1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3 * Copyright (c) 2005 Voltaire Inc. All rights reserved.
4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved.
7 */
8
9 #include <linux/completion.h>
10 #include <linux/in.h>
11 #include <linux/in6.h>
12 #include <linux/mutex.h>
13 #include <linux/random.h>
14 #include <linux/igmp.h>
15 #include <linux/xarray.h>
16 #include <linux/inetdevice.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <net/route.h>
20
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 #include <net/tcp.h>
24 #include <net/ipv6.h>
25 #include <net/ip_fib.h>
26 #include <net/ip6_route.h>
27
28 #include <rdma/rdma_cm.h>
29 #include <rdma/rdma_cm_ib.h>
30 #include <rdma/rdma_netlink.h>
31 #include <rdma/ib.h>
32 #include <rdma/ib_cache.h>
33 #include <rdma/ib_cm.h>
34 #include <rdma/ib_sa.h>
35 #include <rdma/iw_cm.h>
36
37 #include "core_priv.h"
38 #include "cma_priv.h"
39 #include "cma_trace.h"
40
41 MODULE_AUTHOR("Sean Hefty");
42 MODULE_DESCRIPTION("Generic RDMA CM Agent");
43 MODULE_LICENSE("Dual BSD/GPL");
44
45 #define CMA_CM_RESPONSE_TIMEOUT 20
46 #define CMA_MAX_CM_RETRIES 15
47 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
48 #define CMA_IBOE_PACKET_LIFETIME 18
49 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP
50
51 static const char * const cma_events[] = {
52 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved",
53 [RDMA_CM_EVENT_ADDR_ERROR] = "address error",
54 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ",
55 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error",
56 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request",
57 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
58 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error",
59 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable",
60 [RDMA_CM_EVENT_REJECTED] = "rejected",
61 [RDMA_CM_EVENT_ESTABLISHED] = "established",
62 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected",
63 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal",
64 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join",
65 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error",
66 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change",
67 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit",
68 };
69
70 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
71 enum ib_gid_type gid_type);
72
rdma_event_msg(enum rdma_cm_event_type event)73 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
74 {
75 size_t index = event;
76
77 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
78 cma_events[index] : "unrecognized event";
79 }
80 EXPORT_SYMBOL(rdma_event_msg);
81
rdma_reject_msg(struct rdma_cm_id * id,int reason)82 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
83 int reason)
84 {
85 if (rdma_ib_or_roce(id->device, id->port_num))
86 return ibcm_reject_msg(reason);
87
88 if (rdma_protocol_iwarp(id->device, id->port_num))
89 return iwcm_reject_msg(reason);
90
91 WARN_ON_ONCE(1);
92 return "unrecognized transport";
93 }
94 EXPORT_SYMBOL(rdma_reject_msg);
95
96 /**
97 * rdma_is_consumer_reject - return true if the consumer rejected the connect
98 * request.
99 * @id: Communication identifier that received the REJECT event.
100 * @reason: Value returned in the REJECT event status field.
101 */
rdma_is_consumer_reject(struct rdma_cm_id * id,int reason)102 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason)
103 {
104 if (rdma_ib_or_roce(id->device, id->port_num))
105 return reason == IB_CM_REJ_CONSUMER_DEFINED;
106
107 if (rdma_protocol_iwarp(id->device, id->port_num))
108 return reason == -ECONNREFUSED;
109
110 WARN_ON_ONCE(1);
111 return false;
112 }
113
rdma_consumer_reject_data(struct rdma_cm_id * id,struct rdma_cm_event * ev,u8 * data_len)114 const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
115 struct rdma_cm_event *ev, u8 *data_len)
116 {
117 const void *p;
118
119 if (rdma_is_consumer_reject(id, ev->status)) {
120 *data_len = ev->param.conn.private_data_len;
121 p = ev->param.conn.private_data;
122 } else {
123 *data_len = 0;
124 p = NULL;
125 }
126 return p;
127 }
128 EXPORT_SYMBOL(rdma_consumer_reject_data);
129
130 /**
131 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id.
132 * @id: Communication Identifier
133 */
rdma_iw_cm_id(struct rdma_cm_id * id)134 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id)
135 {
136 struct rdma_id_private *id_priv;
137
138 id_priv = container_of(id, struct rdma_id_private, id);
139 if (id->device->node_type == RDMA_NODE_RNIC)
140 return id_priv->cm_id.iw;
141 return NULL;
142 }
143 EXPORT_SYMBOL(rdma_iw_cm_id);
144
145 /**
146 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack.
147 * @res: rdma resource tracking entry pointer
148 */
rdma_res_to_id(struct rdma_restrack_entry * res)149 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res)
150 {
151 struct rdma_id_private *id_priv =
152 container_of(res, struct rdma_id_private, res);
153
154 return &id_priv->id;
155 }
156 EXPORT_SYMBOL(rdma_res_to_id);
157
158 static int cma_add_one(struct ib_device *device);
159 static void cma_remove_one(struct ib_device *device, void *client_data);
160
161 static struct ib_client cma_client = {
162 .name = "cma",
163 .add = cma_add_one,
164 .remove = cma_remove_one
165 };
166
167 static struct ib_sa_client sa_client;
168 static LIST_HEAD(dev_list);
169 static LIST_HEAD(listen_any_list);
170 static DEFINE_MUTEX(lock);
171 static struct workqueue_struct *cma_wq;
172 static unsigned int cma_pernet_id;
173
174 struct cma_pernet {
175 struct xarray tcp_ps;
176 struct xarray udp_ps;
177 struct xarray ipoib_ps;
178 struct xarray ib_ps;
179 };
180
cma_pernet(struct net * net)181 static struct cma_pernet *cma_pernet(struct net *net)
182 {
183 return net_generic(net, cma_pernet_id);
184 }
185
186 static
cma_pernet_xa(struct net * net,enum rdma_ucm_port_space ps)187 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps)
188 {
189 struct cma_pernet *pernet = cma_pernet(net);
190
191 switch (ps) {
192 case RDMA_PS_TCP:
193 return &pernet->tcp_ps;
194 case RDMA_PS_UDP:
195 return &pernet->udp_ps;
196 case RDMA_PS_IPOIB:
197 return &pernet->ipoib_ps;
198 case RDMA_PS_IB:
199 return &pernet->ib_ps;
200 default:
201 return NULL;
202 }
203 }
204
205 struct cma_device {
206 struct list_head list;
207 struct ib_device *device;
208 struct completion comp;
209 refcount_t refcount;
210 struct list_head id_list;
211 enum ib_gid_type *default_gid_type;
212 u8 *default_roce_tos;
213 };
214
215 struct rdma_bind_list {
216 enum rdma_ucm_port_space ps;
217 struct hlist_head owners;
218 unsigned short port;
219 };
220
cma_ps_alloc(struct net * net,enum rdma_ucm_port_space ps,struct rdma_bind_list * bind_list,int snum)221 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps,
222 struct rdma_bind_list *bind_list, int snum)
223 {
224 struct xarray *xa = cma_pernet_xa(net, ps);
225
226 return xa_insert(xa, snum, bind_list, GFP_KERNEL);
227 }
228
cma_ps_find(struct net * net,enum rdma_ucm_port_space ps,int snum)229 static struct rdma_bind_list *cma_ps_find(struct net *net,
230 enum rdma_ucm_port_space ps, int snum)
231 {
232 struct xarray *xa = cma_pernet_xa(net, ps);
233
234 return xa_load(xa, snum);
235 }
236
cma_ps_remove(struct net * net,enum rdma_ucm_port_space ps,int snum)237 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps,
238 int snum)
239 {
240 struct xarray *xa = cma_pernet_xa(net, ps);
241
242 xa_erase(xa, snum);
243 }
244
245 enum {
246 CMA_OPTION_AFONLY,
247 };
248
cma_dev_get(struct cma_device * cma_dev)249 void cma_dev_get(struct cma_device *cma_dev)
250 {
251 refcount_inc(&cma_dev->refcount);
252 }
253
cma_dev_put(struct cma_device * cma_dev)254 void cma_dev_put(struct cma_device *cma_dev)
255 {
256 if (refcount_dec_and_test(&cma_dev->refcount))
257 complete(&cma_dev->comp);
258 }
259
cma_enum_devices_by_ibdev(cma_device_filter filter,void * cookie)260 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter,
261 void *cookie)
262 {
263 struct cma_device *cma_dev;
264 struct cma_device *found_cma_dev = NULL;
265
266 mutex_lock(&lock);
267
268 list_for_each_entry(cma_dev, &dev_list, list)
269 if (filter(cma_dev->device, cookie)) {
270 found_cma_dev = cma_dev;
271 break;
272 }
273
274 if (found_cma_dev)
275 cma_dev_get(found_cma_dev);
276 mutex_unlock(&lock);
277 return found_cma_dev;
278 }
279
cma_get_default_gid_type(struct cma_device * cma_dev,u32 port)280 int cma_get_default_gid_type(struct cma_device *cma_dev,
281 u32 port)
282 {
283 if (!rdma_is_port_valid(cma_dev->device, port))
284 return -EINVAL;
285
286 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
287 }
288
cma_set_default_gid_type(struct cma_device * cma_dev,u32 port,enum ib_gid_type default_gid_type)289 int cma_set_default_gid_type(struct cma_device *cma_dev,
290 u32 port,
291 enum ib_gid_type default_gid_type)
292 {
293 unsigned long supported_gids;
294
295 if (!rdma_is_port_valid(cma_dev->device, port))
296 return -EINVAL;
297
298 if (default_gid_type == IB_GID_TYPE_IB &&
299 rdma_protocol_roce_eth_encap(cma_dev->device, port))
300 default_gid_type = IB_GID_TYPE_ROCE;
301
302 supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
303
304 if (!(supported_gids & 1 << default_gid_type))
305 return -EINVAL;
306
307 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
308 default_gid_type;
309
310 return 0;
311 }
312
cma_get_default_roce_tos(struct cma_device * cma_dev,u32 port)313 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port)
314 {
315 if (!rdma_is_port_valid(cma_dev->device, port))
316 return -EINVAL;
317
318 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)];
319 }
320
cma_set_default_roce_tos(struct cma_device * cma_dev,u32 port,u8 default_roce_tos)321 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port,
322 u8 default_roce_tos)
323 {
324 if (!rdma_is_port_valid(cma_dev->device, port))
325 return -EINVAL;
326
327 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] =
328 default_roce_tos;
329
330 return 0;
331 }
cma_get_ib_dev(struct cma_device * cma_dev)332 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
333 {
334 return cma_dev->device;
335 }
336
337 /*
338 * Device removal can occur at anytime, so we need extra handling to
339 * serialize notifying the user of device removal with other callbacks.
340 * We do this by disabling removal notification while a callback is in process,
341 * and reporting it after the callback completes.
342 */
343
344 struct cma_multicast {
345 struct rdma_id_private *id_priv;
346 union {
347 struct ib_sa_multicast *sa_mc;
348 struct {
349 struct work_struct work;
350 struct rdma_cm_event event;
351 } iboe_join;
352 };
353 struct list_head list;
354 void *context;
355 struct sockaddr_storage addr;
356 u8 join_state;
357 };
358
359 struct cma_work {
360 struct work_struct work;
361 struct rdma_id_private *id;
362 enum rdma_cm_state old_state;
363 enum rdma_cm_state new_state;
364 struct rdma_cm_event event;
365 };
366
367 union cma_ip_addr {
368 struct in6_addr ip6;
369 struct {
370 __be32 pad[3];
371 __be32 addr;
372 } ip4;
373 };
374
375 struct cma_hdr {
376 u8 cma_version;
377 u8 ip_version; /* IP version: 7:4 */
378 __be16 port;
379 union cma_ip_addr src_addr;
380 union cma_ip_addr dst_addr;
381 };
382
383 #define CMA_VERSION 0x00
384
385 struct cma_req_info {
386 struct sockaddr_storage listen_addr_storage;
387 struct sockaddr_storage src_addr_storage;
388 struct ib_device *device;
389 union ib_gid local_gid;
390 __be64 service_id;
391 int port;
392 bool has_gid;
393 u16 pkey;
394 };
395
cma_comp_exch(struct rdma_id_private * id_priv,enum rdma_cm_state comp,enum rdma_cm_state exch)396 static int cma_comp_exch(struct rdma_id_private *id_priv,
397 enum rdma_cm_state comp, enum rdma_cm_state exch)
398 {
399 unsigned long flags;
400 int ret;
401
402 /*
403 * The FSM uses a funny double locking where state is protected by both
404 * the handler_mutex and the spinlock. State is not allowed to change
405 * to/from a handler_mutex protected value without also holding
406 * handler_mutex.
407 */
408 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT)
409 lockdep_assert_held(&id_priv->handler_mutex);
410
411 spin_lock_irqsave(&id_priv->lock, flags);
412 if ((ret = (id_priv->state == comp)))
413 id_priv->state = exch;
414 spin_unlock_irqrestore(&id_priv->lock, flags);
415 return ret;
416 }
417
cma_get_ip_ver(const struct cma_hdr * hdr)418 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
419 {
420 return hdr->ip_version >> 4;
421 }
422
cma_set_ip_ver(struct cma_hdr * hdr,u8 ip_ver)423 static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
424 {
425 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
426 }
427
cma_igmp_send(struct net_device * ndev,union ib_gid * mgid,bool join)428 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
429 {
430 struct in_device *in_dev = NULL;
431
432 if (ndev) {
433 rtnl_lock();
434 in_dev = __in_dev_get_rtnl(ndev);
435 if (in_dev) {
436 if (join)
437 ip_mc_inc_group(in_dev,
438 *(__be32 *)(mgid->raw + 12));
439 else
440 ip_mc_dec_group(in_dev,
441 *(__be32 *)(mgid->raw + 12));
442 }
443 rtnl_unlock();
444 }
445 return (in_dev) ? 0 : -ENODEV;
446 }
447
_cma_attach_to_dev(struct rdma_id_private * id_priv,struct cma_device * cma_dev)448 static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
449 struct cma_device *cma_dev)
450 {
451 cma_dev_get(cma_dev);
452 id_priv->cma_dev = cma_dev;
453 id_priv->id.device = cma_dev->device;
454 id_priv->id.route.addr.dev_addr.transport =
455 rdma_node_get_transport(cma_dev->device->node_type);
456 list_add_tail(&id_priv->list, &cma_dev->id_list);
457
458 trace_cm_id_attach(id_priv, cma_dev->device);
459 }
460
cma_attach_to_dev(struct rdma_id_private * id_priv,struct cma_device * cma_dev)461 static void cma_attach_to_dev(struct rdma_id_private *id_priv,
462 struct cma_device *cma_dev)
463 {
464 _cma_attach_to_dev(id_priv, cma_dev);
465 id_priv->gid_type =
466 cma_dev->default_gid_type[id_priv->id.port_num -
467 rdma_start_port(cma_dev->device)];
468 }
469
cma_release_dev(struct rdma_id_private * id_priv)470 static void cma_release_dev(struct rdma_id_private *id_priv)
471 {
472 mutex_lock(&lock);
473 list_del(&id_priv->list);
474 cma_dev_put(id_priv->cma_dev);
475 id_priv->cma_dev = NULL;
476 id_priv->id.device = NULL;
477 if (id_priv->id.route.addr.dev_addr.sgid_attr) {
478 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr);
479 id_priv->id.route.addr.dev_addr.sgid_attr = NULL;
480 }
481 mutex_unlock(&lock);
482 }
483
cma_src_addr(struct rdma_id_private * id_priv)484 static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
485 {
486 return (struct sockaddr *) &id_priv->id.route.addr.src_addr;
487 }
488
cma_dst_addr(struct rdma_id_private * id_priv)489 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
490 {
491 return (struct sockaddr *) &id_priv->id.route.addr.dst_addr;
492 }
493
cma_family(struct rdma_id_private * id_priv)494 static inline unsigned short cma_family(struct rdma_id_private *id_priv)
495 {
496 return id_priv->id.route.addr.src_addr.ss_family;
497 }
498
cma_set_default_qkey(struct rdma_id_private * id_priv)499 static int cma_set_default_qkey(struct rdma_id_private *id_priv)
500 {
501 struct ib_sa_mcmember_rec rec;
502 int ret = 0;
503
504 switch (id_priv->id.ps) {
505 case RDMA_PS_UDP:
506 case RDMA_PS_IB:
507 id_priv->qkey = RDMA_UDP_QKEY;
508 break;
509 case RDMA_PS_IPOIB:
510 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
511 ret = ib_sa_get_mcmember_rec(id_priv->id.device,
512 id_priv->id.port_num, &rec.mgid,
513 &rec);
514 if (!ret)
515 id_priv->qkey = be32_to_cpu(rec.qkey);
516 break;
517 default:
518 break;
519 }
520 return ret;
521 }
522
cma_set_qkey(struct rdma_id_private * id_priv,u32 qkey)523 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
524 {
525 if (!qkey ||
526 (id_priv->qkey && (id_priv->qkey != qkey)))
527 return -EINVAL;
528
529 id_priv->qkey = qkey;
530 return 0;
531 }
532
cma_translate_ib(struct sockaddr_ib * sib,struct rdma_dev_addr * dev_addr)533 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
534 {
535 dev_addr->dev_type = ARPHRD_INFINIBAND;
536 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
537 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
538 }
539
cma_translate_addr(struct sockaddr * addr,struct rdma_dev_addr * dev_addr)540 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
541 {
542 int ret;
543
544 if (addr->sa_family != AF_IB) {
545 ret = rdma_translate_ip(addr, dev_addr);
546 } else {
547 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
548 ret = 0;
549 }
550
551 return ret;
552 }
553
554 static const struct ib_gid_attr *
cma_validate_port(struct ib_device * device,u32 port,enum ib_gid_type gid_type,union ib_gid * gid,struct rdma_id_private * id_priv)555 cma_validate_port(struct ib_device *device, u32 port,
556 enum ib_gid_type gid_type,
557 union ib_gid *gid,
558 struct rdma_id_private *id_priv)
559 {
560 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
561 int bound_if_index = dev_addr->bound_dev_if;
562 const struct ib_gid_attr *sgid_attr;
563 int dev_type = dev_addr->dev_type;
564 struct net_device *ndev = NULL;
565
566 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net))
567 return ERR_PTR(-ENODEV);
568
569 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
570 return ERR_PTR(-ENODEV);
571
572 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
573 return ERR_PTR(-ENODEV);
574
575 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
576 ndev = dev_get_by_index(dev_addr->net, bound_if_index);
577 if (!ndev)
578 return ERR_PTR(-ENODEV);
579 } else {
580 gid_type = IB_GID_TYPE_IB;
581 }
582
583 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev);
584 if (ndev)
585 dev_put(ndev);
586 return sgid_attr;
587 }
588
cma_bind_sgid_attr(struct rdma_id_private * id_priv,const struct ib_gid_attr * sgid_attr)589 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv,
590 const struct ib_gid_attr *sgid_attr)
591 {
592 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr);
593 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr;
594 }
595
596 /**
597 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute
598 * based on source ip address.
599 * @id_priv: cm_id which should be bound to cma device
600 *
601 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute
602 * based on source IP address. It returns 0 on success or error code otherwise.
603 * It is applicable to active and passive side cm_id.
604 */
cma_acquire_dev_by_src_ip(struct rdma_id_private * id_priv)605 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv)
606 {
607 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
608 const struct ib_gid_attr *sgid_attr;
609 union ib_gid gid, iboe_gid, *gidp;
610 struct cma_device *cma_dev;
611 enum ib_gid_type gid_type;
612 int ret = -ENODEV;
613 u32 port;
614
615 if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
616 id_priv->id.ps == RDMA_PS_IPOIB)
617 return -EINVAL;
618
619 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
620 &iboe_gid);
621
622 memcpy(&gid, dev_addr->src_dev_addr +
623 rdma_addr_gid_offset(dev_addr), sizeof(gid));
624
625 mutex_lock(&lock);
626 list_for_each_entry(cma_dev, &dev_list, list) {
627 rdma_for_each_port (cma_dev->device, port) {
628 gidp = rdma_protocol_roce(cma_dev->device, port) ?
629 &iboe_gid : &gid;
630 gid_type = cma_dev->default_gid_type[port - 1];
631 sgid_attr = cma_validate_port(cma_dev->device, port,
632 gid_type, gidp, id_priv);
633 if (!IS_ERR(sgid_attr)) {
634 id_priv->id.port_num = port;
635 cma_bind_sgid_attr(id_priv, sgid_attr);
636 cma_attach_to_dev(id_priv, cma_dev);
637 ret = 0;
638 goto out;
639 }
640 }
641 }
642 out:
643 mutex_unlock(&lock);
644 return ret;
645 }
646
647 /**
648 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute
649 * @id_priv: cm id to bind to cma device
650 * @listen_id_priv: listener cm id to match against
651 * @req: Pointer to req structure containaining incoming
652 * request information
653 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when
654 * rdma device matches for listen_id and incoming request. It also verifies
655 * that a GID table entry is present for the source address.
656 * Returns 0 on success, or returns error code otherwise.
657 */
cma_ib_acquire_dev(struct rdma_id_private * id_priv,const struct rdma_id_private * listen_id_priv,struct cma_req_info * req)658 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv,
659 const struct rdma_id_private *listen_id_priv,
660 struct cma_req_info *req)
661 {
662 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
663 const struct ib_gid_attr *sgid_attr;
664 enum ib_gid_type gid_type;
665 union ib_gid gid;
666
667 if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
668 id_priv->id.ps == RDMA_PS_IPOIB)
669 return -EINVAL;
670
671 if (rdma_protocol_roce(req->device, req->port))
672 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
673 &gid);
674 else
675 memcpy(&gid, dev_addr->src_dev_addr +
676 rdma_addr_gid_offset(dev_addr), sizeof(gid));
677
678 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1];
679 sgid_attr = cma_validate_port(req->device, req->port,
680 gid_type, &gid, id_priv);
681 if (IS_ERR(sgid_attr))
682 return PTR_ERR(sgid_attr);
683
684 id_priv->id.port_num = req->port;
685 cma_bind_sgid_attr(id_priv, sgid_attr);
686 /* Need to acquire lock to protect against reader
687 * of cma_dev->id_list such as cma_netdev_callback() and
688 * cma_process_remove().
689 */
690 mutex_lock(&lock);
691 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev);
692 mutex_unlock(&lock);
693 rdma_restrack_add(&id_priv->res);
694 return 0;
695 }
696
cma_iw_acquire_dev(struct rdma_id_private * id_priv,const struct rdma_id_private * listen_id_priv)697 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv,
698 const struct rdma_id_private *listen_id_priv)
699 {
700 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
701 const struct ib_gid_attr *sgid_attr;
702 struct cma_device *cma_dev;
703 enum ib_gid_type gid_type;
704 int ret = -ENODEV;
705 union ib_gid gid;
706 u32 port;
707
708 if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
709 id_priv->id.ps == RDMA_PS_IPOIB)
710 return -EINVAL;
711
712 memcpy(&gid, dev_addr->src_dev_addr +
713 rdma_addr_gid_offset(dev_addr), sizeof(gid));
714
715 mutex_lock(&lock);
716
717 cma_dev = listen_id_priv->cma_dev;
718 port = listen_id_priv->id.port_num;
719 gid_type = listen_id_priv->gid_type;
720 sgid_attr = cma_validate_port(cma_dev->device, port,
721 gid_type, &gid, id_priv);
722 if (!IS_ERR(sgid_attr)) {
723 id_priv->id.port_num = port;
724 cma_bind_sgid_attr(id_priv, sgid_attr);
725 ret = 0;
726 goto out;
727 }
728
729 list_for_each_entry(cma_dev, &dev_list, list) {
730 rdma_for_each_port (cma_dev->device, port) {
731 if (listen_id_priv->cma_dev == cma_dev &&
732 listen_id_priv->id.port_num == port)
733 continue;
734
735 gid_type = cma_dev->default_gid_type[port - 1];
736 sgid_attr = cma_validate_port(cma_dev->device, port,
737 gid_type, &gid, id_priv);
738 if (!IS_ERR(sgid_attr)) {
739 id_priv->id.port_num = port;
740 cma_bind_sgid_attr(id_priv, sgid_attr);
741 ret = 0;
742 goto out;
743 }
744 }
745 }
746
747 out:
748 if (!ret) {
749 cma_attach_to_dev(id_priv, cma_dev);
750 rdma_restrack_add(&id_priv->res);
751 }
752
753 mutex_unlock(&lock);
754 return ret;
755 }
756
757 /*
758 * Select the source IB device and address to reach the destination IB address.
759 */
cma_resolve_ib_dev(struct rdma_id_private * id_priv)760 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
761 {
762 struct cma_device *cma_dev, *cur_dev;
763 struct sockaddr_ib *addr;
764 union ib_gid gid, sgid, *dgid;
765 unsigned int p;
766 u16 pkey, index;
767 enum ib_port_state port_state;
768 int ret;
769 int i;
770
771 cma_dev = NULL;
772 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
773 dgid = (union ib_gid *) &addr->sib_addr;
774 pkey = ntohs(addr->sib_pkey);
775
776 mutex_lock(&lock);
777 list_for_each_entry(cur_dev, &dev_list, list) {
778 rdma_for_each_port (cur_dev->device, p) {
779 if (!rdma_cap_af_ib(cur_dev->device, p))
780 continue;
781
782 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
783 continue;
784
785 if (ib_get_cached_port_state(cur_dev->device, p, &port_state))
786 continue;
787
788 for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len;
789 ++i) {
790 ret = rdma_query_gid(cur_dev->device, p, i,
791 &gid);
792 if (ret)
793 continue;
794
795 if (!memcmp(&gid, dgid, sizeof(gid))) {
796 cma_dev = cur_dev;
797 sgid = gid;
798 id_priv->id.port_num = p;
799 goto found;
800 }
801
802 if (!cma_dev && (gid.global.subnet_prefix ==
803 dgid->global.subnet_prefix) &&
804 port_state == IB_PORT_ACTIVE) {
805 cma_dev = cur_dev;
806 sgid = gid;
807 id_priv->id.port_num = p;
808 goto found;
809 }
810 }
811 }
812 }
813 mutex_unlock(&lock);
814 return -ENODEV;
815
816 found:
817 cma_attach_to_dev(id_priv, cma_dev);
818 rdma_restrack_add(&id_priv->res);
819 mutex_unlock(&lock);
820 addr = (struct sockaddr_ib *)cma_src_addr(id_priv);
821 memcpy(&addr->sib_addr, &sgid, sizeof(sgid));
822 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
823 return 0;
824 }
825
cma_id_get(struct rdma_id_private * id_priv)826 static void cma_id_get(struct rdma_id_private *id_priv)
827 {
828 refcount_inc(&id_priv->refcount);
829 }
830
cma_id_put(struct rdma_id_private * id_priv)831 static void cma_id_put(struct rdma_id_private *id_priv)
832 {
833 if (refcount_dec_and_test(&id_priv->refcount))
834 complete(&id_priv->comp);
835 }
836
837 static struct rdma_id_private *
__rdma_create_id(struct net * net,rdma_cm_event_handler event_handler,void * context,enum rdma_ucm_port_space ps,enum ib_qp_type qp_type,const struct rdma_id_private * parent)838 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler,
839 void *context, enum rdma_ucm_port_space ps,
840 enum ib_qp_type qp_type, const struct rdma_id_private *parent)
841 {
842 struct rdma_id_private *id_priv;
843
844 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
845 if (!id_priv)
846 return ERR_PTR(-ENOMEM);
847
848 id_priv->state = RDMA_CM_IDLE;
849 id_priv->id.context = context;
850 id_priv->id.event_handler = event_handler;
851 id_priv->id.ps = ps;
852 id_priv->id.qp_type = qp_type;
853 id_priv->tos_set = false;
854 id_priv->timeout_set = false;
855 id_priv->min_rnr_timer_set = false;
856 id_priv->gid_type = IB_GID_TYPE_IB;
857 spin_lock_init(&id_priv->lock);
858 mutex_init(&id_priv->qp_mutex);
859 init_completion(&id_priv->comp);
860 refcount_set(&id_priv->refcount, 1);
861 mutex_init(&id_priv->handler_mutex);
862 INIT_LIST_HEAD(&id_priv->listen_list);
863 INIT_LIST_HEAD(&id_priv->mc_list);
864 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
865 id_priv->id.route.addr.dev_addr.net = get_net(net);
866 id_priv->seq_num &= 0x00ffffff;
867
868 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID);
869 if (parent)
870 rdma_restrack_parent_name(&id_priv->res, &parent->res);
871
872 return id_priv;
873 }
874
875 struct rdma_cm_id *
__rdma_create_kernel_id(struct net * net,rdma_cm_event_handler event_handler,void * context,enum rdma_ucm_port_space ps,enum ib_qp_type qp_type,const char * caller)876 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler,
877 void *context, enum rdma_ucm_port_space ps,
878 enum ib_qp_type qp_type, const char *caller)
879 {
880 struct rdma_id_private *ret;
881
882 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL);
883 if (IS_ERR(ret))
884 return ERR_CAST(ret);
885
886 rdma_restrack_set_name(&ret->res, caller);
887 return &ret->id;
888 }
889 EXPORT_SYMBOL(__rdma_create_kernel_id);
890
rdma_create_user_id(rdma_cm_event_handler event_handler,void * context,enum rdma_ucm_port_space ps,enum ib_qp_type qp_type)891 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler,
892 void *context,
893 enum rdma_ucm_port_space ps,
894 enum ib_qp_type qp_type)
895 {
896 struct rdma_id_private *ret;
897
898 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context,
899 ps, qp_type, NULL);
900 if (IS_ERR(ret))
901 return ERR_CAST(ret);
902
903 rdma_restrack_set_name(&ret->res, NULL);
904 return &ret->id;
905 }
906 EXPORT_SYMBOL(rdma_create_user_id);
907
cma_init_ud_qp(struct rdma_id_private * id_priv,struct ib_qp * qp)908 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
909 {
910 struct ib_qp_attr qp_attr;
911 int qp_attr_mask, ret;
912
913 qp_attr.qp_state = IB_QPS_INIT;
914 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
915 if (ret)
916 return ret;
917
918 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
919 if (ret)
920 return ret;
921
922 qp_attr.qp_state = IB_QPS_RTR;
923 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
924 if (ret)
925 return ret;
926
927 qp_attr.qp_state = IB_QPS_RTS;
928 qp_attr.sq_psn = 0;
929 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
930
931 return ret;
932 }
933
cma_init_conn_qp(struct rdma_id_private * id_priv,struct ib_qp * qp)934 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
935 {
936 struct ib_qp_attr qp_attr;
937 int qp_attr_mask, ret;
938
939 qp_attr.qp_state = IB_QPS_INIT;
940 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
941 if (ret)
942 return ret;
943
944 return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
945 }
946
rdma_create_qp(struct rdma_cm_id * id,struct ib_pd * pd,struct ib_qp_init_attr * qp_init_attr)947 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
948 struct ib_qp_init_attr *qp_init_attr)
949 {
950 struct rdma_id_private *id_priv;
951 struct ib_qp *qp;
952 int ret;
953
954 id_priv = container_of(id, struct rdma_id_private, id);
955 if (id->device != pd->device) {
956 ret = -EINVAL;
957 goto out_err;
958 }
959
960 qp_init_attr->port_num = id->port_num;
961 qp = ib_create_qp(pd, qp_init_attr);
962 if (IS_ERR(qp)) {
963 ret = PTR_ERR(qp);
964 goto out_err;
965 }
966
967 if (id->qp_type == IB_QPT_UD)
968 ret = cma_init_ud_qp(id_priv, qp);
969 else
970 ret = cma_init_conn_qp(id_priv, qp);
971 if (ret)
972 goto out_destroy;
973
974 id->qp = qp;
975 id_priv->qp_num = qp->qp_num;
976 id_priv->srq = (qp->srq != NULL);
977 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0);
978 return 0;
979 out_destroy:
980 ib_destroy_qp(qp);
981 out_err:
982 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret);
983 return ret;
984 }
985 EXPORT_SYMBOL(rdma_create_qp);
986
rdma_destroy_qp(struct rdma_cm_id * id)987 void rdma_destroy_qp(struct rdma_cm_id *id)
988 {
989 struct rdma_id_private *id_priv;
990
991 id_priv = container_of(id, struct rdma_id_private, id);
992 trace_cm_qp_destroy(id_priv);
993 mutex_lock(&id_priv->qp_mutex);
994 ib_destroy_qp(id_priv->id.qp);
995 id_priv->id.qp = NULL;
996 mutex_unlock(&id_priv->qp_mutex);
997 }
998 EXPORT_SYMBOL(rdma_destroy_qp);
999
cma_modify_qp_rtr(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)1000 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
1001 struct rdma_conn_param *conn_param)
1002 {
1003 struct ib_qp_attr qp_attr;
1004 int qp_attr_mask, ret;
1005
1006 mutex_lock(&id_priv->qp_mutex);
1007 if (!id_priv->id.qp) {
1008 ret = 0;
1009 goto out;
1010 }
1011
1012 /* Need to update QP attributes from default values. */
1013 qp_attr.qp_state = IB_QPS_INIT;
1014 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1015 if (ret)
1016 goto out;
1017
1018 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1019 if (ret)
1020 goto out;
1021
1022 qp_attr.qp_state = IB_QPS_RTR;
1023 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1024 if (ret)
1025 goto out;
1026
1027 BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
1028
1029 if (conn_param)
1030 qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
1031 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1032 out:
1033 mutex_unlock(&id_priv->qp_mutex);
1034 return ret;
1035 }
1036
cma_modify_qp_rts(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)1037 static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
1038 struct rdma_conn_param *conn_param)
1039 {
1040 struct ib_qp_attr qp_attr;
1041 int qp_attr_mask, ret;
1042
1043 mutex_lock(&id_priv->qp_mutex);
1044 if (!id_priv->id.qp) {
1045 ret = 0;
1046 goto out;
1047 }
1048
1049 qp_attr.qp_state = IB_QPS_RTS;
1050 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1051 if (ret)
1052 goto out;
1053
1054 if (conn_param)
1055 qp_attr.max_rd_atomic = conn_param->initiator_depth;
1056 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1057 out:
1058 mutex_unlock(&id_priv->qp_mutex);
1059 return ret;
1060 }
1061
cma_modify_qp_err(struct rdma_id_private * id_priv)1062 static int cma_modify_qp_err(struct rdma_id_private *id_priv)
1063 {
1064 struct ib_qp_attr qp_attr;
1065 int ret;
1066
1067 mutex_lock(&id_priv->qp_mutex);
1068 if (!id_priv->id.qp) {
1069 ret = 0;
1070 goto out;
1071 }
1072
1073 qp_attr.qp_state = IB_QPS_ERR;
1074 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
1075 out:
1076 mutex_unlock(&id_priv->qp_mutex);
1077 return ret;
1078 }
1079
cma_ib_init_qp_attr(struct rdma_id_private * id_priv,struct ib_qp_attr * qp_attr,int * qp_attr_mask)1080 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
1081 struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1082 {
1083 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
1084 int ret;
1085 u16 pkey;
1086
1087 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
1088 pkey = 0xffff;
1089 else
1090 pkey = ib_addr_get_pkey(dev_addr);
1091
1092 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
1093 pkey, &qp_attr->pkey_index);
1094 if (ret)
1095 return ret;
1096
1097 qp_attr->port_num = id_priv->id.port_num;
1098 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
1099
1100 if (id_priv->id.qp_type == IB_QPT_UD) {
1101 ret = cma_set_default_qkey(id_priv);
1102 if (ret)
1103 return ret;
1104
1105 qp_attr->qkey = id_priv->qkey;
1106 *qp_attr_mask |= IB_QP_QKEY;
1107 } else {
1108 qp_attr->qp_access_flags = 0;
1109 *qp_attr_mask |= IB_QP_ACCESS_FLAGS;
1110 }
1111 return 0;
1112 }
1113
rdma_init_qp_attr(struct rdma_cm_id * id,struct ib_qp_attr * qp_attr,int * qp_attr_mask)1114 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
1115 int *qp_attr_mask)
1116 {
1117 struct rdma_id_private *id_priv;
1118 int ret = 0;
1119
1120 id_priv = container_of(id, struct rdma_id_private, id);
1121 if (rdma_cap_ib_cm(id->device, id->port_num)) {
1122 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
1123 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
1124 else
1125 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
1126 qp_attr_mask);
1127
1128 if (qp_attr->qp_state == IB_QPS_RTR)
1129 qp_attr->rq_psn = id_priv->seq_num;
1130 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
1131 if (!id_priv->cm_id.iw) {
1132 qp_attr->qp_access_flags = 0;
1133 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
1134 } else
1135 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
1136 qp_attr_mask);
1137 qp_attr->port_num = id_priv->id.port_num;
1138 *qp_attr_mask |= IB_QP_PORT;
1139 } else {
1140 ret = -ENOSYS;
1141 }
1142
1143 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set)
1144 qp_attr->timeout = id_priv->timeout;
1145
1146 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set)
1147 qp_attr->min_rnr_timer = id_priv->min_rnr_timer;
1148
1149 return ret;
1150 }
1151 EXPORT_SYMBOL(rdma_init_qp_attr);
1152
cma_zero_addr(const struct sockaddr * addr)1153 static inline bool cma_zero_addr(const struct sockaddr *addr)
1154 {
1155 switch (addr->sa_family) {
1156 case AF_INET:
1157 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
1158 case AF_INET6:
1159 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr);
1160 case AF_IB:
1161 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr);
1162 default:
1163 return false;
1164 }
1165 }
1166
cma_loopback_addr(const struct sockaddr * addr)1167 static inline bool cma_loopback_addr(const struct sockaddr *addr)
1168 {
1169 switch (addr->sa_family) {
1170 case AF_INET:
1171 return ipv4_is_loopback(
1172 ((struct sockaddr_in *)addr)->sin_addr.s_addr);
1173 case AF_INET6:
1174 return ipv6_addr_loopback(
1175 &((struct sockaddr_in6 *)addr)->sin6_addr);
1176 case AF_IB:
1177 return ib_addr_loopback(
1178 &((struct sockaddr_ib *)addr)->sib_addr);
1179 default:
1180 return false;
1181 }
1182 }
1183
cma_any_addr(const struct sockaddr * addr)1184 static inline bool cma_any_addr(const struct sockaddr *addr)
1185 {
1186 return cma_zero_addr(addr) || cma_loopback_addr(addr);
1187 }
1188
cma_addr_cmp(const struct sockaddr * src,const struct sockaddr * dst)1189 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst)
1190 {
1191 if (src->sa_family != dst->sa_family)
1192 return -1;
1193
1194 switch (src->sa_family) {
1195 case AF_INET:
1196 return ((struct sockaddr_in *)src)->sin_addr.s_addr !=
1197 ((struct sockaddr_in *)dst)->sin_addr.s_addr;
1198 case AF_INET6: {
1199 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
1200 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
1201 bool link_local;
1202
1203 if (ipv6_addr_cmp(&src_addr6->sin6_addr,
1204 &dst_addr6->sin6_addr))
1205 return 1;
1206 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) &
1207 IPV6_ADDR_LINKLOCAL;
1208 /* Link local must match their scope_ids */
1209 return link_local ? (src_addr6->sin6_scope_id !=
1210 dst_addr6->sin6_scope_id) :
1211 0;
1212 }
1213
1214 default:
1215 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
1216 &((struct sockaddr_ib *) dst)->sib_addr);
1217 }
1218 }
1219
cma_port(const struct sockaddr * addr)1220 static __be16 cma_port(const struct sockaddr *addr)
1221 {
1222 struct sockaddr_ib *sib;
1223
1224 switch (addr->sa_family) {
1225 case AF_INET:
1226 return ((struct sockaddr_in *) addr)->sin_port;
1227 case AF_INET6:
1228 return ((struct sockaddr_in6 *) addr)->sin6_port;
1229 case AF_IB:
1230 sib = (struct sockaddr_ib *) addr;
1231 return htons((u16) (be64_to_cpu(sib->sib_sid) &
1232 be64_to_cpu(sib->sib_sid_mask)));
1233 default:
1234 return 0;
1235 }
1236 }
1237
cma_any_port(const struct sockaddr * addr)1238 static inline int cma_any_port(const struct sockaddr *addr)
1239 {
1240 return !cma_port(addr);
1241 }
1242
cma_save_ib_info(struct sockaddr * src_addr,struct sockaddr * dst_addr,const struct rdma_cm_id * listen_id,const struct sa_path_rec * path)1243 static void cma_save_ib_info(struct sockaddr *src_addr,
1244 struct sockaddr *dst_addr,
1245 const struct rdma_cm_id *listen_id,
1246 const struct sa_path_rec *path)
1247 {
1248 struct sockaddr_ib *listen_ib, *ib;
1249
1250 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
1251 if (src_addr) {
1252 ib = (struct sockaddr_ib *)src_addr;
1253 ib->sib_family = AF_IB;
1254 if (path) {
1255 ib->sib_pkey = path->pkey;
1256 ib->sib_flowinfo = path->flow_label;
1257 memcpy(&ib->sib_addr, &path->sgid, 16);
1258 ib->sib_sid = path->service_id;
1259 ib->sib_scope_id = 0;
1260 } else {
1261 ib->sib_pkey = listen_ib->sib_pkey;
1262 ib->sib_flowinfo = listen_ib->sib_flowinfo;
1263 ib->sib_addr = listen_ib->sib_addr;
1264 ib->sib_sid = listen_ib->sib_sid;
1265 ib->sib_scope_id = listen_ib->sib_scope_id;
1266 }
1267 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
1268 }
1269 if (dst_addr) {
1270 ib = (struct sockaddr_ib *)dst_addr;
1271 ib->sib_family = AF_IB;
1272 if (path) {
1273 ib->sib_pkey = path->pkey;
1274 ib->sib_flowinfo = path->flow_label;
1275 memcpy(&ib->sib_addr, &path->dgid, 16);
1276 }
1277 }
1278 }
1279
cma_save_ip4_info(struct sockaddr_in * src_addr,struct sockaddr_in * dst_addr,struct cma_hdr * hdr,__be16 local_port)1280 static void cma_save_ip4_info(struct sockaddr_in *src_addr,
1281 struct sockaddr_in *dst_addr,
1282 struct cma_hdr *hdr,
1283 __be16 local_port)
1284 {
1285 if (src_addr) {
1286 *src_addr = (struct sockaddr_in) {
1287 .sin_family = AF_INET,
1288 .sin_addr.s_addr = hdr->dst_addr.ip4.addr,
1289 .sin_port = local_port,
1290 };
1291 }
1292
1293 if (dst_addr) {
1294 *dst_addr = (struct sockaddr_in) {
1295 .sin_family = AF_INET,
1296 .sin_addr.s_addr = hdr->src_addr.ip4.addr,
1297 .sin_port = hdr->port,
1298 };
1299 }
1300 }
1301
cma_save_ip6_info(struct sockaddr_in6 * src_addr,struct sockaddr_in6 * dst_addr,struct cma_hdr * hdr,__be16 local_port)1302 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr,
1303 struct sockaddr_in6 *dst_addr,
1304 struct cma_hdr *hdr,
1305 __be16 local_port)
1306 {
1307 if (src_addr) {
1308 *src_addr = (struct sockaddr_in6) {
1309 .sin6_family = AF_INET6,
1310 .sin6_addr = hdr->dst_addr.ip6,
1311 .sin6_port = local_port,
1312 };
1313 }
1314
1315 if (dst_addr) {
1316 *dst_addr = (struct sockaddr_in6) {
1317 .sin6_family = AF_INET6,
1318 .sin6_addr = hdr->src_addr.ip6,
1319 .sin6_port = hdr->port,
1320 };
1321 }
1322 }
1323
cma_port_from_service_id(__be64 service_id)1324 static u16 cma_port_from_service_id(__be64 service_id)
1325 {
1326 return (u16)be64_to_cpu(service_id);
1327 }
1328
cma_save_ip_info(struct sockaddr * src_addr,struct sockaddr * dst_addr,const struct ib_cm_event * ib_event,__be64 service_id)1329 static int cma_save_ip_info(struct sockaddr *src_addr,
1330 struct sockaddr *dst_addr,
1331 const struct ib_cm_event *ib_event,
1332 __be64 service_id)
1333 {
1334 struct cma_hdr *hdr;
1335 __be16 port;
1336
1337 hdr = ib_event->private_data;
1338 if (hdr->cma_version != CMA_VERSION)
1339 return -EINVAL;
1340
1341 port = htons(cma_port_from_service_id(service_id));
1342
1343 switch (cma_get_ip_ver(hdr)) {
1344 case 4:
1345 cma_save_ip4_info((struct sockaddr_in *)src_addr,
1346 (struct sockaddr_in *)dst_addr, hdr, port);
1347 break;
1348 case 6:
1349 cma_save_ip6_info((struct sockaddr_in6 *)src_addr,
1350 (struct sockaddr_in6 *)dst_addr, hdr, port);
1351 break;
1352 default:
1353 return -EAFNOSUPPORT;
1354 }
1355
1356 return 0;
1357 }
1358
cma_save_net_info(struct sockaddr * src_addr,struct sockaddr * dst_addr,const struct rdma_cm_id * listen_id,const struct ib_cm_event * ib_event,sa_family_t sa_family,__be64 service_id)1359 static int cma_save_net_info(struct sockaddr *src_addr,
1360 struct sockaddr *dst_addr,
1361 const struct rdma_cm_id *listen_id,
1362 const struct ib_cm_event *ib_event,
1363 sa_family_t sa_family, __be64 service_id)
1364 {
1365 if (sa_family == AF_IB) {
1366 if (ib_event->event == IB_CM_REQ_RECEIVED)
1367 cma_save_ib_info(src_addr, dst_addr, listen_id,
1368 ib_event->param.req_rcvd.primary_path);
1369 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1370 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
1371 return 0;
1372 }
1373
1374 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
1375 }
1376
cma_save_req_info(const struct ib_cm_event * ib_event,struct cma_req_info * req)1377 static int cma_save_req_info(const struct ib_cm_event *ib_event,
1378 struct cma_req_info *req)
1379 {
1380 const struct ib_cm_req_event_param *req_param =
1381 &ib_event->param.req_rcvd;
1382 const struct ib_cm_sidr_req_event_param *sidr_param =
1383 &ib_event->param.sidr_req_rcvd;
1384
1385 switch (ib_event->event) {
1386 case IB_CM_REQ_RECEIVED:
1387 req->device = req_param->listen_id->device;
1388 req->port = req_param->port;
1389 memcpy(&req->local_gid, &req_param->primary_path->sgid,
1390 sizeof(req->local_gid));
1391 req->has_gid = true;
1392 req->service_id = req_param->primary_path->service_id;
1393 req->pkey = be16_to_cpu(req_param->primary_path->pkey);
1394 if (req->pkey != req_param->bth_pkey)
1395 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n"
1396 "RDMA CMA: in the future this may cause the request to be dropped\n",
1397 req_param->bth_pkey, req->pkey);
1398 break;
1399 case IB_CM_SIDR_REQ_RECEIVED:
1400 req->device = sidr_param->listen_id->device;
1401 req->port = sidr_param->port;
1402 req->has_gid = false;
1403 req->service_id = sidr_param->service_id;
1404 req->pkey = sidr_param->pkey;
1405 if (req->pkey != sidr_param->bth_pkey)
1406 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n"
1407 "RDMA CMA: in the future this may cause the request to be dropped\n",
1408 sidr_param->bth_pkey, req->pkey);
1409 break;
1410 default:
1411 return -EINVAL;
1412 }
1413
1414 return 0;
1415 }
1416
validate_ipv4_net_dev(struct net_device * net_dev,const struct sockaddr_in * dst_addr,const struct sockaddr_in * src_addr)1417 static bool validate_ipv4_net_dev(struct net_device *net_dev,
1418 const struct sockaddr_in *dst_addr,
1419 const struct sockaddr_in *src_addr)
1420 {
1421 __be32 daddr = dst_addr->sin_addr.s_addr,
1422 saddr = src_addr->sin_addr.s_addr;
1423 struct fib_result res;
1424 struct flowi4 fl4;
1425 int err;
1426 bool ret;
1427
1428 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1429 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
1430 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
1431 ipv4_is_loopback(saddr))
1432 return false;
1433
1434 memset(&fl4, 0, sizeof(fl4));
1435 fl4.flowi4_oif = net_dev->ifindex;
1436 fl4.daddr = daddr;
1437 fl4.saddr = saddr;
1438
1439 rcu_read_lock();
1440 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
1441 ret = err == 0 && FIB_RES_DEV(res) == net_dev;
1442 rcu_read_unlock();
1443
1444 return ret;
1445 }
1446
validate_ipv6_net_dev(struct net_device * net_dev,const struct sockaddr_in6 * dst_addr,const struct sockaddr_in6 * src_addr)1447 static bool validate_ipv6_net_dev(struct net_device *net_dev,
1448 const struct sockaddr_in6 *dst_addr,
1449 const struct sockaddr_in6 *src_addr)
1450 {
1451 #if IS_ENABLED(CONFIG_IPV6)
1452 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
1453 IPV6_ADDR_LINKLOCAL;
1454 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
1455 &src_addr->sin6_addr, net_dev->ifindex,
1456 NULL, strict);
1457 bool ret;
1458
1459 if (!rt)
1460 return false;
1461
1462 ret = rt->rt6i_idev->dev == net_dev;
1463 ip6_rt_put(rt);
1464
1465 return ret;
1466 #else
1467 return false;
1468 #endif
1469 }
1470
validate_net_dev(struct net_device * net_dev,const struct sockaddr * daddr,const struct sockaddr * saddr)1471 static bool validate_net_dev(struct net_device *net_dev,
1472 const struct sockaddr *daddr,
1473 const struct sockaddr *saddr)
1474 {
1475 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
1476 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
1477 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1478 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
1479
1480 switch (daddr->sa_family) {
1481 case AF_INET:
1482 return saddr->sa_family == AF_INET &&
1483 validate_ipv4_net_dev(net_dev, daddr4, saddr4);
1484
1485 case AF_INET6:
1486 return saddr->sa_family == AF_INET6 &&
1487 validate_ipv6_net_dev(net_dev, daddr6, saddr6);
1488
1489 default:
1490 return false;
1491 }
1492 }
1493
1494 static struct net_device *
roce_get_net_dev_by_cm_event(const struct ib_cm_event * ib_event)1495 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event)
1496 {
1497 const struct ib_gid_attr *sgid_attr = NULL;
1498 struct net_device *ndev;
1499
1500 if (ib_event->event == IB_CM_REQ_RECEIVED)
1501 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr;
1502 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1503 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr;
1504
1505 if (!sgid_attr)
1506 return NULL;
1507
1508 rcu_read_lock();
1509 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr);
1510 if (IS_ERR(ndev))
1511 ndev = NULL;
1512 else
1513 dev_hold(ndev);
1514 rcu_read_unlock();
1515 return ndev;
1516 }
1517
cma_get_net_dev(const struct ib_cm_event * ib_event,struct cma_req_info * req)1518 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event,
1519 struct cma_req_info *req)
1520 {
1521 struct sockaddr *listen_addr =
1522 (struct sockaddr *)&req->listen_addr_storage;
1523 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage;
1524 struct net_device *net_dev;
1525 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
1526 int err;
1527
1528 err = cma_save_ip_info(listen_addr, src_addr, ib_event,
1529 req->service_id);
1530 if (err)
1531 return ERR_PTR(err);
1532
1533 if (rdma_protocol_roce(req->device, req->port))
1534 net_dev = roce_get_net_dev_by_cm_event(ib_event);
1535 else
1536 net_dev = ib_get_net_dev_by_params(req->device, req->port,
1537 req->pkey,
1538 gid, listen_addr);
1539 if (!net_dev)
1540 return ERR_PTR(-ENODEV);
1541
1542 return net_dev;
1543 }
1544
rdma_ps_from_service_id(__be64 service_id)1545 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id)
1546 {
1547 return (be64_to_cpu(service_id) >> 16) & 0xffff;
1548 }
1549
cma_match_private_data(struct rdma_id_private * id_priv,const struct cma_hdr * hdr)1550 static bool cma_match_private_data(struct rdma_id_private *id_priv,
1551 const struct cma_hdr *hdr)
1552 {
1553 struct sockaddr *addr = cma_src_addr(id_priv);
1554 __be32 ip4_addr;
1555 struct in6_addr ip6_addr;
1556
1557 if (cma_any_addr(addr) && !id_priv->afonly)
1558 return true;
1559
1560 switch (addr->sa_family) {
1561 case AF_INET:
1562 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
1563 if (cma_get_ip_ver(hdr) != 4)
1564 return false;
1565 if (!cma_any_addr(addr) &&
1566 hdr->dst_addr.ip4.addr != ip4_addr)
1567 return false;
1568 break;
1569 case AF_INET6:
1570 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
1571 if (cma_get_ip_ver(hdr) != 6)
1572 return false;
1573 if (!cma_any_addr(addr) &&
1574 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
1575 return false;
1576 break;
1577 case AF_IB:
1578 return true;
1579 default:
1580 return false;
1581 }
1582
1583 return true;
1584 }
1585
cma_protocol_roce(const struct rdma_cm_id * id)1586 static bool cma_protocol_roce(const struct rdma_cm_id *id)
1587 {
1588 struct ib_device *device = id->device;
1589 const u32 port_num = id->port_num ?: rdma_start_port(device);
1590
1591 return rdma_protocol_roce(device, port_num);
1592 }
1593
cma_is_req_ipv6_ll(const struct cma_req_info * req)1594 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req)
1595 {
1596 const struct sockaddr *daddr =
1597 (const struct sockaddr *)&req->listen_addr_storage;
1598 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1599
1600 /* Returns true if the req is for IPv6 link local */
1601 return (daddr->sa_family == AF_INET6 &&
1602 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL));
1603 }
1604
cma_match_net_dev(const struct rdma_cm_id * id,const struct net_device * net_dev,const struct cma_req_info * req)1605 static bool cma_match_net_dev(const struct rdma_cm_id *id,
1606 const struct net_device *net_dev,
1607 const struct cma_req_info *req)
1608 {
1609 const struct rdma_addr *addr = &id->route.addr;
1610
1611 if (!net_dev)
1612 /* This request is an AF_IB request */
1613 return (!id->port_num || id->port_num == req->port) &&
1614 (addr->src_addr.ss_family == AF_IB);
1615
1616 /*
1617 * If the request is not for IPv6 link local, allow matching
1618 * request to any netdevice of the one or multiport rdma device.
1619 */
1620 if (!cma_is_req_ipv6_ll(req))
1621 return true;
1622 /*
1623 * Net namespaces must match, and if the listner is listening
1624 * on a specific netdevice than netdevice must match as well.
1625 */
1626 if (net_eq(dev_net(net_dev), addr->dev_addr.net) &&
1627 (!!addr->dev_addr.bound_dev_if ==
1628 (addr->dev_addr.bound_dev_if == net_dev->ifindex)))
1629 return true;
1630 else
1631 return false;
1632 }
1633
cma_find_listener(const struct rdma_bind_list * bind_list,const struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event,const struct cma_req_info * req,const struct net_device * net_dev)1634 static struct rdma_id_private *cma_find_listener(
1635 const struct rdma_bind_list *bind_list,
1636 const struct ib_cm_id *cm_id,
1637 const struct ib_cm_event *ib_event,
1638 const struct cma_req_info *req,
1639 const struct net_device *net_dev)
1640 {
1641 struct rdma_id_private *id_priv, *id_priv_dev;
1642
1643 lockdep_assert_held(&lock);
1644
1645 if (!bind_list)
1646 return ERR_PTR(-EINVAL);
1647
1648 hlist_for_each_entry(id_priv, &bind_list->owners, node) {
1649 if (cma_match_private_data(id_priv, ib_event->private_data)) {
1650 if (id_priv->id.device == cm_id->device &&
1651 cma_match_net_dev(&id_priv->id, net_dev, req))
1652 return id_priv;
1653 list_for_each_entry(id_priv_dev,
1654 &id_priv->listen_list,
1655 listen_list) {
1656 if (id_priv_dev->id.device == cm_id->device &&
1657 cma_match_net_dev(&id_priv_dev->id,
1658 net_dev, req))
1659 return id_priv_dev;
1660 }
1661 }
1662 }
1663
1664 return ERR_PTR(-EINVAL);
1665 }
1666
1667 static struct rdma_id_private *
cma_ib_id_from_event(struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event,struct cma_req_info * req,struct net_device ** net_dev)1668 cma_ib_id_from_event(struct ib_cm_id *cm_id,
1669 const struct ib_cm_event *ib_event,
1670 struct cma_req_info *req,
1671 struct net_device **net_dev)
1672 {
1673 struct rdma_bind_list *bind_list;
1674 struct rdma_id_private *id_priv;
1675 int err;
1676
1677 err = cma_save_req_info(ib_event, req);
1678 if (err)
1679 return ERR_PTR(err);
1680
1681 *net_dev = cma_get_net_dev(ib_event, req);
1682 if (IS_ERR(*net_dev)) {
1683 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
1684 /* Assuming the protocol is AF_IB */
1685 *net_dev = NULL;
1686 } else {
1687 return ERR_CAST(*net_dev);
1688 }
1689 }
1690
1691 mutex_lock(&lock);
1692 /*
1693 * Net namespace might be getting deleted while route lookup,
1694 * cm_id lookup is in progress. Therefore, perform netdevice
1695 * validation, cm_id lookup under rcu lock.
1696 * RCU lock along with netdevice state check, synchronizes with
1697 * netdevice migrating to different net namespace and also avoids
1698 * case where net namespace doesn't get deleted while lookup is in
1699 * progress.
1700 * If the device state is not IFF_UP, its properties such as ifindex
1701 * and nd_net cannot be trusted to remain valid without rcu lock.
1702 * net/core/dev.c change_net_namespace() ensures to synchronize with
1703 * ongoing operations on net device after device is closed using
1704 * synchronize_net().
1705 */
1706 rcu_read_lock();
1707 if (*net_dev) {
1708 /*
1709 * If netdevice is down, it is likely that it is administratively
1710 * down or it might be migrating to different namespace.
1711 * In that case avoid further processing, as the net namespace
1712 * or ifindex may change.
1713 */
1714 if (((*net_dev)->flags & IFF_UP) == 0) {
1715 id_priv = ERR_PTR(-EHOSTUNREACH);
1716 goto err;
1717 }
1718
1719 if (!validate_net_dev(*net_dev,
1720 (struct sockaddr *)&req->src_addr_storage,
1721 (struct sockaddr *)&req->listen_addr_storage)) {
1722 id_priv = ERR_PTR(-EHOSTUNREACH);
1723 goto err;
1724 }
1725 }
1726
1727 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
1728 rdma_ps_from_service_id(req->service_id),
1729 cma_port_from_service_id(req->service_id));
1730 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev);
1731 err:
1732 rcu_read_unlock();
1733 mutex_unlock(&lock);
1734 if (IS_ERR(id_priv) && *net_dev) {
1735 dev_put(*net_dev);
1736 *net_dev = NULL;
1737 }
1738 return id_priv;
1739 }
1740
cma_user_data_offset(struct rdma_id_private * id_priv)1741 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv)
1742 {
1743 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
1744 }
1745
cma_cancel_route(struct rdma_id_private * id_priv)1746 static void cma_cancel_route(struct rdma_id_private *id_priv)
1747 {
1748 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
1749 if (id_priv->query)
1750 ib_sa_cancel_query(id_priv->query_id, id_priv->query);
1751 }
1752 }
1753
_cma_cancel_listens(struct rdma_id_private * id_priv)1754 static void _cma_cancel_listens(struct rdma_id_private *id_priv)
1755 {
1756 struct rdma_id_private *dev_id_priv;
1757
1758 lockdep_assert_held(&lock);
1759
1760 /*
1761 * Remove from listen_any_list to prevent added devices from spawning
1762 * additional listen requests.
1763 */
1764 list_del(&id_priv->list);
1765
1766 while (!list_empty(&id_priv->listen_list)) {
1767 dev_id_priv = list_entry(id_priv->listen_list.next,
1768 struct rdma_id_private, listen_list);
1769 /* sync with device removal to avoid duplicate destruction */
1770 list_del_init(&dev_id_priv->list);
1771 list_del(&dev_id_priv->listen_list);
1772 mutex_unlock(&lock);
1773
1774 rdma_destroy_id(&dev_id_priv->id);
1775 mutex_lock(&lock);
1776 }
1777 }
1778
cma_cancel_listens(struct rdma_id_private * id_priv)1779 static void cma_cancel_listens(struct rdma_id_private *id_priv)
1780 {
1781 mutex_lock(&lock);
1782 _cma_cancel_listens(id_priv);
1783 mutex_unlock(&lock);
1784 }
1785
cma_cancel_operation(struct rdma_id_private * id_priv,enum rdma_cm_state state)1786 static void cma_cancel_operation(struct rdma_id_private *id_priv,
1787 enum rdma_cm_state state)
1788 {
1789 switch (state) {
1790 case RDMA_CM_ADDR_QUERY:
1791 /*
1792 * We can avoid doing the rdma_addr_cancel() based on state,
1793 * only RDMA_CM_ADDR_QUERY has a work that could still execute.
1794 * Notice that the addr_handler work could still be exiting
1795 * outside this state, however due to the interaction with the
1796 * handler_mutex the work is guaranteed not to touch id_priv
1797 * during exit.
1798 */
1799 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
1800 break;
1801 case RDMA_CM_ROUTE_QUERY:
1802 cma_cancel_route(id_priv);
1803 break;
1804 case RDMA_CM_LISTEN:
1805 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
1806 cma_cancel_listens(id_priv);
1807 break;
1808 default:
1809 break;
1810 }
1811 }
1812
cma_release_port(struct rdma_id_private * id_priv)1813 static void cma_release_port(struct rdma_id_private *id_priv)
1814 {
1815 struct rdma_bind_list *bind_list = id_priv->bind_list;
1816 struct net *net = id_priv->id.route.addr.dev_addr.net;
1817
1818 if (!bind_list)
1819 return;
1820
1821 mutex_lock(&lock);
1822 hlist_del(&id_priv->node);
1823 if (hlist_empty(&bind_list->owners)) {
1824 cma_ps_remove(net, bind_list->ps, bind_list->port);
1825 kfree(bind_list);
1826 }
1827 mutex_unlock(&lock);
1828 }
1829
destroy_mc(struct rdma_id_private * id_priv,struct cma_multicast * mc)1830 static void destroy_mc(struct rdma_id_private *id_priv,
1831 struct cma_multicast *mc)
1832 {
1833 bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
1834
1835 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num))
1836 ib_sa_free_multicast(mc->sa_mc);
1837
1838 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) {
1839 struct rdma_dev_addr *dev_addr =
1840 &id_priv->id.route.addr.dev_addr;
1841 struct net_device *ndev = NULL;
1842
1843 if (dev_addr->bound_dev_if)
1844 ndev = dev_get_by_index(dev_addr->net,
1845 dev_addr->bound_dev_if);
1846 if (ndev && !send_only) {
1847 enum ib_gid_type gid_type;
1848 union ib_gid mgid;
1849
1850 gid_type = id_priv->cma_dev->default_gid_type
1851 [id_priv->id.port_num -
1852 rdma_start_port(
1853 id_priv->cma_dev->device)];
1854 cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid,
1855 gid_type);
1856 cma_igmp_send(ndev, &mgid, false);
1857 }
1858 dev_put(ndev);
1859
1860 cancel_work_sync(&mc->iboe_join.work);
1861 }
1862 kfree(mc);
1863 }
1864
cma_leave_mc_groups(struct rdma_id_private * id_priv)1865 static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
1866 {
1867 struct cma_multicast *mc;
1868
1869 while (!list_empty(&id_priv->mc_list)) {
1870 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast,
1871 list);
1872 list_del(&mc->list);
1873 destroy_mc(id_priv, mc);
1874 }
1875 }
1876
_destroy_id(struct rdma_id_private * id_priv,enum rdma_cm_state state)1877 static void _destroy_id(struct rdma_id_private *id_priv,
1878 enum rdma_cm_state state)
1879 {
1880 cma_cancel_operation(id_priv, state);
1881
1882 rdma_restrack_del(&id_priv->res);
1883 if (id_priv->cma_dev) {
1884 if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
1885 if (id_priv->cm_id.ib)
1886 ib_destroy_cm_id(id_priv->cm_id.ib);
1887 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
1888 if (id_priv->cm_id.iw)
1889 iw_destroy_cm_id(id_priv->cm_id.iw);
1890 }
1891 cma_leave_mc_groups(id_priv);
1892 cma_release_dev(id_priv);
1893 }
1894
1895 cma_release_port(id_priv);
1896 cma_id_put(id_priv);
1897 wait_for_completion(&id_priv->comp);
1898
1899 if (id_priv->internal_id)
1900 cma_id_put(id_priv->id.context);
1901
1902 kfree(id_priv->id.route.path_rec);
1903
1904 put_net(id_priv->id.route.addr.dev_addr.net);
1905 kfree(id_priv);
1906 }
1907
1908 /*
1909 * destroy an ID from within the handler_mutex. This ensures that no other
1910 * handlers can start running concurrently.
1911 */
destroy_id_handler_unlock(struct rdma_id_private * id_priv)1912 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv)
1913 __releases(&idprv->handler_mutex)
1914 {
1915 enum rdma_cm_state state;
1916 unsigned long flags;
1917
1918 trace_cm_id_destroy(id_priv);
1919
1920 /*
1921 * Setting the state to destroyed under the handler mutex provides a
1922 * fence against calling handler callbacks. If this is invoked due to
1923 * the failure of a handler callback then it guarentees that no future
1924 * handlers will be called.
1925 */
1926 lockdep_assert_held(&id_priv->handler_mutex);
1927 spin_lock_irqsave(&id_priv->lock, flags);
1928 state = id_priv->state;
1929 id_priv->state = RDMA_CM_DESTROYING;
1930 spin_unlock_irqrestore(&id_priv->lock, flags);
1931 mutex_unlock(&id_priv->handler_mutex);
1932 _destroy_id(id_priv, state);
1933 }
1934
rdma_destroy_id(struct rdma_cm_id * id)1935 void rdma_destroy_id(struct rdma_cm_id *id)
1936 {
1937 struct rdma_id_private *id_priv =
1938 container_of(id, struct rdma_id_private, id);
1939
1940 mutex_lock(&id_priv->handler_mutex);
1941 destroy_id_handler_unlock(id_priv);
1942 }
1943 EXPORT_SYMBOL(rdma_destroy_id);
1944
cma_rep_recv(struct rdma_id_private * id_priv)1945 static int cma_rep_recv(struct rdma_id_private *id_priv)
1946 {
1947 int ret;
1948
1949 ret = cma_modify_qp_rtr(id_priv, NULL);
1950 if (ret)
1951 goto reject;
1952
1953 ret = cma_modify_qp_rts(id_priv, NULL);
1954 if (ret)
1955 goto reject;
1956
1957 trace_cm_send_rtu(id_priv);
1958 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
1959 if (ret)
1960 goto reject;
1961
1962 return 0;
1963 reject:
1964 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret);
1965 cma_modify_qp_err(id_priv);
1966 trace_cm_send_rej(id_priv);
1967 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
1968 NULL, 0, NULL, 0);
1969 return ret;
1970 }
1971
cma_set_rep_event_data(struct rdma_cm_event * event,const struct ib_cm_rep_event_param * rep_data,void * private_data)1972 static void cma_set_rep_event_data(struct rdma_cm_event *event,
1973 const struct ib_cm_rep_event_param *rep_data,
1974 void *private_data)
1975 {
1976 event->param.conn.private_data = private_data;
1977 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
1978 event->param.conn.responder_resources = rep_data->responder_resources;
1979 event->param.conn.initiator_depth = rep_data->initiator_depth;
1980 event->param.conn.flow_control = rep_data->flow_control;
1981 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
1982 event->param.conn.srq = rep_data->srq;
1983 event->param.conn.qp_num = rep_data->remote_qpn;
1984
1985 event->ece.vendor_id = rep_data->ece.vendor_id;
1986 event->ece.attr_mod = rep_data->ece.attr_mod;
1987 }
1988
cma_cm_event_handler(struct rdma_id_private * id_priv,struct rdma_cm_event * event)1989 static int cma_cm_event_handler(struct rdma_id_private *id_priv,
1990 struct rdma_cm_event *event)
1991 {
1992 int ret;
1993
1994 lockdep_assert_held(&id_priv->handler_mutex);
1995
1996 trace_cm_event_handler(id_priv, event);
1997 ret = id_priv->id.event_handler(&id_priv->id, event);
1998 trace_cm_event_done(id_priv, event, ret);
1999 return ret;
2000 }
2001
cma_ib_handler(struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event)2002 static int cma_ib_handler(struct ib_cm_id *cm_id,
2003 const struct ib_cm_event *ib_event)
2004 {
2005 struct rdma_id_private *id_priv = cm_id->context;
2006 struct rdma_cm_event event = {};
2007 enum rdma_cm_state state;
2008 int ret;
2009
2010 mutex_lock(&id_priv->handler_mutex);
2011 state = READ_ONCE(id_priv->state);
2012 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
2013 state != RDMA_CM_CONNECT) ||
2014 (ib_event->event == IB_CM_TIMEWAIT_EXIT &&
2015 state != RDMA_CM_DISCONNECT))
2016 goto out;
2017
2018 switch (ib_event->event) {
2019 case IB_CM_REQ_ERROR:
2020 case IB_CM_REP_ERROR:
2021 event.event = RDMA_CM_EVENT_UNREACHABLE;
2022 event.status = -ETIMEDOUT;
2023 break;
2024 case IB_CM_REP_RECEIVED:
2025 if (state == RDMA_CM_CONNECT &&
2026 (id_priv->id.qp_type != IB_QPT_UD)) {
2027 trace_cm_send_mra(id_priv);
2028 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2029 }
2030 if (id_priv->id.qp) {
2031 event.status = cma_rep_recv(id_priv);
2032 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
2033 RDMA_CM_EVENT_ESTABLISHED;
2034 } else {
2035 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
2036 }
2037 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
2038 ib_event->private_data);
2039 break;
2040 case IB_CM_RTU_RECEIVED:
2041 case IB_CM_USER_ESTABLISHED:
2042 event.event = RDMA_CM_EVENT_ESTABLISHED;
2043 break;
2044 case IB_CM_DREQ_ERROR:
2045 event.status = -ETIMEDOUT;
2046 fallthrough;
2047 case IB_CM_DREQ_RECEIVED:
2048 case IB_CM_DREP_RECEIVED:
2049 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
2050 RDMA_CM_DISCONNECT))
2051 goto out;
2052 event.event = RDMA_CM_EVENT_DISCONNECTED;
2053 break;
2054 case IB_CM_TIMEWAIT_EXIT:
2055 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
2056 break;
2057 case IB_CM_MRA_RECEIVED:
2058 /* ignore event */
2059 goto out;
2060 case IB_CM_REJ_RECEIVED:
2061 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id,
2062 ib_event->param.rej_rcvd.reason));
2063 cma_modify_qp_err(id_priv);
2064 event.status = ib_event->param.rej_rcvd.reason;
2065 event.event = RDMA_CM_EVENT_REJECTED;
2066 event.param.conn.private_data = ib_event->private_data;
2067 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
2068 break;
2069 default:
2070 pr_err("RDMA CMA: unexpected IB CM event: %d\n",
2071 ib_event->event);
2072 goto out;
2073 }
2074
2075 ret = cma_cm_event_handler(id_priv, &event);
2076 if (ret) {
2077 /* Destroy the CM ID by returning a non-zero value. */
2078 id_priv->cm_id.ib = NULL;
2079 destroy_id_handler_unlock(id_priv);
2080 return ret;
2081 }
2082 out:
2083 mutex_unlock(&id_priv->handler_mutex);
2084 return 0;
2085 }
2086
2087 static struct rdma_id_private *
cma_ib_new_conn_id(const struct rdma_cm_id * listen_id,const struct ib_cm_event * ib_event,struct net_device * net_dev)2088 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id,
2089 const struct ib_cm_event *ib_event,
2090 struct net_device *net_dev)
2091 {
2092 struct rdma_id_private *listen_id_priv;
2093 struct rdma_id_private *id_priv;
2094 struct rdma_cm_id *id;
2095 struct rdma_route *rt;
2096 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2097 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path;
2098 const __be64 service_id =
2099 ib_event->param.req_rcvd.primary_path->service_id;
2100 int ret;
2101
2102 listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2103 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net,
2104 listen_id->event_handler, listen_id->context,
2105 listen_id->ps,
2106 ib_event->param.req_rcvd.qp_type,
2107 listen_id_priv);
2108 if (IS_ERR(id_priv))
2109 return NULL;
2110
2111 id = &id_priv->id;
2112 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2113 (struct sockaddr *)&id->route.addr.dst_addr,
2114 listen_id, ib_event, ss_family, service_id))
2115 goto err;
2116
2117 rt = &id->route;
2118 rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
2119 rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec),
2120 GFP_KERNEL);
2121 if (!rt->path_rec)
2122 goto err;
2123
2124 rt->path_rec[0] = *path;
2125 if (rt->num_paths == 2)
2126 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
2127
2128 if (net_dev) {
2129 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev);
2130 } else {
2131 if (!cma_protocol_roce(listen_id) &&
2132 cma_any_addr(cma_src_addr(id_priv))) {
2133 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
2134 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
2135 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
2136 } else if (!cma_any_addr(cma_src_addr(id_priv))) {
2137 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
2138 if (ret)
2139 goto err;
2140 }
2141 }
2142 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
2143
2144 id_priv->state = RDMA_CM_CONNECT;
2145 return id_priv;
2146
2147 err:
2148 rdma_destroy_id(id);
2149 return NULL;
2150 }
2151
2152 static struct rdma_id_private *
cma_ib_new_udp_id(const struct rdma_cm_id * listen_id,const struct ib_cm_event * ib_event,struct net_device * net_dev)2153 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id,
2154 const struct ib_cm_event *ib_event,
2155 struct net_device *net_dev)
2156 {
2157 const struct rdma_id_private *listen_id_priv;
2158 struct rdma_id_private *id_priv;
2159 struct rdma_cm_id *id;
2160 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2161 struct net *net = listen_id->route.addr.dev_addr.net;
2162 int ret;
2163
2164 listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2165 id_priv = __rdma_create_id(net, listen_id->event_handler,
2166 listen_id->context, listen_id->ps, IB_QPT_UD,
2167 listen_id_priv);
2168 if (IS_ERR(id_priv))
2169 return NULL;
2170
2171 id = &id_priv->id;
2172 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2173 (struct sockaddr *)&id->route.addr.dst_addr,
2174 listen_id, ib_event, ss_family,
2175 ib_event->param.sidr_req_rcvd.service_id))
2176 goto err;
2177
2178 if (net_dev) {
2179 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev);
2180 } else {
2181 if (!cma_any_addr(cma_src_addr(id_priv))) {
2182 ret = cma_translate_addr(cma_src_addr(id_priv),
2183 &id->route.addr.dev_addr);
2184 if (ret)
2185 goto err;
2186 }
2187 }
2188
2189 id_priv->state = RDMA_CM_CONNECT;
2190 return id_priv;
2191 err:
2192 rdma_destroy_id(id);
2193 return NULL;
2194 }
2195
cma_set_req_event_data(struct rdma_cm_event * event,const struct ib_cm_req_event_param * req_data,void * private_data,int offset)2196 static void cma_set_req_event_data(struct rdma_cm_event *event,
2197 const struct ib_cm_req_event_param *req_data,
2198 void *private_data, int offset)
2199 {
2200 event->param.conn.private_data = private_data + offset;
2201 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
2202 event->param.conn.responder_resources = req_data->responder_resources;
2203 event->param.conn.initiator_depth = req_data->initiator_depth;
2204 event->param.conn.flow_control = req_data->flow_control;
2205 event->param.conn.retry_count = req_data->retry_count;
2206 event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
2207 event->param.conn.srq = req_data->srq;
2208 event->param.conn.qp_num = req_data->remote_qpn;
2209
2210 event->ece.vendor_id = req_data->ece.vendor_id;
2211 event->ece.attr_mod = req_data->ece.attr_mod;
2212 }
2213
cma_ib_check_req_qp_type(const struct rdma_cm_id * id,const struct ib_cm_event * ib_event)2214 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id,
2215 const struct ib_cm_event *ib_event)
2216 {
2217 return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
2218 (ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
2219 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
2220 (id->qp_type == IB_QPT_UD)) ||
2221 (!id->qp_type));
2222 }
2223
cma_ib_req_handler(struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event)2224 static int cma_ib_req_handler(struct ib_cm_id *cm_id,
2225 const struct ib_cm_event *ib_event)
2226 {
2227 struct rdma_id_private *listen_id, *conn_id = NULL;
2228 struct rdma_cm_event event = {};
2229 struct cma_req_info req = {};
2230 struct net_device *net_dev;
2231 u8 offset;
2232 int ret;
2233
2234 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev);
2235 if (IS_ERR(listen_id))
2236 return PTR_ERR(listen_id);
2237
2238 trace_cm_req_handler(listen_id, ib_event->event);
2239 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) {
2240 ret = -EINVAL;
2241 goto net_dev_put;
2242 }
2243
2244 mutex_lock(&listen_id->handler_mutex);
2245 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) {
2246 ret = -ECONNABORTED;
2247 goto err_unlock;
2248 }
2249
2250 offset = cma_user_data_offset(listen_id);
2251 event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2252 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
2253 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev);
2254 event.param.ud.private_data = ib_event->private_data + offset;
2255 event.param.ud.private_data_len =
2256 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
2257 } else {
2258 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev);
2259 cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
2260 ib_event->private_data, offset);
2261 }
2262 if (!conn_id) {
2263 ret = -ENOMEM;
2264 goto err_unlock;
2265 }
2266
2267 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2268 ret = cma_ib_acquire_dev(conn_id, listen_id, &req);
2269 if (ret) {
2270 destroy_id_handler_unlock(conn_id);
2271 goto err_unlock;
2272 }
2273
2274 conn_id->cm_id.ib = cm_id;
2275 cm_id->context = conn_id;
2276 cm_id->cm_handler = cma_ib_handler;
2277
2278 ret = cma_cm_event_handler(conn_id, &event);
2279 if (ret) {
2280 /* Destroy the CM ID by returning a non-zero value. */
2281 conn_id->cm_id.ib = NULL;
2282 mutex_unlock(&listen_id->handler_mutex);
2283 destroy_id_handler_unlock(conn_id);
2284 goto net_dev_put;
2285 }
2286
2287 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT &&
2288 conn_id->id.qp_type != IB_QPT_UD) {
2289 trace_cm_send_mra(cm_id->context);
2290 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2291 }
2292 mutex_unlock(&conn_id->handler_mutex);
2293
2294 err_unlock:
2295 mutex_unlock(&listen_id->handler_mutex);
2296
2297 net_dev_put:
2298 if (net_dev)
2299 dev_put(net_dev);
2300
2301 return ret;
2302 }
2303
rdma_get_service_id(struct rdma_cm_id * id,struct sockaddr * addr)2304 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
2305 {
2306 if (addr->sa_family == AF_IB)
2307 return ((struct sockaddr_ib *) addr)->sib_sid;
2308
2309 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
2310 }
2311 EXPORT_SYMBOL(rdma_get_service_id);
2312
rdma_read_gids(struct rdma_cm_id * cm_id,union ib_gid * sgid,union ib_gid * dgid)2313 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
2314 union ib_gid *dgid)
2315 {
2316 struct rdma_addr *addr = &cm_id->route.addr;
2317
2318 if (!cm_id->device) {
2319 if (sgid)
2320 memset(sgid, 0, sizeof(*sgid));
2321 if (dgid)
2322 memset(dgid, 0, sizeof(*dgid));
2323 return;
2324 }
2325
2326 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) {
2327 if (sgid)
2328 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid);
2329 if (dgid)
2330 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid);
2331 } else {
2332 if (sgid)
2333 rdma_addr_get_sgid(&addr->dev_addr, sgid);
2334 if (dgid)
2335 rdma_addr_get_dgid(&addr->dev_addr, dgid);
2336 }
2337 }
2338 EXPORT_SYMBOL(rdma_read_gids);
2339
cma_iw_handler(struct iw_cm_id * iw_id,struct iw_cm_event * iw_event)2340 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
2341 {
2342 struct rdma_id_private *id_priv = iw_id->context;
2343 struct rdma_cm_event event = {};
2344 int ret = 0;
2345 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2346 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2347
2348 mutex_lock(&id_priv->handler_mutex);
2349 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
2350 goto out;
2351
2352 switch (iw_event->event) {
2353 case IW_CM_EVENT_CLOSE:
2354 event.event = RDMA_CM_EVENT_DISCONNECTED;
2355 break;
2356 case IW_CM_EVENT_CONNECT_REPLY:
2357 memcpy(cma_src_addr(id_priv), laddr,
2358 rdma_addr_size(laddr));
2359 memcpy(cma_dst_addr(id_priv), raddr,
2360 rdma_addr_size(raddr));
2361 switch (iw_event->status) {
2362 case 0:
2363 event.event = RDMA_CM_EVENT_ESTABLISHED;
2364 event.param.conn.initiator_depth = iw_event->ird;
2365 event.param.conn.responder_resources = iw_event->ord;
2366 break;
2367 case -ECONNRESET:
2368 case -ECONNREFUSED:
2369 event.event = RDMA_CM_EVENT_REJECTED;
2370 break;
2371 case -ETIMEDOUT:
2372 event.event = RDMA_CM_EVENT_UNREACHABLE;
2373 break;
2374 default:
2375 event.event = RDMA_CM_EVENT_CONNECT_ERROR;
2376 break;
2377 }
2378 break;
2379 case IW_CM_EVENT_ESTABLISHED:
2380 event.event = RDMA_CM_EVENT_ESTABLISHED;
2381 event.param.conn.initiator_depth = iw_event->ird;
2382 event.param.conn.responder_resources = iw_event->ord;
2383 break;
2384 default:
2385 goto out;
2386 }
2387
2388 event.status = iw_event->status;
2389 event.param.conn.private_data = iw_event->private_data;
2390 event.param.conn.private_data_len = iw_event->private_data_len;
2391 ret = cma_cm_event_handler(id_priv, &event);
2392 if (ret) {
2393 /* Destroy the CM ID by returning a non-zero value. */
2394 id_priv->cm_id.iw = NULL;
2395 destroy_id_handler_unlock(id_priv);
2396 return ret;
2397 }
2398
2399 out:
2400 mutex_unlock(&id_priv->handler_mutex);
2401 return ret;
2402 }
2403
iw_conn_req_handler(struct iw_cm_id * cm_id,struct iw_cm_event * iw_event)2404 static int iw_conn_req_handler(struct iw_cm_id *cm_id,
2405 struct iw_cm_event *iw_event)
2406 {
2407 struct rdma_id_private *listen_id, *conn_id;
2408 struct rdma_cm_event event = {};
2409 int ret = -ECONNABORTED;
2410 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2411 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2412
2413 event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2414 event.param.conn.private_data = iw_event->private_data;
2415 event.param.conn.private_data_len = iw_event->private_data_len;
2416 event.param.conn.initiator_depth = iw_event->ird;
2417 event.param.conn.responder_resources = iw_event->ord;
2418
2419 listen_id = cm_id->context;
2420
2421 mutex_lock(&listen_id->handler_mutex);
2422 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN)
2423 goto out;
2424
2425 /* Create a new RDMA id for the new IW CM ID */
2426 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net,
2427 listen_id->id.event_handler,
2428 listen_id->id.context, RDMA_PS_TCP,
2429 IB_QPT_RC, listen_id);
2430 if (IS_ERR(conn_id)) {
2431 ret = -ENOMEM;
2432 goto out;
2433 }
2434 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2435 conn_id->state = RDMA_CM_CONNECT;
2436
2437 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr);
2438 if (ret) {
2439 mutex_unlock(&listen_id->handler_mutex);
2440 destroy_id_handler_unlock(conn_id);
2441 return ret;
2442 }
2443
2444 ret = cma_iw_acquire_dev(conn_id, listen_id);
2445 if (ret) {
2446 mutex_unlock(&listen_id->handler_mutex);
2447 destroy_id_handler_unlock(conn_id);
2448 return ret;
2449 }
2450
2451 conn_id->cm_id.iw = cm_id;
2452 cm_id->context = conn_id;
2453 cm_id->cm_handler = cma_iw_handler;
2454
2455 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
2456 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
2457
2458 ret = cma_cm_event_handler(conn_id, &event);
2459 if (ret) {
2460 /* User wants to destroy the CM ID */
2461 conn_id->cm_id.iw = NULL;
2462 mutex_unlock(&listen_id->handler_mutex);
2463 destroy_id_handler_unlock(conn_id);
2464 return ret;
2465 }
2466
2467 mutex_unlock(&conn_id->handler_mutex);
2468
2469 out:
2470 mutex_unlock(&listen_id->handler_mutex);
2471 return ret;
2472 }
2473
cma_ib_listen(struct rdma_id_private * id_priv)2474 static int cma_ib_listen(struct rdma_id_private *id_priv)
2475 {
2476 struct sockaddr *addr;
2477 struct ib_cm_id *id;
2478 __be64 svc_id;
2479
2480 addr = cma_src_addr(id_priv);
2481 svc_id = rdma_get_service_id(&id_priv->id, addr);
2482 id = ib_cm_insert_listen(id_priv->id.device,
2483 cma_ib_req_handler, svc_id);
2484 if (IS_ERR(id))
2485 return PTR_ERR(id);
2486 id_priv->cm_id.ib = id;
2487
2488 return 0;
2489 }
2490
cma_iw_listen(struct rdma_id_private * id_priv,int backlog)2491 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
2492 {
2493 int ret;
2494 struct iw_cm_id *id;
2495
2496 id = iw_create_cm_id(id_priv->id.device,
2497 iw_conn_req_handler,
2498 id_priv);
2499 if (IS_ERR(id))
2500 return PTR_ERR(id);
2501
2502 mutex_lock(&id_priv->qp_mutex);
2503 id->tos = id_priv->tos;
2504 id->tos_set = id_priv->tos_set;
2505 mutex_unlock(&id_priv->qp_mutex);
2506 id->afonly = id_priv->afonly;
2507 id_priv->cm_id.iw = id;
2508
2509 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
2510 rdma_addr_size(cma_src_addr(id_priv)));
2511
2512 ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
2513
2514 if (ret) {
2515 iw_destroy_cm_id(id_priv->cm_id.iw);
2516 id_priv->cm_id.iw = NULL;
2517 }
2518
2519 return ret;
2520 }
2521
cma_listen_handler(struct rdma_cm_id * id,struct rdma_cm_event * event)2522 static int cma_listen_handler(struct rdma_cm_id *id,
2523 struct rdma_cm_event *event)
2524 {
2525 struct rdma_id_private *id_priv = id->context;
2526
2527 /* Listening IDs are always destroyed on removal */
2528 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL)
2529 return -1;
2530
2531 id->context = id_priv->id.context;
2532 id->event_handler = id_priv->id.event_handler;
2533 trace_cm_event_handler(id_priv, event);
2534 return id_priv->id.event_handler(id, event);
2535 }
2536
cma_listen_on_dev(struct rdma_id_private * id_priv,struct cma_device * cma_dev,struct rdma_id_private ** to_destroy)2537 static int cma_listen_on_dev(struct rdma_id_private *id_priv,
2538 struct cma_device *cma_dev,
2539 struct rdma_id_private **to_destroy)
2540 {
2541 struct rdma_id_private *dev_id_priv;
2542 struct net *net = id_priv->id.route.addr.dev_addr.net;
2543 int ret;
2544
2545 lockdep_assert_held(&lock);
2546
2547 *to_destroy = NULL;
2548 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
2549 return 0;
2550
2551 dev_id_priv =
2552 __rdma_create_id(net, cma_listen_handler, id_priv,
2553 id_priv->id.ps, id_priv->id.qp_type, id_priv);
2554 if (IS_ERR(dev_id_priv))
2555 return PTR_ERR(dev_id_priv);
2556
2557 dev_id_priv->state = RDMA_CM_ADDR_BOUND;
2558 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
2559 rdma_addr_size(cma_src_addr(id_priv)));
2560
2561 _cma_attach_to_dev(dev_id_priv, cma_dev);
2562 rdma_restrack_add(&dev_id_priv->res);
2563 cma_id_get(id_priv);
2564 dev_id_priv->internal_id = 1;
2565 dev_id_priv->afonly = id_priv->afonly;
2566 mutex_lock(&id_priv->qp_mutex);
2567 dev_id_priv->tos_set = id_priv->tos_set;
2568 dev_id_priv->tos = id_priv->tos;
2569 mutex_unlock(&id_priv->qp_mutex);
2570
2571 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog);
2572 if (ret)
2573 goto err_listen;
2574 list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list);
2575 return 0;
2576 err_listen:
2577 /* Caller must destroy this after releasing lock */
2578 *to_destroy = dev_id_priv;
2579 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret);
2580 return ret;
2581 }
2582
cma_listen_on_all(struct rdma_id_private * id_priv)2583 static int cma_listen_on_all(struct rdma_id_private *id_priv)
2584 {
2585 struct rdma_id_private *to_destroy;
2586 struct cma_device *cma_dev;
2587 int ret;
2588
2589 mutex_lock(&lock);
2590 list_add_tail(&id_priv->list, &listen_any_list);
2591 list_for_each_entry(cma_dev, &dev_list, list) {
2592 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
2593 if (ret) {
2594 /* Prevent racing with cma_process_remove() */
2595 if (to_destroy)
2596 list_del_init(&to_destroy->list);
2597 goto err_listen;
2598 }
2599 }
2600 mutex_unlock(&lock);
2601 return 0;
2602
2603 err_listen:
2604 _cma_cancel_listens(id_priv);
2605 mutex_unlock(&lock);
2606 if (to_destroy)
2607 rdma_destroy_id(&to_destroy->id);
2608 return ret;
2609 }
2610
rdma_set_service_type(struct rdma_cm_id * id,int tos)2611 void rdma_set_service_type(struct rdma_cm_id *id, int tos)
2612 {
2613 struct rdma_id_private *id_priv;
2614
2615 id_priv = container_of(id, struct rdma_id_private, id);
2616 mutex_lock(&id_priv->qp_mutex);
2617 id_priv->tos = (u8) tos;
2618 id_priv->tos_set = true;
2619 mutex_unlock(&id_priv->qp_mutex);
2620 }
2621 EXPORT_SYMBOL(rdma_set_service_type);
2622
2623 /**
2624 * rdma_set_ack_timeout() - Set the ack timeout of QP associated
2625 * with a connection identifier.
2626 * @id: Communication identifier to associated with service type.
2627 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec.
2628 *
2629 * This function should be called before rdma_connect() on active side,
2630 * and on passive side before rdma_accept(). It is applicable to primary
2631 * path only. The timeout will affect the local side of the QP, it is not
2632 * negotiated with remote side and zero disables the timer. In case it is
2633 * set before rdma_resolve_route, the value will also be used to determine
2634 * PacketLifeTime for RoCE.
2635 *
2636 * Return: 0 for success
2637 */
rdma_set_ack_timeout(struct rdma_cm_id * id,u8 timeout)2638 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout)
2639 {
2640 struct rdma_id_private *id_priv;
2641
2642 if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI)
2643 return -EINVAL;
2644
2645 id_priv = container_of(id, struct rdma_id_private, id);
2646 mutex_lock(&id_priv->qp_mutex);
2647 id_priv->timeout = timeout;
2648 id_priv->timeout_set = true;
2649 mutex_unlock(&id_priv->qp_mutex);
2650
2651 return 0;
2652 }
2653 EXPORT_SYMBOL(rdma_set_ack_timeout);
2654
2655 /**
2656 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the
2657 * QP associated with a connection identifier.
2658 * @id: Communication identifier to associated with service type.
2659 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK
2660 * Timer Field" in the IBTA specification.
2661 *
2662 * This function should be called before rdma_connect() on active
2663 * side, and on passive side before rdma_accept(). The timer value
2664 * will be associated with the local QP. When it receives a send it is
2665 * not read to handle, typically if the receive queue is empty, an RNR
2666 * Retry NAK is returned to the requester with the min_rnr_timer
2667 * encoded. The requester will then wait at least the time specified
2668 * in the NAK before retrying. The default is zero, which translates
2669 * to a minimum RNR Timer value of 655 ms.
2670 *
2671 * Return: 0 for success
2672 */
rdma_set_min_rnr_timer(struct rdma_cm_id * id,u8 min_rnr_timer)2673 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer)
2674 {
2675 struct rdma_id_private *id_priv;
2676
2677 /* It is a five-bit value */
2678 if (min_rnr_timer & 0xe0)
2679 return -EINVAL;
2680
2681 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT))
2682 return -EINVAL;
2683
2684 id_priv = container_of(id, struct rdma_id_private, id);
2685 mutex_lock(&id_priv->qp_mutex);
2686 id_priv->min_rnr_timer = min_rnr_timer;
2687 id_priv->min_rnr_timer_set = true;
2688 mutex_unlock(&id_priv->qp_mutex);
2689
2690 return 0;
2691 }
2692 EXPORT_SYMBOL(rdma_set_min_rnr_timer);
2693
cma_query_handler(int status,struct sa_path_rec * path_rec,void * context)2694 static void cma_query_handler(int status, struct sa_path_rec *path_rec,
2695 void *context)
2696 {
2697 struct cma_work *work = context;
2698 struct rdma_route *route;
2699
2700 route = &work->id->id.route;
2701
2702 if (!status) {
2703 route->num_paths = 1;
2704 *route->path_rec = *path_rec;
2705 } else {
2706 work->old_state = RDMA_CM_ROUTE_QUERY;
2707 work->new_state = RDMA_CM_ADDR_RESOLVED;
2708 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
2709 work->event.status = status;
2710 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n",
2711 status);
2712 }
2713
2714 queue_work(cma_wq, &work->work);
2715 }
2716
cma_query_ib_route(struct rdma_id_private * id_priv,unsigned long timeout_ms,struct cma_work * work)2717 static int cma_query_ib_route(struct rdma_id_private *id_priv,
2718 unsigned long timeout_ms, struct cma_work *work)
2719 {
2720 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
2721 struct sa_path_rec path_rec;
2722 ib_sa_comp_mask comp_mask;
2723 struct sockaddr_in6 *sin6;
2724 struct sockaddr_ib *sib;
2725
2726 memset(&path_rec, 0, sizeof path_rec);
2727
2728 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num))
2729 path_rec.rec_type = SA_PATH_REC_TYPE_OPA;
2730 else
2731 path_rec.rec_type = SA_PATH_REC_TYPE_IB;
2732 rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
2733 rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
2734 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
2735 path_rec.numb_path = 1;
2736 path_rec.reversible = 1;
2737 path_rec.service_id = rdma_get_service_id(&id_priv->id,
2738 cma_dst_addr(id_priv));
2739
2740 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
2741 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
2742 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
2743
2744 switch (cma_family(id_priv)) {
2745 case AF_INET:
2746 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
2747 comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
2748 break;
2749 case AF_INET6:
2750 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
2751 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
2752 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2753 break;
2754 case AF_IB:
2755 sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
2756 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
2757 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2758 break;
2759 }
2760
2761 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
2762 id_priv->id.port_num, &path_rec,
2763 comp_mask, timeout_ms,
2764 GFP_KERNEL, cma_query_handler,
2765 work, &id_priv->query);
2766
2767 return (id_priv->query_id < 0) ? id_priv->query_id : 0;
2768 }
2769
cma_iboe_join_work_handler(struct work_struct * work)2770 static void cma_iboe_join_work_handler(struct work_struct *work)
2771 {
2772 struct cma_multicast *mc =
2773 container_of(work, struct cma_multicast, iboe_join.work);
2774 struct rdma_cm_event *event = &mc->iboe_join.event;
2775 struct rdma_id_private *id_priv = mc->id_priv;
2776 int ret;
2777
2778 mutex_lock(&id_priv->handler_mutex);
2779 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2780 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2781 goto out_unlock;
2782
2783 ret = cma_cm_event_handler(id_priv, event);
2784 WARN_ON(ret);
2785
2786 out_unlock:
2787 mutex_unlock(&id_priv->handler_mutex);
2788 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN)
2789 rdma_destroy_ah_attr(&event->param.ud.ah_attr);
2790 }
2791
cma_work_handler(struct work_struct * _work)2792 static void cma_work_handler(struct work_struct *_work)
2793 {
2794 struct cma_work *work = container_of(_work, struct cma_work, work);
2795 struct rdma_id_private *id_priv = work->id;
2796
2797 mutex_lock(&id_priv->handler_mutex);
2798 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2799 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2800 goto out_unlock;
2801 if (work->old_state != 0 || work->new_state != 0) {
2802 if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
2803 goto out_unlock;
2804 }
2805
2806 if (cma_cm_event_handler(id_priv, &work->event)) {
2807 cma_id_put(id_priv);
2808 destroy_id_handler_unlock(id_priv);
2809 goto out_free;
2810 }
2811
2812 out_unlock:
2813 mutex_unlock(&id_priv->handler_mutex);
2814 cma_id_put(id_priv);
2815 out_free:
2816 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN)
2817 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr);
2818 kfree(work);
2819 }
2820
cma_init_resolve_route_work(struct cma_work * work,struct rdma_id_private * id_priv)2821 static void cma_init_resolve_route_work(struct cma_work *work,
2822 struct rdma_id_private *id_priv)
2823 {
2824 work->id = id_priv;
2825 INIT_WORK(&work->work, cma_work_handler);
2826 work->old_state = RDMA_CM_ROUTE_QUERY;
2827 work->new_state = RDMA_CM_ROUTE_RESOLVED;
2828 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
2829 }
2830
enqueue_resolve_addr_work(struct cma_work * work,struct rdma_id_private * id_priv)2831 static void enqueue_resolve_addr_work(struct cma_work *work,
2832 struct rdma_id_private *id_priv)
2833 {
2834 /* Balances with cma_id_put() in cma_work_handler */
2835 cma_id_get(id_priv);
2836
2837 work->id = id_priv;
2838 INIT_WORK(&work->work, cma_work_handler);
2839 work->old_state = RDMA_CM_ADDR_QUERY;
2840 work->new_state = RDMA_CM_ADDR_RESOLVED;
2841 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
2842
2843 queue_work(cma_wq, &work->work);
2844 }
2845
cma_resolve_ib_route(struct rdma_id_private * id_priv,unsigned long timeout_ms)2846 static int cma_resolve_ib_route(struct rdma_id_private *id_priv,
2847 unsigned long timeout_ms)
2848 {
2849 struct rdma_route *route = &id_priv->id.route;
2850 struct cma_work *work;
2851 int ret;
2852
2853 work = kzalloc(sizeof *work, GFP_KERNEL);
2854 if (!work)
2855 return -ENOMEM;
2856
2857 cma_init_resolve_route_work(work, id_priv);
2858
2859 if (!route->path_rec)
2860 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
2861 if (!route->path_rec) {
2862 ret = -ENOMEM;
2863 goto err1;
2864 }
2865
2866 ret = cma_query_ib_route(id_priv, timeout_ms, work);
2867 if (ret)
2868 goto err2;
2869
2870 return 0;
2871 err2:
2872 kfree(route->path_rec);
2873 route->path_rec = NULL;
2874 err1:
2875 kfree(work);
2876 return ret;
2877 }
2878
cma_route_gid_type(enum rdma_network_type network_type,unsigned long supported_gids,enum ib_gid_type default_gid)2879 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type,
2880 unsigned long supported_gids,
2881 enum ib_gid_type default_gid)
2882 {
2883 if ((network_type == RDMA_NETWORK_IPV4 ||
2884 network_type == RDMA_NETWORK_IPV6) &&
2885 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids))
2886 return IB_GID_TYPE_ROCE_UDP_ENCAP;
2887
2888 return default_gid;
2889 }
2890
2891 /*
2892 * cma_iboe_set_path_rec_l2_fields() is helper function which sets
2893 * path record type based on GID type.
2894 * It also sets up other L2 fields which includes destination mac address
2895 * netdev ifindex, of the path record.
2896 * It returns the netdev of the bound interface for this path record entry.
2897 */
2898 static struct net_device *
cma_iboe_set_path_rec_l2_fields(struct rdma_id_private * id_priv)2899 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv)
2900 {
2901 struct rdma_route *route = &id_priv->id.route;
2902 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE;
2903 struct rdma_addr *addr = &route->addr;
2904 unsigned long supported_gids;
2905 struct net_device *ndev;
2906
2907 if (!addr->dev_addr.bound_dev_if)
2908 return NULL;
2909
2910 ndev = dev_get_by_index(addr->dev_addr.net,
2911 addr->dev_addr.bound_dev_if);
2912 if (!ndev)
2913 return NULL;
2914
2915 supported_gids = roce_gid_type_mask_support(id_priv->id.device,
2916 id_priv->id.port_num);
2917 gid_type = cma_route_gid_type(addr->dev_addr.network,
2918 supported_gids,
2919 id_priv->gid_type);
2920 /* Use the hint from IP Stack to select GID Type */
2921 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network))
2922 gid_type = ib_network_to_gid_type(addr->dev_addr.network);
2923 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type);
2924
2925 route->path_rec->roce.route_resolved = true;
2926 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr);
2927 return ndev;
2928 }
2929
rdma_set_ib_path(struct rdma_cm_id * id,struct sa_path_rec * path_rec)2930 int rdma_set_ib_path(struct rdma_cm_id *id,
2931 struct sa_path_rec *path_rec)
2932 {
2933 struct rdma_id_private *id_priv;
2934 struct net_device *ndev;
2935 int ret;
2936
2937 id_priv = container_of(id, struct rdma_id_private, id);
2938 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
2939 RDMA_CM_ROUTE_RESOLVED))
2940 return -EINVAL;
2941
2942 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec),
2943 GFP_KERNEL);
2944 if (!id->route.path_rec) {
2945 ret = -ENOMEM;
2946 goto err;
2947 }
2948
2949 if (rdma_protocol_roce(id->device, id->port_num)) {
2950 ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
2951 if (!ndev) {
2952 ret = -ENODEV;
2953 goto err_free;
2954 }
2955 dev_put(ndev);
2956 }
2957
2958 id->route.num_paths = 1;
2959 return 0;
2960
2961 err_free:
2962 kfree(id->route.path_rec);
2963 id->route.path_rec = NULL;
2964 err:
2965 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
2966 return ret;
2967 }
2968 EXPORT_SYMBOL(rdma_set_ib_path);
2969
cma_resolve_iw_route(struct rdma_id_private * id_priv)2970 static int cma_resolve_iw_route(struct rdma_id_private *id_priv)
2971 {
2972 struct cma_work *work;
2973
2974 work = kzalloc(sizeof *work, GFP_KERNEL);
2975 if (!work)
2976 return -ENOMEM;
2977
2978 cma_init_resolve_route_work(work, id_priv);
2979 queue_work(cma_wq, &work->work);
2980 return 0;
2981 }
2982
get_vlan_ndev_tc(struct net_device * vlan_ndev,int prio)2983 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio)
2984 {
2985 struct net_device *dev;
2986
2987 dev = vlan_dev_real_dev(vlan_ndev);
2988 if (dev->num_tc)
2989 return netdev_get_prio_tc_map(dev, prio);
2990
2991 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) &
2992 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2993 }
2994
2995 struct iboe_prio_tc_map {
2996 int input_prio;
2997 int output_tc;
2998 bool found;
2999 };
3000
get_lower_vlan_dev_tc(struct net_device * dev,struct netdev_nested_priv * priv)3001 static int get_lower_vlan_dev_tc(struct net_device *dev,
3002 struct netdev_nested_priv *priv)
3003 {
3004 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data;
3005
3006 if (is_vlan_dev(dev))
3007 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio);
3008 else if (dev->num_tc)
3009 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio);
3010 else
3011 map->output_tc = 0;
3012 /* We are interested only in first level VLAN device, so always
3013 * return 1 to stop iterating over next level devices.
3014 */
3015 map->found = true;
3016 return 1;
3017 }
3018
iboe_tos_to_sl(struct net_device * ndev,int tos)3019 static int iboe_tos_to_sl(struct net_device *ndev, int tos)
3020 {
3021 struct iboe_prio_tc_map prio_tc_map = {};
3022 int prio = rt_tos2priority(tos);
3023 struct netdev_nested_priv priv;
3024
3025 /* If VLAN device, get it directly from the VLAN netdev */
3026 if (is_vlan_dev(ndev))
3027 return get_vlan_ndev_tc(ndev, prio);
3028
3029 prio_tc_map.input_prio = prio;
3030 priv.data = (void *)&prio_tc_map;
3031 rcu_read_lock();
3032 netdev_walk_all_lower_dev_rcu(ndev,
3033 get_lower_vlan_dev_tc,
3034 &priv);
3035 rcu_read_unlock();
3036 /* If map is found from lower device, use it; Otherwise
3037 * continue with the current netdevice to get priority to tc map.
3038 */
3039 if (prio_tc_map.found)
3040 return prio_tc_map.output_tc;
3041 else if (ndev->num_tc)
3042 return netdev_get_prio_tc_map(ndev, prio);
3043 else
3044 return 0;
3045 }
3046
cma_get_roce_udp_flow_label(struct rdma_id_private * id_priv)3047 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv)
3048 {
3049 struct sockaddr_in6 *addr6;
3050 u16 dport, sport;
3051 u32 hash, fl;
3052
3053 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv);
3054 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK;
3055 if ((cma_family(id_priv) != AF_INET6) || !fl) {
3056 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv)));
3057 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv)));
3058 hash = (u32)sport * 31 + dport;
3059 fl = hash & IB_GRH_FLOWLABEL_MASK;
3060 }
3061
3062 return cpu_to_be32(fl);
3063 }
3064
cma_resolve_iboe_route(struct rdma_id_private * id_priv)3065 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
3066 {
3067 struct rdma_route *route = &id_priv->id.route;
3068 struct rdma_addr *addr = &route->addr;
3069 struct cma_work *work;
3070 int ret;
3071 struct net_device *ndev;
3072
3073 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num -
3074 rdma_start_port(id_priv->cma_dev->device)];
3075 u8 tos;
3076
3077 mutex_lock(&id_priv->qp_mutex);
3078 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos;
3079 mutex_unlock(&id_priv->qp_mutex);
3080
3081 work = kzalloc(sizeof *work, GFP_KERNEL);
3082 if (!work)
3083 return -ENOMEM;
3084
3085 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
3086 if (!route->path_rec) {
3087 ret = -ENOMEM;
3088 goto err1;
3089 }
3090
3091 route->num_paths = 1;
3092
3093 ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3094 if (!ndev) {
3095 ret = -ENODEV;
3096 goto err2;
3097 }
3098
3099 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
3100 &route->path_rec->sgid);
3101 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
3102 &route->path_rec->dgid);
3103
3104 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
3105 /* TODO: get the hoplimit from the inet/inet6 device */
3106 route->path_rec->hop_limit = addr->dev_addr.hoplimit;
3107 else
3108 route->path_rec->hop_limit = 1;
3109 route->path_rec->reversible = 1;
3110 route->path_rec->pkey = cpu_to_be16(0xffff);
3111 route->path_rec->mtu_selector = IB_SA_EQ;
3112 route->path_rec->sl = iboe_tos_to_sl(ndev, tos);
3113 route->path_rec->traffic_class = tos;
3114 route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
3115 route->path_rec->rate_selector = IB_SA_EQ;
3116 route->path_rec->rate = IB_RATE_PORT_CURRENT;
3117 dev_put(ndev);
3118 route->path_rec->packet_life_time_selector = IB_SA_EQ;
3119 /* In case ACK timeout is set, use this value to calculate
3120 * PacketLifeTime. As per IBTA 12.7.34,
3121 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay).
3122 * Assuming a negligible local ACK delay, we can use
3123 * PacketLifeTime = local ACK timeout/2
3124 * as a reasonable approximation for RoCE networks.
3125 */
3126 mutex_lock(&id_priv->qp_mutex);
3127 if (id_priv->timeout_set && id_priv->timeout)
3128 route->path_rec->packet_life_time = id_priv->timeout - 1;
3129 else
3130 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
3131 mutex_unlock(&id_priv->qp_mutex);
3132
3133 if (!route->path_rec->mtu) {
3134 ret = -EINVAL;
3135 goto err2;
3136 }
3137
3138 if (rdma_protocol_roce_udp_encap(id_priv->id.device,
3139 id_priv->id.port_num))
3140 route->path_rec->flow_label =
3141 cma_get_roce_udp_flow_label(id_priv);
3142
3143 cma_init_resolve_route_work(work, id_priv);
3144 queue_work(cma_wq, &work->work);
3145
3146 return 0;
3147
3148 err2:
3149 kfree(route->path_rec);
3150 route->path_rec = NULL;
3151 route->num_paths = 0;
3152 err1:
3153 kfree(work);
3154 return ret;
3155 }
3156
rdma_resolve_route(struct rdma_cm_id * id,unsigned long timeout_ms)3157 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms)
3158 {
3159 struct rdma_id_private *id_priv;
3160 int ret;
3161
3162 if (!timeout_ms)
3163 return -EINVAL;
3164
3165 id_priv = container_of(id, struct rdma_id_private, id);
3166 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
3167 return -EINVAL;
3168
3169 cma_id_get(id_priv);
3170 if (rdma_cap_ib_sa(id->device, id->port_num))
3171 ret = cma_resolve_ib_route(id_priv, timeout_ms);
3172 else if (rdma_protocol_roce(id->device, id->port_num))
3173 ret = cma_resolve_iboe_route(id_priv);
3174 else if (rdma_protocol_iwarp(id->device, id->port_num))
3175 ret = cma_resolve_iw_route(id_priv);
3176 else
3177 ret = -ENOSYS;
3178
3179 if (ret)
3180 goto err;
3181
3182 return 0;
3183 err:
3184 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
3185 cma_id_put(id_priv);
3186 return ret;
3187 }
3188 EXPORT_SYMBOL(rdma_resolve_route);
3189
cma_set_loopback(struct sockaddr * addr)3190 static void cma_set_loopback(struct sockaddr *addr)
3191 {
3192 switch (addr->sa_family) {
3193 case AF_INET:
3194 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
3195 break;
3196 case AF_INET6:
3197 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
3198 0, 0, 0, htonl(1));
3199 break;
3200 default:
3201 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
3202 0, 0, 0, htonl(1));
3203 break;
3204 }
3205 }
3206
cma_bind_loopback(struct rdma_id_private * id_priv)3207 static int cma_bind_loopback(struct rdma_id_private *id_priv)
3208 {
3209 struct cma_device *cma_dev, *cur_dev;
3210 union ib_gid gid;
3211 enum ib_port_state port_state;
3212 unsigned int p;
3213 u16 pkey;
3214 int ret;
3215
3216 cma_dev = NULL;
3217 mutex_lock(&lock);
3218 list_for_each_entry(cur_dev, &dev_list, list) {
3219 if (cma_family(id_priv) == AF_IB &&
3220 !rdma_cap_ib_cm(cur_dev->device, 1))
3221 continue;
3222
3223 if (!cma_dev)
3224 cma_dev = cur_dev;
3225
3226 rdma_for_each_port (cur_dev->device, p) {
3227 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) &&
3228 port_state == IB_PORT_ACTIVE) {
3229 cma_dev = cur_dev;
3230 goto port_found;
3231 }
3232 }
3233 }
3234
3235 if (!cma_dev) {
3236 ret = -ENODEV;
3237 goto out;
3238 }
3239
3240 p = 1;
3241
3242 port_found:
3243 ret = rdma_query_gid(cma_dev->device, p, 0, &gid);
3244 if (ret)
3245 goto out;
3246
3247 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
3248 if (ret)
3249 goto out;
3250
3251 id_priv->id.route.addr.dev_addr.dev_type =
3252 (rdma_protocol_ib(cma_dev->device, p)) ?
3253 ARPHRD_INFINIBAND : ARPHRD_ETHER;
3254
3255 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3256 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
3257 id_priv->id.port_num = p;
3258 cma_attach_to_dev(id_priv, cma_dev);
3259 rdma_restrack_add(&id_priv->res);
3260 cma_set_loopback(cma_src_addr(id_priv));
3261 out:
3262 mutex_unlock(&lock);
3263 return ret;
3264 }
3265
addr_handler(int status,struct sockaddr * src_addr,struct rdma_dev_addr * dev_addr,void * context)3266 static void addr_handler(int status, struct sockaddr *src_addr,
3267 struct rdma_dev_addr *dev_addr, void *context)
3268 {
3269 struct rdma_id_private *id_priv = context;
3270 struct rdma_cm_event event = {};
3271 struct sockaddr *addr;
3272 struct sockaddr_storage old_addr;
3273
3274 mutex_lock(&id_priv->handler_mutex);
3275 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
3276 RDMA_CM_ADDR_RESOLVED))
3277 goto out;
3278
3279 /*
3280 * Store the previous src address, so that if we fail to acquire
3281 * matching rdma device, old address can be restored back, which helps
3282 * to cancel the cma listen operation correctly.
3283 */
3284 addr = cma_src_addr(id_priv);
3285 memcpy(&old_addr, addr, rdma_addr_size(addr));
3286 memcpy(addr, src_addr, rdma_addr_size(src_addr));
3287 if (!status && !id_priv->cma_dev) {
3288 status = cma_acquire_dev_by_src_ip(id_priv);
3289 if (status)
3290 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n",
3291 status);
3292 rdma_restrack_add(&id_priv->res);
3293 } else if (status) {
3294 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status);
3295 }
3296
3297 if (status) {
3298 memcpy(addr, &old_addr,
3299 rdma_addr_size((struct sockaddr *)&old_addr));
3300 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3301 RDMA_CM_ADDR_BOUND))
3302 goto out;
3303 event.event = RDMA_CM_EVENT_ADDR_ERROR;
3304 event.status = status;
3305 } else
3306 event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3307
3308 if (cma_cm_event_handler(id_priv, &event)) {
3309 destroy_id_handler_unlock(id_priv);
3310 return;
3311 }
3312 out:
3313 mutex_unlock(&id_priv->handler_mutex);
3314 }
3315
cma_resolve_loopback(struct rdma_id_private * id_priv)3316 static int cma_resolve_loopback(struct rdma_id_private *id_priv)
3317 {
3318 struct cma_work *work;
3319 union ib_gid gid;
3320 int ret;
3321
3322 work = kzalloc(sizeof *work, GFP_KERNEL);
3323 if (!work)
3324 return -ENOMEM;
3325
3326 if (!id_priv->cma_dev) {
3327 ret = cma_bind_loopback(id_priv);
3328 if (ret)
3329 goto err;
3330 }
3331
3332 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3333 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
3334
3335 enqueue_resolve_addr_work(work, id_priv);
3336 return 0;
3337 err:
3338 kfree(work);
3339 return ret;
3340 }
3341
cma_resolve_ib_addr(struct rdma_id_private * id_priv)3342 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
3343 {
3344 struct cma_work *work;
3345 int ret;
3346
3347 work = kzalloc(sizeof *work, GFP_KERNEL);
3348 if (!work)
3349 return -ENOMEM;
3350
3351 if (!id_priv->cma_dev) {
3352 ret = cma_resolve_ib_dev(id_priv);
3353 if (ret)
3354 goto err;
3355 }
3356
3357 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
3358 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
3359
3360 enqueue_resolve_addr_work(work, id_priv);
3361 return 0;
3362 err:
3363 kfree(work);
3364 return ret;
3365 }
3366
cma_bind_addr(struct rdma_cm_id * id,struct sockaddr * src_addr,const struct sockaddr * dst_addr)3367 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
3368 const struct sockaddr *dst_addr)
3369 {
3370 struct sockaddr_storage zero_sock = {};
3371
3372 if (src_addr && src_addr->sa_family)
3373 return rdma_bind_addr(id, src_addr);
3374
3375 /*
3376 * When the src_addr is not specified, automatically supply an any addr
3377 */
3378 zero_sock.ss_family = dst_addr->sa_family;
3379 if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) {
3380 struct sockaddr_in6 *src_addr6 =
3381 (struct sockaddr_in6 *)&zero_sock;
3382 struct sockaddr_in6 *dst_addr6 =
3383 (struct sockaddr_in6 *)dst_addr;
3384
3385 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
3386 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
3387 id->route.addr.dev_addr.bound_dev_if =
3388 dst_addr6->sin6_scope_id;
3389 } else if (dst_addr->sa_family == AF_IB) {
3390 ((struct sockaddr_ib *)&zero_sock)->sib_pkey =
3391 ((struct sockaddr_ib *)dst_addr)->sib_pkey;
3392 }
3393 return rdma_bind_addr(id, (struct sockaddr *)&zero_sock);
3394 }
3395
3396 /*
3397 * If required, resolve the source address for bind and leave the id_priv in
3398 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior
3399 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is
3400 * ignored.
3401 */
resolve_prepare_src(struct rdma_id_private * id_priv,struct sockaddr * src_addr,const struct sockaddr * dst_addr)3402 static int resolve_prepare_src(struct rdma_id_private *id_priv,
3403 struct sockaddr *src_addr,
3404 const struct sockaddr *dst_addr)
3405 {
3406 int ret;
3407
3408 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr));
3409 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) {
3410 /* For a well behaved ULP state will be RDMA_CM_IDLE */
3411 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr);
3412 if (ret)
3413 goto err_dst;
3414 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3415 RDMA_CM_ADDR_QUERY))) {
3416 ret = -EINVAL;
3417 goto err_dst;
3418 }
3419 }
3420
3421 if (cma_family(id_priv) != dst_addr->sa_family) {
3422 ret = -EINVAL;
3423 goto err_state;
3424 }
3425 return 0;
3426
3427 err_state:
3428 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
3429 err_dst:
3430 memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr));
3431 return ret;
3432 }
3433
rdma_resolve_addr(struct rdma_cm_id * id,struct sockaddr * src_addr,const struct sockaddr * dst_addr,unsigned long timeout_ms)3434 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
3435 const struct sockaddr *dst_addr, unsigned long timeout_ms)
3436 {
3437 struct rdma_id_private *id_priv =
3438 container_of(id, struct rdma_id_private, id);
3439 int ret;
3440
3441 ret = resolve_prepare_src(id_priv, src_addr, dst_addr);
3442 if (ret)
3443 return ret;
3444
3445 if (cma_any_addr(dst_addr)) {
3446 ret = cma_resolve_loopback(id_priv);
3447 } else {
3448 if (dst_addr->sa_family == AF_IB) {
3449 ret = cma_resolve_ib_addr(id_priv);
3450 } else {
3451 /*
3452 * The FSM can return back to RDMA_CM_ADDR_BOUND after
3453 * rdma_resolve_ip() is called, eg through the error
3454 * path in addr_handler(). If this happens the existing
3455 * request must be canceled before issuing a new one.
3456 * Since canceling a request is a bit slow and this
3457 * oddball path is rare, keep track once a request has
3458 * been issued. The track turns out to be a permanent
3459 * state since this is the only cancel as it is
3460 * immediately before rdma_resolve_ip().
3461 */
3462 if (id_priv->used_resolve_ip)
3463 rdma_addr_cancel(&id->route.addr.dev_addr);
3464 else
3465 id_priv->used_resolve_ip = 1;
3466 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr,
3467 &id->route.addr.dev_addr,
3468 timeout_ms, addr_handler,
3469 false, id_priv);
3470 }
3471 }
3472 if (ret)
3473 goto err;
3474
3475 return 0;
3476 err:
3477 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
3478 return ret;
3479 }
3480 EXPORT_SYMBOL(rdma_resolve_addr);
3481
rdma_set_reuseaddr(struct rdma_cm_id * id,int reuse)3482 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
3483 {
3484 struct rdma_id_private *id_priv;
3485 unsigned long flags;
3486 int ret;
3487
3488 id_priv = container_of(id, struct rdma_id_private, id);
3489 spin_lock_irqsave(&id_priv->lock, flags);
3490 if ((reuse && id_priv->state != RDMA_CM_LISTEN) ||
3491 id_priv->state == RDMA_CM_IDLE) {
3492 id_priv->reuseaddr = reuse;
3493 ret = 0;
3494 } else {
3495 ret = -EINVAL;
3496 }
3497 spin_unlock_irqrestore(&id_priv->lock, flags);
3498 return ret;
3499 }
3500 EXPORT_SYMBOL(rdma_set_reuseaddr);
3501
rdma_set_afonly(struct rdma_cm_id * id,int afonly)3502 int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
3503 {
3504 struct rdma_id_private *id_priv;
3505 unsigned long flags;
3506 int ret;
3507
3508 id_priv = container_of(id, struct rdma_id_private, id);
3509 spin_lock_irqsave(&id_priv->lock, flags);
3510 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
3511 id_priv->options |= (1 << CMA_OPTION_AFONLY);
3512 id_priv->afonly = afonly;
3513 ret = 0;
3514 } else {
3515 ret = -EINVAL;
3516 }
3517 spin_unlock_irqrestore(&id_priv->lock, flags);
3518 return ret;
3519 }
3520 EXPORT_SYMBOL(rdma_set_afonly);
3521
cma_bind_port(struct rdma_bind_list * bind_list,struct rdma_id_private * id_priv)3522 static void cma_bind_port(struct rdma_bind_list *bind_list,
3523 struct rdma_id_private *id_priv)
3524 {
3525 struct sockaddr *addr;
3526 struct sockaddr_ib *sib;
3527 u64 sid, mask;
3528 __be16 port;
3529
3530 lockdep_assert_held(&lock);
3531
3532 addr = cma_src_addr(id_priv);
3533 port = htons(bind_list->port);
3534
3535 switch (addr->sa_family) {
3536 case AF_INET:
3537 ((struct sockaddr_in *) addr)->sin_port = port;
3538 break;
3539 case AF_INET6:
3540 ((struct sockaddr_in6 *) addr)->sin6_port = port;
3541 break;
3542 case AF_IB:
3543 sib = (struct sockaddr_ib *) addr;
3544 sid = be64_to_cpu(sib->sib_sid);
3545 mask = be64_to_cpu(sib->sib_sid_mask);
3546 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
3547 sib->sib_sid_mask = cpu_to_be64(~0ULL);
3548 break;
3549 }
3550 id_priv->bind_list = bind_list;
3551 hlist_add_head(&id_priv->node, &bind_list->owners);
3552 }
3553
cma_alloc_port(enum rdma_ucm_port_space ps,struct rdma_id_private * id_priv,unsigned short snum)3554 static int cma_alloc_port(enum rdma_ucm_port_space ps,
3555 struct rdma_id_private *id_priv, unsigned short snum)
3556 {
3557 struct rdma_bind_list *bind_list;
3558 int ret;
3559
3560 lockdep_assert_held(&lock);
3561
3562 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
3563 if (!bind_list)
3564 return -ENOMEM;
3565
3566 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
3567 snum);
3568 if (ret < 0)
3569 goto err;
3570
3571 bind_list->ps = ps;
3572 bind_list->port = snum;
3573 cma_bind_port(bind_list, id_priv);
3574 return 0;
3575 err:
3576 kfree(bind_list);
3577 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
3578 }
3579
cma_port_is_unique(struct rdma_bind_list * bind_list,struct rdma_id_private * id_priv)3580 static int cma_port_is_unique(struct rdma_bind_list *bind_list,
3581 struct rdma_id_private *id_priv)
3582 {
3583 struct rdma_id_private *cur_id;
3584 struct sockaddr *daddr = cma_dst_addr(id_priv);
3585 struct sockaddr *saddr = cma_src_addr(id_priv);
3586 __be16 dport = cma_port(daddr);
3587
3588 lockdep_assert_held(&lock);
3589
3590 hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3591 struct sockaddr *cur_daddr = cma_dst_addr(cur_id);
3592 struct sockaddr *cur_saddr = cma_src_addr(cur_id);
3593 __be16 cur_dport = cma_port(cur_daddr);
3594
3595 if (id_priv == cur_id)
3596 continue;
3597
3598 /* different dest port -> unique */
3599 if (!cma_any_port(daddr) &&
3600 !cma_any_port(cur_daddr) &&
3601 (dport != cur_dport))
3602 continue;
3603
3604 /* different src address -> unique */
3605 if (!cma_any_addr(saddr) &&
3606 !cma_any_addr(cur_saddr) &&
3607 cma_addr_cmp(saddr, cur_saddr))
3608 continue;
3609
3610 /* different dst address -> unique */
3611 if (!cma_any_addr(daddr) &&
3612 !cma_any_addr(cur_daddr) &&
3613 cma_addr_cmp(daddr, cur_daddr))
3614 continue;
3615
3616 return -EADDRNOTAVAIL;
3617 }
3618 return 0;
3619 }
3620
cma_alloc_any_port(enum rdma_ucm_port_space ps,struct rdma_id_private * id_priv)3621 static int cma_alloc_any_port(enum rdma_ucm_port_space ps,
3622 struct rdma_id_private *id_priv)
3623 {
3624 static unsigned int last_used_port;
3625 int low, high, remaining;
3626 unsigned int rover;
3627 struct net *net = id_priv->id.route.addr.dev_addr.net;
3628
3629 lockdep_assert_held(&lock);
3630
3631 inet_get_local_port_range(net, &low, &high);
3632 remaining = (high - low) + 1;
3633 rover = prandom_u32() % remaining + low;
3634 retry:
3635 if (last_used_port != rover) {
3636 struct rdma_bind_list *bind_list;
3637 int ret;
3638
3639 bind_list = cma_ps_find(net, ps, (unsigned short)rover);
3640
3641 if (!bind_list) {
3642 ret = cma_alloc_port(ps, id_priv, rover);
3643 } else {
3644 ret = cma_port_is_unique(bind_list, id_priv);
3645 if (!ret)
3646 cma_bind_port(bind_list, id_priv);
3647 }
3648 /*
3649 * Remember previously used port number in order to avoid
3650 * re-using same port immediately after it is closed.
3651 */
3652 if (!ret)
3653 last_used_port = rover;
3654 if (ret != -EADDRNOTAVAIL)
3655 return ret;
3656 }
3657 if (--remaining) {
3658 rover++;
3659 if ((rover < low) || (rover > high))
3660 rover = low;
3661 goto retry;
3662 }
3663 return -EADDRNOTAVAIL;
3664 }
3665
3666 /*
3667 * Check that the requested port is available. This is called when trying to
3668 * bind to a specific port, or when trying to listen on a bound port. In
3669 * the latter case, the provided id_priv may already be on the bind_list, but
3670 * we still need to check that it's okay to start listening.
3671 */
cma_check_port(struct rdma_bind_list * bind_list,struct rdma_id_private * id_priv,uint8_t reuseaddr)3672 static int cma_check_port(struct rdma_bind_list *bind_list,
3673 struct rdma_id_private *id_priv, uint8_t reuseaddr)
3674 {
3675 struct rdma_id_private *cur_id;
3676 struct sockaddr *addr, *cur_addr;
3677
3678 lockdep_assert_held(&lock);
3679
3680 addr = cma_src_addr(id_priv);
3681 hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3682 if (id_priv == cur_id)
3683 continue;
3684
3685 if (reuseaddr && cur_id->reuseaddr)
3686 continue;
3687
3688 cur_addr = cma_src_addr(cur_id);
3689 if (id_priv->afonly && cur_id->afonly &&
3690 (addr->sa_family != cur_addr->sa_family))
3691 continue;
3692
3693 if (cma_any_addr(addr) || cma_any_addr(cur_addr))
3694 return -EADDRNOTAVAIL;
3695
3696 if (!cma_addr_cmp(addr, cur_addr))
3697 return -EADDRINUSE;
3698 }
3699 return 0;
3700 }
3701
cma_use_port(enum rdma_ucm_port_space ps,struct rdma_id_private * id_priv)3702 static int cma_use_port(enum rdma_ucm_port_space ps,
3703 struct rdma_id_private *id_priv)
3704 {
3705 struct rdma_bind_list *bind_list;
3706 unsigned short snum;
3707 int ret;
3708
3709 lockdep_assert_held(&lock);
3710
3711 snum = ntohs(cma_port(cma_src_addr(id_priv)));
3712 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
3713 return -EACCES;
3714
3715 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
3716 if (!bind_list) {
3717 ret = cma_alloc_port(ps, id_priv, snum);
3718 } else {
3719 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
3720 if (!ret)
3721 cma_bind_port(bind_list, id_priv);
3722 }
3723 return ret;
3724 }
3725
3726 static enum rdma_ucm_port_space
cma_select_inet_ps(struct rdma_id_private * id_priv)3727 cma_select_inet_ps(struct rdma_id_private *id_priv)
3728 {
3729 switch (id_priv->id.ps) {
3730 case RDMA_PS_TCP:
3731 case RDMA_PS_UDP:
3732 case RDMA_PS_IPOIB:
3733 case RDMA_PS_IB:
3734 return id_priv->id.ps;
3735 default:
3736
3737 return 0;
3738 }
3739 }
3740
3741 static enum rdma_ucm_port_space
cma_select_ib_ps(struct rdma_id_private * id_priv)3742 cma_select_ib_ps(struct rdma_id_private *id_priv)
3743 {
3744 enum rdma_ucm_port_space ps = 0;
3745 struct sockaddr_ib *sib;
3746 u64 sid_ps, mask, sid;
3747
3748 sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
3749 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
3750 sid = be64_to_cpu(sib->sib_sid) & mask;
3751
3752 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
3753 sid_ps = RDMA_IB_IP_PS_IB;
3754 ps = RDMA_PS_IB;
3755 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
3756 (sid == (RDMA_IB_IP_PS_TCP & mask))) {
3757 sid_ps = RDMA_IB_IP_PS_TCP;
3758 ps = RDMA_PS_TCP;
3759 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
3760 (sid == (RDMA_IB_IP_PS_UDP & mask))) {
3761 sid_ps = RDMA_IB_IP_PS_UDP;
3762 ps = RDMA_PS_UDP;
3763 }
3764
3765 if (ps) {
3766 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
3767 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
3768 be64_to_cpu(sib->sib_sid_mask));
3769 }
3770 return ps;
3771 }
3772
cma_get_port(struct rdma_id_private * id_priv)3773 static int cma_get_port(struct rdma_id_private *id_priv)
3774 {
3775 enum rdma_ucm_port_space ps;
3776 int ret;
3777
3778 if (cma_family(id_priv) != AF_IB)
3779 ps = cma_select_inet_ps(id_priv);
3780 else
3781 ps = cma_select_ib_ps(id_priv);
3782 if (!ps)
3783 return -EPROTONOSUPPORT;
3784
3785 mutex_lock(&lock);
3786 if (cma_any_port(cma_src_addr(id_priv)))
3787 ret = cma_alloc_any_port(ps, id_priv);
3788 else
3789 ret = cma_use_port(ps, id_priv);
3790 mutex_unlock(&lock);
3791
3792 return ret;
3793 }
3794
cma_check_linklocal(struct rdma_dev_addr * dev_addr,struct sockaddr * addr)3795 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
3796 struct sockaddr *addr)
3797 {
3798 #if IS_ENABLED(CONFIG_IPV6)
3799 struct sockaddr_in6 *sin6;
3800
3801 if (addr->sa_family != AF_INET6)
3802 return 0;
3803
3804 sin6 = (struct sockaddr_in6 *) addr;
3805
3806 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
3807 return 0;
3808
3809 if (!sin6->sin6_scope_id)
3810 return -EINVAL;
3811
3812 dev_addr->bound_dev_if = sin6->sin6_scope_id;
3813 #endif
3814 return 0;
3815 }
3816
rdma_listen(struct rdma_cm_id * id,int backlog)3817 int rdma_listen(struct rdma_cm_id *id, int backlog)
3818 {
3819 struct rdma_id_private *id_priv =
3820 container_of(id, struct rdma_id_private, id);
3821 int ret;
3822
3823 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) {
3824 struct sockaddr_in any_in = {
3825 .sin_family = AF_INET,
3826 .sin_addr.s_addr = htonl(INADDR_ANY),
3827 };
3828
3829 /* For a well behaved ULP state will be RDMA_CM_IDLE */
3830 ret = rdma_bind_addr(id, (struct sockaddr *)&any_in);
3831 if (ret)
3832 return ret;
3833 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3834 RDMA_CM_LISTEN)))
3835 return -EINVAL;
3836 }
3837
3838 /*
3839 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable
3840 * any more, and has to be unique in the bind list.
3841 */
3842 if (id_priv->reuseaddr) {
3843 mutex_lock(&lock);
3844 ret = cma_check_port(id_priv->bind_list, id_priv, 0);
3845 if (!ret)
3846 id_priv->reuseaddr = 0;
3847 mutex_unlock(&lock);
3848 if (ret)
3849 goto err;
3850 }
3851
3852 id_priv->backlog = backlog;
3853 if (id_priv->cma_dev) {
3854 if (rdma_cap_ib_cm(id->device, 1)) {
3855 ret = cma_ib_listen(id_priv);
3856 if (ret)
3857 goto err;
3858 } else if (rdma_cap_iw_cm(id->device, 1)) {
3859 ret = cma_iw_listen(id_priv, backlog);
3860 if (ret)
3861 goto err;
3862 } else {
3863 ret = -ENOSYS;
3864 goto err;
3865 }
3866 } else {
3867 ret = cma_listen_on_all(id_priv);
3868 if (ret)
3869 goto err;
3870 }
3871
3872 return 0;
3873 err:
3874 id_priv->backlog = 0;
3875 /*
3876 * All the failure paths that lead here will not allow the req_handler's
3877 * to have run.
3878 */
3879 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
3880 return ret;
3881 }
3882 EXPORT_SYMBOL(rdma_listen);
3883
rdma_bind_addr(struct rdma_cm_id * id,struct sockaddr * addr)3884 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
3885 {
3886 struct rdma_id_private *id_priv;
3887 int ret;
3888 struct sockaddr *daddr;
3889
3890 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
3891 addr->sa_family != AF_IB)
3892 return -EAFNOSUPPORT;
3893
3894 id_priv = container_of(id, struct rdma_id_private, id);
3895 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
3896 return -EINVAL;
3897
3898 ret = cma_check_linklocal(&id->route.addr.dev_addr, addr);
3899 if (ret)
3900 goto err1;
3901
3902 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
3903 if (!cma_any_addr(addr)) {
3904 ret = cma_translate_addr(addr, &id->route.addr.dev_addr);
3905 if (ret)
3906 goto err1;
3907
3908 ret = cma_acquire_dev_by_src_ip(id_priv);
3909 if (ret)
3910 goto err1;
3911 }
3912
3913 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
3914 if (addr->sa_family == AF_INET)
3915 id_priv->afonly = 1;
3916 #if IS_ENABLED(CONFIG_IPV6)
3917 else if (addr->sa_family == AF_INET6) {
3918 struct net *net = id_priv->id.route.addr.dev_addr.net;
3919
3920 id_priv->afonly = net->ipv6.sysctl.bindv6only;
3921 }
3922 #endif
3923 }
3924 daddr = cma_dst_addr(id_priv);
3925 daddr->sa_family = addr->sa_family;
3926
3927 ret = cma_get_port(id_priv);
3928 if (ret)
3929 goto err2;
3930
3931 if (!cma_any_addr(addr))
3932 rdma_restrack_add(&id_priv->res);
3933 return 0;
3934 err2:
3935 if (id_priv->cma_dev)
3936 cma_release_dev(id_priv);
3937 err1:
3938 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
3939 return ret;
3940 }
3941 EXPORT_SYMBOL(rdma_bind_addr);
3942
cma_format_hdr(void * hdr,struct rdma_id_private * id_priv)3943 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
3944 {
3945 struct cma_hdr *cma_hdr;
3946
3947 cma_hdr = hdr;
3948 cma_hdr->cma_version = CMA_VERSION;
3949 if (cma_family(id_priv) == AF_INET) {
3950 struct sockaddr_in *src4, *dst4;
3951
3952 src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
3953 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
3954
3955 cma_set_ip_ver(cma_hdr, 4);
3956 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
3957 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
3958 cma_hdr->port = src4->sin_port;
3959 } else if (cma_family(id_priv) == AF_INET6) {
3960 struct sockaddr_in6 *src6, *dst6;
3961
3962 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
3963 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
3964
3965 cma_set_ip_ver(cma_hdr, 6);
3966 cma_hdr->src_addr.ip6 = src6->sin6_addr;
3967 cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
3968 cma_hdr->port = src6->sin6_port;
3969 }
3970 return 0;
3971 }
3972
cma_sidr_rep_handler(struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event)3973 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
3974 const struct ib_cm_event *ib_event)
3975 {
3976 struct rdma_id_private *id_priv = cm_id->context;
3977 struct rdma_cm_event event = {};
3978 const struct ib_cm_sidr_rep_event_param *rep =
3979 &ib_event->param.sidr_rep_rcvd;
3980 int ret;
3981
3982 mutex_lock(&id_priv->handler_mutex);
3983 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
3984 goto out;
3985
3986 switch (ib_event->event) {
3987 case IB_CM_SIDR_REQ_ERROR:
3988 event.event = RDMA_CM_EVENT_UNREACHABLE;
3989 event.status = -ETIMEDOUT;
3990 break;
3991 case IB_CM_SIDR_REP_RECEIVED:
3992 event.param.ud.private_data = ib_event->private_data;
3993 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
3994 if (rep->status != IB_SIDR_SUCCESS) {
3995 event.event = RDMA_CM_EVENT_UNREACHABLE;
3996 event.status = ib_event->param.sidr_rep_rcvd.status;
3997 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n",
3998 event.status);
3999 break;
4000 }
4001 ret = cma_set_qkey(id_priv, rep->qkey);
4002 if (ret) {
4003 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret);
4004 event.event = RDMA_CM_EVENT_ADDR_ERROR;
4005 event.status = ret;
4006 break;
4007 }
4008 ib_init_ah_attr_from_path(id_priv->id.device,
4009 id_priv->id.port_num,
4010 id_priv->id.route.path_rec,
4011 &event.param.ud.ah_attr,
4012 rep->sgid_attr);
4013 event.param.ud.qp_num = rep->qpn;
4014 event.param.ud.qkey = rep->qkey;
4015 event.event = RDMA_CM_EVENT_ESTABLISHED;
4016 event.status = 0;
4017 break;
4018 default:
4019 pr_err("RDMA CMA: unexpected IB CM event: %d\n",
4020 ib_event->event);
4021 goto out;
4022 }
4023
4024 ret = cma_cm_event_handler(id_priv, &event);
4025
4026 rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4027 if (ret) {
4028 /* Destroy the CM ID by returning a non-zero value. */
4029 id_priv->cm_id.ib = NULL;
4030 destroy_id_handler_unlock(id_priv);
4031 return ret;
4032 }
4033 out:
4034 mutex_unlock(&id_priv->handler_mutex);
4035 return 0;
4036 }
4037
cma_resolve_ib_udp(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4038 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
4039 struct rdma_conn_param *conn_param)
4040 {
4041 struct ib_cm_sidr_req_param req;
4042 struct ib_cm_id *id;
4043 void *private_data;
4044 u8 offset;
4045 int ret;
4046
4047 memset(&req, 0, sizeof req);
4048 offset = cma_user_data_offset(id_priv);
4049 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4050 return -EINVAL;
4051
4052 if (req.private_data_len) {
4053 private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4054 if (!private_data)
4055 return -ENOMEM;
4056 } else {
4057 private_data = NULL;
4058 }
4059
4060 if (conn_param->private_data && conn_param->private_data_len)
4061 memcpy(private_data + offset, conn_param->private_data,
4062 conn_param->private_data_len);
4063
4064 if (private_data) {
4065 ret = cma_format_hdr(private_data, id_priv);
4066 if (ret)
4067 goto out;
4068 req.private_data = private_data;
4069 }
4070
4071 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
4072 id_priv);
4073 if (IS_ERR(id)) {
4074 ret = PTR_ERR(id);
4075 goto out;
4076 }
4077 id_priv->cm_id.ib = id;
4078
4079 req.path = id_priv->id.route.path_rec;
4080 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4081 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4082 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
4083 req.max_cm_retries = CMA_MAX_CM_RETRIES;
4084
4085 trace_cm_send_sidr_req(id_priv);
4086 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
4087 if (ret) {
4088 ib_destroy_cm_id(id_priv->cm_id.ib);
4089 id_priv->cm_id.ib = NULL;
4090 }
4091 out:
4092 kfree(private_data);
4093 return ret;
4094 }
4095
cma_connect_ib(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4096 static int cma_connect_ib(struct rdma_id_private *id_priv,
4097 struct rdma_conn_param *conn_param)
4098 {
4099 struct ib_cm_req_param req;
4100 struct rdma_route *route;
4101 void *private_data;
4102 struct ib_cm_id *id;
4103 u8 offset;
4104 int ret;
4105
4106 memset(&req, 0, sizeof req);
4107 offset = cma_user_data_offset(id_priv);
4108 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4109 return -EINVAL;
4110
4111 if (req.private_data_len) {
4112 private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4113 if (!private_data)
4114 return -ENOMEM;
4115 } else {
4116 private_data = NULL;
4117 }
4118
4119 if (conn_param->private_data && conn_param->private_data_len)
4120 memcpy(private_data + offset, conn_param->private_data,
4121 conn_param->private_data_len);
4122
4123 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
4124 if (IS_ERR(id)) {
4125 ret = PTR_ERR(id);
4126 goto out;
4127 }
4128 id_priv->cm_id.ib = id;
4129
4130 route = &id_priv->id.route;
4131 if (private_data) {
4132 ret = cma_format_hdr(private_data, id_priv);
4133 if (ret)
4134 goto out;
4135 req.private_data = private_data;
4136 }
4137
4138 req.primary_path = &route->path_rec[0];
4139 if (route->num_paths == 2)
4140 req.alternate_path = &route->path_rec[1];
4141
4142 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4143 /* Alternate path SGID attribute currently unsupported */
4144 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4145 req.qp_num = id_priv->qp_num;
4146 req.qp_type = id_priv->id.qp_type;
4147 req.starting_psn = id_priv->seq_num;
4148 req.responder_resources = conn_param->responder_resources;
4149 req.initiator_depth = conn_param->initiator_depth;
4150 req.flow_control = conn_param->flow_control;
4151 req.retry_count = min_t(u8, 7, conn_param->retry_count);
4152 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4153 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4154 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4155 req.max_cm_retries = CMA_MAX_CM_RETRIES;
4156 req.srq = id_priv->srq ? 1 : 0;
4157 req.ece.vendor_id = id_priv->ece.vendor_id;
4158 req.ece.attr_mod = id_priv->ece.attr_mod;
4159
4160 trace_cm_send_req(id_priv);
4161 ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
4162 out:
4163 if (ret && !IS_ERR(id)) {
4164 ib_destroy_cm_id(id);
4165 id_priv->cm_id.ib = NULL;
4166 }
4167
4168 kfree(private_data);
4169 return ret;
4170 }
4171
cma_connect_iw(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4172 static int cma_connect_iw(struct rdma_id_private *id_priv,
4173 struct rdma_conn_param *conn_param)
4174 {
4175 struct iw_cm_id *cm_id;
4176 int ret;
4177 struct iw_cm_conn_param iw_param;
4178
4179 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
4180 if (IS_ERR(cm_id))
4181 return PTR_ERR(cm_id);
4182
4183 mutex_lock(&id_priv->qp_mutex);
4184 cm_id->tos = id_priv->tos;
4185 cm_id->tos_set = id_priv->tos_set;
4186 mutex_unlock(&id_priv->qp_mutex);
4187
4188 id_priv->cm_id.iw = cm_id;
4189
4190 memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
4191 rdma_addr_size(cma_src_addr(id_priv)));
4192 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
4193 rdma_addr_size(cma_dst_addr(id_priv)));
4194
4195 ret = cma_modify_qp_rtr(id_priv, conn_param);
4196 if (ret)
4197 goto out;
4198
4199 if (conn_param) {
4200 iw_param.ord = conn_param->initiator_depth;
4201 iw_param.ird = conn_param->responder_resources;
4202 iw_param.private_data = conn_param->private_data;
4203 iw_param.private_data_len = conn_param->private_data_len;
4204 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
4205 } else {
4206 memset(&iw_param, 0, sizeof iw_param);
4207 iw_param.qpn = id_priv->qp_num;
4208 }
4209 ret = iw_cm_connect(cm_id, &iw_param);
4210 out:
4211 if (ret) {
4212 iw_destroy_cm_id(cm_id);
4213 id_priv->cm_id.iw = NULL;
4214 }
4215 return ret;
4216 }
4217
4218 /**
4219 * rdma_connect_locked - Initiate an active connection request.
4220 * @id: Connection identifier to connect.
4221 * @conn_param: Connection information used for connected QPs.
4222 *
4223 * Same as rdma_connect() but can only be called from the
4224 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback.
4225 */
rdma_connect_locked(struct rdma_cm_id * id,struct rdma_conn_param * conn_param)4226 int rdma_connect_locked(struct rdma_cm_id *id,
4227 struct rdma_conn_param *conn_param)
4228 {
4229 struct rdma_id_private *id_priv =
4230 container_of(id, struct rdma_id_private, id);
4231 int ret;
4232
4233 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
4234 return -EINVAL;
4235
4236 if (!id->qp) {
4237 id_priv->qp_num = conn_param->qp_num;
4238 id_priv->srq = conn_param->srq;
4239 }
4240
4241 if (rdma_cap_ib_cm(id->device, id->port_num)) {
4242 if (id->qp_type == IB_QPT_UD)
4243 ret = cma_resolve_ib_udp(id_priv, conn_param);
4244 else
4245 ret = cma_connect_ib(id_priv, conn_param);
4246 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4247 ret = cma_connect_iw(id_priv, conn_param);
4248 } else {
4249 ret = -ENOSYS;
4250 }
4251 if (ret)
4252 goto err_state;
4253 return 0;
4254 err_state:
4255 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
4256 return ret;
4257 }
4258 EXPORT_SYMBOL(rdma_connect_locked);
4259
4260 /**
4261 * rdma_connect - Initiate an active connection request.
4262 * @id: Connection identifier to connect.
4263 * @conn_param: Connection information used for connected QPs.
4264 *
4265 * Users must have resolved a route for the rdma_cm_id to connect with by having
4266 * called rdma_resolve_route before calling this routine.
4267 *
4268 * This call will either connect to a remote QP or obtain remote QP information
4269 * for unconnected rdma_cm_id's. The actual operation is based on the
4270 * rdma_cm_id's port space.
4271 */
rdma_connect(struct rdma_cm_id * id,struct rdma_conn_param * conn_param)4272 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4273 {
4274 struct rdma_id_private *id_priv =
4275 container_of(id, struct rdma_id_private, id);
4276 int ret;
4277
4278 mutex_lock(&id_priv->handler_mutex);
4279 ret = rdma_connect_locked(id, conn_param);
4280 mutex_unlock(&id_priv->handler_mutex);
4281 return ret;
4282 }
4283 EXPORT_SYMBOL(rdma_connect);
4284
4285 /**
4286 * rdma_connect_ece - Initiate an active connection request with ECE data.
4287 * @id: Connection identifier to connect.
4288 * @conn_param: Connection information used for connected QPs.
4289 * @ece: ECE parameters
4290 *
4291 * See rdma_connect() explanation.
4292 */
rdma_connect_ece(struct rdma_cm_id * id,struct rdma_conn_param * conn_param,struct rdma_ucm_ece * ece)4293 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4294 struct rdma_ucm_ece *ece)
4295 {
4296 struct rdma_id_private *id_priv =
4297 container_of(id, struct rdma_id_private, id);
4298
4299 id_priv->ece.vendor_id = ece->vendor_id;
4300 id_priv->ece.attr_mod = ece->attr_mod;
4301
4302 return rdma_connect(id, conn_param);
4303 }
4304 EXPORT_SYMBOL(rdma_connect_ece);
4305
cma_accept_ib(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4306 static int cma_accept_ib(struct rdma_id_private *id_priv,
4307 struct rdma_conn_param *conn_param)
4308 {
4309 struct ib_cm_rep_param rep;
4310 int ret;
4311
4312 ret = cma_modify_qp_rtr(id_priv, conn_param);
4313 if (ret)
4314 goto out;
4315
4316 ret = cma_modify_qp_rts(id_priv, conn_param);
4317 if (ret)
4318 goto out;
4319
4320 memset(&rep, 0, sizeof rep);
4321 rep.qp_num = id_priv->qp_num;
4322 rep.starting_psn = id_priv->seq_num;
4323 rep.private_data = conn_param->private_data;
4324 rep.private_data_len = conn_param->private_data_len;
4325 rep.responder_resources = conn_param->responder_resources;
4326 rep.initiator_depth = conn_param->initiator_depth;
4327 rep.failover_accepted = 0;
4328 rep.flow_control = conn_param->flow_control;
4329 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4330 rep.srq = id_priv->srq ? 1 : 0;
4331 rep.ece.vendor_id = id_priv->ece.vendor_id;
4332 rep.ece.attr_mod = id_priv->ece.attr_mod;
4333
4334 trace_cm_send_rep(id_priv);
4335 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
4336 out:
4337 return ret;
4338 }
4339
cma_accept_iw(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4340 static int cma_accept_iw(struct rdma_id_private *id_priv,
4341 struct rdma_conn_param *conn_param)
4342 {
4343 struct iw_cm_conn_param iw_param;
4344 int ret;
4345
4346 if (!conn_param)
4347 return -EINVAL;
4348
4349 ret = cma_modify_qp_rtr(id_priv, conn_param);
4350 if (ret)
4351 return ret;
4352
4353 iw_param.ord = conn_param->initiator_depth;
4354 iw_param.ird = conn_param->responder_resources;
4355 iw_param.private_data = conn_param->private_data;
4356 iw_param.private_data_len = conn_param->private_data_len;
4357 if (id_priv->id.qp)
4358 iw_param.qpn = id_priv->qp_num;
4359 else
4360 iw_param.qpn = conn_param->qp_num;
4361
4362 return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
4363 }
4364
cma_send_sidr_rep(struct rdma_id_private * id_priv,enum ib_cm_sidr_status status,u32 qkey,const void * private_data,int private_data_len)4365 static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
4366 enum ib_cm_sidr_status status, u32 qkey,
4367 const void *private_data, int private_data_len)
4368 {
4369 struct ib_cm_sidr_rep_param rep;
4370 int ret;
4371
4372 memset(&rep, 0, sizeof rep);
4373 rep.status = status;
4374 if (status == IB_SIDR_SUCCESS) {
4375 if (qkey)
4376 ret = cma_set_qkey(id_priv, qkey);
4377 else
4378 ret = cma_set_default_qkey(id_priv);
4379 if (ret)
4380 return ret;
4381 rep.qp_num = id_priv->qp_num;
4382 rep.qkey = id_priv->qkey;
4383
4384 rep.ece.vendor_id = id_priv->ece.vendor_id;
4385 rep.ece.attr_mod = id_priv->ece.attr_mod;
4386 }
4387
4388 rep.private_data = private_data;
4389 rep.private_data_len = private_data_len;
4390
4391 trace_cm_send_sidr_rep(id_priv);
4392 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
4393 }
4394
4395 /**
4396 * rdma_accept - Called to accept a connection request or response.
4397 * @id: Connection identifier associated with the request.
4398 * @conn_param: Information needed to establish the connection. This must be
4399 * provided if accepting a connection request. If accepting a connection
4400 * response, this parameter must be NULL.
4401 *
4402 * Typically, this routine is only called by the listener to accept a connection
4403 * request. It must also be called on the active side of a connection if the
4404 * user is performing their own QP transitions.
4405 *
4406 * In the case of error, a reject message is sent to the remote side and the
4407 * state of the qp associated with the id is modified to error, such that any
4408 * previously posted receive buffers would be flushed.
4409 *
4410 * This function is for use by kernel ULPs and must be called from under the
4411 * handler callback.
4412 */
rdma_accept(struct rdma_cm_id * id,struct rdma_conn_param * conn_param)4413 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4414 {
4415 struct rdma_id_private *id_priv =
4416 container_of(id, struct rdma_id_private, id);
4417 int ret;
4418
4419 lockdep_assert_held(&id_priv->handler_mutex);
4420
4421 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4422 return -EINVAL;
4423
4424 if (!id->qp && conn_param) {
4425 id_priv->qp_num = conn_param->qp_num;
4426 id_priv->srq = conn_param->srq;
4427 }
4428
4429 if (rdma_cap_ib_cm(id->device, id->port_num)) {
4430 if (id->qp_type == IB_QPT_UD) {
4431 if (conn_param)
4432 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4433 conn_param->qkey,
4434 conn_param->private_data,
4435 conn_param->private_data_len);
4436 else
4437 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4438 0, NULL, 0);
4439 } else {
4440 if (conn_param)
4441 ret = cma_accept_ib(id_priv, conn_param);
4442 else
4443 ret = cma_rep_recv(id_priv);
4444 }
4445 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4446 ret = cma_accept_iw(id_priv, conn_param);
4447 } else {
4448 ret = -ENOSYS;
4449 }
4450 if (ret)
4451 goto reject;
4452
4453 return 0;
4454 reject:
4455 cma_modify_qp_err(id_priv);
4456 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED);
4457 return ret;
4458 }
4459 EXPORT_SYMBOL(rdma_accept);
4460
rdma_accept_ece(struct rdma_cm_id * id,struct rdma_conn_param * conn_param,struct rdma_ucm_ece * ece)4461 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4462 struct rdma_ucm_ece *ece)
4463 {
4464 struct rdma_id_private *id_priv =
4465 container_of(id, struct rdma_id_private, id);
4466
4467 id_priv->ece.vendor_id = ece->vendor_id;
4468 id_priv->ece.attr_mod = ece->attr_mod;
4469
4470 return rdma_accept(id, conn_param);
4471 }
4472 EXPORT_SYMBOL(rdma_accept_ece);
4473
rdma_lock_handler(struct rdma_cm_id * id)4474 void rdma_lock_handler(struct rdma_cm_id *id)
4475 {
4476 struct rdma_id_private *id_priv =
4477 container_of(id, struct rdma_id_private, id);
4478
4479 mutex_lock(&id_priv->handler_mutex);
4480 }
4481 EXPORT_SYMBOL(rdma_lock_handler);
4482
rdma_unlock_handler(struct rdma_cm_id * id)4483 void rdma_unlock_handler(struct rdma_cm_id *id)
4484 {
4485 struct rdma_id_private *id_priv =
4486 container_of(id, struct rdma_id_private, id);
4487
4488 mutex_unlock(&id_priv->handler_mutex);
4489 }
4490 EXPORT_SYMBOL(rdma_unlock_handler);
4491
rdma_notify(struct rdma_cm_id * id,enum ib_event_type event)4492 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
4493 {
4494 struct rdma_id_private *id_priv;
4495 int ret;
4496
4497 id_priv = container_of(id, struct rdma_id_private, id);
4498 if (!id_priv->cm_id.ib)
4499 return -EINVAL;
4500
4501 switch (id->device->node_type) {
4502 case RDMA_NODE_IB_CA:
4503 ret = ib_cm_notify(id_priv->cm_id.ib, event);
4504 break;
4505 default:
4506 ret = 0;
4507 break;
4508 }
4509 return ret;
4510 }
4511 EXPORT_SYMBOL(rdma_notify);
4512
rdma_reject(struct rdma_cm_id * id,const void * private_data,u8 private_data_len,u8 reason)4513 int rdma_reject(struct rdma_cm_id *id, const void *private_data,
4514 u8 private_data_len, u8 reason)
4515 {
4516 struct rdma_id_private *id_priv;
4517 int ret;
4518
4519 id_priv = container_of(id, struct rdma_id_private, id);
4520 if (!id_priv->cm_id.ib)
4521 return -EINVAL;
4522
4523 if (rdma_cap_ib_cm(id->device, id->port_num)) {
4524 if (id->qp_type == IB_QPT_UD) {
4525 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
4526 private_data, private_data_len);
4527 } else {
4528 trace_cm_send_rej(id_priv);
4529 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0,
4530 private_data, private_data_len);
4531 }
4532 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4533 ret = iw_cm_reject(id_priv->cm_id.iw,
4534 private_data, private_data_len);
4535 } else {
4536 ret = -ENOSYS;
4537 }
4538
4539 return ret;
4540 }
4541 EXPORT_SYMBOL(rdma_reject);
4542
rdma_disconnect(struct rdma_cm_id * id)4543 int rdma_disconnect(struct rdma_cm_id *id)
4544 {
4545 struct rdma_id_private *id_priv;
4546 int ret;
4547
4548 id_priv = container_of(id, struct rdma_id_private, id);
4549 if (!id_priv->cm_id.ib)
4550 return -EINVAL;
4551
4552 if (rdma_cap_ib_cm(id->device, id->port_num)) {
4553 ret = cma_modify_qp_err(id_priv);
4554 if (ret)
4555 goto out;
4556 /* Initiate or respond to a disconnect. */
4557 trace_cm_disconnect(id_priv);
4558 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) {
4559 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0))
4560 trace_cm_sent_drep(id_priv);
4561 } else {
4562 trace_cm_sent_dreq(id_priv);
4563 }
4564 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4565 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
4566 } else
4567 ret = -EINVAL;
4568
4569 out:
4570 return ret;
4571 }
4572 EXPORT_SYMBOL(rdma_disconnect);
4573
cma_make_mc_event(int status,struct rdma_id_private * id_priv,struct ib_sa_multicast * multicast,struct rdma_cm_event * event,struct cma_multicast * mc)4574 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv,
4575 struct ib_sa_multicast *multicast,
4576 struct rdma_cm_event *event,
4577 struct cma_multicast *mc)
4578 {
4579 struct rdma_dev_addr *dev_addr;
4580 enum ib_gid_type gid_type;
4581 struct net_device *ndev;
4582
4583 if (status)
4584 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n",
4585 status);
4586
4587 event->status = status;
4588 event->param.ud.private_data = mc->context;
4589 if (status) {
4590 event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4591 return;
4592 }
4593
4594 dev_addr = &id_priv->id.route.addr.dev_addr;
4595 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4596 gid_type =
4597 id_priv->cma_dev
4598 ->default_gid_type[id_priv->id.port_num -
4599 rdma_start_port(
4600 id_priv->cma_dev->device)];
4601
4602 event->event = RDMA_CM_EVENT_MULTICAST_JOIN;
4603 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num,
4604 &multicast->rec, ndev, gid_type,
4605 &event->param.ud.ah_attr)) {
4606 event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4607 goto out;
4608 }
4609
4610 event->param.ud.qp_num = 0xFFFFFF;
4611 event->param.ud.qkey = id_priv->qkey;
4612
4613 out:
4614 if (ndev)
4615 dev_put(ndev);
4616 }
4617
cma_ib_mc_handler(int status,struct ib_sa_multicast * multicast)4618 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
4619 {
4620 struct cma_multicast *mc = multicast->context;
4621 struct rdma_id_private *id_priv = mc->id_priv;
4622 struct rdma_cm_event event = {};
4623 int ret = 0;
4624
4625 mutex_lock(&id_priv->handler_mutex);
4626 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL ||
4627 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING)
4628 goto out;
4629
4630 ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
4631 if (!ret) {
4632 cma_make_mc_event(status, id_priv, multicast, &event, mc);
4633 ret = cma_cm_event_handler(id_priv, &event);
4634 }
4635 rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4636 WARN_ON(ret);
4637
4638 out:
4639 mutex_unlock(&id_priv->handler_mutex);
4640 return 0;
4641 }
4642
cma_set_mgid(struct rdma_id_private * id_priv,struct sockaddr * addr,union ib_gid * mgid)4643 static void cma_set_mgid(struct rdma_id_private *id_priv,
4644 struct sockaddr *addr, union ib_gid *mgid)
4645 {
4646 unsigned char mc_map[MAX_ADDR_LEN];
4647 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4648 struct sockaddr_in *sin = (struct sockaddr_in *) addr;
4649 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
4650
4651 if (cma_any_addr(addr)) {
4652 memset(mgid, 0, sizeof *mgid);
4653 } else if ((addr->sa_family == AF_INET6) &&
4654 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
4655 0xFF10A01B)) {
4656 /* IPv6 address is an SA assigned MGID. */
4657 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4658 } else if (addr->sa_family == AF_IB) {
4659 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
4660 } else if (addr->sa_family == AF_INET6) {
4661 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
4662 if (id_priv->id.ps == RDMA_PS_UDP)
4663 mc_map[7] = 0x01; /* Use RDMA CM signature */
4664 *mgid = *(union ib_gid *) (mc_map + 4);
4665 } else {
4666 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
4667 if (id_priv->id.ps == RDMA_PS_UDP)
4668 mc_map[7] = 0x01; /* Use RDMA CM signature */
4669 *mgid = *(union ib_gid *) (mc_map + 4);
4670 }
4671 }
4672
cma_join_ib_multicast(struct rdma_id_private * id_priv,struct cma_multicast * mc)4673 static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
4674 struct cma_multicast *mc)
4675 {
4676 struct ib_sa_mcmember_rec rec;
4677 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4678 ib_sa_comp_mask comp_mask;
4679 int ret;
4680
4681 ib_addr_get_mgid(dev_addr, &rec.mgid);
4682 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
4683 &rec.mgid, &rec);
4684 if (ret)
4685 return ret;
4686
4687 if (!id_priv->qkey) {
4688 ret = cma_set_default_qkey(id_priv);
4689 if (ret)
4690 return ret;
4691 }
4692
4693 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
4694 rec.qkey = cpu_to_be32(id_priv->qkey);
4695 rdma_addr_get_sgid(dev_addr, &rec.port_gid);
4696 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
4697 rec.join_state = mc->join_state;
4698
4699 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
4700 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
4701 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
4702 IB_SA_MCMEMBER_REC_FLOW_LABEL |
4703 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
4704
4705 if (id_priv->id.ps == RDMA_PS_IPOIB)
4706 comp_mask |= IB_SA_MCMEMBER_REC_RATE |
4707 IB_SA_MCMEMBER_REC_RATE_SELECTOR |
4708 IB_SA_MCMEMBER_REC_MTU_SELECTOR |
4709 IB_SA_MCMEMBER_REC_MTU |
4710 IB_SA_MCMEMBER_REC_HOP_LIMIT;
4711
4712 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device,
4713 id_priv->id.port_num, &rec, comp_mask,
4714 GFP_KERNEL, cma_ib_mc_handler, mc);
4715 return PTR_ERR_OR_ZERO(mc->sa_mc);
4716 }
4717
cma_iboe_set_mgid(struct sockaddr * addr,union ib_gid * mgid,enum ib_gid_type gid_type)4718 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
4719 enum ib_gid_type gid_type)
4720 {
4721 struct sockaddr_in *sin = (struct sockaddr_in *)addr;
4722 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
4723
4724 if (cma_any_addr(addr)) {
4725 memset(mgid, 0, sizeof *mgid);
4726 } else if (addr->sa_family == AF_INET6) {
4727 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4728 } else {
4729 mgid->raw[0] =
4730 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff;
4731 mgid->raw[1] =
4732 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e;
4733 mgid->raw[2] = 0;
4734 mgid->raw[3] = 0;
4735 mgid->raw[4] = 0;
4736 mgid->raw[5] = 0;
4737 mgid->raw[6] = 0;
4738 mgid->raw[7] = 0;
4739 mgid->raw[8] = 0;
4740 mgid->raw[9] = 0;
4741 mgid->raw[10] = 0xff;
4742 mgid->raw[11] = 0xff;
4743 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
4744 }
4745 }
4746
cma_iboe_join_multicast(struct rdma_id_private * id_priv,struct cma_multicast * mc)4747 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
4748 struct cma_multicast *mc)
4749 {
4750 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4751 int err = 0;
4752 struct sockaddr *addr = (struct sockaddr *)&mc->addr;
4753 struct net_device *ndev = NULL;
4754 struct ib_sa_multicast ib = {};
4755 enum ib_gid_type gid_type;
4756 bool send_only;
4757
4758 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
4759
4760 if (cma_zero_addr(addr))
4761 return -EINVAL;
4762
4763 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
4764 rdma_start_port(id_priv->cma_dev->device)];
4765 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type);
4766
4767 ib.rec.pkey = cpu_to_be16(0xffff);
4768 if (dev_addr->bound_dev_if)
4769 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4770 if (!ndev)
4771 return -ENODEV;
4772
4773 ib.rec.rate = IB_RATE_PORT_CURRENT;
4774 ib.rec.hop_limit = 1;
4775 ib.rec.mtu = iboe_get_mtu(ndev->mtu);
4776
4777 if (addr->sa_family == AF_INET) {
4778 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
4779 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
4780 if (!send_only) {
4781 err = cma_igmp_send(ndev, &ib.rec.mgid,
4782 true);
4783 }
4784 }
4785 } else {
4786 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
4787 err = -ENOTSUPP;
4788 }
4789 dev_put(ndev);
4790 if (err || !ib.rec.mtu)
4791 return err ?: -EINVAL;
4792
4793 if (!id_priv->qkey)
4794 cma_set_default_qkey(id_priv);
4795
4796 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
4797 &ib.rec.port_gid);
4798 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler);
4799 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc);
4800 queue_work(cma_wq, &mc->iboe_join.work);
4801 return 0;
4802 }
4803
rdma_join_multicast(struct rdma_cm_id * id,struct sockaddr * addr,u8 join_state,void * context)4804 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
4805 u8 join_state, void *context)
4806 {
4807 struct rdma_id_private *id_priv =
4808 container_of(id, struct rdma_id_private, id);
4809 struct cma_multicast *mc;
4810 int ret;
4811
4812 /* Not supported for kernel QPs */
4813 if (WARN_ON(id->qp))
4814 return -EINVAL;
4815
4816 /* ULP is calling this wrong. */
4817 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND &&
4818 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED))
4819 return -EINVAL;
4820
4821 if (id_priv->id.qp_type != IB_QPT_UD)
4822 return -EINVAL;
4823
4824 mc = kzalloc(sizeof(*mc), GFP_KERNEL);
4825 if (!mc)
4826 return -ENOMEM;
4827
4828 memcpy(&mc->addr, addr, rdma_addr_size(addr));
4829 mc->context = context;
4830 mc->id_priv = id_priv;
4831 mc->join_state = join_state;
4832
4833 if (rdma_protocol_roce(id->device, id->port_num)) {
4834 ret = cma_iboe_join_multicast(id_priv, mc);
4835 if (ret)
4836 goto out_err;
4837 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) {
4838 ret = cma_join_ib_multicast(id_priv, mc);
4839 if (ret)
4840 goto out_err;
4841 } else {
4842 ret = -ENOSYS;
4843 goto out_err;
4844 }
4845
4846 spin_lock(&id_priv->lock);
4847 list_add(&mc->list, &id_priv->mc_list);
4848 spin_unlock(&id_priv->lock);
4849
4850 return 0;
4851 out_err:
4852 kfree(mc);
4853 return ret;
4854 }
4855 EXPORT_SYMBOL(rdma_join_multicast);
4856
rdma_leave_multicast(struct rdma_cm_id * id,struct sockaddr * addr)4857 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
4858 {
4859 struct rdma_id_private *id_priv;
4860 struct cma_multicast *mc;
4861
4862 id_priv = container_of(id, struct rdma_id_private, id);
4863 spin_lock_irq(&id_priv->lock);
4864 list_for_each_entry(mc, &id_priv->mc_list, list) {
4865 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0)
4866 continue;
4867 list_del(&mc->list);
4868 spin_unlock_irq(&id_priv->lock);
4869
4870 WARN_ON(id_priv->cma_dev->device != id->device);
4871 destroy_mc(id_priv, mc);
4872 return;
4873 }
4874 spin_unlock_irq(&id_priv->lock);
4875 }
4876 EXPORT_SYMBOL(rdma_leave_multicast);
4877
cma_netdev_change(struct net_device * ndev,struct rdma_id_private * id_priv)4878 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
4879 {
4880 struct rdma_dev_addr *dev_addr;
4881 struct cma_work *work;
4882
4883 dev_addr = &id_priv->id.route.addr.dev_addr;
4884
4885 if ((dev_addr->bound_dev_if == ndev->ifindex) &&
4886 (net_eq(dev_net(ndev), dev_addr->net)) &&
4887 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
4888 pr_info("RDMA CM addr change for ndev %s used by id %p\n",
4889 ndev->name, &id_priv->id);
4890 work = kzalloc(sizeof *work, GFP_KERNEL);
4891 if (!work)
4892 return -ENOMEM;
4893
4894 INIT_WORK(&work->work, cma_work_handler);
4895 work->id = id_priv;
4896 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
4897 cma_id_get(id_priv);
4898 queue_work(cma_wq, &work->work);
4899 }
4900
4901 return 0;
4902 }
4903
cma_netdev_callback(struct notifier_block * self,unsigned long event,void * ptr)4904 static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
4905 void *ptr)
4906 {
4907 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
4908 struct cma_device *cma_dev;
4909 struct rdma_id_private *id_priv;
4910 int ret = NOTIFY_DONE;
4911
4912 if (event != NETDEV_BONDING_FAILOVER)
4913 return NOTIFY_DONE;
4914
4915 if (!netif_is_bond_master(ndev))
4916 return NOTIFY_DONE;
4917
4918 mutex_lock(&lock);
4919 list_for_each_entry(cma_dev, &dev_list, list)
4920 list_for_each_entry(id_priv, &cma_dev->id_list, list) {
4921 ret = cma_netdev_change(ndev, id_priv);
4922 if (ret)
4923 goto out;
4924 }
4925
4926 out:
4927 mutex_unlock(&lock);
4928 return ret;
4929 }
4930
4931 static struct notifier_block cma_nb = {
4932 .notifier_call = cma_netdev_callback
4933 };
4934
cma_send_device_removal_put(struct rdma_id_private * id_priv)4935 static void cma_send_device_removal_put(struct rdma_id_private *id_priv)
4936 {
4937 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL };
4938 enum rdma_cm_state state;
4939 unsigned long flags;
4940
4941 mutex_lock(&id_priv->handler_mutex);
4942 /* Record that we want to remove the device */
4943 spin_lock_irqsave(&id_priv->lock, flags);
4944 state = id_priv->state;
4945 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) {
4946 spin_unlock_irqrestore(&id_priv->lock, flags);
4947 mutex_unlock(&id_priv->handler_mutex);
4948 cma_id_put(id_priv);
4949 return;
4950 }
4951 id_priv->state = RDMA_CM_DEVICE_REMOVAL;
4952 spin_unlock_irqrestore(&id_priv->lock, flags);
4953
4954 if (cma_cm_event_handler(id_priv, &event)) {
4955 /*
4956 * At this point the ULP promises it won't call
4957 * rdma_destroy_id() concurrently
4958 */
4959 cma_id_put(id_priv);
4960 mutex_unlock(&id_priv->handler_mutex);
4961 trace_cm_id_destroy(id_priv);
4962 _destroy_id(id_priv, state);
4963 return;
4964 }
4965 mutex_unlock(&id_priv->handler_mutex);
4966
4967 /*
4968 * If this races with destroy then the thread that first assigns state
4969 * to a destroying does the cancel.
4970 */
4971 cma_cancel_operation(id_priv, state);
4972 cma_id_put(id_priv);
4973 }
4974
cma_process_remove(struct cma_device * cma_dev)4975 static void cma_process_remove(struct cma_device *cma_dev)
4976 {
4977 mutex_lock(&lock);
4978 while (!list_empty(&cma_dev->id_list)) {
4979 struct rdma_id_private *id_priv = list_first_entry(
4980 &cma_dev->id_list, struct rdma_id_private, list);
4981
4982 list_del(&id_priv->listen_list);
4983 list_del_init(&id_priv->list);
4984 cma_id_get(id_priv);
4985 mutex_unlock(&lock);
4986
4987 cma_send_device_removal_put(id_priv);
4988
4989 mutex_lock(&lock);
4990 }
4991 mutex_unlock(&lock);
4992
4993 cma_dev_put(cma_dev);
4994 wait_for_completion(&cma_dev->comp);
4995 }
4996
cma_supported(struct ib_device * device)4997 static bool cma_supported(struct ib_device *device)
4998 {
4999 u32 i;
5000
5001 rdma_for_each_port(device, i) {
5002 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i))
5003 return true;
5004 }
5005 return false;
5006 }
5007
cma_add_one(struct ib_device * device)5008 static int cma_add_one(struct ib_device *device)
5009 {
5010 struct rdma_id_private *to_destroy;
5011 struct cma_device *cma_dev;
5012 struct rdma_id_private *id_priv;
5013 unsigned long supported_gids = 0;
5014 int ret;
5015 u32 i;
5016
5017 if (!cma_supported(device))
5018 return -EOPNOTSUPP;
5019
5020 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL);
5021 if (!cma_dev)
5022 return -ENOMEM;
5023
5024 cma_dev->device = device;
5025 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
5026 sizeof(*cma_dev->default_gid_type),
5027 GFP_KERNEL);
5028 if (!cma_dev->default_gid_type) {
5029 ret = -ENOMEM;
5030 goto free_cma_dev;
5031 }
5032
5033 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt,
5034 sizeof(*cma_dev->default_roce_tos),
5035 GFP_KERNEL);
5036 if (!cma_dev->default_roce_tos) {
5037 ret = -ENOMEM;
5038 goto free_gid_type;
5039 }
5040
5041 rdma_for_each_port (device, i) {
5042 supported_gids = roce_gid_type_mask_support(device, i);
5043 WARN_ON(!supported_gids);
5044 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE))
5045 cma_dev->default_gid_type[i - rdma_start_port(device)] =
5046 CMA_PREFERRED_ROCE_GID_TYPE;
5047 else
5048 cma_dev->default_gid_type[i - rdma_start_port(device)] =
5049 find_first_bit(&supported_gids, BITS_PER_LONG);
5050 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0;
5051 }
5052
5053 init_completion(&cma_dev->comp);
5054 refcount_set(&cma_dev->refcount, 1);
5055 INIT_LIST_HEAD(&cma_dev->id_list);
5056 ib_set_client_data(device, &cma_client, cma_dev);
5057
5058 mutex_lock(&lock);
5059 list_add_tail(&cma_dev->list, &dev_list);
5060 list_for_each_entry(id_priv, &listen_any_list, list) {
5061 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
5062 if (ret)
5063 goto free_listen;
5064 }
5065 mutex_unlock(&lock);
5066
5067 trace_cm_add_one(device);
5068 return 0;
5069
5070 free_listen:
5071 list_del(&cma_dev->list);
5072 mutex_unlock(&lock);
5073
5074 /* cma_process_remove() will delete to_destroy */
5075 cma_process_remove(cma_dev);
5076 kfree(cma_dev->default_roce_tos);
5077 free_gid_type:
5078 kfree(cma_dev->default_gid_type);
5079
5080 free_cma_dev:
5081 kfree(cma_dev);
5082 return ret;
5083 }
5084
cma_remove_one(struct ib_device * device,void * client_data)5085 static void cma_remove_one(struct ib_device *device, void *client_data)
5086 {
5087 struct cma_device *cma_dev = client_data;
5088
5089 trace_cm_remove_one(device);
5090
5091 mutex_lock(&lock);
5092 list_del(&cma_dev->list);
5093 mutex_unlock(&lock);
5094
5095 cma_process_remove(cma_dev);
5096 kfree(cma_dev->default_roce_tos);
5097 kfree(cma_dev->default_gid_type);
5098 kfree(cma_dev);
5099 }
5100
cma_init_net(struct net * net)5101 static int cma_init_net(struct net *net)
5102 {
5103 struct cma_pernet *pernet = cma_pernet(net);
5104
5105 xa_init(&pernet->tcp_ps);
5106 xa_init(&pernet->udp_ps);
5107 xa_init(&pernet->ipoib_ps);
5108 xa_init(&pernet->ib_ps);
5109
5110 return 0;
5111 }
5112
cma_exit_net(struct net * net)5113 static void cma_exit_net(struct net *net)
5114 {
5115 struct cma_pernet *pernet = cma_pernet(net);
5116
5117 WARN_ON(!xa_empty(&pernet->tcp_ps));
5118 WARN_ON(!xa_empty(&pernet->udp_ps));
5119 WARN_ON(!xa_empty(&pernet->ipoib_ps));
5120 WARN_ON(!xa_empty(&pernet->ib_ps));
5121 }
5122
5123 static struct pernet_operations cma_pernet_operations = {
5124 .init = cma_init_net,
5125 .exit = cma_exit_net,
5126 .id = &cma_pernet_id,
5127 .size = sizeof(struct cma_pernet),
5128 };
5129
cma_init(void)5130 static int __init cma_init(void)
5131 {
5132 int ret;
5133
5134 /*
5135 * There is a rare lock ordering dependency in cma_netdev_callback()
5136 * that only happens when bonding is enabled. Teach lockdep that rtnl
5137 * must never be nested under lock so it can find these without having
5138 * to test with bonding.
5139 */
5140 if (IS_ENABLED(CONFIG_LOCKDEP)) {
5141 rtnl_lock();
5142 mutex_lock(&lock);
5143 mutex_unlock(&lock);
5144 rtnl_unlock();
5145 }
5146
5147 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM);
5148 if (!cma_wq)
5149 return -ENOMEM;
5150
5151 ret = register_pernet_subsys(&cma_pernet_operations);
5152 if (ret)
5153 goto err_wq;
5154
5155 ib_sa_register_client(&sa_client);
5156 register_netdevice_notifier(&cma_nb);
5157
5158 ret = ib_register_client(&cma_client);
5159 if (ret)
5160 goto err;
5161
5162 ret = cma_configfs_init();
5163 if (ret)
5164 goto err_ib;
5165
5166 return 0;
5167
5168 err_ib:
5169 ib_unregister_client(&cma_client);
5170 err:
5171 unregister_netdevice_notifier(&cma_nb);
5172 ib_sa_unregister_client(&sa_client);
5173 unregister_pernet_subsys(&cma_pernet_operations);
5174 err_wq:
5175 destroy_workqueue(cma_wq);
5176 return ret;
5177 }
5178
cma_cleanup(void)5179 static void __exit cma_cleanup(void)
5180 {
5181 cma_configfs_exit();
5182 ib_unregister_client(&cma_client);
5183 unregister_netdevice_notifier(&cma_nb);
5184 ib_sa_unregister_client(&sa_client);
5185 unregister_pernet_subsys(&cma_pernet_operations);
5186 destroy_workqueue(cma_wq);
5187 }
5188
5189 module_init(cma_init);
5190 module_exit(cma_cleanup);
5191