1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright (c) 2009, Microsoft Corporation.
5 *
6 * Authors:
7 * Haiyang Zhang <haiyangz@microsoft.com>
8 * Hank Janssen <hjanssen@microsoft.com>
9 * K. Y. Srinivasan <kys@microsoft.com>
10 */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/hyperv.h>
16 #include <linux/uio.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/prefetch.h>
20
21 #include "hyperv_vmbus.h"
22
23 #define VMBUS_PKT_TRAILER 8
24
25 /*
26 * When we write to the ring buffer, check if the host needs to
27 * be signaled. Here is the details of this protocol:
28 *
29 * 1. The host guarantees that while it is draining the
30 * ring buffer, it will set the interrupt_mask to
31 * indicate it does not need to be interrupted when
32 * new data is placed.
33 *
34 * 2. The host guarantees that it will completely drain
35 * the ring buffer before exiting the read loop. Further,
36 * once the ring buffer is empty, it will clear the
37 * interrupt_mask and re-check to see if new data has
38 * arrived.
39 *
40 * KYS: Oct. 30, 2016:
41 * It looks like Windows hosts have logic to deal with DOS attacks that
42 * can be triggered if it receives interrupts when it is not expecting
43 * the interrupt. The host expects interrupts only when the ring
44 * transitions from empty to non-empty (or full to non full on the guest
45 * to host ring).
46 * So, base the signaling decision solely on the ring state until the
47 * host logic is fixed.
48 */
49
hv_signal_on_write(u32 old_write,struct vmbus_channel * channel)50 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
51 {
52 struct hv_ring_buffer_info *rbi = &channel->outbound;
53
54 virt_mb();
55 if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
56 return;
57
58 /* check interrupt_mask before read_index */
59 virt_rmb();
60 /*
61 * This is the only case we need to signal when the
62 * ring transitions from being empty to non-empty.
63 */
64 if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
65 ++channel->intr_out_empty;
66 vmbus_setevent(channel);
67 }
68 }
69
70 /* Get the next write location for the specified ring buffer. */
71 static inline u32
hv_get_next_write_location(struct hv_ring_buffer_info * ring_info)72 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
73 {
74 u32 next = ring_info->ring_buffer->write_index;
75
76 return next;
77 }
78
79 /* Set the next write location for the specified ring buffer. */
80 static inline void
hv_set_next_write_location(struct hv_ring_buffer_info * ring_info,u32 next_write_location)81 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
82 u32 next_write_location)
83 {
84 ring_info->ring_buffer->write_index = next_write_location;
85 }
86
87 /* Get the size of the ring buffer. */
88 static inline u32
hv_get_ring_buffersize(const struct hv_ring_buffer_info * ring_info)89 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
90 {
91 return ring_info->ring_datasize;
92 }
93
94 /* Get the read and write indices as u64 of the specified ring buffer. */
95 static inline u64
hv_get_ring_bufferindices(struct hv_ring_buffer_info * ring_info)96 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
97 {
98 return (u64)ring_info->ring_buffer->write_index << 32;
99 }
100
101 /*
102 * Helper routine to copy from source to ring buffer.
103 * Assume there is enough room. Handles wrap-around in dest case only!!
104 */
hv_copyto_ringbuffer(struct hv_ring_buffer_info * ring_info,u32 start_write_offset,const void * src,u32 srclen)105 static u32 hv_copyto_ringbuffer(
106 struct hv_ring_buffer_info *ring_info,
107 u32 start_write_offset,
108 const void *src,
109 u32 srclen)
110 {
111 void *ring_buffer = hv_get_ring_buffer(ring_info);
112 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
113
114 memcpy(ring_buffer + start_write_offset, src, srclen);
115
116 start_write_offset += srclen;
117 if (start_write_offset >= ring_buffer_size)
118 start_write_offset -= ring_buffer_size;
119
120 return start_write_offset;
121 }
122
123 /*
124 *
125 * hv_get_ringbuffer_availbytes()
126 *
127 * Get number of bytes available to read and to write to
128 * for the specified ring buffer
129 */
130 static void
hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info * rbi,u32 * read,u32 * write)131 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
132 u32 *read, u32 *write)
133 {
134 u32 read_loc, write_loc, dsize;
135
136 /* Capture the read/write indices before they changed */
137 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
138 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
139 dsize = rbi->ring_datasize;
140
141 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
142 read_loc - write_loc;
143 *read = dsize - *write;
144 }
145
146 /* Get various debug metrics for the specified ring buffer. */
hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info * ring_info,struct hv_ring_buffer_debug_info * debug_info)147 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
148 struct hv_ring_buffer_debug_info *debug_info)
149 {
150 u32 bytes_avail_towrite;
151 u32 bytes_avail_toread;
152
153 mutex_lock(&ring_info->ring_buffer_mutex);
154
155 if (!ring_info->ring_buffer) {
156 mutex_unlock(&ring_info->ring_buffer_mutex);
157 return -EINVAL;
158 }
159
160 hv_get_ringbuffer_availbytes(ring_info,
161 &bytes_avail_toread,
162 &bytes_avail_towrite);
163 debug_info->bytes_avail_toread = bytes_avail_toread;
164 debug_info->bytes_avail_towrite = bytes_avail_towrite;
165 debug_info->current_read_index = ring_info->ring_buffer->read_index;
166 debug_info->current_write_index = ring_info->ring_buffer->write_index;
167 debug_info->current_interrupt_mask
168 = ring_info->ring_buffer->interrupt_mask;
169 mutex_unlock(&ring_info->ring_buffer_mutex);
170
171 return 0;
172 }
173 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
174
175 /* Initialize a channel's ring buffer info mutex locks */
hv_ringbuffer_pre_init(struct vmbus_channel * channel)176 void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
177 {
178 mutex_init(&channel->inbound.ring_buffer_mutex);
179 mutex_init(&channel->outbound.ring_buffer_mutex);
180 }
181
182 /* Initialize the ring buffer. */
hv_ringbuffer_init(struct hv_ring_buffer_info * ring_info,struct page * pages,u32 page_cnt,u32 max_pkt_size)183 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
184 struct page *pages, u32 page_cnt, u32 max_pkt_size)
185 {
186 int i;
187 struct page **pages_wraparound;
188
189 BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
190
191 /*
192 * First page holds struct hv_ring_buffer, do wraparound mapping for
193 * the rest.
194 */
195 pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *),
196 GFP_KERNEL);
197 if (!pages_wraparound)
198 return -ENOMEM;
199
200 pages_wraparound[0] = pages;
201 for (i = 0; i < 2 * (page_cnt - 1); i++)
202 pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
203
204 ring_info->ring_buffer = (struct hv_ring_buffer *)
205 vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
206
207 kfree(pages_wraparound);
208
209
210 if (!ring_info->ring_buffer)
211 return -ENOMEM;
212
213 ring_info->ring_buffer->read_index =
214 ring_info->ring_buffer->write_index = 0;
215
216 /* Set the feature bit for enabling flow control. */
217 ring_info->ring_buffer->feature_bits.value = 1;
218
219 ring_info->ring_size = page_cnt << PAGE_SHIFT;
220 ring_info->ring_size_div10_reciprocal =
221 reciprocal_value(ring_info->ring_size / 10);
222 ring_info->ring_datasize = ring_info->ring_size -
223 sizeof(struct hv_ring_buffer);
224 ring_info->priv_read_index = 0;
225
226 /* Initialize buffer that holds copies of incoming packets */
227 if (max_pkt_size) {
228 ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL);
229 if (!ring_info->pkt_buffer)
230 return -ENOMEM;
231 ring_info->pkt_buffer_size = max_pkt_size;
232 }
233
234 spin_lock_init(&ring_info->ring_lock);
235
236 return 0;
237 }
238
239 /* Cleanup the ring buffer. */
hv_ringbuffer_cleanup(struct hv_ring_buffer_info * ring_info)240 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
241 {
242 mutex_lock(&ring_info->ring_buffer_mutex);
243 vunmap(ring_info->ring_buffer);
244 ring_info->ring_buffer = NULL;
245 mutex_unlock(&ring_info->ring_buffer_mutex);
246
247 kfree(ring_info->pkt_buffer);
248 ring_info->pkt_buffer = NULL;
249 ring_info->pkt_buffer_size = 0;
250 }
251
252 /*
253 * Check if the ring buffer spinlock is available to take or not; used on
254 * atomic contexts, like panic path (see the Hyper-V framebuffer driver).
255 */
256
hv_ringbuffer_spinlock_busy(struct vmbus_channel * channel)257 bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel)
258 {
259 struct hv_ring_buffer_info *rinfo = &channel->outbound;
260
261 return spin_is_locked(&rinfo->ring_lock);
262 }
263 EXPORT_SYMBOL_GPL(hv_ringbuffer_spinlock_busy);
264
265 /* Write to the ring buffer. */
hv_ringbuffer_write(struct vmbus_channel * channel,const struct kvec * kv_list,u32 kv_count,u64 requestid)266 int hv_ringbuffer_write(struct vmbus_channel *channel,
267 const struct kvec *kv_list, u32 kv_count,
268 u64 requestid)
269 {
270 int i;
271 u32 bytes_avail_towrite;
272 u32 totalbytes_towrite = sizeof(u64);
273 u32 next_write_location;
274 u32 old_write;
275 u64 prev_indices;
276 unsigned long flags;
277 struct hv_ring_buffer_info *outring_info = &channel->outbound;
278 struct vmpacket_descriptor *desc = kv_list[0].iov_base;
279 u64 rqst_id = VMBUS_NO_RQSTOR;
280
281 if (channel->rescind)
282 return -ENODEV;
283
284 for (i = 0; i < kv_count; i++)
285 totalbytes_towrite += kv_list[i].iov_len;
286
287 spin_lock_irqsave(&outring_info->ring_lock, flags);
288
289 bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
290
291 /*
292 * If there is only room for the packet, assume it is full.
293 * Otherwise, the next time around, we think the ring buffer
294 * is empty since the read index == write index.
295 */
296 if (bytes_avail_towrite <= totalbytes_towrite) {
297 ++channel->out_full_total;
298
299 if (!channel->out_full_flag) {
300 ++channel->out_full_first;
301 channel->out_full_flag = true;
302 }
303
304 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
305 return -EAGAIN;
306 }
307
308 channel->out_full_flag = false;
309
310 /* Write to the ring buffer */
311 next_write_location = hv_get_next_write_location(outring_info);
312
313 old_write = next_write_location;
314
315 for (i = 0; i < kv_count; i++) {
316 next_write_location = hv_copyto_ringbuffer(outring_info,
317 next_write_location,
318 kv_list[i].iov_base,
319 kv_list[i].iov_len);
320 }
321
322 /*
323 * Allocate the request ID after the data has been copied into the
324 * ring buffer. Once this request ID is allocated, the completion
325 * path could find the data and free it.
326 */
327
328 if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
329 if (channel->next_request_id_callback != NULL) {
330 rqst_id = channel->next_request_id_callback(channel, requestid);
331 if (rqst_id == VMBUS_RQST_ERROR) {
332 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
333 return -EAGAIN;
334 }
335 }
336 }
337 desc = hv_get_ring_buffer(outring_info) + old_write;
338 desc->trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
339
340 /* Set previous packet start */
341 prev_indices = hv_get_ring_bufferindices(outring_info);
342
343 next_write_location = hv_copyto_ringbuffer(outring_info,
344 next_write_location,
345 &prev_indices,
346 sizeof(u64));
347
348 /* Issue a full memory barrier before updating the write index */
349 virt_mb();
350
351 /* Now, update the write location */
352 hv_set_next_write_location(outring_info, next_write_location);
353
354
355 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
356
357 hv_signal_on_write(old_write, channel);
358
359 if (channel->rescind) {
360 if (rqst_id != VMBUS_NO_RQSTOR) {
361 /* Reclaim request ID to avoid leak of IDs */
362 if (channel->request_addr_callback != NULL)
363 channel->request_addr_callback(channel, rqst_id);
364 }
365 return -ENODEV;
366 }
367
368 return 0;
369 }
370
hv_ringbuffer_read(struct vmbus_channel * channel,void * buffer,u32 buflen,u32 * buffer_actual_len,u64 * requestid,bool raw)371 int hv_ringbuffer_read(struct vmbus_channel *channel,
372 void *buffer, u32 buflen, u32 *buffer_actual_len,
373 u64 *requestid, bool raw)
374 {
375 struct vmpacket_descriptor *desc;
376 u32 packetlen, offset;
377
378 if (unlikely(buflen == 0))
379 return -EINVAL;
380
381 *buffer_actual_len = 0;
382 *requestid = 0;
383
384 /* Make sure there is something to read */
385 desc = hv_pkt_iter_first(channel);
386 if (desc == NULL) {
387 /*
388 * No error is set when there is even no header, drivers are
389 * supposed to analyze buffer_actual_len.
390 */
391 return 0;
392 }
393
394 offset = raw ? 0 : (desc->offset8 << 3);
395 packetlen = (desc->len8 << 3) - offset;
396 *buffer_actual_len = packetlen;
397 *requestid = desc->trans_id;
398
399 if (unlikely(packetlen > buflen))
400 return -ENOBUFS;
401
402 /* since ring is double mapped, only one copy is necessary */
403 memcpy(buffer, (const char *)desc + offset, packetlen);
404
405 /* Advance ring index to next packet descriptor */
406 __hv_pkt_iter_next(channel, desc, true);
407
408 /* Notify host of update */
409 hv_pkt_iter_close(channel);
410
411 return 0;
412 }
413
414 /*
415 * Determine number of bytes available in ring buffer after
416 * the current iterator (priv_read_index) location.
417 *
418 * This is similar to hv_get_bytes_to_read but with private
419 * read index instead.
420 */
hv_pkt_iter_avail(const struct hv_ring_buffer_info * rbi)421 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
422 {
423 u32 priv_read_loc = rbi->priv_read_index;
424 u32 write_loc;
425
426 /*
427 * The Hyper-V host writes the packet data, then uses
428 * store_release() to update the write_index. Use load_acquire()
429 * here to prevent loads of the packet data from being re-ordered
430 * before the read of the write_index and potentially getting
431 * stale data.
432 */
433 write_loc = virt_load_acquire(&rbi->ring_buffer->write_index);
434
435 if (write_loc >= priv_read_loc)
436 return write_loc - priv_read_loc;
437 else
438 return (rbi->ring_datasize - priv_read_loc) + write_loc;
439 }
440
441 /*
442 * Get first vmbus packet without copying it out of the ring buffer
443 */
hv_pkt_iter_first_raw(struct vmbus_channel * channel)444 struct vmpacket_descriptor *hv_pkt_iter_first_raw(struct vmbus_channel *channel)
445 {
446 struct hv_ring_buffer_info *rbi = &channel->inbound;
447
448 hv_debug_delay_test(channel, MESSAGE_DELAY);
449
450 if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
451 return NULL;
452
453 return (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
454 }
455 EXPORT_SYMBOL_GPL(hv_pkt_iter_first_raw);
456
457 /*
458 * Get first vmbus packet from ring buffer after read_index
459 *
460 * If ring buffer is empty, returns NULL and no other action needed.
461 */
hv_pkt_iter_first(struct vmbus_channel * channel)462 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
463 {
464 struct hv_ring_buffer_info *rbi = &channel->inbound;
465 struct vmpacket_descriptor *desc, *desc_copy;
466 u32 bytes_avail, pkt_len, pkt_offset;
467
468 desc = hv_pkt_iter_first_raw(channel);
469 if (!desc)
470 return NULL;
471
472 bytes_avail = min(rbi->pkt_buffer_size, hv_pkt_iter_avail(rbi));
473
474 /*
475 * Ensure the compiler does not use references to incoming Hyper-V values (which
476 * could change at any moment) when reading local variables later in the code
477 */
478 pkt_len = READ_ONCE(desc->len8) << 3;
479 pkt_offset = READ_ONCE(desc->offset8) << 3;
480
481 /*
482 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and
483 * rbi->pkt_buffer_size
484 */
485 if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail)
486 pkt_len = bytes_avail;
487
488 /*
489 * If pkt_offset is invalid, arbitrarily set it to
490 * the size of vmpacket_descriptor
491 */
492 if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len)
493 pkt_offset = sizeof(struct vmpacket_descriptor);
494
495 /* Copy the Hyper-V packet out of the ring buffer */
496 desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer;
497 memcpy(desc_copy, desc, pkt_len);
498
499 /*
500 * Hyper-V could still change len8 and offset8 after the earlier read.
501 * Ensure that desc_copy has legal values for len8 and offset8 that
502 * are consistent with the copy we just made
503 */
504 desc_copy->len8 = pkt_len >> 3;
505 desc_copy->offset8 = pkt_offset >> 3;
506
507 return desc_copy;
508 }
509 EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
510
511 /*
512 * Get next vmbus packet from ring buffer.
513 *
514 * Advances the current location (priv_read_index) and checks for more
515 * data. If the end of the ring buffer is reached, then return NULL.
516 */
517 struct vmpacket_descriptor *
__hv_pkt_iter_next(struct vmbus_channel * channel,const struct vmpacket_descriptor * desc,bool copy)518 __hv_pkt_iter_next(struct vmbus_channel *channel,
519 const struct vmpacket_descriptor *desc,
520 bool copy)
521 {
522 struct hv_ring_buffer_info *rbi = &channel->inbound;
523 u32 packetlen = desc->len8 << 3;
524 u32 dsize = rbi->ring_datasize;
525
526 hv_debug_delay_test(channel, MESSAGE_DELAY);
527 /* bump offset to next potential packet */
528 rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
529 if (rbi->priv_read_index >= dsize)
530 rbi->priv_read_index -= dsize;
531
532 /* more data? */
533 return copy ? hv_pkt_iter_first(channel) : hv_pkt_iter_first_raw(channel);
534 }
535 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
536
537 /* How many bytes were read in this iterator cycle */
hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info * rbi,u32 start_read_index)538 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
539 u32 start_read_index)
540 {
541 if (rbi->priv_read_index >= start_read_index)
542 return rbi->priv_read_index - start_read_index;
543 else
544 return rbi->ring_datasize - start_read_index +
545 rbi->priv_read_index;
546 }
547
548 /*
549 * Update host ring buffer after iterating over packets. If the host has
550 * stopped queuing new entries because it found the ring buffer full, and
551 * sufficient space is being freed up, signal the host. But be careful to
552 * only signal the host when necessary, both for performance reasons and
553 * because Hyper-V protects itself by throttling guests that signal
554 * inappropriately.
555 *
556 * Determining when to signal is tricky. There are three key data inputs
557 * that must be handled in this order to avoid race conditions:
558 *
559 * 1. Update the read_index
560 * 2. Read the pending_send_sz
561 * 3. Read the current write_index
562 *
563 * The interrupt_mask is not used to determine when to signal. The
564 * interrupt_mask is used only on the guest->host ring buffer when
565 * sending requests to the host. The host does not use it on the host->
566 * guest ring buffer to indicate whether it should be signaled.
567 */
hv_pkt_iter_close(struct vmbus_channel * channel)568 void hv_pkt_iter_close(struct vmbus_channel *channel)
569 {
570 struct hv_ring_buffer_info *rbi = &channel->inbound;
571 u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
572
573 /*
574 * Make sure all reads are done before we update the read index since
575 * the writer may start writing to the read area once the read index
576 * is updated.
577 */
578 virt_rmb();
579 start_read_index = rbi->ring_buffer->read_index;
580 rbi->ring_buffer->read_index = rbi->priv_read_index;
581
582 /*
583 * Older versions of Hyper-V (before WS2102 and Win8) do not
584 * implement pending_send_sz and simply poll if the host->guest
585 * ring buffer is full. No signaling is needed or expected.
586 */
587 if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
588 return;
589
590 /*
591 * Issue a full memory barrier before making the signaling decision.
592 * If reading pending_send_sz were to be reordered and happen
593 * before we commit the new read_index, a race could occur. If the
594 * host were to set the pending_send_sz after we have sampled
595 * pending_send_sz, and the ring buffer blocks before we commit the
596 * read index, we could miss sending the interrupt. Issue a full
597 * memory barrier to address this.
598 */
599 virt_mb();
600
601 /*
602 * If the pending_send_sz is zero, then the ring buffer is not
603 * blocked and there is no need to signal. This is far by the
604 * most common case, so exit quickly for best performance.
605 */
606 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
607 if (!pending_sz)
608 return;
609
610 /*
611 * Ensure the read of write_index in hv_get_bytes_to_write()
612 * happens after the read of pending_send_sz.
613 */
614 virt_rmb();
615 curr_write_sz = hv_get_bytes_to_write(rbi);
616 bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
617
618 /*
619 * We want to signal the host only if we're transitioning
620 * from a "not enough free space" state to a "enough free
621 * space" state. For example, it's possible that this function
622 * could run and free up enough space to signal the host, and then
623 * run again and free up additional space before the host has a
624 * chance to clear the pending_send_sz. The 2nd invocation would
625 * be a null transition from "enough free space" to "enough free
626 * space", which doesn't warrant a signal.
627 *
628 * Exactly filling the ring buffer is treated as "not enough
629 * space". The ring buffer always must have at least one byte
630 * empty so the empty and full conditions are distinguishable.
631 * hv_get_bytes_to_write() doesn't fully tell the truth in
632 * this regard.
633 *
634 * So first check if we were in the "enough free space" state
635 * before we began the iteration. If so, the host was not
636 * blocked, and there's no need to signal.
637 */
638 if (curr_write_sz - bytes_read > pending_sz)
639 return;
640
641 /*
642 * Similarly, if the new state is "not enough space", then
643 * there's no need to signal.
644 */
645 if (curr_write_sz <= pending_sz)
646 return;
647
648 ++channel->intr_in_full;
649 vmbus_setevent(channel);
650 }
651 EXPORT_SYMBOL_GPL(hv_pkt_iter_close);
652