1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Red Hat, Inc.
4 *
5 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 *
7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8 *
9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11 * hash device. Setting this greatly improves performance when data and hash
12 * are on the same disk on different partitions on devices with poor random
13 * access behavior.
14 */
15
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 #include "dm-verity-verify-sig.h"
19 #include <linux/module.h>
20 #include <linux/reboot.h>
21
22 #define DM_MSG_PREFIX "verity"
23
24 #define DM_VERITY_ENV_LENGTH 42
25 #define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR"
26
27 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
28
29 #define DM_VERITY_MAX_CORRUPTED_ERRS 100
30
31 #define DM_VERITY_OPT_LOGGING "ignore_corruption"
32 #define DM_VERITY_OPT_RESTART "restart_on_corruption"
33 #define DM_VERITY_OPT_PANIC "panic_on_corruption"
34 #define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks"
35 #define DM_VERITY_OPT_AT_MOST_ONCE "check_at_most_once"
36
37 #define DM_VERITY_OPTS_MAX (3 + DM_VERITY_OPTS_FEC + \
38 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
39
40 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
41
42 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
43
44 struct dm_verity_prefetch_work {
45 struct work_struct work;
46 struct dm_verity *v;
47 sector_t block;
48 unsigned n_blocks;
49 };
50
51 /*
52 * Auxiliary structure appended to each dm-bufio buffer. If the value
53 * hash_verified is nonzero, hash of the block has been verified.
54 *
55 * The variable hash_verified is set to 0 when allocating the buffer, then
56 * it can be changed to 1 and it is never reset to 0 again.
57 *
58 * There is no lock around this value, a race condition can at worst cause
59 * that multiple processes verify the hash of the same buffer simultaneously
60 * and write 1 to hash_verified simultaneously.
61 * This condition is harmless, so we don't need locking.
62 */
63 struct buffer_aux {
64 int hash_verified;
65 };
66
67 /*
68 * Initialize struct buffer_aux for a freshly created buffer.
69 */
dm_bufio_alloc_callback(struct dm_buffer * buf)70 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
71 {
72 struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
73
74 aux->hash_verified = 0;
75 }
76
77 /*
78 * Translate input sector number to the sector number on the target device.
79 */
verity_map_sector(struct dm_verity * v,sector_t bi_sector)80 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
81 {
82 return v->data_start + dm_target_offset(v->ti, bi_sector);
83 }
84
85 /*
86 * Return hash position of a specified block at a specified tree level
87 * (0 is the lowest level).
88 * The lowest "hash_per_block_bits"-bits of the result denote hash position
89 * inside a hash block. The remaining bits denote location of the hash block.
90 */
verity_position_at_level(struct dm_verity * v,sector_t block,int level)91 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
92 int level)
93 {
94 return block >> (level * v->hash_per_block_bits);
95 }
96
verity_hash_update(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,struct crypto_wait * wait)97 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
98 const u8 *data, size_t len,
99 struct crypto_wait *wait)
100 {
101 struct scatterlist sg;
102
103 if (likely(!is_vmalloc_addr(data))) {
104 sg_init_one(&sg, data, len);
105 ahash_request_set_crypt(req, &sg, NULL, len);
106 return crypto_wait_req(crypto_ahash_update(req), wait);
107 } else {
108 do {
109 int r;
110 size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
111 flush_kernel_vmap_range((void *)data, this_step);
112 sg_init_table(&sg, 1);
113 sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
114 ahash_request_set_crypt(req, &sg, NULL, this_step);
115 r = crypto_wait_req(crypto_ahash_update(req), wait);
116 if (unlikely(r))
117 return r;
118 data += this_step;
119 len -= this_step;
120 } while (len);
121 return 0;
122 }
123 }
124
125 /*
126 * Wrapper for crypto_ahash_init, which handles verity salting.
127 */
verity_hash_init(struct dm_verity * v,struct ahash_request * req,struct crypto_wait * wait)128 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
129 struct crypto_wait *wait)
130 {
131 int r;
132
133 ahash_request_set_tfm(req, v->tfm);
134 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
135 CRYPTO_TFM_REQ_MAY_BACKLOG,
136 crypto_req_done, (void *)wait);
137 crypto_init_wait(wait);
138
139 r = crypto_wait_req(crypto_ahash_init(req), wait);
140
141 if (unlikely(r < 0)) {
142 DMERR("crypto_ahash_init failed: %d", r);
143 return r;
144 }
145
146 if (likely(v->salt_size && (v->version >= 1)))
147 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
148
149 return r;
150 }
151
verity_hash_final(struct dm_verity * v,struct ahash_request * req,u8 * digest,struct crypto_wait * wait)152 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
153 u8 *digest, struct crypto_wait *wait)
154 {
155 int r;
156
157 if (unlikely(v->salt_size && (!v->version))) {
158 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
159
160 if (r < 0) {
161 DMERR("verity_hash_final failed updating salt: %d", r);
162 goto out;
163 }
164 }
165
166 ahash_request_set_crypt(req, NULL, digest, 0);
167 r = crypto_wait_req(crypto_ahash_final(req), wait);
168 out:
169 return r;
170 }
171
verity_hash(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,u8 * digest)172 int verity_hash(struct dm_verity *v, struct ahash_request *req,
173 const u8 *data, size_t len, u8 *digest)
174 {
175 int r;
176 struct crypto_wait wait;
177
178 r = verity_hash_init(v, req, &wait);
179 if (unlikely(r < 0))
180 goto out;
181
182 r = verity_hash_update(v, req, data, len, &wait);
183 if (unlikely(r < 0))
184 goto out;
185
186 r = verity_hash_final(v, req, digest, &wait);
187
188 out:
189 return r;
190 }
191
verity_hash_at_level(struct dm_verity * v,sector_t block,int level,sector_t * hash_block,unsigned * offset)192 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
193 sector_t *hash_block, unsigned *offset)
194 {
195 sector_t position = verity_position_at_level(v, block, level);
196 unsigned idx;
197
198 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
199
200 if (!offset)
201 return;
202
203 idx = position & ((1 << v->hash_per_block_bits) - 1);
204 if (!v->version)
205 *offset = idx * v->digest_size;
206 else
207 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
208 }
209
210 /*
211 * Handle verification errors.
212 */
verity_handle_err(struct dm_verity * v,enum verity_block_type type,unsigned long long block)213 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
214 unsigned long long block)
215 {
216 char verity_env[DM_VERITY_ENV_LENGTH];
217 char *envp[] = { verity_env, NULL };
218 const char *type_str = "";
219 struct mapped_device *md = dm_table_get_md(v->ti->table);
220
221 /* Corruption should be visible in device status in all modes */
222 v->hash_failed = 1;
223
224 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
225 goto out;
226
227 v->corrupted_errs++;
228
229 switch (type) {
230 case DM_VERITY_BLOCK_TYPE_DATA:
231 type_str = "data";
232 break;
233 case DM_VERITY_BLOCK_TYPE_METADATA:
234 type_str = "metadata";
235 break;
236 default:
237 BUG();
238 }
239
240 DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
241 type_str, block);
242
243 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
244 DMERR("%s: reached maximum errors", v->data_dev->name);
245
246 snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
247 DM_VERITY_ENV_VAR_NAME, type, block);
248
249 kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
250
251 out:
252 if (v->mode == DM_VERITY_MODE_LOGGING)
253 return 0;
254
255 if (v->mode == DM_VERITY_MODE_RESTART)
256 kernel_restart("dm-verity device corrupted");
257
258 if (v->mode == DM_VERITY_MODE_PANIC)
259 panic("dm-verity device corrupted");
260
261 return 1;
262 }
263
264 /*
265 * Verify hash of a metadata block pertaining to the specified data block
266 * ("block" argument) at a specified level ("level" argument).
267 *
268 * On successful return, verity_io_want_digest(v, io) contains the hash value
269 * for a lower tree level or for the data block (if we're at the lowest level).
270 *
271 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
272 * If "skip_unverified" is false, unverified buffer is hashed and verified
273 * against current value of verity_io_want_digest(v, io).
274 */
verity_verify_level(struct dm_verity * v,struct dm_verity_io * io,sector_t block,int level,bool skip_unverified,u8 * want_digest)275 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
276 sector_t block, int level, bool skip_unverified,
277 u8 *want_digest)
278 {
279 struct dm_buffer *buf;
280 struct buffer_aux *aux;
281 u8 *data;
282 int r;
283 sector_t hash_block;
284 unsigned offset;
285
286 verity_hash_at_level(v, block, level, &hash_block, &offset);
287
288 data = dm_bufio_read(v->bufio, hash_block, &buf);
289 if (IS_ERR(data))
290 return PTR_ERR(data);
291
292 aux = dm_bufio_get_aux_data(buf);
293
294 if (!aux->hash_verified) {
295 if (skip_unverified) {
296 r = 1;
297 goto release_ret_r;
298 }
299
300 r = verity_hash(v, verity_io_hash_req(v, io),
301 data, 1 << v->hash_dev_block_bits,
302 verity_io_real_digest(v, io));
303 if (unlikely(r < 0))
304 goto release_ret_r;
305
306 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
307 v->digest_size) == 0))
308 aux->hash_verified = 1;
309 else if (verity_fec_decode(v, io,
310 DM_VERITY_BLOCK_TYPE_METADATA,
311 hash_block, data, NULL) == 0)
312 aux->hash_verified = 1;
313 else if (verity_handle_err(v,
314 DM_VERITY_BLOCK_TYPE_METADATA,
315 hash_block)) {
316 r = -EIO;
317 goto release_ret_r;
318 }
319 }
320
321 data += offset;
322 memcpy(want_digest, data, v->digest_size);
323 r = 0;
324
325 release_ret_r:
326 dm_bufio_release(buf);
327 return r;
328 }
329
330 /*
331 * Find a hash for a given block, write it to digest and verify the integrity
332 * of the hash tree if necessary.
333 */
verity_hash_for_block(struct dm_verity * v,struct dm_verity_io * io,sector_t block,u8 * digest,bool * is_zero)334 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
335 sector_t block, u8 *digest, bool *is_zero)
336 {
337 int r = 0, i;
338
339 if (likely(v->levels)) {
340 /*
341 * First, we try to get the requested hash for
342 * the current block. If the hash block itself is
343 * verified, zero is returned. If it isn't, this
344 * function returns 1 and we fall back to whole
345 * chain verification.
346 */
347 r = verity_verify_level(v, io, block, 0, true, digest);
348 if (likely(r <= 0))
349 goto out;
350 }
351
352 memcpy(digest, v->root_digest, v->digest_size);
353
354 for (i = v->levels - 1; i >= 0; i--) {
355 r = verity_verify_level(v, io, block, i, false, digest);
356 if (unlikely(r))
357 goto out;
358 }
359 out:
360 if (!r && v->zero_digest)
361 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
362 else
363 *is_zero = false;
364
365 return r;
366 }
367
368 /*
369 * Calculates the digest for the given bio
370 */
verity_for_io_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter,struct crypto_wait * wait)371 static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
372 struct bvec_iter *iter, struct crypto_wait *wait)
373 {
374 unsigned int todo = 1 << v->data_dev_block_bits;
375 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
376 struct scatterlist sg;
377 struct ahash_request *req = verity_io_hash_req(v, io);
378
379 do {
380 int r;
381 unsigned int len;
382 struct bio_vec bv = bio_iter_iovec(bio, *iter);
383
384 sg_init_table(&sg, 1);
385
386 len = bv.bv_len;
387
388 if (likely(len >= todo))
389 len = todo;
390 /*
391 * Operating on a single page at a time looks suboptimal
392 * until you consider the typical block size is 4,096B.
393 * Going through this loops twice should be very rare.
394 */
395 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
396 ahash_request_set_crypt(req, &sg, NULL, len);
397 r = crypto_wait_req(crypto_ahash_update(req), wait);
398
399 if (unlikely(r < 0)) {
400 DMERR("verity_for_io_block crypto op failed: %d", r);
401 return r;
402 }
403
404 bio_advance_iter(bio, iter, len);
405 todo -= len;
406 } while (todo);
407
408 return 0;
409 }
410
411 /*
412 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
413 * starting from iter.
414 */
verity_for_bv_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter,int (* process)(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len))415 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
416 struct bvec_iter *iter,
417 int (*process)(struct dm_verity *v,
418 struct dm_verity_io *io, u8 *data,
419 size_t len))
420 {
421 unsigned todo = 1 << v->data_dev_block_bits;
422 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
423
424 do {
425 int r;
426 u8 *page;
427 unsigned len;
428 struct bio_vec bv = bio_iter_iovec(bio, *iter);
429
430 page = kmap_atomic(bv.bv_page);
431 len = bv.bv_len;
432
433 if (likely(len >= todo))
434 len = todo;
435
436 r = process(v, io, page + bv.bv_offset, len);
437 kunmap_atomic(page);
438
439 if (r < 0)
440 return r;
441
442 bio_advance_iter(bio, iter, len);
443 todo -= len;
444 } while (todo);
445
446 return 0;
447 }
448
verity_bv_zero(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len)449 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
450 u8 *data, size_t len)
451 {
452 memset(data, 0, len);
453 return 0;
454 }
455
456 /*
457 * Moves the bio iter one data block forward.
458 */
verity_bv_skip_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter)459 static inline void verity_bv_skip_block(struct dm_verity *v,
460 struct dm_verity_io *io,
461 struct bvec_iter *iter)
462 {
463 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
464
465 bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
466 }
467
468 /*
469 * Verify one "dm_verity_io" structure.
470 */
verity_verify_io(struct dm_verity_io * io)471 static int verity_verify_io(struct dm_verity_io *io)
472 {
473 bool is_zero;
474 struct dm_verity *v = io->v;
475 struct bvec_iter start;
476 unsigned b;
477 struct crypto_wait wait;
478 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
479
480 for (b = 0; b < io->n_blocks; b++) {
481 int r;
482 sector_t cur_block = io->block + b;
483 struct ahash_request *req = verity_io_hash_req(v, io);
484
485 if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
486 likely(test_bit(cur_block, v->validated_blocks))) {
487 verity_bv_skip_block(v, io, &io->iter);
488 continue;
489 }
490
491 r = verity_hash_for_block(v, io, cur_block,
492 verity_io_want_digest(v, io),
493 &is_zero);
494 if (unlikely(r < 0))
495 return r;
496
497 if (is_zero) {
498 /*
499 * If we expect a zero block, don't validate, just
500 * return zeros.
501 */
502 r = verity_for_bv_block(v, io, &io->iter,
503 verity_bv_zero);
504 if (unlikely(r < 0))
505 return r;
506
507 continue;
508 }
509
510 r = verity_hash_init(v, req, &wait);
511 if (unlikely(r < 0))
512 return r;
513
514 start = io->iter;
515 r = verity_for_io_block(v, io, &io->iter, &wait);
516 if (unlikely(r < 0))
517 return r;
518
519 r = verity_hash_final(v, req, verity_io_real_digest(v, io),
520 &wait);
521 if (unlikely(r < 0))
522 return r;
523
524 if (likely(memcmp(verity_io_real_digest(v, io),
525 verity_io_want_digest(v, io), v->digest_size) == 0)) {
526 if (v->validated_blocks)
527 set_bit(cur_block, v->validated_blocks);
528 continue;
529 }
530 else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
531 cur_block, NULL, &start) == 0)
532 continue;
533 else {
534 if (bio->bi_status) {
535 /*
536 * Error correction failed; Just return error
537 */
538 return -EIO;
539 }
540 if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
541 cur_block))
542 return -EIO;
543 }
544 }
545
546 return 0;
547 }
548
549 /*
550 * Skip verity work in response to I/O error when system is shutting down.
551 */
verity_is_system_shutting_down(void)552 static inline bool verity_is_system_shutting_down(void)
553 {
554 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
555 || system_state == SYSTEM_RESTART;
556 }
557
558 /*
559 * End one "io" structure with a given error.
560 */
verity_finish_io(struct dm_verity_io * io,blk_status_t status)561 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
562 {
563 struct dm_verity *v = io->v;
564 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
565
566 bio->bi_end_io = io->orig_bi_end_io;
567 bio->bi_status = status;
568
569 verity_fec_finish_io(io);
570
571 bio_endio(bio);
572 }
573
verity_work(struct work_struct * w)574 static void verity_work(struct work_struct *w)
575 {
576 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
577
578 verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
579 }
580
verity_end_io(struct bio * bio)581 static void verity_end_io(struct bio *bio)
582 {
583 struct dm_verity_io *io = bio->bi_private;
584
585 if (bio->bi_status &&
586 (!verity_fec_is_enabled(io->v) ||
587 verity_is_system_shutting_down() ||
588 (bio->bi_opf & REQ_RAHEAD))) {
589 verity_finish_io(io, bio->bi_status);
590 return;
591 }
592
593 INIT_WORK(&io->work, verity_work);
594 queue_work(io->v->verify_wq, &io->work);
595 }
596
597 /*
598 * Prefetch buffers for the specified io.
599 * The root buffer is not prefetched, it is assumed that it will be cached
600 * all the time.
601 */
verity_prefetch_io(struct work_struct * work)602 static void verity_prefetch_io(struct work_struct *work)
603 {
604 struct dm_verity_prefetch_work *pw =
605 container_of(work, struct dm_verity_prefetch_work, work);
606 struct dm_verity *v = pw->v;
607 int i;
608
609 for (i = v->levels - 2; i >= 0; i--) {
610 sector_t hash_block_start;
611 sector_t hash_block_end;
612 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
613 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
614 if (!i) {
615 unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
616
617 cluster >>= v->data_dev_block_bits;
618 if (unlikely(!cluster))
619 goto no_prefetch_cluster;
620
621 if (unlikely(cluster & (cluster - 1)))
622 cluster = 1 << __fls(cluster);
623
624 hash_block_start &= ~(sector_t)(cluster - 1);
625 hash_block_end |= cluster - 1;
626 if (unlikely(hash_block_end >= v->hash_blocks))
627 hash_block_end = v->hash_blocks - 1;
628 }
629 no_prefetch_cluster:
630 dm_bufio_prefetch(v->bufio, hash_block_start,
631 hash_block_end - hash_block_start + 1);
632 }
633
634 kfree(pw);
635 }
636
verity_submit_prefetch(struct dm_verity * v,struct dm_verity_io * io)637 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
638 {
639 sector_t block = io->block;
640 unsigned int n_blocks = io->n_blocks;
641 struct dm_verity_prefetch_work *pw;
642
643 if (v->validated_blocks) {
644 while (n_blocks && test_bit(block, v->validated_blocks)) {
645 block++;
646 n_blocks--;
647 }
648 while (n_blocks && test_bit(block + n_blocks - 1,
649 v->validated_blocks))
650 n_blocks--;
651 if (!n_blocks)
652 return;
653 }
654
655 pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
656 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
657
658 if (!pw)
659 return;
660
661 INIT_WORK(&pw->work, verity_prefetch_io);
662 pw->v = v;
663 pw->block = block;
664 pw->n_blocks = n_blocks;
665 queue_work(v->verify_wq, &pw->work);
666 }
667
668 /*
669 * Bio map function. It allocates dm_verity_io structure and bio vector and
670 * fills them. Then it issues prefetches and the I/O.
671 */
verity_map(struct dm_target * ti,struct bio * bio)672 static int verity_map(struct dm_target *ti, struct bio *bio)
673 {
674 struct dm_verity *v = ti->private;
675 struct dm_verity_io *io;
676
677 bio_set_dev(bio, v->data_dev->bdev);
678 bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
679
680 if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
681 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
682 DMERR_LIMIT("unaligned io");
683 return DM_MAPIO_KILL;
684 }
685
686 if (bio_end_sector(bio) >>
687 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
688 DMERR_LIMIT("io out of range");
689 return DM_MAPIO_KILL;
690 }
691
692 if (bio_data_dir(bio) == WRITE)
693 return DM_MAPIO_KILL;
694
695 io = dm_per_bio_data(bio, ti->per_io_data_size);
696 io->v = v;
697 io->orig_bi_end_io = bio->bi_end_io;
698 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
699 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
700
701 bio->bi_end_io = verity_end_io;
702 bio->bi_private = io;
703 io->iter = bio->bi_iter;
704
705 verity_fec_init_io(io);
706
707 verity_submit_prefetch(v, io);
708
709 submit_bio_noacct(bio);
710
711 return DM_MAPIO_SUBMITTED;
712 }
713
714 /*
715 * Status: V (valid) or C (corruption found)
716 */
verity_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)717 static void verity_status(struct dm_target *ti, status_type_t type,
718 unsigned status_flags, char *result, unsigned maxlen)
719 {
720 struct dm_verity *v = ti->private;
721 unsigned args = 0;
722 unsigned sz = 0;
723 unsigned x;
724
725 switch (type) {
726 case STATUSTYPE_INFO:
727 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
728 break;
729 case STATUSTYPE_TABLE:
730 DMEMIT("%u %s %s %u %u %llu %llu %s ",
731 v->version,
732 v->data_dev->name,
733 v->hash_dev->name,
734 1 << v->data_dev_block_bits,
735 1 << v->hash_dev_block_bits,
736 (unsigned long long)v->data_blocks,
737 (unsigned long long)v->hash_start,
738 v->alg_name
739 );
740 for (x = 0; x < v->digest_size; x++)
741 DMEMIT("%02x", v->root_digest[x]);
742 DMEMIT(" ");
743 if (!v->salt_size)
744 DMEMIT("-");
745 else
746 for (x = 0; x < v->salt_size; x++)
747 DMEMIT("%02x", v->salt[x]);
748 if (v->mode != DM_VERITY_MODE_EIO)
749 args++;
750 if (verity_fec_is_enabled(v))
751 args += DM_VERITY_OPTS_FEC;
752 if (v->zero_digest)
753 args++;
754 if (v->validated_blocks)
755 args++;
756 if (v->signature_key_desc)
757 args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
758 if (!args)
759 return;
760 DMEMIT(" %u", args);
761 if (v->mode != DM_VERITY_MODE_EIO) {
762 DMEMIT(" ");
763 switch (v->mode) {
764 case DM_VERITY_MODE_LOGGING:
765 DMEMIT(DM_VERITY_OPT_LOGGING);
766 break;
767 case DM_VERITY_MODE_RESTART:
768 DMEMIT(DM_VERITY_OPT_RESTART);
769 break;
770 case DM_VERITY_MODE_PANIC:
771 DMEMIT(DM_VERITY_OPT_PANIC);
772 break;
773 default:
774 BUG();
775 }
776 }
777 if (v->zero_digest)
778 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
779 if (v->validated_blocks)
780 DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
781 sz = verity_fec_status_table(v, sz, result, maxlen);
782 if (v->signature_key_desc)
783 DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
784 " %s", v->signature_key_desc);
785 break;
786
787 case STATUSTYPE_IMA:
788 DMEMIT_TARGET_NAME_VERSION(ti->type);
789 DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
790 DMEMIT(",verity_version=%u", v->version);
791 DMEMIT(",data_device_name=%s", v->data_dev->name);
792 DMEMIT(",hash_device_name=%s", v->hash_dev->name);
793 DMEMIT(",verity_algorithm=%s", v->alg_name);
794
795 DMEMIT(",root_digest=");
796 for (x = 0; x < v->digest_size; x++)
797 DMEMIT("%02x", v->root_digest[x]);
798
799 DMEMIT(",salt=");
800 if (!v->salt_size)
801 DMEMIT("-");
802 else
803 for (x = 0; x < v->salt_size; x++)
804 DMEMIT("%02x", v->salt[x]);
805
806 DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
807 DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
808 if (v->signature_key_desc)
809 DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
810
811 if (v->mode != DM_VERITY_MODE_EIO) {
812 DMEMIT(",verity_mode=");
813 switch (v->mode) {
814 case DM_VERITY_MODE_LOGGING:
815 DMEMIT(DM_VERITY_OPT_LOGGING);
816 break;
817 case DM_VERITY_MODE_RESTART:
818 DMEMIT(DM_VERITY_OPT_RESTART);
819 break;
820 case DM_VERITY_MODE_PANIC:
821 DMEMIT(DM_VERITY_OPT_PANIC);
822 break;
823 default:
824 DMEMIT("invalid");
825 }
826 }
827 DMEMIT(";");
828 break;
829 }
830 }
831
verity_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev)832 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
833 {
834 struct dm_verity *v = ti->private;
835
836 *bdev = v->data_dev->bdev;
837
838 if (v->data_start ||
839 ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
840 return 1;
841 return 0;
842 }
843
verity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)844 static int verity_iterate_devices(struct dm_target *ti,
845 iterate_devices_callout_fn fn, void *data)
846 {
847 struct dm_verity *v = ti->private;
848
849 return fn(ti, v->data_dev, v->data_start, ti->len, data);
850 }
851
verity_io_hints(struct dm_target * ti,struct queue_limits * limits)852 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
853 {
854 struct dm_verity *v = ti->private;
855
856 if (limits->logical_block_size < 1 << v->data_dev_block_bits)
857 limits->logical_block_size = 1 << v->data_dev_block_bits;
858
859 if (limits->physical_block_size < 1 << v->data_dev_block_bits)
860 limits->physical_block_size = 1 << v->data_dev_block_bits;
861
862 blk_limits_io_min(limits, limits->logical_block_size);
863 }
864
verity_dtr(struct dm_target * ti)865 static void verity_dtr(struct dm_target *ti)
866 {
867 struct dm_verity *v = ti->private;
868
869 if (v->verify_wq)
870 destroy_workqueue(v->verify_wq);
871
872 if (v->bufio)
873 dm_bufio_client_destroy(v->bufio);
874
875 kvfree(v->validated_blocks);
876 kfree(v->salt);
877 kfree(v->root_digest);
878 kfree(v->zero_digest);
879
880 if (v->tfm)
881 crypto_free_ahash(v->tfm);
882
883 kfree(v->alg_name);
884
885 if (v->hash_dev)
886 dm_put_device(ti, v->hash_dev);
887
888 if (v->data_dev)
889 dm_put_device(ti, v->data_dev);
890
891 verity_fec_dtr(v);
892
893 kfree(v->signature_key_desc);
894
895 kfree(v);
896 }
897
verity_alloc_most_once(struct dm_verity * v)898 static int verity_alloc_most_once(struct dm_verity *v)
899 {
900 struct dm_target *ti = v->ti;
901
902 /* the bitset can only handle INT_MAX blocks */
903 if (v->data_blocks > INT_MAX) {
904 ti->error = "device too large to use check_at_most_once";
905 return -E2BIG;
906 }
907
908 v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
909 sizeof(unsigned long),
910 GFP_KERNEL);
911 if (!v->validated_blocks) {
912 ti->error = "failed to allocate bitset for check_at_most_once";
913 return -ENOMEM;
914 }
915
916 return 0;
917 }
918
verity_alloc_zero_digest(struct dm_verity * v)919 static int verity_alloc_zero_digest(struct dm_verity *v)
920 {
921 int r = -ENOMEM;
922 struct ahash_request *req;
923 u8 *zero_data;
924
925 v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
926
927 if (!v->zero_digest)
928 return r;
929
930 req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
931
932 if (!req)
933 return r; /* verity_dtr will free zero_digest */
934
935 zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
936
937 if (!zero_data)
938 goto out;
939
940 r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
941 v->zero_digest);
942
943 out:
944 kfree(req);
945 kfree(zero_data);
946
947 return r;
948 }
949
verity_is_verity_mode(const char * arg_name)950 static inline bool verity_is_verity_mode(const char *arg_name)
951 {
952 return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
953 !strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
954 !strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
955 }
956
verity_parse_verity_mode(struct dm_verity * v,const char * arg_name)957 static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
958 {
959 if (v->mode)
960 return -EINVAL;
961
962 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
963 v->mode = DM_VERITY_MODE_LOGGING;
964 else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
965 v->mode = DM_VERITY_MODE_RESTART;
966 else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
967 v->mode = DM_VERITY_MODE_PANIC;
968
969 return 0;
970 }
971
verity_parse_opt_args(struct dm_arg_set * as,struct dm_verity * v,struct dm_verity_sig_opts * verify_args)972 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
973 struct dm_verity_sig_opts *verify_args)
974 {
975 int r;
976 unsigned argc;
977 struct dm_target *ti = v->ti;
978 const char *arg_name;
979
980 static const struct dm_arg _args[] = {
981 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
982 };
983
984 r = dm_read_arg_group(_args, as, &argc, &ti->error);
985 if (r)
986 return -EINVAL;
987
988 if (!argc)
989 return 0;
990
991 do {
992 arg_name = dm_shift_arg(as);
993 argc--;
994
995 if (verity_is_verity_mode(arg_name)) {
996 r = verity_parse_verity_mode(v, arg_name);
997 if (r) {
998 ti->error = "Conflicting error handling parameters";
999 return r;
1000 }
1001 continue;
1002
1003 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1004 r = verity_alloc_zero_digest(v);
1005 if (r) {
1006 ti->error = "Cannot allocate zero digest";
1007 return r;
1008 }
1009 continue;
1010
1011 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1012 r = verity_alloc_most_once(v);
1013 if (r)
1014 return r;
1015 continue;
1016
1017 } else if (verity_is_fec_opt_arg(arg_name)) {
1018 r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1019 if (r)
1020 return r;
1021 continue;
1022 } else if (verity_verify_is_sig_opt_arg(arg_name)) {
1023 r = verity_verify_sig_parse_opt_args(as, v,
1024 verify_args,
1025 &argc, arg_name);
1026 if (r)
1027 return r;
1028 continue;
1029
1030 }
1031
1032 ti->error = "Unrecognized verity feature request";
1033 return -EINVAL;
1034 } while (argc && !r);
1035
1036 return r;
1037 }
1038
1039 /*
1040 * Target parameters:
1041 * <version> The current format is version 1.
1042 * Vsn 0 is compatible with original Chromium OS releases.
1043 * <data device>
1044 * <hash device>
1045 * <data block size>
1046 * <hash block size>
1047 * <the number of data blocks>
1048 * <hash start block>
1049 * <algorithm>
1050 * <digest>
1051 * <salt> Hex string or "-" if no salt.
1052 */
verity_ctr(struct dm_target * ti,unsigned argc,char ** argv)1053 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
1054 {
1055 struct dm_verity *v;
1056 struct dm_verity_sig_opts verify_args = {0};
1057 struct dm_arg_set as;
1058 unsigned int num;
1059 unsigned long long num_ll;
1060 int r;
1061 int i;
1062 sector_t hash_position;
1063 char dummy;
1064 char *root_hash_digest_to_validate;
1065
1066 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1067 if (!v) {
1068 ti->error = "Cannot allocate verity structure";
1069 return -ENOMEM;
1070 }
1071 ti->private = v;
1072 v->ti = ti;
1073
1074 r = verity_fec_ctr_alloc(v);
1075 if (r)
1076 goto bad;
1077
1078 if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
1079 ti->error = "Device must be readonly";
1080 r = -EINVAL;
1081 goto bad;
1082 }
1083
1084 if (argc < 10) {
1085 ti->error = "Not enough arguments";
1086 r = -EINVAL;
1087 goto bad;
1088 }
1089
1090 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1091 num > 1) {
1092 ti->error = "Invalid version";
1093 r = -EINVAL;
1094 goto bad;
1095 }
1096 v->version = num;
1097
1098 r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
1099 if (r) {
1100 ti->error = "Data device lookup failed";
1101 goto bad;
1102 }
1103
1104 r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
1105 if (r) {
1106 ti->error = "Hash device lookup failed";
1107 goto bad;
1108 }
1109
1110 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1111 !num || (num & (num - 1)) ||
1112 num < bdev_logical_block_size(v->data_dev->bdev) ||
1113 num > PAGE_SIZE) {
1114 ti->error = "Invalid data device block size";
1115 r = -EINVAL;
1116 goto bad;
1117 }
1118 v->data_dev_block_bits = __ffs(num);
1119
1120 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1121 !num || (num & (num - 1)) ||
1122 num < bdev_logical_block_size(v->hash_dev->bdev) ||
1123 num > INT_MAX) {
1124 ti->error = "Invalid hash device block size";
1125 r = -EINVAL;
1126 goto bad;
1127 }
1128 v->hash_dev_block_bits = __ffs(num);
1129
1130 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1131 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1132 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1133 ti->error = "Invalid data blocks";
1134 r = -EINVAL;
1135 goto bad;
1136 }
1137 v->data_blocks = num_ll;
1138
1139 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1140 ti->error = "Data device is too small";
1141 r = -EINVAL;
1142 goto bad;
1143 }
1144
1145 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1146 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1147 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1148 ti->error = "Invalid hash start";
1149 r = -EINVAL;
1150 goto bad;
1151 }
1152 v->hash_start = num_ll;
1153
1154 v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1155 if (!v->alg_name) {
1156 ti->error = "Cannot allocate algorithm name";
1157 r = -ENOMEM;
1158 goto bad;
1159 }
1160
1161 v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1162 if (IS_ERR(v->tfm)) {
1163 ti->error = "Cannot initialize hash function";
1164 r = PTR_ERR(v->tfm);
1165 v->tfm = NULL;
1166 goto bad;
1167 }
1168
1169 /*
1170 * dm-verity performance can vary greatly depending on which hash
1171 * algorithm implementation is used. Help people debug performance
1172 * problems by logging the ->cra_driver_name.
1173 */
1174 DMINFO("%s using implementation \"%s\"", v->alg_name,
1175 crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1176
1177 v->digest_size = crypto_ahash_digestsize(v->tfm);
1178 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1179 ti->error = "Digest size too big";
1180 r = -EINVAL;
1181 goto bad;
1182 }
1183 v->ahash_reqsize = sizeof(struct ahash_request) +
1184 crypto_ahash_reqsize(v->tfm);
1185
1186 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1187 if (!v->root_digest) {
1188 ti->error = "Cannot allocate root digest";
1189 r = -ENOMEM;
1190 goto bad;
1191 }
1192 if (strlen(argv[8]) != v->digest_size * 2 ||
1193 hex2bin(v->root_digest, argv[8], v->digest_size)) {
1194 ti->error = "Invalid root digest";
1195 r = -EINVAL;
1196 goto bad;
1197 }
1198 root_hash_digest_to_validate = argv[8];
1199
1200 if (strcmp(argv[9], "-")) {
1201 v->salt_size = strlen(argv[9]) / 2;
1202 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1203 if (!v->salt) {
1204 ti->error = "Cannot allocate salt";
1205 r = -ENOMEM;
1206 goto bad;
1207 }
1208 if (strlen(argv[9]) != v->salt_size * 2 ||
1209 hex2bin(v->salt, argv[9], v->salt_size)) {
1210 ti->error = "Invalid salt";
1211 r = -EINVAL;
1212 goto bad;
1213 }
1214 }
1215
1216 argv += 10;
1217 argc -= 10;
1218
1219 /* Optional parameters */
1220 if (argc) {
1221 as.argc = argc;
1222 as.argv = argv;
1223
1224 r = verity_parse_opt_args(&as, v, &verify_args);
1225 if (r < 0)
1226 goto bad;
1227 }
1228
1229 /* Root hash signature is a optional parameter*/
1230 r = verity_verify_root_hash(root_hash_digest_to_validate,
1231 strlen(root_hash_digest_to_validate),
1232 verify_args.sig,
1233 verify_args.sig_size);
1234 if (r < 0) {
1235 ti->error = "Root hash verification failed";
1236 goto bad;
1237 }
1238 v->hash_per_block_bits =
1239 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
1240
1241 v->levels = 0;
1242 if (v->data_blocks)
1243 while (v->hash_per_block_bits * v->levels < 64 &&
1244 (unsigned long long)(v->data_blocks - 1) >>
1245 (v->hash_per_block_bits * v->levels))
1246 v->levels++;
1247
1248 if (v->levels > DM_VERITY_MAX_LEVELS) {
1249 ti->error = "Too many tree levels";
1250 r = -E2BIG;
1251 goto bad;
1252 }
1253
1254 hash_position = v->hash_start;
1255 for (i = v->levels - 1; i >= 0; i--) {
1256 sector_t s;
1257 v->hash_level_block[i] = hash_position;
1258 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1259 >> ((i + 1) * v->hash_per_block_bits);
1260 if (hash_position + s < hash_position) {
1261 ti->error = "Hash device offset overflow";
1262 r = -E2BIG;
1263 goto bad;
1264 }
1265 hash_position += s;
1266 }
1267 v->hash_blocks = hash_position;
1268
1269 v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1270 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1271 dm_bufio_alloc_callback, NULL);
1272 if (IS_ERR(v->bufio)) {
1273 ti->error = "Cannot initialize dm-bufio";
1274 r = PTR_ERR(v->bufio);
1275 v->bufio = NULL;
1276 goto bad;
1277 }
1278
1279 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1280 ti->error = "Hash device is too small";
1281 r = -E2BIG;
1282 goto bad;
1283 }
1284
1285 /*
1286 * Using WQ_HIGHPRI improves throughput and completion latency by
1287 * reducing wait times when reading from a dm-verity device.
1288 *
1289 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1290 * allows verify_wq to preempt softirq since verification in tasklet
1291 * will fall-back to using it for error handling (or if the bufio cache
1292 * doesn't have required hashes).
1293 */
1294 v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1295 if (!v->verify_wq) {
1296 ti->error = "Cannot allocate workqueue";
1297 r = -ENOMEM;
1298 goto bad;
1299 }
1300
1301 ti->per_io_data_size = sizeof(struct dm_verity_io) +
1302 v->ahash_reqsize + v->digest_size * 2;
1303
1304 r = verity_fec_ctr(v);
1305 if (r)
1306 goto bad;
1307
1308 ti->per_io_data_size = roundup(ti->per_io_data_size,
1309 __alignof__(struct dm_verity_io));
1310
1311 verity_verify_sig_opts_cleanup(&verify_args);
1312
1313 return 0;
1314
1315 bad:
1316
1317 verity_verify_sig_opts_cleanup(&verify_args);
1318 verity_dtr(ti);
1319
1320 return r;
1321 }
1322
1323 static struct target_type verity_target = {
1324 .name = "verity",
1325 .features = DM_TARGET_IMMUTABLE,
1326 .version = {1, 8, 0},
1327 .module = THIS_MODULE,
1328 .ctr = verity_ctr,
1329 .dtr = verity_dtr,
1330 .map = verity_map,
1331 .status = verity_status,
1332 .prepare_ioctl = verity_prepare_ioctl,
1333 .iterate_devices = verity_iterate_devices,
1334 .io_hints = verity_io_hints,
1335 };
1336
dm_verity_init(void)1337 static int __init dm_verity_init(void)
1338 {
1339 int r;
1340
1341 r = dm_register_target(&verity_target);
1342 if (r < 0)
1343 DMERR("register failed %d", r);
1344
1345 return r;
1346 }
1347
dm_verity_exit(void)1348 static void __exit dm_verity_exit(void)
1349 {
1350 dm_unregister_target(&verity_target);
1351 }
1352
1353 module_init(dm_verity_init);
1354 module_exit(dm_verity_exit);
1355
1356 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1357 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1358 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1359 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1360 MODULE_LICENSE("GPL");
1361