• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * background writeback - scan btree for dirty data and write it to the backing
4  * device
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "writeback.h"
14 
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/sched/clock.h>
18 #include <trace/events/bcache.h>
19 
update_gc_after_writeback(struct cache_set * c)20 static void update_gc_after_writeback(struct cache_set *c)
21 {
22 	if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
23 	    c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
24 		return;
25 
26 	c->gc_after_writeback |= BCH_DO_AUTO_GC;
27 }
28 
29 /* Rate limiting */
__calc_target_rate(struct cached_dev * dc)30 static uint64_t __calc_target_rate(struct cached_dev *dc)
31 {
32 	struct cache_set *c = dc->disk.c;
33 
34 	/*
35 	 * This is the size of the cache, minus the amount used for
36 	 * flash-only devices
37 	 */
38 	uint64_t cache_sectors = c->nbuckets * c->cache->sb.bucket_size -
39 				atomic_long_read(&c->flash_dev_dirty_sectors);
40 
41 	/*
42 	 * Unfortunately there is no control of global dirty data.  If the
43 	 * user states that they want 10% dirty data in the cache, and has,
44 	 * e.g., 5 backing volumes of equal size, we try and ensure each
45 	 * backing volume uses about 2% of the cache for dirty data.
46 	 */
47 	uint32_t bdev_share =
48 		div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
49 				c->cached_dev_sectors);
50 
51 	uint64_t cache_dirty_target =
52 		div_u64(cache_sectors * dc->writeback_percent, 100);
53 
54 	/* Ensure each backing dev gets at least one dirty share */
55 	if (bdev_share < 1)
56 		bdev_share = 1;
57 
58 	return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
59 }
60 
__update_writeback_rate(struct cached_dev * dc)61 static void __update_writeback_rate(struct cached_dev *dc)
62 {
63 	/*
64 	 * PI controller:
65 	 * Figures out the amount that should be written per second.
66 	 *
67 	 * First, the error (number of sectors that are dirty beyond our
68 	 * target) is calculated.  The error is accumulated (numerically
69 	 * integrated).
70 	 *
71 	 * Then, the proportional value and integral value are scaled
72 	 * based on configured values.  These are stored as inverses to
73 	 * avoid fixed point math and to make configuration easy-- e.g.
74 	 * the default value of 40 for writeback_rate_p_term_inverse
75 	 * attempts to write at a rate that would retire all the dirty
76 	 * blocks in 40 seconds.
77 	 *
78 	 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
79 	 * of the error is accumulated in the integral term per second.
80 	 * This acts as a slow, long-term average that is not subject to
81 	 * variations in usage like the p term.
82 	 */
83 	int64_t target = __calc_target_rate(dc);
84 	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
85 	int64_t error = dirty - target;
86 	int64_t proportional_scaled =
87 		div_s64(error, dc->writeback_rate_p_term_inverse);
88 	int64_t integral_scaled;
89 	uint32_t new_rate;
90 
91 	/*
92 	 * We need to consider the number of dirty buckets as well
93 	 * when calculating the proportional_scaled, Otherwise we might
94 	 * have an unreasonable small writeback rate at a highly fragmented situation
95 	 * when very few dirty sectors consumed a lot dirty buckets, the
96 	 * worst case is when dirty buckets reached cutoff_writeback_sync and
97 	 * dirty data is still not even reached to writeback percent, so the rate
98 	 * still will be at the minimum value, which will cause the write
99 	 * stuck at a non-writeback mode.
100 	 */
101 	struct cache_set *c = dc->disk.c;
102 
103 	int64_t dirty_buckets = c->nbuckets - c->avail_nbuckets;
104 
105 	if (dc->writeback_consider_fragment &&
106 		c->gc_stats.in_use > BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW && dirty > 0) {
107 		int64_t fragment =
108 			div_s64((dirty_buckets *  c->cache->sb.bucket_size), dirty);
109 		int64_t fp_term;
110 		int64_t fps;
111 
112 		if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID) {
113 			fp_term = (int64_t)dc->writeback_rate_fp_term_low *
114 			(c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW);
115 		} else if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH) {
116 			fp_term = (int64_t)dc->writeback_rate_fp_term_mid *
117 			(c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID);
118 		} else {
119 			fp_term = (int64_t)dc->writeback_rate_fp_term_high *
120 			(c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH);
121 		}
122 		fps = div_s64(dirty, dirty_buckets) * fp_term;
123 		if (fragment > 3 && fps > proportional_scaled) {
124 			/* Only overrite the p when fragment > 3 */
125 			proportional_scaled = fps;
126 		}
127 	}
128 
129 	if ((error < 0 && dc->writeback_rate_integral > 0) ||
130 	    (error > 0 && time_before64(local_clock(),
131 			 dc->writeback_rate.next + NSEC_PER_MSEC))) {
132 		/*
133 		 * Only decrease the integral term if it's more than
134 		 * zero.  Only increase the integral term if the device
135 		 * is keeping up.  (Don't wind up the integral
136 		 * ineffectively in either case).
137 		 *
138 		 * It's necessary to scale this by
139 		 * writeback_rate_update_seconds to keep the integral
140 		 * term dimensioned properly.
141 		 */
142 		dc->writeback_rate_integral += error *
143 			dc->writeback_rate_update_seconds;
144 	}
145 
146 	integral_scaled = div_s64(dc->writeback_rate_integral,
147 			dc->writeback_rate_i_term_inverse);
148 
149 	new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
150 			dc->writeback_rate_minimum, NSEC_PER_SEC);
151 
152 	dc->writeback_rate_proportional = proportional_scaled;
153 	dc->writeback_rate_integral_scaled = integral_scaled;
154 	dc->writeback_rate_change = new_rate -
155 			atomic_long_read(&dc->writeback_rate.rate);
156 	atomic_long_set(&dc->writeback_rate.rate, new_rate);
157 	dc->writeback_rate_target = target;
158 }
159 
idle_counter_exceeded(struct cache_set * c)160 static bool idle_counter_exceeded(struct cache_set *c)
161 {
162 	int counter, dev_nr;
163 
164 	/*
165 	 * If c->idle_counter is overflow (idel for really long time),
166 	 * reset as 0 and not set maximum rate this time for code
167 	 * simplicity.
168 	 */
169 	counter = atomic_inc_return(&c->idle_counter);
170 	if (counter <= 0) {
171 		atomic_set(&c->idle_counter, 0);
172 		return false;
173 	}
174 
175 	dev_nr = atomic_read(&c->attached_dev_nr);
176 	if (dev_nr == 0)
177 		return false;
178 
179 	/*
180 	 * c->idle_counter is increased by writeback thread of all
181 	 * attached backing devices, in order to represent a rough
182 	 * time period, counter should be divided by dev_nr.
183 	 * Otherwise the idle time cannot be larger with more backing
184 	 * device attached.
185 	 * The following calculation equals to checking
186 	 *	(counter / dev_nr) < (dev_nr * 6)
187 	 */
188 	if (counter < (dev_nr * dev_nr * 6))
189 		return false;
190 
191 	return true;
192 }
193 
194 /*
195  * Idle_counter is increased every time when update_writeback_rate() is
196  * called. If all backing devices attached to the same cache set have
197  * identical dc->writeback_rate_update_seconds values, it is about 6
198  * rounds of update_writeback_rate() on each backing device before
199  * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
200  * to each dc->writeback_rate.rate.
201  * In order to avoid extra locking cost for counting exact dirty cached
202  * devices number, c->attached_dev_nr is used to calculate the idle
203  * throushold. It might be bigger if not all cached device are in write-
204  * back mode, but it still works well with limited extra rounds of
205  * update_writeback_rate().
206  */
set_at_max_writeback_rate(struct cache_set * c,struct cached_dev * dc)207 static bool set_at_max_writeback_rate(struct cache_set *c,
208 				       struct cached_dev *dc)
209 {
210 	/* Don't sst max writeback rate if it is disabled */
211 	if (!c->idle_max_writeback_rate_enabled)
212 		return false;
213 
214 	/* Don't set max writeback rate if gc is running */
215 	if (!c->gc_mark_valid)
216 		return false;
217 
218 	if (!idle_counter_exceeded(c))
219 		return false;
220 
221 	if (atomic_read(&c->at_max_writeback_rate) != 1)
222 		atomic_set(&c->at_max_writeback_rate, 1);
223 
224 	atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
225 
226 	/* keep writeback_rate_target as existing value */
227 	dc->writeback_rate_proportional = 0;
228 	dc->writeback_rate_integral_scaled = 0;
229 	dc->writeback_rate_change = 0;
230 
231 	/*
232 	 * In case new I/O arrives during before
233 	 * set_at_max_writeback_rate() returns.
234 	 */
235 	if (!idle_counter_exceeded(c) ||
236 	    !atomic_read(&c->at_max_writeback_rate))
237 		return false;
238 
239 	return true;
240 }
241 
update_writeback_rate(struct work_struct * work)242 static void update_writeback_rate(struct work_struct *work)
243 {
244 	struct cached_dev *dc = container_of(to_delayed_work(work),
245 					     struct cached_dev,
246 					     writeback_rate_update);
247 	struct cache_set *c = dc->disk.c;
248 
249 	/*
250 	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
251 	 * cancel_delayed_work_sync().
252 	 */
253 	set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
254 	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
255 	smp_mb__after_atomic();
256 
257 	/*
258 	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
259 	 * check it here too.
260 	 */
261 	if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
262 	    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
263 		clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
264 		/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
265 		smp_mb__after_atomic();
266 		return;
267 	}
268 
269 	if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
270 		/*
271 		 * If the whole cache set is idle, set_at_max_writeback_rate()
272 		 * will set writeback rate to a max number. Then it is
273 		 * unncessary to update writeback rate for an idle cache set
274 		 * in maximum writeback rate number(s).
275 		 */
276 		if (!set_at_max_writeback_rate(c, dc)) {
277 			down_read(&dc->writeback_lock);
278 			__update_writeback_rate(dc);
279 			update_gc_after_writeback(c);
280 			up_read(&dc->writeback_lock);
281 		}
282 	}
283 
284 
285 	/*
286 	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
287 	 * check it here too.
288 	 */
289 	if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
290 	    !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
291 		schedule_delayed_work(&dc->writeback_rate_update,
292 			      dc->writeback_rate_update_seconds * HZ);
293 	}
294 
295 	/*
296 	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
297 	 * cancel_delayed_work_sync().
298 	 */
299 	clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
300 	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
301 	smp_mb__after_atomic();
302 }
303 
writeback_delay(struct cached_dev * dc,unsigned int sectors)304 static unsigned int writeback_delay(struct cached_dev *dc,
305 				    unsigned int sectors)
306 {
307 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
308 	    !dc->writeback_percent)
309 		return 0;
310 
311 	return bch_next_delay(&dc->writeback_rate, sectors);
312 }
313 
314 struct dirty_io {
315 	struct closure		cl;
316 	struct cached_dev	*dc;
317 	uint16_t		sequence;
318 	struct bio		bio;
319 };
320 
dirty_init(struct keybuf_key * w)321 static void dirty_init(struct keybuf_key *w)
322 {
323 	struct dirty_io *io = w->private;
324 	struct bio *bio = &io->bio;
325 
326 	bio_init(bio, bio->bi_inline_vecs,
327 		 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
328 	if (!io->dc->writeback_percent)
329 		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
330 
331 	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9;
332 	bio->bi_private		= w;
333 	bch_bio_map(bio, NULL);
334 }
335 
dirty_io_destructor(struct closure * cl)336 static void dirty_io_destructor(struct closure *cl)
337 {
338 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
339 
340 	kfree(io);
341 }
342 
write_dirty_finish(struct closure * cl)343 static void write_dirty_finish(struct closure *cl)
344 {
345 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
346 	struct keybuf_key *w = io->bio.bi_private;
347 	struct cached_dev *dc = io->dc;
348 
349 	bio_free_pages(&io->bio);
350 
351 	/* This is kind of a dumb way of signalling errors. */
352 	if (KEY_DIRTY(&w->key)) {
353 		int ret;
354 		unsigned int i;
355 		struct keylist keys;
356 
357 		bch_keylist_init(&keys);
358 
359 		bkey_copy(keys.top, &w->key);
360 		SET_KEY_DIRTY(keys.top, false);
361 		bch_keylist_push(&keys);
362 
363 		for (i = 0; i < KEY_PTRS(&w->key); i++)
364 			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
365 
366 		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
367 
368 		if (ret)
369 			trace_bcache_writeback_collision(&w->key);
370 
371 		atomic_long_inc(ret
372 				? &dc->disk.c->writeback_keys_failed
373 				: &dc->disk.c->writeback_keys_done);
374 	}
375 
376 	bch_keybuf_del(&dc->writeback_keys, w);
377 	up(&dc->in_flight);
378 
379 	closure_return_with_destructor(cl, dirty_io_destructor);
380 }
381 
dirty_endio(struct bio * bio)382 static void dirty_endio(struct bio *bio)
383 {
384 	struct keybuf_key *w = bio->bi_private;
385 	struct dirty_io *io = w->private;
386 
387 	if (bio->bi_status) {
388 		SET_KEY_DIRTY(&w->key, false);
389 		bch_count_backing_io_errors(io->dc, bio);
390 	}
391 
392 	closure_put(&io->cl);
393 }
394 
write_dirty(struct closure * cl)395 static void write_dirty(struct closure *cl)
396 {
397 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
398 	struct keybuf_key *w = io->bio.bi_private;
399 	struct cached_dev *dc = io->dc;
400 
401 	uint16_t next_sequence;
402 
403 	if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
404 		/* Not our turn to write; wait for a write to complete */
405 		closure_wait(&dc->writeback_ordering_wait, cl);
406 
407 		if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
408 			/*
409 			 * Edge case-- it happened in indeterminate order
410 			 * relative to when we were added to wait list..
411 			 */
412 			closure_wake_up(&dc->writeback_ordering_wait);
413 		}
414 
415 		continue_at(cl, write_dirty, io->dc->writeback_write_wq);
416 		return;
417 	}
418 
419 	next_sequence = io->sequence + 1;
420 
421 	/*
422 	 * IO errors are signalled using the dirty bit on the key.
423 	 * If we failed to read, we should not attempt to write to the
424 	 * backing device.  Instead, immediately go to write_dirty_finish
425 	 * to clean up.
426 	 */
427 	if (KEY_DIRTY(&w->key)) {
428 		dirty_init(w);
429 		bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
430 		io->bio.bi_iter.bi_sector = KEY_START(&w->key);
431 		bio_set_dev(&io->bio, io->dc->bdev);
432 		io->bio.bi_end_io	= dirty_endio;
433 
434 		/* I/O request sent to backing device */
435 		closure_bio_submit(io->dc->disk.c, &io->bio, cl);
436 	}
437 
438 	atomic_set(&dc->writeback_sequence_next, next_sequence);
439 	closure_wake_up(&dc->writeback_ordering_wait);
440 
441 	continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
442 }
443 
read_dirty_endio(struct bio * bio)444 static void read_dirty_endio(struct bio *bio)
445 {
446 	struct keybuf_key *w = bio->bi_private;
447 	struct dirty_io *io = w->private;
448 
449 	/* is_read = 1 */
450 	bch_count_io_errors(io->dc->disk.c->cache,
451 			    bio->bi_status, 1,
452 			    "reading dirty data from cache");
453 
454 	dirty_endio(bio);
455 }
456 
read_dirty_submit(struct closure * cl)457 static void read_dirty_submit(struct closure *cl)
458 {
459 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
460 
461 	closure_bio_submit(io->dc->disk.c, &io->bio, cl);
462 
463 	continue_at(cl, write_dirty, io->dc->writeback_write_wq);
464 }
465 
read_dirty(struct cached_dev * dc)466 static void read_dirty(struct cached_dev *dc)
467 {
468 	unsigned int delay = 0;
469 	struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
470 	size_t size;
471 	int nk, i;
472 	struct dirty_io *io;
473 	struct closure cl;
474 	uint16_t sequence = 0;
475 
476 	BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
477 	atomic_set(&dc->writeback_sequence_next, sequence);
478 	closure_init_stack(&cl);
479 
480 	/*
481 	 * XXX: if we error, background writeback just spins. Should use some
482 	 * mempools.
483 	 */
484 
485 	next = bch_keybuf_next(&dc->writeback_keys);
486 
487 	while (!kthread_should_stop() &&
488 	       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
489 	       next) {
490 		size = 0;
491 		nk = 0;
492 
493 		do {
494 			BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
495 
496 			/*
497 			 * Don't combine too many operations, even if they
498 			 * are all small.
499 			 */
500 			if (nk >= MAX_WRITEBACKS_IN_PASS)
501 				break;
502 
503 			/*
504 			 * If the current operation is very large, don't
505 			 * further combine operations.
506 			 */
507 			if (size >= MAX_WRITESIZE_IN_PASS)
508 				break;
509 
510 			/*
511 			 * Operations are only eligible to be combined
512 			 * if they are contiguous.
513 			 *
514 			 * TODO: add a heuristic willing to fire a
515 			 * certain amount of non-contiguous IO per pass,
516 			 * so that we can benefit from backing device
517 			 * command queueing.
518 			 */
519 			if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
520 						&START_KEY(&next->key)))
521 				break;
522 
523 			size += KEY_SIZE(&next->key);
524 			keys[nk++] = next;
525 		} while ((next = bch_keybuf_next(&dc->writeback_keys)));
526 
527 		/* Now we have gathered a set of 1..5 keys to write back. */
528 		for (i = 0; i < nk; i++) {
529 			w = keys[i];
530 
531 			io = kzalloc(struct_size(io, bio.bi_inline_vecs,
532 						DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)),
533 				     GFP_KERNEL);
534 			if (!io)
535 				goto err;
536 
537 			w->private	= io;
538 			io->dc		= dc;
539 			io->sequence    = sequence++;
540 
541 			dirty_init(w);
542 			bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
543 			io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
544 			bio_set_dev(&io->bio, dc->disk.c->cache->bdev);
545 			io->bio.bi_end_io	= read_dirty_endio;
546 
547 			if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
548 				goto err_free;
549 
550 			trace_bcache_writeback(&w->key);
551 
552 			down(&dc->in_flight);
553 
554 			/*
555 			 * We've acquired a semaphore for the maximum
556 			 * simultaneous number of writebacks; from here
557 			 * everything happens asynchronously.
558 			 */
559 			closure_call(&io->cl, read_dirty_submit, NULL, &cl);
560 		}
561 
562 		delay = writeback_delay(dc, size);
563 
564 		while (!kthread_should_stop() &&
565 		       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
566 		       delay) {
567 			schedule_timeout_interruptible(delay);
568 			delay = writeback_delay(dc, 0);
569 		}
570 	}
571 
572 	if (0) {
573 err_free:
574 		kfree(w->private);
575 err:
576 		bch_keybuf_del(&dc->writeback_keys, w);
577 	}
578 
579 	/*
580 	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
581 	 * freed) before refilling again
582 	 */
583 	closure_sync(&cl);
584 }
585 
586 /* Scan for dirty data */
587 
bcache_dev_sectors_dirty_add(struct cache_set * c,unsigned int inode,uint64_t offset,int nr_sectors)588 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
589 				  uint64_t offset, int nr_sectors)
590 {
591 	struct bcache_device *d = c->devices[inode];
592 	unsigned int stripe_offset, sectors_dirty;
593 	int stripe;
594 
595 	if (!d)
596 		return;
597 
598 	stripe = offset_to_stripe(d, offset);
599 	if (stripe < 0)
600 		return;
601 
602 	if (UUID_FLASH_ONLY(&c->uuids[inode]))
603 		atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
604 
605 	stripe_offset = offset & (d->stripe_size - 1);
606 
607 	while (nr_sectors) {
608 		int s = min_t(unsigned int, abs(nr_sectors),
609 			      d->stripe_size - stripe_offset);
610 
611 		if (nr_sectors < 0)
612 			s = -s;
613 
614 		if (stripe >= d->nr_stripes)
615 			return;
616 
617 		sectors_dirty = atomic_add_return(s,
618 					d->stripe_sectors_dirty + stripe);
619 		if (sectors_dirty == d->stripe_size)
620 			set_bit(stripe, d->full_dirty_stripes);
621 		else
622 			clear_bit(stripe, d->full_dirty_stripes);
623 
624 		nr_sectors -= s;
625 		stripe_offset = 0;
626 		stripe++;
627 	}
628 }
629 
dirty_pred(struct keybuf * buf,struct bkey * k)630 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
631 {
632 	struct cached_dev *dc = container_of(buf,
633 					     struct cached_dev,
634 					     writeback_keys);
635 
636 	BUG_ON(KEY_INODE(k) != dc->disk.id);
637 
638 	return KEY_DIRTY(k);
639 }
640 
refill_full_stripes(struct cached_dev * dc)641 static void refill_full_stripes(struct cached_dev *dc)
642 {
643 	struct keybuf *buf = &dc->writeback_keys;
644 	unsigned int start_stripe, next_stripe;
645 	int stripe;
646 	bool wrapped = false;
647 
648 	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
649 	if (stripe < 0)
650 		stripe = 0;
651 
652 	start_stripe = stripe;
653 
654 	while (1) {
655 		stripe = find_next_bit(dc->disk.full_dirty_stripes,
656 				       dc->disk.nr_stripes, stripe);
657 
658 		if (stripe == dc->disk.nr_stripes)
659 			goto next;
660 
661 		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
662 						 dc->disk.nr_stripes, stripe);
663 
664 		buf->last_scanned = KEY(dc->disk.id,
665 					stripe * dc->disk.stripe_size, 0);
666 
667 		bch_refill_keybuf(dc->disk.c, buf,
668 				  &KEY(dc->disk.id,
669 				       next_stripe * dc->disk.stripe_size, 0),
670 				  dirty_pred);
671 
672 		if (array_freelist_empty(&buf->freelist))
673 			return;
674 
675 		stripe = next_stripe;
676 next:
677 		if (wrapped && stripe > start_stripe)
678 			return;
679 
680 		if (stripe == dc->disk.nr_stripes) {
681 			stripe = 0;
682 			wrapped = true;
683 		}
684 	}
685 }
686 
687 /*
688  * Returns true if we scanned the entire disk
689  */
refill_dirty(struct cached_dev * dc)690 static bool refill_dirty(struct cached_dev *dc)
691 {
692 	struct keybuf *buf = &dc->writeback_keys;
693 	struct bkey start = KEY(dc->disk.id, 0, 0);
694 	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
695 	struct bkey start_pos;
696 
697 	/*
698 	 * make sure keybuf pos is inside the range for this disk - at bringup
699 	 * we might not be attached yet so this disk's inode nr isn't
700 	 * initialized then
701 	 */
702 	if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
703 	    bkey_cmp(&buf->last_scanned, &end) > 0)
704 		buf->last_scanned = start;
705 
706 	if (dc->partial_stripes_expensive) {
707 		refill_full_stripes(dc);
708 		if (array_freelist_empty(&buf->freelist))
709 			return false;
710 	}
711 
712 	start_pos = buf->last_scanned;
713 	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
714 
715 	if (bkey_cmp(&buf->last_scanned, &end) < 0)
716 		return false;
717 
718 	/*
719 	 * If we get to the end start scanning again from the beginning, and
720 	 * only scan up to where we initially started scanning from:
721 	 */
722 	buf->last_scanned = start;
723 	bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
724 
725 	return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
726 }
727 
bch_writeback_thread(void * arg)728 static int bch_writeback_thread(void *arg)
729 {
730 	struct cached_dev *dc = arg;
731 	struct cache_set *c = dc->disk.c;
732 	bool searched_full_index;
733 
734 	bch_ratelimit_reset(&dc->writeback_rate);
735 
736 	while (!kthread_should_stop() &&
737 	       !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
738 		down_write(&dc->writeback_lock);
739 		set_current_state(TASK_INTERRUPTIBLE);
740 		/*
741 		 * If the bache device is detaching, skip here and continue
742 		 * to perform writeback. Otherwise, if no dirty data on cache,
743 		 * or there is dirty data on cache but writeback is disabled,
744 		 * the writeback thread should sleep here and wait for others
745 		 * to wake up it.
746 		 */
747 		if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
748 		    (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
749 			up_write(&dc->writeback_lock);
750 
751 			if (kthread_should_stop() ||
752 			    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
753 				set_current_state(TASK_RUNNING);
754 				break;
755 			}
756 
757 			schedule();
758 			continue;
759 		}
760 		set_current_state(TASK_RUNNING);
761 
762 		searched_full_index = refill_dirty(dc);
763 
764 		if (searched_full_index &&
765 		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
766 			atomic_set(&dc->has_dirty, 0);
767 			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
768 			bch_write_bdev_super(dc, NULL);
769 			/*
770 			 * If bcache device is detaching via sysfs interface,
771 			 * writeback thread should stop after there is no dirty
772 			 * data on cache. BCACHE_DEV_DETACHING flag is set in
773 			 * bch_cached_dev_detach().
774 			 */
775 			if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
776 				struct closure cl;
777 
778 				closure_init_stack(&cl);
779 				memset(&dc->sb.set_uuid, 0, 16);
780 				SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
781 
782 				bch_write_bdev_super(dc, &cl);
783 				closure_sync(&cl);
784 
785 				up_write(&dc->writeback_lock);
786 				break;
787 			}
788 
789 			/*
790 			 * When dirty data rate is high (e.g. 50%+), there might
791 			 * be heavy buckets fragmentation after writeback
792 			 * finished, which hurts following write performance.
793 			 * If users really care about write performance they
794 			 * may set BCH_ENABLE_AUTO_GC via sysfs, then when
795 			 * BCH_DO_AUTO_GC is set, garbage collection thread
796 			 * will be wake up here. After moving gc, the shrunk
797 			 * btree and discarded free buckets SSD space may be
798 			 * helpful for following write requests.
799 			 */
800 			if (c->gc_after_writeback ==
801 			    (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
802 				c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
803 				force_wake_up_gc(c);
804 			}
805 		}
806 
807 		up_write(&dc->writeback_lock);
808 
809 		read_dirty(dc);
810 
811 		if (searched_full_index) {
812 			unsigned int delay = dc->writeback_delay * HZ;
813 
814 			while (delay &&
815 			       !kthread_should_stop() &&
816 			       !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
817 			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
818 				delay = schedule_timeout_interruptible(delay);
819 
820 			bch_ratelimit_reset(&dc->writeback_rate);
821 		}
822 	}
823 
824 	if (dc->writeback_write_wq) {
825 		flush_workqueue(dc->writeback_write_wq);
826 		destroy_workqueue(dc->writeback_write_wq);
827 	}
828 	cached_dev_put(dc);
829 	wait_for_kthread_stop();
830 
831 	return 0;
832 }
833 
834 /* Init */
835 #define INIT_KEYS_EACH_TIME	500000
836 
837 struct sectors_dirty_init {
838 	struct btree_op	op;
839 	unsigned int	inode;
840 	size_t		count;
841 };
842 
sectors_dirty_init_fn(struct btree_op * _op,struct btree * b,struct bkey * k)843 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
844 				 struct bkey *k)
845 {
846 	struct sectors_dirty_init *op = container_of(_op,
847 						struct sectors_dirty_init, op);
848 	if (KEY_INODE(k) > op->inode)
849 		return MAP_DONE;
850 
851 	if (KEY_DIRTY(k))
852 		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
853 					     KEY_START(k), KEY_SIZE(k));
854 
855 	op->count++;
856 	if (!(op->count % INIT_KEYS_EACH_TIME))
857 		cond_resched();
858 
859 	return MAP_CONTINUE;
860 }
861 
bch_root_node_dirty_init(struct cache_set * c,struct bcache_device * d,struct bkey * k)862 static int bch_root_node_dirty_init(struct cache_set *c,
863 				     struct bcache_device *d,
864 				     struct bkey *k)
865 {
866 	struct sectors_dirty_init op;
867 	int ret;
868 
869 	bch_btree_op_init(&op.op, -1);
870 	op.inode = d->id;
871 	op.count = 0;
872 
873 	ret = bcache_btree(map_keys_recurse,
874 			   k,
875 			   c->root,
876 			   &op.op,
877 			   &KEY(op.inode, 0, 0),
878 			   sectors_dirty_init_fn,
879 			   0);
880 	if (ret < 0)
881 		pr_warn("sectors dirty init failed, ret=%d!\n", ret);
882 
883 	/*
884 	 * The op may be added to cache_set's btree_cache_wait
885 	 * in mca_cannibalize(), must ensure it is removed from
886 	 * the list and release btree_cache_alloc_lock before
887 	 * free op memory.
888 	 * Otherwise, the btree_cache_wait will be damaged.
889 	 */
890 	bch_cannibalize_unlock(c);
891 	finish_wait(&c->btree_cache_wait, &(&op.op)->wait);
892 
893 	return ret;
894 }
895 
bch_dirty_init_thread(void * arg)896 static int bch_dirty_init_thread(void *arg)
897 {
898 	struct dirty_init_thrd_info *info = arg;
899 	struct bch_dirty_init_state *state = info->state;
900 	struct cache_set *c = state->c;
901 	struct btree_iter iter;
902 	struct bkey *k, *p;
903 	int cur_idx, prev_idx, skip_nr;
904 
905 	k = p = NULL;
906 	prev_idx = 0;
907 
908 	bch_btree_iter_init(&c->root->keys, &iter, NULL);
909 	k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
910 	BUG_ON(!k);
911 
912 	p = k;
913 
914 	while (k) {
915 		spin_lock(&state->idx_lock);
916 		cur_idx = state->key_idx;
917 		state->key_idx++;
918 		spin_unlock(&state->idx_lock);
919 
920 		skip_nr = cur_idx - prev_idx;
921 
922 		while (skip_nr) {
923 			k = bch_btree_iter_next_filter(&iter,
924 						       &c->root->keys,
925 						       bch_ptr_bad);
926 			if (k)
927 				p = k;
928 			else {
929 				atomic_set(&state->enough, 1);
930 				/* Update state->enough earlier */
931 				smp_mb__after_atomic();
932 				goto out;
933 			}
934 			skip_nr--;
935 		}
936 
937 		if (p) {
938 			if (bch_root_node_dirty_init(c, state->d, p) < 0)
939 				goto out;
940 		}
941 
942 		p = NULL;
943 		prev_idx = cur_idx;
944 	}
945 
946 out:
947 	/* In order to wake up state->wait in time */
948 	smp_mb__before_atomic();
949 	if (atomic_dec_and_test(&state->started))
950 		wake_up(&state->wait);
951 
952 	return 0;
953 }
954 
bch_btre_dirty_init_thread_nr(void)955 static int bch_btre_dirty_init_thread_nr(void)
956 {
957 	int n = num_online_cpus()/2;
958 
959 	if (n == 0)
960 		n = 1;
961 	else if (n > BCH_DIRTY_INIT_THRD_MAX)
962 		n = BCH_DIRTY_INIT_THRD_MAX;
963 
964 	return n;
965 }
966 
bch_sectors_dirty_init(struct bcache_device * d)967 void bch_sectors_dirty_init(struct bcache_device *d)
968 {
969 	int i;
970 	struct btree *b = NULL;
971 	struct bkey *k = NULL;
972 	struct btree_iter iter;
973 	struct sectors_dirty_init op;
974 	struct cache_set *c = d->c;
975 	struct bch_dirty_init_state state;
976 
977 retry_lock:
978 	b = c->root;
979 	rw_lock(0, b, b->level);
980 	if (b != c->root) {
981 		rw_unlock(0, b);
982 		goto retry_lock;
983 	}
984 
985 	/* Just count root keys if no leaf node */
986 	if (c->root->level == 0) {
987 		bch_btree_op_init(&op.op, -1);
988 		op.inode = d->id;
989 		op.count = 0;
990 
991 		for_each_key_filter(&c->root->keys,
992 				    k, &iter, bch_ptr_invalid) {
993 			if (KEY_INODE(k) != op.inode)
994 				continue;
995 			sectors_dirty_init_fn(&op.op, c->root, k);
996 		}
997 
998 		rw_unlock(0, b);
999 		return;
1000 	}
1001 
1002 	memset(&state, 0, sizeof(struct bch_dirty_init_state));
1003 	state.c = c;
1004 	state.d = d;
1005 	state.total_threads = bch_btre_dirty_init_thread_nr();
1006 	state.key_idx = 0;
1007 	spin_lock_init(&state.idx_lock);
1008 	atomic_set(&state.started, 0);
1009 	atomic_set(&state.enough, 0);
1010 	init_waitqueue_head(&state.wait);
1011 
1012 	for (i = 0; i < state.total_threads; i++) {
1013 		/* Fetch latest state.enough earlier */
1014 		smp_mb__before_atomic();
1015 		if (atomic_read(&state.enough))
1016 			break;
1017 
1018 		atomic_inc(&state.started);
1019 		state.infos[i].state = &state;
1020 		state.infos[i].thread =
1021 			kthread_run(bch_dirty_init_thread, &state.infos[i],
1022 				    "bch_dirtcnt[%d]", i);
1023 		if (IS_ERR(state.infos[i].thread)) {
1024 			pr_err("fails to run thread bch_dirty_init[%d]\n", i);
1025 			atomic_dec(&state.started);
1026 			for (--i; i >= 0; i--)
1027 				kthread_stop(state.infos[i].thread);
1028 			goto out;
1029 		}
1030 	}
1031 
1032 out:
1033 	/* Must wait for all threads to stop. */
1034 	wait_event(state.wait, atomic_read(&state.started) == 0);
1035 	rw_unlock(0, b);
1036 }
1037 
bch_cached_dev_writeback_init(struct cached_dev * dc)1038 void bch_cached_dev_writeback_init(struct cached_dev *dc)
1039 {
1040 	sema_init(&dc->in_flight, 64);
1041 	init_rwsem(&dc->writeback_lock);
1042 	bch_keybuf_init(&dc->writeback_keys);
1043 
1044 	dc->writeback_metadata		= true;
1045 	dc->writeback_running		= false;
1046 	dc->writeback_consider_fragment = true;
1047 	dc->writeback_percent		= 10;
1048 	dc->writeback_delay		= 30;
1049 	atomic_long_set(&dc->writeback_rate.rate, 1024);
1050 	dc->writeback_rate_minimum	= 8;
1051 
1052 	dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
1053 	dc->writeback_rate_p_term_inverse = 40;
1054 	dc->writeback_rate_fp_term_low = 1;
1055 	dc->writeback_rate_fp_term_mid = 10;
1056 	dc->writeback_rate_fp_term_high = 1000;
1057 	dc->writeback_rate_i_term_inverse = 10000;
1058 
1059 	WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1060 	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
1061 }
1062 
bch_cached_dev_writeback_start(struct cached_dev * dc)1063 int bch_cached_dev_writeback_start(struct cached_dev *dc)
1064 {
1065 	dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
1066 						WQ_MEM_RECLAIM, 0);
1067 	if (!dc->writeback_write_wq)
1068 		return -ENOMEM;
1069 
1070 	cached_dev_get(dc);
1071 	dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
1072 					      "bcache_writeback");
1073 	if (IS_ERR(dc->writeback_thread)) {
1074 		cached_dev_put(dc);
1075 		destroy_workqueue(dc->writeback_write_wq);
1076 		return PTR_ERR(dc->writeback_thread);
1077 	}
1078 	dc->writeback_running = true;
1079 
1080 	WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1081 	schedule_delayed_work(&dc->writeback_rate_update,
1082 			      dc->writeback_rate_update_seconds * HZ);
1083 
1084 	bch_writeback_queue(dc);
1085 
1086 	return 0;
1087 }
1088