
630 		return -EINVAL;
631 	}
632 	return 0;
633 }
634 
635 /**
636  * vmw_move_notify - TTM move_notify_callback
637  *
638  * @bo: The TTM buffer object about to move.
639  * @old_mem: The old memory where we move from
640  * @new_mem: The struct ttm_resource indicating to what memory
641  *       region the move is taking place.
642  *
643  * Calls move_notify for all subsystems needing it.
644  * (currently only resources).
645  */
vmw_move_notify(struct ttm_buffer_object * bo,struct ttm_resource * old_mem,struct ttm_resource * new_mem)646 static void vmw_move_notify(struct ttm_buffer_object *bo,
647 			    struct ttm_resource *old_mem,
648 			    struct ttm_resource *new_mem)
649 {
650 	vmw_bo_move_notify(bo, new_mem);
651 	vmw_query_move_notify(bo, old_mem, new_mem);
652 }
653 
654 
655 /**
656  * vmw_swap_notify - TTM move_notify_callback
657  *
658  * @bo: The TTM buffer object about to be swapped out.
659  */
vmw_swap_notify(struct ttm_buffer_object * bo)660 static void vmw_swap_notify(struct ttm_buffer_object *bo)
661 {
662 	vmw_bo_swap_notify(bo);
663 	(void) ttm_bo_wait(bo, false, false);
664 }
665 
vmw_memtype_is_system(uint32_t mem_type)666 static bool vmw_memtype_is_system(uint32_t mem_type)
667 {
668 	return mem_type == TTM_PL_SYSTEM || mem_type == VMW_PL_SYSTEM;
669 }
670 
vmw_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)671 static int vmw_move(struct ttm_buffer_object *bo,
672 		    bool evict,
673 		    struct ttm_operation_ctx *ctx,
674 		    struct ttm_resource *new_mem,
675 		    struct ttm_place *hop)
676 {
677 	struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->resource->mem_type);
678 	struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
679 	int ret;
680 
681 	if (new_man->use_tt && !vmw_memtype_is_system(new_mem->mem_type)) {
682 		ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem);
683 		if (ret)
684 			return ret;
685 	}
686 
687 	vmw_move_notify(bo, bo->resource, new_mem);
688 
689 	if (old_man->use_tt && new_man->use_tt) {
690 		if (vmw_memtype_is_system(bo->resource->mem_type)) {
691 			ttm_bo_move_null(bo, new_mem);
692 			return 0;
693 		}
694 		ret = ttm_bo_wait_ctx(bo, ctx);
695 		if (ret)
696 			goto fail;
697 
698 		vmw_ttm_unbind(bo->bdev, bo->ttm);
699 		ttm_resource_free(bo, &bo->resource);
700 		ttm_bo_assign_mem(bo, new_mem);
701 		return 0;
702 	} else {
703 		ret = ttm_bo_move_memcpy(bo, ctx, new_mem);
704 		if (ret)
705 			goto fail;
706 	}
707 	return 0;
708 fail:
709 	vmw_move_notify(bo, new_mem, bo->resource);
710 	return ret;
711 }
712 
713 struct ttm_device_funcs vmw_bo_driver = {
714 	.ttm_tt_create = &vmw_ttm_tt_create,
715 	.ttm_tt_populate = &vmw_ttm_populate,
716 	.ttm_tt_unpopulate = &vmw_ttm_unpopulate,
717 	.ttm_tt_destroy = &vmw_ttm_destroy,
718 	.eviction_valuable = ttm_bo_eviction_valuable,
719 	.evict_flags = vmw_evict_flags,
720 	.move = vmw_move,
721 	.swap_notify = vmw_swap_notify,
722 	.io_mem_reserve = &vmw_ttm_io_mem_reserve,
723 };
724 
vmw_bo_create_and_populate(struct vmw_private * dev_priv,unsigned long bo_size,struct ttm_buffer_object ** bo_p)725 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
726 			       unsigned long bo_size,
727 			       struct ttm_buffer_object **bo_p)
728 {
729 	struct ttm_operation_ctx ctx = {
730 		.interruptible = false,
731 		.no_wait_gpu = false
732 	};
733 	struct ttm_buffer_object *bo;
734 	int ret;
735 
736 	ret = vmw_bo_create_kernel(dev_priv, bo_size,
737 				   &vmw_pt_sys_placement,
738 				   &bo);
739 	if (unlikely(ret != 0))
740 		return ret;
741 
742 	ret = ttm_bo_reserve(bo, false, true, NULL);
743 	BUG_ON(ret != 0);
744 	ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
745 	if (likely(ret == 0)) {
746 		struct vmw_ttm_tt *vmw_tt =
747 			container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
748 		ret = vmw_ttm_map_dma(vmw_tt);
749 	}
750 
751 	ttm_bo_unreserve(bo);
752 
753 	if (likely(ret == 0))
754 		*bo_p = bo;
755 	return ret;
756 }
757