• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Xilinx XADC driver
4  *
5  * Copyright 2013-2014 Analog Devices Inc.
6  *  Author: Lars-Peter Clausen <lars@metafoo.de>
7  *
8  * Documentation for the parts can be found at:
9  *  - XADC hardmacro: Xilinx UG480
10  *  - ZYNQ XADC interface: Xilinx UG585
11  *  - AXI XADC interface: Xilinx PG019
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/device.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/overflow.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/sysfs.h>
26 
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/events.h>
29 #include <linux/iio/iio.h>
30 #include <linux/iio/sysfs.h>
31 #include <linux/iio/trigger.h>
32 #include <linux/iio/trigger_consumer.h>
33 #include <linux/iio/triggered_buffer.h>
34 
35 #include "xilinx-xadc.h"
36 
37 static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
38 
39 /* ZYNQ register definitions */
40 #define XADC_ZYNQ_REG_CFG	0x00
41 #define XADC_ZYNQ_REG_INTSTS	0x04
42 #define XADC_ZYNQ_REG_INTMSK	0x08
43 #define XADC_ZYNQ_REG_STATUS	0x0c
44 #define XADC_ZYNQ_REG_CFIFO	0x10
45 #define XADC_ZYNQ_REG_DFIFO	0x14
46 #define XADC_ZYNQ_REG_CTL		0x18
47 
48 #define XADC_ZYNQ_CFG_ENABLE		BIT(31)
49 #define XADC_ZYNQ_CFG_CFIFOTH_MASK	(0xf << 20)
50 #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET	20
51 #define XADC_ZYNQ_CFG_DFIFOTH_MASK	(0xf << 16)
52 #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET	16
53 #define XADC_ZYNQ_CFG_WEDGE		BIT(13)
54 #define XADC_ZYNQ_CFG_REDGE		BIT(12)
55 #define XADC_ZYNQ_CFG_TCKRATE_MASK	(0x3 << 8)
56 #define XADC_ZYNQ_CFG_TCKRATE_DIV2	(0x0 << 8)
57 #define XADC_ZYNQ_CFG_TCKRATE_DIV4	(0x1 << 8)
58 #define XADC_ZYNQ_CFG_TCKRATE_DIV8	(0x2 << 8)
59 #define XADC_ZYNQ_CFG_TCKRATE_DIV16	(0x3 << 8)
60 #define XADC_ZYNQ_CFG_IGAP_MASK		0x1f
61 #define XADC_ZYNQ_CFG_IGAP(x)		(x)
62 
63 #define XADC_ZYNQ_INT_CFIFO_LTH		BIT(9)
64 #define XADC_ZYNQ_INT_DFIFO_GTH		BIT(8)
65 #define XADC_ZYNQ_INT_ALARM_MASK	0xff
66 #define XADC_ZYNQ_INT_ALARM_OFFSET	0
67 
68 #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK	(0xf << 16)
69 #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET	16
70 #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK	(0xf << 12)
71 #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET	12
72 #define XADC_ZYNQ_STATUS_CFIFOF		BIT(11)
73 #define XADC_ZYNQ_STATUS_CFIFOE		BIT(10)
74 #define XADC_ZYNQ_STATUS_DFIFOF		BIT(9)
75 #define XADC_ZYNQ_STATUS_DFIFOE		BIT(8)
76 #define XADC_ZYNQ_STATUS_OT		BIT(7)
77 #define XADC_ZYNQ_STATUS_ALM(x)		BIT(x)
78 
79 #define XADC_ZYNQ_CTL_RESET		BIT(4)
80 
81 #define XADC_ZYNQ_CMD_NOP		0x00
82 #define XADC_ZYNQ_CMD_READ		0x01
83 #define XADC_ZYNQ_CMD_WRITE		0x02
84 
85 #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
86 
87 /* AXI register definitions */
88 #define XADC_AXI_REG_RESET		0x00
89 #define XADC_AXI_REG_STATUS		0x04
90 #define XADC_AXI_REG_ALARM_STATUS	0x08
91 #define XADC_AXI_REG_CONVST		0x0c
92 #define XADC_AXI_REG_XADC_RESET		0x10
93 #define XADC_AXI_REG_GIER		0x5c
94 #define XADC_AXI_REG_IPISR		0x60
95 #define XADC_AXI_REG_IPIER		0x68
96 
97 /* 7 Series */
98 #define XADC_7S_AXI_ADC_REG_OFFSET	0x200
99 
100 /* UltraScale */
101 #define XADC_US_AXI_ADC_REG_OFFSET	0x400
102 
103 #define XADC_AXI_RESET_MAGIC		0xa
104 #define XADC_AXI_GIER_ENABLE		BIT(31)
105 
106 #define XADC_AXI_INT_EOS		BIT(4)
107 #define XADC_AXI_INT_ALARM_MASK		0x3c0f
108 
109 #define XADC_FLAGS_BUFFERED BIT(0)
110 
111 /*
112  * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does
113  * not have a hardware FIFO. Which means an interrupt is generated for each
114  * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely
115  * overloaded by the interrupts that it soft-lockups. For this reason the driver
116  * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy,
117  * but still responsive.
118  */
119 #define XADC_MAX_SAMPLERATE 150000
120 
xadc_write_reg(struct xadc * xadc,unsigned int reg,uint32_t val)121 static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
122 	uint32_t val)
123 {
124 	writel(val, xadc->base + reg);
125 }
126 
xadc_read_reg(struct xadc * xadc,unsigned int reg,uint32_t * val)127 static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
128 	uint32_t *val)
129 {
130 	*val = readl(xadc->base + reg);
131 }
132 
133 /*
134  * The ZYNQ interface uses two asynchronous FIFOs for communication with the
135  * XADC. Reads and writes to the XADC register are performed by submitting a
136  * request to the command FIFO (CFIFO), once the request has been completed the
137  * result can be read from the data FIFO (DFIFO). The method currently used in
138  * this driver is to submit the request for a read/write operation, then go to
139  * sleep and wait for an interrupt that signals that a response is available in
140  * the data FIFO.
141  */
142 
xadc_zynq_write_fifo(struct xadc * xadc,uint32_t * cmd,unsigned int n)143 static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
144 	unsigned int n)
145 {
146 	unsigned int i;
147 
148 	for (i = 0; i < n; i++)
149 		xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
150 }
151 
xadc_zynq_drain_fifo(struct xadc * xadc)152 static void xadc_zynq_drain_fifo(struct xadc *xadc)
153 {
154 	uint32_t status, tmp;
155 
156 	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
157 
158 	while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
159 		xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
160 		xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
161 	}
162 }
163 
xadc_zynq_update_intmsk(struct xadc * xadc,unsigned int mask,unsigned int val)164 static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
165 	unsigned int val)
166 {
167 	xadc->zynq_intmask &= ~mask;
168 	xadc->zynq_intmask |= val;
169 
170 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
171 		xadc->zynq_intmask | xadc->zynq_masked_alarm);
172 }
173 
xadc_zynq_write_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t val)174 static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
175 	uint16_t val)
176 {
177 	uint32_t cmd[1];
178 	uint32_t tmp;
179 	int ret;
180 
181 	spin_lock_irq(&xadc->lock);
182 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
183 			XADC_ZYNQ_INT_DFIFO_GTH);
184 
185 	reinit_completion(&xadc->completion);
186 
187 	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
188 	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
189 	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
190 	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
191 	tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
192 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
193 
194 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
195 	spin_unlock_irq(&xadc->lock);
196 
197 	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
198 	if (ret == 0)
199 		ret = -EIO;
200 	else
201 		ret = 0;
202 
203 	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
204 
205 	return ret;
206 }
207 
xadc_zynq_read_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t * val)208 static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
209 	uint16_t *val)
210 {
211 	uint32_t cmd[2];
212 	uint32_t resp, tmp;
213 	int ret;
214 
215 	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
216 	cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
217 
218 	spin_lock_irq(&xadc->lock);
219 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
220 			XADC_ZYNQ_INT_DFIFO_GTH);
221 	xadc_zynq_drain_fifo(xadc);
222 	reinit_completion(&xadc->completion);
223 
224 	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
225 	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
226 	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
227 	tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
228 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
229 
230 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
231 	spin_unlock_irq(&xadc->lock);
232 	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
233 	if (ret == 0)
234 		ret = -EIO;
235 	if (ret < 0)
236 		return ret;
237 
238 	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
239 	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
240 
241 	*val = resp & 0xffff;
242 
243 	return 0;
244 }
245 
xadc_zynq_transform_alarm(unsigned int alarm)246 static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
247 {
248 	return ((alarm & 0x80) >> 4) |
249 		((alarm & 0x78) << 1) |
250 		(alarm & 0x07);
251 }
252 
253 /*
254  * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
255  * threshold condition go way from within the interrupt handler, this means as
256  * soon as a threshold condition is present we would enter the interrupt handler
257  * again and again. To work around this we mask all active thresholds interrupts
258  * in the interrupt handler and start a timer. In this timer we poll the
259  * interrupt status and only if the interrupt is inactive we unmask it again.
260  */
xadc_zynq_unmask_worker(struct work_struct * work)261 static void xadc_zynq_unmask_worker(struct work_struct *work)
262 {
263 	struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
264 	unsigned int misc_sts, unmask;
265 
266 	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
267 
268 	misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
269 
270 	spin_lock_irq(&xadc->lock);
271 
272 	/* Clear those bits which are not active anymore */
273 	unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
274 	xadc->zynq_masked_alarm &= misc_sts;
275 
276 	/* Also clear those which are masked out anyway */
277 	xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
278 
279 	/* Clear the interrupts before we unmask them */
280 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
281 
282 	xadc_zynq_update_intmsk(xadc, 0, 0);
283 
284 	spin_unlock_irq(&xadc->lock);
285 
286 	/* if still pending some alarm re-trigger the timer */
287 	if (xadc->zynq_masked_alarm) {
288 		schedule_delayed_work(&xadc->zynq_unmask_work,
289 				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
290 	}
291 
292 }
293 
xadc_zynq_interrupt_handler(int irq,void * devid)294 static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
295 {
296 	struct iio_dev *indio_dev = devid;
297 	struct xadc *xadc = iio_priv(indio_dev);
298 	uint32_t status;
299 
300 	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
301 
302 	status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
303 
304 	if (!status)
305 		return IRQ_NONE;
306 
307 	spin_lock(&xadc->lock);
308 
309 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
310 
311 	if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
312 		xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
313 			XADC_ZYNQ_INT_DFIFO_GTH);
314 		complete(&xadc->completion);
315 	}
316 
317 	status &= XADC_ZYNQ_INT_ALARM_MASK;
318 	if (status) {
319 		xadc->zynq_masked_alarm |= status;
320 		/*
321 		 * mask the current event interrupt,
322 		 * unmask it when the interrupt is no more active.
323 		 */
324 		xadc_zynq_update_intmsk(xadc, 0, 0);
325 
326 		xadc_handle_events(indio_dev,
327 				xadc_zynq_transform_alarm(status));
328 
329 		/* unmask the required interrupts in timer. */
330 		schedule_delayed_work(&xadc->zynq_unmask_work,
331 				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
332 	}
333 	spin_unlock(&xadc->lock);
334 
335 	return IRQ_HANDLED;
336 }
337 
338 #define XADC_ZYNQ_TCK_RATE_MAX 50000000
339 #define XADC_ZYNQ_IGAP_DEFAULT 20
340 #define XADC_ZYNQ_PCAP_RATE_MAX 200000000
341 
xadc_zynq_setup(struct platform_device * pdev,struct iio_dev * indio_dev,int irq)342 static int xadc_zynq_setup(struct platform_device *pdev,
343 	struct iio_dev *indio_dev, int irq)
344 {
345 	struct xadc *xadc = iio_priv(indio_dev);
346 	unsigned long pcap_rate;
347 	unsigned int tck_div;
348 	unsigned int div;
349 	unsigned int igap;
350 	unsigned int tck_rate;
351 	int ret;
352 
353 	/* TODO: Figure out how to make igap and tck_rate configurable */
354 	igap = XADC_ZYNQ_IGAP_DEFAULT;
355 	tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
356 
357 	xadc->zynq_intmask = ~0;
358 
359 	pcap_rate = clk_get_rate(xadc->clk);
360 	if (!pcap_rate)
361 		return -EINVAL;
362 
363 	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
364 		ret = clk_set_rate(xadc->clk,
365 				   (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
366 		if (ret)
367 			return ret;
368 	}
369 
370 	if (tck_rate > pcap_rate / 2) {
371 		div = 2;
372 	} else {
373 		div = pcap_rate / tck_rate;
374 		if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
375 			div++;
376 	}
377 
378 	if (div <= 3)
379 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
380 	else if (div <= 7)
381 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
382 	else if (div <= 15)
383 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
384 	else
385 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
386 
387 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
388 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
389 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
390 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
391 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
392 			XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
393 			tck_div | XADC_ZYNQ_CFG_IGAP(igap));
394 
395 	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
396 		ret = clk_set_rate(xadc->clk, pcap_rate);
397 		if (ret)
398 			return ret;
399 	}
400 
401 	return 0;
402 }
403 
xadc_zynq_get_dclk_rate(struct xadc * xadc)404 static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
405 {
406 	unsigned int div;
407 	uint32_t val;
408 
409 	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
410 
411 	switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
412 	case XADC_ZYNQ_CFG_TCKRATE_DIV4:
413 		div = 4;
414 		break;
415 	case XADC_ZYNQ_CFG_TCKRATE_DIV8:
416 		div = 8;
417 		break;
418 	case XADC_ZYNQ_CFG_TCKRATE_DIV16:
419 		div = 16;
420 		break;
421 	default:
422 		div = 2;
423 		break;
424 	}
425 
426 	return clk_get_rate(xadc->clk) / div;
427 }
428 
xadc_zynq_update_alarm(struct xadc * xadc,unsigned int alarm)429 static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
430 {
431 	unsigned long flags;
432 	uint32_t status;
433 
434 	/* Move OT to bit 7 */
435 	alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
436 
437 	spin_lock_irqsave(&xadc->lock, flags);
438 
439 	/* Clear previous interrupts if any. */
440 	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
441 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
442 
443 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
444 		~alarm & XADC_ZYNQ_INT_ALARM_MASK);
445 
446 	spin_unlock_irqrestore(&xadc->lock, flags);
447 }
448 
449 static const struct xadc_ops xadc_zynq_ops = {
450 	.read = xadc_zynq_read_adc_reg,
451 	.write = xadc_zynq_write_adc_reg,
452 	.setup = xadc_zynq_setup,
453 	.get_dclk_rate = xadc_zynq_get_dclk_rate,
454 	.interrupt_handler = xadc_zynq_interrupt_handler,
455 	.update_alarm = xadc_zynq_update_alarm,
456 	.type = XADC_TYPE_S7,
457 	/* Temp in C = (val * 503.975) / 2**bits - 273.15 */
458 	.temp_scale = 503975,
459 	.temp_offset = 273150,
460 };
461 
462 static const unsigned int xadc_axi_reg_offsets[] = {
463 	[XADC_TYPE_S7] = XADC_7S_AXI_ADC_REG_OFFSET,
464 	[XADC_TYPE_US] = XADC_US_AXI_ADC_REG_OFFSET,
465 };
466 
xadc_axi_read_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t * val)467 static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
468 	uint16_t *val)
469 {
470 	uint32_t val32;
471 
472 	xadc_read_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4,
473 		&val32);
474 	*val = val32 & 0xffff;
475 
476 	return 0;
477 }
478 
xadc_axi_write_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t val)479 static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
480 	uint16_t val)
481 {
482 	xadc_write_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4,
483 		val);
484 
485 	return 0;
486 }
487 
xadc_axi_setup(struct platform_device * pdev,struct iio_dev * indio_dev,int irq)488 static int xadc_axi_setup(struct platform_device *pdev,
489 	struct iio_dev *indio_dev, int irq)
490 {
491 	struct xadc *xadc = iio_priv(indio_dev);
492 
493 	xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
494 	xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
495 
496 	return 0;
497 }
498 
xadc_axi_interrupt_handler(int irq,void * devid)499 static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
500 {
501 	struct iio_dev *indio_dev = devid;
502 	struct xadc *xadc = iio_priv(indio_dev);
503 	uint32_t status, mask;
504 	unsigned int events;
505 
506 	xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
507 	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
508 	status &= mask;
509 
510 	if (!status)
511 		return IRQ_NONE;
512 
513 	if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
514 		iio_trigger_poll(xadc->trigger);
515 
516 	if (status & XADC_AXI_INT_ALARM_MASK) {
517 		/*
518 		 * The order of the bits in the AXI-XADC status register does
519 		 * not match the order of the bits in the XADC alarm enable
520 		 * register. xadc_handle_events() expects the events to be in
521 		 * the same order as the XADC alarm enable register.
522 		 */
523 		events = (status & 0x000e) >> 1;
524 		events |= (status & 0x0001) << 3;
525 		events |= (status & 0x3c00) >> 6;
526 		xadc_handle_events(indio_dev, events);
527 	}
528 
529 	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
530 
531 	return IRQ_HANDLED;
532 }
533 
xadc_axi_update_alarm(struct xadc * xadc,unsigned int alarm)534 static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
535 {
536 	uint32_t val;
537 	unsigned long flags;
538 
539 	/*
540 	 * The order of the bits in the AXI-XADC status register does not match
541 	 * the order of the bits in the XADC alarm enable register. We get
542 	 * passed the alarm mask in the same order as in the XADC alarm enable
543 	 * register.
544 	 */
545 	alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
546 			((alarm & 0xf0) << 6);
547 
548 	spin_lock_irqsave(&xadc->lock, flags);
549 	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
550 	val &= ~XADC_AXI_INT_ALARM_MASK;
551 	val |= alarm;
552 	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
553 	spin_unlock_irqrestore(&xadc->lock, flags);
554 }
555 
xadc_axi_get_dclk(struct xadc * xadc)556 static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
557 {
558 	return clk_get_rate(xadc->clk);
559 }
560 
561 static const struct xadc_ops xadc_7s_axi_ops = {
562 	.read = xadc_axi_read_adc_reg,
563 	.write = xadc_axi_write_adc_reg,
564 	.setup = xadc_axi_setup,
565 	.get_dclk_rate = xadc_axi_get_dclk,
566 	.update_alarm = xadc_axi_update_alarm,
567 	.interrupt_handler = xadc_axi_interrupt_handler,
568 	.flags = XADC_FLAGS_BUFFERED,
569 	.type = XADC_TYPE_S7,
570 	/* Temp in C = (val * 503.975) / 2**bits - 273.15 */
571 	.temp_scale = 503975,
572 	.temp_offset = 273150,
573 };
574 
575 static const struct xadc_ops xadc_us_axi_ops = {
576 	.read = xadc_axi_read_adc_reg,
577 	.write = xadc_axi_write_adc_reg,
578 	.setup = xadc_axi_setup,
579 	.get_dclk_rate = xadc_axi_get_dclk,
580 	.update_alarm = xadc_axi_update_alarm,
581 	.interrupt_handler = xadc_axi_interrupt_handler,
582 	.flags = XADC_FLAGS_BUFFERED,
583 	.type = XADC_TYPE_US,
584 	/**
585 	 * Values below are for UltraScale+ (SYSMONE4) using internal reference.
586 	 * See https://docs.xilinx.com/v/u/en-US/ug580-ultrascale-sysmon
587 	 */
588 	.temp_scale = 509314,
589 	.temp_offset = 280231,
590 };
591 
_xadc_update_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t mask,uint16_t val)592 static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
593 	uint16_t mask, uint16_t val)
594 {
595 	uint16_t tmp;
596 	int ret;
597 
598 	ret = _xadc_read_adc_reg(xadc, reg, &tmp);
599 	if (ret)
600 		return ret;
601 
602 	return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
603 }
604 
xadc_update_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t mask,uint16_t val)605 static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
606 	uint16_t mask, uint16_t val)
607 {
608 	int ret;
609 
610 	mutex_lock(&xadc->mutex);
611 	ret = _xadc_update_adc_reg(xadc, reg, mask, val);
612 	mutex_unlock(&xadc->mutex);
613 
614 	return ret;
615 }
616 
xadc_get_dclk_rate(struct xadc * xadc)617 static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
618 {
619 	return xadc->ops->get_dclk_rate(xadc);
620 }
621 
xadc_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * mask)622 static int xadc_update_scan_mode(struct iio_dev *indio_dev,
623 	const unsigned long *mask)
624 {
625 	struct xadc *xadc = iio_priv(indio_dev);
626 	size_t new_size, n;
627 	void *data;
628 
629 	n = bitmap_weight(mask, indio_dev->masklength);
630 
631 	if (check_mul_overflow(n, sizeof(*xadc->data), &new_size))
632 		return -ENOMEM;
633 
634 	data = devm_krealloc(indio_dev->dev.parent, xadc->data,
635 			     new_size, GFP_KERNEL);
636 	if (!data)
637 		return -ENOMEM;
638 
639 	memset(data, 0, new_size);
640 	xadc->data = data;
641 
642 	return 0;
643 }
644 
xadc_scan_index_to_channel(unsigned int scan_index)645 static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
646 {
647 	switch (scan_index) {
648 	case 5:
649 		return XADC_REG_VCCPINT;
650 	case 6:
651 		return XADC_REG_VCCPAUX;
652 	case 7:
653 		return XADC_REG_VCCO_DDR;
654 	case 8:
655 		return XADC_REG_TEMP;
656 	case 9:
657 		return XADC_REG_VCCINT;
658 	case 10:
659 		return XADC_REG_VCCAUX;
660 	case 11:
661 		return XADC_REG_VPVN;
662 	case 12:
663 		return XADC_REG_VREFP;
664 	case 13:
665 		return XADC_REG_VREFN;
666 	case 14:
667 		return XADC_REG_VCCBRAM;
668 	default:
669 		return XADC_REG_VAUX(scan_index - 16);
670 	}
671 }
672 
xadc_trigger_handler(int irq,void * p)673 static irqreturn_t xadc_trigger_handler(int irq, void *p)
674 {
675 	struct iio_poll_func *pf = p;
676 	struct iio_dev *indio_dev = pf->indio_dev;
677 	struct xadc *xadc = iio_priv(indio_dev);
678 	unsigned int chan;
679 	int i, j;
680 
681 	if (!xadc->data)
682 		goto out;
683 
684 	j = 0;
685 	for_each_set_bit(i, indio_dev->active_scan_mask,
686 		indio_dev->masklength) {
687 		chan = xadc_scan_index_to_channel(i);
688 		xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
689 		j++;
690 	}
691 
692 	iio_push_to_buffers(indio_dev, xadc->data);
693 
694 out:
695 	iio_trigger_notify_done(indio_dev->trig);
696 
697 	return IRQ_HANDLED;
698 }
699 
xadc_trigger_set_state(struct iio_trigger * trigger,bool state)700 static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
701 {
702 	struct xadc *xadc = iio_trigger_get_drvdata(trigger);
703 	unsigned long flags;
704 	unsigned int convst;
705 	unsigned int val;
706 	int ret = 0;
707 
708 	mutex_lock(&xadc->mutex);
709 
710 	if (state) {
711 		/* Only one of the two triggers can be active at a time. */
712 		if (xadc->trigger != NULL) {
713 			ret = -EBUSY;
714 			goto err_out;
715 		} else {
716 			xadc->trigger = trigger;
717 			if (trigger == xadc->convst_trigger)
718 				convst = XADC_CONF0_EC;
719 			else
720 				convst = 0;
721 		}
722 		ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
723 					convst);
724 		if (ret)
725 			goto err_out;
726 	} else {
727 		xadc->trigger = NULL;
728 	}
729 
730 	spin_lock_irqsave(&xadc->lock, flags);
731 	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
732 	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS);
733 	if (state)
734 		val |= XADC_AXI_INT_EOS;
735 	else
736 		val &= ~XADC_AXI_INT_EOS;
737 	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
738 	spin_unlock_irqrestore(&xadc->lock, flags);
739 
740 err_out:
741 	mutex_unlock(&xadc->mutex);
742 
743 	return ret;
744 }
745 
746 static const struct iio_trigger_ops xadc_trigger_ops = {
747 	.set_trigger_state = &xadc_trigger_set_state,
748 };
749 
xadc_alloc_trigger(struct iio_dev * indio_dev,const char * name)750 static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
751 	const char *name)
752 {
753 	struct device *dev = indio_dev->dev.parent;
754 	struct iio_trigger *trig;
755 	int ret;
756 
757 	trig = devm_iio_trigger_alloc(dev, "%s%d-%s", indio_dev->name,
758 				      iio_device_id(indio_dev), name);
759 	if (trig == NULL)
760 		return ERR_PTR(-ENOMEM);
761 
762 	trig->ops = &xadc_trigger_ops;
763 	iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
764 
765 	ret = devm_iio_trigger_register(dev, trig);
766 	if (ret)
767 		return ERR_PTR(ret);
768 
769 	return trig;
770 }
771 
xadc_power_adc_b(struct xadc * xadc,unsigned int seq_mode)772 static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
773 {
774 	uint16_t val;
775 
776 	/*
777 	 * As per datasheet the power-down bits are don't care in the
778 	 * UltraScale, but as per reality setting the power-down bit for the
779 	 * non-existing ADC-B powers down the main ADC, so just return and don't
780 	 * do anything.
781 	 */
782 	if (xadc->ops->type == XADC_TYPE_US)
783 		return 0;
784 
785 	/* Powerdown the ADC-B when it is not needed. */
786 	switch (seq_mode) {
787 	case XADC_CONF1_SEQ_SIMULTANEOUS:
788 	case XADC_CONF1_SEQ_INDEPENDENT:
789 		val = 0;
790 		break;
791 	default:
792 		val = XADC_CONF2_PD_ADC_B;
793 		break;
794 	}
795 
796 	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
797 		val);
798 }
799 
xadc_get_seq_mode(struct xadc * xadc,unsigned long scan_mode)800 static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
801 {
802 	unsigned int aux_scan_mode = scan_mode >> 16;
803 
804 	/* UltraScale has only one ADC and supports only continuous mode */
805 	if (xadc->ops->type == XADC_TYPE_US)
806 		return XADC_CONF1_SEQ_CONTINUOUS;
807 
808 	if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
809 		return XADC_CONF1_SEQ_SIMULTANEOUS;
810 
811 	if ((aux_scan_mode & 0xff00) == 0 ||
812 		(aux_scan_mode & 0x00ff) == 0)
813 		return XADC_CONF1_SEQ_CONTINUOUS;
814 
815 	return XADC_CONF1_SEQ_SIMULTANEOUS;
816 }
817 
xadc_postdisable(struct iio_dev * indio_dev)818 static int xadc_postdisable(struct iio_dev *indio_dev)
819 {
820 	struct xadc *xadc = iio_priv(indio_dev);
821 	unsigned long scan_mask;
822 	int ret;
823 	int i;
824 
825 	scan_mask = 1; /* Run calibration as part of the sequence */
826 	for (i = 0; i < indio_dev->num_channels; i++)
827 		scan_mask |= BIT(indio_dev->channels[i].scan_index);
828 
829 	/* Enable all channels and calibration */
830 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
831 	if (ret)
832 		return ret;
833 
834 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
835 	if (ret)
836 		return ret;
837 
838 	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
839 		XADC_CONF1_SEQ_CONTINUOUS);
840 	if (ret)
841 		return ret;
842 
843 	return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
844 }
845 
xadc_preenable(struct iio_dev * indio_dev)846 static int xadc_preenable(struct iio_dev *indio_dev)
847 {
848 	struct xadc *xadc = iio_priv(indio_dev);
849 	unsigned long scan_mask;
850 	int seq_mode;
851 	int ret;
852 
853 	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
854 		XADC_CONF1_SEQ_DEFAULT);
855 	if (ret)
856 		goto err;
857 
858 	scan_mask = *indio_dev->active_scan_mask;
859 	seq_mode = xadc_get_seq_mode(xadc, scan_mask);
860 
861 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
862 	if (ret)
863 		goto err;
864 
865 	/*
866 	 * In simultaneous mode the upper and lower aux channels are samples at
867 	 * the same time. In this mode the upper 8 bits in the sequencer
868 	 * register are don't care and the lower 8 bits control two channels
869 	 * each. As such we must set the bit if either the channel in the lower
870 	 * group or the upper group is enabled.
871 	 */
872 	if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS)
873 		scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000;
874 
875 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
876 	if (ret)
877 		goto err;
878 
879 	ret = xadc_power_adc_b(xadc, seq_mode);
880 	if (ret)
881 		goto err;
882 
883 	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
884 		seq_mode);
885 	if (ret)
886 		goto err;
887 
888 	return 0;
889 err:
890 	xadc_postdisable(indio_dev);
891 	return ret;
892 }
893 
894 static const struct iio_buffer_setup_ops xadc_buffer_ops = {
895 	.preenable = &xadc_preenable,
896 	.postdisable = &xadc_postdisable,
897 };
898 
xadc_read_samplerate(struct xadc * xadc)899 static int xadc_read_samplerate(struct xadc *xadc)
900 {
901 	unsigned int div;
902 	uint16_t val16;
903 	int ret;
904 
905 	ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
906 	if (ret)
907 		return ret;
908 
909 	div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
910 	if (div < 2)
911 		div = 2;
912 
913 	return xadc_get_dclk_rate(xadc) / div / 26;
914 }
915 
xadc_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long info)916 static int xadc_read_raw(struct iio_dev *indio_dev,
917 	struct iio_chan_spec const *chan, int *val, int *val2, long info)
918 {
919 	struct xadc *xadc = iio_priv(indio_dev);
920 	unsigned int bits = chan->scan_type.realbits;
921 	uint16_t val16;
922 	int ret;
923 
924 	switch (info) {
925 	case IIO_CHAN_INFO_RAW:
926 		if (iio_buffer_enabled(indio_dev))
927 			return -EBUSY;
928 		ret = xadc_read_adc_reg(xadc, chan->address, &val16);
929 		if (ret < 0)
930 			return ret;
931 
932 		val16 >>= chan->scan_type.shift;
933 		if (chan->scan_type.sign == 'u')
934 			*val = val16;
935 		else
936 			*val = sign_extend32(val16, bits - 1);
937 
938 		return IIO_VAL_INT;
939 	case IIO_CHAN_INFO_SCALE:
940 		switch (chan->type) {
941 		case IIO_VOLTAGE:
942 			/* V = (val * 3.0) / 2**bits */
943 			switch (chan->address) {
944 			case XADC_REG_VCCINT:
945 			case XADC_REG_VCCAUX:
946 			case XADC_REG_VREFP:
947 			case XADC_REG_VREFN:
948 			case XADC_REG_VCCBRAM:
949 			case XADC_REG_VCCPINT:
950 			case XADC_REG_VCCPAUX:
951 			case XADC_REG_VCCO_DDR:
952 				*val = 3000;
953 				break;
954 			default:
955 				*val = 1000;
956 				break;
957 			}
958 			*val2 = chan->scan_type.realbits;
959 			return IIO_VAL_FRACTIONAL_LOG2;
960 		case IIO_TEMP:
961 			*val = xadc->ops->temp_scale;
962 			*val2 = bits;
963 			return IIO_VAL_FRACTIONAL_LOG2;
964 		default:
965 			return -EINVAL;
966 		}
967 	case IIO_CHAN_INFO_OFFSET:
968 		/* Only the temperature channel has an offset */
969 		*val = -((xadc->ops->temp_offset << bits) / xadc->ops->temp_scale);
970 		return IIO_VAL_INT;
971 	case IIO_CHAN_INFO_SAMP_FREQ:
972 		ret = xadc_read_samplerate(xadc);
973 		if (ret < 0)
974 			return ret;
975 
976 		*val = ret;
977 		return IIO_VAL_INT;
978 	default:
979 		return -EINVAL;
980 	}
981 }
982 
xadc_write_samplerate(struct xadc * xadc,int val)983 static int xadc_write_samplerate(struct xadc *xadc, int val)
984 {
985 	unsigned long clk_rate = xadc_get_dclk_rate(xadc);
986 	unsigned int div;
987 
988 	if (!clk_rate)
989 		return -EINVAL;
990 
991 	if (val <= 0)
992 		return -EINVAL;
993 
994 	/* Max. 150 kSPS */
995 	if (val > XADC_MAX_SAMPLERATE)
996 		val = XADC_MAX_SAMPLERATE;
997 
998 	val *= 26;
999 
1000 	/* Min 1MHz */
1001 	if (val < 1000000)
1002 		val = 1000000;
1003 
1004 	/*
1005 	 * We want to round down, but only if we do not exceed the 150 kSPS
1006 	 * limit.
1007 	 */
1008 	div = clk_rate / val;
1009 	if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE)
1010 		div++;
1011 	if (div < 2)
1012 		div = 2;
1013 	else if (div > 0xff)
1014 		div = 0xff;
1015 
1016 	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
1017 		div << XADC_CONF2_DIV_OFFSET);
1018 }
1019 
xadc_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long info)1020 static int xadc_write_raw(struct iio_dev *indio_dev,
1021 	struct iio_chan_spec const *chan, int val, int val2, long info)
1022 {
1023 	struct xadc *xadc = iio_priv(indio_dev);
1024 
1025 	if (info != IIO_CHAN_INFO_SAMP_FREQ)
1026 		return -EINVAL;
1027 
1028 	return xadc_write_samplerate(xadc, val);
1029 }
1030 
1031 static const struct iio_event_spec xadc_temp_events[] = {
1032 	{
1033 		.type = IIO_EV_TYPE_THRESH,
1034 		.dir = IIO_EV_DIR_RISING,
1035 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
1036 				BIT(IIO_EV_INFO_VALUE) |
1037 				BIT(IIO_EV_INFO_HYSTERESIS),
1038 	},
1039 };
1040 
1041 /* Separate values for upper and lower thresholds, but only a shared enabled */
1042 static const struct iio_event_spec xadc_voltage_events[] = {
1043 	{
1044 		.type = IIO_EV_TYPE_THRESH,
1045 		.dir = IIO_EV_DIR_RISING,
1046 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1047 	}, {
1048 		.type = IIO_EV_TYPE_THRESH,
1049 		.dir = IIO_EV_DIR_FALLING,
1050 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1051 	}, {
1052 		.type = IIO_EV_TYPE_THRESH,
1053 		.dir = IIO_EV_DIR_EITHER,
1054 		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
1055 	},
1056 };
1057 
1058 #define XADC_CHAN_TEMP(_chan, _scan_index, _addr, _bits) { \
1059 	.type = IIO_TEMP, \
1060 	.indexed = 1, \
1061 	.channel = (_chan), \
1062 	.address = (_addr), \
1063 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1064 		BIT(IIO_CHAN_INFO_SCALE) | \
1065 		BIT(IIO_CHAN_INFO_OFFSET), \
1066 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1067 	.event_spec = xadc_temp_events, \
1068 	.num_event_specs = ARRAY_SIZE(xadc_temp_events), \
1069 	.scan_index = (_scan_index), \
1070 	.scan_type = { \
1071 		.sign = 'u', \
1072 		.realbits = (_bits), \
1073 		.storagebits = 16, \
1074 		.shift = 16 - (_bits), \
1075 		.endianness = IIO_CPU, \
1076 	}, \
1077 }
1078 
1079 #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _bits, _ext, _alarm) { \
1080 	.type = IIO_VOLTAGE, \
1081 	.indexed = 1, \
1082 	.channel = (_chan), \
1083 	.address = (_addr), \
1084 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1085 		BIT(IIO_CHAN_INFO_SCALE), \
1086 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1087 	.event_spec = (_alarm) ? xadc_voltage_events : NULL, \
1088 	.num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
1089 	.scan_index = (_scan_index), \
1090 	.scan_type = { \
1091 		.sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1092 		.realbits = (_bits), \
1093 		.storagebits = 16, \
1094 		.shift = 16 - (_bits), \
1095 		.endianness = IIO_CPU, \
1096 	}, \
1097 	.extend_name = _ext, \
1098 }
1099 
1100 /* 7 Series */
1101 #define XADC_7S_CHAN_TEMP(_chan, _scan_index, _addr) \
1102 	XADC_CHAN_TEMP(_chan, _scan_index, _addr, 12)
1103 #define XADC_7S_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \
1104 	XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 12, _ext, _alarm)
1105 
1106 static const struct iio_chan_spec xadc_7s_channels[] = {
1107 	XADC_7S_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1108 	XADC_7S_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1109 	XADC_7S_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1110 	XADC_7S_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1111 	XADC_7S_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1112 	XADC_7S_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1113 	XADC_7S_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1114 	XADC_7S_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1115 	XADC_7S_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1116 	XADC_7S_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1117 	XADC_7S_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1118 	XADC_7S_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1119 	XADC_7S_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1120 	XADC_7S_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1121 	XADC_7S_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1122 	XADC_7S_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1123 	XADC_7S_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1124 	XADC_7S_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1125 	XADC_7S_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1126 	XADC_7S_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1127 	XADC_7S_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1128 	XADC_7S_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1129 	XADC_7S_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1130 	XADC_7S_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1131 	XADC_7S_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1132 	XADC_7S_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1133 };
1134 
1135 /* UltraScale */
1136 #define XADC_US_CHAN_TEMP(_chan, _scan_index, _addr) \
1137 	XADC_CHAN_TEMP(_chan, _scan_index, _addr, 10)
1138 #define XADC_US_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \
1139 	XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 10, _ext, _alarm)
1140 
1141 static const struct iio_chan_spec xadc_us_channels[] = {
1142 	XADC_US_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1143 	XADC_US_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1144 	XADC_US_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1145 	XADC_US_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1146 	XADC_US_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpsintlp", true),
1147 	XADC_US_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpsintfp", true),
1148 	XADC_US_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccpsaux", true),
1149 	XADC_US_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1150 	XADC_US_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1151 	XADC_US_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1152 	XADC_US_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1153 	XADC_US_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1154 	XADC_US_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1155 	XADC_US_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1156 	XADC_US_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1157 	XADC_US_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1158 	XADC_US_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1159 	XADC_US_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1160 	XADC_US_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1161 	XADC_US_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1162 	XADC_US_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1163 	XADC_US_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1164 	XADC_US_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1165 	XADC_US_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1166 	XADC_US_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1167 	XADC_US_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1168 };
1169 
1170 static const struct iio_info xadc_info = {
1171 	.read_raw = &xadc_read_raw,
1172 	.write_raw = &xadc_write_raw,
1173 	.read_event_config = &xadc_read_event_config,
1174 	.write_event_config = &xadc_write_event_config,
1175 	.read_event_value = &xadc_read_event_value,
1176 	.write_event_value = &xadc_write_event_value,
1177 	.update_scan_mode = &xadc_update_scan_mode,
1178 };
1179 
1180 static const struct of_device_id xadc_of_match_table[] = {
1181 	{
1182 		.compatible = "xlnx,zynq-xadc-1.00.a",
1183 		.data = &xadc_zynq_ops
1184 	}, {
1185 		.compatible = "xlnx,axi-xadc-1.00.a",
1186 		.data = &xadc_7s_axi_ops
1187 	}, {
1188 		.compatible = "xlnx,system-management-wiz-1.3",
1189 		.data = &xadc_us_axi_ops
1190 	},
1191 	{ },
1192 };
1193 MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1194 
xadc_parse_dt(struct iio_dev * indio_dev,struct device_node * np,unsigned int * conf)1195 static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1196 	unsigned int *conf)
1197 {
1198 	struct device *dev = indio_dev->dev.parent;
1199 	struct xadc *xadc = iio_priv(indio_dev);
1200 	const struct iio_chan_spec *channel_templates;
1201 	struct iio_chan_spec *channels, *chan;
1202 	struct device_node *chan_node, *child;
1203 	unsigned int max_channels;
1204 	unsigned int num_channels;
1205 	const char *external_mux;
1206 	u32 ext_mux_chan;
1207 	u32 reg;
1208 	int ret;
1209 
1210 	*conf = 0;
1211 
1212 	ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1213 	if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1214 		xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1215 	else if (strcasecmp(external_mux, "single") == 0)
1216 		xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1217 	else if (strcasecmp(external_mux, "dual") == 0)
1218 		xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1219 	else
1220 		return -EINVAL;
1221 
1222 	if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1223 		ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1224 					&ext_mux_chan);
1225 		if (ret < 0)
1226 			return ret;
1227 
1228 		if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1229 			if (ext_mux_chan == 0)
1230 				ext_mux_chan = XADC_REG_VPVN;
1231 			else if (ext_mux_chan <= 16)
1232 				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1233 			else
1234 				return -EINVAL;
1235 		} else {
1236 			if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1237 				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1238 			else
1239 				return -EINVAL;
1240 		}
1241 
1242 		*conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1243 	}
1244 	if (xadc->ops->type == XADC_TYPE_S7) {
1245 		channel_templates = xadc_7s_channels;
1246 		max_channels = ARRAY_SIZE(xadc_7s_channels);
1247 	} else {
1248 		channel_templates = xadc_us_channels;
1249 		max_channels = ARRAY_SIZE(xadc_us_channels);
1250 	}
1251 	channels = devm_kmemdup(dev, channel_templates,
1252 				sizeof(channels[0]) * max_channels, GFP_KERNEL);
1253 	if (!channels)
1254 		return -ENOMEM;
1255 
1256 	num_channels = 9;
1257 	chan = &channels[9];
1258 
1259 	chan_node = of_get_child_by_name(np, "xlnx,channels");
1260 	if (chan_node) {
1261 		for_each_child_of_node(chan_node, child) {
1262 			if (num_channels >= max_channels) {
1263 				of_node_put(child);
1264 				break;
1265 			}
1266 
1267 			ret = of_property_read_u32(child, "reg", &reg);
1268 			if (ret || reg > 16)
1269 				continue;
1270 
1271 			if (of_property_read_bool(child, "xlnx,bipolar"))
1272 				chan->scan_type.sign = 's';
1273 
1274 			if (reg == 0) {
1275 				chan->scan_index = 11;
1276 				chan->address = XADC_REG_VPVN;
1277 			} else {
1278 				chan->scan_index = 15 + reg;
1279 				chan->address = XADC_REG_VAUX(reg - 1);
1280 			}
1281 			num_channels++;
1282 			chan++;
1283 		}
1284 	}
1285 	of_node_put(chan_node);
1286 
1287 	indio_dev->num_channels = num_channels;
1288 	indio_dev->channels = devm_krealloc(dev, channels,
1289 					    sizeof(*channels) * num_channels,
1290 					    GFP_KERNEL);
1291 	/* If we can't resize the channels array, just use the original */
1292 	if (!indio_dev->channels)
1293 		indio_dev->channels = channels;
1294 
1295 	return 0;
1296 }
1297 
1298 static const char * const xadc_type_names[] = {
1299 	[XADC_TYPE_S7] = "xadc",
1300 	[XADC_TYPE_US] = "xilinx-system-monitor",
1301 };
1302 
xadc_clk_disable_unprepare(void * data)1303 static void xadc_clk_disable_unprepare(void *data)
1304 {
1305 	struct clk *clk = data;
1306 
1307 	clk_disable_unprepare(clk);
1308 }
1309 
xadc_cancel_delayed_work(void * data)1310 static void xadc_cancel_delayed_work(void *data)
1311 {
1312 	struct delayed_work *work = data;
1313 
1314 	cancel_delayed_work_sync(work);
1315 }
1316 
xadc_probe(struct platform_device * pdev)1317 static int xadc_probe(struct platform_device *pdev)
1318 {
1319 	struct device *dev = &pdev->dev;
1320 	const struct of_device_id *id;
1321 	struct iio_dev *indio_dev;
1322 	unsigned int bipolar_mask;
1323 	unsigned int conf0;
1324 	struct xadc *xadc;
1325 	int ret;
1326 	int irq;
1327 	int i;
1328 
1329 	if (!dev->of_node)
1330 		return -ENODEV;
1331 
1332 	id = of_match_node(xadc_of_match_table, dev->of_node);
1333 	if (!id)
1334 		return -EINVAL;
1335 
1336 	irq = platform_get_irq(pdev, 0);
1337 	if (irq <= 0)
1338 		return -ENXIO;
1339 
1340 	indio_dev = devm_iio_device_alloc(dev, sizeof(*xadc));
1341 	if (!indio_dev)
1342 		return -ENOMEM;
1343 
1344 	xadc = iio_priv(indio_dev);
1345 	xadc->ops = id->data;
1346 	xadc->irq = irq;
1347 	init_completion(&xadc->completion);
1348 	mutex_init(&xadc->mutex);
1349 	spin_lock_init(&xadc->lock);
1350 	INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1351 
1352 	xadc->base = devm_platform_ioremap_resource(pdev, 0);
1353 	if (IS_ERR(xadc->base))
1354 		return PTR_ERR(xadc->base);
1355 
1356 	indio_dev->name = xadc_type_names[xadc->ops->type];
1357 	indio_dev->modes = INDIO_DIRECT_MODE;
1358 	indio_dev->info = &xadc_info;
1359 
1360 	ret = xadc_parse_dt(indio_dev, dev->of_node, &conf0);
1361 	if (ret)
1362 		return ret;
1363 
1364 	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1365 		ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
1366 						      &iio_pollfunc_store_time,
1367 						      &xadc_trigger_handler,
1368 						      &xadc_buffer_ops);
1369 		if (ret)
1370 			return ret;
1371 
1372 		xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1373 		if (IS_ERR(xadc->convst_trigger))
1374 			return PTR_ERR(xadc->convst_trigger);
1375 
1376 		xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1377 			"samplerate");
1378 		if (IS_ERR(xadc->samplerate_trigger))
1379 			return PTR_ERR(xadc->samplerate_trigger);
1380 	}
1381 
1382 	xadc->clk = devm_clk_get(dev, NULL);
1383 	if (IS_ERR(xadc->clk))
1384 		return PTR_ERR(xadc->clk);
1385 
1386 	ret = clk_prepare_enable(xadc->clk);
1387 	if (ret)
1388 		return ret;
1389 
1390 	ret = devm_add_action_or_reset(dev,
1391 				       xadc_clk_disable_unprepare, xadc->clk);
1392 	if (ret)
1393 		return ret;
1394 
1395 	/*
1396 	 * Make sure not to exceed the maximum samplerate since otherwise the
1397 	 * resulting interrupt storm will soft-lock the system.
1398 	 */
1399 	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1400 		ret = xadc_read_samplerate(xadc);
1401 		if (ret < 0)
1402 			return ret;
1403 
1404 		if (ret > XADC_MAX_SAMPLERATE) {
1405 			ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE);
1406 			if (ret < 0)
1407 				return ret;
1408 		}
1409 	}
1410 
1411 	ret = devm_request_irq(dev, xadc->irq, xadc->ops->interrupt_handler, 0,
1412 			       dev_name(dev), indio_dev);
1413 	if (ret)
1414 		return ret;
1415 
1416 	ret = devm_add_action_or_reset(dev, xadc_cancel_delayed_work,
1417 				       &xadc->zynq_unmask_work);
1418 	if (ret)
1419 		return ret;
1420 
1421 	ret = xadc->ops->setup(pdev, indio_dev, xadc->irq);
1422 	if (ret)
1423 		return ret;
1424 
1425 	for (i = 0; i < 16; i++)
1426 		xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1427 			&xadc->threshold[i]);
1428 
1429 	ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1430 	if (ret)
1431 		return ret;
1432 
1433 	bipolar_mask = 0;
1434 	for (i = 0; i < indio_dev->num_channels; i++) {
1435 		if (indio_dev->channels[i].scan_type.sign == 's')
1436 			bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1437 	}
1438 
1439 	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1440 	if (ret)
1441 		return ret;
1442 
1443 	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1444 		bipolar_mask >> 16);
1445 	if (ret)
1446 		return ret;
1447 
1448 	/* Go to non-buffered mode */
1449 	xadc_postdisable(indio_dev);
1450 
1451 	return devm_iio_device_register(dev, indio_dev);
1452 }
1453 
1454 static struct platform_driver xadc_driver = {
1455 	.probe = xadc_probe,
1456 	.driver = {
1457 		.name = "xadc",
1458 		.of_match_table = xadc_of_match_table,
1459 	},
1460 };
1461 module_platform_driver(xadc_driver);
1462 
1463 MODULE_LICENSE("GPL v2");
1464 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1465 MODULE_DESCRIPTION("Xilinx XADC IIO driver");
1466