1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Implementation of the IOMMU SVA API for the ARM SMMUv3
4 */
5
6 #include <linux/mm.h>
7 #include <linux/mmu_context.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/sched/mm.h>
10 #include <linux/slab.h>
11
12 #include "arm-smmu-v3.h"
13 #include "../../iommu-sva-lib.h"
14 #include "../../io-pgtable-arm.h"
15
16 struct arm_smmu_mmu_notifier {
17 struct mmu_notifier mn;
18 struct arm_smmu_ctx_desc *cd;
19 bool cleared;
20 refcount_t refs;
21 struct list_head list;
22 struct arm_smmu_domain *domain;
23 };
24
25 #define mn_to_smmu(mn) container_of(mn, struct arm_smmu_mmu_notifier, mn)
26
27 struct arm_smmu_bond {
28 struct iommu_sva sva;
29 struct mm_struct *mm;
30 struct arm_smmu_mmu_notifier *smmu_mn;
31 struct list_head list;
32 refcount_t refs;
33 };
34
35 #define sva_to_bond(handle) \
36 container_of(handle, struct arm_smmu_bond, sva)
37
38 static DEFINE_MUTEX(sva_lock);
39
40 /*
41 * Check if the CPU ASID is available on the SMMU side. If a private context
42 * descriptor is using it, try to replace it.
43 */
44 static struct arm_smmu_ctx_desc *
arm_smmu_share_asid(struct mm_struct * mm,u16 asid)45 arm_smmu_share_asid(struct mm_struct *mm, u16 asid)
46 {
47 int ret;
48 u32 new_asid;
49 struct arm_smmu_ctx_desc *cd;
50 struct arm_smmu_device *smmu;
51 struct arm_smmu_domain *smmu_domain;
52
53 cd = xa_load(&arm_smmu_asid_xa, asid);
54 if (!cd)
55 return NULL;
56
57 if (cd->mm) {
58 if (WARN_ON(cd->mm != mm))
59 return ERR_PTR(-EINVAL);
60 /* All devices bound to this mm use the same cd struct. */
61 refcount_inc(&cd->refs);
62 return cd;
63 }
64
65 smmu_domain = container_of(cd, struct arm_smmu_domain, s1_cfg.cd);
66 smmu = smmu_domain->smmu;
67
68 ret = xa_alloc(&arm_smmu_asid_xa, &new_asid, cd,
69 XA_LIMIT(1, (1 << smmu->asid_bits) - 1), GFP_KERNEL);
70 if (ret)
71 return ERR_PTR(-ENOSPC);
72 /*
73 * Race with unmap: TLB invalidations will start targeting the new ASID,
74 * which isn't assigned yet. We'll do an invalidate-all on the old ASID
75 * later, so it doesn't matter.
76 */
77 cd->asid = new_asid;
78 /*
79 * Update ASID and invalidate CD in all associated masters. There will
80 * be some overlap between use of both ASIDs, until we invalidate the
81 * TLB.
82 */
83 arm_smmu_write_ctx_desc(smmu_domain, 0, cd);
84
85 /* Invalidate TLB entries previously associated with that context */
86 arm_smmu_tlb_inv_asid(smmu, asid);
87
88 xa_erase(&arm_smmu_asid_xa, asid);
89 return NULL;
90 }
91
arm_smmu_alloc_shared_cd(struct mm_struct * mm)92 static struct arm_smmu_ctx_desc *arm_smmu_alloc_shared_cd(struct mm_struct *mm)
93 {
94 u16 asid;
95 int err = 0;
96 u64 tcr, par, reg;
97 struct arm_smmu_ctx_desc *cd;
98 struct arm_smmu_ctx_desc *ret = NULL;
99
100 /* Don't free the mm until we release the ASID */
101 mmgrab(mm);
102
103 asid = arm64_mm_context_get(mm);
104 if (!asid) {
105 err = -ESRCH;
106 goto out_drop_mm;
107 }
108
109 cd = kzalloc(sizeof(*cd), GFP_KERNEL);
110 if (!cd) {
111 err = -ENOMEM;
112 goto out_put_context;
113 }
114
115 refcount_set(&cd->refs, 1);
116
117 mutex_lock(&arm_smmu_asid_lock);
118 ret = arm_smmu_share_asid(mm, asid);
119 if (ret) {
120 mutex_unlock(&arm_smmu_asid_lock);
121 goto out_free_cd;
122 }
123
124 err = xa_insert(&arm_smmu_asid_xa, asid, cd, GFP_KERNEL);
125 mutex_unlock(&arm_smmu_asid_lock);
126
127 if (err)
128 goto out_free_asid;
129
130 tcr = FIELD_PREP(CTXDESC_CD_0_TCR_T0SZ, 64ULL - vabits_actual) |
131 FIELD_PREP(CTXDESC_CD_0_TCR_IRGN0, ARM_LPAE_TCR_RGN_WBWA) |
132 FIELD_PREP(CTXDESC_CD_0_TCR_ORGN0, ARM_LPAE_TCR_RGN_WBWA) |
133 FIELD_PREP(CTXDESC_CD_0_TCR_SH0, ARM_LPAE_TCR_SH_IS) |
134 CTXDESC_CD_0_TCR_EPD1 | CTXDESC_CD_0_AA64;
135
136 switch (PAGE_SIZE) {
137 case SZ_4K:
138 tcr |= FIELD_PREP(CTXDESC_CD_0_TCR_TG0, ARM_LPAE_TCR_TG0_4K);
139 break;
140 case SZ_16K:
141 tcr |= FIELD_PREP(CTXDESC_CD_0_TCR_TG0, ARM_LPAE_TCR_TG0_16K);
142 break;
143 case SZ_64K:
144 tcr |= FIELD_PREP(CTXDESC_CD_0_TCR_TG0, ARM_LPAE_TCR_TG0_64K);
145 break;
146 default:
147 WARN_ON(1);
148 err = -EINVAL;
149 goto out_free_asid;
150 }
151
152 reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
153 par = cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
154 tcr |= FIELD_PREP(CTXDESC_CD_0_TCR_IPS, par);
155
156 cd->ttbr = virt_to_phys(mm->pgd);
157 cd->tcr = tcr;
158 /*
159 * MAIR value is pretty much constant and global, so we can just get it
160 * from the current CPU register
161 */
162 cd->mair = read_sysreg(mair_el1);
163 cd->asid = asid;
164 cd->mm = mm;
165
166 return cd;
167
168 out_free_asid:
169 arm_smmu_free_asid(cd);
170 out_free_cd:
171 kfree(cd);
172 out_put_context:
173 arm64_mm_context_put(mm);
174 out_drop_mm:
175 mmdrop(mm);
176 return err < 0 ? ERR_PTR(err) : ret;
177 }
178
arm_smmu_free_shared_cd(struct arm_smmu_ctx_desc * cd)179 static void arm_smmu_free_shared_cd(struct arm_smmu_ctx_desc *cd)
180 {
181 if (arm_smmu_free_asid(cd)) {
182 /* Unpin ASID */
183 arm64_mm_context_put(cd->mm);
184 mmdrop(cd->mm);
185 kfree(cd);
186 }
187 }
188
189 /*
190 * Cloned from the MAX_TLBI_OPS in arch/arm64/include/asm/tlbflush.h, this
191 * is used as a threshold to replace per-page TLBI commands to issue in the
192 * command queue with an address-space TLBI command, when SMMU w/o a range
193 * invalidation feature handles too many per-page TLBI commands, which will
194 * otherwise result in a soft lockup.
195 */
196 #define CMDQ_MAX_TLBI_OPS (1 << (PAGE_SHIFT - 3))
197
arm_smmu_mm_invalidate_range(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)198 static void arm_smmu_mm_invalidate_range(struct mmu_notifier *mn,
199 struct mm_struct *mm,
200 unsigned long start, unsigned long end)
201 {
202 struct arm_smmu_mmu_notifier *smmu_mn = mn_to_smmu(mn);
203 struct arm_smmu_domain *smmu_domain = smmu_mn->domain;
204 size_t size;
205
206 /*
207 * The mm_types defines vm_end as the first byte after the end address,
208 * different from IOMMU subsystem using the last address of an address
209 * range. So do a simple translation here by calculating size correctly.
210 */
211 size = end - start;
212 if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_RANGE_INV)) {
213 if (size >= CMDQ_MAX_TLBI_OPS * PAGE_SIZE)
214 size = 0;
215 }
216
217 if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_BTM)) {
218 if (!size)
219 arm_smmu_tlb_inv_asid(smmu_domain->smmu,
220 smmu_mn->cd->asid);
221 else
222 arm_smmu_tlb_inv_range_asid(start, size,
223 smmu_mn->cd->asid,
224 PAGE_SIZE, false,
225 smmu_domain);
226 }
227
228 arm_smmu_atc_inv_domain(smmu_domain, mm->pasid, start, size);
229 }
230
arm_smmu_mm_release(struct mmu_notifier * mn,struct mm_struct * mm)231 static void arm_smmu_mm_release(struct mmu_notifier *mn, struct mm_struct *mm)
232 {
233 struct arm_smmu_mmu_notifier *smmu_mn = mn_to_smmu(mn);
234 struct arm_smmu_domain *smmu_domain = smmu_mn->domain;
235
236 mutex_lock(&sva_lock);
237 if (smmu_mn->cleared) {
238 mutex_unlock(&sva_lock);
239 return;
240 }
241
242 /*
243 * DMA may still be running. Keep the cd valid to avoid C_BAD_CD events,
244 * but disable translation.
245 */
246 arm_smmu_write_ctx_desc(smmu_domain, mm->pasid, &quiet_cd);
247
248 arm_smmu_tlb_inv_asid(smmu_domain->smmu, smmu_mn->cd->asid);
249 arm_smmu_atc_inv_domain(smmu_domain, mm->pasid, 0, 0);
250
251 smmu_mn->cleared = true;
252 mutex_unlock(&sva_lock);
253 }
254
arm_smmu_mmu_notifier_free(struct mmu_notifier * mn)255 static void arm_smmu_mmu_notifier_free(struct mmu_notifier *mn)
256 {
257 kfree(mn_to_smmu(mn));
258 }
259
260 static struct mmu_notifier_ops arm_smmu_mmu_notifier_ops = {
261 .invalidate_range = arm_smmu_mm_invalidate_range,
262 .release = arm_smmu_mm_release,
263 .free_notifier = arm_smmu_mmu_notifier_free,
264 };
265
266 /* Allocate or get existing MMU notifier for this {domain, mm} pair */
267 static struct arm_smmu_mmu_notifier *
arm_smmu_mmu_notifier_get(struct arm_smmu_domain * smmu_domain,struct mm_struct * mm)268 arm_smmu_mmu_notifier_get(struct arm_smmu_domain *smmu_domain,
269 struct mm_struct *mm)
270 {
271 int ret;
272 struct arm_smmu_ctx_desc *cd;
273 struct arm_smmu_mmu_notifier *smmu_mn;
274
275 list_for_each_entry(smmu_mn, &smmu_domain->mmu_notifiers, list) {
276 if (smmu_mn->mn.mm == mm) {
277 refcount_inc(&smmu_mn->refs);
278 return smmu_mn;
279 }
280 }
281
282 cd = arm_smmu_alloc_shared_cd(mm);
283 if (IS_ERR(cd))
284 return ERR_CAST(cd);
285
286 smmu_mn = kzalloc(sizeof(*smmu_mn), GFP_KERNEL);
287 if (!smmu_mn) {
288 ret = -ENOMEM;
289 goto err_free_cd;
290 }
291
292 refcount_set(&smmu_mn->refs, 1);
293 smmu_mn->cd = cd;
294 smmu_mn->domain = smmu_domain;
295 smmu_mn->mn.ops = &arm_smmu_mmu_notifier_ops;
296
297 ret = mmu_notifier_register(&smmu_mn->mn, mm);
298 if (ret) {
299 kfree(smmu_mn);
300 goto err_free_cd;
301 }
302
303 ret = arm_smmu_write_ctx_desc(smmu_domain, mm->pasid, cd);
304 if (ret)
305 goto err_put_notifier;
306
307 list_add(&smmu_mn->list, &smmu_domain->mmu_notifiers);
308 return smmu_mn;
309
310 err_put_notifier:
311 /* Frees smmu_mn */
312 mmu_notifier_put(&smmu_mn->mn);
313 err_free_cd:
314 arm_smmu_free_shared_cd(cd);
315 return ERR_PTR(ret);
316 }
317
arm_smmu_mmu_notifier_put(struct arm_smmu_mmu_notifier * smmu_mn)318 static void arm_smmu_mmu_notifier_put(struct arm_smmu_mmu_notifier *smmu_mn)
319 {
320 struct mm_struct *mm = smmu_mn->mn.mm;
321 struct arm_smmu_ctx_desc *cd = smmu_mn->cd;
322 struct arm_smmu_domain *smmu_domain = smmu_mn->domain;
323
324 if (!refcount_dec_and_test(&smmu_mn->refs))
325 return;
326
327 list_del(&smmu_mn->list);
328 arm_smmu_write_ctx_desc(smmu_domain, mm->pasid, NULL);
329
330 /*
331 * If we went through clear(), we've already invalidated, and no
332 * new TLB entry can have been formed.
333 */
334 if (!smmu_mn->cleared) {
335 arm_smmu_tlb_inv_asid(smmu_domain->smmu, cd->asid);
336 arm_smmu_atc_inv_domain(smmu_domain, mm->pasid, 0, 0);
337 }
338
339 /* Frees smmu_mn */
340 mmu_notifier_put(&smmu_mn->mn);
341 arm_smmu_free_shared_cd(cd);
342 }
343
344 static struct iommu_sva *
__arm_smmu_sva_bind(struct device * dev,struct mm_struct * mm)345 __arm_smmu_sva_bind(struct device *dev, struct mm_struct *mm)
346 {
347 int ret;
348 struct arm_smmu_bond *bond;
349 struct arm_smmu_master *master = dev_iommu_priv_get(dev);
350 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
351 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
352
353 if (!master || !master->sva_enabled)
354 return ERR_PTR(-ENODEV);
355
356 /* If bind() was already called for this {dev, mm} pair, reuse it. */
357 list_for_each_entry(bond, &master->bonds, list) {
358 if (bond->mm == mm) {
359 refcount_inc(&bond->refs);
360 return &bond->sva;
361 }
362 }
363
364 bond = kzalloc(sizeof(*bond), GFP_KERNEL);
365 if (!bond)
366 return ERR_PTR(-ENOMEM);
367
368 /* Allocate a PASID for this mm if necessary */
369 ret = iommu_sva_alloc_pasid(mm, 1, (1U << master->ssid_bits) - 1);
370 if (ret)
371 goto err_free_bond;
372
373 bond->mm = mm;
374 bond->sva.dev = dev;
375 refcount_set(&bond->refs, 1);
376
377 bond->smmu_mn = arm_smmu_mmu_notifier_get(smmu_domain, mm);
378 if (IS_ERR(bond->smmu_mn)) {
379 ret = PTR_ERR(bond->smmu_mn);
380 goto err_free_pasid;
381 }
382
383 list_add(&bond->list, &master->bonds);
384 return &bond->sva;
385
386 err_free_pasid:
387 iommu_sva_free_pasid(mm);
388 err_free_bond:
389 kfree(bond);
390 return ERR_PTR(ret);
391 }
392
393 struct iommu_sva *
arm_smmu_sva_bind(struct device * dev,struct mm_struct * mm,void * drvdata)394 arm_smmu_sva_bind(struct device *dev, struct mm_struct *mm, void *drvdata)
395 {
396 struct iommu_sva *handle;
397 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
398 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
399
400 if (smmu_domain->stage != ARM_SMMU_DOMAIN_S1)
401 return ERR_PTR(-EINVAL);
402
403 mutex_lock(&sva_lock);
404 handle = __arm_smmu_sva_bind(dev, mm);
405 mutex_unlock(&sva_lock);
406 return handle;
407 }
408
arm_smmu_sva_unbind(struct iommu_sva * handle)409 void arm_smmu_sva_unbind(struct iommu_sva *handle)
410 {
411 struct arm_smmu_bond *bond = sva_to_bond(handle);
412
413 mutex_lock(&sva_lock);
414 if (refcount_dec_and_test(&bond->refs)) {
415 list_del(&bond->list);
416 arm_smmu_mmu_notifier_put(bond->smmu_mn);
417 iommu_sva_free_pasid(bond->mm);
418 kfree(bond);
419 }
420 mutex_unlock(&sva_lock);
421 }
422
arm_smmu_sva_get_pasid(struct iommu_sva * handle)423 u32 arm_smmu_sva_get_pasid(struct iommu_sva *handle)
424 {
425 struct arm_smmu_bond *bond = sva_to_bond(handle);
426
427 return bond->mm->pasid;
428 }
429
arm_smmu_sva_supported(struct arm_smmu_device * smmu)430 bool arm_smmu_sva_supported(struct arm_smmu_device *smmu)
431 {
432 unsigned long reg, fld;
433 unsigned long oas;
434 unsigned long asid_bits;
435 u32 feat_mask = ARM_SMMU_FEAT_COHERENCY;
436
437 if (vabits_actual == 52)
438 feat_mask |= ARM_SMMU_FEAT_VAX;
439
440 if ((smmu->features & feat_mask) != feat_mask)
441 return false;
442
443 if (!(smmu->pgsize_bitmap & PAGE_SIZE))
444 return false;
445
446 /*
447 * Get the smallest PA size of all CPUs (sanitized by cpufeature). We're
448 * not even pretending to support AArch32 here. Abort if the MMU outputs
449 * addresses larger than what we support.
450 */
451 reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
452 fld = cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
453 oas = id_aa64mmfr0_parange_to_phys_shift(fld);
454 if (smmu->oas < oas)
455 return false;
456
457 /* We can support bigger ASIDs than the CPU, but not smaller */
458 fld = cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT);
459 asid_bits = fld ? 16 : 8;
460 if (smmu->asid_bits < asid_bits)
461 return false;
462
463 /*
464 * See max_pinned_asids in arch/arm64/mm/context.c. The following is
465 * generally the maximum number of bindable processes.
466 */
467 if (arm64_kernel_unmapped_at_el0())
468 asid_bits--;
469 dev_dbg(smmu->dev, "%d shared contexts\n", (1 << asid_bits) -
470 num_possible_cpus() - 2);
471
472 return true;
473 }
474
arm_smmu_master_iopf_supported(struct arm_smmu_master * master)475 bool arm_smmu_master_iopf_supported(struct arm_smmu_master *master)
476 {
477 /* We're not keeping track of SIDs in fault events */
478 if (master->num_streams != 1)
479 return false;
480
481 return master->stall_enabled;
482 }
483
arm_smmu_master_sva_supported(struct arm_smmu_master * master)484 bool arm_smmu_master_sva_supported(struct arm_smmu_master *master)
485 {
486 if (!(master->smmu->features & ARM_SMMU_FEAT_SVA))
487 return false;
488
489 /* SSID support is mandatory for the moment */
490 return master->ssid_bits;
491 }
492
arm_smmu_master_sva_enabled(struct arm_smmu_master * master)493 bool arm_smmu_master_sva_enabled(struct arm_smmu_master *master)
494 {
495 bool enabled;
496
497 mutex_lock(&sva_lock);
498 enabled = master->sva_enabled;
499 mutex_unlock(&sva_lock);
500 return enabled;
501 }
502
arm_smmu_master_sva_enable_iopf(struct arm_smmu_master * master)503 static int arm_smmu_master_sva_enable_iopf(struct arm_smmu_master *master)
504 {
505 int ret;
506 struct device *dev = master->dev;
507
508 /*
509 * Drivers for devices supporting PRI or stall should enable IOPF first.
510 * Others have device-specific fault handlers and don't need IOPF.
511 */
512 if (!arm_smmu_master_iopf_supported(master))
513 return 0;
514
515 if (!master->iopf_enabled)
516 return -EINVAL;
517
518 ret = iopf_queue_add_device(master->smmu->evtq.iopf, dev);
519 if (ret)
520 return ret;
521
522 ret = iommu_register_device_fault_handler(dev, iommu_queue_iopf, dev);
523 if (ret) {
524 iopf_queue_remove_device(master->smmu->evtq.iopf, dev);
525 return ret;
526 }
527 return 0;
528 }
529
arm_smmu_master_sva_disable_iopf(struct arm_smmu_master * master)530 static void arm_smmu_master_sva_disable_iopf(struct arm_smmu_master *master)
531 {
532 struct device *dev = master->dev;
533
534 if (!master->iopf_enabled)
535 return;
536
537 iommu_unregister_device_fault_handler(dev);
538 iopf_queue_remove_device(master->smmu->evtq.iopf, dev);
539 }
540
arm_smmu_master_enable_sva(struct arm_smmu_master * master)541 int arm_smmu_master_enable_sva(struct arm_smmu_master *master)
542 {
543 int ret;
544
545 mutex_lock(&sva_lock);
546 ret = arm_smmu_master_sva_enable_iopf(master);
547 if (!ret)
548 master->sva_enabled = true;
549 mutex_unlock(&sva_lock);
550
551 return ret;
552 }
553
arm_smmu_master_disable_sva(struct arm_smmu_master * master)554 int arm_smmu_master_disable_sva(struct arm_smmu_master *master)
555 {
556 mutex_lock(&sva_lock);
557 if (!list_empty(&master->bonds)) {
558 dev_err(master->dev, "cannot disable SVA, device is bound\n");
559 mutex_unlock(&sva_lock);
560 return -EBUSY;
561 }
562 arm_smmu_master_sva_disable_iopf(master);
563 master->sva_enabled = false;
564 mutex_unlock(&sva_lock);
565
566 return 0;
567 }
568
arm_smmu_sva_notifier_synchronize(void)569 void arm_smmu_sva_notifier_synchronize(void)
570 {
571 /*
572 * Some MMU notifiers may still be waiting to be freed, using
573 * arm_smmu_mmu_notifier_free(). Wait for them.
574 */
575 mmu_notifier_synchronize();
576 }
577