• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (c) 2009, Microsoft Corporation.
5  *
6  * Authors:
7  *   Haiyang Zhang <haiyangz@microsoft.com>
8  *   Hank Janssen  <hjanssen@microsoft.com>
9  *   K. Y. Srinivasan <kys@microsoft.com>
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/hyperv.h>
16 #include <linux/uio.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/prefetch.h>
20 
21 #include "hyperv_vmbus.h"
22 
23 #define VMBUS_PKT_TRAILER	8
24 
25 /*
26  * When we write to the ring buffer, check if the host needs to
27  * be signaled. Here is the details of this protocol:
28  *
29  *	1. The host guarantees that while it is draining the
30  *	   ring buffer, it will set the interrupt_mask to
31  *	   indicate it does not need to be interrupted when
32  *	   new data is placed.
33  *
34  *	2. The host guarantees that it will completely drain
35  *	   the ring buffer before exiting the read loop. Further,
36  *	   once the ring buffer is empty, it will clear the
37  *	   interrupt_mask and re-check to see if new data has
38  *	   arrived.
39  *
40  * KYS: Oct. 30, 2016:
41  * It looks like Windows hosts have logic to deal with DOS attacks that
42  * can be triggered if it receives interrupts when it is not expecting
43  * the interrupt. The host expects interrupts only when the ring
44  * transitions from empty to non-empty (or full to non full on the guest
45  * to host ring).
46  * So, base the signaling decision solely on the ring state until the
47  * host logic is fixed.
48  */
49 
hv_signal_on_write(u32 old_write,struct vmbus_channel * channel)50 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
51 {
52 	struct hv_ring_buffer_info *rbi = &channel->outbound;
53 
54 	virt_mb();
55 	if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
56 		return;
57 
58 	/* check interrupt_mask before read_index */
59 	virt_rmb();
60 	/*
61 	 * This is the only case we need to signal when the
62 	 * ring transitions from being empty to non-empty.
63 	 */
64 	if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
65 		++channel->intr_out_empty;
66 		vmbus_setevent(channel);
67 	}
68 }
69 
70 /* Get the next write location for the specified ring buffer. */
71 static inline u32
hv_get_next_write_location(struct hv_ring_buffer_info * ring_info)72 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
73 {
74 	u32 next = ring_info->ring_buffer->write_index;
75 
76 	return next;
77 }
78 
79 /* Set the next write location for the specified ring buffer. */
80 static inline void
hv_set_next_write_location(struct hv_ring_buffer_info * ring_info,u32 next_write_location)81 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
82 		     u32 next_write_location)
83 {
84 	ring_info->ring_buffer->write_index = next_write_location;
85 }
86 
87 /* Get the size of the ring buffer. */
88 static inline u32
hv_get_ring_buffersize(const struct hv_ring_buffer_info * ring_info)89 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
90 {
91 	return ring_info->ring_datasize;
92 }
93 
94 /* Get the read and write indices as u64 of the specified ring buffer. */
95 static inline u64
hv_get_ring_bufferindices(struct hv_ring_buffer_info * ring_info)96 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
97 {
98 	return (u64)ring_info->ring_buffer->write_index << 32;
99 }
100 
101 /*
102  * Helper routine to copy from source to ring buffer.
103  * Assume there is enough room. Handles wrap-around in dest case only!!
104  */
hv_copyto_ringbuffer(struct hv_ring_buffer_info * ring_info,u32 start_write_offset,const void * src,u32 srclen)105 static u32 hv_copyto_ringbuffer(
106 	struct hv_ring_buffer_info	*ring_info,
107 	u32				start_write_offset,
108 	const void			*src,
109 	u32				srclen)
110 {
111 	void *ring_buffer = hv_get_ring_buffer(ring_info);
112 	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
113 
114 	memcpy(ring_buffer + start_write_offset, src, srclen);
115 
116 	start_write_offset += srclen;
117 	if (start_write_offset >= ring_buffer_size)
118 		start_write_offset -= ring_buffer_size;
119 
120 	return start_write_offset;
121 }
122 
123 /*
124  *
125  * hv_get_ringbuffer_availbytes()
126  *
127  * Get number of bytes available to read and to write to
128  * for the specified ring buffer
129  */
130 static void
hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info * rbi,u32 * read,u32 * write)131 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
132 			     u32 *read, u32 *write)
133 {
134 	u32 read_loc, write_loc, dsize;
135 
136 	/* Capture the read/write indices before they changed */
137 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
138 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
139 	dsize = rbi->ring_datasize;
140 
141 	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
142 		read_loc - write_loc;
143 	*read = dsize - *write;
144 }
145 
146 /* Get various debug metrics for the specified ring buffer. */
hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info * ring_info,struct hv_ring_buffer_debug_info * debug_info)147 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
148 				struct hv_ring_buffer_debug_info *debug_info)
149 {
150 	u32 bytes_avail_towrite;
151 	u32 bytes_avail_toread;
152 
153 	mutex_lock(&ring_info->ring_buffer_mutex);
154 
155 	if (!ring_info->ring_buffer) {
156 		mutex_unlock(&ring_info->ring_buffer_mutex);
157 		return -EINVAL;
158 	}
159 
160 	hv_get_ringbuffer_availbytes(ring_info,
161 				     &bytes_avail_toread,
162 				     &bytes_avail_towrite);
163 	debug_info->bytes_avail_toread = bytes_avail_toread;
164 	debug_info->bytes_avail_towrite = bytes_avail_towrite;
165 	debug_info->current_read_index = ring_info->ring_buffer->read_index;
166 	debug_info->current_write_index = ring_info->ring_buffer->write_index;
167 	debug_info->current_interrupt_mask
168 		= ring_info->ring_buffer->interrupt_mask;
169 	mutex_unlock(&ring_info->ring_buffer_mutex);
170 
171 	return 0;
172 }
173 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
174 
175 /* Initialize a channel's ring buffer info mutex locks */
hv_ringbuffer_pre_init(struct vmbus_channel * channel)176 void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
177 {
178 	mutex_init(&channel->inbound.ring_buffer_mutex);
179 	mutex_init(&channel->outbound.ring_buffer_mutex);
180 }
181 
182 /* Initialize the ring buffer. */
hv_ringbuffer_init(struct hv_ring_buffer_info * ring_info,struct page * pages,u32 page_cnt,u32 max_pkt_size)183 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
184 		       struct page *pages, u32 page_cnt, u32 max_pkt_size)
185 {
186 	int i;
187 	struct page **pages_wraparound;
188 
189 	BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
190 
191 	/*
192 	 * First page holds struct hv_ring_buffer, do wraparound mapping for
193 	 * the rest.
194 	 */
195 	pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *),
196 				   GFP_KERNEL);
197 	if (!pages_wraparound)
198 		return -ENOMEM;
199 
200 	pages_wraparound[0] = pages;
201 	for (i = 0; i < 2 * (page_cnt - 1); i++)
202 		pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
203 
204 	ring_info->ring_buffer = (struct hv_ring_buffer *)
205 		vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
206 
207 	kfree(pages_wraparound);
208 
209 
210 	if (!ring_info->ring_buffer)
211 		return -ENOMEM;
212 
213 	ring_info->ring_buffer->read_index =
214 		ring_info->ring_buffer->write_index = 0;
215 
216 	/* Set the feature bit for enabling flow control. */
217 	ring_info->ring_buffer->feature_bits.value = 1;
218 
219 	ring_info->ring_size = page_cnt << PAGE_SHIFT;
220 	ring_info->ring_size_div10_reciprocal =
221 		reciprocal_value(ring_info->ring_size / 10);
222 	ring_info->ring_datasize = ring_info->ring_size -
223 		sizeof(struct hv_ring_buffer);
224 	ring_info->priv_read_index = 0;
225 
226 	/* Initialize buffer that holds copies of incoming packets */
227 	if (max_pkt_size) {
228 		ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL);
229 		if (!ring_info->pkt_buffer)
230 			return -ENOMEM;
231 		ring_info->pkt_buffer_size = max_pkt_size;
232 	}
233 
234 	spin_lock_init(&ring_info->ring_lock);
235 
236 	return 0;
237 }
238 
239 /* Cleanup the ring buffer. */
hv_ringbuffer_cleanup(struct hv_ring_buffer_info * ring_info)240 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
241 {
242 	mutex_lock(&ring_info->ring_buffer_mutex);
243 	vunmap(ring_info->ring_buffer);
244 	ring_info->ring_buffer = NULL;
245 	mutex_unlock(&ring_info->ring_buffer_mutex);
246 
247 	kfree(ring_info->pkt_buffer);
248 	ring_info->pkt_buffer = NULL;
249 	ring_info->pkt_buffer_size = 0;
250 }
251 
252 /*
253  * Check if the ring buffer spinlock is available to take or not; used on
254  * atomic contexts, like panic path (see the Hyper-V framebuffer driver).
255  */
256 
hv_ringbuffer_spinlock_busy(struct vmbus_channel * channel)257 bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel)
258 {
259 	struct hv_ring_buffer_info *rinfo = &channel->outbound;
260 
261 	return spin_is_locked(&rinfo->ring_lock);
262 }
263 EXPORT_SYMBOL_GPL(hv_ringbuffer_spinlock_busy);
264 
265 /* Write to the ring buffer. */
hv_ringbuffer_write(struct vmbus_channel * channel,const struct kvec * kv_list,u32 kv_count,u64 requestid)266 int hv_ringbuffer_write(struct vmbus_channel *channel,
267 			const struct kvec *kv_list, u32 kv_count,
268 			u64 requestid)
269 {
270 	int i;
271 	u32 bytes_avail_towrite;
272 	u32 totalbytes_towrite = sizeof(u64);
273 	u32 next_write_location;
274 	u32 old_write;
275 	u64 prev_indices;
276 	unsigned long flags;
277 	struct hv_ring_buffer_info *outring_info = &channel->outbound;
278 	struct vmpacket_descriptor *desc = kv_list[0].iov_base;
279 	u64 rqst_id = VMBUS_NO_RQSTOR;
280 
281 	if (channel->rescind)
282 		return -ENODEV;
283 
284 	for (i = 0; i < kv_count; i++)
285 		totalbytes_towrite += kv_list[i].iov_len;
286 
287 	spin_lock_irqsave(&outring_info->ring_lock, flags);
288 
289 	bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
290 
291 	/*
292 	 * If there is only room for the packet, assume it is full.
293 	 * Otherwise, the next time around, we think the ring buffer
294 	 * is empty since the read index == write index.
295 	 */
296 	if (bytes_avail_towrite <= totalbytes_towrite) {
297 		++channel->out_full_total;
298 
299 		if (!channel->out_full_flag) {
300 			++channel->out_full_first;
301 			channel->out_full_flag = true;
302 		}
303 
304 		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
305 		return -EAGAIN;
306 	}
307 
308 	channel->out_full_flag = false;
309 
310 	/* Write to the ring buffer */
311 	next_write_location = hv_get_next_write_location(outring_info);
312 
313 	old_write = next_write_location;
314 
315 	for (i = 0; i < kv_count; i++) {
316 		next_write_location = hv_copyto_ringbuffer(outring_info,
317 						     next_write_location,
318 						     kv_list[i].iov_base,
319 						     kv_list[i].iov_len);
320 	}
321 
322 	/*
323 	 * Allocate the request ID after the data has been copied into the
324 	 * ring buffer.  Once this request ID is allocated, the completion
325 	 * path could find the data and free it.
326 	 */
327 
328 	if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
329 		if (channel->next_request_id_callback != NULL) {
330 			rqst_id = channel->next_request_id_callback(channel, requestid);
331 			if (rqst_id == VMBUS_RQST_ERROR) {
332 				spin_unlock_irqrestore(&outring_info->ring_lock, flags);
333 				return -EAGAIN;
334 			}
335 		}
336 	}
337 	desc = hv_get_ring_buffer(outring_info) + old_write;
338 	desc->trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
339 
340 	/* Set previous packet start */
341 	prev_indices = hv_get_ring_bufferindices(outring_info);
342 
343 	next_write_location = hv_copyto_ringbuffer(outring_info,
344 					     next_write_location,
345 					     &prev_indices,
346 					     sizeof(u64));
347 
348 	/* Issue a full memory barrier before updating the write index */
349 	virt_mb();
350 
351 	/* Now, update the write location */
352 	hv_set_next_write_location(outring_info, next_write_location);
353 
354 
355 	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
356 
357 	hv_signal_on_write(old_write, channel);
358 
359 	if (channel->rescind) {
360 		if (rqst_id != VMBUS_NO_RQSTOR) {
361 			/* Reclaim request ID to avoid leak of IDs */
362 			if (channel->request_addr_callback != NULL)
363 				channel->request_addr_callback(channel, rqst_id);
364 		}
365 		return -ENODEV;
366 	}
367 
368 	return 0;
369 }
370 
hv_ringbuffer_read(struct vmbus_channel * channel,void * buffer,u32 buflen,u32 * buffer_actual_len,u64 * requestid,bool raw)371 int hv_ringbuffer_read(struct vmbus_channel *channel,
372 		       void *buffer, u32 buflen, u32 *buffer_actual_len,
373 		       u64 *requestid, bool raw)
374 {
375 	struct vmpacket_descriptor *desc;
376 	u32 packetlen, offset;
377 
378 	if (unlikely(buflen == 0))
379 		return -EINVAL;
380 
381 	*buffer_actual_len = 0;
382 	*requestid = 0;
383 
384 	/* Make sure there is something to read */
385 	desc = hv_pkt_iter_first(channel);
386 	if (desc == NULL) {
387 		/*
388 		 * No error is set when there is even no header, drivers are
389 		 * supposed to analyze buffer_actual_len.
390 		 */
391 		return 0;
392 	}
393 
394 	offset = raw ? 0 : (desc->offset8 << 3);
395 	packetlen = (desc->len8 << 3) - offset;
396 	*buffer_actual_len = packetlen;
397 	*requestid = desc->trans_id;
398 
399 	if (unlikely(packetlen > buflen))
400 		return -ENOBUFS;
401 
402 	/* since ring is double mapped, only one copy is necessary */
403 	memcpy(buffer, (const char *)desc + offset, packetlen);
404 
405 	/* Advance ring index to next packet descriptor */
406 	__hv_pkt_iter_next(channel, desc, true);
407 
408 	/* Notify host of update */
409 	hv_pkt_iter_close(channel);
410 
411 	return 0;
412 }
413 
414 /*
415  * Determine number of bytes available in ring buffer after
416  * the current iterator (priv_read_index) location.
417  *
418  * This is similar to hv_get_bytes_to_read but with private
419  * read index instead.
420  */
hv_pkt_iter_avail(const struct hv_ring_buffer_info * rbi)421 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
422 {
423 	u32 priv_read_loc = rbi->priv_read_index;
424 	u32 write_loc;
425 
426 	/*
427 	 * The Hyper-V host writes the packet data, then uses
428 	 * store_release() to update the write_index.  Use load_acquire()
429 	 * here to prevent loads of the packet data from being re-ordered
430 	 * before the read of the write_index and potentially getting
431 	 * stale data.
432 	 */
433 	write_loc = virt_load_acquire(&rbi->ring_buffer->write_index);
434 
435 	if (write_loc >= priv_read_loc)
436 		return write_loc - priv_read_loc;
437 	else
438 		return (rbi->ring_datasize - priv_read_loc) + write_loc;
439 }
440 
441 /*
442  * Get first vmbus packet without copying it out of the ring buffer
443  */
hv_pkt_iter_first_raw(struct vmbus_channel * channel)444 struct vmpacket_descriptor *hv_pkt_iter_first_raw(struct vmbus_channel *channel)
445 {
446 	struct hv_ring_buffer_info *rbi = &channel->inbound;
447 
448 	hv_debug_delay_test(channel, MESSAGE_DELAY);
449 
450 	if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
451 		return NULL;
452 
453 	return (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
454 }
455 EXPORT_SYMBOL_GPL(hv_pkt_iter_first_raw);
456 
457 /*
458  * Get first vmbus packet from ring buffer after read_index
459  *
460  * If ring buffer is empty, returns NULL and no other action needed.
461  */
hv_pkt_iter_first(struct vmbus_channel * channel)462 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
463 {
464 	struct hv_ring_buffer_info *rbi = &channel->inbound;
465 	struct vmpacket_descriptor *desc, *desc_copy;
466 	u32 bytes_avail, pkt_len, pkt_offset;
467 
468 	desc = hv_pkt_iter_first_raw(channel);
469 	if (!desc)
470 		return NULL;
471 
472 	bytes_avail = min(rbi->pkt_buffer_size, hv_pkt_iter_avail(rbi));
473 
474 	/*
475 	 * Ensure the compiler does not use references to incoming Hyper-V values (which
476 	 * could change at any moment) when reading local variables later in the code
477 	 */
478 	pkt_len = READ_ONCE(desc->len8) << 3;
479 	pkt_offset = READ_ONCE(desc->offset8) << 3;
480 
481 	/*
482 	 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and
483 	 * rbi->pkt_buffer_size
484 	 */
485 	if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail)
486 		pkt_len = bytes_avail;
487 
488 	/*
489 	 * If pkt_offset is invalid, arbitrarily set it to
490 	 * the size of vmpacket_descriptor
491 	 */
492 	if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len)
493 		pkt_offset = sizeof(struct vmpacket_descriptor);
494 
495 	/* Copy the Hyper-V packet out of the ring buffer */
496 	desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer;
497 	memcpy(desc_copy, desc, pkt_len);
498 
499 	/*
500 	 * Hyper-V could still change len8 and offset8 after the earlier read.
501 	 * Ensure that desc_copy has legal values for len8 and offset8 that
502 	 * are consistent with the copy we just made
503 	 */
504 	desc_copy->len8 = pkt_len >> 3;
505 	desc_copy->offset8 = pkt_offset >> 3;
506 
507 	return desc_copy;
508 }
509 EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
510 
511 /*
512  * Get next vmbus packet from ring buffer.
513  *
514  * Advances the current location (priv_read_index) and checks for more
515  * data. If the end of the ring buffer is reached, then return NULL.
516  */
517 struct vmpacket_descriptor *
__hv_pkt_iter_next(struct vmbus_channel * channel,const struct vmpacket_descriptor * desc,bool copy)518 __hv_pkt_iter_next(struct vmbus_channel *channel,
519 		   const struct vmpacket_descriptor *desc,
520 		   bool copy)
521 {
522 	struct hv_ring_buffer_info *rbi = &channel->inbound;
523 	u32 packetlen = desc->len8 << 3;
524 	u32 dsize = rbi->ring_datasize;
525 
526 	hv_debug_delay_test(channel, MESSAGE_DELAY);
527 	/* bump offset to next potential packet */
528 	rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
529 	if (rbi->priv_read_index >= dsize)
530 		rbi->priv_read_index -= dsize;
531 
532 	/* more data? */
533 	return copy ? hv_pkt_iter_first(channel) : hv_pkt_iter_first_raw(channel);
534 }
535 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
536 
537 /* How many bytes were read in this iterator cycle */
hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info * rbi,u32 start_read_index)538 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
539 					u32 start_read_index)
540 {
541 	if (rbi->priv_read_index >= start_read_index)
542 		return rbi->priv_read_index - start_read_index;
543 	else
544 		return rbi->ring_datasize - start_read_index +
545 			rbi->priv_read_index;
546 }
547 
548 /*
549  * Update host ring buffer after iterating over packets. If the host has
550  * stopped queuing new entries because it found the ring buffer full, and
551  * sufficient space is being freed up, signal the host. But be careful to
552  * only signal the host when necessary, both for performance reasons and
553  * because Hyper-V protects itself by throttling guests that signal
554  * inappropriately.
555  *
556  * Determining when to signal is tricky. There are three key data inputs
557  * that must be handled in this order to avoid race conditions:
558  *
559  * 1. Update the read_index
560  * 2. Read the pending_send_sz
561  * 3. Read the current write_index
562  *
563  * The interrupt_mask is not used to determine when to signal. The
564  * interrupt_mask is used only on the guest->host ring buffer when
565  * sending requests to the host. The host does not use it on the host->
566  * guest ring buffer to indicate whether it should be signaled.
567  */
hv_pkt_iter_close(struct vmbus_channel * channel)568 void hv_pkt_iter_close(struct vmbus_channel *channel)
569 {
570 	struct hv_ring_buffer_info *rbi = &channel->inbound;
571 	u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
572 
573 	/*
574 	 * Make sure all reads are done before we update the read index since
575 	 * the writer may start writing to the read area once the read index
576 	 * is updated.
577 	 */
578 	virt_rmb();
579 	start_read_index = rbi->ring_buffer->read_index;
580 	rbi->ring_buffer->read_index = rbi->priv_read_index;
581 
582 	/*
583 	 * Older versions of Hyper-V (before WS2102 and Win8) do not
584 	 * implement pending_send_sz and simply poll if the host->guest
585 	 * ring buffer is full.  No signaling is needed or expected.
586 	 */
587 	if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
588 		return;
589 
590 	/*
591 	 * Issue a full memory barrier before making the signaling decision.
592 	 * If reading pending_send_sz were to be reordered and happen
593 	 * before we commit the new read_index, a race could occur.  If the
594 	 * host were to set the pending_send_sz after we have sampled
595 	 * pending_send_sz, and the ring buffer blocks before we commit the
596 	 * read index, we could miss sending the interrupt. Issue a full
597 	 * memory barrier to address this.
598 	 */
599 	virt_mb();
600 
601 	/*
602 	 * If the pending_send_sz is zero, then the ring buffer is not
603 	 * blocked and there is no need to signal.  This is far by the
604 	 * most common case, so exit quickly for best performance.
605 	 */
606 	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
607 	if (!pending_sz)
608 		return;
609 
610 	/*
611 	 * Ensure the read of write_index in hv_get_bytes_to_write()
612 	 * happens after the read of pending_send_sz.
613 	 */
614 	virt_rmb();
615 	curr_write_sz = hv_get_bytes_to_write(rbi);
616 	bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
617 
618 	/*
619 	 * We want to signal the host only if we're transitioning
620 	 * from a "not enough free space" state to a "enough free
621 	 * space" state.  For example, it's possible that this function
622 	 * could run and free up enough space to signal the host, and then
623 	 * run again and free up additional space before the host has a
624 	 * chance to clear the pending_send_sz.  The 2nd invocation would
625 	 * be a null transition from "enough free space" to "enough free
626 	 * space", which doesn't warrant a signal.
627 	 *
628 	 * Exactly filling the ring buffer is treated as "not enough
629 	 * space". The ring buffer always must have at least one byte
630 	 * empty so the empty and full conditions are distinguishable.
631 	 * hv_get_bytes_to_write() doesn't fully tell the truth in
632 	 * this regard.
633 	 *
634 	 * So first check if we were in the "enough free space" state
635 	 * before we began the iteration. If so, the host was not
636 	 * blocked, and there's no need to signal.
637 	 */
638 	if (curr_write_sz - bytes_read > pending_sz)
639 		return;
640 
641 	/*
642 	 * Similarly, if the new state is "not enough space", then
643 	 * there's no need to signal.
644 	 */
645 	if (curr_write_sz <= pending_sz)
646 		return;
647 
648 	++channel->intr_in_full;
649 	vmbus_setevent(channel);
650 }
651 EXPORT_SYMBOL_GPL(hv_pkt_iter_close);
652