• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36 
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #include "irq-gic-common.h"
41 
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
45 
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
48 
49 static u32 lpi_id_bits;
50 
51 /*
52  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
53  * deal with (one configuration byte per interrupt). PENDBASE has to
54  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
55  */
56 #define LPI_NRBITS		lpi_id_bits
57 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
58 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
59 
60 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
61 
62 /*
63  * Collection structure - just an ID, and a redistributor address to
64  * ping. We use one per CPU as a bag of interrupts assigned to this
65  * CPU.
66  */
67 struct its_collection {
68 	u64			target_address;
69 	u16			col_id;
70 };
71 
72 /*
73  * The ITS_BASER structure - contains memory information, cached
74  * value of BASER register configuration and ITS page size.
75  */
76 struct its_baser {
77 	void		*base;
78 	u64		val;
79 	u32		order;
80 	u32		psz;
81 };
82 
83 struct its_device;
84 
85 /*
86  * The ITS structure - contains most of the infrastructure, with the
87  * top-level MSI domain, the command queue, the collections, and the
88  * list of devices writing to it.
89  *
90  * dev_alloc_lock has to be taken for device allocations, while the
91  * spinlock must be taken to parse data structures such as the device
92  * list.
93  */
94 struct its_node {
95 	raw_spinlock_t		lock;
96 	struct mutex		dev_alloc_lock;
97 	struct list_head	entry;
98 	void __iomem		*base;
99 	void __iomem		*sgir_base;
100 	phys_addr_t		phys_base;
101 	struct its_cmd_block	*cmd_base;
102 	struct its_cmd_block	*cmd_write;
103 	struct its_baser	tables[GITS_BASER_NR_REGS];
104 	struct its_collection	*collections;
105 	struct fwnode_handle	*fwnode_handle;
106 	u64			(*get_msi_base)(struct its_device *its_dev);
107 	u64			typer;
108 	u64			cbaser_save;
109 	u32			ctlr_save;
110 	u32			mpidr;
111 	struct list_head	its_device_list;
112 	u64			flags;
113 	unsigned long		list_nr;
114 	int			numa_node;
115 	unsigned int		msi_domain_flags;
116 	u32			pre_its_base; /* for Socionext Synquacer */
117 	int			vlpi_redist_offset;
118 };
119 
120 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
121 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
122 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
123 
124 #define ITS_ITT_ALIGN		SZ_256
125 
126 /* The maximum number of VPEID bits supported by VLPI commands */
127 #define ITS_MAX_VPEID_BITS						\
128 	({								\
129 		int nvpeid = 16;					\
130 		if (gic_rdists->has_rvpeid &&				\
131 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
132 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
133 				      GICD_TYPER2_VID);			\
134 									\
135 		nvpeid;							\
136 	})
137 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
138 
139 /* Convert page order to size in bytes */
140 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
141 
142 struct event_lpi_map {
143 	unsigned long		*lpi_map;
144 	u16			*col_map;
145 	irq_hw_number_t		lpi_base;
146 	int			nr_lpis;
147 	raw_spinlock_t		vlpi_lock;
148 	struct its_vm		*vm;
149 	struct its_vlpi_map	*vlpi_maps;
150 	int			nr_vlpis;
151 };
152 
153 /*
154  * The ITS view of a device - belongs to an ITS, owns an interrupt
155  * translation table, and a list of interrupts.  If it some of its
156  * LPIs are injected into a guest (GICv4), the event_map.vm field
157  * indicates which one.
158  */
159 struct its_device {
160 	struct list_head	entry;
161 	struct its_node		*its;
162 	struct event_lpi_map	event_map;
163 	void			*itt;
164 	u32			nr_ites;
165 	u32			device_id;
166 	bool			shared;
167 };
168 
169 static struct {
170 	raw_spinlock_t		lock;
171 	struct its_device	*dev;
172 	struct its_vpe		**vpes;
173 	int			next_victim;
174 } vpe_proxy;
175 
176 struct cpu_lpi_count {
177 	atomic_t	managed;
178 	atomic_t	unmanaged;
179 };
180 
181 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
182 
183 static LIST_HEAD(its_nodes);
184 static DEFINE_RAW_SPINLOCK(its_lock);
185 static struct rdists *gic_rdists;
186 static struct irq_domain *its_parent;
187 
188 static unsigned long its_list_map;
189 static u16 vmovp_seq_num;
190 static DEFINE_RAW_SPINLOCK(vmovp_lock);
191 
192 static DEFINE_IDA(its_vpeid_ida);
193 
194 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
195 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
196 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
197 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
198 
199 /*
200  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
201  * always have vSGIs mapped.
202  */
require_its_list_vmovp(struct its_vm * vm,struct its_node * its)203 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
204 {
205 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
206 }
207 
get_its_list(struct its_vm * vm)208 static u16 get_its_list(struct its_vm *vm)
209 {
210 	struct its_node *its;
211 	unsigned long its_list = 0;
212 
213 	list_for_each_entry(its, &its_nodes, entry) {
214 		if (!is_v4(its))
215 			continue;
216 
217 		if (require_its_list_vmovp(vm, its))
218 			__set_bit(its->list_nr, &its_list);
219 	}
220 
221 	return (u16)its_list;
222 }
223 
its_get_event_id(struct irq_data * d)224 static inline u32 its_get_event_id(struct irq_data *d)
225 {
226 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
227 	return d->hwirq - its_dev->event_map.lpi_base;
228 }
229 
dev_event_to_col(struct its_device * its_dev,u32 event)230 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
231 					       u32 event)
232 {
233 	struct its_node *its = its_dev->its;
234 
235 	return its->collections + its_dev->event_map.col_map[event];
236 }
237 
dev_event_to_vlpi_map(struct its_device * its_dev,u32 event)238 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
239 					       u32 event)
240 {
241 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
242 		return NULL;
243 
244 	return &its_dev->event_map.vlpi_maps[event];
245 }
246 
get_vlpi_map(struct irq_data * d)247 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
248 {
249 	if (irqd_is_forwarded_to_vcpu(d)) {
250 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
251 		u32 event = its_get_event_id(d);
252 
253 		return dev_event_to_vlpi_map(its_dev, event);
254 	}
255 
256 	return NULL;
257 }
258 
vpe_to_cpuid_lock(struct its_vpe * vpe,unsigned long * flags)259 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
260 {
261 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
262 	return vpe->col_idx;
263 }
264 
vpe_to_cpuid_unlock(struct its_vpe * vpe,unsigned long flags)265 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
266 {
267 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
268 }
269 
270 static struct irq_chip its_vpe_irq_chip;
271 
irq_to_cpuid_lock(struct irq_data * d,unsigned long * flags)272 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
273 {
274 	struct its_vpe *vpe = NULL;
275 	int cpu;
276 
277 	if (d->chip == &its_vpe_irq_chip) {
278 		vpe = irq_data_get_irq_chip_data(d);
279 	} else {
280 		struct its_vlpi_map *map = get_vlpi_map(d);
281 		if (map)
282 			vpe = map->vpe;
283 	}
284 
285 	if (vpe) {
286 		cpu = vpe_to_cpuid_lock(vpe, flags);
287 	} else {
288 		/* Physical LPIs are already locked via the irq_desc lock */
289 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
290 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
291 		/* Keep GCC quiet... */
292 		*flags = 0;
293 	}
294 
295 	return cpu;
296 }
297 
irq_to_cpuid_unlock(struct irq_data * d,unsigned long flags)298 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
299 {
300 	struct its_vpe *vpe = NULL;
301 
302 	if (d->chip == &its_vpe_irq_chip) {
303 		vpe = irq_data_get_irq_chip_data(d);
304 	} else {
305 		struct its_vlpi_map *map = get_vlpi_map(d);
306 		if (map)
307 			vpe = map->vpe;
308 	}
309 
310 	if (vpe)
311 		vpe_to_cpuid_unlock(vpe, flags);
312 }
313 
valid_col(struct its_collection * col)314 static struct its_collection *valid_col(struct its_collection *col)
315 {
316 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
317 		return NULL;
318 
319 	return col;
320 }
321 
valid_vpe(struct its_node * its,struct its_vpe * vpe)322 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
323 {
324 	if (valid_col(its->collections + vpe->col_idx))
325 		return vpe;
326 
327 	return NULL;
328 }
329 
330 /*
331  * ITS command descriptors - parameters to be encoded in a command
332  * block.
333  */
334 struct its_cmd_desc {
335 	union {
336 		struct {
337 			struct its_device *dev;
338 			u32 event_id;
339 		} its_inv_cmd;
340 
341 		struct {
342 			struct its_device *dev;
343 			u32 event_id;
344 		} its_clear_cmd;
345 
346 		struct {
347 			struct its_device *dev;
348 			u32 event_id;
349 		} its_int_cmd;
350 
351 		struct {
352 			struct its_device *dev;
353 			int valid;
354 		} its_mapd_cmd;
355 
356 		struct {
357 			struct its_collection *col;
358 			int valid;
359 		} its_mapc_cmd;
360 
361 		struct {
362 			struct its_device *dev;
363 			u32 phys_id;
364 			u32 event_id;
365 		} its_mapti_cmd;
366 
367 		struct {
368 			struct its_device *dev;
369 			struct its_collection *col;
370 			u32 event_id;
371 		} its_movi_cmd;
372 
373 		struct {
374 			struct its_device *dev;
375 			u32 event_id;
376 		} its_discard_cmd;
377 
378 		struct {
379 			struct its_collection *col;
380 		} its_invall_cmd;
381 
382 		struct {
383 			struct its_vpe *vpe;
384 		} its_vinvall_cmd;
385 
386 		struct {
387 			struct its_vpe *vpe;
388 			struct its_collection *col;
389 			bool valid;
390 		} its_vmapp_cmd;
391 
392 		struct {
393 			struct its_vpe *vpe;
394 			struct its_device *dev;
395 			u32 virt_id;
396 			u32 event_id;
397 			bool db_enabled;
398 		} its_vmapti_cmd;
399 
400 		struct {
401 			struct its_vpe *vpe;
402 			struct its_device *dev;
403 			u32 event_id;
404 			bool db_enabled;
405 		} its_vmovi_cmd;
406 
407 		struct {
408 			struct its_vpe *vpe;
409 			struct its_collection *col;
410 			u16 seq_num;
411 			u16 its_list;
412 		} its_vmovp_cmd;
413 
414 		struct {
415 			struct its_vpe *vpe;
416 		} its_invdb_cmd;
417 
418 		struct {
419 			struct its_vpe *vpe;
420 			u8 sgi;
421 			u8 priority;
422 			bool enable;
423 			bool group;
424 			bool clear;
425 		} its_vsgi_cmd;
426 	};
427 };
428 
429 /*
430  * The ITS command block, which is what the ITS actually parses.
431  */
432 struct its_cmd_block {
433 	union {
434 		u64	raw_cmd[4];
435 		__le64	raw_cmd_le[4];
436 	};
437 };
438 
439 #define ITS_CMD_QUEUE_SZ		SZ_64K
440 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
441 
442 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
443 						    struct its_cmd_block *,
444 						    struct its_cmd_desc *);
445 
446 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
447 					      struct its_cmd_block *,
448 					      struct its_cmd_desc *);
449 
its_mask_encode(u64 * raw_cmd,u64 val,int h,int l)450 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
451 {
452 	u64 mask = GENMASK_ULL(h, l);
453 	*raw_cmd &= ~mask;
454 	*raw_cmd |= (val << l) & mask;
455 }
456 
its_encode_cmd(struct its_cmd_block * cmd,u8 cmd_nr)457 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
458 {
459 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
460 }
461 
its_encode_devid(struct its_cmd_block * cmd,u32 devid)462 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
463 {
464 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
465 }
466 
its_encode_event_id(struct its_cmd_block * cmd,u32 id)467 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
468 {
469 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
470 }
471 
its_encode_phys_id(struct its_cmd_block * cmd,u32 phys_id)472 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
473 {
474 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
475 }
476 
its_encode_size(struct its_cmd_block * cmd,u8 size)477 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
478 {
479 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
480 }
481 
its_encode_itt(struct its_cmd_block * cmd,u64 itt_addr)482 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
483 {
484 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
485 }
486 
its_encode_valid(struct its_cmd_block * cmd,int valid)487 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
488 {
489 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
490 }
491 
its_encode_target(struct its_cmd_block * cmd,u64 target_addr)492 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
493 {
494 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
495 }
496 
its_encode_collection(struct its_cmd_block * cmd,u16 col)497 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
498 {
499 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
500 }
501 
its_encode_vpeid(struct its_cmd_block * cmd,u16 vpeid)502 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
503 {
504 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
505 }
506 
its_encode_virt_id(struct its_cmd_block * cmd,u32 virt_id)507 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
508 {
509 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
510 }
511 
its_encode_db_phys_id(struct its_cmd_block * cmd,u32 db_phys_id)512 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
513 {
514 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
515 }
516 
its_encode_db_valid(struct its_cmd_block * cmd,bool db_valid)517 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
518 {
519 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
520 }
521 
its_encode_seq_num(struct its_cmd_block * cmd,u16 seq_num)522 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
523 {
524 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
525 }
526 
its_encode_its_list(struct its_cmd_block * cmd,u16 its_list)527 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
528 {
529 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
530 }
531 
its_encode_vpt_addr(struct its_cmd_block * cmd,u64 vpt_pa)532 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
533 {
534 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
535 }
536 
its_encode_vpt_size(struct its_cmd_block * cmd,u8 vpt_size)537 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
538 {
539 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
540 }
541 
its_encode_vconf_addr(struct its_cmd_block * cmd,u64 vconf_pa)542 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
543 {
544 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
545 }
546 
its_encode_alloc(struct its_cmd_block * cmd,bool alloc)547 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
548 {
549 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
550 }
551 
its_encode_ptz(struct its_cmd_block * cmd,bool ptz)552 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
553 {
554 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
555 }
556 
its_encode_vmapp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)557 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
558 					u32 vpe_db_lpi)
559 {
560 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
561 }
562 
its_encode_vmovp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)563 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
564 					u32 vpe_db_lpi)
565 {
566 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
567 }
568 
its_encode_db(struct its_cmd_block * cmd,bool db)569 static void its_encode_db(struct its_cmd_block *cmd, bool db)
570 {
571 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
572 }
573 
its_encode_sgi_intid(struct its_cmd_block * cmd,u8 sgi)574 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
575 {
576 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
577 }
578 
its_encode_sgi_priority(struct its_cmd_block * cmd,u8 prio)579 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
580 {
581 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
582 }
583 
its_encode_sgi_group(struct its_cmd_block * cmd,bool grp)584 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
585 {
586 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
587 }
588 
its_encode_sgi_clear(struct its_cmd_block * cmd,bool clr)589 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
590 {
591 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
592 }
593 
its_encode_sgi_enable(struct its_cmd_block * cmd,bool en)594 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
595 {
596 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
597 }
598 
its_fixup_cmd(struct its_cmd_block * cmd)599 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
600 {
601 	/* Let's fixup BE commands */
602 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
603 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
604 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
605 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
606 }
607 
its_build_mapd_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)608 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
609 						 struct its_cmd_block *cmd,
610 						 struct its_cmd_desc *desc)
611 {
612 	unsigned long itt_addr;
613 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
614 
615 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
616 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
617 
618 	its_encode_cmd(cmd, GITS_CMD_MAPD);
619 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
620 	its_encode_size(cmd, size - 1);
621 	its_encode_itt(cmd, itt_addr);
622 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
623 
624 	its_fixup_cmd(cmd);
625 
626 	return NULL;
627 }
628 
its_build_mapc_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)629 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
630 						 struct its_cmd_block *cmd,
631 						 struct its_cmd_desc *desc)
632 {
633 	its_encode_cmd(cmd, GITS_CMD_MAPC);
634 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
635 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
636 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
637 
638 	its_fixup_cmd(cmd);
639 
640 	return desc->its_mapc_cmd.col;
641 }
642 
its_build_mapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)643 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
644 						  struct its_cmd_block *cmd,
645 						  struct its_cmd_desc *desc)
646 {
647 	struct its_collection *col;
648 
649 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
650 			       desc->its_mapti_cmd.event_id);
651 
652 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
653 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
654 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
655 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
656 	its_encode_collection(cmd, col->col_id);
657 
658 	its_fixup_cmd(cmd);
659 
660 	return valid_col(col);
661 }
662 
its_build_movi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)663 static struct its_collection *its_build_movi_cmd(struct its_node *its,
664 						 struct its_cmd_block *cmd,
665 						 struct its_cmd_desc *desc)
666 {
667 	struct its_collection *col;
668 
669 	col = dev_event_to_col(desc->its_movi_cmd.dev,
670 			       desc->its_movi_cmd.event_id);
671 
672 	its_encode_cmd(cmd, GITS_CMD_MOVI);
673 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
674 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
675 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
676 
677 	its_fixup_cmd(cmd);
678 
679 	return valid_col(col);
680 }
681 
its_build_discard_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)682 static struct its_collection *its_build_discard_cmd(struct its_node *its,
683 						    struct its_cmd_block *cmd,
684 						    struct its_cmd_desc *desc)
685 {
686 	struct its_collection *col;
687 
688 	col = dev_event_to_col(desc->its_discard_cmd.dev,
689 			       desc->its_discard_cmd.event_id);
690 
691 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
692 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
693 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
694 
695 	its_fixup_cmd(cmd);
696 
697 	return valid_col(col);
698 }
699 
its_build_inv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)700 static struct its_collection *its_build_inv_cmd(struct its_node *its,
701 						struct its_cmd_block *cmd,
702 						struct its_cmd_desc *desc)
703 {
704 	struct its_collection *col;
705 
706 	col = dev_event_to_col(desc->its_inv_cmd.dev,
707 			       desc->its_inv_cmd.event_id);
708 
709 	its_encode_cmd(cmd, GITS_CMD_INV);
710 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
711 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
712 
713 	its_fixup_cmd(cmd);
714 
715 	return valid_col(col);
716 }
717 
its_build_int_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)718 static struct its_collection *its_build_int_cmd(struct its_node *its,
719 						struct its_cmd_block *cmd,
720 						struct its_cmd_desc *desc)
721 {
722 	struct its_collection *col;
723 
724 	col = dev_event_to_col(desc->its_int_cmd.dev,
725 			       desc->its_int_cmd.event_id);
726 
727 	its_encode_cmd(cmd, GITS_CMD_INT);
728 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
729 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
730 
731 	its_fixup_cmd(cmd);
732 
733 	return valid_col(col);
734 }
735 
its_build_clear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)736 static struct its_collection *its_build_clear_cmd(struct its_node *its,
737 						  struct its_cmd_block *cmd,
738 						  struct its_cmd_desc *desc)
739 {
740 	struct its_collection *col;
741 
742 	col = dev_event_to_col(desc->its_clear_cmd.dev,
743 			       desc->its_clear_cmd.event_id);
744 
745 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
746 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
747 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
748 
749 	its_fixup_cmd(cmd);
750 
751 	return valid_col(col);
752 }
753 
its_build_invall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)754 static struct its_collection *its_build_invall_cmd(struct its_node *its,
755 						   struct its_cmd_block *cmd,
756 						   struct its_cmd_desc *desc)
757 {
758 	its_encode_cmd(cmd, GITS_CMD_INVALL);
759 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
760 
761 	its_fixup_cmd(cmd);
762 
763 	return desc->its_invall_cmd.col;
764 }
765 
its_build_vinvall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)766 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
767 					     struct its_cmd_block *cmd,
768 					     struct its_cmd_desc *desc)
769 {
770 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
771 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
772 
773 	its_fixup_cmd(cmd);
774 
775 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
776 }
777 
its_build_vmapp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)778 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
779 					   struct its_cmd_block *cmd,
780 					   struct its_cmd_desc *desc)
781 {
782 	unsigned long vpt_addr, vconf_addr;
783 	u64 target;
784 	bool alloc;
785 
786 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
787 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
788 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
789 
790 	if (!desc->its_vmapp_cmd.valid) {
791 		if (is_v4_1(its)) {
792 			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
793 			its_encode_alloc(cmd, alloc);
794 		}
795 
796 		goto out;
797 	}
798 
799 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
800 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
801 
802 	its_encode_target(cmd, target);
803 	its_encode_vpt_addr(cmd, vpt_addr);
804 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
805 
806 	if (!is_v4_1(its))
807 		goto out;
808 
809 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
810 
811 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
812 
813 	its_encode_alloc(cmd, alloc);
814 
815 	/*
816 	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
817 	 * to be unmapped first, and in this case, we may remap the vPE
818 	 * back while the VPT is not empty. So we can't assume that the
819 	 * VPT is empty on map. This is why we never advertise PTZ.
820 	 */
821 	its_encode_ptz(cmd, false);
822 	its_encode_vconf_addr(cmd, vconf_addr);
823 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
824 
825 out:
826 	its_fixup_cmd(cmd);
827 
828 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
829 }
830 
its_build_vmapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)831 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
832 					    struct its_cmd_block *cmd,
833 					    struct its_cmd_desc *desc)
834 {
835 	u32 db;
836 
837 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
838 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
839 	else
840 		db = 1023;
841 
842 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
843 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
844 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
845 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
846 	its_encode_db_phys_id(cmd, db);
847 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
848 
849 	its_fixup_cmd(cmd);
850 
851 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
852 }
853 
its_build_vmovi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)854 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
855 					   struct its_cmd_block *cmd,
856 					   struct its_cmd_desc *desc)
857 {
858 	u32 db;
859 
860 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
861 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
862 	else
863 		db = 1023;
864 
865 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
866 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
867 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
868 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
869 	its_encode_db_phys_id(cmd, db);
870 	its_encode_db_valid(cmd, true);
871 
872 	its_fixup_cmd(cmd);
873 
874 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
875 }
876 
its_build_vmovp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)877 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
878 					   struct its_cmd_block *cmd,
879 					   struct its_cmd_desc *desc)
880 {
881 	u64 target;
882 
883 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
884 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
885 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
886 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
887 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
888 	its_encode_target(cmd, target);
889 
890 	if (is_v4_1(its)) {
891 		its_encode_db(cmd, true);
892 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
893 	}
894 
895 	its_fixup_cmd(cmd);
896 
897 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
898 }
899 
its_build_vinv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)900 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
901 					  struct its_cmd_block *cmd,
902 					  struct its_cmd_desc *desc)
903 {
904 	struct its_vlpi_map *map;
905 
906 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
907 				    desc->its_inv_cmd.event_id);
908 
909 	its_encode_cmd(cmd, GITS_CMD_INV);
910 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
911 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
912 
913 	its_fixup_cmd(cmd);
914 
915 	return valid_vpe(its, map->vpe);
916 }
917 
its_build_vint_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)918 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
919 					  struct its_cmd_block *cmd,
920 					  struct its_cmd_desc *desc)
921 {
922 	struct its_vlpi_map *map;
923 
924 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
925 				    desc->its_int_cmd.event_id);
926 
927 	its_encode_cmd(cmd, GITS_CMD_INT);
928 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
929 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
930 
931 	its_fixup_cmd(cmd);
932 
933 	return valid_vpe(its, map->vpe);
934 }
935 
its_build_vclear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)936 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
937 					    struct its_cmd_block *cmd,
938 					    struct its_cmd_desc *desc)
939 {
940 	struct its_vlpi_map *map;
941 
942 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
943 				    desc->its_clear_cmd.event_id);
944 
945 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
946 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
947 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
948 
949 	its_fixup_cmd(cmd);
950 
951 	return valid_vpe(its, map->vpe);
952 }
953 
its_build_invdb_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)954 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
955 					   struct its_cmd_block *cmd,
956 					   struct its_cmd_desc *desc)
957 {
958 	if (WARN_ON(!is_v4_1(its)))
959 		return NULL;
960 
961 	its_encode_cmd(cmd, GITS_CMD_INVDB);
962 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
963 
964 	its_fixup_cmd(cmd);
965 
966 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
967 }
968 
its_build_vsgi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)969 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
970 					  struct its_cmd_block *cmd,
971 					  struct its_cmd_desc *desc)
972 {
973 	if (WARN_ON(!is_v4_1(its)))
974 		return NULL;
975 
976 	its_encode_cmd(cmd, GITS_CMD_VSGI);
977 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
978 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
979 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
980 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
981 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
982 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
983 
984 	its_fixup_cmd(cmd);
985 
986 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
987 }
988 
its_cmd_ptr_to_offset(struct its_node * its,struct its_cmd_block * ptr)989 static u64 its_cmd_ptr_to_offset(struct its_node *its,
990 				 struct its_cmd_block *ptr)
991 {
992 	return (ptr - its->cmd_base) * sizeof(*ptr);
993 }
994 
its_queue_full(struct its_node * its)995 static int its_queue_full(struct its_node *its)
996 {
997 	int widx;
998 	int ridx;
999 
1000 	widx = its->cmd_write - its->cmd_base;
1001 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1002 
1003 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
1004 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1005 		return 1;
1006 
1007 	return 0;
1008 }
1009 
its_allocate_entry(struct its_node * its)1010 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1011 {
1012 	struct its_cmd_block *cmd;
1013 	u32 count = 1000000;	/* 1s! */
1014 
1015 	while (its_queue_full(its)) {
1016 		count--;
1017 		if (!count) {
1018 			pr_err_ratelimited("ITS queue not draining\n");
1019 			return NULL;
1020 		}
1021 		cpu_relax();
1022 		udelay(1);
1023 	}
1024 
1025 	cmd = its->cmd_write++;
1026 
1027 	/* Handle queue wrapping */
1028 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1029 		its->cmd_write = its->cmd_base;
1030 
1031 	/* Clear command  */
1032 	cmd->raw_cmd[0] = 0;
1033 	cmd->raw_cmd[1] = 0;
1034 	cmd->raw_cmd[2] = 0;
1035 	cmd->raw_cmd[3] = 0;
1036 
1037 	return cmd;
1038 }
1039 
its_post_commands(struct its_node * its)1040 static struct its_cmd_block *its_post_commands(struct its_node *its)
1041 {
1042 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1043 
1044 	writel_relaxed(wr, its->base + GITS_CWRITER);
1045 
1046 	return its->cmd_write;
1047 }
1048 
its_flush_cmd(struct its_node * its,struct its_cmd_block * cmd)1049 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1050 {
1051 	/*
1052 	 * Make sure the commands written to memory are observable by
1053 	 * the ITS.
1054 	 */
1055 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1056 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1057 	else
1058 		dsb(ishst);
1059 }
1060 
its_wait_for_range_completion(struct its_node * its,u64 prev_idx,struct its_cmd_block * to)1061 static int its_wait_for_range_completion(struct its_node *its,
1062 					 u64	prev_idx,
1063 					 struct its_cmd_block *to)
1064 {
1065 	u64 rd_idx, to_idx, linear_idx;
1066 	u32 count = 1000000;	/* 1s! */
1067 
1068 	/* Linearize to_idx if the command set has wrapped around */
1069 	to_idx = its_cmd_ptr_to_offset(its, to);
1070 	if (to_idx < prev_idx)
1071 		to_idx += ITS_CMD_QUEUE_SZ;
1072 
1073 	linear_idx = prev_idx;
1074 
1075 	while (1) {
1076 		s64 delta;
1077 
1078 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1079 
1080 		/*
1081 		 * Compute the read pointer progress, taking the
1082 		 * potential wrap-around into account.
1083 		 */
1084 		delta = rd_idx - prev_idx;
1085 		if (rd_idx < prev_idx)
1086 			delta += ITS_CMD_QUEUE_SZ;
1087 
1088 		linear_idx += delta;
1089 		if (linear_idx >= to_idx)
1090 			break;
1091 
1092 		count--;
1093 		if (!count) {
1094 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1095 					   to_idx, linear_idx);
1096 			return -1;
1097 		}
1098 		prev_idx = rd_idx;
1099 		cpu_relax();
1100 		udelay(1);
1101 	}
1102 
1103 	return 0;
1104 }
1105 
1106 /* Warning, macro hell follows */
1107 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1108 void name(struct its_node *its,						\
1109 	  buildtype builder,						\
1110 	  struct its_cmd_desc *desc)					\
1111 {									\
1112 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1113 	synctype *sync_obj;						\
1114 	unsigned long flags;						\
1115 	u64 rd_idx;							\
1116 									\
1117 	raw_spin_lock_irqsave(&its->lock, flags);			\
1118 									\
1119 	cmd = its_allocate_entry(its);					\
1120 	if (!cmd) {		/* We're soooooo screewed... */		\
1121 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1122 		return;							\
1123 	}								\
1124 	sync_obj = builder(its, cmd, desc);				\
1125 	its_flush_cmd(its, cmd);					\
1126 									\
1127 	if (sync_obj) {							\
1128 		sync_cmd = its_allocate_entry(its);			\
1129 		if (!sync_cmd)						\
1130 			goto post;					\
1131 									\
1132 		buildfn(its, sync_cmd, sync_obj);			\
1133 		its_flush_cmd(its, sync_cmd);				\
1134 	}								\
1135 									\
1136 post:									\
1137 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1138 	next_cmd = its_post_commands(its);				\
1139 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1140 									\
1141 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1142 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1143 }
1144 
its_build_sync_cmd(struct its_node * its,struct its_cmd_block * sync_cmd,struct its_collection * sync_col)1145 static void its_build_sync_cmd(struct its_node *its,
1146 			       struct its_cmd_block *sync_cmd,
1147 			       struct its_collection *sync_col)
1148 {
1149 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1150 	its_encode_target(sync_cmd, sync_col->target_address);
1151 
1152 	its_fixup_cmd(sync_cmd);
1153 }
1154 
BUILD_SINGLE_CMD_FUNC(its_send_single_command,its_cmd_builder_t,struct its_collection,its_build_sync_cmd)1155 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1156 			     struct its_collection, its_build_sync_cmd)
1157 
1158 static void its_build_vsync_cmd(struct its_node *its,
1159 				struct its_cmd_block *sync_cmd,
1160 				struct its_vpe *sync_vpe)
1161 {
1162 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1163 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1164 
1165 	its_fixup_cmd(sync_cmd);
1166 }
1167 
BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand,its_cmd_vbuilder_t,struct its_vpe,its_build_vsync_cmd)1168 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1169 			     struct its_vpe, its_build_vsync_cmd)
1170 
1171 static void its_send_int(struct its_device *dev, u32 event_id)
1172 {
1173 	struct its_cmd_desc desc;
1174 
1175 	desc.its_int_cmd.dev = dev;
1176 	desc.its_int_cmd.event_id = event_id;
1177 
1178 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1179 }
1180 
its_send_clear(struct its_device * dev,u32 event_id)1181 static void its_send_clear(struct its_device *dev, u32 event_id)
1182 {
1183 	struct its_cmd_desc desc;
1184 
1185 	desc.its_clear_cmd.dev = dev;
1186 	desc.its_clear_cmd.event_id = event_id;
1187 
1188 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1189 }
1190 
its_send_inv(struct its_device * dev,u32 event_id)1191 static void its_send_inv(struct its_device *dev, u32 event_id)
1192 {
1193 	struct its_cmd_desc desc;
1194 
1195 	desc.its_inv_cmd.dev = dev;
1196 	desc.its_inv_cmd.event_id = event_id;
1197 
1198 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1199 }
1200 
its_send_mapd(struct its_device * dev,int valid)1201 static void its_send_mapd(struct its_device *dev, int valid)
1202 {
1203 	struct its_cmd_desc desc;
1204 
1205 	desc.its_mapd_cmd.dev = dev;
1206 	desc.its_mapd_cmd.valid = !!valid;
1207 
1208 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1209 }
1210 
its_send_mapc(struct its_node * its,struct its_collection * col,int valid)1211 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1212 			  int valid)
1213 {
1214 	struct its_cmd_desc desc;
1215 
1216 	desc.its_mapc_cmd.col = col;
1217 	desc.its_mapc_cmd.valid = !!valid;
1218 
1219 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1220 }
1221 
its_send_mapti(struct its_device * dev,u32 irq_id,u32 id)1222 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1223 {
1224 	struct its_cmd_desc desc;
1225 
1226 	desc.its_mapti_cmd.dev = dev;
1227 	desc.its_mapti_cmd.phys_id = irq_id;
1228 	desc.its_mapti_cmd.event_id = id;
1229 
1230 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1231 }
1232 
its_send_movi(struct its_device * dev,struct its_collection * col,u32 id)1233 static void its_send_movi(struct its_device *dev,
1234 			  struct its_collection *col, u32 id)
1235 {
1236 	struct its_cmd_desc desc;
1237 
1238 	desc.its_movi_cmd.dev = dev;
1239 	desc.its_movi_cmd.col = col;
1240 	desc.its_movi_cmd.event_id = id;
1241 
1242 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1243 }
1244 
its_send_discard(struct its_device * dev,u32 id)1245 static void its_send_discard(struct its_device *dev, u32 id)
1246 {
1247 	struct its_cmd_desc desc;
1248 
1249 	desc.its_discard_cmd.dev = dev;
1250 	desc.its_discard_cmd.event_id = id;
1251 
1252 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1253 }
1254 
its_send_invall(struct its_node * its,struct its_collection * col)1255 static void its_send_invall(struct its_node *its, struct its_collection *col)
1256 {
1257 	struct its_cmd_desc desc;
1258 
1259 	desc.its_invall_cmd.col = col;
1260 
1261 	its_send_single_command(its, its_build_invall_cmd, &desc);
1262 }
1263 
its_send_vmapti(struct its_device * dev,u32 id)1264 static void its_send_vmapti(struct its_device *dev, u32 id)
1265 {
1266 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1267 	struct its_cmd_desc desc;
1268 
1269 	desc.its_vmapti_cmd.vpe = map->vpe;
1270 	desc.its_vmapti_cmd.dev = dev;
1271 	desc.its_vmapti_cmd.virt_id = map->vintid;
1272 	desc.its_vmapti_cmd.event_id = id;
1273 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1274 
1275 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1276 }
1277 
its_send_vmovi(struct its_device * dev,u32 id)1278 static void its_send_vmovi(struct its_device *dev, u32 id)
1279 {
1280 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1281 	struct its_cmd_desc desc;
1282 
1283 	desc.its_vmovi_cmd.vpe = map->vpe;
1284 	desc.its_vmovi_cmd.dev = dev;
1285 	desc.its_vmovi_cmd.event_id = id;
1286 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1287 
1288 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1289 }
1290 
its_send_vmapp(struct its_node * its,struct its_vpe * vpe,bool valid)1291 static void its_send_vmapp(struct its_node *its,
1292 			   struct its_vpe *vpe, bool valid)
1293 {
1294 	struct its_cmd_desc desc;
1295 
1296 	desc.its_vmapp_cmd.vpe = vpe;
1297 	desc.its_vmapp_cmd.valid = valid;
1298 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1299 
1300 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1301 }
1302 
its_send_vmovp(struct its_vpe * vpe)1303 static void its_send_vmovp(struct its_vpe *vpe)
1304 {
1305 	struct its_cmd_desc desc = {};
1306 	struct its_node *its;
1307 	unsigned long flags;
1308 	int col_id = vpe->col_idx;
1309 
1310 	desc.its_vmovp_cmd.vpe = vpe;
1311 
1312 	if (!its_list_map) {
1313 		its = list_first_entry(&its_nodes, struct its_node, entry);
1314 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1315 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1316 		return;
1317 	}
1318 
1319 	/*
1320 	 * Yet another marvel of the architecture. If using the
1321 	 * its_list "feature", we need to make sure that all ITSs
1322 	 * receive all VMOVP commands in the same order. The only way
1323 	 * to guarantee this is to make vmovp a serialization point.
1324 	 *
1325 	 * Wall <-- Head.
1326 	 */
1327 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1328 
1329 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1330 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1331 
1332 	/* Emit VMOVPs */
1333 	list_for_each_entry(its, &its_nodes, entry) {
1334 		if (!is_v4(its))
1335 			continue;
1336 
1337 		if (!require_its_list_vmovp(vpe->its_vm, its))
1338 			continue;
1339 
1340 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1341 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1342 	}
1343 
1344 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1345 }
1346 
its_send_vinvall(struct its_node * its,struct its_vpe * vpe)1347 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1348 {
1349 	struct its_cmd_desc desc;
1350 
1351 	desc.its_vinvall_cmd.vpe = vpe;
1352 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1353 }
1354 
its_send_vinv(struct its_device * dev,u32 event_id)1355 static void its_send_vinv(struct its_device *dev, u32 event_id)
1356 {
1357 	struct its_cmd_desc desc;
1358 
1359 	/*
1360 	 * There is no real VINV command. This is just a normal INV,
1361 	 * with a VSYNC instead of a SYNC.
1362 	 */
1363 	desc.its_inv_cmd.dev = dev;
1364 	desc.its_inv_cmd.event_id = event_id;
1365 
1366 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1367 }
1368 
its_send_vint(struct its_device * dev,u32 event_id)1369 static void its_send_vint(struct its_device *dev, u32 event_id)
1370 {
1371 	struct its_cmd_desc desc;
1372 
1373 	/*
1374 	 * There is no real VINT command. This is just a normal INT,
1375 	 * with a VSYNC instead of a SYNC.
1376 	 */
1377 	desc.its_int_cmd.dev = dev;
1378 	desc.its_int_cmd.event_id = event_id;
1379 
1380 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1381 }
1382 
its_send_vclear(struct its_device * dev,u32 event_id)1383 static void its_send_vclear(struct its_device *dev, u32 event_id)
1384 {
1385 	struct its_cmd_desc desc;
1386 
1387 	/*
1388 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1389 	 * with a VSYNC instead of a SYNC.
1390 	 */
1391 	desc.its_clear_cmd.dev = dev;
1392 	desc.its_clear_cmd.event_id = event_id;
1393 
1394 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1395 }
1396 
its_send_invdb(struct its_node * its,struct its_vpe * vpe)1397 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1398 {
1399 	struct its_cmd_desc desc;
1400 
1401 	desc.its_invdb_cmd.vpe = vpe;
1402 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1403 }
1404 
1405 /*
1406  * irqchip functions - assumes MSI, mostly.
1407  */
lpi_write_config(struct irq_data * d,u8 clr,u8 set)1408 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1409 {
1410 	struct its_vlpi_map *map = get_vlpi_map(d);
1411 	irq_hw_number_t hwirq;
1412 	void *va;
1413 	u8 *cfg;
1414 
1415 	if (map) {
1416 		va = page_address(map->vm->vprop_page);
1417 		hwirq = map->vintid;
1418 
1419 		/* Remember the updated property */
1420 		map->properties &= ~clr;
1421 		map->properties |= set | LPI_PROP_GROUP1;
1422 	} else {
1423 		va = gic_rdists->prop_table_va;
1424 		hwirq = d->hwirq;
1425 	}
1426 
1427 	cfg = va + hwirq - 8192;
1428 	*cfg &= ~clr;
1429 	*cfg |= set | LPI_PROP_GROUP1;
1430 
1431 	/*
1432 	 * Make the above write visible to the redistributors.
1433 	 * And yes, we're flushing exactly: One. Single. Byte.
1434 	 * Humpf...
1435 	 */
1436 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1437 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1438 	else
1439 		dsb(ishst);
1440 }
1441 
wait_for_syncr(void __iomem * rdbase)1442 static void wait_for_syncr(void __iomem *rdbase)
1443 {
1444 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1445 		cpu_relax();
1446 }
1447 
__direct_lpi_inv(struct irq_data * d,u64 val)1448 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1449 {
1450 	void __iomem *rdbase;
1451 	unsigned long flags;
1452 	int cpu;
1453 
1454 	/* Target the redistributor this LPI is currently routed to */
1455 	cpu = irq_to_cpuid_lock(d, &flags);
1456 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1457 
1458 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1459 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1460 	wait_for_syncr(rdbase);
1461 
1462 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1463 	irq_to_cpuid_unlock(d, flags);
1464 }
1465 
direct_lpi_inv(struct irq_data * d)1466 static void direct_lpi_inv(struct irq_data *d)
1467 {
1468 	struct its_vlpi_map *map = get_vlpi_map(d);
1469 	u64 val;
1470 
1471 	if (map) {
1472 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1473 
1474 		WARN_ON(!is_v4_1(its_dev->its));
1475 
1476 		val  = GICR_INVLPIR_V;
1477 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1478 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1479 	} else {
1480 		val = d->hwirq;
1481 	}
1482 
1483 	__direct_lpi_inv(d, val);
1484 }
1485 
lpi_update_config(struct irq_data * d,u8 clr,u8 set)1486 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1487 {
1488 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1489 
1490 	lpi_write_config(d, clr, set);
1491 	if (gic_rdists->has_direct_lpi &&
1492 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1493 		direct_lpi_inv(d);
1494 	else if (!irqd_is_forwarded_to_vcpu(d))
1495 		its_send_inv(its_dev, its_get_event_id(d));
1496 	else
1497 		its_send_vinv(its_dev, its_get_event_id(d));
1498 }
1499 
its_vlpi_set_doorbell(struct irq_data * d,bool enable)1500 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1501 {
1502 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1503 	u32 event = its_get_event_id(d);
1504 	struct its_vlpi_map *map;
1505 
1506 	/*
1507 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1508 	 * here.
1509 	 */
1510 	if (is_v4_1(its_dev->its))
1511 		return;
1512 
1513 	map = dev_event_to_vlpi_map(its_dev, event);
1514 
1515 	if (map->db_enabled == enable)
1516 		return;
1517 
1518 	map->db_enabled = enable;
1519 
1520 	/*
1521 	 * More fun with the architecture:
1522 	 *
1523 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1524 	 * value or to 1023, depending on the enable bit. But that
1525 	 * would be issuing a mapping for an /existing/ DevID+EventID
1526 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1527 	 * to the /same/ vPE, using this opportunity to adjust the
1528 	 * doorbell. Mouahahahaha. We loves it, Precious.
1529 	 */
1530 	its_send_vmovi(its_dev, event);
1531 }
1532 
its_mask_irq(struct irq_data * d)1533 static void its_mask_irq(struct irq_data *d)
1534 {
1535 	if (irqd_is_forwarded_to_vcpu(d))
1536 		its_vlpi_set_doorbell(d, false);
1537 
1538 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1539 }
1540 
its_unmask_irq(struct irq_data * d)1541 static void its_unmask_irq(struct irq_data *d)
1542 {
1543 	if (irqd_is_forwarded_to_vcpu(d))
1544 		its_vlpi_set_doorbell(d, true);
1545 
1546 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1547 }
1548 
its_read_lpi_count(struct irq_data * d,int cpu)1549 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1550 {
1551 	if (irqd_affinity_is_managed(d))
1552 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1553 
1554 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1555 }
1556 
its_inc_lpi_count(struct irq_data * d,int cpu)1557 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1558 {
1559 	if (irqd_affinity_is_managed(d))
1560 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1561 	else
1562 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1563 }
1564 
its_dec_lpi_count(struct irq_data * d,int cpu)1565 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1566 {
1567 	if (irqd_affinity_is_managed(d))
1568 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1569 	else
1570 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1571 }
1572 
cpumask_pick_least_loaded(struct irq_data * d,const struct cpumask * cpu_mask)1573 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1574 					      const struct cpumask *cpu_mask)
1575 {
1576 	unsigned int cpu = nr_cpu_ids, tmp;
1577 	int count = S32_MAX;
1578 
1579 	for_each_cpu(tmp, cpu_mask) {
1580 		int this_count = its_read_lpi_count(d, tmp);
1581 		if (this_count < count) {
1582 			cpu = tmp;
1583 		        count = this_count;
1584 		}
1585 	}
1586 
1587 	return cpu;
1588 }
1589 
1590 /*
1591  * As suggested by Thomas Gleixner in:
1592  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1593  */
its_select_cpu(struct irq_data * d,const struct cpumask * aff_mask)1594 static int its_select_cpu(struct irq_data *d,
1595 			  const struct cpumask *aff_mask)
1596 {
1597 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1598 	cpumask_var_t tmpmask;
1599 	int cpu, node;
1600 
1601 	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1602 		return -ENOMEM;
1603 
1604 	node = its_dev->its->numa_node;
1605 
1606 	if (!irqd_affinity_is_managed(d)) {
1607 		/* First try the NUMA node */
1608 		if (node != NUMA_NO_NODE) {
1609 			/*
1610 			 * Try the intersection of the affinity mask and the
1611 			 * node mask (and the online mask, just to be safe).
1612 			 */
1613 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1614 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1615 
1616 			/*
1617 			 * Ideally, we would check if the mask is empty, and
1618 			 * try again on the full node here.
1619 			 *
1620 			 * But it turns out that the way ACPI describes the
1621 			 * affinity for ITSs only deals about memory, and
1622 			 * not target CPUs, so it cannot describe a single
1623 			 * ITS placed next to two NUMA nodes.
1624 			 *
1625 			 * Instead, just fallback on the online mask. This
1626 			 * diverges from Thomas' suggestion above.
1627 			 */
1628 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1629 			if (cpu < nr_cpu_ids)
1630 				goto out;
1631 
1632 			/* If we can't cross sockets, give up */
1633 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1634 				goto out;
1635 
1636 			/* If the above failed, expand the search */
1637 		}
1638 
1639 		/* Try the intersection of the affinity and online masks */
1640 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1641 
1642 		/* If that doesn't fly, the online mask is the last resort */
1643 		if (cpumask_empty(tmpmask))
1644 			cpumask_copy(tmpmask, cpu_online_mask);
1645 
1646 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1647 	} else {
1648 		cpumask_copy(tmpmask, aff_mask);
1649 
1650 		/* If we cannot cross sockets, limit the search to that node */
1651 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1652 		    node != NUMA_NO_NODE)
1653 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1654 
1655 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1656 	}
1657 out:
1658 	free_cpumask_var(tmpmask);
1659 
1660 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1661 	return cpu;
1662 }
1663 
its_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1664 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1665 			    bool force)
1666 {
1667 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1668 	struct its_collection *target_col;
1669 	u32 id = its_get_event_id(d);
1670 	int cpu, prev_cpu;
1671 
1672 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1673 	if (irqd_is_forwarded_to_vcpu(d))
1674 		return -EINVAL;
1675 
1676 	prev_cpu = its_dev->event_map.col_map[id];
1677 	its_dec_lpi_count(d, prev_cpu);
1678 
1679 	if (!force)
1680 		cpu = its_select_cpu(d, mask_val);
1681 	else
1682 		cpu = cpumask_pick_least_loaded(d, mask_val);
1683 
1684 	if (cpu < 0 || cpu >= nr_cpu_ids)
1685 		goto err;
1686 
1687 	/* don't set the affinity when the target cpu is same as current one */
1688 	if (cpu != prev_cpu) {
1689 		target_col = &its_dev->its->collections[cpu];
1690 		its_send_movi(its_dev, target_col, id);
1691 		its_dev->event_map.col_map[id] = cpu;
1692 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1693 	}
1694 
1695 	its_inc_lpi_count(d, cpu);
1696 
1697 	return IRQ_SET_MASK_OK_DONE;
1698 
1699 err:
1700 	its_inc_lpi_count(d, prev_cpu);
1701 	return -EINVAL;
1702 }
1703 
its_irq_get_msi_base(struct its_device * its_dev)1704 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1705 {
1706 	struct its_node *its = its_dev->its;
1707 
1708 	return its->phys_base + GITS_TRANSLATER;
1709 }
1710 
its_irq_compose_msi_msg(struct irq_data * d,struct msi_msg * msg)1711 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1712 {
1713 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1714 	struct its_node *its;
1715 	u64 addr;
1716 
1717 	its = its_dev->its;
1718 	addr = its->get_msi_base(its_dev);
1719 
1720 	msg->address_lo		= lower_32_bits(addr);
1721 	msg->address_hi		= upper_32_bits(addr);
1722 	msg->data		= its_get_event_id(d);
1723 
1724 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1725 }
1726 
its_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)1727 static int its_irq_set_irqchip_state(struct irq_data *d,
1728 				     enum irqchip_irq_state which,
1729 				     bool state)
1730 {
1731 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1732 	u32 event = its_get_event_id(d);
1733 
1734 	if (which != IRQCHIP_STATE_PENDING)
1735 		return -EINVAL;
1736 
1737 	if (irqd_is_forwarded_to_vcpu(d)) {
1738 		if (state)
1739 			its_send_vint(its_dev, event);
1740 		else
1741 			its_send_vclear(its_dev, event);
1742 	} else {
1743 		if (state)
1744 			its_send_int(its_dev, event);
1745 		else
1746 			its_send_clear(its_dev, event);
1747 	}
1748 
1749 	return 0;
1750 }
1751 
its_irq_retrigger(struct irq_data * d)1752 static int its_irq_retrigger(struct irq_data *d)
1753 {
1754 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1755 }
1756 
1757 /*
1758  * Two favourable cases:
1759  *
1760  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1761  *     for vSGI delivery
1762  *
1763  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1764  *     and we're better off mapping all VPEs always
1765  *
1766  * If neither (a) nor (b) is true, then we map vPEs on demand.
1767  *
1768  */
gic_requires_eager_mapping(void)1769 static bool gic_requires_eager_mapping(void)
1770 {
1771 	if (!its_list_map || gic_rdists->has_rvpeid)
1772 		return true;
1773 
1774 	return false;
1775 }
1776 
its_map_vm(struct its_node * its,struct its_vm * vm)1777 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1778 {
1779 	unsigned long flags;
1780 
1781 	if (gic_requires_eager_mapping())
1782 		return;
1783 
1784 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1785 
1786 	/*
1787 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1788 	 * them mapped now.
1789 	 */
1790 	vm->vlpi_count[its->list_nr]++;
1791 
1792 	if (vm->vlpi_count[its->list_nr] == 1) {
1793 		int i;
1794 
1795 		for (i = 0; i < vm->nr_vpes; i++) {
1796 			struct its_vpe *vpe = vm->vpes[i];
1797 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1798 
1799 			/* Map the VPE to the first possible CPU */
1800 			vpe->col_idx = cpumask_first(cpu_online_mask);
1801 			its_send_vmapp(its, vpe, true);
1802 			its_send_vinvall(its, vpe);
1803 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1804 		}
1805 	}
1806 
1807 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1808 }
1809 
its_unmap_vm(struct its_node * its,struct its_vm * vm)1810 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1811 {
1812 	unsigned long flags;
1813 
1814 	/* Not using the ITS list? Everything is always mapped. */
1815 	if (gic_requires_eager_mapping())
1816 		return;
1817 
1818 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1819 
1820 	if (!--vm->vlpi_count[its->list_nr]) {
1821 		int i;
1822 
1823 		for (i = 0; i < vm->nr_vpes; i++)
1824 			its_send_vmapp(its, vm->vpes[i], false);
1825 	}
1826 
1827 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1828 }
1829 
its_vlpi_map(struct irq_data * d,struct its_cmd_info * info)1830 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1831 {
1832 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1833 	u32 event = its_get_event_id(d);
1834 	int ret = 0;
1835 
1836 	if (!info->map)
1837 		return -EINVAL;
1838 
1839 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1840 
1841 	if (!its_dev->event_map.vm) {
1842 		struct its_vlpi_map *maps;
1843 
1844 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1845 			       GFP_ATOMIC);
1846 		if (!maps) {
1847 			ret = -ENOMEM;
1848 			goto out;
1849 		}
1850 
1851 		its_dev->event_map.vm = info->map->vm;
1852 		its_dev->event_map.vlpi_maps = maps;
1853 	} else if (its_dev->event_map.vm != info->map->vm) {
1854 		ret = -EINVAL;
1855 		goto out;
1856 	}
1857 
1858 	/* Get our private copy of the mapping information */
1859 	its_dev->event_map.vlpi_maps[event] = *info->map;
1860 
1861 	if (irqd_is_forwarded_to_vcpu(d)) {
1862 		/* Already mapped, move it around */
1863 		its_send_vmovi(its_dev, event);
1864 	} else {
1865 		/* Ensure all the VPEs are mapped on this ITS */
1866 		its_map_vm(its_dev->its, info->map->vm);
1867 
1868 		/*
1869 		 * Flag the interrupt as forwarded so that we can
1870 		 * start poking the virtual property table.
1871 		 */
1872 		irqd_set_forwarded_to_vcpu(d);
1873 
1874 		/* Write out the property to the prop table */
1875 		lpi_write_config(d, 0xff, info->map->properties);
1876 
1877 		/* Drop the physical mapping */
1878 		its_send_discard(its_dev, event);
1879 
1880 		/* and install the virtual one */
1881 		its_send_vmapti(its_dev, event);
1882 
1883 		/* Increment the number of VLPIs */
1884 		its_dev->event_map.nr_vlpis++;
1885 	}
1886 
1887 out:
1888 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1889 	return ret;
1890 }
1891 
its_vlpi_get(struct irq_data * d,struct its_cmd_info * info)1892 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1893 {
1894 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1895 	struct its_vlpi_map *map;
1896 	int ret = 0;
1897 
1898 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1899 
1900 	map = get_vlpi_map(d);
1901 
1902 	if (!its_dev->event_map.vm || !map) {
1903 		ret = -EINVAL;
1904 		goto out;
1905 	}
1906 
1907 	/* Copy our mapping information to the incoming request */
1908 	*info->map = *map;
1909 
1910 out:
1911 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1912 	return ret;
1913 }
1914 
its_vlpi_unmap(struct irq_data * d)1915 static int its_vlpi_unmap(struct irq_data *d)
1916 {
1917 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1918 	u32 event = its_get_event_id(d);
1919 	int ret = 0;
1920 
1921 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1922 
1923 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1924 		ret = -EINVAL;
1925 		goto out;
1926 	}
1927 
1928 	/* Drop the virtual mapping */
1929 	its_send_discard(its_dev, event);
1930 
1931 	/* and restore the physical one */
1932 	irqd_clr_forwarded_to_vcpu(d);
1933 	its_send_mapti(its_dev, d->hwirq, event);
1934 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1935 				    LPI_PROP_ENABLED |
1936 				    LPI_PROP_GROUP1));
1937 
1938 	/* Potentially unmap the VM from this ITS */
1939 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1940 
1941 	/*
1942 	 * Drop the refcount and make the device available again if
1943 	 * this was the last VLPI.
1944 	 */
1945 	if (!--its_dev->event_map.nr_vlpis) {
1946 		its_dev->event_map.vm = NULL;
1947 		kfree(its_dev->event_map.vlpi_maps);
1948 	}
1949 
1950 out:
1951 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1952 	return ret;
1953 }
1954 
its_vlpi_prop_update(struct irq_data * d,struct its_cmd_info * info)1955 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1956 {
1957 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1958 
1959 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1960 		return -EINVAL;
1961 
1962 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1963 		lpi_update_config(d, 0xff, info->config);
1964 	else
1965 		lpi_write_config(d, 0xff, info->config);
1966 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1967 
1968 	return 0;
1969 }
1970 
its_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)1971 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1972 {
1973 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1974 	struct its_cmd_info *info = vcpu_info;
1975 
1976 	/* Need a v4 ITS */
1977 	if (!is_v4(its_dev->its))
1978 		return -EINVAL;
1979 
1980 	/* Unmap request? */
1981 	if (!info)
1982 		return its_vlpi_unmap(d);
1983 
1984 	switch (info->cmd_type) {
1985 	case MAP_VLPI:
1986 		return its_vlpi_map(d, info);
1987 
1988 	case GET_VLPI:
1989 		return its_vlpi_get(d, info);
1990 
1991 	case PROP_UPDATE_VLPI:
1992 	case PROP_UPDATE_AND_INV_VLPI:
1993 		return its_vlpi_prop_update(d, info);
1994 
1995 	default:
1996 		return -EINVAL;
1997 	}
1998 }
1999 
2000 static struct irq_chip its_irq_chip = {
2001 	.name			= "ITS",
2002 	.irq_mask		= its_mask_irq,
2003 	.irq_unmask		= its_unmask_irq,
2004 	.irq_eoi		= irq_chip_eoi_parent,
2005 	.irq_set_affinity	= its_set_affinity,
2006 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
2007 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
2008 	.irq_retrigger		= its_irq_retrigger,
2009 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
2010 };
2011 
2012 
2013 /*
2014  * How we allocate LPIs:
2015  *
2016  * lpi_range_list contains ranges of LPIs that are to available to
2017  * allocate from. To allocate LPIs, just pick the first range that
2018  * fits the required allocation, and reduce it by the required
2019  * amount. Once empty, remove the range from the list.
2020  *
2021  * To free a range of LPIs, add a free range to the list, sort it and
2022  * merge the result if the new range happens to be adjacent to an
2023  * already free block.
2024  *
2025  * The consequence of the above is that allocation is cost is low, but
2026  * freeing is expensive. We assumes that freeing rarely occurs.
2027  */
2028 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2029 
2030 static DEFINE_MUTEX(lpi_range_lock);
2031 static LIST_HEAD(lpi_range_list);
2032 
2033 struct lpi_range {
2034 	struct list_head	entry;
2035 	u32			base_id;
2036 	u32			span;
2037 };
2038 
mk_lpi_range(u32 base,u32 span)2039 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2040 {
2041 	struct lpi_range *range;
2042 
2043 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2044 	if (range) {
2045 		range->base_id = base;
2046 		range->span = span;
2047 	}
2048 
2049 	return range;
2050 }
2051 
alloc_lpi_range(u32 nr_lpis,u32 * base)2052 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2053 {
2054 	struct lpi_range *range, *tmp;
2055 	int err = -ENOSPC;
2056 
2057 	mutex_lock(&lpi_range_lock);
2058 
2059 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2060 		if (range->span >= nr_lpis) {
2061 			*base = range->base_id;
2062 			range->base_id += nr_lpis;
2063 			range->span -= nr_lpis;
2064 
2065 			if (range->span == 0) {
2066 				list_del(&range->entry);
2067 				kfree(range);
2068 			}
2069 
2070 			err = 0;
2071 			break;
2072 		}
2073 	}
2074 
2075 	mutex_unlock(&lpi_range_lock);
2076 
2077 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2078 	return err;
2079 }
2080 
merge_lpi_ranges(struct lpi_range * a,struct lpi_range * b)2081 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2082 {
2083 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2084 		return;
2085 	if (a->base_id + a->span != b->base_id)
2086 		return;
2087 	b->base_id = a->base_id;
2088 	b->span += a->span;
2089 	list_del(&a->entry);
2090 	kfree(a);
2091 }
2092 
free_lpi_range(u32 base,u32 nr_lpis)2093 static int free_lpi_range(u32 base, u32 nr_lpis)
2094 {
2095 	struct lpi_range *new, *old;
2096 
2097 	new = mk_lpi_range(base, nr_lpis);
2098 	if (!new)
2099 		return -ENOMEM;
2100 
2101 	mutex_lock(&lpi_range_lock);
2102 
2103 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2104 		if (old->base_id < base)
2105 			break;
2106 	}
2107 	/*
2108 	 * old is the last element with ->base_id smaller than base,
2109 	 * so new goes right after it. If there are no elements with
2110 	 * ->base_id smaller than base, &old->entry ends up pointing
2111 	 * at the head of the list, and inserting new it the start of
2112 	 * the list is the right thing to do in that case as well.
2113 	 */
2114 	list_add(&new->entry, &old->entry);
2115 	/*
2116 	 * Now check if we can merge with the preceding and/or
2117 	 * following ranges.
2118 	 */
2119 	merge_lpi_ranges(old, new);
2120 	merge_lpi_ranges(new, list_next_entry(new, entry));
2121 
2122 	mutex_unlock(&lpi_range_lock);
2123 	return 0;
2124 }
2125 
its_lpi_init(u32 id_bits)2126 static int __init its_lpi_init(u32 id_bits)
2127 {
2128 	u32 lpis = (1UL << id_bits) - 8192;
2129 	u32 numlpis;
2130 	int err;
2131 
2132 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2133 
2134 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2135 		lpis = numlpis;
2136 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2137 			lpis);
2138 	}
2139 
2140 	/*
2141 	 * Initializing the allocator is just the same as freeing the
2142 	 * full range of LPIs.
2143 	 */
2144 	err = free_lpi_range(8192, lpis);
2145 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2146 	return err;
2147 }
2148 
its_lpi_alloc(int nr_irqs,u32 * base,int * nr_ids)2149 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2150 {
2151 	unsigned long *bitmap = NULL;
2152 	int err = 0;
2153 
2154 	do {
2155 		err = alloc_lpi_range(nr_irqs, base);
2156 		if (!err)
2157 			break;
2158 
2159 		nr_irqs /= 2;
2160 	} while (nr_irqs > 0);
2161 
2162 	if (!nr_irqs)
2163 		err = -ENOSPC;
2164 
2165 	if (err)
2166 		goto out;
2167 
2168 	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2169 	if (!bitmap)
2170 		goto out;
2171 
2172 	*nr_ids = nr_irqs;
2173 
2174 out:
2175 	if (!bitmap)
2176 		*base = *nr_ids = 0;
2177 
2178 	return bitmap;
2179 }
2180 
its_lpi_free(unsigned long * bitmap,u32 base,u32 nr_ids)2181 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2182 {
2183 	WARN_ON(free_lpi_range(base, nr_ids));
2184 	bitmap_free(bitmap);
2185 }
2186 
gic_reset_prop_table(void * va)2187 static void gic_reset_prop_table(void *va)
2188 {
2189 	/* Priority 0xa0, Group-1, disabled */
2190 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2191 
2192 	/* Make sure the GIC will observe the written configuration */
2193 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2194 }
2195 
its_allocate_prop_table(gfp_t gfp_flags)2196 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2197 {
2198 	struct page *prop_page;
2199 
2200 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2201 	if (!prop_page)
2202 		return NULL;
2203 
2204 	gic_reset_prop_table(page_address(prop_page));
2205 
2206 	return prop_page;
2207 }
2208 
its_free_prop_table(struct page * prop_page)2209 static void its_free_prop_table(struct page *prop_page)
2210 {
2211 	free_pages((unsigned long)page_address(prop_page),
2212 		   get_order(LPI_PROPBASE_SZ));
2213 }
2214 
gic_check_reserved_range(phys_addr_t addr,unsigned long size)2215 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2216 {
2217 	phys_addr_t start, end, addr_end;
2218 	u64 i;
2219 
2220 	/*
2221 	 * We don't bother checking for a kdump kernel as by
2222 	 * construction, the LPI tables are out of this kernel's
2223 	 * memory map.
2224 	 */
2225 	if (is_kdump_kernel())
2226 		return true;
2227 
2228 	addr_end = addr + size - 1;
2229 
2230 	for_each_reserved_mem_range(i, &start, &end) {
2231 		if (addr >= start && addr_end <= end)
2232 			return true;
2233 	}
2234 
2235 	/* Not found, not a good sign... */
2236 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2237 		&addr, &addr_end);
2238 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2239 	return false;
2240 }
2241 
gic_reserve_range(phys_addr_t addr,unsigned long size)2242 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2243 {
2244 	if (efi_enabled(EFI_CONFIG_TABLES))
2245 		return efi_mem_reserve_persistent(addr, size);
2246 
2247 	return 0;
2248 }
2249 
its_setup_lpi_prop_table(void)2250 static int __init its_setup_lpi_prop_table(void)
2251 {
2252 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2253 		u64 val;
2254 
2255 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2256 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2257 
2258 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2259 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2260 						     LPI_PROPBASE_SZ,
2261 						     MEMREMAP_WB);
2262 		gic_reset_prop_table(gic_rdists->prop_table_va);
2263 	} else {
2264 		struct page *page;
2265 
2266 		lpi_id_bits = min_t(u32,
2267 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2268 				    ITS_MAX_LPI_NRBITS);
2269 		page = its_allocate_prop_table(GFP_NOWAIT);
2270 		if (!page) {
2271 			pr_err("Failed to allocate PROPBASE\n");
2272 			return -ENOMEM;
2273 		}
2274 
2275 		gic_rdists->prop_table_pa = page_to_phys(page);
2276 		gic_rdists->prop_table_va = page_address(page);
2277 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2278 					  LPI_PROPBASE_SZ));
2279 	}
2280 
2281 	pr_info("GICv3: using LPI property table @%pa\n",
2282 		&gic_rdists->prop_table_pa);
2283 
2284 	return its_lpi_init(lpi_id_bits);
2285 }
2286 
2287 static const char *its_base_type_string[] = {
2288 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2289 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2290 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2291 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2292 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2293 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2294 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2295 };
2296 
its_read_baser(struct its_node * its,struct its_baser * baser)2297 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2298 {
2299 	u32 idx = baser - its->tables;
2300 
2301 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2302 }
2303 
its_write_baser(struct its_node * its,struct its_baser * baser,u64 val)2304 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2305 			    u64 val)
2306 {
2307 	u32 idx = baser - its->tables;
2308 
2309 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2310 	baser->val = its_read_baser(its, baser);
2311 }
2312 
its_setup_baser(struct its_node * its,struct its_baser * baser,u64 cache,u64 shr,u32 order,bool indirect)2313 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2314 			   u64 cache, u64 shr, u32 order, bool indirect)
2315 {
2316 	u64 val = its_read_baser(its, baser);
2317 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2318 	u64 type = GITS_BASER_TYPE(val);
2319 	u64 baser_phys, tmp;
2320 	u32 alloc_pages, psz;
2321 	struct page *page;
2322 	void *base;
2323 
2324 	psz = baser->psz;
2325 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2326 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2327 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2328 			&its->phys_base, its_base_type_string[type],
2329 			alloc_pages, GITS_BASER_PAGES_MAX);
2330 		alloc_pages = GITS_BASER_PAGES_MAX;
2331 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2332 	}
2333 
2334 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2335 	if (!page)
2336 		return -ENOMEM;
2337 
2338 	base = (void *)page_address(page);
2339 	baser_phys = virt_to_phys(base);
2340 
2341 	/* Check if the physical address of the memory is above 48bits */
2342 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2343 
2344 		/* 52bit PA is supported only when PageSize=64K */
2345 		if (psz != SZ_64K) {
2346 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2347 			free_pages((unsigned long)base, order);
2348 			return -ENXIO;
2349 		}
2350 
2351 		/* Convert 52bit PA to 48bit field */
2352 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2353 	}
2354 
2355 retry_baser:
2356 	val = (baser_phys					 |
2357 		(type << GITS_BASER_TYPE_SHIFT)			 |
2358 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2359 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2360 		cache						 |
2361 		shr						 |
2362 		GITS_BASER_VALID);
2363 
2364 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2365 
2366 	switch (psz) {
2367 	case SZ_4K:
2368 		val |= GITS_BASER_PAGE_SIZE_4K;
2369 		break;
2370 	case SZ_16K:
2371 		val |= GITS_BASER_PAGE_SIZE_16K;
2372 		break;
2373 	case SZ_64K:
2374 		val |= GITS_BASER_PAGE_SIZE_64K;
2375 		break;
2376 	}
2377 
2378 	its_write_baser(its, baser, val);
2379 	tmp = baser->val;
2380 
2381 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2382 		/*
2383 		 * Shareability didn't stick. Just use
2384 		 * whatever the read reported, which is likely
2385 		 * to be the only thing this redistributor
2386 		 * supports. If that's zero, make it
2387 		 * non-cacheable as well.
2388 		 */
2389 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2390 		if (!shr) {
2391 			cache = GITS_BASER_nC;
2392 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2393 		}
2394 		goto retry_baser;
2395 	}
2396 
2397 	if (val != tmp) {
2398 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2399 		       &its->phys_base, its_base_type_string[type],
2400 		       val, tmp);
2401 		free_pages((unsigned long)base, order);
2402 		return -ENXIO;
2403 	}
2404 
2405 	baser->order = order;
2406 	baser->base = base;
2407 	baser->psz = psz;
2408 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2409 
2410 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2411 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2412 		its_base_type_string[type],
2413 		(unsigned long)virt_to_phys(base),
2414 		indirect ? "indirect" : "flat", (int)esz,
2415 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2416 
2417 	return 0;
2418 }
2419 
its_parse_indirect_baser(struct its_node * its,struct its_baser * baser,u32 * order,u32 ids)2420 static bool its_parse_indirect_baser(struct its_node *its,
2421 				     struct its_baser *baser,
2422 				     u32 *order, u32 ids)
2423 {
2424 	u64 tmp = its_read_baser(its, baser);
2425 	u64 type = GITS_BASER_TYPE(tmp);
2426 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2427 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2428 	u32 new_order = *order;
2429 	u32 psz = baser->psz;
2430 	bool indirect = false;
2431 
2432 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2433 	if ((esz << ids) > (psz * 2)) {
2434 		/*
2435 		 * Find out whether hw supports a single or two-level table by
2436 		 * table by reading bit at offset '62' after writing '1' to it.
2437 		 */
2438 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2439 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2440 
2441 		if (indirect) {
2442 			/*
2443 			 * The size of the lvl2 table is equal to ITS page size
2444 			 * which is 'psz'. For computing lvl1 table size,
2445 			 * subtract ID bits that sparse lvl2 table from 'ids'
2446 			 * which is reported by ITS hardware times lvl1 table
2447 			 * entry size.
2448 			 */
2449 			ids -= ilog2(psz / (int)esz);
2450 			esz = GITS_LVL1_ENTRY_SIZE;
2451 		}
2452 	}
2453 
2454 	/*
2455 	 * Allocate as many entries as required to fit the
2456 	 * range of device IDs that the ITS can grok... The ID
2457 	 * space being incredibly sparse, this results in a
2458 	 * massive waste of memory if two-level device table
2459 	 * feature is not supported by hardware.
2460 	 */
2461 	new_order = max_t(u32, get_order(esz << ids), new_order);
2462 	if (new_order >= MAX_ORDER) {
2463 		new_order = MAX_ORDER - 1;
2464 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2465 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2466 			&its->phys_base, its_base_type_string[type],
2467 			device_ids(its), ids);
2468 	}
2469 
2470 	*order = new_order;
2471 
2472 	return indirect;
2473 }
2474 
compute_common_aff(u64 val)2475 static u32 compute_common_aff(u64 val)
2476 {
2477 	u32 aff, clpiaff;
2478 
2479 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2480 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2481 
2482 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2483 }
2484 
compute_its_aff(struct its_node * its)2485 static u32 compute_its_aff(struct its_node *its)
2486 {
2487 	u64 val;
2488 	u32 svpet;
2489 
2490 	/*
2491 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2492 	 * the resulting affinity. We then use that to see if this match
2493 	 * our own affinity.
2494 	 */
2495 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2496 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2497 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2498 	return compute_common_aff(val);
2499 }
2500 
find_sibling_its(struct its_node * cur_its)2501 static struct its_node *find_sibling_its(struct its_node *cur_its)
2502 {
2503 	struct its_node *its;
2504 	u32 aff;
2505 
2506 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2507 		return NULL;
2508 
2509 	aff = compute_its_aff(cur_its);
2510 
2511 	list_for_each_entry(its, &its_nodes, entry) {
2512 		u64 baser;
2513 
2514 		if (!is_v4_1(its) || its == cur_its)
2515 			continue;
2516 
2517 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2518 			continue;
2519 
2520 		if (aff != compute_its_aff(its))
2521 			continue;
2522 
2523 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2524 		baser = its->tables[2].val;
2525 		if (!(baser & GITS_BASER_VALID))
2526 			continue;
2527 
2528 		return its;
2529 	}
2530 
2531 	return NULL;
2532 }
2533 
its_free_tables(struct its_node * its)2534 static void its_free_tables(struct its_node *its)
2535 {
2536 	int i;
2537 
2538 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2539 		if (its->tables[i].base) {
2540 			free_pages((unsigned long)its->tables[i].base,
2541 				   its->tables[i].order);
2542 			its->tables[i].base = NULL;
2543 		}
2544 	}
2545 }
2546 
its_probe_baser_psz(struct its_node * its,struct its_baser * baser)2547 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2548 {
2549 	u64 psz = SZ_64K;
2550 
2551 	while (psz) {
2552 		u64 val, gpsz;
2553 
2554 		val = its_read_baser(its, baser);
2555 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2556 
2557 		switch (psz) {
2558 		case SZ_64K:
2559 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2560 			break;
2561 		case SZ_16K:
2562 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2563 			break;
2564 		case SZ_4K:
2565 		default:
2566 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2567 			break;
2568 		}
2569 
2570 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2571 
2572 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2573 		its_write_baser(its, baser, val);
2574 
2575 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2576 			break;
2577 
2578 		switch (psz) {
2579 		case SZ_64K:
2580 			psz = SZ_16K;
2581 			break;
2582 		case SZ_16K:
2583 			psz = SZ_4K;
2584 			break;
2585 		case SZ_4K:
2586 		default:
2587 			return -1;
2588 		}
2589 	}
2590 
2591 	baser->psz = psz;
2592 	return 0;
2593 }
2594 
its_alloc_tables(struct its_node * its)2595 static int its_alloc_tables(struct its_node *its)
2596 {
2597 	u64 shr = GITS_BASER_InnerShareable;
2598 	u64 cache = GITS_BASER_RaWaWb;
2599 	int err, i;
2600 
2601 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2602 		/* erratum 24313: ignore memory access type */
2603 		cache = GITS_BASER_nCnB;
2604 
2605 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2606 		struct its_baser *baser = its->tables + i;
2607 		u64 val = its_read_baser(its, baser);
2608 		u64 type = GITS_BASER_TYPE(val);
2609 		bool indirect = false;
2610 		u32 order;
2611 
2612 		if (type == GITS_BASER_TYPE_NONE)
2613 			continue;
2614 
2615 		if (its_probe_baser_psz(its, baser)) {
2616 			its_free_tables(its);
2617 			return -ENXIO;
2618 		}
2619 
2620 		order = get_order(baser->psz);
2621 
2622 		switch (type) {
2623 		case GITS_BASER_TYPE_DEVICE:
2624 			indirect = its_parse_indirect_baser(its, baser, &order,
2625 							    device_ids(its));
2626 			break;
2627 
2628 		case GITS_BASER_TYPE_VCPU:
2629 			if (is_v4_1(its)) {
2630 				struct its_node *sibling;
2631 
2632 				WARN_ON(i != 2);
2633 				if ((sibling = find_sibling_its(its))) {
2634 					*baser = sibling->tables[2];
2635 					its_write_baser(its, baser, baser->val);
2636 					continue;
2637 				}
2638 			}
2639 
2640 			indirect = its_parse_indirect_baser(its, baser, &order,
2641 							    ITS_MAX_VPEID_BITS);
2642 			break;
2643 		}
2644 
2645 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2646 		if (err < 0) {
2647 			its_free_tables(its);
2648 			return err;
2649 		}
2650 
2651 		/* Update settings which will be used for next BASERn */
2652 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2653 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2654 	}
2655 
2656 	return 0;
2657 }
2658 
inherit_vpe_l1_table_from_its(void)2659 static u64 inherit_vpe_l1_table_from_its(void)
2660 {
2661 	struct its_node *its;
2662 	u64 val;
2663 	u32 aff;
2664 
2665 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2666 	aff = compute_common_aff(val);
2667 
2668 	list_for_each_entry(its, &its_nodes, entry) {
2669 		u64 baser, addr;
2670 
2671 		if (!is_v4_1(its))
2672 			continue;
2673 
2674 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2675 			continue;
2676 
2677 		if (aff != compute_its_aff(its))
2678 			continue;
2679 
2680 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2681 		baser = its->tables[2].val;
2682 		if (!(baser & GITS_BASER_VALID))
2683 			continue;
2684 
2685 		/* We have a winner! */
2686 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2687 
2688 		val  = GICR_VPROPBASER_4_1_VALID;
2689 		if (baser & GITS_BASER_INDIRECT)
2690 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2691 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2692 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2693 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2694 		case GIC_PAGE_SIZE_64K:
2695 			addr = GITS_BASER_ADDR_48_to_52(baser);
2696 			break;
2697 		default:
2698 			addr = baser & GENMASK_ULL(47, 12);
2699 			break;
2700 		}
2701 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2702 		val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2703 				  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2704 		val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2705 				  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2706 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2707 
2708 		return val;
2709 	}
2710 
2711 	return 0;
2712 }
2713 
inherit_vpe_l1_table_from_rd(cpumask_t ** mask)2714 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2715 {
2716 	u32 aff;
2717 	u64 val;
2718 	int cpu;
2719 
2720 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2721 	aff = compute_common_aff(val);
2722 
2723 	for_each_possible_cpu(cpu) {
2724 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2725 
2726 		if (!base || cpu == smp_processor_id())
2727 			continue;
2728 
2729 		val = gic_read_typer(base + GICR_TYPER);
2730 		if (aff != compute_common_aff(val))
2731 			continue;
2732 
2733 		/*
2734 		 * At this point, we have a victim. This particular CPU
2735 		 * has already booted, and has an affinity that matches
2736 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2737 		 * Make sure we don't write the Z bit in that case.
2738 		 */
2739 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2740 		val &= ~GICR_VPROPBASER_4_1_Z;
2741 
2742 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2743 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2744 
2745 		return val;
2746 	}
2747 
2748 	return 0;
2749 }
2750 
allocate_vpe_l2_table(int cpu,u32 id)2751 static bool allocate_vpe_l2_table(int cpu, u32 id)
2752 {
2753 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2754 	unsigned int psz, esz, idx, npg, gpsz;
2755 	u64 val;
2756 	struct page *page;
2757 	__le64 *table;
2758 
2759 	if (!gic_rdists->has_rvpeid)
2760 		return true;
2761 
2762 	/* Skip non-present CPUs */
2763 	if (!base)
2764 		return true;
2765 
2766 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2767 
2768 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2769 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2770 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2771 
2772 	switch (gpsz) {
2773 	default:
2774 		WARN_ON(1);
2775 		fallthrough;
2776 	case GIC_PAGE_SIZE_4K:
2777 		psz = SZ_4K;
2778 		break;
2779 	case GIC_PAGE_SIZE_16K:
2780 		psz = SZ_16K;
2781 		break;
2782 	case GIC_PAGE_SIZE_64K:
2783 		psz = SZ_64K;
2784 		break;
2785 	}
2786 
2787 	/* Don't allow vpe_id that exceeds single, flat table limit */
2788 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2789 		return (id < (npg * psz / (esz * SZ_8)));
2790 
2791 	/* Compute 1st level table index & check if that exceeds table limit */
2792 	idx = id >> ilog2(psz / (esz * SZ_8));
2793 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2794 		return false;
2795 
2796 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2797 
2798 	/* Allocate memory for 2nd level table */
2799 	if (!table[idx]) {
2800 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2801 		if (!page)
2802 			return false;
2803 
2804 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2805 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2806 			gic_flush_dcache_to_poc(page_address(page), psz);
2807 
2808 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2809 
2810 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2811 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2812 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2813 
2814 		/* Ensure updated table contents are visible to RD hardware */
2815 		dsb(sy);
2816 	}
2817 
2818 	return true;
2819 }
2820 
allocate_vpe_l1_table(void)2821 static int allocate_vpe_l1_table(void)
2822 {
2823 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2824 	u64 val, gpsz, npg, pa;
2825 	unsigned int psz = SZ_64K;
2826 	unsigned int np, epp, esz;
2827 	struct page *page;
2828 
2829 	if (!gic_rdists->has_rvpeid)
2830 		return 0;
2831 
2832 	/*
2833 	 * if VPENDBASER.Valid is set, disable any previously programmed
2834 	 * VPE by setting PendingLast while clearing Valid. This has the
2835 	 * effect of making sure no doorbell will be generated and we can
2836 	 * then safely clear VPROPBASER.Valid.
2837 	 */
2838 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2839 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2840 				      vlpi_base + GICR_VPENDBASER);
2841 
2842 	/*
2843 	 * If we can inherit the configuration from another RD, let's do
2844 	 * so. Otherwise, we have to go through the allocation process. We
2845 	 * assume that all RDs have the exact same requirements, as
2846 	 * nothing will work otherwise.
2847 	 */
2848 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2849 	if (val & GICR_VPROPBASER_4_1_VALID)
2850 		goto out;
2851 
2852 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2853 	if (!gic_data_rdist()->vpe_table_mask)
2854 		return -ENOMEM;
2855 
2856 	val = inherit_vpe_l1_table_from_its();
2857 	if (val & GICR_VPROPBASER_4_1_VALID)
2858 		goto out;
2859 
2860 	/* First probe the page size */
2861 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2862 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2863 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2864 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2865 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2866 
2867 	switch (gpsz) {
2868 	default:
2869 		gpsz = GIC_PAGE_SIZE_4K;
2870 		fallthrough;
2871 	case GIC_PAGE_SIZE_4K:
2872 		psz = SZ_4K;
2873 		break;
2874 	case GIC_PAGE_SIZE_16K:
2875 		psz = SZ_16K;
2876 		break;
2877 	case GIC_PAGE_SIZE_64K:
2878 		psz = SZ_64K;
2879 		break;
2880 	}
2881 
2882 	/*
2883 	 * Start populating the register from scratch, including RO fields
2884 	 * (which we want to print in debug cases...)
2885 	 */
2886 	val = 0;
2887 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2888 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2889 
2890 	/* How many entries per GIC page? */
2891 	esz++;
2892 	epp = psz / (esz * SZ_8);
2893 
2894 	/*
2895 	 * If we need more than just a single L1 page, flag the table
2896 	 * as indirect and compute the number of required L1 pages.
2897 	 */
2898 	if (epp < ITS_MAX_VPEID) {
2899 		int nl2;
2900 
2901 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2902 
2903 		/* Number of L2 pages required to cover the VPEID space */
2904 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2905 
2906 		/* Number of L1 pages to point to the L2 pages */
2907 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2908 	} else {
2909 		npg = 1;
2910 	}
2911 
2912 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2913 
2914 	/* Right, that's the number of CPU pages we need for L1 */
2915 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2916 
2917 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2918 		 np, npg, psz, epp, esz);
2919 	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2920 	if (!page)
2921 		return -ENOMEM;
2922 
2923 	gic_data_rdist()->vpe_l1_base = page_address(page);
2924 	pa = virt_to_phys(page_address(page));
2925 	WARN_ON(!IS_ALIGNED(pa, psz));
2926 
2927 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2928 	val |= GICR_VPROPBASER_RaWb;
2929 	val |= GICR_VPROPBASER_InnerShareable;
2930 	val |= GICR_VPROPBASER_4_1_Z;
2931 	val |= GICR_VPROPBASER_4_1_VALID;
2932 
2933 out:
2934 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2935 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2936 
2937 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2938 		 smp_processor_id(), val,
2939 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2940 
2941 	return 0;
2942 }
2943 
its_alloc_collections(struct its_node * its)2944 static int its_alloc_collections(struct its_node *its)
2945 {
2946 	int i;
2947 
2948 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2949 				   GFP_KERNEL);
2950 	if (!its->collections)
2951 		return -ENOMEM;
2952 
2953 	for (i = 0; i < nr_cpu_ids; i++)
2954 		its->collections[i].target_address = ~0ULL;
2955 
2956 	return 0;
2957 }
2958 
its_allocate_pending_table(gfp_t gfp_flags)2959 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2960 {
2961 	struct page *pend_page;
2962 
2963 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2964 				get_order(LPI_PENDBASE_SZ));
2965 	if (!pend_page)
2966 		return NULL;
2967 
2968 	/* Make sure the GIC will observe the zero-ed page */
2969 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2970 
2971 	return pend_page;
2972 }
2973 
its_free_pending_table(struct page * pt)2974 static void its_free_pending_table(struct page *pt)
2975 {
2976 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2977 }
2978 
2979 /*
2980  * Booting with kdump and LPIs enabled is generally fine. Any other
2981  * case is wrong in the absence of firmware/EFI support.
2982  */
enabled_lpis_allowed(void)2983 static bool enabled_lpis_allowed(void)
2984 {
2985 	phys_addr_t addr;
2986 	u64 val;
2987 
2988 	/* Check whether the property table is in a reserved region */
2989 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2990 	addr = val & GENMASK_ULL(51, 12);
2991 
2992 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2993 }
2994 
allocate_lpi_tables(void)2995 static int __init allocate_lpi_tables(void)
2996 {
2997 	u64 val;
2998 	int err, cpu;
2999 
3000 	/*
3001 	 * If LPIs are enabled while we run this from the boot CPU,
3002 	 * flag the RD tables as pre-allocated if the stars do align.
3003 	 */
3004 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3005 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3006 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3007 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3008 		pr_info("GICv3: Using preallocated redistributor tables\n");
3009 	}
3010 
3011 	err = its_setup_lpi_prop_table();
3012 	if (err)
3013 		return err;
3014 
3015 	/*
3016 	 * We allocate all the pending tables anyway, as we may have a
3017 	 * mix of RDs that have had LPIs enabled, and some that
3018 	 * don't. We'll free the unused ones as each CPU comes online.
3019 	 */
3020 	for_each_possible_cpu(cpu) {
3021 		struct page *pend_page;
3022 
3023 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3024 		if (!pend_page) {
3025 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3026 			return -ENOMEM;
3027 		}
3028 
3029 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3030 	}
3031 
3032 	return 0;
3033 }
3034 
read_vpend_dirty_clear(void __iomem * vlpi_base)3035 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3036 {
3037 	u32 count = 1000000;	/* 1s! */
3038 	bool clean;
3039 	u64 val;
3040 
3041 	do {
3042 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3043 		clean = !(val & GICR_VPENDBASER_Dirty);
3044 		if (!clean) {
3045 			count--;
3046 			cpu_relax();
3047 			udelay(1);
3048 		}
3049 	} while (!clean && count);
3050 
3051 	if (unlikely(!clean))
3052 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3053 
3054 	return val;
3055 }
3056 
its_clear_vpend_valid(void __iomem * vlpi_base,u64 clr,u64 set)3057 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3058 {
3059 	u64 val;
3060 
3061 	/* Make sure we wait until the RD is done with the initial scan */
3062 	val = read_vpend_dirty_clear(vlpi_base);
3063 	val &= ~GICR_VPENDBASER_Valid;
3064 	val &= ~clr;
3065 	val |= set;
3066 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3067 
3068 	val = read_vpend_dirty_clear(vlpi_base);
3069 	if (unlikely(val & GICR_VPENDBASER_Dirty))
3070 		val |= GICR_VPENDBASER_PendingLast;
3071 
3072 	return val;
3073 }
3074 
its_cpu_init_lpis(void)3075 static void its_cpu_init_lpis(void)
3076 {
3077 	void __iomem *rbase = gic_data_rdist_rd_base();
3078 	struct page *pend_page;
3079 	phys_addr_t paddr;
3080 	u64 val, tmp;
3081 
3082 	if (gic_data_rdist()->lpi_enabled)
3083 		return;
3084 
3085 	val = readl_relaxed(rbase + GICR_CTLR);
3086 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3087 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3088 		/*
3089 		 * Check that we get the same property table on all
3090 		 * RDs. If we don't, this is hopeless.
3091 		 */
3092 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3093 		paddr &= GENMASK_ULL(51, 12);
3094 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3095 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3096 
3097 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3098 		paddr &= GENMASK_ULL(51, 16);
3099 
3100 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3101 		its_free_pending_table(gic_data_rdist()->pend_page);
3102 		gic_data_rdist()->pend_page = NULL;
3103 
3104 		goto out;
3105 	}
3106 
3107 	pend_page = gic_data_rdist()->pend_page;
3108 	paddr = page_to_phys(pend_page);
3109 	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
3110 
3111 	/* set PROPBASE */
3112 	val = (gic_rdists->prop_table_pa |
3113 	       GICR_PROPBASER_InnerShareable |
3114 	       GICR_PROPBASER_RaWaWb |
3115 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3116 
3117 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3118 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3119 
3120 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3121 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3122 			/*
3123 			 * The HW reports non-shareable, we must
3124 			 * remove the cacheability attributes as
3125 			 * well.
3126 			 */
3127 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3128 				 GICR_PROPBASER_CACHEABILITY_MASK);
3129 			val |= GICR_PROPBASER_nC;
3130 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3131 		}
3132 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3133 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3134 	}
3135 
3136 	/* set PENDBASE */
3137 	val = (page_to_phys(pend_page) |
3138 	       GICR_PENDBASER_InnerShareable |
3139 	       GICR_PENDBASER_RaWaWb);
3140 
3141 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3142 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3143 
3144 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3145 		/*
3146 		 * The HW reports non-shareable, we must remove the
3147 		 * cacheability attributes as well.
3148 		 */
3149 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3150 			 GICR_PENDBASER_CACHEABILITY_MASK);
3151 		val |= GICR_PENDBASER_nC;
3152 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3153 	}
3154 
3155 	/* Enable LPIs */
3156 	val = readl_relaxed(rbase + GICR_CTLR);
3157 	val |= GICR_CTLR_ENABLE_LPIS;
3158 	writel_relaxed(val, rbase + GICR_CTLR);
3159 
3160 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3161 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3162 
3163 		/*
3164 		 * It's possible for CPU to receive VLPIs before it is
3165 		 * scheduled as a vPE, especially for the first CPU, and the
3166 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3167 		 * as out of range and dropped by GIC.
3168 		 * So we initialize IDbits to known value to avoid VLPI drop.
3169 		 */
3170 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3171 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3172 			smp_processor_id(), val);
3173 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3174 
3175 		/*
3176 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3177 		 * ancient programming gets left in and has possibility of
3178 		 * corrupting memory.
3179 		 */
3180 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3181 	}
3182 
3183 	if (allocate_vpe_l1_table()) {
3184 		/*
3185 		 * If the allocation has failed, we're in massive trouble.
3186 		 * Disable direct injection, and pray that no VM was
3187 		 * already running...
3188 		 */
3189 		gic_rdists->has_rvpeid = false;
3190 		gic_rdists->has_vlpis = false;
3191 	}
3192 
3193 	/* Make sure the GIC has seen the above */
3194 	dsb(sy);
3195 out:
3196 	gic_data_rdist()->lpi_enabled = true;
3197 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3198 		smp_processor_id(),
3199 		gic_data_rdist()->pend_page ? "allocated" : "reserved",
3200 		&paddr);
3201 }
3202 
its_cpu_init_collection(struct its_node * its)3203 static void its_cpu_init_collection(struct its_node *its)
3204 {
3205 	int cpu = smp_processor_id();
3206 	u64 target;
3207 
3208 	/* avoid cross node collections and its mapping */
3209 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3210 		struct device_node *cpu_node;
3211 
3212 		cpu_node = of_get_cpu_node(cpu, NULL);
3213 		if (its->numa_node != NUMA_NO_NODE &&
3214 			its->numa_node != of_node_to_nid(cpu_node))
3215 			return;
3216 	}
3217 
3218 	/*
3219 	 * We now have to bind each collection to its target
3220 	 * redistributor.
3221 	 */
3222 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3223 		/*
3224 		 * This ITS wants the physical address of the
3225 		 * redistributor.
3226 		 */
3227 		target = gic_data_rdist()->phys_base;
3228 	} else {
3229 		/* This ITS wants a linear CPU number. */
3230 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3231 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3232 	}
3233 
3234 	/* Perform collection mapping */
3235 	its->collections[cpu].target_address = target;
3236 	its->collections[cpu].col_id = cpu;
3237 
3238 	its_send_mapc(its, &its->collections[cpu], 1);
3239 	its_send_invall(its, &its->collections[cpu]);
3240 }
3241 
its_cpu_init_collections(void)3242 static void its_cpu_init_collections(void)
3243 {
3244 	struct its_node *its;
3245 
3246 	raw_spin_lock(&its_lock);
3247 
3248 	list_for_each_entry(its, &its_nodes, entry)
3249 		its_cpu_init_collection(its);
3250 
3251 	raw_spin_unlock(&its_lock);
3252 }
3253 
its_find_device(struct its_node * its,u32 dev_id)3254 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3255 {
3256 	struct its_device *its_dev = NULL, *tmp;
3257 	unsigned long flags;
3258 
3259 	raw_spin_lock_irqsave(&its->lock, flags);
3260 
3261 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3262 		if (tmp->device_id == dev_id) {
3263 			its_dev = tmp;
3264 			break;
3265 		}
3266 	}
3267 
3268 	raw_spin_unlock_irqrestore(&its->lock, flags);
3269 
3270 	return its_dev;
3271 }
3272 
its_get_baser(struct its_node * its,u32 type)3273 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3274 {
3275 	int i;
3276 
3277 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3278 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3279 			return &its->tables[i];
3280 	}
3281 
3282 	return NULL;
3283 }
3284 
its_alloc_table_entry(struct its_node * its,struct its_baser * baser,u32 id)3285 static bool its_alloc_table_entry(struct its_node *its,
3286 				  struct its_baser *baser, u32 id)
3287 {
3288 	struct page *page;
3289 	u32 esz, idx;
3290 	__le64 *table;
3291 
3292 	/* Don't allow device id that exceeds single, flat table limit */
3293 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3294 	if (!(baser->val & GITS_BASER_INDIRECT))
3295 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3296 
3297 	/* Compute 1st level table index & check if that exceeds table limit */
3298 	idx = id >> ilog2(baser->psz / esz);
3299 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3300 		return false;
3301 
3302 	table = baser->base;
3303 
3304 	/* Allocate memory for 2nd level table */
3305 	if (!table[idx]) {
3306 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3307 					get_order(baser->psz));
3308 		if (!page)
3309 			return false;
3310 
3311 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3312 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3313 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3314 
3315 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3316 
3317 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3318 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3319 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3320 
3321 		/* Ensure updated table contents are visible to ITS hardware */
3322 		dsb(sy);
3323 	}
3324 
3325 	return true;
3326 }
3327 
its_alloc_device_table(struct its_node * its,u32 dev_id)3328 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3329 {
3330 	struct its_baser *baser;
3331 
3332 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3333 
3334 	/* Don't allow device id that exceeds ITS hardware limit */
3335 	if (!baser)
3336 		return (ilog2(dev_id) < device_ids(its));
3337 
3338 	return its_alloc_table_entry(its, baser, dev_id);
3339 }
3340 
its_alloc_vpe_table(u32 vpe_id)3341 static bool its_alloc_vpe_table(u32 vpe_id)
3342 {
3343 	struct its_node *its;
3344 	int cpu;
3345 
3346 	/*
3347 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3348 	 * could try and only do it on ITSs corresponding to devices
3349 	 * that have interrupts targeted at this VPE, but the
3350 	 * complexity becomes crazy (and you have tons of memory
3351 	 * anyway, right?).
3352 	 */
3353 	list_for_each_entry(its, &its_nodes, entry) {
3354 		struct its_baser *baser;
3355 
3356 		if (!is_v4(its))
3357 			continue;
3358 
3359 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3360 		if (!baser)
3361 			return false;
3362 
3363 		if (!its_alloc_table_entry(its, baser, vpe_id))
3364 			return false;
3365 	}
3366 
3367 	/* Non v4.1? No need to iterate RDs and go back early. */
3368 	if (!gic_rdists->has_rvpeid)
3369 		return true;
3370 
3371 	/*
3372 	 * Make sure the L2 tables are allocated for all copies of
3373 	 * the L1 table on *all* v4.1 RDs.
3374 	 */
3375 	for_each_possible_cpu(cpu) {
3376 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3377 			return false;
3378 	}
3379 
3380 	return true;
3381 }
3382 
its_create_device(struct its_node * its,u32 dev_id,int nvecs,bool alloc_lpis)3383 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3384 					    int nvecs, bool alloc_lpis)
3385 {
3386 	struct its_device *dev;
3387 	unsigned long *lpi_map = NULL;
3388 	unsigned long flags;
3389 	u16 *col_map = NULL;
3390 	void *itt;
3391 	int lpi_base;
3392 	int nr_lpis;
3393 	int nr_ites;
3394 	int sz;
3395 
3396 	if (!its_alloc_device_table(its, dev_id))
3397 		return NULL;
3398 
3399 	if (WARN_ON(!is_power_of_2(nvecs)))
3400 		nvecs = roundup_pow_of_two(nvecs);
3401 
3402 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3403 	/*
3404 	 * Even if the device wants a single LPI, the ITT must be
3405 	 * sized as a power of two (and you need at least one bit...).
3406 	 */
3407 	nr_ites = max(2, nvecs);
3408 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3409 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3410 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3411 	if (alloc_lpis) {
3412 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3413 		if (lpi_map)
3414 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3415 					  GFP_KERNEL);
3416 	} else {
3417 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3418 		nr_lpis = 0;
3419 		lpi_base = 0;
3420 	}
3421 
3422 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3423 		kfree(dev);
3424 		kfree(itt);
3425 		bitmap_free(lpi_map);
3426 		kfree(col_map);
3427 		return NULL;
3428 	}
3429 
3430 	gic_flush_dcache_to_poc(itt, sz);
3431 
3432 	dev->its = its;
3433 	dev->itt = itt;
3434 	dev->nr_ites = nr_ites;
3435 	dev->event_map.lpi_map = lpi_map;
3436 	dev->event_map.col_map = col_map;
3437 	dev->event_map.lpi_base = lpi_base;
3438 	dev->event_map.nr_lpis = nr_lpis;
3439 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3440 	dev->device_id = dev_id;
3441 	INIT_LIST_HEAD(&dev->entry);
3442 
3443 	raw_spin_lock_irqsave(&its->lock, flags);
3444 	list_add(&dev->entry, &its->its_device_list);
3445 	raw_spin_unlock_irqrestore(&its->lock, flags);
3446 
3447 	/* Map device to its ITT */
3448 	its_send_mapd(dev, 1);
3449 
3450 	return dev;
3451 }
3452 
its_free_device(struct its_device * its_dev)3453 static void its_free_device(struct its_device *its_dev)
3454 {
3455 	unsigned long flags;
3456 
3457 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3458 	list_del(&its_dev->entry);
3459 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3460 	kfree(its_dev->event_map.col_map);
3461 	kfree(its_dev->itt);
3462 	kfree(its_dev);
3463 }
3464 
its_alloc_device_irq(struct its_device * dev,int nvecs,irq_hw_number_t * hwirq)3465 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3466 {
3467 	int idx;
3468 
3469 	/* Find a free LPI region in lpi_map and allocate them. */
3470 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3471 				      dev->event_map.nr_lpis,
3472 				      get_count_order(nvecs));
3473 	if (idx < 0)
3474 		return -ENOSPC;
3475 
3476 	*hwirq = dev->event_map.lpi_base + idx;
3477 
3478 	return 0;
3479 }
3480 
its_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)3481 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3482 			   int nvec, msi_alloc_info_t *info)
3483 {
3484 	struct its_node *its;
3485 	struct its_device *its_dev;
3486 	struct msi_domain_info *msi_info;
3487 	u32 dev_id;
3488 	int err = 0;
3489 
3490 	/*
3491 	 * We ignore "dev" entirely, and rely on the dev_id that has
3492 	 * been passed via the scratchpad. This limits this domain's
3493 	 * usefulness to upper layers that definitely know that they
3494 	 * are built on top of the ITS.
3495 	 */
3496 	dev_id = info->scratchpad[0].ul;
3497 
3498 	msi_info = msi_get_domain_info(domain);
3499 	its = msi_info->data;
3500 
3501 	if (!gic_rdists->has_direct_lpi &&
3502 	    vpe_proxy.dev &&
3503 	    vpe_proxy.dev->its == its &&
3504 	    dev_id == vpe_proxy.dev->device_id) {
3505 		/* Bad luck. Get yourself a better implementation */
3506 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3507 			  dev_id);
3508 		return -EINVAL;
3509 	}
3510 
3511 	mutex_lock(&its->dev_alloc_lock);
3512 	its_dev = its_find_device(its, dev_id);
3513 	if (its_dev) {
3514 		/*
3515 		 * We already have seen this ID, probably through
3516 		 * another alias (PCI bridge of some sort). No need to
3517 		 * create the device.
3518 		 */
3519 		its_dev->shared = true;
3520 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3521 		goto out;
3522 	}
3523 
3524 	its_dev = its_create_device(its, dev_id, nvec, true);
3525 	if (!its_dev) {
3526 		err = -ENOMEM;
3527 		goto out;
3528 	}
3529 
3530 	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3531 		its_dev->shared = true;
3532 
3533 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3534 out:
3535 	mutex_unlock(&its->dev_alloc_lock);
3536 	info->scratchpad[0].ptr = its_dev;
3537 	return err;
3538 }
3539 
3540 static struct msi_domain_ops its_msi_domain_ops = {
3541 	.msi_prepare	= its_msi_prepare,
3542 };
3543 
its_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)3544 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3545 				    unsigned int virq,
3546 				    irq_hw_number_t hwirq)
3547 {
3548 	struct irq_fwspec fwspec;
3549 
3550 	if (irq_domain_get_of_node(domain->parent)) {
3551 		fwspec.fwnode = domain->parent->fwnode;
3552 		fwspec.param_count = 3;
3553 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3554 		fwspec.param[1] = hwirq;
3555 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3556 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3557 		fwspec.fwnode = domain->parent->fwnode;
3558 		fwspec.param_count = 2;
3559 		fwspec.param[0] = hwirq;
3560 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3561 	} else {
3562 		return -EINVAL;
3563 	}
3564 
3565 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3566 }
3567 
its_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)3568 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3569 				unsigned int nr_irqs, void *args)
3570 {
3571 	msi_alloc_info_t *info = args;
3572 	struct its_device *its_dev = info->scratchpad[0].ptr;
3573 	struct its_node *its = its_dev->its;
3574 	struct irq_data *irqd;
3575 	irq_hw_number_t hwirq;
3576 	int err;
3577 	int i;
3578 
3579 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3580 	if (err)
3581 		return err;
3582 
3583 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3584 	if (err)
3585 		return err;
3586 
3587 	for (i = 0; i < nr_irqs; i++) {
3588 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3589 		if (err)
3590 			return err;
3591 
3592 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3593 					      hwirq + i, &its_irq_chip, its_dev);
3594 		irqd = irq_get_irq_data(virq + i);
3595 		irqd_set_single_target(irqd);
3596 		irqd_set_affinity_on_activate(irqd);
3597 		pr_debug("ID:%d pID:%d vID:%d\n",
3598 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3599 			 (int)(hwirq + i), virq + i);
3600 	}
3601 
3602 	return 0;
3603 }
3604 
its_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)3605 static int its_irq_domain_activate(struct irq_domain *domain,
3606 				   struct irq_data *d, bool reserve)
3607 {
3608 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3609 	u32 event = its_get_event_id(d);
3610 	int cpu;
3611 
3612 	cpu = its_select_cpu(d, cpu_online_mask);
3613 	if (cpu < 0 || cpu >= nr_cpu_ids)
3614 		return -EINVAL;
3615 
3616 	its_inc_lpi_count(d, cpu);
3617 	its_dev->event_map.col_map[event] = cpu;
3618 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3619 
3620 	/* Map the GIC IRQ and event to the device */
3621 	its_send_mapti(its_dev, d->hwirq, event);
3622 	return 0;
3623 }
3624 
its_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)3625 static void its_irq_domain_deactivate(struct irq_domain *domain,
3626 				      struct irq_data *d)
3627 {
3628 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3629 	u32 event = its_get_event_id(d);
3630 
3631 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3632 	/* Stop the delivery of interrupts */
3633 	its_send_discard(its_dev, event);
3634 }
3635 
its_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3636 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3637 				unsigned int nr_irqs)
3638 {
3639 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3640 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3641 	struct its_node *its = its_dev->its;
3642 	int i;
3643 
3644 	bitmap_release_region(its_dev->event_map.lpi_map,
3645 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3646 			      get_count_order(nr_irqs));
3647 
3648 	for (i = 0; i < nr_irqs; i++) {
3649 		struct irq_data *data = irq_domain_get_irq_data(domain,
3650 								virq + i);
3651 		/* Nuke the entry in the domain */
3652 		irq_domain_reset_irq_data(data);
3653 	}
3654 
3655 	mutex_lock(&its->dev_alloc_lock);
3656 
3657 	/*
3658 	 * If all interrupts have been freed, start mopping the
3659 	 * floor. This is conditioned on the device not being shared.
3660 	 */
3661 	if (!its_dev->shared &&
3662 	    bitmap_empty(its_dev->event_map.lpi_map,
3663 			 its_dev->event_map.nr_lpis)) {
3664 		its_lpi_free(its_dev->event_map.lpi_map,
3665 			     its_dev->event_map.lpi_base,
3666 			     its_dev->event_map.nr_lpis);
3667 
3668 		/* Unmap device/itt */
3669 		its_send_mapd(its_dev, 0);
3670 		its_free_device(its_dev);
3671 	}
3672 
3673 	mutex_unlock(&its->dev_alloc_lock);
3674 
3675 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3676 }
3677 
3678 static const struct irq_domain_ops its_domain_ops = {
3679 	.alloc			= its_irq_domain_alloc,
3680 	.free			= its_irq_domain_free,
3681 	.activate		= its_irq_domain_activate,
3682 	.deactivate		= its_irq_domain_deactivate,
3683 };
3684 
3685 /*
3686  * This is insane.
3687  *
3688  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3689  * likely), the only way to perform an invalidate is to use a fake
3690  * device to issue an INV command, implying that the LPI has first
3691  * been mapped to some event on that device. Since this is not exactly
3692  * cheap, we try to keep that mapping around as long as possible, and
3693  * only issue an UNMAP if we're short on available slots.
3694  *
3695  * Broken by design(tm).
3696  *
3697  * GICv4.1, on the other hand, mandates that we're able to invalidate
3698  * by writing to a MMIO register. It doesn't implement the whole of
3699  * DirectLPI, but that's good enough. And most of the time, we don't
3700  * even have to invalidate anything, as the redistributor can be told
3701  * whether to generate a doorbell or not (we thus leave it enabled,
3702  * always).
3703  */
its_vpe_db_proxy_unmap_locked(struct its_vpe * vpe)3704 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3705 {
3706 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3707 	if (gic_rdists->has_rvpeid)
3708 		return;
3709 
3710 	/* Already unmapped? */
3711 	if (vpe->vpe_proxy_event == -1)
3712 		return;
3713 
3714 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3715 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3716 
3717 	/*
3718 	 * We don't track empty slots at all, so let's move the
3719 	 * next_victim pointer if we can quickly reuse that slot
3720 	 * instead of nuking an existing entry. Not clear that this is
3721 	 * always a win though, and this might just generate a ripple
3722 	 * effect... Let's just hope VPEs don't migrate too often.
3723 	 */
3724 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3725 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3726 
3727 	vpe->vpe_proxy_event = -1;
3728 }
3729 
its_vpe_db_proxy_unmap(struct its_vpe * vpe)3730 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3731 {
3732 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3733 	if (gic_rdists->has_rvpeid)
3734 		return;
3735 
3736 	if (!gic_rdists->has_direct_lpi) {
3737 		unsigned long flags;
3738 
3739 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3740 		its_vpe_db_proxy_unmap_locked(vpe);
3741 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3742 	}
3743 }
3744 
its_vpe_db_proxy_map_locked(struct its_vpe * vpe)3745 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3746 {
3747 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3748 	if (gic_rdists->has_rvpeid)
3749 		return;
3750 
3751 	/* Already mapped? */
3752 	if (vpe->vpe_proxy_event != -1)
3753 		return;
3754 
3755 	/* This slot was already allocated. Kick the other VPE out. */
3756 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3757 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3758 
3759 	/* Map the new VPE instead */
3760 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3761 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3762 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3763 
3764 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3765 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3766 }
3767 
its_vpe_db_proxy_move(struct its_vpe * vpe,int from,int to)3768 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3769 {
3770 	unsigned long flags;
3771 	struct its_collection *target_col;
3772 
3773 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3774 	if (gic_rdists->has_rvpeid)
3775 		return;
3776 
3777 	if (gic_rdists->has_direct_lpi) {
3778 		void __iomem *rdbase;
3779 
3780 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3781 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3782 		wait_for_syncr(rdbase);
3783 
3784 		return;
3785 	}
3786 
3787 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3788 
3789 	its_vpe_db_proxy_map_locked(vpe);
3790 
3791 	target_col = &vpe_proxy.dev->its->collections[to];
3792 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3793 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3794 
3795 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3796 }
3797 
its_vpe_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)3798 static int its_vpe_set_affinity(struct irq_data *d,
3799 				const struct cpumask *mask_val,
3800 				bool force)
3801 {
3802 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3803 	struct cpumask common, *table_mask;
3804 	unsigned long flags;
3805 	int from, cpu;
3806 
3807 	/*
3808 	 * Changing affinity is mega expensive, so let's be as lazy as
3809 	 * we can and only do it if we really have to. Also, if mapped
3810 	 * into the proxy device, we need to move the doorbell
3811 	 * interrupt to its new location.
3812 	 *
3813 	 * Another thing is that changing the affinity of a vPE affects
3814 	 * *other interrupts* such as all the vLPIs that are routed to
3815 	 * this vPE. This means that the irq_desc lock is not enough to
3816 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3817 	 * during the update, hence the lock below which must also be
3818 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3819 	 */
3820 	from = vpe_to_cpuid_lock(vpe, &flags);
3821 	table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3822 
3823 	/*
3824 	 * If we are offered another CPU in the same GICv4.1 ITS
3825 	 * affinity, pick this one. Otherwise, any CPU will do.
3826 	 */
3827 	if (table_mask && cpumask_and(&common, mask_val, table_mask))
3828 		cpu = cpumask_test_cpu(from, &common) ? from : cpumask_first(&common);
3829 	else
3830 		cpu = cpumask_first(mask_val);
3831 
3832 	if (from == cpu)
3833 		goto out;
3834 
3835 	vpe->col_idx = cpu;
3836 
3837 	its_send_vmovp(vpe);
3838 	its_vpe_db_proxy_move(vpe, from, cpu);
3839 
3840 out:
3841 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3842 	vpe_to_cpuid_unlock(vpe, flags);
3843 
3844 	return IRQ_SET_MASK_OK_DONE;
3845 }
3846 
its_wait_vpt_parse_complete(void)3847 static void its_wait_vpt_parse_complete(void)
3848 {
3849 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3850 	u64 val;
3851 
3852 	if (!gic_rdists->has_vpend_valid_dirty)
3853 		return;
3854 
3855 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3856 						       val,
3857 						       !(val & GICR_VPENDBASER_Dirty),
3858 						       1, 500));
3859 }
3860 
its_vpe_schedule(struct its_vpe * vpe)3861 static void its_vpe_schedule(struct its_vpe *vpe)
3862 {
3863 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3864 	u64 val;
3865 
3866 	/* Schedule the VPE */
3867 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3868 		GENMASK_ULL(51, 12);
3869 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3870 	val |= GICR_VPROPBASER_RaWb;
3871 	val |= GICR_VPROPBASER_InnerShareable;
3872 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3873 
3874 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3875 		GENMASK_ULL(51, 16);
3876 	val |= GICR_VPENDBASER_RaWaWb;
3877 	val |= GICR_VPENDBASER_InnerShareable;
3878 	/*
3879 	 * There is no good way of finding out if the pending table is
3880 	 * empty as we can race against the doorbell interrupt very
3881 	 * easily. So in the end, vpe->pending_last is only an
3882 	 * indication that the vcpu has something pending, not one
3883 	 * that the pending table is empty. A good implementation
3884 	 * would be able to read its coarse map pretty quickly anyway,
3885 	 * making this a tolerable issue.
3886 	 */
3887 	val |= GICR_VPENDBASER_PendingLast;
3888 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3889 	val |= GICR_VPENDBASER_Valid;
3890 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3891 }
3892 
its_vpe_deschedule(struct its_vpe * vpe)3893 static void its_vpe_deschedule(struct its_vpe *vpe)
3894 {
3895 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3896 	u64 val;
3897 
3898 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3899 
3900 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3901 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3902 }
3903 
its_vpe_invall(struct its_vpe * vpe)3904 static void its_vpe_invall(struct its_vpe *vpe)
3905 {
3906 	struct its_node *its;
3907 
3908 	list_for_each_entry(its, &its_nodes, entry) {
3909 		if (!is_v4(its))
3910 			continue;
3911 
3912 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3913 			continue;
3914 
3915 		/*
3916 		 * Sending a VINVALL to a single ITS is enough, as all
3917 		 * we need is to reach the redistributors.
3918 		 */
3919 		its_send_vinvall(its, vpe);
3920 		return;
3921 	}
3922 }
3923 
its_vpe_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)3924 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3925 {
3926 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3927 	struct its_cmd_info *info = vcpu_info;
3928 
3929 	switch (info->cmd_type) {
3930 	case SCHEDULE_VPE:
3931 		its_vpe_schedule(vpe);
3932 		return 0;
3933 
3934 	case DESCHEDULE_VPE:
3935 		its_vpe_deschedule(vpe);
3936 		return 0;
3937 
3938 	case COMMIT_VPE:
3939 		its_wait_vpt_parse_complete();
3940 		return 0;
3941 
3942 	case INVALL_VPE:
3943 		its_vpe_invall(vpe);
3944 		return 0;
3945 
3946 	default:
3947 		return -EINVAL;
3948 	}
3949 }
3950 
its_vpe_send_cmd(struct its_vpe * vpe,void (* cmd)(struct its_device *,u32))3951 static void its_vpe_send_cmd(struct its_vpe *vpe,
3952 			     void (*cmd)(struct its_device *, u32))
3953 {
3954 	unsigned long flags;
3955 
3956 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3957 
3958 	its_vpe_db_proxy_map_locked(vpe);
3959 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3960 
3961 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3962 }
3963 
its_vpe_send_inv(struct irq_data * d)3964 static void its_vpe_send_inv(struct irq_data *d)
3965 {
3966 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3967 
3968 	if (gic_rdists->has_direct_lpi)
3969 		__direct_lpi_inv(d, d->parent_data->hwirq);
3970 	else
3971 		its_vpe_send_cmd(vpe, its_send_inv);
3972 }
3973 
its_vpe_mask_irq(struct irq_data * d)3974 static void its_vpe_mask_irq(struct irq_data *d)
3975 {
3976 	/*
3977 	 * We need to unmask the LPI, which is described by the parent
3978 	 * irq_data. Instead of calling into the parent (which won't
3979 	 * exactly do the right thing, let's simply use the
3980 	 * parent_data pointer. Yes, I'm naughty.
3981 	 */
3982 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3983 	its_vpe_send_inv(d);
3984 }
3985 
its_vpe_unmask_irq(struct irq_data * d)3986 static void its_vpe_unmask_irq(struct irq_data *d)
3987 {
3988 	/* Same hack as above... */
3989 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3990 	its_vpe_send_inv(d);
3991 }
3992 
its_vpe_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)3993 static int its_vpe_set_irqchip_state(struct irq_data *d,
3994 				     enum irqchip_irq_state which,
3995 				     bool state)
3996 {
3997 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3998 
3999 	if (which != IRQCHIP_STATE_PENDING)
4000 		return -EINVAL;
4001 
4002 	if (gic_rdists->has_direct_lpi) {
4003 		void __iomem *rdbase;
4004 
4005 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4006 		if (state) {
4007 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4008 		} else {
4009 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4010 			wait_for_syncr(rdbase);
4011 		}
4012 	} else {
4013 		if (state)
4014 			its_vpe_send_cmd(vpe, its_send_int);
4015 		else
4016 			its_vpe_send_cmd(vpe, its_send_clear);
4017 	}
4018 
4019 	return 0;
4020 }
4021 
its_vpe_retrigger(struct irq_data * d)4022 static int its_vpe_retrigger(struct irq_data *d)
4023 {
4024 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4025 }
4026 
4027 static struct irq_chip its_vpe_irq_chip = {
4028 	.name			= "GICv4-vpe",
4029 	.irq_mask		= its_vpe_mask_irq,
4030 	.irq_unmask		= its_vpe_unmask_irq,
4031 	.irq_eoi		= irq_chip_eoi_parent,
4032 	.irq_set_affinity	= its_vpe_set_affinity,
4033 	.irq_retrigger		= its_vpe_retrigger,
4034 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4035 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4036 };
4037 
find_4_1_its(void)4038 static struct its_node *find_4_1_its(void)
4039 {
4040 	static struct its_node *its = NULL;
4041 
4042 	if (!its) {
4043 		list_for_each_entry(its, &its_nodes, entry) {
4044 			if (is_v4_1(its))
4045 				return its;
4046 		}
4047 
4048 		/* Oops? */
4049 		its = NULL;
4050 	}
4051 
4052 	return its;
4053 }
4054 
its_vpe_4_1_send_inv(struct irq_data * d)4055 static void its_vpe_4_1_send_inv(struct irq_data *d)
4056 {
4057 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4058 	struct its_node *its;
4059 
4060 	/*
4061 	 * GICv4.1 wants doorbells to be invalidated using the
4062 	 * INVDB command in order to be broadcast to all RDs. Send
4063 	 * it to the first valid ITS, and let the HW do its magic.
4064 	 */
4065 	its = find_4_1_its();
4066 	if (its)
4067 		its_send_invdb(its, vpe);
4068 }
4069 
its_vpe_4_1_mask_irq(struct irq_data * d)4070 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4071 {
4072 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4073 	its_vpe_4_1_send_inv(d);
4074 }
4075 
its_vpe_4_1_unmask_irq(struct irq_data * d)4076 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4077 {
4078 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4079 	its_vpe_4_1_send_inv(d);
4080 }
4081 
its_vpe_4_1_schedule(struct its_vpe * vpe,struct its_cmd_info * info)4082 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4083 				 struct its_cmd_info *info)
4084 {
4085 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4086 	u64 val = 0;
4087 
4088 	/* Schedule the VPE */
4089 	val |= GICR_VPENDBASER_Valid;
4090 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4091 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4092 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4093 
4094 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4095 }
4096 
its_vpe_4_1_deschedule(struct its_vpe * vpe,struct its_cmd_info * info)4097 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4098 				   struct its_cmd_info *info)
4099 {
4100 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4101 	u64 val;
4102 
4103 	if (info->req_db) {
4104 		unsigned long flags;
4105 
4106 		/*
4107 		 * vPE is going to block: make the vPE non-resident with
4108 		 * PendingLast clear and DB set. The GIC guarantees that if
4109 		 * we read-back PendingLast clear, then a doorbell will be
4110 		 * delivered when an interrupt comes.
4111 		 *
4112 		 * Note the locking to deal with the concurrent update of
4113 		 * pending_last from the doorbell interrupt handler that can
4114 		 * run concurrently.
4115 		 */
4116 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4117 		val = its_clear_vpend_valid(vlpi_base,
4118 					    GICR_VPENDBASER_PendingLast,
4119 					    GICR_VPENDBASER_4_1_DB);
4120 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4121 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4122 	} else {
4123 		/*
4124 		 * We're not blocking, so just make the vPE non-resident
4125 		 * with PendingLast set, indicating that we'll be back.
4126 		 */
4127 		val = its_clear_vpend_valid(vlpi_base,
4128 					    0,
4129 					    GICR_VPENDBASER_PendingLast);
4130 		vpe->pending_last = true;
4131 	}
4132 }
4133 
its_vpe_4_1_invall(struct its_vpe * vpe)4134 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4135 {
4136 	void __iomem *rdbase;
4137 	unsigned long flags;
4138 	u64 val;
4139 	int cpu;
4140 
4141 	val  = GICR_INVALLR_V;
4142 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4143 
4144 	/* Target the redistributor this vPE is currently known on */
4145 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4146 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4147 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4148 	gic_write_lpir(val, rdbase + GICR_INVALLR);
4149 
4150 	wait_for_syncr(rdbase);
4151 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4152 	vpe_to_cpuid_unlock(vpe, flags);
4153 }
4154 
its_vpe_4_1_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4155 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4156 {
4157 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4158 	struct its_cmd_info *info = vcpu_info;
4159 
4160 	switch (info->cmd_type) {
4161 	case SCHEDULE_VPE:
4162 		its_vpe_4_1_schedule(vpe, info);
4163 		return 0;
4164 
4165 	case DESCHEDULE_VPE:
4166 		its_vpe_4_1_deschedule(vpe, info);
4167 		return 0;
4168 
4169 	case COMMIT_VPE:
4170 		its_wait_vpt_parse_complete();
4171 		return 0;
4172 
4173 	case INVALL_VPE:
4174 		its_vpe_4_1_invall(vpe);
4175 		return 0;
4176 
4177 	default:
4178 		return -EINVAL;
4179 	}
4180 }
4181 
4182 static struct irq_chip its_vpe_4_1_irq_chip = {
4183 	.name			= "GICv4.1-vpe",
4184 	.irq_mask		= its_vpe_4_1_mask_irq,
4185 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4186 	.irq_eoi		= irq_chip_eoi_parent,
4187 	.irq_set_affinity	= its_vpe_set_affinity,
4188 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4189 };
4190 
its_configure_sgi(struct irq_data * d,bool clear)4191 static void its_configure_sgi(struct irq_data *d, bool clear)
4192 {
4193 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4194 	struct its_cmd_desc desc;
4195 
4196 	desc.its_vsgi_cmd.vpe = vpe;
4197 	desc.its_vsgi_cmd.sgi = d->hwirq;
4198 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4199 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4200 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4201 	desc.its_vsgi_cmd.clear = clear;
4202 
4203 	/*
4204 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4205 	 * destination VPE is mapped there. Since we map them eagerly at
4206 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4207 	 */
4208 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4209 }
4210 
its_sgi_mask_irq(struct irq_data * d)4211 static void its_sgi_mask_irq(struct irq_data *d)
4212 {
4213 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4214 
4215 	vpe->sgi_config[d->hwirq].enabled = false;
4216 	its_configure_sgi(d, false);
4217 }
4218 
its_sgi_unmask_irq(struct irq_data * d)4219 static void its_sgi_unmask_irq(struct irq_data *d)
4220 {
4221 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4222 
4223 	vpe->sgi_config[d->hwirq].enabled = true;
4224 	its_configure_sgi(d, false);
4225 }
4226 
its_sgi_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)4227 static int its_sgi_set_affinity(struct irq_data *d,
4228 				const struct cpumask *mask_val,
4229 				bool force)
4230 {
4231 	/*
4232 	 * There is no notion of affinity for virtual SGIs, at least
4233 	 * not on the host (since they can only be targeting a vPE).
4234 	 * Tell the kernel we've done whatever it asked for.
4235 	 */
4236 	irq_data_update_effective_affinity(d, mask_val);
4237 	return IRQ_SET_MASK_OK;
4238 }
4239 
its_sgi_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4240 static int its_sgi_set_irqchip_state(struct irq_data *d,
4241 				     enum irqchip_irq_state which,
4242 				     bool state)
4243 {
4244 	if (which != IRQCHIP_STATE_PENDING)
4245 		return -EINVAL;
4246 
4247 	if (state) {
4248 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4249 		struct its_node *its = find_4_1_its();
4250 		u64 val;
4251 
4252 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4253 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4254 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4255 	} else {
4256 		its_configure_sgi(d, true);
4257 	}
4258 
4259 	return 0;
4260 }
4261 
its_sgi_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)4262 static int its_sgi_get_irqchip_state(struct irq_data *d,
4263 				     enum irqchip_irq_state which, bool *val)
4264 {
4265 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4266 	void __iomem *base;
4267 	unsigned long flags;
4268 	u32 count = 1000000;	/* 1s! */
4269 	u32 status;
4270 	int cpu;
4271 
4272 	if (which != IRQCHIP_STATE_PENDING)
4273 		return -EINVAL;
4274 
4275 	/*
4276 	 * Locking galore! We can race against two different events:
4277 	 *
4278 	 * - Concurrent vPE affinity change: we must make sure it cannot
4279 	 *   happen, or we'll talk to the wrong redistributor. This is
4280 	 *   identical to what happens with vLPIs.
4281 	 *
4282 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4283 	 *   MMIO registers, this must be made atomic one way or another.
4284 	 */
4285 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4286 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4287 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4288 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4289 	do {
4290 		status = readl_relaxed(base + GICR_VSGIPENDR);
4291 		if (!(status & GICR_VSGIPENDR_BUSY))
4292 			goto out;
4293 
4294 		count--;
4295 		if (!count) {
4296 			pr_err_ratelimited("Unable to get SGI status\n");
4297 			goto out;
4298 		}
4299 		cpu_relax();
4300 		udelay(1);
4301 	} while (count);
4302 
4303 out:
4304 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4305 	vpe_to_cpuid_unlock(vpe, flags);
4306 
4307 	if (!count)
4308 		return -ENXIO;
4309 
4310 	*val = !!(status & (1 << d->hwirq));
4311 
4312 	return 0;
4313 }
4314 
its_sgi_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4315 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4316 {
4317 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4318 	struct its_cmd_info *info = vcpu_info;
4319 
4320 	switch (info->cmd_type) {
4321 	case PROP_UPDATE_VSGI:
4322 		vpe->sgi_config[d->hwirq].priority = info->priority;
4323 		vpe->sgi_config[d->hwirq].group = info->group;
4324 		its_configure_sgi(d, false);
4325 		return 0;
4326 
4327 	default:
4328 		return -EINVAL;
4329 	}
4330 }
4331 
4332 static struct irq_chip its_sgi_irq_chip = {
4333 	.name			= "GICv4.1-sgi",
4334 	.irq_mask		= its_sgi_mask_irq,
4335 	.irq_unmask		= its_sgi_unmask_irq,
4336 	.irq_set_affinity	= its_sgi_set_affinity,
4337 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4338 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4339 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4340 };
4341 
its_sgi_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4342 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4343 				    unsigned int virq, unsigned int nr_irqs,
4344 				    void *args)
4345 {
4346 	struct its_vpe *vpe = args;
4347 	int i;
4348 
4349 	/* Yes, we do want 16 SGIs */
4350 	WARN_ON(nr_irqs != 16);
4351 
4352 	for (i = 0; i < 16; i++) {
4353 		vpe->sgi_config[i].priority = 0;
4354 		vpe->sgi_config[i].enabled = false;
4355 		vpe->sgi_config[i].group = false;
4356 
4357 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4358 					      &its_sgi_irq_chip, vpe);
4359 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4360 	}
4361 
4362 	return 0;
4363 }
4364 
its_sgi_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4365 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4366 				    unsigned int virq,
4367 				    unsigned int nr_irqs)
4368 {
4369 	/* Nothing to do */
4370 }
4371 
its_sgi_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4372 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4373 				       struct irq_data *d, bool reserve)
4374 {
4375 	/* Write out the initial SGI configuration */
4376 	its_configure_sgi(d, false);
4377 	return 0;
4378 }
4379 
its_sgi_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4380 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4381 					  struct irq_data *d)
4382 {
4383 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4384 
4385 	/*
4386 	 * The VSGI command is awkward:
4387 	 *
4388 	 * - To change the configuration, CLEAR must be set to false,
4389 	 *   leaving the pending bit unchanged.
4390 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4391 	 *   the configuration unchanged.
4392 	 *
4393 	 * You just can't do both at once, hence the two commands below.
4394 	 */
4395 	vpe->sgi_config[d->hwirq].enabled = false;
4396 	its_configure_sgi(d, false);
4397 	its_configure_sgi(d, true);
4398 }
4399 
4400 static const struct irq_domain_ops its_sgi_domain_ops = {
4401 	.alloc		= its_sgi_irq_domain_alloc,
4402 	.free		= its_sgi_irq_domain_free,
4403 	.activate	= its_sgi_irq_domain_activate,
4404 	.deactivate	= its_sgi_irq_domain_deactivate,
4405 };
4406 
its_vpe_id_alloc(void)4407 static int its_vpe_id_alloc(void)
4408 {
4409 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4410 }
4411 
its_vpe_id_free(u16 id)4412 static void its_vpe_id_free(u16 id)
4413 {
4414 	ida_simple_remove(&its_vpeid_ida, id);
4415 }
4416 
its_vpe_init(struct its_vpe * vpe)4417 static int its_vpe_init(struct its_vpe *vpe)
4418 {
4419 	struct page *vpt_page;
4420 	int vpe_id;
4421 
4422 	/* Allocate vpe_id */
4423 	vpe_id = its_vpe_id_alloc();
4424 	if (vpe_id < 0)
4425 		return vpe_id;
4426 
4427 	/* Allocate VPT */
4428 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4429 	if (!vpt_page) {
4430 		its_vpe_id_free(vpe_id);
4431 		return -ENOMEM;
4432 	}
4433 
4434 	if (!its_alloc_vpe_table(vpe_id)) {
4435 		its_vpe_id_free(vpe_id);
4436 		its_free_pending_table(vpt_page);
4437 		return -ENOMEM;
4438 	}
4439 
4440 	raw_spin_lock_init(&vpe->vpe_lock);
4441 	vpe->vpe_id = vpe_id;
4442 	vpe->vpt_page = vpt_page;
4443 	if (gic_rdists->has_rvpeid)
4444 		atomic_set(&vpe->vmapp_count, 0);
4445 	else
4446 		vpe->vpe_proxy_event = -1;
4447 
4448 	return 0;
4449 }
4450 
its_vpe_teardown(struct its_vpe * vpe)4451 static void its_vpe_teardown(struct its_vpe *vpe)
4452 {
4453 	its_vpe_db_proxy_unmap(vpe);
4454 	its_vpe_id_free(vpe->vpe_id);
4455 	its_free_pending_table(vpe->vpt_page);
4456 }
4457 
its_vpe_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4458 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4459 				    unsigned int virq,
4460 				    unsigned int nr_irqs)
4461 {
4462 	struct its_vm *vm = domain->host_data;
4463 	int i;
4464 
4465 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4466 
4467 	for (i = 0; i < nr_irqs; i++) {
4468 		struct irq_data *data = irq_domain_get_irq_data(domain,
4469 								virq + i);
4470 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4471 
4472 		BUG_ON(vm != vpe->its_vm);
4473 
4474 		clear_bit(data->hwirq, vm->db_bitmap);
4475 		its_vpe_teardown(vpe);
4476 		irq_domain_reset_irq_data(data);
4477 	}
4478 
4479 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4480 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4481 		its_free_prop_table(vm->vprop_page);
4482 	}
4483 }
4484 
its_vpe_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4485 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4486 				    unsigned int nr_irqs, void *args)
4487 {
4488 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4489 	struct its_vm *vm = args;
4490 	unsigned long *bitmap;
4491 	struct page *vprop_page;
4492 	int base, nr_ids, i, err = 0;
4493 
4494 	BUG_ON(!vm);
4495 
4496 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4497 	if (!bitmap)
4498 		return -ENOMEM;
4499 
4500 	if (nr_ids < nr_irqs) {
4501 		its_lpi_free(bitmap, base, nr_ids);
4502 		return -ENOMEM;
4503 	}
4504 
4505 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4506 	if (!vprop_page) {
4507 		its_lpi_free(bitmap, base, nr_ids);
4508 		return -ENOMEM;
4509 	}
4510 
4511 	vm->db_bitmap = bitmap;
4512 	vm->db_lpi_base = base;
4513 	vm->nr_db_lpis = nr_ids;
4514 	vm->vprop_page = vprop_page;
4515 
4516 	if (gic_rdists->has_rvpeid)
4517 		irqchip = &its_vpe_4_1_irq_chip;
4518 
4519 	for (i = 0; i < nr_irqs; i++) {
4520 		vm->vpes[i]->vpe_db_lpi = base + i;
4521 		err = its_vpe_init(vm->vpes[i]);
4522 		if (err)
4523 			break;
4524 		err = its_irq_gic_domain_alloc(domain, virq + i,
4525 					       vm->vpes[i]->vpe_db_lpi);
4526 		if (err)
4527 			break;
4528 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4529 					      irqchip, vm->vpes[i]);
4530 		set_bit(i, bitmap);
4531 	}
4532 
4533 	if (err) {
4534 		if (i > 0)
4535 			its_vpe_irq_domain_free(domain, virq, i);
4536 
4537 		its_lpi_free(bitmap, base, nr_ids);
4538 		its_free_prop_table(vprop_page);
4539 	}
4540 
4541 	return err;
4542 }
4543 
its_vpe_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4544 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4545 				       struct irq_data *d, bool reserve)
4546 {
4547 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4548 	struct its_node *its;
4549 
4550 	/*
4551 	 * If we use the list map, we issue VMAPP on demand... Unless
4552 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4553 	 * so that VSGIs can work.
4554 	 */
4555 	if (!gic_requires_eager_mapping())
4556 		return 0;
4557 
4558 	/* Map the VPE to the first possible CPU */
4559 	vpe->col_idx = cpumask_first(cpu_online_mask);
4560 
4561 	list_for_each_entry(its, &its_nodes, entry) {
4562 		if (!is_v4(its))
4563 			continue;
4564 
4565 		its_send_vmapp(its, vpe, true);
4566 		its_send_vinvall(its, vpe);
4567 	}
4568 
4569 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4570 
4571 	return 0;
4572 }
4573 
its_vpe_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4574 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4575 					  struct irq_data *d)
4576 {
4577 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4578 	struct its_node *its;
4579 
4580 	/*
4581 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4582 	 * VLPIs are associated with the VM.
4583 	 */
4584 	if (!gic_requires_eager_mapping())
4585 		return;
4586 
4587 	list_for_each_entry(its, &its_nodes, entry) {
4588 		if (!is_v4(its))
4589 			continue;
4590 
4591 		its_send_vmapp(its, vpe, false);
4592 	}
4593 
4594 	/*
4595 	 * There may be a direct read to the VPT after unmapping the
4596 	 * vPE, to guarantee the validity of this, we make the VPT
4597 	 * memory coherent with the CPU caches here.
4598 	 */
4599 	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4600 		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4601 					LPI_PENDBASE_SZ);
4602 }
4603 
4604 static const struct irq_domain_ops its_vpe_domain_ops = {
4605 	.alloc			= its_vpe_irq_domain_alloc,
4606 	.free			= its_vpe_irq_domain_free,
4607 	.activate		= its_vpe_irq_domain_activate,
4608 	.deactivate		= its_vpe_irq_domain_deactivate,
4609 };
4610 
its_force_quiescent(void __iomem * base)4611 static int its_force_quiescent(void __iomem *base)
4612 {
4613 	u32 count = 1000000;	/* 1s */
4614 	u32 val;
4615 
4616 	val = readl_relaxed(base + GITS_CTLR);
4617 	/*
4618 	 * GIC architecture specification requires the ITS to be both
4619 	 * disabled and quiescent for writes to GITS_BASER<n> or
4620 	 * GITS_CBASER to not have UNPREDICTABLE results.
4621 	 */
4622 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4623 		return 0;
4624 
4625 	/* Disable the generation of all interrupts to this ITS */
4626 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4627 	writel_relaxed(val, base + GITS_CTLR);
4628 
4629 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4630 	while (1) {
4631 		val = readl_relaxed(base + GITS_CTLR);
4632 		if (val & GITS_CTLR_QUIESCENT)
4633 			return 0;
4634 
4635 		count--;
4636 		if (!count)
4637 			return -EBUSY;
4638 
4639 		cpu_relax();
4640 		udelay(1);
4641 	}
4642 }
4643 
its_enable_quirk_cavium_22375(void * data)4644 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4645 {
4646 	struct its_node *its = data;
4647 
4648 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4649 	its->typer &= ~GITS_TYPER_DEVBITS;
4650 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4651 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4652 
4653 	return true;
4654 }
4655 
its_enable_quirk_cavium_23144(void * data)4656 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4657 {
4658 	struct its_node *its = data;
4659 
4660 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4661 
4662 	return true;
4663 }
4664 
its_enable_quirk_qdf2400_e0065(void * data)4665 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4666 {
4667 	struct its_node *its = data;
4668 
4669 	/* On QDF2400, the size of the ITE is 16Bytes */
4670 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4671 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4672 
4673 	return true;
4674 }
4675 
its_irq_get_msi_base_pre_its(struct its_device * its_dev)4676 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4677 {
4678 	struct its_node *its = its_dev->its;
4679 
4680 	/*
4681 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4682 	 * which maps 32-bit writes targeted at a separate window of
4683 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4684 	 * with device ID taken from bits [device_id_bits + 1:2] of
4685 	 * the window offset.
4686 	 */
4687 	return its->pre_its_base + (its_dev->device_id << 2);
4688 }
4689 
its_enable_quirk_socionext_synquacer(void * data)4690 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4691 {
4692 	struct its_node *its = data;
4693 	u32 pre_its_window[2];
4694 	u32 ids;
4695 
4696 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4697 					   "socionext,synquacer-pre-its",
4698 					   pre_its_window,
4699 					   ARRAY_SIZE(pre_its_window))) {
4700 
4701 		its->pre_its_base = pre_its_window[0];
4702 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4703 
4704 		ids = ilog2(pre_its_window[1]) - 2;
4705 		if (device_ids(its) > ids) {
4706 			its->typer &= ~GITS_TYPER_DEVBITS;
4707 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4708 		}
4709 
4710 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4711 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4712 		return true;
4713 	}
4714 	return false;
4715 }
4716 
its_enable_quirk_hip07_161600802(void * data)4717 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4718 {
4719 	struct its_node *its = data;
4720 
4721 	/*
4722 	 * Hip07 insists on using the wrong address for the VLPI
4723 	 * page. Trick it into doing the right thing...
4724 	 */
4725 	its->vlpi_redist_offset = SZ_128K;
4726 	return true;
4727 }
4728 
4729 static const struct gic_quirk its_quirks[] = {
4730 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4731 	{
4732 		.desc	= "ITS: Cavium errata 22375, 24313",
4733 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4734 		.mask	= 0xffff0fff,
4735 		.init	= its_enable_quirk_cavium_22375,
4736 	},
4737 #endif
4738 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4739 	{
4740 		.desc	= "ITS: Cavium erratum 23144",
4741 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4742 		.mask	= 0xffff0fff,
4743 		.init	= its_enable_quirk_cavium_23144,
4744 	},
4745 #endif
4746 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4747 	{
4748 		.desc	= "ITS: QDF2400 erratum 0065",
4749 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4750 		.mask	= 0xffffffff,
4751 		.init	= its_enable_quirk_qdf2400_e0065,
4752 	},
4753 #endif
4754 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4755 	{
4756 		/*
4757 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4758 		 * implementation, but with a 'pre-ITS' added that requires
4759 		 * special handling in software.
4760 		 */
4761 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4762 		.iidr	= 0x0001143b,
4763 		.mask	= 0xffffffff,
4764 		.init	= its_enable_quirk_socionext_synquacer,
4765 	},
4766 #endif
4767 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4768 	{
4769 		.desc	= "ITS: Hip07 erratum 161600802",
4770 		.iidr	= 0x00000004,
4771 		.mask	= 0xffffffff,
4772 		.init	= its_enable_quirk_hip07_161600802,
4773 	},
4774 #endif
4775 	{
4776 	}
4777 };
4778 
its_enable_quirks(struct its_node * its)4779 static void its_enable_quirks(struct its_node *its)
4780 {
4781 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4782 
4783 	gic_enable_quirks(iidr, its_quirks, its);
4784 }
4785 
its_save_disable(void)4786 static int its_save_disable(void)
4787 {
4788 	struct its_node *its;
4789 	int err = 0;
4790 
4791 	raw_spin_lock(&its_lock);
4792 	list_for_each_entry(its, &its_nodes, entry) {
4793 		void __iomem *base;
4794 
4795 		base = its->base;
4796 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4797 		err = its_force_quiescent(base);
4798 		if (err) {
4799 			pr_err("ITS@%pa: failed to quiesce: %d\n",
4800 			       &its->phys_base, err);
4801 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4802 			goto err;
4803 		}
4804 
4805 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4806 	}
4807 
4808 err:
4809 	if (err) {
4810 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4811 			void __iomem *base;
4812 
4813 			base = its->base;
4814 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4815 		}
4816 	}
4817 	raw_spin_unlock(&its_lock);
4818 
4819 	return err;
4820 }
4821 
its_restore_enable(void)4822 static void its_restore_enable(void)
4823 {
4824 	struct its_node *its;
4825 	int ret;
4826 
4827 	raw_spin_lock(&its_lock);
4828 	list_for_each_entry(its, &its_nodes, entry) {
4829 		void __iomem *base;
4830 		int i;
4831 
4832 		base = its->base;
4833 
4834 		/*
4835 		 * Make sure that the ITS is disabled. If it fails to quiesce,
4836 		 * don't restore it since writing to CBASER or BASER<n>
4837 		 * registers is undefined according to the GIC v3 ITS
4838 		 * Specification.
4839 		 *
4840 		 * Firmware resuming with the ITS enabled is terminally broken.
4841 		 */
4842 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4843 		ret = its_force_quiescent(base);
4844 		if (ret) {
4845 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4846 			       &its->phys_base, ret);
4847 			continue;
4848 		}
4849 
4850 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4851 
4852 		/*
4853 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4854 		 * cmd_write line up with it.
4855 		 */
4856 		its->cmd_write = its->cmd_base;
4857 		gits_write_cwriter(0, base + GITS_CWRITER);
4858 
4859 		/* Restore GITS_BASER from the value cache. */
4860 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4861 			struct its_baser *baser = &its->tables[i];
4862 
4863 			if (!(baser->val & GITS_BASER_VALID))
4864 				continue;
4865 
4866 			its_write_baser(its, baser, baser->val);
4867 		}
4868 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4869 
4870 		/*
4871 		 * Reinit the collection if it's stored in the ITS. This is
4872 		 * indicated by the col_id being less than the HCC field.
4873 		 * CID < HCC as specified in the GIC v3 Documentation.
4874 		 */
4875 		if (its->collections[smp_processor_id()].col_id <
4876 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4877 			its_cpu_init_collection(its);
4878 	}
4879 	raw_spin_unlock(&its_lock);
4880 }
4881 
4882 static struct syscore_ops its_syscore_ops = {
4883 	.suspend = its_save_disable,
4884 	.resume = its_restore_enable,
4885 };
4886 
its_init_domain(struct fwnode_handle * handle,struct its_node * its)4887 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4888 {
4889 	struct irq_domain *inner_domain;
4890 	struct msi_domain_info *info;
4891 
4892 	info = kzalloc(sizeof(*info), GFP_KERNEL);
4893 	if (!info)
4894 		return -ENOMEM;
4895 
4896 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4897 	if (!inner_domain) {
4898 		kfree(info);
4899 		return -ENOMEM;
4900 	}
4901 
4902 	inner_domain->parent = its_parent;
4903 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4904 	inner_domain->flags |= its->msi_domain_flags;
4905 	info->ops = &its_msi_domain_ops;
4906 	info->data = its;
4907 	inner_domain->host_data = info;
4908 
4909 	return 0;
4910 }
4911 
its_init_vpe_domain(void)4912 static int its_init_vpe_domain(void)
4913 {
4914 	struct its_node *its;
4915 	u32 devid;
4916 	int entries;
4917 
4918 	if (gic_rdists->has_direct_lpi) {
4919 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4920 		return 0;
4921 	}
4922 
4923 	/* Any ITS will do, even if not v4 */
4924 	its = list_first_entry(&its_nodes, struct its_node, entry);
4925 
4926 	entries = roundup_pow_of_two(nr_cpu_ids);
4927 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4928 				 GFP_KERNEL);
4929 	if (!vpe_proxy.vpes)
4930 		return -ENOMEM;
4931 
4932 	/* Use the last possible DevID */
4933 	devid = GENMASK(device_ids(its) - 1, 0);
4934 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
4935 	if (!vpe_proxy.dev) {
4936 		kfree(vpe_proxy.vpes);
4937 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
4938 		return -ENOMEM;
4939 	}
4940 
4941 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
4942 
4943 	raw_spin_lock_init(&vpe_proxy.lock);
4944 	vpe_proxy.next_victim = 0;
4945 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4946 		devid, vpe_proxy.dev->nr_ites);
4947 
4948 	return 0;
4949 }
4950 
its_compute_its_list_map(struct resource * res,void __iomem * its_base)4951 static int __init its_compute_its_list_map(struct resource *res,
4952 					   void __iomem *its_base)
4953 {
4954 	int its_number;
4955 	u32 ctlr;
4956 
4957 	/*
4958 	 * This is assumed to be done early enough that we're
4959 	 * guaranteed to be single-threaded, hence no
4960 	 * locking. Should this change, we should address
4961 	 * this.
4962 	 */
4963 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4964 	if (its_number >= GICv4_ITS_LIST_MAX) {
4965 		pr_err("ITS@%pa: No ITSList entry available!\n",
4966 		       &res->start);
4967 		return -EINVAL;
4968 	}
4969 
4970 	ctlr = readl_relaxed(its_base + GITS_CTLR);
4971 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
4972 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4973 	writel_relaxed(ctlr, its_base + GITS_CTLR);
4974 	ctlr = readl_relaxed(its_base + GITS_CTLR);
4975 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4976 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4977 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4978 	}
4979 
4980 	if (test_and_set_bit(its_number, &its_list_map)) {
4981 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4982 		       &res->start, its_number);
4983 		return -EINVAL;
4984 	}
4985 
4986 	return its_number;
4987 }
4988 
its_probe_one(struct resource * res,struct fwnode_handle * handle,int numa_node)4989 static int __init its_probe_one(struct resource *res,
4990 				struct fwnode_handle *handle, int numa_node)
4991 {
4992 	struct its_node *its;
4993 	void __iomem *its_base;
4994 	u32 val, ctlr;
4995 	u64 baser, tmp, typer;
4996 	struct page *page;
4997 	int err;
4998 
4999 	its_base = ioremap(res->start, SZ_64K);
5000 	if (!its_base) {
5001 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
5002 		return -ENOMEM;
5003 	}
5004 
5005 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
5006 	if (val != 0x30 && val != 0x40) {
5007 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
5008 		err = -ENODEV;
5009 		goto out_unmap;
5010 	}
5011 
5012 	err = its_force_quiescent(its_base);
5013 	if (err) {
5014 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
5015 		goto out_unmap;
5016 	}
5017 
5018 	pr_info("ITS %pR\n", res);
5019 
5020 	its = kzalloc(sizeof(*its), GFP_KERNEL);
5021 	if (!its) {
5022 		err = -ENOMEM;
5023 		goto out_unmap;
5024 	}
5025 
5026 	raw_spin_lock_init(&its->lock);
5027 	mutex_init(&its->dev_alloc_lock);
5028 	INIT_LIST_HEAD(&its->entry);
5029 	INIT_LIST_HEAD(&its->its_device_list);
5030 	typer = gic_read_typer(its_base + GITS_TYPER);
5031 	its->typer = typer;
5032 	its->base = its_base;
5033 	its->phys_base = res->start;
5034 	if (is_v4(its)) {
5035 		if (!(typer & GITS_TYPER_VMOVP)) {
5036 			err = its_compute_its_list_map(res, its_base);
5037 			if (err < 0)
5038 				goto out_free_its;
5039 
5040 			its->list_nr = err;
5041 
5042 			pr_info("ITS@%pa: Using ITS number %d\n",
5043 				&res->start, err);
5044 		} else {
5045 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5046 		}
5047 
5048 		if (is_v4_1(its)) {
5049 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5050 
5051 			its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5052 			if (!its->sgir_base) {
5053 				err = -ENOMEM;
5054 				goto out_free_its;
5055 			}
5056 
5057 			its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5058 
5059 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5060 				&res->start, its->mpidr, svpet);
5061 		}
5062 	}
5063 
5064 	its->numa_node = numa_node;
5065 
5066 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5067 				get_order(ITS_CMD_QUEUE_SZ));
5068 	if (!page) {
5069 		err = -ENOMEM;
5070 		goto out_unmap_sgir;
5071 	}
5072 	its->cmd_base = (void *)page_address(page);
5073 	its->cmd_write = its->cmd_base;
5074 	its->fwnode_handle = handle;
5075 	its->get_msi_base = its_irq_get_msi_base;
5076 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5077 
5078 	its_enable_quirks(its);
5079 
5080 	err = its_alloc_tables(its);
5081 	if (err)
5082 		goto out_free_cmd;
5083 
5084 	err = its_alloc_collections(its);
5085 	if (err)
5086 		goto out_free_tables;
5087 
5088 	baser = (virt_to_phys(its->cmd_base)	|
5089 		 GITS_CBASER_RaWaWb		|
5090 		 GITS_CBASER_InnerShareable	|
5091 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5092 		 GITS_CBASER_VALID);
5093 
5094 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5095 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5096 
5097 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5098 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5099 			/*
5100 			 * The HW reports non-shareable, we must
5101 			 * remove the cacheability attributes as
5102 			 * well.
5103 			 */
5104 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5105 				   GITS_CBASER_CACHEABILITY_MASK);
5106 			baser |= GITS_CBASER_nC;
5107 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5108 		}
5109 		pr_info("ITS: using cache flushing for cmd queue\n");
5110 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5111 	}
5112 
5113 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5114 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5115 	ctlr |= GITS_CTLR_ENABLE;
5116 	if (is_v4(its))
5117 		ctlr |= GITS_CTLR_ImDe;
5118 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5119 
5120 	err = its_init_domain(handle, its);
5121 	if (err)
5122 		goto out_free_tables;
5123 
5124 	raw_spin_lock(&its_lock);
5125 	list_add(&its->entry, &its_nodes);
5126 	raw_spin_unlock(&its_lock);
5127 
5128 	return 0;
5129 
5130 out_free_tables:
5131 	its_free_tables(its);
5132 out_free_cmd:
5133 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5134 out_unmap_sgir:
5135 	if (its->sgir_base)
5136 		iounmap(its->sgir_base);
5137 out_free_its:
5138 	kfree(its);
5139 out_unmap:
5140 	iounmap(its_base);
5141 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5142 	return err;
5143 }
5144 
gic_rdists_supports_plpis(void)5145 static bool gic_rdists_supports_plpis(void)
5146 {
5147 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5148 }
5149 
redist_disable_lpis(void)5150 static int redist_disable_lpis(void)
5151 {
5152 	void __iomem *rbase = gic_data_rdist_rd_base();
5153 	u64 timeout = USEC_PER_SEC;
5154 	u64 val;
5155 
5156 	if (!gic_rdists_supports_plpis()) {
5157 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5158 		return -ENXIO;
5159 	}
5160 
5161 	val = readl_relaxed(rbase + GICR_CTLR);
5162 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5163 		return 0;
5164 
5165 	/*
5166 	 * If coming via a CPU hotplug event, we don't need to disable
5167 	 * LPIs before trying to re-enable them. They are already
5168 	 * configured and all is well in the world.
5169 	 *
5170 	 * If running with preallocated tables, there is nothing to do.
5171 	 */
5172 	if (gic_data_rdist()->lpi_enabled ||
5173 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5174 		return 0;
5175 
5176 	/*
5177 	 * From that point on, we only try to do some damage control.
5178 	 */
5179 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5180 		smp_processor_id());
5181 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5182 
5183 	/* Disable LPIs */
5184 	val &= ~GICR_CTLR_ENABLE_LPIS;
5185 	writel_relaxed(val, rbase + GICR_CTLR);
5186 
5187 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5188 	dsb(sy);
5189 
5190 	/*
5191 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5192 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5193 	 * Error out if we time out waiting for RWP to clear.
5194 	 */
5195 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5196 		if (!timeout) {
5197 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5198 			       smp_processor_id());
5199 			return -ETIMEDOUT;
5200 		}
5201 		udelay(1);
5202 		timeout--;
5203 	}
5204 
5205 	/*
5206 	 * After it has been written to 1, it is IMPLEMENTATION
5207 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5208 	 * cleared to 0. Error out if clearing the bit failed.
5209 	 */
5210 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5211 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5212 		return -EBUSY;
5213 	}
5214 
5215 	return 0;
5216 }
5217 
its_cpu_init(void)5218 int its_cpu_init(void)
5219 {
5220 	if (!list_empty(&its_nodes)) {
5221 		int ret;
5222 
5223 		ret = redist_disable_lpis();
5224 		if (ret)
5225 			return ret;
5226 
5227 		its_cpu_init_lpis();
5228 		its_cpu_init_collections();
5229 	}
5230 
5231 	return 0;
5232 }
5233 
5234 static const struct of_device_id its_device_id[] = {
5235 	{	.compatible	= "arm,gic-v3-its",	},
5236 	{},
5237 };
5238 
its_of_probe(struct device_node * node)5239 static int __init its_of_probe(struct device_node *node)
5240 {
5241 	struct device_node *np;
5242 	struct resource res;
5243 
5244 	for (np = of_find_matching_node(node, its_device_id); np;
5245 	     np = of_find_matching_node(np, its_device_id)) {
5246 		if (!of_device_is_available(np))
5247 			continue;
5248 		if (!of_property_read_bool(np, "msi-controller")) {
5249 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5250 				np);
5251 			continue;
5252 		}
5253 
5254 		if (of_address_to_resource(np, 0, &res)) {
5255 			pr_warn("%pOF: no regs?\n", np);
5256 			continue;
5257 		}
5258 
5259 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5260 	}
5261 	return 0;
5262 }
5263 
5264 #ifdef CONFIG_ACPI
5265 
5266 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5267 
5268 #ifdef CONFIG_ACPI_NUMA
5269 struct its_srat_map {
5270 	/* numa node id */
5271 	u32	numa_node;
5272 	/* GIC ITS ID */
5273 	u32	its_id;
5274 };
5275 
5276 static struct its_srat_map *its_srat_maps __initdata;
5277 static int its_in_srat __initdata;
5278 
acpi_get_its_numa_node(u32 its_id)5279 static int __init acpi_get_its_numa_node(u32 its_id)
5280 {
5281 	int i;
5282 
5283 	for (i = 0; i < its_in_srat; i++) {
5284 		if (its_id == its_srat_maps[i].its_id)
5285 			return its_srat_maps[i].numa_node;
5286 	}
5287 	return NUMA_NO_NODE;
5288 }
5289 
gic_acpi_match_srat_its(union acpi_subtable_headers * header,const unsigned long end)5290 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5291 					  const unsigned long end)
5292 {
5293 	return 0;
5294 }
5295 
gic_acpi_parse_srat_its(union acpi_subtable_headers * header,const unsigned long end)5296 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5297 			 const unsigned long end)
5298 {
5299 	int node;
5300 	struct acpi_srat_gic_its_affinity *its_affinity;
5301 
5302 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5303 	if (!its_affinity)
5304 		return -EINVAL;
5305 
5306 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5307 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5308 			its_affinity->header.length);
5309 		return -EINVAL;
5310 	}
5311 
5312 	/*
5313 	 * Note that in theory a new proximity node could be created by this
5314 	 * entry as it is an SRAT resource allocation structure.
5315 	 * We do not currently support doing so.
5316 	 */
5317 	node = pxm_to_node(its_affinity->proximity_domain);
5318 
5319 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5320 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5321 		return 0;
5322 	}
5323 
5324 	its_srat_maps[its_in_srat].numa_node = node;
5325 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5326 	its_in_srat++;
5327 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5328 		its_affinity->proximity_domain, its_affinity->its_id, node);
5329 
5330 	return 0;
5331 }
5332 
acpi_table_parse_srat_its(void)5333 static void __init acpi_table_parse_srat_its(void)
5334 {
5335 	int count;
5336 
5337 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5338 			sizeof(struct acpi_table_srat),
5339 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5340 			gic_acpi_match_srat_its, 0);
5341 	if (count <= 0)
5342 		return;
5343 
5344 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5345 				      GFP_KERNEL);
5346 	if (!its_srat_maps)
5347 		return;
5348 
5349 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5350 			sizeof(struct acpi_table_srat),
5351 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5352 			gic_acpi_parse_srat_its, 0);
5353 }
5354 
5355 /* free the its_srat_maps after ITS probing */
acpi_its_srat_maps_free(void)5356 static void __init acpi_its_srat_maps_free(void)
5357 {
5358 	kfree(its_srat_maps);
5359 }
5360 #else
acpi_table_parse_srat_its(void)5361 static void __init acpi_table_parse_srat_its(void)	{ }
acpi_get_its_numa_node(u32 its_id)5362 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
acpi_its_srat_maps_free(void)5363 static void __init acpi_its_srat_maps_free(void) { }
5364 #endif
5365 
gic_acpi_parse_madt_its(union acpi_subtable_headers * header,const unsigned long end)5366 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5367 					  const unsigned long end)
5368 {
5369 	struct acpi_madt_generic_translator *its_entry;
5370 	struct fwnode_handle *dom_handle;
5371 	struct resource res;
5372 	int err;
5373 
5374 	its_entry = (struct acpi_madt_generic_translator *)header;
5375 	memset(&res, 0, sizeof(res));
5376 	res.start = its_entry->base_address;
5377 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5378 	res.flags = IORESOURCE_MEM;
5379 
5380 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5381 	if (!dom_handle) {
5382 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5383 		       &res.start);
5384 		return -ENOMEM;
5385 	}
5386 
5387 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5388 					 dom_handle);
5389 	if (err) {
5390 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5391 		       &res.start, its_entry->translation_id);
5392 		goto dom_err;
5393 	}
5394 
5395 	err = its_probe_one(&res, dom_handle,
5396 			acpi_get_its_numa_node(its_entry->translation_id));
5397 	if (!err)
5398 		return 0;
5399 
5400 	iort_deregister_domain_token(its_entry->translation_id);
5401 dom_err:
5402 	irq_domain_free_fwnode(dom_handle);
5403 	return err;
5404 }
5405 
its_acpi_probe(void)5406 static void __init its_acpi_probe(void)
5407 {
5408 	acpi_table_parse_srat_its();
5409 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5410 			      gic_acpi_parse_madt_its, 0);
5411 	acpi_its_srat_maps_free();
5412 }
5413 #else
its_acpi_probe(void)5414 static void __init its_acpi_probe(void) { }
5415 #endif
5416 
its_init(struct fwnode_handle * handle,struct rdists * rdists,struct irq_domain * parent_domain)5417 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5418 		    struct irq_domain *parent_domain)
5419 {
5420 	struct device_node *of_node;
5421 	struct its_node *its;
5422 	bool has_v4 = false;
5423 	bool has_v4_1 = false;
5424 	int err;
5425 
5426 	gic_rdists = rdists;
5427 
5428 	its_parent = parent_domain;
5429 	of_node = to_of_node(handle);
5430 	if (of_node)
5431 		its_of_probe(of_node);
5432 	else
5433 		its_acpi_probe();
5434 
5435 	if (list_empty(&its_nodes)) {
5436 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5437 		return -ENXIO;
5438 	}
5439 
5440 	err = allocate_lpi_tables();
5441 	if (err)
5442 		return err;
5443 
5444 	list_for_each_entry(its, &its_nodes, entry) {
5445 		has_v4 |= is_v4(its);
5446 		has_v4_1 |= is_v4_1(its);
5447 	}
5448 
5449 	/* Don't bother with inconsistent systems */
5450 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5451 		rdists->has_rvpeid = false;
5452 
5453 	if (has_v4 & rdists->has_vlpis) {
5454 		const struct irq_domain_ops *sgi_ops;
5455 
5456 		if (has_v4_1)
5457 			sgi_ops = &its_sgi_domain_ops;
5458 		else
5459 			sgi_ops = NULL;
5460 
5461 		if (its_init_vpe_domain() ||
5462 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5463 			rdists->has_vlpis = false;
5464 			pr_err("ITS: Disabling GICv4 support\n");
5465 		}
5466 	}
5467 
5468 	register_syscore_ops(&its_syscore_ops);
5469 
5470 	return 0;
5471 }
5472