1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24
25 #define DM_MSG_PREFIX "table"
26
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31 /*
32 * Similar to ceiling(log_size(n))
33 */
int_log(unsigned int n,unsigned int base)34 static unsigned int int_log(unsigned int n, unsigned int base)
35 {
36 int result = 0;
37
38 while (n > 1) {
39 n = dm_div_up(n, base);
40 result++;
41 }
42
43 return result;
44 }
45
46 /*
47 * Calculate the index of the child node of the n'th node k'th key.
48 */
get_child(unsigned int n,unsigned int k)49 static inline unsigned int get_child(unsigned int n, unsigned int k)
50 {
51 return (n * CHILDREN_PER_NODE) + k;
52 }
53
54 /*
55 * Return the n'th node of level l from table t.
56 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)57 static inline sector_t *get_node(struct dm_table *t,
58 unsigned int l, unsigned int n)
59 {
60 return t->index[l] + (n * KEYS_PER_NODE);
61 }
62
63 /*
64 * Return the highest key that you could lookup from the n'th
65 * node on level l of the btree.
66 */
high(struct dm_table * t,unsigned int l,unsigned int n)67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68 {
69 for (; l < t->depth - 1; l++)
70 n = get_child(n, CHILDREN_PER_NODE - 1);
71
72 if (n >= t->counts[l])
73 return (sector_t) - 1;
74
75 return get_node(t, l, n)[KEYS_PER_NODE - 1];
76 }
77
78 /*
79 * Fills in a level of the btree based on the highs of the level
80 * below it.
81 */
setup_btree_index(unsigned int l,struct dm_table * t)82 static int setup_btree_index(unsigned int l, struct dm_table *t)
83 {
84 unsigned int n, k;
85 sector_t *node;
86
87 for (n = 0U; n < t->counts[l]; n++) {
88 node = get_node(t, l, n);
89
90 for (k = 0U; k < KEYS_PER_NODE; k++)
91 node[k] = high(t, l + 1, get_child(n, k));
92 }
93
94 return 0;
95 }
96
97 /*
98 * highs, and targets are managed as dynamic arrays during a
99 * table load.
100 */
alloc_targets(struct dm_table * t,unsigned int num)101 static int alloc_targets(struct dm_table *t, unsigned int num)
102 {
103 sector_t *n_highs;
104 struct dm_target *n_targets;
105
106 /*
107 * Allocate both the target array and offset array at once.
108 */
109 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
110 GFP_KERNEL);
111 if (!n_highs)
112 return -ENOMEM;
113
114 n_targets = (struct dm_target *) (n_highs + num);
115
116 memset(n_highs, -1, sizeof(*n_highs) * num);
117 kvfree(t->highs);
118
119 t->num_allocated = num;
120 t->highs = n_highs;
121 t->targets = n_targets;
122
123 return 0;
124 }
125
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)126 int dm_table_create(struct dm_table **result, fmode_t mode,
127 unsigned num_targets, struct mapped_device *md)
128 {
129 struct dm_table *t;
130
131 if (num_targets > DM_MAX_TARGETS)
132 return -EOVERFLOW;
133
134 t = kzalloc(sizeof(*t), GFP_KERNEL);
135
136 if (!t)
137 return -ENOMEM;
138
139 INIT_LIST_HEAD(&t->devices);
140
141 if (!num_targets)
142 num_targets = KEYS_PER_NODE;
143
144 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
145
146 if (!num_targets) {
147 kfree(t);
148 return -EOVERFLOW;
149 }
150
151 if (alloc_targets(t, num_targets)) {
152 kfree(t);
153 return -ENOMEM;
154 }
155
156 t->type = DM_TYPE_NONE;
157 t->mode = mode;
158 t->md = md;
159 *result = t;
160 return 0;
161 }
162
free_devices(struct list_head * devices,struct mapped_device * md)163 static void free_devices(struct list_head *devices, struct mapped_device *md)
164 {
165 struct list_head *tmp, *next;
166
167 list_for_each_safe(tmp, next, devices) {
168 struct dm_dev_internal *dd =
169 list_entry(tmp, struct dm_dev_internal, list);
170 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
171 dm_device_name(md), dd->dm_dev->name);
172 dm_put_table_device(md, dd->dm_dev);
173 kfree(dd);
174 }
175 }
176
177 static void dm_table_destroy_crypto_profile(struct dm_table *t);
178
dm_table_destroy(struct dm_table * t)179 void dm_table_destroy(struct dm_table *t)
180 {
181 unsigned int i;
182
183 if (!t)
184 return;
185
186 /* free the indexes */
187 if (t->depth >= 2)
188 kvfree(t->index[t->depth - 2]);
189
190 /* free the targets */
191 for (i = 0; i < t->num_targets; i++) {
192 struct dm_target *tgt = t->targets + i;
193
194 if (tgt->type->dtr)
195 tgt->type->dtr(tgt);
196
197 dm_put_target_type(tgt->type);
198 }
199
200 kvfree(t->highs);
201
202 /* free the device list */
203 free_devices(&t->devices, t->md);
204
205 dm_free_md_mempools(t->mempools);
206
207 dm_table_destroy_crypto_profile(t);
208
209 kfree(t);
210 }
211
212 /*
213 * See if we've already got a device in the list.
214 */
find_device(struct list_head * l,dev_t dev)215 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
216 {
217 struct dm_dev_internal *dd;
218
219 list_for_each_entry (dd, l, list)
220 if (dd->dm_dev->bdev->bd_dev == dev)
221 return dd;
222
223 return NULL;
224 }
225
226 /*
227 * If possible, this checks an area of a destination device is invalid.
228 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)229 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
230 sector_t start, sector_t len, void *data)
231 {
232 struct queue_limits *limits = data;
233 struct block_device *bdev = dev->bdev;
234 sector_t dev_size =
235 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
236 unsigned short logical_block_size_sectors =
237 limits->logical_block_size >> SECTOR_SHIFT;
238 char b[BDEVNAME_SIZE];
239
240 if (!dev_size)
241 return 0;
242
243 if ((start >= dev_size) || (start + len > dev_size)) {
244 DMWARN("%s: %s too small for target: "
245 "start=%llu, len=%llu, dev_size=%llu",
246 dm_device_name(ti->table->md), bdevname(bdev, b),
247 (unsigned long long)start,
248 (unsigned long long)len,
249 (unsigned long long)dev_size);
250 return 1;
251 }
252
253 /*
254 * If the target is mapped to zoned block device(s), check
255 * that the zones are not partially mapped.
256 */
257 if (bdev_is_zoned(bdev)) {
258 unsigned int zone_sectors = bdev_zone_sectors(bdev);
259
260 if (!bdev_is_zone_start(bdev, start)) {
261 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
262 dm_device_name(ti->table->md),
263 (unsigned long long)start,
264 zone_sectors, bdevname(bdev, b));
265 return 1;
266 }
267
268 /*
269 * Note: The last zone of a zoned block device may be smaller
270 * than other zones. So for a target mapping the end of a
271 * zoned block device with such a zone, len would not be zone
272 * aligned. We do not allow such last smaller zone to be part
273 * of the mapping here to ensure that mappings with multiple
274 * devices do not end up with a smaller zone in the middle of
275 * the sector range.
276 */
277 if (!bdev_is_zone_start(bdev, len)) {
278 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
279 dm_device_name(ti->table->md),
280 (unsigned long long)len,
281 zone_sectors, bdevname(bdev, b));
282 return 1;
283 }
284 }
285
286 if (logical_block_size_sectors <= 1)
287 return 0;
288
289 if (start & (logical_block_size_sectors - 1)) {
290 DMWARN("%s: start=%llu not aligned to h/w "
291 "logical block size %u of %s",
292 dm_device_name(ti->table->md),
293 (unsigned long long)start,
294 limits->logical_block_size, bdevname(bdev, b));
295 return 1;
296 }
297
298 if (len & (logical_block_size_sectors - 1)) {
299 DMWARN("%s: len=%llu not aligned to h/w "
300 "logical block size %u of %s",
301 dm_device_name(ti->table->md),
302 (unsigned long long)len,
303 limits->logical_block_size, bdevname(bdev, b));
304 return 1;
305 }
306
307 return 0;
308 }
309
310 /*
311 * This upgrades the mode on an already open dm_dev, being
312 * careful to leave things as they were if we fail to reopen the
313 * device and not to touch the existing bdev field in case
314 * it is accessed concurrently.
315 */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)316 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
317 struct mapped_device *md)
318 {
319 int r;
320 struct dm_dev *old_dev, *new_dev;
321
322 old_dev = dd->dm_dev;
323
324 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
325 dd->dm_dev->mode | new_mode, &new_dev);
326 if (r)
327 return r;
328
329 dd->dm_dev = new_dev;
330 dm_put_table_device(md, old_dev);
331
332 return 0;
333 }
334
335 /*
336 * Convert the path to a device
337 */
dm_get_dev_t(const char * path)338 dev_t dm_get_dev_t(const char *path)
339 {
340 dev_t dev;
341
342 if (lookup_bdev(path, &dev))
343 dev = name_to_dev_t(path);
344 return dev;
345 }
346 EXPORT_SYMBOL_GPL(dm_get_dev_t);
347
348 /*
349 * Add a device to the list, or just increment the usage count if
350 * it's already present.
351 */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)352 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
353 struct dm_dev **result)
354 {
355 int r;
356 dev_t dev;
357 unsigned int major, minor;
358 char dummy;
359 struct dm_dev_internal *dd;
360 struct dm_table *t = ti->table;
361
362 BUG_ON(!t);
363
364 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
365 /* Extract the major/minor numbers */
366 dev = MKDEV(major, minor);
367 if (MAJOR(dev) != major || MINOR(dev) != minor)
368 return -EOVERFLOW;
369 } else {
370 dev = dm_get_dev_t(path);
371 if (!dev)
372 return -ENODEV;
373 }
374
375 dd = find_device(&t->devices, dev);
376 if (!dd) {
377 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
378 if (!dd)
379 return -ENOMEM;
380
381 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
382 kfree(dd);
383 return r;
384 }
385
386 refcount_set(&dd->count, 1);
387 list_add(&dd->list, &t->devices);
388 goto out;
389
390 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
391 r = upgrade_mode(dd, mode, t->md);
392 if (r)
393 return r;
394 }
395 refcount_inc(&dd->count);
396 out:
397 *result = dd->dm_dev;
398 return 0;
399 }
400 EXPORT_SYMBOL(dm_get_device);
401
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)402 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
403 sector_t start, sector_t len, void *data)
404 {
405 struct queue_limits *limits = data;
406 struct block_device *bdev = dev->bdev;
407 struct request_queue *q = bdev_get_queue(bdev);
408 char b[BDEVNAME_SIZE];
409
410 if (unlikely(!q)) {
411 DMWARN("%s: Cannot set limits for nonexistent device %s",
412 dm_device_name(ti->table->md), bdevname(bdev, b));
413 return 0;
414 }
415
416 if (blk_stack_limits(limits, &q->limits,
417 get_start_sect(bdev) + start) < 0)
418 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
419 "physical_block_size=%u, logical_block_size=%u, "
420 "alignment_offset=%u, start=%llu",
421 dm_device_name(ti->table->md), bdevname(bdev, b),
422 q->limits.physical_block_size,
423 q->limits.logical_block_size,
424 q->limits.alignment_offset,
425 (unsigned long long) start << SECTOR_SHIFT);
426 return 0;
427 }
428
429 /*
430 * Decrement a device's use count and remove it if necessary.
431 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)432 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
433 {
434 int found = 0;
435 struct list_head *devices = &ti->table->devices;
436 struct dm_dev_internal *dd;
437
438 list_for_each_entry(dd, devices, list) {
439 if (dd->dm_dev == d) {
440 found = 1;
441 break;
442 }
443 }
444 if (!found) {
445 DMWARN("%s: device %s not in table devices list",
446 dm_device_name(ti->table->md), d->name);
447 return;
448 }
449 if (refcount_dec_and_test(&dd->count)) {
450 dm_put_table_device(ti->table->md, d);
451 list_del(&dd->list);
452 kfree(dd);
453 }
454 }
455 EXPORT_SYMBOL(dm_put_device);
456
457 /*
458 * Checks to see if the target joins onto the end of the table.
459 */
adjoin(struct dm_table * table,struct dm_target * ti)460 static int adjoin(struct dm_table *table, struct dm_target *ti)
461 {
462 struct dm_target *prev;
463
464 if (!table->num_targets)
465 return !ti->begin;
466
467 prev = &table->targets[table->num_targets - 1];
468 return (ti->begin == (prev->begin + prev->len));
469 }
470
471 /*
472 * Used to dynamically allocate the arg array.
473 *
474 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
475 * process messages even if some device is suspended. These messages have a
476 * small fixed number of arguments.
477 *
478 * On the other hand, dm-switch needs to process bulk data using messages and
479 * excessive use of GFP_NOIO could cause trouble.
480 */
realloc_argv(unsigned * size,char ** old_argv)481 static char **realloc_argv(unsigned *size, char **old_argv)
482 {
483 char **argv;
484 unsigned new_size;
485 gfp_t gfp;
486
487 if (*size) {
488 new_size = *size * 2;
489 gfp = GFP_KERNEL;
490 } else {
491 new_size = 8;
492 gfp = GFP_NOIO;
493 }
494 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
495 if (argv && old_argv) {
496 memcpy(argv, old_argv, *size * sizeof(*argv));
497 *size = new_size;
498 }
499
500 kfree(old_argv);
501 return argv;
502 }
503
504 /*
505 * Destructively splits up the argument list to pass to ctr.
506 */
dm_split_args(int * argc,char *** argvp,char * input)507 int dm_split_args(int *argc, char ***argvp, char *input)
508 {
509 char *start, *end = input, *out, **argv = NULL;
510 unsigned array_size = 0;
511
512 *argc = 0;
513
514 if (!input) {
515 *argvp = NULL;
516 return 0;
517 }
518
519 argv = realloc_argv(&array_size, argv);
520 if (!argv)
521 return -ENOMEM;
522
523 while (1) {
524 /* Skip whitespace */
525 start = skip_spaces(end);
526
527 if (!*start)
528 break; /* success, we hit the end */
529
530 /* 'out' is used to remove any back-quotes */
531 end = out = start;
532 while (*end) {
533 /* Everything apart from '\0' can be quoted */
534 if (*end == '\\' && *(end + 1)) {
535 *out++ = *(end + 1);
536 end += 2;
537 continue;
538 }
539
540 if (isspace(*end))
541 break; /* end of token */
542
543 *out++ = *end++;
544 }
545
546 /* have we already filled the array ? */
547 if ((*argc + 1) > array_size) {
548 argv = realloc_argv(&array_size, argv);
549 if (!argv)
550 return -ENOMEM;
551 }
552
553 /* we know this is whitespace */
554 if (*end)
555 end++;
556
557 /* terminate the string and put it in the array */
558 *out = '\0';
559 argv[*argc] = start;
560 (*argc)++;
561 }
562
563 *argvp = argv;
564 return 0;
565 }
566
567 /*
568 * Impose necessary and sufficient conditions on a devices's table such
569 * that any incoming bio which respects its logical_block_size can be
570 * processed successfully. If it falls across the boundary between
571 * two or more targets, the size of each piece it gets split into must
572 * be compatible with the logical_block_size of the target processing it.
573 */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)574 static int validate_hardware_logical_block_alignment(struct dm_table *table,
575 struct queue_limits *limits)
576 {
577 /*
578 * This function uses arithmetic modulo the logical_block_size
579 * (in units of 512-byte sectors).
580 */
581 unsigned short device_logical_block_size_sects =
582 limits->logical_block_size >> SECTOR_SHIFT;
583
584 /*
585 * Offset of the start of the next table entry, mod logical_block_size.
586 */
587 unsigned short next_target_start = 0;
588
589 /*
590 * Given an aligned bio that extends beyond the end of a
591 * target, how many sectors must the next target handle?
592 */
593 unsigned short remaining = 0;
594
595 struct dm_target *ti;
596 struct queue_limits ti_limits;
597 unsigned i;
598
599 /*
600 * Check each entry in the table in turn.
601 */
602 for (i = 0; i < dm_table_get_num_targets(table); i++) {
603 ti = dm_table_get_target(table, i);
604
605 blk_set_stacking_limits(&ti_limits);
606
607 /* combine all target devices' limits */
608 if (ti->type->iterate_devices)
609 ti->type->iterate_devices(ti, dm_set_device_limits,
610 &ti_limits);
611
612 /*
613 * If the remaining sectors fall entirely within this
614 * table entry are they compatible with its logical_block_size?
615 */
616 if (remaining < ti->len &&
617 remaining & ((ti_limits.logical_block_size >>
618 SECTOR_SHIFT) - 1))
619 break; /* Error */
620
621 next_target_start =
622 (unsigned short) ((next_target_start + ti->len) &
623 (device_logical_block_size_sects - 1));
624 remaining = next_target_start ?
625 device_logical_block_size_sects - next_target_start : 0;
626 }
627
628 if (remaining) {
629 DMWARN("%s: table line %u (start sect %llu len %llu) "
630 "not aligned to h/w logical block size %u",
631 dm_device_name(table->md), i,
632 (unsigned long long) ti->begin,
633 (unsigned long long) ti->len,
634 limits->logical_block_size);
635 return -EINVAL;
636 }
637
638 return 0;
639 }
640
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)641 int dm_table_add_target(struct dm_table *t, const char *type,
642 sector_t start, sector_t len, char *params)
643 {
644 int r = -EINVAL, argc;
645 char **argv;
646 struct dm_target *tgt;
647
648 if (t->singleton) {
649 DMERR("%s: target type %s must appear alone in table",
650 dm_device_name(t->md), t->targets->type->name);
651 return -EINVAL;
652 }
653
654 BUG_ON(t->num_targets >= t->num_allocated);
655
656 tgt = t->targets + t->num_targets;
657 memset(tgt, 0, sizeof(*tgt));
658
659 if (!len) {
660 DMERR("%s: zero-length target", dm_device_name(t->md));
661 return -EINVAL;
662 }
663
664 tgt->type = dm_get_target_type(type);
665 if (!tgt->type) {
666 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
667 return -EINVAL;
668 }
669
670 if (dm_target_needs_singleton(tgt->type)) {
671 if (t->num_targets) {
672 tgt->error = "singleton target type must appear alone in table";
673 goto bad;
674 }
675 t->singleton = true;
676 }
677
678 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
679 tgt->error = "target type may not be included in a read-only table";
680 goto bad;
681 }
682
683 if (t->immutable_target_type) {
684 if (t->immutable_target_type != tgt->type) {
685 tgt->error = "immutable target type cannot be mixed with other target types";
686 goto bad;
687 }
688 } else if (dm_target_is_immutable(tgt->type)) {
689 if (t->num_targets) {
690 tgt->error = "immutable target type cannot be mixed with other target types";
691 goto bad;
692 }
693 t->immutable_target_type = tgt->type;
694 }
695
696 if (dm_target_has_integrity(tgt->type))
697 t->integrity_added = 1;
698
699 tgt->table = t;
700 tgt->begin = start;
701 tgt->len = len;
702 tgt->error = "Unknown error";
703
704 /*
705 * Does this target adjoin the previous one ?
706 */
707 if (!adjoin(t, tgt)) {
708 tgt->error = "Gap in table";
709 goto bad;
710 }
711
712 r = dm_split_args(&argc, &argv, params);
713 if (r) {
714 tgt->error = "couldn't split parameters (insufficient memory)";
715 goto bad;
716 }
717
718 r = tgt->type->ctr(tgt, argc, argv);
719 kfree(argv);
720 if (r)
721 goto bad;
722
723 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
724
725 if (!tgt->num_discard_bios && tgt->discards_supported)
726 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
727 dm_device_name(t->md), type);
728
729 return 0;
730
731 bad:
732 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
733 dm_put_target_type(tgt->type);
734 return r;
735 }
736
737 /*
738 * Target argument parsing helpers.
739 */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)740 static int validate_next_arg(const struct dm_arg *arg,
741 struct dm_arg_set *arg_set,
742 unsigned *value, char **error, unsigned grouped)
743 {
744 const char *arg_str = dm_shift_arg(arg_set);
745 char dummy;
746
747 if (!arg_str ||
748 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
749 (*value < arg->min) ||
750 (*value > arg->max) ||
751 (grouped && arg_set->argc < *value)) {
752 *error = arg->error;
753 return -EINVAL;
754 }
755
756 return 0;
757 }
758
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)759 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
760 unsigned *value, char **error)
761 {
762 return validate_next_arg(arg, arg_set, value, error, 0);
763 }
764 EXPORT_SYMBOL(dm_read_arg);
765
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)766 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
767 unsigned *value, char **error)
768 {
769 return validate_next_arg(arg, arg_set, value, error, 1);
770 }
771 EXPORT_SYMBOL(dm_read_arg_group);
772
dm_shift_arg(struct dm_arg_set * as)773 const char *dm_shift_arg(struct dm_arg_set *as)
774 {
775 char *r;
776
777 if (as->argc) {
778 as->argc--;
779 r = *as->argv;
780 as->argv++;
781 return r;
782 }
783
784 return NULL;
785 }
786 EXPORT_SYMBOL(dm_shift_arg);
787
dm_consume_args(struct dm_arg_set * as,unsigned num_args)788 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
789 {
790 BUG_ON(as->argc < num_args);
791 as->argc -= num_args;
792 as->argv += num_args;
793 }
794 EXPORT_SYMBOL(dm_consume_args);
795
__table_type_bio_based(enum dm_queue_mode table_type)796 static bool __table_type_bio_based(enum dm_queue_mode table_type)
797 {
798 return (table_type == DM_TYPE_BIO_BASED ||
799 table_type == DM_TYPE_DAX_BIO_BASED);
800 }
801
__table_type_request_based(enum dm_queue_mode table_type)802 static bool __table_type_request_based(enum dm_queue_mode table_type)
803 {
804 return table_type == DM_TYPE_REQUEST_BASED;
805 }
806
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)807 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
808 {
809 t->type = type;
810 }
811 EXPORT_SYMBOL_GPL(dm_table_set_type);
812
813 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)814 int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
815 sector_t start, sector_t len, void *data)
816 {
817 int blocksize = *(int *) data;
818
819 return !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
820 }
821
822 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)823 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
824 sector_t start, sector_t len, void *data)
825 {
826 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
827 }
828
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn,int * blocksize)829 bool dm_table_supports_dax(struct dm_table *t,
830 iterate_devices_callout_fn iterate_fn, int *blocksize)
831 {
832 struct dm_target *ti;
833 unsigned i;
834
835 /* Ensure that all targets support DAX. */
836 for (i = 0; i < dm_table_get_num_targets(t); i++) {
837 ti = dm_table_get_target(t, i);
838
839 if (!ti->type->direct_access)
840 return false;
841
842 if (!ti->type->iterate_devices ||
843 ti->type->iterate_devices(ti, iterate_fn, blocksize))
844 return false;
845 }
846
847 return true;
848 }
849
device_is_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)850 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
851 sector_t start, sector_t len, void *data)
852 {
853 struct block_device *bdev = dev->bdev;
854 struct request_queue *q = bdev_get_queue(bdev);
855
856 /* request-based cannot stack on partitions! */
857 if (bdev_is_partition(bdev))
858 return false;
859
860 return queue_is_mq(q);
861 }
862
dm_table_determine_type(struct dm_table * t)863 static int dm_table_determine_type(struct dm_table *t)
864 {
865 unsigned i;
866 unsigned bio_based = 0, request_based = 0, hybrid = 0;
867 struct dm_target *tgt;
868 struct list_head *devices = dm_table_get_devices(t);
869 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
870 int page_size = PAGE_SIZE;
871
872 if (t->type != DM_TYPE_NONE) {
873 /* target already set the table's type */
874 if (t->type == DM_TYPE_BIO_BASED) {
875 /* possibly upgrade to a variant of bio-based */
876 goto verify_bio_based;
877 }
878 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
879 goto verify_rq_based;
880 }
881
882 for (i = 0; i < t->num_targets; i++) {
883 tgt = t->targets + i;
884 if (dm_target_hybrid(tgt))
885 hybrid = 1;
886 else if (dm_target_request_based(tgt))
887 request_based = 1;
888 else
889 bio_based = 1;
890
891 if (bio_based && request_based) {
892 DMERR("Inconsistent table: different target types"
893 " can't be mixed up");
894 return -EINVAL;
895 }
896 }
897
898 if (hybrid && !bio_based && !request_based) {
899 /*
900 * The targets can work either way.
901 * Determine the type from the live device.
902 * Default to bio-based if device is new.
903 */
904 if (__table_type_request_based(live_md_type))
905 request_based = 1;
906 else
907 bio_based = 1;
908 }
909
910 if (bio_based) {
911 verify_bio_based:
912 /* We must use this table as bio-based */
913 t->type = DM_TYPE_BIO_BASED;
914 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
915 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
916 t->type = DM_TYPE_DAX_BIO_BASED;
917 }
918 return 0;
919 }
920
921 BUG_ON(!request_based); /* No targets in this table */
922
923 t->type = DM_TYPE_REQUEST_BASED;
924
925 verify_rq_based:
926 /*
927 * Request-based dm supports only tables that have a single target now.
928 * To support multiple targets, request splitting support is needed,
929 * and that needs lots of changes in the block-layer.
930 * (e.g. request completion process for partial completion.)
931 */
932 if (t->num_targets > 1) {
933 DMERR("request-based DM doesn't support multiple targets");
934 return -EINVAL;
935 }
936
937 if (list_empty(devices)) {
938 int srcu_idx;
939 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
940
941 /* inherit live table's type */
942 if (live_table)
943 t->type = live_table->type;
944 dm_put_live_table(t->md, srcu_idx);
945 return 0;
946 }
947
948 tgt = dm_table_get_immutable_target(t);
949 if (!tgt) {
950 DMERR("table load rejected: immutable target is required");
951 return -EINVAL;
952 } else if (tgt->max_io_len) {
953 DMERR("table load rejected: immutable target that splits IO is not supported");
954 return -EINVAL;
955 }
956
957 /* Non-request-stackable devices can't be used for request-based dm */
958 if (!tgt->type->iterate_devices ||
959 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
960 DMERR("table load rejected: including non-request-stackable devices");
961 return -EINVAL;
962 }
963
964 return 0;
965 }
966
dm_table_get_type(struct dm_table * t)967 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
968 {
969 return t->type;
970 }
971
dm_table_get_immutable_target_type(struct dm_table * t)972 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
973 {
974 return t->immutable_target_type;
975 }
976
dm_table_get_immutable_target(struct dm_table * t)977 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
978 {
979 /* Immutable target is implicitly a singleton */
980 if (t->num_targets > 1 ||
981 !dm_target_is_immutable(t->targets[0].type))
982 return NULL;
983
984 return t->targets;
985 }
986
dm_table_get_wildcard_target(struct dm_table * t)987 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
988 {
989 struct dm_target *ti;
990 unsigned i;
991
992 for (i = 0; i < dm_table_get_num_targets(t); i++) {
993 ti = dm_table_get_target(t, i);
994 if (dm_target_is_wildcard(ti->type))
995 return ti;
996 }
997
998 return NULL;
999 }
1000
dm_table_bio_based(struct dm_table * t)1001 bool dm_table_bio_based(struct dm_table *t)
1002 {
1003 return __table_type_bio_based(dm_table_get_type(t));
1004 }
1005
dm_table_request_based(struct dm_table * t)1006 bool dm_table_request_based(struct dm_table *t)
1007 {
1008 return __table_type_request_based(dm_table_get_type(t));
1009 }
1010
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1011 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1012 {
1013 enum dm_queue_mode type = dm_table_get_type(t);
1014 unsigned per_io_data_size = 0;
1015 unsigned min_pool_size = 0;
1016 struct dm_target *ti;
1017 unsigned i;
1018
1019 if (unlikely(type == DM_TYPE_NONE)) {
1020 DMWARN("no table type is set, can't allocate mempools");
1021 return -EINVAL;
1022 }
1023
1024 if (__table_type_bio_based(type))
1025 for (i = 0; i < t->num_targets; i++) {
1026 ti = t->targets + i;
1027 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1028 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1029 }
1030
1031 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1032 per_io_data_size, min_pool_size);
1033 if (!t->mempools)
1034 return -ENOMEM;
1035
1036 return 0;
1037 }
1038
dm_table_free_md_mempools(struct dm_table * t)1039 void dm_table_free_md_mempools(struct dm_table *t)
1040 {
1041 dm_free_md_mempools(t->mempools);
1042 t->mempools = NULL;
1043 }
1044
dm_table_get_md_mempools(struct dm_table * t)1045 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1046 {
1047 return t->mempools;
1048 }
1049
setup_indexes(struct dm_table * t)1050 static int setup_indexes(struct dm_table *t)
1051 {
1052 int i;
1053 unsigned int total = 0;
1054 sector_t *indexes;
1055
1056 /* allocate the space for *all* the indexes */
1057 for (i = t->depth - 2; i >= 0; i--) {
1058 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1059 total += t->counts[i];
1060 }
1061
1062 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1063 if (!indexes)
1064 return -ENOMEM;
1065
1066 /* set up internal nodes, bottom-up */
1067 for (i = t->depth - 2; i >= 0; i--) {
1068 t->index[i] = indexes;
1069 indexes += (KEYS_PER_NODE * t->counts[i]);
1070 setup_btree_index(i, t);
1071 }
1072
1073 return 0;
1074 }
1075
1076 /*
1077 * Builds the btree to index the map.
1078 */
dm_table_build_index(struct dm_table * t)1079 static int dm_table_build_index(struct dm_table *t)
1080 {
1081 int r = 0;
1082 unsigned int leaf_nodes;
1083
1084 /* how many indexes will the btree have ? */
1085 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1086 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1087
1088 /* leaf layer has already been set up */
1089 t->counts[t->depth - 1] = leaf_nodes;
1090 t->index[t->depth - 1] = t->highs;
1091
1092 if (t->depth >= 2)
1093 r = setup_indexes(t);
1094
1095 return r;
1096 }
1097
integrity_profile_exists(struct gendisk * disk)1098 static bool integrity_profile_exists(struct gendisk *disk)
1099 {
1100 return !!blk_get_integrity(disk);
1101 }
1102
1103 /*
1104 * Get a disk whose integrity profile reflects the table's profile.
1105 * Returns NULL if integrity support was inconsistent or unavailable.
1106 */
dm_table_get_integrity_disk(struct dm_table * t)1107 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1108 {
1109 struct list_head *devices = dm_table_get_devices(t);
1110 struct dm_dev_internal *dd = NULL;
1111 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1112 unsigned i;
1113
1114 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1115 struct dm_target *ti = dm_table_get_target(t, i);
1116 if (!dm_target_passes_integrity(ti->type))
1117 goto no_integrity;
1118 }
1119
1120 list_for_each_entry(dd, devices, list) {
1121 template_disk = dd->dm_dev->bdev->bd_disk;
1122 if (!integrity_profile_exists(template_disk))
1123 goto no_integrity;
1124 else if (prev_disk &&
1125 blk_integrity_compare(prev_disk, template_disk) < 0)
1126 goto no_integrity;
1127 prev_disk = template_disk;
1128 }
1129
1130 return template_disk;
1131
1132 no_integrity:
1133 if (prev_disk)
1134 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1135 dm_device_name(t->md),
1136 prev_disk->disk_name,
1137 template_disk->disk_name);
1138 return NULL;
1139 }
1140
1141 /*
1142 * Register the mapped device for blk_integrity support if the
1143 * underlying devices have an integrity profile. But all devices may
1144 * not have matching profiles (checking all devices isn't reliable
1145 * during table load because this table may use other DM device(s) which
1146 * must be resumed before they will have an initialized integity
1147 * profile). Consequently, stacked DM devices force a 2 stage integrity
1148 * profile validation: First pass during table load, final pass during
1149 * resume.
1150 */
dm_table_register_integrity(struct dm_table * t)1151 static int dm_table_register_integrity(struct dm_table *t)
1152 {
1153 struct mapped_device *md = t->md;
1154 struct gendisk *template_disk = NULL;
1155
1156 /* If target handles integrity itself do not register it here. */
1157 if (t->integrity_added)
1158 return 0;
1159
1160 template_disk = dm_table_get_integrity_disk(t);
1161 if (!template_disk)
1162 return 0;
1163
1164 if (!integrity_profile_exists(dm_disk(md))) {
1165 t->integrity_supported = true;
1166 /*
1167 * Register integrity profile during table load; we can do
1168 * this because the final profile must match during resume.
1169 */
1170 blk_integrity_register(dm_disk(md),
1171 blk_get_integrity(template_disk));
1172 return 0;
1173 }
1174
1175 /*
1176 * If DM device already has an initialized integrity
1177 * profile the new profile should not conflict.
1178 */
1179 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1180 DMWARN("%s: conflict with existing integrity profile: "
1181 "%s profile mismatch",
1182 dm_device_name(t->md),
1183 template_disk->disk_name);
1184 return 1;
1185 }
1186
1187 /* Preserve existing integrity profile */
1188 t->integrity_supported = true;
1189 return 0;
1190 }
1191
1192 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1193
1194 struct dm_crypto_profile {
1195 struct blk_crypto_profile profile;
1196 struct mapped_device *md;
1197 };
1198
dm_keyslot_evict_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1199 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1200 sector_t start, sector_t len, void *data)
1201 {
1202 const struct blk_crypto_key *key = data;
1203
1204 blk_crypto_evict_key(dev->bdev, key);
1205 return 0;
1206 }
1207
1208 /*
1209 * When an inline encryption key is evicted from a device-mapper device, evict
1210 * it from all the underlying devices.
1211 */
dm_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)1212 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1213 const struct blk_crypto_key *key, unsigned int slot)
1214 {
1215 struct mapped_device *md =
1216 container_of(profile, struct dm_crypto_profile, profile)->md;
1217 struct dm_table *t;
1218 int srcu_idx;
1219 int i;
1220 struct dm_target *ti;
1221
1222 t = dm_get_live_table(md, &srcu_idx);
1223 if (!t)
1224 return 0;
1225 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1226 ti = dm_table_get_target(t, i);
1227 if (!ti->type->iterate_devices)
1228 continue;
1229 ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1230 (void *)key);
1231 }
1232 dm_put_live_table(md, srcu_idx);
1233 return 0;
1234 }
1235
1236 struct dm_derive_sw_secret_args {
1237 const u8 *eph_key;
1238 size_t eph_key_size;
1239 u8 *sw_secret;
1240 int err;
1241 };
1242
dm_derive_sw_secret_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1243 static int dm_derive_sw_secret_callback(struct dm_target *ti,
1244 struct dm_dev *dev, sector_t start,
1245 sector_t len, void *data)
1246 {
1247 struct dm_derive_sw_secret_args *args = data;
1248
1249 if (!args->err)
1250 return 0;
1251
1252 args->err = blk_crypto_derive_sw_secret(dev->bdev,
1253 args->eph_key,
1254 args->eph_key_size,
1255 args->sw_secret);
1256 /* Try another device in case this fails. */
1257 return 0;
1258 }
1259
1260 /*
1261 * Retrieve the sw_secret from the underlying device. Given that only one
1262 * sw_secret can exist for a particular wrapped key, retrieve it only from the
1263 * first device that supports derive_sw_secret().
1264 */
dm_derive_sw_secret(struct blk_crypto_profile * profile,const u8 * eph_key,size_t eph_key_size,u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])1265 static int dm_derive_sw_secret(struct blk_crypto_profile *profile,
1266 const u8 *eph_key, size_t eph_key_size,
1267 u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])
1268 {
1269 struct mapped_device *md =
1270 container_of(profile, struct dm_crypto_profile, profile)->md;
1271 struct dm_derive_sw_secret_args args = {
1272 .eph_key = eph_key,
1273 .eph_key_size = eph_key_size,
1274 .sw_secret = sw_secret,
1275 .err = -EOPNOTSUPP,
1276 };
1277 struct dm_table *t;
1278 int srcu_idx;
1279 int i;
1280 struct dm_target *ti;
1281
1282 t = dm_get_live_table(md, &srcu_idx);
1283 if (!t)
1284 return -EOPNOTSUPP;
1285 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1286 ti = dm_table_get_target(t, i);
1287 if (!ti->type->iterate_devices)
1288 continue;
1289 ti->type->iterate_devices(ti, dm_derive_sw_secret_callback,
1290 &args);
1291 if (!args.err)
1292 break;
1293 }
1294 dm_put_live_table(md, srcu_idx);
1295 return args.err;
1296 }
1297
1298 static int
device_intersect_crypto_capabilities(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1299 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1300 sector_t start, sector_t len, void *data)
1301 {
1302 struct blk_crypto_profile *parent = data;
1303 struct blk_crypto_profile *child =
1304 bdev_get_queue(dev->bdev)->crypto_profile;
1305
1306 blk_crypto_intersect_capabilities(parent, child);
1307 return 0;
1308 }
1309
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1310 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1311 {
1312 struct dm_crypto_profile *dmcp = container_of(profile,
1313 struct dm_crypto_profile,
1314 profile);
1315
1316 if (!profile)
1317 return;
1318
1319 blk_crypto_profile_destroy(profile);
1320 kfree(dmcp);
1321 }
1322
dm_table_destroy_crypto_profile(struct dm_table * t)1323 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1324 {
1325 dm_destroy_crypto_profile(t->crypto_profile);
1326 t->crypto_profile = NULL;
1327 }
1328
1329 /*
1330 * Constructs and initializes t->crypto_profile with a crypto profile that
1331 * represents the common set of crypto capabilities of the devices described by
1332 * the dm_table. However, if the constructed crypto profile doesn't support all
1333 * crypto capabilities that are supported by the current mapped_device, it
1334 * returns an error instead, since we don't support removing crypto capabilities
1335 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1336 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1337 */
dm_table_construct_crypto_profile(struct dm_table * t)1338 static int dm_table_construct_crypto_profile(struct dm_table *t)
1339 {
1340 struct dm_crypto_profile *dmcp;
1341 struct blk_crypto_profile *profile;
1342 struct dm_target *ti;
1343 unsigned int i;
1344 bool empty_profile = true;
1345
1346 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1347 if (!dmcp)
1348 return -ENOMEM;
1349 dmcp->md = t->md;
1350
1351 profile = &dmcp->profile;
1352 blk_crypto_profile_init(profile, 0);
1353 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1354 profile->ll_ops.derive_sw_secret = dm_derive_sw_secret;
1355 profile->max_dun_bytes_supported = UINT_MAX;
1356 memset(profile->modes_supported, 0xFF,
1357 sizeof(profile->modes_supported));
1358 profile->key_types_supported = ~0;
1359
1360 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1361 ti = dm_table_get_target(t, i);
1362
1363 if (!dm_target_passes_crypto(ti->type)) {
1364 blk_crypto_intersect_capabilities(profile, NULL);
1365 break;
1366 }
1367 if (!ti->type->iterate_devices)
1368 continue;
1369 ti->type->iterate_devices(ti,
1370 device_intersect_crypto_capabilities,
1371 profile);
1372 }
1373
1374 if (t->md->queue &&
1375 !blk_crypto_has_capabilities(profile,
1376 t->md->queue->crypto_profile)) {
1377 DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1378 dm_destroy_crypto_profile(profile);
1379 return -EINVAL;
1380 }
1381
1382 /*
1383 * If the new profile doesn't actually support any crypto capabilities,
1384 * we may as well represent it with a NULL profile.
1385 */
1386 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1387 if (profile->modes_supported[i]) {
1388 empty_profile = false;
1389 break;
1390 }
1391 }
1392
1393 if (empty_profile) {
1394 dm_destroy_crypto_profile(profile);
1395 profile = NULL;
1396 }
1397
1398 /*
1399 * t->crypto_profile is only set temporarily while the table is being
1400 * set up, and it gets set to NULL after the profile has been
1401 * transferred to the request_queue.
1402 */
1403 t->crypto_profile = profile;
1404
1405 return 0;
1406 }
1407
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1408 static void dm_update_crypto_profile(struct request_queue *q,
1409 struct dm_table *t)
1410 {
1411 if (!t->crypto_profile)
1412 return;
1413
1414 /* Make the crypto profile less restrictive. */
1415 if (!q->crypto_profile) {
1416 blk_crypto_register(t->crypto_profile, q);
1417 } else {
1418 blk_crypto_update_capabilities(q->crypto_profile,
1419 t->crypto_profile);
1420 dm_destroy_crypto_profile(t->crypto_profile);
1421 }
1422 t->crypto_profile = NULL;
1423 }
1424
1425 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1426
dm_table_construct_crypto_profile(struct dm_table * t)1427 static int dm_table_construct_crypto_profile(struct dm_table *t)
1428 {
1429 return 0;
1430 }
1431
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1432 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1433 {
1434 }
1435
dm_table_destroy_crypto_profile(struct dm_table * t)1436 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1437 {
1438 }
1439
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1440 static void dm_update_crypto_profile(struct request_queue *q,
1441 struct dm_table *t)
1442 {
1443 }
1444
1445 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1446
1447 /*
1448 * Prepares the table for use by building the indices,
1449 * setting the type, and allocating mempools.
1450 */
dm_table_complete(struct dm_table * t)1451 int dm_table_complete(struct dm_table *t)
1452 {
1453 int r;
1454
1455 r = dm_table_determine_type(t);
1456 if (r) {
1457 DMERR("unable to determine table type");
1458 return r;
1459 }
1460
1461 r = dm_table_build_index(t);
1462 if (r) {
1463 DMERR("unable to build btrees");
1464 return r;
1465 }
1466
1467 r = dm_table_register_integrity(t);
1468 if (r) {
1469 DMERR("could not register integrity profile.");
1470 return r;
1471 }
1472
1473 r = dm_table_construct_crypto_profile(t);
1474 if (r) {
1475 DMERR("could not construct crypto profile.");
1476 return r;
1477 }
1478
1479 r = dm_table_alloc_md_mempools(t, t->md);
1480 if (r)
1481 DMERR("unable to allocate mempools");
1482
1483 return r;
1484 }
1485
1486 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1487 void dm_table_event_callback(struct dm_table *t,
1488 void (*fn)(void *), void *context)
1489 {
1490 mutex_lock(&_event_lock);
1491 t->event_fn = fn;
1492 t->event_context = context;
1493 mutex_unlock(&_event_lock);
1494 }
1495
dm_table_event(struct dm_table * t)1496 void dm_table_event(struct dm_table *t)
1497 {
1498 mutex_lock(&_event_lock);
1499 if (t->event_fn)
1500 t->event_fn(t->event_context);
1501 mutex_unlock(&_event_lock);
1502 }
1503 EXPORT_SYMBOL(dm_table_event);
1504
dm_table_get_size(struct dm_table * t)1505 inline sector_t dm_table_get_size(struct dm_table *t)
1506 {
1507 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1508 }
1509 EXPORT_SYMBOL(dm_table_get_size);
1510
dm_table_get_target(struct dm_table * t,unsigned int index)1511 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1512 {
1513 if (index >= t->num_targets)
1514 return NULL;
1515
1516 return t->targets + index;
1517 }
1518
1519 /*
1520 * Search the btree for the correct target.
1521 *
1522 * Caller should check returned pointer for NULL
1523 * to trap I/O beyond end of device.
1524 */
dm_table_find_target(struct dm_table * t,sector_t sector)1525 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1526 {
1527 unsigned int l, n = 0, k = 0;
1528 sector_t *node;
1529
1530 if (unlikely(sector >= dm_table_get_size(t)))
1531 return NULL;
1532
1533 for (l = 0; l < t->depth; l++) {
1534 n = get_child(n, k);
1535 node = get_node(t, l, n);
1536
1537 for (k = 0; k < KEYS_PER_NODE; k++)
1538 if (node[k] >= sector)
1539 break;
1540 }
1541
1542 return &t->targets[(KEYS_PER_NODE * n) + k];
1543 }
1544
1545 /*
1546 * type->iterate_devices() should be called when the sanity check needs to
1547 * iterate and check all underlying data devices. iterate_devices() will
1548 * iterate all underlying data devices until it encounters a non-zero return
1549 * code, returned by whether the input iterate_devices_callout_fn, or
1550 * iterate_devices() itself internally.
1551 *
1552 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1553 * iterate multiple underlying devices internally, in which case a non-zero
1554 * return code returned by iterate_devices_callout_fn will stop the iteration
1555 * in advance.
1556 *
1557 * Cases requiring _any_ underlying device supporting some kind of attribute,
1558 * should use the iteration structure like dm_table_any_dev_attr(), or call
1559 * it directly. @func should handle semantics of positive examples, e.g.
1560 * capable of something.
1561 *
1562 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1563 * should use the iteration structure like dm_table_supports_nowait() or
1564 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1565 * uses an @anti_func that handle semantics of counter examples, e.g. not
1566 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1567 */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1568 static bool dm_table_any_dev_attr(struct dm_table *t,
1569 iterate_devices_callout_fn func, void *data)
1570 {
1571 struct dm_target *ti;
1572 unsigned int i;
1573
1574 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1575 ti = dm_table_get_target(t, i);
1576
1577 if (ti->type->iterate_devices &&
1578 ti->type->iterate_devices(ti, func, data))
1579 return true;
1580 }
1581
1582 return false;
1583 }
1584
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1585 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1586 sector_t start, sector_t len, void *data)
1587 {
1588 unsigned *num_devices = data;
1589
1590 (*num_devices)++;
1591
1592 return 0;
1593 }
1594
1595 /*
1596 * Check whether a table has no data devices attached using each
1597 * target's iterate_devices method.
1598 * Returns false if the result is unknown because a target doesn't
1599 * support iterate_devices.
1600 */
dm_table_has_no_data_devices(struct dm_table * table)1601 bool dm_table_has_no_data_devices(struct dm_table *table)
1602 {
1603 struct dm_target *ti;
1604 unsigned i, num_devices;
1605
1606 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1607 ti = dm_table_get_target(table, i);
1608
1609 if (!ti->type->iterate_devices)
1610 return false;
1611
1612 num_devices = 0;
1613 ti->type->iterate_devices(ti, count_device, &num_devices);
1614 if (num_devices)
1615 return false;
1616 }
1617
1618 return true;
1619 }
1620
device_not_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1621 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1622 sector_t start, sector_t len, void *data)
1623 {
1624 struct request_queue *q = bdev_get_queue(dev->bdev);
1625 enum blk_zoned_model *zoned_model = data;
1626
1627 return blk_queue_zoned_model(q) != *zoned_model;
1628 }
1629
1630 /*
1631 * Check the device zoned model based on the target feature flag. If the target
1632 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1633 * also accepted but all devices must have the same zoned model. If the target
1634 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1635 * zoned model with all zoned devices having the same zone size.
1636 */
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1637 static bool dm_table_supports_zoned_model(struct dm_table *t,
1638 enum blk_zoned_model zoned_model)
1639 {
1640 struct dm_target *ti;
1641 unsigned i;
1642
1643 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1644 ti = dm_table_get_target(t, i);
1645
1646 if (dm_target_supports_zoned_hm(ti->type)) {
1647 if (!ti->type->iterate_devices ||
1648 ti->type->iterate_devices(ti, device_not_zoned_model,
1649 &zoned_model))
1650 return false;
1651 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1652 if (zoned_model == BLK_ZONED_HM)
1653 return false;
1654 }
1655 }
1656
1657 return true;
1658 }
1659
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1660 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1661 sector_t start, sector_t len, void *data)
1662 {
1663 struct request_queue *q = bdev_get_queue(dev->bdev);
1664 unsigned int *zone_sectors = data;
1665
1666 if (!blk_queue_is_zoned(q))
1667 return 0;
1668
1669 return blk_queue_zone_sectors(q) != *zone_sectors;
1670 }
1671
1672 /*
1673 * Check consistency of zoned model and zone sectors across all targets. For
1674 * zone sectors, if the destination device is a zoned block device, it shall
1675 * have the specified zone_sectors.
1676 */
validate_hardware_zoned_model(struct dm_table * table,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1677 static int validate_hardware_zoned_model(struct dm_table *table,
1678 enum blk_zoned_model zoned_model,
1679 unsigned int zone_sectors)
1680 {
1681 if (zoned_model == BLK_ZONED_NONE)
1682 return 0;
1683
1684 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1685 DMERR("%s: zoned model is not consistent across all devices",
1686 dm_device_name(table->md));
1687 return -EINVAL;
1688 }
1689
1690 if (!zone_sectors)
1691 return -EINVAL;
1692
1693 if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1694 DMERR("%s: zone sectors is not consistent across all zoned devices",
1695 dm_device_name(table->md));
1696 return -EINVAL;
1697 }
1698
1699 return 0;
1700 }
1701
1702 /*
1703 * Establish the new table's queue_limits and validate them.
1704 */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1705 int dm_calculate_queue_limits(struct dm_table *table,
1706 struct queue_limits *limits)
1707 {
1708 struct dm_target *ti;
1709 struct queue_limits ti_limits;
1710 unsigned i;
1711 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1712 unsigned int zone_sectors = 0;
1713
1714 blk_set_stacking_limits(limits);
1715
1716 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1717 blk_set_stacking_limits(&ti_limits);
1718
1719 ti = dm_table_get_target(table, i);
1720
1721 if (!ti->type->iterate_devices)
1722 goto combine_limits;
1723
1724 /*
1725 * Combine queue limits of all the devices this target uses.
1726 */
1727 ti->type->iterate_devices(ti, dm_set_device_limits,
1728 &ti_limits);
1729
1730 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1731 /*
1732 * After stacking all limits, validate all devices
1733 * in table support this zoned model and zone sectors.
1734 */
1735 zoned_model = ti_limits.zoned;
1736 zone_sectors = ti_limits.chunk_sectors;
1737 }
1738
1739 /* Set I/O hints portion of queue limits */
1740 if (ti->type->io_hints)
1741 ti->type->io_hints(ti, &ti_limits);
1742
1743 /*
1744 * Check each device area is consistent with the target's
1745 * overall queue limits.
1746 */
1747 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1748 &ti_limits))
1749 return -EINVAL;
1750
1751 combine_limits:
1752 /*
1753 * Merge this target's queue limits into the overall limits
1754 * for the table.
1755 */
1756 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1757 DMWARN("%s: adding target device "
1758 "(start sect %llu len %llu) "
1759 "caused an alignment inconsistency",
1760 dm_device_name(table->md),
1761 (unsigned long long) ti->begin,
1762 (unsigned long long) ti->len);
1763 }
1764
1765 /*
1766 * Verify that the zoned model and zone sectors, as determined before
1767 * any .io_hints override, are the same across all devices in the table.
1768 * - this is especially relevant if .io_hints is emulating a disk-managed
1769 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1770 * BUT...
1771 */
1772 if (limits->zoned != BLK_ZONED_NONE) {
1773 /*
1774 * ...IF the above limits stacking determined a zoned model
1775 * validate that all of the table's devices conform to it.
1776 */
1777 zoned_model = limits->zoned;
1778 zone_sectors = limits->chunk_sectors;
1779 }
1780 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1781 return -EINVAL;
1782
1783 return validate_hardware_logical_block_alignment(table, limits);
1784 }
1785
1786 /*
1787 * Verify that all devices have an integrity profile that matches the
1788 * DM device's registered integrity profile. If the profiles don't
1789 * match then unregister the DM device's integrity profile.
1790 */
dm_table_verify_integrity(struct dm_table * t)1791 static void dm_table_verify_integrity(struct dm_table *t)
1792 {
1793 struct gendisk *template_disk = NULL;
1794
1795 if (t->integrity_added)
1796 return;
1797
1798 if (t->integrity_supported) {
1799 /*
1800 * Verify that the original integrity profile
1801 * matches all the devices in this table.
1802 */
1803 template_disk = dm_table_get_integrity_disk(t);
1804 if (template_disk &&
1805 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1806 return;
1807 }
1808
1809 if (integrity_profile_exists(dm_disk(t->md))) {
1810 DMWARN("%s: unable to establish an integrity profile",
1811 dm_device_name(t->md));
1812 blk_integrity_unregister(dm_disk(t->md));
1813 }
1814 }
1815
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1816 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1817 sector_t start, sector_t len, void *data)
1818 {
1819 unsigned long flush = (unsigned long) data;
1820 struct request_queue *q = bdev_get_queue(dev->bdev);
1821
1822 return (q->queue_flags & flush);
1823 }
1824
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1825 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1826 {
1827 struct dm_target *ti;
1828 unsigned i;
1829
1830 /*
1831 * Require at least one underlying device to support flushes.
1832 * t->devices includes internal dm devices such as mirror logs
1833 * so we need to use iterate_devices here, which targets
1834 * supporting flushes must provide.
1835 */
1836 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1837 ti = dm_table_get_target(t, i);
1838
1839 if (!ti->num_flush_bios)
1840 continue;
1841
1842 if (ti->flush_supported)
1843 return true;
1844
1845 if (ti->type->iterate_devices &&
1846 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1847 return true;
1848 }
1849
1850 return false;
1851 }
1852
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1853 static int device_dax_write_cache_enabled(struct dm_target *ti,
1854 struct dm_dev *dev, sector_t start,
1855 sector_t len, void *data)
1856 {
1857 struct dax_device *dax_dev = dev->dax_dev;
1858
1859 if (!dax_dev)
1860 return false;
1861
1862 if (dax_write_cache_enabled(dax_dev))
1863 return true;
1864 return false;
1865 }
1866
device_is_rotational(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1867 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1868 sector_t start, sector_t len, void *data)
1869 {
1870 struct request_queue *q = bdev_get_queue(dev->bdev);
1871
1872 return !blk_queue_nonrot(q);
1873 }
1874
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1875 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1876 sector_t start, sector_t len, void *data)
1877 {
1878 struct request_queue *q = bdev_get_queue(dev->bdev);
1879
1880 return !blk_queue_add_random(q);
1881 }
1882
device_not_write_same_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1883 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1884 sector_t start, sector_t len, void *data)
1885 {
1886 struct request_queue *q = bdev_get_queue(dev->bdev);
1887
1888 return !q->limits.max_write_same_sectors;
1889 }
1890
dm_table_supports_write_same(struct dm_table * t)1891 static bool dm_table_supports_write_same(struct dm_table *t)
1892 {
1893 struct dm_target *ti;
1894 unsigned i;
1895
1896 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1897 ti = dm_table_get_target(t, i);
1898
1899 if (!ti->num_write_same_bios)
1900 return false;
1901
1902 if (!ti->type->iterate_devices ||
1903 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1904 return false;
1905 }
1906
1907 return true;
1908 }
1909
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1910 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1911 sector_t start, sector_t len, void *data)
1912 {
1913 struct request_queue *q = bdev_get_queue(dev->bdev);
1914
1915 return !q->limits.max_write_zeroes_sectors;
1916 }
1917
dm_table_supports_write_zeroes(struct dm_table * t)1918 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1919 {
1920 struct dm_target *ti;
1921 unsigned i = 0;
1922
1923 while (i < dm_table_get_num_targets(t)) {
1924 ti = dm_table_get_target(t, i++);
1925
1926 if (!ti->num_write_zeroes_bios)
1927 return false;
1928
1929 if (!ti->type->iterate_devices ||
1930 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1931 return false;
1932 }
1933
1934 return true;
1935 }
1936
device_not_nowait_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1937 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1938 sector_t start, sector_t len, void *data)
1939 {
1940 struct request_queue *q = bdev_get_queue(dev->bdev);
1941
1942 return !blk_queue_nowait(q);
1943 }
1944
dm_table_supports_nowait(struct dm_table * t)1945 static bool dm_table_supports_nowait(struct dm_table *t)
1946 {
1947 struct dm_target *ti;
1948 unsigned i = 0;
1949
1950 while (i < dm_table_get_num_targets(t)) {
1951 ti = dm_table_get_target(t, i++);
1952
1953 if (!dm_target_supports_nowait(ti->type))
1954 return false;
1955
1956 if (!ti->type->iterate_devices ||
1957 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1958 return false;
1959 }
1960
1961 return true;
1962 }
1963
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1964 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1965 sector_t start, sector_t len, void *data)
1966 {
1967 struct request_queue *q = bdev_get_queue(dev->bdev);
1968
1969 return !blk_queue_discard(q);
1970 }
1971
dm_table_supports_discards(struct dm_table * t)1972 static bool dm_table_supports_discards(struct dm_table *t)
1973 {
1974 struct dm_target *ti;
1975 unsigned i;
1976
1977 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1978 ti = dm_table_get_target(t, i);
1979
1980 if (!ti->num_discard_bios)
1981 return false;
1982
1983 /*
1984 * Either the target provides discard support (as implied by setting
1985 * 'discards_supported') or it relies on _all_ data devices having
1986 * discard support.
1987 */
1988 if (!ti->discards_supported &&
1989 (!ti->type->iterate_devices ||
1990 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1991 return false;
1992 }
1993
1994 return true;
1995 }
1996
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1997 static int device_not_secure_erase_capable(struct dm_target *ti,
1998 struct dm_dev *dev, sector_t start,
1999 sector_t len, void *data)
2000 {
2001 struct request_queue *q = bdev_get_queue(dev->bdev);
2002
2003 return !blk_queue_secure_erase(q);
2004 }
2005
dm_table_supports_secure_erase(struct dm_table * t)2006 static bool dm_table_supports_secure_erase(struct dm_table *t)
2007 {
2008 struct dm_target *ti;
2009 unsigned int i;
2010
2011 for (i = 0; i < dm_table_get_num_targets(t); i++) {
2012 ti = dm_table_get_target(t, i);
2013
2014 if (!ti->num_secure_erase_bios)
2015 return false;
2016
2017 if (!ti->type->iterate_devices ||
2018 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
2019 return false;
2020 }
2021
2022 return true;
2023 }
2024
device_requires_stable_pages(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)2025 static int device_requires_stable_pages(struct dm_target *ti,
2026 struct dm_dev *dev, sector_t start,
2027 sector_t len, void *data)
2028 {
2029 struct request_queue *q = bdev_get_queue(dev->bdev);
2030
2031 return blk_queue_stable_writes(q);
2032 }
2033
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)2034 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
2035 struct queue_limits *limits)
2036 {
2037 bool wc = false, fua = false;
2038 int page_size = PAGE_SIZE;
2039 int r;
2040
2041 /*
2042 * Copy table's limits to the DM device's request_queue
2043 */
2044 q->limits = *limits;
2045
2046 if (dm_table_supports_nowait(t))
2047 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
2048 else
2049 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
2050
2051 if (!dm_table_supports_discards(t)) {
2052 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
2053 /* Must also clear discard limits... */
2054 q->limits.max_discard_sectors = 0;
2055 q->limits.max_hw_discard_sectors = 0;
2056 q->limits.discard_granularity = 0;
2057 q->limits.discard_alignment = 0;
2058 q->limits.discard_misaligned = 0;
2059 } else
2060 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
2061
2062 if (dm_table_supports_secure_erase(t))
2063 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
2064
2065 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
2066 wc = true;
2067 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
2068 fua = true;
2069 }
2070 blk_queue_write_cache(q, wc, fua);
2071
2072 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
2073 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
2074 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
2075 set_dax_synchronous(t->md->dax_dev);
2076 }
2077 else
2078 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2079
2080 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2081 dax_write_cache(t->md->dax_dev, true);
2082
2083 /* Ensure that all underlying devices are non-rotational. */
2084 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2085 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2086 else
2087 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2088
2089 if (!dm_table_supports_write_same(t))
2090 q->limits.max_write_same_sectors = 0;
2091 if (!dm_table_supports_write_zeroes(t))
2092 q->limits.max_write_zeroes_sectors = 0;
2093
2094 dm_table_verify_integrity(t);
2095
2096 /*
2097 * Some devices don't use blk_integrity but still want stable pages
2098 * because they do their own checksumming.
2099 * If any underlying device requires stable pages, a table must require
2100 * them as well. Only targets that support iterate_devices are considered:
2101 * don't want error, zero, etc to require stable pages.
2102 */
2103 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2104 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2105 else
2106 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2107
2108 /*
2109 * Determine whether or not this queue's I/O timings contribute
2110 * to the entropy pool, Only request-based targets use this.
2111 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2112 * have it set.
2113 */
2114 if (blk_queue_add_random(q) &&
2115 dm_table_any_dev_attr(t, device_is_not_random, NULL))
2116 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2117
2118 /*
2119 * For a zoned target, setup the zones related queue attributes
2120 * and resources necessary for zone append emulation if necessary.
2121 */
2122 if (blk_queue_is_zoned(q)) {
2123 r = dm_set_zones_restrictions(t, q);
2124 if (r)
2125 return r;
2126 }
2127
2128 dm_update_crypto_profile(q, t);
2129 disk_update_readahead(t->md->disk);
2130
2131 return 0;
2132 }
2133
dm_table_get_num_targets(struct dm_table * t)2134 unsigned int dm_table_get_num_targets(struct dm_table *t)
2135 {
2136 return t->num_targets;
2137 }
2138
dm_table_get_devices(struct dm_table * t)2139 struct list_head *dm_table_get_devices(struct dm_table *t)
2140 {
2141 return &t->devices;
2142 }
2143
dm_table_get_mode(struct dm_table * t)2144 fmode_t dm_table_get_mode(struct dm_table *t)
2145 {
2146 return t->mode;
2147 }
2148 EXPORT_SYMBOL(dm_table_get_mode);
2149
2150 enum suspend_mode {
2151 PRESUSPEND,
2152 PRESUSPEND_UNDO,
2153 POSTSUSPEND,
2154 };
2155
suspend_targets(struct dm_table * t,enum suspend_mode mode)2156 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2157 {
2158 int i = t->num_targets;
2159 struct dm_target *ti = t->targets;
2160
2161 lockdep_assert_held(&t->md->suspend_lock);
2162
2163 while (i--) {
2164 switch (mode) {
2165 case PRESUSPEND:
2166 if (ti->type->presuspend)
2167 ti->type->presuspend(ti);
2168 break;
2169 case PRESUSPEND_UNDO:
2170 if (ti->type->presuspend_undo)
2171 ti->type->presuspend_undo(ti);
2172 break;
2173 case POSTSUSPEND:
2174 if (ti->type->postsuspend)
2175 ti->type->postsuspend(ti);
2176 break;
2177 }
2178 ti++;
2179 }
2180 }
2181
dm_table_presuspend_targets(struct dm_table * t)2182 void dm_table_presuspend_targets(struct dm_table *t)
2183 {
2184 if (!t)
2185 return;
2186
2187 suspend_targets(t, PRESUSPEND);
2188 }
2189
dm_table_presuspend_undo_targets(struct dm_table * t)2190 void dm_table_presuspend_undo_targets(struct dm_table *t)
2191 {
2192 if (!t)
2193 return;
2194
2195 suspend_targets(t, PRESUSPEND_UNDO);
2196 }
2197
dm_table_postsuspend_targets(struct dm_table * t)2198 void dm_table_postsuspend_targets(struct dm_table *t)
2199 {
2200 if (!t)
2201 return;
2202
2203 suspend_targets(t, POSTSUSPEND);
2204 }
2205
dm_table_resume_targets(struct dm_table * t)2206 int dm_table_resume_targets(struct dm_table *t)
2207 {
2208 int i, r = 0;
2209
2210 lockdep_assert_held(&t->md->suspend_lock);
2211
2212 for (i = 0; i < t->num_targets; i++) {
2213 struct dm_target *ti = t->targets + i;
2214
2215 if (!ti->type->preresume)
2216 continue;
2217
2218 r = ti->type->preresume(ti);
2219 if (r) {
2220 DMERR("%s: %s: preresume failed, error = %d",
2221 dm_device_name(t->md), ti->type->name, r);
2222 return r;
2223 }
2224 }
2225
2226 for (i = 0; i < t->num_targets; i++) {
2227 struct dm_target *ti = t->targets + i;
2228
2229 if (ti->type->resume)
2230 ti->type->resume(ti);
2231 }
2232
2233 return 0;
2234 }
2235
dm_table_get_md(struct dm_table * t)2236 struct mapped_device *dm_table_get_md(struct dm_table *t)
2237 {
2238 return t->md;
2239 }
2240 EXPORT_SYMBOL(dm_table_get_md);
2241
dm_table_device_name(struct dm_table * t)2242 const char *dm_table_device_name(struct dm_table *t)
2243 {
2244 return dm_device_name(t->md);
2245 }
2246 EXPORT_SYMBOL_GPL(dm_table_device_name);
2247
dm_table_run_md_queue_async(struct dm_table * t)2248 void dm_table_run_md_queue_async(struct dm_table *t)
2249 {
2250 if (!dm_table_request_based(t))
2251 return;
2252
2253 if (t->md->queue)
2254 blk_mq_run_hw_queues(t->md->queue, true);
2255 }
2256 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2257
2258