1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3 *
4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31
32 static const struct ttm_place vram_placement_flags = {
33 .fpfn = 0,
34 .lpfn = 0,
35 .mem_type = TTM_PL_VRAM,
36 .flags = 0
37 };
38
39 static const struct ttm_place sys_placement_flags = {
40 .fpfn = 0,
41 .lpfn = 0,
42 .mem_type = TTM_PL_SYSTEM,
43 .flags = 0
44 };
45
46 static const struct ttm_place gmr_placement_flags = {
47 .fpfn = 0,
48 .lpfn = 0,
49 .mem_type = VMW_PL_GMR,
50 .flags = 0
51 };
52
53 static const struct ttm_place mob_placement_flags = {
54 .fpfn = 0,
55 .lpfn = 0,
56 .mem_type = VMW_PL_MOB,
57 .flags = 0
58 };
59
60 struct ttm_placement vmw_vram_placement = {
61 .num_placement = 1,
62 .placement = &vram_placement_flags,
63 .num_busy_placement = 1,
64 .busy_placement = &vram_placement_flags
65 };
66
67 static const struct ttm_place vram_gmr_placement_flags[] = {
68 {
69 .fpfn = 0,
70 .lpfn = 0,
71 .mem_type = TTM_PL_VRAM,
72 .flags = 0
73 }, {
74 .fpfn = 0,
75 .lpfn = 0,
76 .mem_type = VMW_PL_GMR,
77 .flags = 0
78 }
79 };
80
81 static const struct ttm_place gmr_vram_placement_flags[] = {
82 {
83 .fpfn = 0,
84 .lpfn = 0,
85 .mem_type = VMW_PL_GMR,
86 .flags = 0
87 }, {
88 .fpfn = 0,
89 .lpfn = 0,
90 .mem_type = TTM_PL_VRAM,
91 .flags = 0
92 }
93 };
94
95 static const struct ttm_place vmw_sys_placement_flags = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = VMW_PL_SYSTEM,
99 .flags = 0
100 };
101
102 struct ttm_placement vmw_vram_gmr_placement = {
103 .num_placement = 2,
104 .placement = vram_gmr_placement_flags,
105 .num_busy_placement = 1,
106 .busy_placement = &gmr_placement_flags
107 };
108
109 struct ttm_placement vmw_vram_sys_placement = {
110 .num_placement = 1,
111 .placement = &vram_placement_flags,
112 .num_busy_placement = 1,
113 .busy_placement = &sys_placement_flags
114 };
115
116 struct ttm_placement vmw_sys_placement = {
117 .num_placement = 1,
118 .placement = &sys_placement_flags,
119 .num_busy_placement = 1,
120 .busy_placement = &sys_placement_flags
121 };
122
123 struct ttm_placement vmw_pt_sys_placement = {
124 .num_placement = 1,
125 .placement = &vmw_sys_placement_flags,
126 .num_busy_placement = 1,
127 .busy_placement = &vmw_sys_placement_flags
128 };
129
130 static const struct ttm_place nonfixed_placement_flags[] = {
131 {
132 .fpfn = 0,
133 .lpfn = 0,
134 .mem_type = TTM_PL_SYSTEM,
135 .flags = 0
136 }, {
137 .fpfn = 0,
138 .lpfn = 0,
139 .mem_type = VMW_PL_GMR,
140 .flags = 0
141 }, {
142 .fpfn = 0,
143 .lpfn = 0,
144 .mem_type = VMW_PL_MOB,
145 .flags = 0
146 }
147 };
148
149 struct ttm_placement vmw_srf_placement = {
150 .num_placement = 1,
151 .num_busy_placement = 2,
152 .placement = &gmr_placement_flags,
153 .busy_placement = gmr_vram_placement_flags
154 };
155
156 struct ttm_placement vmw_mob_placement = {
157 .num_placement = 1,
158 .num_busy_placement = 1,
159 .placement = &mob_placement_flags,
160 .busy_placement = &mob_placement_flags
161 };
162
163 struct ttm_placement vmw_nonfixed_placement = {
164 .num_placement = 3,
165 .placement = nonfixed_placement_flags,
166 .num_busy_placement = 1,
167 .busy_placement = &sys_placement_flags
168 };
169
170 struct vmw_ttm_tt {
171 struct ttm_tt dma_ttm;
172 struct vmw_private *dev_priv;
173 int gmr_id;
174 struct vmw_mob *mob;
175 int mem_type;
176 struct sg_table sgt;
177 struct vmw_sg_table vsgt;
178 uint64_t sg_alloc_size;
179 bool mapped;
180 bool bound;
181 };
182
183 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
184
185 /**
186 * __vmw_piter_non_sg_next: Helper functions to advance
187 * a struct vmw_piter iterator.
188 *
189 * @viter: Pointer to the iterator.
190 *
191 * These functions return false if past the end of the list,
192 * true otherwise. Functions are selected depending on the current
193 * DMA mapping mode.
194 */
__vmw_piter_non_sg_next(struct vmw_piter * viter)195 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
196 {
197 return ++(viter->i) < viter->num_pages;
198 }
199
__vmw_piter_sg_next(struct vmw_piter * viter)200 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
201 {
202 bool ret = __vmw_piter_non_sg_next(viter);
203
204 return __sg_page_iter_dma_next(&viter->iter) && ret;
205 }
206
207
__vmw_piter_dma_addr(struct vmw_piter * viter)208 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
209 {
210 return viter->addrs[viter->i];
211 }
212
__vmw_piter_sg_addr(struct vmw_piter * viter)213 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
214 {
215 return sg_page_iter_dma_address(&viter->iter);
216 }
217
218
219 /**
220 * vmw_piter_start - Initialize a struct vmw_piter.
221 *
222 * @viter: Pointer to the iterator to initialize
223 * @vsgt: Pointer to a struct vmw_sg_table to initialize from
224 * @p_offset: Pointer offset used to update current array position
225 *
226 * Note that we're following the convention of __sg_page_iter_start, so that
227 * the iterator doesn't point to a valid page after initialization; it has
228 * to be advanced one step first.
229 */
vmw_piter_start(struct vmw_piter * viter,const struct vmw_sg_table * vsgt,unsigned long p_offset)230 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
231 unsigned long p_offset)
232 {
233 viter->i = p_offset - 1;
234 viter->num_pages = vsgt->num_pages;
235 viter->pages = vsgt->pages;
236 switch (vsgt->mode) {
237 case vmw_dma_alloc_coherent:
238 viter->next = &__vmw_piter_non_sg_next;
239 viter->dma_address = &__vmw_piter_dma_addr;
240 viter->addrs = vsgt->addrs;
241 break;
242 case vmw_dma_map_populate:
243 case vmw_dma_map_bind:
244 viter->next = &__vmw_piter_sg_next;
245 viter->dma_address = &__vmw_piter_sg_addr;
246 __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
247 vsgt->sgt->orig_nents, p_offset);
248 break;
249 default:
250 BUG();
251 }
252 }
253
254 /**
255 * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for
256 * TTM pages
257 *
258 * @vmw_tt: Pointer to a struct vmw_ttm_backend
259 *
260 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
261 */
vmw_ttm_unmap_from_dma(struct vmw_ttm_tt * vmw_tt)262 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
263 {
264 struct device *dev = vmw_tt->dev_priv->drm.dev;
265
266 dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
267 vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
268 }
269
270 /**
271 * vmw_ttm_map_for_dma - map TTM pages to get device addresses
272 *
273 * @vmw_tt: Pointer to a struct vmw_ttm_backend
274 *
275 * This function is used to get device addresses from the kernel DMA layer.
276 * However, it's violating the DMA API in that when this operation has been
277 * performed, it's illegal for the CPU to write to the pages without first
278 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
279 * therefore only legal to call this function if we know that the function
280 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
281 * a CPU write buffer flush.
282 */
vmw_ttm_map_for_dma(struct vmw_ttm_tt * vmw_tt)283 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
284 {
285 struct device *dev = vmw_tt->dev_priv->drm.dev;
286
287 return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
288 }
289
290 /**
291 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
292 *
293 * @vmw_tt: Pointer to a struct vmw_ttm_tt
294 *
295 * Select the correct function for and make sure the TTM pages are
296 * visible to the device. Allocate storage for the device mappings.
297 * If a mapping has already been performed, indicated by the storage
298 * pointer being non NULL, the function returns success.
299 */
vmw_ttm_map_dma(struct vmw_ttm_tt * vmw_tt)300 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
301 {
302 struct vmw_private *dev_priv = vmw_tt->dev_priv;
303 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
304 struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
305 struct ttm_operation_ctx ctx = {
306 .interruptible = true,
307 .no_wait_gpu = false
308 };
309 struct vmw_piter iter;
310 dma_addr_t old;
311 int ret = 0;
312 static size_t sgl_size;
313 static size_t sgt_size;
314
315 if (vmw_tt->mapped)
316 return 0;
317
318 vsgt->mode = dev_priv->map_mode;
319 vsgt->pages = vmw_tt->dma_ttm.pages;
320 vsgt->num_pages = vmw_tt->dma_ttm.num_pages;
321 vsgt->addrs = vmw_tt->dma_ttm.dma_address;
322 vsgt->sgt = &vmw_tt->sgt;
323
324 switch (dev_priv->map_mode) {
325 case vmw_dma_map_bind:
326 case vmw_dma_map_populate:
327 if (unlikely(!sgl_size)) {
328 sgl_size = ttm_round_pot(sizeof(struct scatterlist));
329 sgt_size = ttm_round_pot(sizeof(struct sg_table));
330 }
331 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
332 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
333 if (unlikely(ret != 0))
334 return ret;
335
336 ret = sg_alloc_table_from_pages_segment(
337 &vmw_tt->sgt, vsgt->pages, vsgt->num_pages, 0,
338 (unsigned long)vsgt->num_pages << PAGE_SHIFT,
339 dma_get_max_seg_size(dev_priv->drm.dev), GFP_KERNEL);
340 if (ret)
341 goto out_sg_alloc_fail;
342
343 if (vsgt->num_pages > vmw_tt->sgt.orig_nents) {
344 uint64_t over_alloc =
345 sgl_size * (vsgt->num_pages -
346 vmw_tt->sgt.orig_nents);
347
348 ttm_mem_global_free(glob, over_alloc);
349 vmw_tt->sg_alloc_size -= over_alloc;
350 }
351
352 ret = vmw_ttm_map_for_dma(vmw_tt);
353 if (unlikely(ret != 0))
354 goto out_map_fail;
355
356 break;
357 default:
358 break;
359 }
360
361 old = ~((dma_addr_t) 0);
362 vmw_tt->vsgt.num_regions = 0;
363 for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
364 dma_addr_t cur = vmw_piter_dma_addr(&iter);
365
366 if (cur != old + PAGE_SIZE)
367 vmw_tt->vsgt.num_regions++;
368 old = cur;
369 }
370
371 vmw_tt->mapped = true;
372 return 0;
373
374 out_map_fail:
375 sg_free_table(vmw_tt->vsgt.sgt);
376 vmw_tt->vsgt.sgt = NULL;
377 out_sg_alloc_fail:
378 ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
379 return ret;
380 }
381
382 /**
383 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
384 *
385 * @vmw_tt: Pointer to a struct vmw_ttm_tt
386 *
387 * Tear down any previously set up device DMA mappings and free
388 * any storage space allocated for them. If there are no mappings set up,
389 * this function is a NOP.
390 */
vmw_ttm_unmap_dma(struct vmw_ttm_tt * vmw_tt)391 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
392 {
393 struct vmw_private *dev_priv = vmw_tt->dev_priv;
394
395 if (!vmw_tt->vsgt.sgt)
396 return;
397
398 switch (dev_priv->map_mode) {
399 case vmw_dma_map_bind:
400 case vmw_dma_map_populate:
401 vmw_ttm_unmap_from_dma(vmw_tt);
402 sg_free_table(vmw_tt->vsgt.sgt);
403 vmw_tt->vsgt.sgt = NULL;
404 ttm_mem_global_free(vmw_mem_glob(dev_priv),
405 vmw_tt->sg_alloc_size);
406 break;
407 default:
408 break;
409 }
410 vmw_tt->mapped = false;
411 }
412
413 /**
414 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
415 * TTM buffer object
416 *
417 * @bo: Pointer to a struct ttm_buffer_object
418 *
419 * Returns a pointer to a struct vmw_sg_table object. The object should
420 * not be freed after use.
421 * Note that for the device addresses to be valid, the buffer object must
422 * either be reserved or pinned.
423 */
vmw_bo_sg_table(struct ttm_buffer_object * bo)424 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
425 {
426 struct vmw_ttm_tt *vmw_tt =
427 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
428
429 return &vmw_tt->vsgt;
430 }
431
432
vmw_ttm_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)433 static int vmw_ttm_bind(struct ttm_device *bdev,
434 struct ttm_tt *ttm, struct ttm_resource *bo_mem)
435 {
436 struct vmw_ttm_tt *vmw_be =
437 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
438 int ret = 0;
439
440 if (!bo_mem)
441 return -EINVAL;
442
443 if (vmw_be->bound)
444 return 0;
445
446 ret = vmw_ttm_map_dma(vmw_be);
447 if (unlikely(ret != 0))
448 return ret;
449
450 vmw_be->gmr_id = bo_mem->start;
451 vmw_be->mem_type = bo_mem->mem_type;
452
453 switch (bo_mem->mem_type) {
454 case VMW_PL_GMR:
455 ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
456 ttm->num_pages, vmw_be->gmr_id);
457 break;
458 case VMW_PL_MOB:
459 if (unlikely(vmw_be->mob == NULL)) {
460 vmw_be->mob =
461 vmw_mob_create(ttm->num_pages);
462 if (unlikely(vmw_be->mob == NULL))
463 return -ENOMEM;
464 }
465
466 ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
467 &vmw_be->vsgt, ttm->num_pages,
468 vmw_be->gmr_id);
469 break;
470 case VMW_PL_SYSTEM:
471 /* Nothing to be done for a system bind */
472 break;
473 default:
474 BUG();
475 }
476 vmw_be->bound = true;
477 return ret;
478 }
479
vmw_ttm_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)480 static void vmw_ttm_unbind(struct ttm_device *bdev,
481 struct ttm_tt *ttm)
482 {
483 struct vmw_ttm_tt *vmw_be =
484 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
485
486 if (!vmw_be->bound)
487 return;
488
489 switch (vmw_be->mem_type) {
490 case VMW_PL_GMR:
491 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
492 break;
493 case VMW_PL_MOB:
494 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
495 break;
496 case VMW_PL_SYSTEM:
497 break;
498 default:
499 BUG();
500 }
501
502 if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
503 vmw_ttm_unmap_dma(vmw_be);
504 vmw_be->bound = false;
505 }
506
507
vmw_ttm_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)508 static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
509 {
510 struct vmw_ttm_tt *vmw_be =
511 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
512
513 vmw_ttm_unbind(bdev, ttm);
514 ttm_tt_destroy_common(bdev, ttm);
515 vmw_ttm_unmap_dma(vmw_be);
516 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
517 ttm_tt_fini(&vmw_be->dma_ttm);
518 else
519 ttm_tt_fini(ttm);
520
521 if (vmw_be->mob)
522 vmw_mob_destroy(vmw_be->mob);
523
524 kfree(vmw_be);
525 }
526
527
vmw_ttm_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)528 static int vmw_ttm_populate(struct ttm_device *bdev,
529 struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
530 {
531 unsigned int i;
532 int ret;
533
534 /* TODO: maybe completely drop this ? */
535 if (ttm_tt_is_populated(ttm))
536 return 0;
537
538 ret = ttm_pool_alloc(&bdev->pool, ttm, ctx);
539 if (ret)
540 return ret;
541
542 for (i = 0; i < ttm->num_pages; ++i) {
543 ret = ttm_mem_global_alloc_page(&ttm_mem_glob, ttm->pages[i],
544 PAGE_SIZE, ctx);
545 if (ret)
546 goto error;
547 }
548 return 0;
549
550 error:
551 while (i--)
552 ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i],
553 PAGE_SIZE);
554 ttm_pool_free(&bdev->pool, ttm);
555 return ret;
556 }
557
vmw_ttm_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)558 static void vmw_ttm_unpopulate(struct ttm_device *bdev,
559 struct ttm_tt *ttm)
560 {
561 struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
562 dma_ttm);
563 unsigned int i;
564
565 if (vmw_tt->mob) {
566 vmw_mob_destroy(vmw_tt->mob);
567 vmw_tt->mob = NULL;
568 }
569
570 vmw_ttm_unmap_dma(vmw_tt);
571
572 for (i = 0; i < ttm->num_pages; ++i)
573 ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i],
574 PAGE_SIZE);
575
576 ttm_pool_free(&bdev->pool, ttm);
577 }
578
vmw_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)579 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
580 uint32_t page_flags)
581 {
582 struct vmw_ttm_tt *vmw_be;
583 int ret;
584
585 vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
586 if (!vmw_be)
587 return NULL;
588
589 vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
590 vmw_be->mob = NULL;
591
592 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
593 ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags,
594 ttm_cached);
595 else
596 ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags,
597 ttm_cached);
598 if (unlikely(ret != 0))
599 goto out_no_init;
600
601 return &vmw_be->dma_ttm;
602 out_no_init:
603 kfree(vmw_be);
604 return NULL;
605 }
606
vmw_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)607 static void vmw_evict_flags(struct ttm_buffer_object *bo,
608 struct ttm_placement *placement)
609 {
610 *placement = vmw_sys_placement;
611 }
612
vmw_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)613 static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
614 {
615 struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
616
617 switch (mem->mem_type) {
618 case TTM_PL_SYSTEM:
619 case VMW_PL_SYSTEM:
620 case VMW_PL_GMR:
621 case VMW_PL_MOB:
622 return 0;
623 case TTM_PL_VRAM:
624 mem->bus.offset = (mem->start << PAGE_SHIFT) +
625 dev_priv->vram_start;
626 mem->bus.is_iomem = true;
627 mem->bus.caching = ttm_cached;
628 break;
629 default:
630 return -EINVAL;
631 }
632 return 0;
633 }
634
635 /**
636 * vmw_move_notify - TTM move_notify_callback
637 *
638 * @bo: The TTM buffer object about to move.
639 * @old_mem: The old memory where we move from
640 * @new_mem: The struct ttm_resource indicating to what memory
641 * region the move is taking place.
642 *
643 * Calls move_notify for all subsystems needing it.
644 * (currently only resources).
645 */
vmw_move_notify(struct ttm_buffer_object * bo,struct ttm_resource * old_mem,struct ttm_resource * new_mem)646 static void vmw_move_notify(struct ttm_buffer_object *bo,
647 struct ttm_resource *old_mem,
648 struct ttm_resource *new_mem)
649 {
650 vmw_bo_move_notify(bo, new_mem);
651 vmw_query_move_notify(bo, old_mem, new_mem);
652 }
653
654
655 /**
656 * vmw_swap_notify - TTM move_notify_callback
657 *
658 * @bo: The TTM buffer object about to be swapped out.
659 */
vmw_swap_notify(struct ttm_buffer_object * bo)660 static void vmw_swap_notify(struct ttm_buffer_object *bo)
661 {
662 vmw_bo_swap_notify(bo);
663 (void) ttm_bo_wait(bo, false, false);
664 }
665
vmw_memtype_is_system(uint32_t mem_type)666 static bool vmw_memtype_is_system(uint32_t mem_type)
667 {
668 return mem_type == TTM_PL_SYSTEM || mem_type == VMW_PL_SYSTEM;
669 }
670
vmw_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)671 static int vmw_move(struct ttm_buffer_object *bo,
672 bool evict,
673 struct ttm_operation_ctx *ctx,
674 struct ttm_resource *new_mem,
675 struct ttm_place *hop)
676 {
677 struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->resource->mem_type);
678 struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
679 int ret;
680
681 if (new_man->use_tt && !vmw_memtype_is_system(new_mem->mem_type)) {
682 ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem);
683 if (ret)
684 return ret;
685 }
686
687 vmw_move_notify(bo, bo->resource, new_mem);
688
689 if (old_man->use_tt && new_man->use_tt) {
690 if (vmw_memtype_is_system(bo->resource->mem_type)) {
691 ttm_bo_move_null(bo, new_mem);
692 return 0;
693 }
694 ret = ttm_bo_wait_ctx(bo, ctx);
695 if (ret)
696 goto fail;
697
698 vmw_ttm_unbind(bo->bdev, bo->ttm);
699 ttm_resource_free(bo, &bo->resource);
700 ttm_bo_assign_mem(bo, new_mem);
701 return 0;
702 } else {
703 ret = ttm_bo_move_memcpy(bo, ctx, new_mem);
704 if (ret)
705 goto fail;
706 }
707 return 0;
708 fail:
709 vmw_move_notify(bo, new_mem, bo->resource);
710 return ret;
711 }
712
713 struct ttm_device_funcs vmw_bo_driver = {
714 .ttm_tt_create = &vmw_ttm_tt_create,
715 .ttm_tt_populate = &vmw_ttm_populate,
716 .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
717 .ttm_tt_destroy = &vmw_ttm_destroy,
718 .eviction_valuable = ttm_bo_eviction_valuable,
719 .evict_flags = vmw_evict_flags,
720 .move = vmw_move,
721 .swap_notify = vmw_swap_notify,
722 .io_mem_reserve = &vmw_ttm_io_mem_reserve,
723 };
724
vmw_bo_create_and_populate(struct vmw_private * dev_priv,unsigned long bo_size,struct ttm_buffer_object ** bo_p)725 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
726 unsigned long bo_size,
727 struct ttm_buffer_object **bo_p)
728 {
729 struct ttm_operation_ctx ctx = {
730 .interruptible = false,
731 .no_wait_gpu = false
732 };
733 struct ttm_buffer_object *bo;
734 int ret;
735
736 ret = vmw_bo_create_kernel(dev_priv, bo_size,
737 &vmw_pt_sys_placement,
738 &bo);
739 if (unlikely(ret != 0))
740 return ret;
741
742 ret = ttm_bo_reserve(bo, false, true, NULL);
743 BUG_ON(ret != 0);
744 ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
745 if (likely(ret == 0)) {
746 struct vmw_ttm_tt *vmw_tt =
747 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
748 ret = vmw_ttm_map_dma(vmw_tt);
749 }
750
751 ttm_bo_unreserve(bo);
752
753 if (likely(ret == 0))
754 *bo_p = bo;
755 return ret;
756 }
757