1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2018 Red Hat. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include <linux/device-mapper.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/vmalloc.h>
12 #include <linux/kthread.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/dax.h>
16 #include <linux/pfn_t.h>
17 #include <linux/libnvdimm.h>
18 #include <linux/delay.h>
19 #include "dm-io-tracker.h"
20
21 #define DM_MSG_PREFIX "writecache"
22
23 #define HIGH_WATERMARK 50
24 #define LOW_WATERMARK 45
25 #define MAX_WRITEBACK_JOBS min(0x10000000 / PAGE_SIZE, totalram_pages() / 16)
26 #define ENDIO_LATENCY 16
27 #define WRITEBACK_LATENCY 64
28 #define AUTOCOMMIT_BLOCKS_SSD 65536
29 #define AUTOCOMMIT_BLOCKS_PMEM 64
30 #define AUTOCOMMIT_MSEC 1000
31 #define MAX_AGE_DIV 16
32 #define MAX_AGE_UNSPECIFIED -1UL
33 #define PAUSE_WRITEBACK (HZ * 3)
34
35 #define BITMAP_GRANULARITY 65536
36 #if BITMAP_GRANULARITY < PAGE_SIZE
37 #undef BITMAP_GRANULARITY
38 #define BITMAP_GRANULARITY PAGE_SIZE
39 #endif
40
41 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
42 #define DM_WRITECACHE_HAS_PMEM
43 #endif
44
45 #ifdef DM_WRITECACHE_HAS_PMEM
46 #define pmem_assign(dest, src) \
47 do { \
48 typeof(dest) uniq = (src); \
49 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \
50 } while (0)
51 #else
52 #define pmem_assign(dest, src) ((dest) = (src))
53 #endif
54
55 #if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM)
56 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
57 #endif
58
59 #define MEMORY_SUPERBLOCK_MAGIC 0x23489321
60 #define MEMORY_SUPERBLOCK_VERSION 1
61
62 struct wc_memory_entry {
63 __le64 original_sector;
64 __le64 seq_count;
65 };
66
67 struct wc_memory_superblock {
68 union {
69 struct {
70 __le32 magic;
71 __le32 version;
72 __le32 block_size;
73 __le32 pad;
74 __le64 n_blocks;
75 __le64 seq_count;
76 };
77 __le64 padding[8];
78 };
79 struct wc_memory_entry entries[];
80 };
81
82 struct wc_entry {
83 struct rb_node rb_node;
84 struct list_head lru;
85 unsigned short wc_list_contiguous;
86 bool write_in_progress
87 #if BITS_PER_LONG == 64
88 :1
89 #endif
90 ;
91 unsigned long index
92 #if BITS_PER_LONG == 64
93 :47
94 #endif
95 ;
96 unsigned long age;
97 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
98 uint64_t original_sector;
99 uint64_t seq_count;
100 #endif
101 };
102
103 #ifdef DM_WRITECACHE_HAS_PMEM
104 #define WC_MODE_PMEM(wc) ((wc)->pmem_mode)
105 #define WC_MODE_FUA(wc) ((wc)->writeback_fua)
106 #else
107 #define WC_MODE_PMEM(wc) false
108 #define WC_MODE_FUA(wc) false
109 #endif
110 #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc))
111
112 struct dm_writecache {
113 struct mutex lock;
114 struct list_head lru;
115 union {
116 struct list_head freelist;
117 struct {
118 struct rb_root freetree;
119 struct wc_entry *current_free;
120 };
121 };
122 struct rb_root tree;
123
124 size_t freelist_size;
125 size_t writeback_size;
126 size_t freelist_high_watermark;
127 size_t freelist_low_watermark;
128 unsigned long max_age;
129 unsigned long pause;
130
131 unsigned uncommitted_blocks;
132 unsigned autocommit_blocks;
133 unsigned max_writeback_jobs;
134
135 int error;
136
137 unsigned long autocommit_jiffies;
138 struct timer_list autocommit_timer;
139 struct wait_queue_head freelist_wait;
140
141 struct timer_list max_age_timer;
142
143 atomic_t bio_in_progress[2];
144 struct wait_queue_head bio_in_progress_wait[2];
145
146 struct dm_target *ti;
147 struct dm_dev *dev;
148 struct dm_dev *ssd_dev;
149 sector_t start_sector;
150 void *memory_map;
151 uint64_t memory_map_size;
152 size_t metadata_sectors;
153 size_t n_blocks;
154 uint64_t seq_count;
155 sector_t data_device_sectors;
156 void *block_start;
157 struct wc_entry *entries;
158 unsigned block_size;
159 unsigned char block_size_bits;
160
161 bool pmem_mode:1;
162 bool writeback_fua:1;
163
164 bool overwrote_committed:1;
165 bool memory_vmapped:1;
166
167 bool start_sector_set:1;
168 bool high_wm_percent_set:1;
169 bool low_wm_percent_set:1;
170 bool max_writeback_jobs_set:1;
171 bool autocommit_blocks_set:1;
172 bool autocommit_time_set:1;
173 bool max_age_set:1;
174 bool writeback_fua_set:1;
175 bool flush_on_suspend:1;
176 bool cleaner:1;
177 bool cleaner_set:1;
178 bool metadata_only:1;
179 bool pause_set:1;
180
181 unsigned high_wm_percent_value;
182 unsigned low_wm_percent_value;
183 unsigned autocommit_time_value;
184 unsigned max_age_value;
185 unsigned pause_value;
186
187 unsigned writeback_all;
188 struct workqueue_struct *writeback_wq;
189 struct work_struct writeback_work;
190 struct work_struct flush_work;
191
192 struct dm_io_tracker iot;
193
194 struct dm_io_client *dm_io;
195
196 raw_spinlock_t endio_list_lock;
197 struct list_head endio_list;
198 struct task_struct *endio_thread;
199
200 struct task_struct *flush_thread;
201 struct bio_list flush_list;
202
203 struct dm_kcopyd_client *dm_kcopyd;
204 unsigned long *dirty_bitmap;
205 unsigned dirty_bitmap_size;
206
207 struct bio_set bio_set;
208 mempool_t copy_pool;
209
210 struct {
211 unsigned long long reads;
212 unsigned long long read_hits;
213 unsigned long long writes;
214 unsigned long long write_hits_uncommitted;
215 unsigned long long write_hits_committed;
216 unsigned long long writes_around;
217 unsigned long long writes_allocate;
218 unsigned long long writes_blocked_on_freelist;
219 unsigned long long flushes;
220 unsigned long long discards;
221 } stats;
222 };
223
224 #define WB_LIST_INLINE 16
225
226 struct writeback_struct {
227 struct list_head endio_entry;
228 struct dm_writecache *wc;
229 struct wc_entry **wc_list;
230 unsigned wc_list_n;
231 struct wc_entry *wc_list_inline[WB_LIST_INLINE];
232 struct bio bio;
233 };
234
235 struct copy_struct {
236 struct list_head endio_entry;
237 struct dm_writecache *wc;
238 struct wc_entry *e;
239 unsigned n_entries;
240 int error;
241 };
242
243 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
244 "A percentage of time allocated for data copying");
245
wc_lock(struct dm_writecache * wc)246 static void wc_lock(struct dm_writecache *wc)
247 {
248 mutex_lock(&wc->lock);
249 }
250
wc_unlock(struct dm_writecache * wc)251 static void wc_unlock(struct dm_writecache *wc)
252 {
253 mutex_unlock(&wc->lock);
254 }
255
256 #ifdef DM_WRITECACHE_HAS_PMEM
persistent_memory_claim(struct dm_writecache * wc)257 static int persistent_memory_claim(struct dm_writecache *wc)
258 {
259 int r;
260 loff_t s;
261 long p, da;
262 pfn_t pfn;
263 int id;
264 struct page **pages;
265 sector_t offset;
266
267 wc->memory_vmapped = false;
268
269 s = wc->memory_map_size;
270 p = s >> PAGE_SHIFT;
271 if (!p) {
272 r = -EINVAL;
273 goto err1;
274 }
275 if (p != s >> PAGE_SHIFT) {
276 r = -EOVERFLOW;
277 goto err1;
278 }
279
280 offset = get_start_sect(wc->ssd_dev->bdev);
281 if (offset & (PAGE_SIZE / 512 - 1)) {
282 r = -EINVAL;
283 goto err1;
284 }
285 offset >>= PAGE_SHIFT - 9;
286
287 id = dax_read_lock();
288
289 da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, &wc->memory_map, &pfn);
290 if (da < 0) {
291 wc->memory_map = NULL;
292 r = da;
293 goto err2;
294 }
295 if (!pfn_t_has_page(pfn)) {
296 wc->memory_map = NULL;
297 r = -EOPNOTSUPP;
298 goto err2;
299 }
300 if (da != p) {
301 long i;
302 wc->memory_map = NULL;
303 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
304 if (!pages) {
305 r = -ENOMEM;
306 goto err2;
307 }
308 i = 0;
309 do {
310 long daa;
311 daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i, p - i,
312 NULL, &pfn);
313 if (daa <= 0) {
314 r = daa ? daa : -EINVAL;
315 goto err3;
316 }
317 if (!pfn_t_has_page(pfn)) {
318 r = -EOPNOTSUPP;
319 goto err3;
320 }
321 while (daa-- && i < p) {
322 pages[i++] = pfn_t_to_page(pfn);
323 pfn.val++;
324 if (!(i & 15))
325 cond_resched();
326 }
327 } while (i < p);
328 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
329 if (!wc->memory_map) {
330 r = -ENOMEM;
331 goto err3;
332 }
333 kvfree(pages);
334 wc->memory_vmapped = true;
335 }
336
337 dax_read_unlock(id);
338
339 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
340 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
341
342 return 0;
343 err3:
344 kvfree(pages);
345 err2:
346 dax_read_unlock(id);
347 err1:
348 return r;
349 }
350 #else
persistent_memory_claim(struct dm_writecache * wc)351 static int persistent_memory_claim(struct dm_writecache *wc)
352 {
353 return -EOPNOTSUPP;
354 }
355 #endif
356
persistent_memory_release(struct dm_writecache * wc)357 static void persistent_memory_release(struct dm_writecache *wc)
358 {
359 if (wc->memory_vmapped)
360 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
361 }
362
persistent_memory_page(void * addr)363 static struct page *persistent_memory_page(void *addr)
364 {
365 if (is_vmalloc_addr(addr))
366 return vmalloc_to_page(addr);
367 else
368 return virt_to_page(addr);
369 }
370
persistent_memory_page_offset(void * addr)371 static unsigned persistent_memory_page_offset(void *addr)
372 {
373 return (unsigned long)addr & (PAGE_SIZE - 1);
374 }
375
persistent_memory_flush_cache(void * ptr,size_t size)376 static void persistent_memory_flush_cache(void *ptr, size_t size)
377 {
378 if (is_vmalloc_addr(ptr))
379 flush_kernel_vmap_range(ptr, size);
380 }
381
persistent_memory_invalidate_cache(void * ptr,size_t size)382 static void persistent_memory_invalidate_cache(void *ptr, size_t size)
383 {
384 if (is_vmalloc_addr(ptr))
385 invalidate_kernel_vmap_range(ptr, size);
386 }
387
sb(struct dm_writecache * wc)388 static struct wc_memory_superblock *sb(struct dm_writecache *wc)
389 {
390 return wc->memory_map;
391 }
392
memory_entry(struct dm_writecache * wc,struct wc_entry * e)393 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
394 {
395 return &sb(wc)->entries[e->index];
396 }
397
memory_data(struct dm_writecache * wc,struct wc_entry * e)398 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
399 {
400 return (char *)wc->block_start + (e->index << wc->block_size_bits);
401 }
402
cache_sector(struct dm_writecache * wc,struct wc_entry * e)403 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
404 {
405 return wc->start_sector + wc->metadata_sectors +
406 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
407 }
408
read_original_sector(struct dm_writecache * wc,struct wc_entry * e)409 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
410 {
411 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
412 return e->original_sector;
413 #else
414 return le64_to_cpu(memory_entry(wc, e)->original_sector);
415 #endif
416 }
417
read_seq_count(struct dm_writecache * wc,struct wc_entry * e)418 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
419 {
420 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
421 return e->seq_count;
422 #else
423 return le64_to_cpu(memory_entry(wc, e)->seq_count);
424 #endif
425 }
426
clear_seq_count(struct dm_writecache * wc,struct wc_entry * e)427 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
428 {
429 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
430 e->seq_count = -1;
431 #endif
432 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
433 }
434
write_original_sector_seq_count(struct dm_writecache * wc,struct wc_entry * e,uint64_t original_sector,uint64_t seq_count)435 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
436 uint64_t original_sector, uint64_t seq_count)
437 {
438 struct wc_memory_entry me;
439 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
440 e->original_sector = original_sector;
441 e->seq_count = seq_count;
442 #endif
443 me.original_sector = cpu_to_le64(original_sector);
444 me.seq_count = cpu_to_le64(seq_count);
445 pmem_assign(*memory_entry(wc, e), me);
446 }
447
448 #define writecache_error(wc, err, msg, arg...) \
449 do { \
450 if (!cmpxchg(&(wc)->error, 0, err)) \
451 DMERR(msg, ##arg); \
452 wake_up(&(wc)->freelist_wait); \
453 } while (0)
454
455 #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error)))
456
writecache_flush_all_metadata(struct dm_writecache * wc)457 static void writecache_flush_all_metadata(struct dm_writecache *wc)
458 {
459 if (!WC_MODE_PMEM(wc))
460 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
461 }
462
writecache_flush_region(struct dm_writecache * wc,void * ptr,size_t size)463 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
464 {
465 if (!WC_MODE_PMEM(wc))
466 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
467 wc->dirty_bitmap);
468 }
469
470 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
471
472 struct io_notify {
473 struct dm_writecache *wc;
474 struct completion c;
475 atomic_t count;
476 };
477
writecache_notify_io(unsigned long error,void * context)478 static void writecache_notify_io(unsigned long error, void *context)
479 {
480 struct io_notify *endio = context;
481
482 if (unlikely(error != 0))
483 writecache_error(endio->wc, -EIO, "error writing metadata");
484 BUG_ON(atomic_read(&endio->count) <= 0);
485 if (atomic_dec_and_test(&endio->count))
486 complete(&endio->c);
487 }
488
writecache_wait_for_ios(struct dm_writecache * wc,int direction)489 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
490 {
491 wait_event(wc->bio_in_progress_wait[direction],
492 !atomic_read(&wc->bio_in_progress[direction]));
493 }
494
ssd_commit_flushed(struct dm_writecache * wc,bool wait_for_ios)495 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
496 {
497 struct dm_io_region region;
498 struct dm_io_request req;
499 struct io_notify endio = {
500 wc,
501 COMPLETION_INITIALIZER_ONSTACK(endio.c),
502 ATOMIC_INIT(1),
503 };
504 unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
505 unsigned i = 0;
506
507 while (1) {
508 unsigned j;
509 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
510 if (unlikely(i == bitmap_bits))
511 break;
512 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
513
514 region.bdev = wc->ssd_dev->bdev;
515 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
516 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
517
518 if (unlikely(region.sector >= wc->metadata_sectors))
519 break;
520 if (unlikely(region.sector + region.count > wc->metadata_sectors))
521 region.count = wc->metadata_sectors - region.sector;
522
523 region.sector += wc->start_sector;
524 atomic_inc(&endio.count);
525 req.bi_op = REQ_OP_WRITE;
526 req.bi_op_flags = REQ_SYNC;
527 req.mem.type = DM_IO_VMA;
528 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
529 req.client = wc->dm_io;
530 req.notify.fn = writecache_notify_io;
531 req.notify.context = &endio;
532
533 /* writing via async dm-io (implied by notify.fn above) won't return an error */
534 (void) dm_io(&req, 1, ®ion, NULL);
535 i = j;
536 }
537
538 writecache_notify_io(0, &endio);
539 wait_for_completion_io(&endio.c);
540
541 if (wait_for_ios)
542 writecache_wait_for_ios(wc, WRITE);
543
544 writecache_disk_flush(wc, wc->ssd_dev);
545
546 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
547 }
548
ssd_commit_superblock(struct dm_writecache * wc)549 static void ssd_commit_superblock(struct dm_writecache *wc)
550 {
551 int r;
552 struct dm_io_region region;
553 struct dm_io_request req;
554
555 region.bdev = wc->ssd_dev->bdev;
556 region.sector = 0;
557 region.count = max(4096U, wc->block_size) >> SECTOR_SHIFT;
558
559 if (unlikely(region.sector + region.count > wc->metadata_sectors))
560 region.count = wc->metadata_sectors - region.sector;
561
562 region.sector += wc->start_sector;
563
564 req.bi_op = REQ_OP_WRITE;
565 req.bi_op_flags = REQ_SYNC | REQ_FUA;
566 req.mem.type = DM_IO_VMA;
567 req.mem.ptr.vma = (char *)wc->memory_map;
568 req.client = wc->dm_io;
569 req.notify.fn = NULL;
570 req.notify.context = NULL;
571
572 r = dm_io(&req, 1, ®ion, NULL);
573 if (unlikely(r))
574 writecache_error(wc, r, "error writing superblock");
575 }
576
writecache_commit_flushed(struct dm_writecache * wc,bool wait_for_ios)577 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
578 {
579 if (WC_MODE_PMEM(wc))
580 pmem_wmb();
581 else
582 ssd_commit_flushed(wc, wait_for_ios);
583 }
584
writecache_disk_flush(struct dm_writecache * wc,struct dm_dev * dev)585 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
586 {
587 int r;
588 struct dm_io_region region;
589 struct dm_io_request req;
590
591 region.bdev = dev->bdev;
592 region.sector = 0;
593 region.count = 0;
594 req.bi_op = REQ_OP_WRITE;
595 req.bi_op_flags = REQ_PREFLUSH;
596 req.mem.type = DM_IO_KMEM;
597 req.mem.ptr.addr = NULL;
598 req.client = wc->dm_io;
599 req.notify.fn = NULL;
600
601 r = dm_io(&req, 1, ®ion, NULL);
602 if (unlikely(r))
603 writecache_error(wc, r, "error flushing metadata: %d", r);
604 }
605
606 #define WFE_RETURN_FOLLOWING 1
607 #define WFE_LOWEST_SEQ 2
608
writecache_find_entry(struct dm_writecache * wc,uint64_t block,int flags)609 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
610 uint64_t block, int flags)
611 {
612 struct wc_entry *e;
613 struct rb_node *node = wc->tree.rb_node;
614
615 if (unlikely(!node))
616 return NULL;
617
618 while (1) {
619 e = container_of(node, struct wc_entry, rb_node);
620 if (read_original_sector(wc, e) == block)
621 break;
622
623 node = (read_original_sector(wc, e) >= block ?
624 e->rb_node.rb_left : e->rb_node.rb_right);
625 if (unlikely(!node)) {
626 if (!(flags & WFE_RETURN_FOLLOWING))
627 return NULL;
628 if (read_original_sector(wc, e) >= block) {
629 return e;
630 } else {
631 node = rb_next(&e->rb_node);
632 if (unlikely(!node))
633 return NULL;
634 e = container_of(node, struct wc_entry, rb_node);
635 return e;
636 }
637 }
638 }
639
640 while (1) {
641 struct wc_entry *e2;
642 if (flags & WFE_LOWEST_SEQ)
643 node = rb_prev(&e->rb_node);
644 else
645 node = rb_next(&e->rb_node);
646 if (unlikely(!node))
647 return e;
648 e2 = container_of(node, struct wc_entry, rb_node);
649 if (read_original_sector(wc, e2) != block)
650 return e;
651 e = e2;
652 }
653 }
654
writecache_insert_entry(struct dm_writecache * wc,struct wc_entry * ins)655 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
656 {
657 struct wc_entry *e;
658 struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
659
660 while (*node) {
661 e = container_of(*node, struct wc_entry, rb_node);
662 parent = &e->rb_node;
663 if (read_original_sector(wc, e) > read_original_sector(wc, ins))
664 node = &parent->rb_left;
665 else
666 node = &parent->rb_right;
667 }
668 rb_link_node(&ins->rb_node, parent, node);
669 rb_insert_color(&ins->rb_node, &wc->tree);
670 list_add(&ins->lru, &wc->lru);
671 ins->age = jiffies;
672 }
673
writecache_unlink(struct dm_writecache * wc,struct wc_entry * e)674 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
675 {
676 list_del(&e->lru);
677 rb_erase(&e->rb_node, &wc->tree);
678 }
679
writecache_add_to_freelist(struct dm_writecache * wc,struct wc_entry * e)680 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
681 {
682 if (WC_MODE_SORT_FREELIST(wc)) {
683 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
684 if (unlikely(!*node))
685 wc->current_free = e;
686 while (*node) {
687 parent = *node;
688 if (&e->rb_node < *node)
689 node = &parent->rb_left;
690 else
691 node = &parent->rb_right;
692 }
693 rb_link_node(&e->rb_node, parent, node);
694 rb_insert_color(&e->rb_node, &wc->freetree);
695 } else {
696 list_add_tail(&e->lru, &wc->freelist);
697 }
698 wc->freelist_size++;
699 }
700
writecache_verify_watermark(struct dm_writecache * wc)701 static inline void writecache_verify_watermark(struct dm_writecache *wc)
702 {
703 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
704 queue_work(wc->writeback_wq, &wc->writeback_work);
705 }
706
writecache_max_age_timer(struct timer_list * t)707 static void writecache_max_age_timer(struct timer_list *t)
708 {
709 struct dm_writecache *wc = from_timer(wc, t, max_age_timer);
710
711 if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
712 queue_work(wc->writeback_wq, &wc->writeback_work);
713 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
714 }
715 }
716
writecache_pop_from_freelist(struct dm_writecache * wc,sector_t expected_sector)717 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
718 {
719 struct wc_entry *e;
720
721 if (WC_MODE_SORT_FREELIST(wc)) {
722 struct rb_node *next;
723 if (unlikely(!wc->current_free))
724 return NULL;
725 e = wc->current_free;
726 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
727 return NULL;
728 next = rb_next(&e->rb_node);
729 rb_erase(&e->rb_node, &wc->freetree);
730 if (unlikely(!next))
731 next = rb_first(&wc->freetree);
732 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
733 } else {
734 if (unlikely(list_empty(&wc->freelist)))
735 return NULL;
736 e = container_of(wc->freelist.next, struct wc_entry, lru);
737 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
738 return NULL;
739 list_del(&e->lru);
740 }
741 wc->freelist_size--;
742
743 writecache_verify_watermark(wc);
744
745 return e;
746 }
747
writecache_free_entry(struct dm_writecache * wc,struct wc_entry * e)748 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
749 {
750 writecache_unlink(wc, e);
751 writecache_add_to_freelist(wc, e);
752 clear_seq_count(wc, e);
753 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
754 if (unlikely(waitqueue_active(&wc->freelist_wait)))
755 wake_up(&wc->freelist_wait);
756 }
757
writecache_wait_on_freelist(struct dm_writecache * wc)758 static void writecache_wait_on_freelist(struct dm_writecache *wc)
759 {
760 DEFINE_WAIT(wait);
761
762 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
763 wc_unlock(wc);
764 io_schedule();
765 finish_wait(&wc->freelist_wait, &wait);
766 wc_lock(wc);
767 }
768
writecache_poison_lists(struct dm_writecache * wc)769 static void writecache_poison_lists(struct dm_writecache *wc)
770 {
771 /*
772 * Catch incorrect access to these values while the device is suspended.
773 */
774 memset(&wc->tree, -1, sizeof wc->tree);
775 wc->lru.next = LIST_POISON1;
776 wc->lru.prev = LIST_POISON2;
777 wc->freelist.next = LIST_POISON1;
778 wc->freelist.prev = LIST_POISON2;
779 }
780
writecache_flush_entry(struct dm_writecache * wc,struct wc_entry * e)781 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
782 {
783 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
784 if (WC_MODE_PMEM(wc))
785 writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
786 }
787
writecache_entry_is_committed(struct dm_writecache * wc,struct wc_entry * e)788 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
789 {
790 return read_seq_count(wc, e) < wc->seq_count;
791 }
792
writecache_flush(struct dm_writecache * wc)793 static void writecache_flush(struct dm_writecache *wc)
794 {
795 struct wc_entry *e, *e2;
796 bool need_flush_after_free;
797
798 wc->uncommitted_blocks = 0;
799 del_timer(&wc->autocommit_timer);
800
801 if (list_empty(&wc->lru))
802 return;
803
804 e = container_of(wc->lru.next, struct wc_entry, lru);
805 if (writecache_entry_is_committed(wc, e)) {
806 if (wc->overwrote_committed) {
807 writecache_wait_for_ios(wc, WRITE);
808 writecache_disk_flush(wc, wc->ssd_dev);
809 wc->overwrote_committed = false;
810 }
811 return;
812 }
813 while (1) {
814 writecache_flush_entry(wc, e);
815 if (unlikely(e->lru.next == &wc->lru))
816 break;
817 e2 = container_of(e->lru.next, struct wc_entry, lru);
818 if (writecache_entry_is_committed(wc, e2))
819 break;
820 e = e2;
821 cond_resched();
822 }
823 writecache_commit_flushed(wc, true);
824
825 wc->seq_count++;
826 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
827 if (WC_MODE_PMEM(wc))
828 writecache_commit_flushed(wc, false);
829 else
830 ssd_commit_superblock(wc);
831
832 wc->overwrote_committed = false;
833
834 need_flush_after_free = false;
835 while (1) {
836 /* Free another committed entry with lower seq-count */
837 struct rb_node *rb_node = rb_prev(&e->rb_node);
838
839 if (rb_node) {
840 e2 = container_of(rb_node, struct wc_entry, rb_node);
841 if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
842 likely(!e2->write_in_progress)) {
843 writecache_free_entry(wc, e2);
844 need_flush_after_free = true;
845 }
846 }
847 if (unlikely(e->lru.prev == &wc->lru))
848 break;
849 e = container_of(e->lru.prev, struct wc_entry, lru);
850 cond_resched();
851 }
852
853 if (need_flush_after_free)
854 writecache_commit_flushed(wc, false);
855 }
856
writecache_flush_work(struct work_struct * work)857 static void writecache_flush_work(struct work_struct *work)
858 {
859 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
860
861 wc_lock(wc);
862 writecache_flush(wc);
863 wc_unlock(wc);
864 }
865
writecache_autocommit_timer(struct timer_list * t)866 static void writecache_autocommit_timer(struct timer_list *t)
867 {
868 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
869 if (!writecache_has_error(wc))
870 queue_work(wc->writeback_wq, &wc->flush_work);
871 }
872
writecache_schedule_autocommit(struct dm_writecache * wc)873 static void writecache_schedule_autocommit(struct dm_writecache *wc)
874 {
875 if (!timer_pending(&wc->autocommit_timer))
876 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
877 }
878
writecache_discard(struct dm_writecache * wc,sector_t start,sector_t end)879 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
880 {
881 struct wc_entry *e;
882 bool discarded_something = false;
883
884 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
885 if (unlikely(!e))
886 return;
887
888 while (read_original_sector(wc, e) < end) {
889 struct rb_node *node = rb_next(&e->rb_node);
890
891 if (likely(!e->write_in_progress)) {
892 if (!discarded_something) {
893 if (!WC_MODE_PMEM(wc)) {
894 writecache_wait_for_ios(wc, READ);
895 writecache_wait_for_ios(wc, WRITE);
896 }
897 discarded_something = true;
898 }
899 if (!writecache_entry_is_committed(wc, e))
900 wc->uncommitted_blocks--;
901 writecache_free_entry(wc, e);
902 }
903
904 if (unlikely(!node))
905 break;
906
907 e = container_of(node, struct wc_entry, rb_node);
908 }
909
910 if (discarded_something)
911 writecache_commit_flushed(wc, false);
912 }
913
writecache_wait_for_writeback(struct dm_writecache * wc)914 static bool writecache_wait_for_writeback(struct dm_writecache *wc)
915 {
916 if (wc->writeback_size) {
917 writecache_wait_on_freelist(wc);
918 return true;
919 }
920 return false;
921 }
922
writecache_suspend(struct dm_target * ti)923 static void writecache_suspend(struct dm_target *ti)
924 {
925 struct dm_writecache *wc = ti->private;
926 bool flush_on_suspend;
927
928 del_timer_sync(&wc->autocommit_timer);
929 del_timer_sync(&wc->max_age_timer);
930
931 wc_lock(wc);
932 writecache_flush(wc);
933 flush_on_suspend = wc->flush_on_suspend;
934 if (flush_on_suspend) {
935 wc->flush_on_suspend = false;
936 wc->writeback_all++;
937 queue_work(wc->writeback_wq, &wc->writeback_work);
938 }
939 wc_unlock(wc);
940
941 drain_workqueue(wc->writeback_wq);
942
943 wc_lock(wc);
944 if (flush_on_suspend)
945 wc->writeback_all--;
946 while (writecache_wait_for_writeback(wc));
947
948 if (WC_MODE_PMEM(wc))
949 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
950
951 writecache_poison_lists(wc);
952
953 wc_unlock(wc);
954 }
955
writecache_alloc_entries(struct dm_writecache * wc)956 static int writecache_alloc_entries(struct dm_writecache *wc)
957 {
958 size_t b;
959
960 if (wc->entries)
961 return 0;
962 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
963 if (!wc->entries)
964 return -ENOMEM;
965 for (b = 0; b < wc->n_blocks; b++) {
966 struct wc_entry *e = &wc->entries[b];
967 e->index = b;
968 e->write_in_progress = false;
969 cond_resched();
970 }
971
972 return 0;
973 }
974
writecache_read_metadata(struct dm_writecache * wc,sector_t n_sectors)975 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
976 {
977 struct dm_io_region region;
978 struct dm_io_request req;
979
980 region.bdev = wc->ssd_dev->bdev;
981 region.sector = wc->start_sector;
982 region.count = n_sectors;
983 req.bi_op = REQ_OP_READ;
984 req.bi_op_flags = REQ_SYNC;
985 req.mem.type = DM_IO_VMA;
986 req.mem.ptr.vma = (char *)wc->memory_map;
987 req.client = wc->dm_io;
988 req.notify.fn = NULL;
989
990 return dm_io(&req, 1, ®ion, NULL);
991 }
992
writecache_resume(struct dm_target * ti)993 static void writecache_resume(struct dm_target *ti)
994 {
995 struct dm_writecache *wc = ti->private;
996 size_t b;
997 bool need_flush = false;
998 __le64 sb_seq_count;
999 int r;
1000
1001 wc_lock(wc);
1002
1003 wc->data_device_sectors = bdev_nr_sectors(wc->dev->bdev);
1004
1005 if (WC_MODE_PMEM(wc)) {
1006 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
1007 } else {
1008 r = writecache_read_metadata(wc, wc->metadata_sectors);
1009 if (r) {
1010 size_t sb_entries_offset;
1011 writecache_error(wc, r, "unable to read metadata: %d", r);
1012 sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
1013 memset((char *)wc->memory_map + sb_entries_offset, -1,
1014 (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
1015 }
1016 }
1017
1018 wc->tree = RB_ROOT;
1019 INIT_LIST_HEAD(&wc->lru);
1020 if (WC_MODE_SORT_FREELIST(wc)) {
1021 wc->freetree = RB_ROOT;
1022 wc->current_free = NULL;
1023 } else {
1024 INIT_LIST_HEAD(&wc->freelist);
1025 }
1026 wc->freelist_size = 0;
1027
1028 r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count,
1029 sizeof(uint64_t));
1030 if (r) {
1031 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
1032 sb_seq_count = cpu_to_le64(0);
1033 }
1034 wc->seq_count = le64_to_cpu(sb_seq_count);
1035
1036 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
1037 for (b = 0; b < wc->n_blocks; b++) {
1038 struct wc_entry *e = &wc->entries[b];
1039 struct wc_memory_entry wme;
1040 if (writecache_has_error(wc)) {
1041 e->original_sector = -1;
1042 e->seq_count = -1;
1043 continue;
1044 }
1045 r = copy_mc_to_kernel(&wme, memory_entry(wc, e),
1046 sizeof(struct wc_memory_entry));
1047 if (r) {
1048 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
1049 (unsigned long)b, r);
1050 e->original_sector = -1;
1051 e->seq_count = -1;
1052 } else {
1053 e->original_sector = le64_to_cpu(wme.original_sector);
1054 e->seq_count = le64_to_cpu(wme.seq_count);
1055 }
1056 cond_resched();
1057 }
1058 #endif
1059 for (b = 0; b < wc->n_blocks; b++) {
1060 struct wc_entry *e = &wc->entries[b];
1061 if (!writecache_entry_is_committed(wc, e)) {
1062 if (read_seq_count(wc, e) != -1) {
1063 erase_this:
1064 clear_seq_count(wc, e);
1065 need_flush = true;
1066 }
1067 writecache_add_to_freelist(wc, e);
1068 } else {
1069 struct wc_entry *old;
1070
1071 old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
1072 if (!old) {
1073 writecache_insert_entry(wc, e);
1074 } else {
1075 if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
1076 writecache_error(wc, -EINVAL,
1077 "two identical entries, position %llu, sector %llu, sequence %llu",
1078 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
1079 (unsigned long long)read_seq_count(wc, e));
1080 }
1081 if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
1082 goto erase_this;
1083 } else {
1084 writecache_free_entry(wc, old);
1085 writecache_insert_entry(wc, e);
1086 need_flush = true;
1087 }
1088 }
1089 }
1090 cond_resched();
1091 }
1092
1093 if (need_flush) {
1094 writecache_flush_all_metadata(wc);
1095 writecache_commit_flushed(wc, false);
1096 }
1097
1098 writecache_verify_watermark(wc);
1099
1100 if (wc->max_age != MAX_AGE_UNSPECIFIED)
1101 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
1102
1103 wc_unlock(wc);
1104 }
1105
process_flush_mesg(unsigned argc,char ** argv,struct dm_writecache * wc)1106 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1107 {
1108 if (argc != 1)
1109 return -EINVAL;
1110
1111 wc_lock(wc);
1112 if (dm_suspended(wc->ti)) {
1113 wc_unlock(wc);
1114 return -EBUSY;
1115 }
1116 if (writecache_has_error(wc)) {
1117 wc_unlock(wc);
1118 return -EIO;
1119 }
1120
1121 writecache_flush(wc);
1122 wc->writeback_all++;
1123 queue_work(wc->writeback_wq, &wc->writeback_work);
1124 wc_unlock(wc);
1125
1126 flush_workqueue(wc->writeback_wq);
1127
1128 wc_lock(wc);
1129 wc->writeback_all--;
1130 if (writecache_has_error(wc)) {
1131 wc_unlock(wc);
1132 return -EIO;
1133 }
1134 wc_unlock(wc);
1135
1136 return 0;
1137 }
1138
process_flush_on_suspend_mesg(unsigned argc,char ** argv,struct dm_writecache * wc)1139 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1140 {
1141 if (argc != 1)
1142 return -EINVAL;
1143
1144 wc_lock(wc);
1145 wc->flush_on_suspend = true;
1146 wc_unlock(wc);
1147
1148 return 0;
1149 }
1150
activate_cleaner(struct dm_writecache * wc)1151 static void activate_cleaner(struct dm_writecache *wc)
1152 {
1153 wc->flush_on_suspend = true;
1154 wc->cleaner = true;
1155 wc->freelist_high_watermark = wc->n_blocks;
1156 wc->freelist_low_watermark = wc->n_blocks;
1157 }
1158
process_cleaner_mesg(unsigned argc,char ** argv,struct dm_writecache * wc)1159 static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1160 {
1161 if (argc != 1)
1162 return -EINVAL;
1163
1164 wc_lock(wc);
1165 activate_cleaner(wc);
1166 if (!dm_suspended(wc->ti))
1167 writecache_verify_watermark(wc);
1168 wc_unlock(wc);
1169
1170 return 0;
1171 }
1172
process_clear_stats_mesg(unsigned argc,char ** argv,struct dm_writecache * wc)1173 static int process_clear_stats_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1174 {
1175 if (argc != 1)
1176 return -EINVAL;
1177
1178 wc_lock(wc);
1179 memset(&wc->stats, 0, sizeof wc->stats);
1180 wc_unlock(wc);
1181
1182 return 0;
1183 }
1184
writecache_message(struct dm_target * ti,unsigned argc,char ** argv,char * result,unsigned maxlen)1185 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1186 char *result, unsigned maxlen)
1187 {
1188 int r = -EINVAL;
1189 struct dm_writecache *wc = ti->private;
1190
1191 if (!strcasecmp(argv[0], "flush"))
1192 r = process_flush_mesg(argc, argv, wc);
1193 else if (!strcasecmp(argv[0], "flush_on_suspend"))
1194 r = process_flush_on_suspend_mesg(argc, argv, wc);
1195 else if (!strcasecmp(argv[0], "cleaner"))
1196 r = process_cleaner_mesg(argc, argv, wc);
1197 else if (!strcasecmp(argv[0], "clear_stats"))
1198 r = process_clear_stats_mesg(argc, argv, wc);
1199 else
1200 DMERR("unrecognised message received: %s", argv[0]);
1201
1202 return r;
1203 }
1204
memcpy_flushcache_optimized(void * dest,void * source,size_t size)1205 static void memcpy_flushcache_optimized(void *dest, void *source, size_t size)
1206 {
1207 /*
1208 * clflushopt performs better with block size 1024, 2048, 4096
1209 * non-temporal stores perform better with block size 512
1210 *
1211 * block size 512 1024 2048 4096
1212 * movnti 496 MB/s 642 MB/s 725 MB/s 744 MB/s
1213 * clflushopt 373 MB/s 688 MB/s 1.1 GB/s 1.2 GB/s
1214 *
1215 * We see that movnti performs better for 512-byte blocks, and
1216 * clflushopt performs better for 1024-byte and larger blocks. So, we
1217 * prefer clflushopt for sizes >= 768.
1218 *
1219 * NOTE: this happens to be the case now (with dm-writecache's single
1220 * threaded model) but re-evaluate this once memcpy_flushcache() is
1221 * enabled to use movdir64b which might invalidate this performance
1222 * advantage seen with cache-allocating-writes plus flushing.
1223 */
1224 #ifdef CONFIG_X86
1225 if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
1226 likely(boot_cpu_data.x86_clflush_size == 64) &&
1227 likely(size >= 768)) {
1228 do {
1229 memcpy((void *)dest, (void *)source, 64);
1230 clflushopt((void *)dest);
1231 dest += 64;
1232 source += 64;
1233 size -= 64;
1234 } while (size >= 64);
1235 return;
1236 }
1237 #endif
1238 memcpy_flushcache(dest, source, size);
1239 }
1240
bio_copy_block(struct dm_writecache * wc,struct bio * bio,void * data)1241 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1242 {
1243 void *buf;
1244 unsigned size;
1245 int rw = bio_data_dir(bio);
1246 unsigned remaining_size = wc->block_size;
1247
1248 do {
1249 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1250 buf = bvec_kmap_local(&bv);
1251 size = bv.bv_len;
1252 if (unlikely(size > remaining_size))
1253 size = remaining_size;
1254
1255 if (rw == READ) {
1256 int r;
1257 r = copy_mc_to_kernel(buf, data, size);
1258 flush_dcache_page(bio_page(bio));
1259 if (unlikely(r)) {
1260 writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1261 bio->bi_status = BLK_STS_IOERR;
1262 }
1263 } else {
1264 flush_dcache_page(bio_page(bio));
1265 memcpy_flushcache_optimized(data, buf, size);
1266 }
1267
1268 kunmap_local(buf);
1269
1270 data = (char *)data + size;
1271 remaining_size -= size;
1272 bio_advance(bio, size);
1273 } while (unlikely(remaining_size));
1274 }
1275
writecache_flush_thread(void * data)1276 static int writecache_flush_thread(void *data)
1277 {
1278 struct dm_writecache *wc = data;
1279
1280 while (1) {
1281 struct bio *bio;
1282
1283 wc_lock(wc);
1284 bio = bio_list_pop(&wc->flush_list);
1285 if (!bio) {
1286 set_current_state(TASK_INTERRUPTIBLE);
1287 wc_unlock(wc);
1288
1289 if (unlikely(kthread_should_stop())) {
1290 set_current_state(TASK_RUNNING);
1291 break;
1292 }
1293
1294 schedule();
1295 continue;
1296 }
1297
1298 if (bio_op(bio) == REQ_OP_DISCARD) {
1299 writecache_discard(wc, bio->bi_iter.bi_sector,
1300 bio_end_sector(bio));
1301 wc_unlock(wc);
1302 bio_set_dev(bio, wc->dev->bdev);
1303 submit_bio_noacct(bio);
1304 } else {
1305 writecache_flush(wc);
1306 wc_unlock(wc);
1307 if (writecache_has_error(wc))
1308 bio->bi_status = BLK_STS_IOERR;
1309 bio_endio(bio);
1310 }
1311 }
1312
1313 return 0;
1314 }
1315
writecache_offload_bio(struct dm_writecache * wc,struct bio * bio)1316 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1317 {
1318 if (bio_list_empty(&wc->flush_list))
1319 wake_up_process(wc->flush_thread);
1320 bio_list_add(&wc->flush_list, bio);
1321 }
1322
1323 enum wc_map_op {
1324 WC_MAP_SUBMIT,
1325 WC_MAP_REMAP,
1326 WC_MAP_REMAP_ORIGIN,
1327 WC_MAP_RETURN,
1328 WC_MAP_ERROR,
1329 };
1330
writecache_map_remap_origin(struct dm_writecache * wc,struct bio * bio,struct wc_entry * e)1331 static void writecache_map_remap_origin(struct dm_writecache *wc, struct bio *bio,
1332 struct wc_entry *e)
1333 {
1334 if (e) {
1335 sector_t next_boundary =
1336 read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1337 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT)
1338 dm_accept_partial_bio(bio, next_boundary);
1339 }
1340 }
1341
writecache_map_read(struct dm_writecache * wc,struct bio * bio)1342 static enum wc_map_op writecache_map_read(struct dm_writecache *wc, struct bio *bio)
1343 {
1344 enum wc_map_op map_op;
1345 struct wc_entry *e;
1346
1347 read_next_block:
1348 wc->stats.reads++;
1349 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1350 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1351 wc->stats.read_hits++;
1352 if (WC_MODE_PMEM(wc)) {
1353 bio_copy_block(wc, bio, memory_data(wc, e));
1354 if (bio->bi_iter.bi_size)
1355 goto read_next_block;
1356 map_op = WC_MAP_SUBMIT;
1357 } else {
1358 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1359 bio_set_dev(bio, wc->ssd_dev->bdev);
1360 bio->bi_iter.bi_sector = cache_sector(wc, e);
1361 if (!writecache_entry_is_committed(wc, e))
1362 writecache_wait_for_ios(wc, WRITE);
1363 map_op = WC_MAP_REMAP;
1364 }
1365 } else {
1366 writecache_map_remap_origin(wc, bio, e);
1367 wc->stats.reads += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
1368 map_op = WC_MAP_REMAP_ORIGIN;
1369 }
1370
1371 return map_op;
1372 }
1373
writecache_bio_copy_ssd(struct dm_writecache * wc,struct bio * bio,struct wc_entry * e,bool search_used)1374 static void writecache_bio_copy_ssd(struct dm_writecache *wc, struct bio *bio,
1375 struct wc_entry *e, bool search_used)
1376 {
1377 unsigned bio_size = wc->block_size;
1378 sector_t start_cache_sec = cache_sector(wc, e);
1379 sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
1380
1381 while (bio_size < bio->bi_iter.bi_size) {
1382 if (!search_used) {
1383 struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
1384 if (!f)
1385 break;
1386 write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
1387 (bio_size >> SECTOR_SHIFT), wc->seq_count);
1388 writecache_insert_entry(wc, f);
1389 wc->uncommitted_blocks++;
1390 } else {
1391 struct wc_entry *f;
1392 struct rb_node *next = rb_next(&e->rb_node);
1393 if (!next)
1394 break;
1395 f = container_of(next, struct wc_entry, rb_node);
1396 if (f != e + 1)
1397 break;
1398 if (read_original_sector(wc, f) !=
1399 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1400 break;
1401 if (unlikely(f->write_in_progress))
1402 break;
1403 if (writecache_entry_is_committed(wc, f))
1404 wc->overwrote_committed = true;
1405 e = f;
1406 }
1407 bio_size += wc->block_size;
1408 current_cache_sec += wc->block_size >> SECTOR_SHIFT;
1409 }
1410
1411 bio_set_dev(bio, wc->ssd_dev->bdev);
1412 bio->bi_iter.bi_sector = start_cache_sec;
1413 dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);
1414
1415 wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1416 wc->stats.writes_allocate += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
1417
1418 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1419 wc->uncommitted_blocks = 0;
1420 queue_work(wc->writeback_wq, &wc->flush_work);
1421 } else {
1422 writecache_schedule_autocommit(wc);
1423 }
1424 }
1425
writecache_map_write(struct dm_writecache * wc,struct bio * bio)1426 static enum wc_map_op writecache_map_write(struct dm_writecache *wc, struct bio *bio)
1427 {
1428 struct wc_entry *e;
1429
1430 do {
1431 bool found_entry = false;
1432 bool search_used = false;
1433 if (writecache_has_error(wc)) {
1434 wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1435 return WC_MAP_ERROR;
1436 }
1437 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1438 if (e) {
1439 if (!writecache_entry_is_committed(wc, e)) {
1440 wc->stats.write_hits_uncommitted++;
1441 search_used = true;
1442 goto bio_copy;
1443 }
1444 wc->stats.write_hits_committed++;
1445 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1446 wc->overwrote_committed = true;
1447 search_used = true;
1448 goto bio_copy;
1449 }
1450 found_entry = true;
1451 } else {
1452 if (unlikely(wc->cleaner) ||
1453 (wc->metadata_only && !(bio->bi_opf & REQ_META)))
1454 goto direct_write;
1455 }
1456 e = writecache_pop_from_freelist(wc, (sector_t)-1);
1457 if (unlikely(!e)) {
1458 if (!WC_MODE_PMEM(wc) && !found_entry) {
1459 direct_write:
1460 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1461 writecache_map_remap_origin(wc, bio, e);
1462 wc->stats.writes_around += bio->bi_iter.bi_size >> wc->block_size_bits;
1463 wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1464 return WC_MAP_REMAP_ORIGIN;
1465 }
1466 wc->stats.writes_blocked_on_freelist++;
1467 writecache_wait_on_freelist(wc);
1468 continue;
1469 }
1470 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1471 writecache_insert_entry(wc, e);
1472 wc->uncommitted_blocks++;
1473 wc->stats.writes_allocate++;
1474 bio_copy:
1475 if (WC_MODE_PMEM(wc)) {
1476 bio_copy_block(wc, bio, memory_data(wc, e));
1477 wc->stats.writes++;
1478 } else {
1479 writecache_bio_copy_ssd(wc, bio, e, search_used);
1480 return WC_MAP_REMAP;
1481 }
1482 } while (bio->bi_iter.bi_size);
1483
1484 if (unlikely(bio->bi_opf & REQ_FUA || wc->uncommitted_blocks >= wc->autocommit_blocks))
1485 writecache_flush(wc);
1486 else
1487 writecache_schedule_autocommit(wc);
1488
1489 return WC_MAP_SUBMIT;
1490 }
1491
writecache_map_flush(struct dm_writecache * wc,struct bio * bio)1492 static enum wc_map_op writecache_map_flush(struct dm_writecache *wc, struct bio *bio)
1493 {
1494 if (writecache_has_error(wc))
1495 return WC_MAP_ERROR;
1496
1497 if (WC_MODE_PMEM(wc)) {
1498 wc->stats.flushes++;
1499 writecache_flush(wc);
1500 if (writecache_has_error(wc))
1501 return WC_MAP_ERROR;
1502 else if (unlikely(wc->cleaner) || unlikely(wc->metadata_only))
1503 return WC_MAP_REMAP_ORIGIN;
1504 return WC_MAP_SUBMIT;
1505 }
1506 /* SSD: */
1507 if (dm_bio_get_target_bio_nr(bio))
1508 return WC_MAP_REMAP_ORIGIN;
1509 wc->stats.flushes++;
1510 writecache_offload_bio(wc, bio);
1511 return WC_MAP_RETURN;
1512 }
1513
writecache_map_discard(struct dm_writecache * wc,struct bio * bio)1514 static enum wc_map_op writecache_map_discard(struct dm_writecache *wc, struct bio *bio)
1515 {
1516 wc->stats.discards += bio->bi_iter.bi_size >> wc->block_size_bits;
1517
1518 if (writecache_has_error(wc))
1519 return WC_MAP_ERROR;
1520
1521 if (WC_MODE_PMEM(wc)) {
1522 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1523 return WC_MAP_REMAP_ORIGIN;
1524 }
1525 /* SSD: */
1526 writecache_offload_bio(wc, bio);
1527 return WC_MAP_RETURN;
1528 }
1529
writecache_map(struct dm_target * ti,struct bio * bio)1530 static int writecache_map(struct dm_target *ti, struct bio *bio)
1531 {
1532 struct dm_writecache *wc = ti->private;
1533 enum wc_map_op map_op;
1534
1535 bio->bi_private = NULL;
1536
1537 wc_lock(wc);
1538
1539 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1540 map_op = writecache_map_flush(wc, bio);
1541 goto done;
1542 }
1543
1544 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1545
1546 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1547 (wc->block_size / 512 - 1)) != 0)) {
1548 DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1549 (unsigned long long)bio->bi_iter.bi_sector,
1550 bio->bi_iter.bi_size, wc->block_size);
1551 map_op = WC_MAP_ERROR;
1552 goto done;
1553 }
1554
1555 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1556 map_op = writecache_map_discard(wc, bio);
1557 goto done;
1558 }
1559
1560 if (bio_data_dir(bio) == READ)
1561 map_op = writecache_map_read(wc, bio);
1562 else
1563 map_op = writecache_map_write(wc, bio);
1564 done:
1565 switch (map_op) {
1566 case WC_MAP_REMAP_ORIGIN:
1567 if (likely(wc->pause != 0)) {
1568 if (bio_op(bio) == REQ_OP_WRITE) {
1569 dm_iot_io_begin(&wc->iot, 1);
1570 bio->bi_private = (void *)2;
1571 }
1572 }
1573 bio_set_dev(bio, wc->dev->bdev);
1574 wc_unlock(wc);
1575 return DM_MAPIO_REMAPPED;
1576
1577 case WC_MAP_REMAP:
1578 /* make sure that writecache_end_io decrements bio_in_progress: */
1579 bio->bi_private = (void *)1;
1580 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1581 wc_unlock(wc);
1582 return DM_MAPIO_REMAPPED;
1583
1584 case WC_MAP_SUBMIT:
1585 wc_unlock(wc);
1586 bio_endio(bio);
1587 return DM_MAPIO_SUBMITTED;
1588
1589 case WC_MAP_RETURN:
1590 wc_unlock(wc);
1591 return DM_MAPIO_SUBMITTED;
1592
1593 case WC_MAP_ERROR:
1594 wc_unlock(wc);
1595 bio_io_error(bio);
1596 return DM_MAPIO_SUBMITTED;
1597
1598 default:
1599 BUG();
1600 return -1;
1601 }
1602 }
1603
writecache_end_io(struct dm_target * ti,struct bio * bio,blk_status_t * status)1604 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1605 {
1606 struct dm_writecache *wc = ti->private;
1607
1608 if (bio->bi_private == (void *)1) {
1609 int dir = bio_data_dir(bio);
1610 if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1611 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1612 wake_up(&wc->bio_in_progress_wait[dir]);
1613 } else if (bio->bi_private == (void *)2) {
1614 dm_iot_io_end(&wc->iot, 1);
1615 }
1616 return 0;
1617 }
1618
writecache_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)1619 static int writecache_iterate_devices(struct dm_target *ti,
1620 iterate_devices_callout_fn fn, void *data)
1621 {
1622 struct dm_writecache *wc = ti->private;
1623
1624 return fn(ti, wc->dev, 0, ti->len, data);
1625 }
1626
writecache_io_hints(struct dm_target * ti,struct queue_limits * limits)1627 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1628 {
1629 struct dm_writecache *wc = ti->private;
1630
1631 if (limits->logical_block_size < wc->block_size)
1632 limits->logical_block_size = wc->block_size;
1633
1634 if (limits->physical_block_size < wc->block_size)
1635 limits->physical_block_size = wc->block_size;
1636
1637 if (limits->io_min < wc->block_size)
1638 limits->io_min = wc->block_size;
1639 }
1640
1641
writecache_writeback_endio(struct bio * bio)1642 static void writecache_writeback_endio(struct bio *bio)
1643 {
1644 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1645 struct dm_writecache *wc = wb->wc;
1646 unsigned long flags;
1647
1648 raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1649 if (unlikely(list_empty(&wc->endio_list)))
1650 wake_up_process(wc->endio_thread);
1651 list_add_tail(&wb->endio_entry, &wc->endio_list);
1652 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1653 }
1654
writecache_copy_endio(int read_err,unsigned long write_err,void * ptr)1655 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1656 {
1657 struct copy_struct *c = ptr;
1658 struct dm_writecache *wc = c->wc;
1659
1660 c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1661
1662 raw_spin_lock_irq(&wc->endio_list_lock);
1663 if (unlikely(list_empty(&wc->endio_list)))
1664 wake_up_process(wc->endio_thread);
1665 list_add_tail(&c->endio_entry, &wc->endio_list);
1666 raw_spin_unlock_irq(&wc->endio_list_lock);
1667 }
1668
__writecache_endio_pmem(struct dm_writecache * wc,struct list_head * list)1669 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1670 {
1671 unsigned i;
1672 struct writeback_struct *wb;
1673 struct wc_entry *e;
1674 unsigned long n_walked = 0;
1675
1676 do {
1677 wb = list_entry(list->next, struct writeback_struct, endio_entry);
1678 list_del(&wb->endio_entry);
1679
1680 if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1681 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1682 "write error %d", wb->bio.bi_status);
1683 i = 0;
1684 do {
1685 e = wb->wc_list[i];
1686 BUG_ON(!e->write_in_progress);
1687 e->write_in_progress = false;
1688 INIT_LIST_HEAD(&e->lru);
1689 if (!writecache_has_error(wc))
1690 writecache_free_entry(wc, e);
1691 BUG_ON(!wc->writeback_size);
1692 wc->writeback_size--;
1693 n_walked++;
1694 if (unlikely(n_walked >= ENDIO_LATENCY)) {
1695 writecache_commit_flushed(wc, false);
1696 wc_unlock(wc);
1697 wc_lock(wc);
1698 n_walked = 0;
1699 }
1700 } while (++i < wb->wc_list_n);
1701
1702 if (wb->wc_list != wb->wc_list_inline)
1703 kfree(wb->wc_list);
1704 bio_put(&wb->bio);
1705 } while (!list_empty(list));
1706 }
1707
__writecache_endio_ssd(struct dm_writecache * wc,struct list_head * list)1708 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1709 {
1710 struct copy_struct *c;
1711 struct wc_entry *e;
1712
1713 do {
1714 c = list_entry(list->next, struct copy_struct, endio_entry);
1715 list_del(&c->endio_entry);
1716
1717 if (unlikely(c->error))
1718 writecache_error(wc, c->error, "copy error");
1719
1720 e = c->e;
1721 do {
1722 BUG_ON(!e->write_in_progress);
1723 e->write_in_progress = false;
1724 INIT_LIST_HEAD(&e->lru);
1725 if (!writecache_has_error(wc))
1726 writecache_free_entry(wc, e);
1727
1728 BUG_ON(!wc->writeback_size);
1729 wc->writeback_size--;
1730 e++;
1731 } while (--c->n_entries);
1732 mempool_free(c, &wc->copy_pool);
1733 } while (!list_empty(list));
1734 }
1735
writecache_endio_thread(void * data)1736 static int writecache_endio_thread(void *data)
1737 {
1738 struct dm_writecache *wc = data;
1739
1740 while (1) {
1741 struct list_head list;
1742
1743 raw_spin_lock_irq(&wc->endio_list_lock);
1744 if (!list_empty(&wc->endio_list))
1745 goto pop_from_list;
1746 set_current_state(TASK_INTERRUPTIBLE);
1747 raw_spin_unlock_irq(&wc->endio_list_lock);
1748
1749 if (unlikely(kthread_should_stop())) {
1750 set_current_state(TASK_RUNNING);
1751 break;
1752 }
1753
1754 schedule();
1755
1756 continue;
1757
1758 pop_from_list:
1759 list = wc->endio_list;
1760 list.next->prev = list.prev->next = &list;
1761 INIT_LIST_HEAD(&wc->endio_list);
1762 raw_spin_unlock_irq(&wc->endio_list_lock);
1763
1764 if (!WC_MODE_FUA(wc))
1765 writecache_disk_flush(wc, wc->dev);
1766
1767 wc_lock(wc);
1768
1769 if (WC_MODE_PMEM(wc)) {
1770 __writecache_endio_pmem(wc, &list);
1771 } else {
1772 __writecache_endio_ssd(wc, &list);
1773 writecache_wait_for_ios(wc, READ);
1774 }
1775
1776 writecache_commit_flushed(wc, false);
1777
1778 wc_unlock(wc);
1779 }
1780
1781 return 0;
1782 }
1783
wc_add_block(struct writeback_struct * wb,struct wc_entry * e)1784 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e)
1785 {
1786 struct dm_writecache *wc = wb->wc;
1787 unsigned block_size = wc->block_size;
1788 void *address = memory_data(wc, e);
1789
1790 persistent_memory_flush_cache(address, block_size);
1791
1792 if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors))
1793 return true;
1794
1795 return bio_add_page(&wb->bio, persistent_memory_page(address),
1796 block_size, persistent_memory_page_offset(address)) != 0;
1797 }
1798
1799 struct writeback_list {
1800 struct list_head list;
1801 size_t size;
1802 };
1803
__writeback_throttle(struct dm_writecache * wc,struct writeback_list * wbl)1804 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1805 {
1806 if (unlikely(wc->max_writeback_jobs)) {
1807 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1808 wc_lock(wc);
1809 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1810 writecache_wait_on_freelist(wc);
1811 wc_unlock(wc);
1812 }
1813 }
1814 cond_resched();
1815 }
1816
__writecache_writeback_pmem(struct dm_writecache * wc,struct writeback_list * wbl)1817 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1818 {
1819 struct wc_entry *e, *f;
1820 struct bio *bio;
1821 struct writeback_struct *wb;
1822 unsigned max_pages;
1823
1824 while (wbl->size) {
1825 wbl->size--;
1826 e = container_of(wbl->list.prev, struct wc_entry, lru);
1827 list_del(&e->lru);
1828
1829 max_pages = e->wc_list_contiguous;
1830
1831 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
1832 wb = container_of(bio, struct writeback_struct, bio);
1833 wb->wc = wc;
1834 bio->bi_end_io = writecache_writeback_endio;
1835 bio_set_dev(bio, wc->dev->bdev);
1836 bio->bi_iter.bi_sector = read_original_sector(wc, e);
1837 if (max_pages <= WB_LIST_INLINE ||
1838 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1839 GFP_NOIO | __GFP_NORETRY |
1840 __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1841 wb->wc_list = wb->wc_list_inline;
1842 max_pages = WB_LIST_INLINE;
1843 }
1844
1845 BUG_ON(!wc_add_block(wb, e));
1846
1847 wb->wc_list[0] = e;
1848 wb->wc_list_n = 1;
1849
1850 while (wbl->size && wb->wc_list_n < max_pages) {
1851 f = container_of(wbl->list.prev, struct wc_entry, lru);
1852 if (read_original_sector(wc, f) !=
1853 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1854 break;
1855 if (!wc_add_block(wb, f))
1856 break;
1857 wbl->size--;
1858 list_del(&f->lru);
1859 wb->wc_list[wb->wc_list_n++] = f;
1860 e = f;
1861 }
1862 bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
1863 if (writecache_has_error(wc)) {
1864 bio->bi_status = BLK_STS_IOERR;
1865 bio_endio(bio);
1866 } else if (unlikely(!bio_sectors(bio))) {
1867 bio->bi_status = BLK_STS_OK;
1868 bio_endio(bio);
1869 } else {
1870 submit_bio(bio);
1871 }
1872
1873 __writeback_throttle(wc, wbl);
1874 }
1875 }
1876
__writecache_writeback_ssd(struct dm_writecache * wc,struct writeback_list * wbl)1877 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1878 {
1879 struct wc_entry *e, *f;
1880 struct dm_io_region from, to;
1881 struct copy_struct *c;
1882
1883 while (wbl->size) {
1884 unsigned n_sectors;
1885
1886 wbl->size--;
1887 e = container_of(wbl->list.prev, struct wc_entry, lru);
1888 list_del(&e->lru);
1889
1890 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1891
1892 from.bdev = wc->ssd_dev->bdev;
1893 from.sector = cache_sector(wc, e);
1894 from.count = n_sectors;
1895 to.bdev = wc->dev->bdev;
1896 to.sector = read_original_sector(wc, e);
1897 to.count = n_sectors;
1898
1899 c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1900 c->wc = wc;
1901 c->e = e;
1902 c->n_entries = e->wc_list_contiguous;
1903
1904 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1905 wbl->size--;
1906 f = container_of(wbl->list.prev, struct wc_entry, lru);
1907 BUG_ON(f != e + 1);
1908 list_del(&f->lru);
1909 e = f;
1910 }
1911
1912 if (unlikely(to.sector + to.count > wc->data_device_sectors)) {
1913 if (to.sector >= wc->data_device_sectors) {
1914 writecache_copy_endio(0, 0, c);
1915 continue;
1916 }
1917 from.count = to.count = wc->data_device_sectors - to.sector;
1918 }
1919
1920 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1921
1922 __writeback_throttle(wc, wbl);
1923 }
1924 }
1925
writecache_writeback(struct work_struct * work)1926 static void writecache_writeback(struct work_struct *work)
1927 {
1928 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1929 struct blk_plug plug;
1930 struct wc_entry *f, *g, *e = NULL;
1931 struct rb_node *node, *next_node;
1932 struct list_head skipped;
1933 struct writeback_list wbl;
1934 unsigned long n_walked;
1935
1936 if (!WC_MODE_PMEM(wc)) {
1937 /* Wait for any active kcopyd work on behalf of ssd writeback */
1938 dm_kcopyd_client_flush(wc->dm_kcopyd);
1939 }
1940
1941 if (likely(wc->pause != 0)) {
1942 while (1) {
1943 unsigned long idle;
1944 if (unlikely(wc->cleaner) || unlikely(wc->writeback_all) ||
1945 unlikely(dm_suspended(wc->ti)))
1946 break;
1947 idle = dm_iot_idle_time(&wc->iot);
1948 if (idle >= wc->pause)
1949 break;
1950 idle = wc->pause - idle;
1951 if (idle > HZ)
1952 idle = HZ;
1953 schedule_timeout_idle(idle);
1954 }
1955 }
1956
1957 wc_lock(wc);
1958 restart:
1959 if (writecache_has_error(wc)) {
1960 wc_unlock(wc);
1961 return;
1962 }
1963
1964 if (unlikely(wc->writeback_all)) {
1965 if (writecache_wait_for_writeback(wc))
1966 goto restart;
1967 }
1968
1969 if (wc->overwrote_committed) {
1970 writecache_wait_for_ios(wc, WRITE);
1971 }
1972
1973 n_walked = 0;
1974 INIT_LIST_HEAD(&skipped);
1975 INIT_LIST_HEAD(&wbl.list);
1976 wbl.size = 0;
1977 while (!list_empty(&wc->lru) &&
1978 (wc->writeback_all ||
1979 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
1980 (jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
1981 wc->max_age - wc->max_age / MAX_AGE_DIV))) {
1982
1983 n_walked++;
1984 if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1985 likely(!wc->writeback_all)) {
1986 if (likely(!dm_suspended(wc->ti)))
1987 queue_work(wc->writeback_wq, &wc->writeback_work);
1988 break;
1989 }
1990
1991 if (unlikely(wc->writeback_all)) {
1992 if (unlikely(!e)) {
1993 writecache_flush(wc);
1994 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1995 } else
1996 e = g;
1997 } else
1998 e = container_of(wc->lru.prev, struct wc_entry, lru);
1999 BUG_ON(e->write_in_progress);
2000 if (unlikely(!writecache_entry_is_committed(wc, e))) {
2001 writecache_flush(wc);
2002 }
2003 node = rb_prev(&e->rb_node);
2004 if (node) {
2005 f = container_of(node, struct wc_entry, rb_node);
2006 if (unlikely(read_original_sector(wc, f) ==
2007 read_original_sector(wc, e))) {
2008 BUG_ON(!f->write_in_progress);
2009 list_move(&e->lru, &skipped);
2010 cond_resched();
2011 continue;
2012 }
2013 }
2014 wc->writeback_size++;
2015 list_move(&e->lru, &wbl.list);
2016 wbl.size++;
2017 e->write_in_progress = true;
2018 e->wc_list_contiguous = 1;
2019
2020 f = e;
2021
2022 while (1) {
2023 next_node = rb_next(&f->rb_node);
2024 if (unlikely(!next_node))
2025 break;
2026 g = container_of(next_node, struct wc_entry, rb_node);
2027 if (unlikely(read_original_sector(wc, g) ==
2028 read_original_sector(wc, f))) {
2029 f = g;
2030 continue;
2031 }
2032 if (read_original_sector(wc, g) !=
2033 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
2034 break;
2035 if (unlikely(g->write_in_progress))
2036 break;
2037 if (unlikely(!writecache_entry_is_committed(wc, g)))
2038 break;
2039
2040 if (!WC_MODE_PMEM(wc)) {
2041 if (g != f + 1)
2042 break;
2043 }
2044
2045 n_walked++;
2046 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
2047 // break;
2048
2049 wc->writeback_size++;
2050 list_move(&g->lru, &wbl.list);
2051 wbl.size++;
2052 g->write_in_progress = true;
2053 g->wc_list_contiguous = BIO_MAX_VECS;
2054 f = g;
2055 e->wc_list_contiguous++;
2056 if (unlikely(e->wc_list_contiguous == BIO_MAX_VECS)) {
2057 if (unlikely(wc->writeback_all)) {
2058 next_node = rb_next(&f->rb_node);
2059 if (likely(next_node))
2060 g = container_of(next_node, struct wc_entry, rb_node);
2061 }
2062 break;
2063 }
2064 }
2065 cond_resched();
2066 }
2067
2068 if (!list_empty(&skipped)) {
2069 list_splice_tail(&skipped, &wc->lru);
2070 /*
2071 * If we didn't do any progress, we must wait until some
2072 * writeback finishes to avoid burning CPU in a loop
2073 */
2074 if (unlikely(!wbl.size))
2075 writecache_wait_for_writeback(wc);
2076 }
2077
2078 wc_unlock(wc);
2079
2080 blk_start_plug(&plug);
2081
2082 if (WC_MODE_PMEM(wc))
2083 __writecache_writeback_pmem(wc, &wbl);
2084 else
2085 __writecache_writeback_ssd(wc, &wbl);
2086
2087 blk_finish_plug(&plug);
2088
2089 if (unlikely(wc->writeback_all)) {
2090 wc_lock(wc);
2091 while (writecache_wait_for_writeback(wc));
2092 wc_unlock(wc);
2093 }
2094 }
2095
calculate_memory_size(uint64_t device_size,unsigned block_size,size_t * n_blocks_p,size_t * n_metadata_blocks_p)2096 static int calculate_memory_size(uint64_t device_size, unsigned block_size,
2097 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
2098 {
2099 uint64_t n_blocks, offset;
2100 struct wc_entry e;
2101
2102 n_blocks = device_size;
2103 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
2104
2105 while (1) {
2106 if (!n_blocks)
2107 return -ENOSPC;
2108 /* Verify the following entries[n_blocks] won't overflow */
2109 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
2110 sizeof(struct wc_memory_entry)))
2111 return -EFBIG;
2112 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
2113 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
2114 if (offset + n_blocks * block_size <= device_size)
2115 break;
2116 n_blocks--;
2117 }
2118
2119 /* check if the bit field overflows */
2120 e.index = n_blocks;
2121 if (e.index != n_blocks)
2122 return -EFBIG;
2123
2124 if (n_blocks_p)
2125 *n_blocks_p = n_blocks;
2126 if (n_metadata_blocks_p)
2127 *n_metadata_blocks_p = offset >> __ffs(block_size);
2128 return 0;
2129 }
2130
init_memory(struct dm_writecache * wc)2131 static int init_memory(struct dm_writecache *wc)
2132 {
2133 size_t b;
2134 int r;
2135
2136 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
2137 if (r)
2138 return r;
2139
2140 r = writecache_alloc_entries(wc);
2141 if (r)
2142 return r;
2143
2144 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
2145 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
2146 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
2147 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
2148 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
2149 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
2150
2151 for (b = 0; b < wc->n_blocks; b++) {
2152 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
2153 cond_resched();
2154 }
2155
2156 writecache_flush_all_metadata(wc);
2157 writecache_commit_flushed(wc, false);
2158 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
2159 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
2160 writecache_commit_flushed(wc, false);
2161
2162 return 0;
2163 }
2164
writecache_dtr(struct dm_target * ti)2165 static void writecache_dtr(struct dm_target *ti)
2166 {
2167 struct dm_writecache *wc = ti->private;
2168
2169 if (!wc)
2170 return;
2171
2172 if (wc->endio_thread)
2173 kthread_stop(wc->endio_thread);
2174
2175 if (wc->flush_thread)
2176 kthread_stop(wc->flush_thread);
2177
2178 bioset_exit(&wc->bio_set);
2179
2180 mempool_exit(&wc->copy_pool);
2181
2182 if (wc->writeback_wq)
2183 destroy_workqueue(wc->writeback_wq);
2184
2185 if (wc->dev)
2186 dm_put_device(ti, wc->dev);
2187
2188 if (wc->ssd_dev)
2189 dm_put_device(ti, wc->ssd_dev);
2190
2191 vfree(wc->entries);
2192
2193 if (wc->memory_map) {
2194 if (WC_MODE_PMEM(wc))
2195 persistent_memory_release(wc);
2196 else
2197 vfree(wc->memory_map);
2198 }
2199
2200 if (wc->dm_kcopyd)
2201 dm_kcopyd_client_destroy(wc->dm_kcopyd);
2202
2203 if (wc->dm_io)
2204 dm_io_client_destroy(wc->dm_io);
2205
2206 vfree(wc->dirty_bitmap);
2207
2208 kfree(wc);
2209 }
2210
writecache_ctr(struct dm_target * ti,unsigned argc,char ** argv)2211 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2212 {
2213 struct dm_writecache *wc;
2214 struct dm_arg_set as;
2215 const char *string;
2216 unsigned opt_params;
2217 size_t offset, data_size;
2218 int i, r;
2219 char dummy;
2220 int high_wm_percent = HIGH_WATERMARK;
2221 int low_wm_percent = LOW_WATERMARK;
2222 uint64_t x;
2223 struct wc_memory_superblock s;
2224
2225 static struct dm_arg _args[] = {
2226 {0, 18, "Invalid number of feature args"},
2227 };
2228
2229 as.argc = argc;
2230 as.argv = argv;
2231
2232 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
2233 if (!wc) {
2234 ti->error = "Cannot allocate writecache structure";
2235 r = -ENOMEM;
2236 goto bad;
2237 }
2238 ti->private = wc;
2239 wc->ti = ti;
2240
2241 mutex_init(&wc->lock);
2242 wc->max_age = MAX_AGE_UNSPECIFIED;
2243 writecache_poison_lists(wc);
2244 init_waitqueue_head(&wc->freelist_wait);
2245 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
2246 timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
2247
2248 for (i = 0; i < 2; i++) {
2249 atomic_set(&wc->bio_in_progress[i], 0);
2250 init_waitqueue_head(&wc->bio_in_progress_wait[i]);
2251 }
2252
2253 wc->dm_io = dm_io_client_create();
2254 if (IS_ERR(wc->dm_io)) {
2255 r = PTR_ERR(wc->dm_io);
2256 ti->error = "Unable to allocate dm-io client";
2257 wc->dm_io = NULL;
2258 goto bad;
2259 }
2260
2261 wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
2262 if (!wc->writeback_wq) {
2263 r = -ENOMEM;
2264 ti->error = "Could not allocate writeback workqueue";
2265 goto bad;
2266 }
2267 INIT_WORK(&wc->writeback_work, writecache_writeback);
2268 INIT_WORK(&wc->flush_work, writecache_flush_work);
2269
2270 dm_iot_init(&wc->iot);
2271
2272 raw_spin_lock_init(&wc->endio_list_lock);
2273 INIT_LIST_HEAD(&wc->endio_list);
2274 wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
2275 if (IS_ERR(wc->endio_thread)) {
2276 r = PTR_ERR(wc->endio_thread);
2277 wc->endio_thread = NULL;
2278 ti->error = "Couldn't spawn endio thread";
2279 goto bad;
2280 }
2281 wake_up_process(wc->endio_thread);
2282
2283 /*
2284 * Parse the mode (pmem or ssd)
2285 */
2286 string = dm_shift_arg(&as);
2287 if (!string)
2288 goto bad_arguments;
2289
2290 if (!strcasecmp(string, "s")) {
2291 wc->pmem_mode = false;
2292 } else if (!strcasecmp(string, "p")) {
2293 #ifdef DM_WRITECACHE_HAS_PMEM
2294 wc->pmem_mode = true;
2295 wc->writeback_fua = true;
2296 #else
2297 /*
2298 * If the architecture doesn't support persistent memory or
2299 * the kernel doesn't support any DAX drivers, this driver can
2300 * only be used in SSD-only mode.
2301 */
2302 r = -EOPNOTSUPP;
2303 ti->error = "Persistent memory or DAX not supported on this system";
2304 goto bad;
2305 #endif
2306 } else {
2307 goto bad_arguments;
2308 }
2309
2310 if (WC_MODE_PMEM(wc)) {
2311 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
2312 offsetof(struct writeback_struct, bio),
2313 BIOSET_NEED_BVECS);
2314 if (r) {
2315 ti->error = "Could not allocate bio set";
2316 goto bad;
2317 }
2318 } else {
2319 wc->pause = PAUSE_WRITEBACK;
2320 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
2321 if (r) {
2322 ti->error = "Could not allocate mempool";
2323 goto bad;
2324 }
2325 }
2326
2327 /*
2328 * Parse the origin data device
2329 */
2330 string = dm_shift_arg(&as);
2331 if (!string)
2332 goto bad_arguments;
2333 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
2334 if (r) {
2335 ti->error = "Origin data device lookup failed";
2336 goto bad;
2337 }
2338
2339 /*
2340 * Parse cache data device (be it pmem or ssd)
2341 */
2342 string = dm_shift_arg(&as);
2343 if (!string)
2344 goto bad_arguments;
2345
2346 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
2347 if (r) {
2348 ti->error = "Cache data device lookup failed";
2349 goto bad;
2350 }
2351 wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
2352
2353 /*
2354 * Parse the cache block size
2355 */
2356 string = dm_shift_arg(&as);
2357 if (!string)
2358 goto bad_arguments;
2359 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
2360 wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
2361 (wc->block_size & (wc->block_size - 1))) {
2362 r = -EINVAL;
2363 ti->error = "Invalid block size";
2364 goto bad;
2365 }
2366 if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
2367 wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
2368 r = -EINVAL;
2369 ti->error = "Block size is smaller than device logical block size";
2370 goto bad;
2371 }
2372 wc->block_size_bits = __ffs(wc->block_size);
2373
2374 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
2375 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
2376 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
2377
2378 /*
2379 * Parse optional arguments
2380 */
2381 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2382 if (r)
2383 goto bad;
2384
2385 while (opt_params) {
2386 string = dm_shift_arg(&as), opt_params--;
2387 if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2388 unsigned long long start_sector;
2389 string = dm_shift_arg(&as), opt_params--;
2390 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2391 goto invalid_optional;
2392 wc->start_sector = start_sector;
2393 wc->start_sector_set = true;
2394 if (wc->start_sector != start_sector ||
2395 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2396 goto invalid_optional;
2397 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2398 string = dm_shift_arg(&as), opt_params--;
2399 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2400 goto invalid_optional;
2401 if (high_wm_percent < 0 || high_wm_percent > 100)
2402 goto invalid_optional;
2403 wc->high_wm_percent_value = high_wm_percent;
2404 wc->high_wm_percent_set = true;
2405 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2406 string = dm_shift_arg(&as), opt_params--;
2407 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2408 goto invalid_optional;
2409 if (low_wm_percent < 0 || low_wm_percent > 100)
2410 goto invalid_optional;
2411 wc->low_wm_percent_value = low_wm_percent;
2412 wc->low_wm_percent_set = true;
2413 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2414 string = dm_shift_arg(&as), opt_params--;
2415 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2416 goto invalid_optional;
2417 wc->max_writeback_jobs_set = true;
2418 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2419 string = dm_shift_arg(&as), opt_params--;
2420 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2421 goto invalid_optional;
2422 wc->autocommit_blocks_set = true;
2423 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2424 unsigned autocommit_msecs;
2425 string = dm_shift_arg(&as), opt_params--;
2426 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2427 goto invalid_optional;
2428 if (autocommit_msecs > 3600000)
2429 goto invalid_optional;
2430 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2431 wc->autocommit_time_value = autocommit_msecs;
2432 wc->autocommit_time_set = true;
2433 } else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
2434 unsigned max_age_msecs;
2435 string = dm_shift_arg(&as), opt_params--;
2436 if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
2437 goto invalid_optional;
2438 if (max_age_msecs > 86400000)
2439 goto invalid_optional;
2440 wc->max_age = msecs_to_jiffies(max_age_msecs);
2441 wc->max_age_set = true;
2442 wc->max_age_value = max_age_msecs;
2443 } else if (!strcasecmp(string, "cleaner")) {
2444 wc->cleaner_set = true;
2445 wc->cleaner = true;
2446 } else if (!strcasecmp(string, "fua")) {
2447 if (WC_MODE_PMEM(wc)) {
2448 wc->writeback_fua = true;
2449 wc->writeback_fua_set = true;
2450 } else goto invalid_optional;
2451 } else if (!strcasecmp(string, "nofua")) {
2452 if (WC_MODE_PMEM(wc)) {
2453 wc->writeback_fua = false;
2454 wc->writeback_fua_set = true;
2455 } else goto invalid_optional;
2456 } else if (!strcasecmp(string, "metadata_only")) {
2457 wc->metadata_only = true;
2458 } else if (!strcasecmp(string, "pause_writeback") && opt_params >= 1) {
2459 unsigned pause_msecs;
2460 if (WC_MODE_PMEM(wc))
2461 goto invalid_optional;
2462 string = dm_shift_arg(&as), opt_params--;
2463 if (sscanf(string, "%u%c", &pause_msecs, &dummy) != 1)
2464 goto invalid_optional;
2465 if (pause_msecs > 60000)
2466 goto invalid_optional;
2467 wc->pause = msecs_to_jiffies(pause_msecs);
2468 wc->pause_set = true;
2469 wc->pause_value = pause_msecs;
2470 } else {
2471 invalid_optional:
2472 r = -EINVAL;
2473 ti->error = "Invalid optional argument";
2474 goto bad;
2475 }
2476 }
2477
2478 if (high_wm_percent < low_wm_percent) {
2479 r = -EINVAL;
2480 ti->error = "High watermark must be greater than or equal to low watermark";
2481 goto bad;
2482 }
2483
2484 if (WC_MODE_PMEM(wc)) {
2485 if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
2486 r = -EOPNOTSUPP;
2487 ti->error = "Asynchronous persistent memory not supported as pmem cache";
2488 goto bad;
2489 }
2490
2491 r = persistent_memory_claim(wc);
2492 if (r) {
2493 ti->error = "Unable to map persistent memory for cache";
2494 goto bad;
2495 }
2496 } else {
2497 size_t n_blocks, n_metadata_blocks;
2498 uint64_t n_bitmap_bits;
2499
2500 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2501
2502 bio_list_init(&wc->flush_list);
2503 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2504 if (IS_ERR(wc->flush_thread)) {
2505 r = PTR_ERR(wc->flush_thread);
2506 wc->flush_thread = NULL;
2507 ti->error = "Couldn't spawn flush thread";
2508 goto bad;
2509 }
2510 wake_up_process(wc->flush_thread);
2511
2512 r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2513 &n_blocks, &n_metadata_blocks);
2514 if (r) {
2515 ti->error = "Invalid device size";
2516 goto bad;
2517 }
2518
2519 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2520 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2521 /* this is limitation of test_bit functions */
2522 if (n_bitmap_bits > 1U << 31) {
2523 r = -EFBIG;
2524 ti->error = "Invalid device size";
2525 goto bad;
2526 }
2527
2528 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2529 if (!wc->memory_map) {
2530 r = -ENOMEM;
2531 ti->error = "Unable to allocate memory for metadata";
2532 goto bad;
2533 }
2534
2535 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2536 if (IS_ERR(wc->dm_kcopyd)) {
2537 r = PTR_ERR(wc->dm_kcopyd);
2538 ti->error = "Unable to allocate dm-kcopyd client";
2539 wc->dm_kcopyd = NULL;
2540 goto bad;
2541 }
2542
2543 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2544 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2545 BITS_PER_LONG * sizeof(unsigned long);
2546 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2547 if (!wc->dirty_bitmap) {
2548 r = -ENOMEM;
2549 ti->error = "Unable to allocate dirty bitmap";
2550 goto bad;
2551 }
2552
2553 r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
2554 if (r) {
2555 ti->error = "Unable to read first block of metadata";
2556 goto bad;
2557 }
2558 }
2559
2560 r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock));
2561 if (r) {
2562 ti->error = "Hardware memory error when reading superblock";
2563 goto bad;
2564 }
2565 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2566 r = init_memory(wc);
2567 if (r) {
2568 ti->error = "Unable to initialize device";
2569 goto bad;
2570 }
2571 r = copy_mc_to_kernel(&s, sb(wc),
2572 sizeof(struct wc_memory_superblock));
2573 if (r) {
2574 ti->error = "Hardware memory error when reading superblock";
2575 goto bad;
2576 }
2577 }
2578
2579 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2580 ti->error = "Invalid magic in the superblock";
2581 r = -EINVAL;
2582 goto bad;
2583 }
2584
2585 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2586 ti->error = "Invalid version in the superblock";
2587 r = -EINVAL;
2588 goto bad;
2589 }
2590
2591 if (le32_to_cpu(s.block_size) != wc->block_size) {
2592 ti->error = "Block size does not match superblock";
2593 r = -EINVAL;
2594 goto bad;
2595 }
2596
2597 wc->n_blocks = le64_to_cpu(s.n_blocks);
2598
2599 offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2600 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2601 overflow:
2602 ti->error = "Overflow in size calculation";
2603 r = -EINVAL;
2604 goto bad;
2605 }
2606 offset += sizeof(struct wc_memory_superblock);
2607 if (offset < sizeof(struct wc_memory_superblock))
2608 goto overflow;
2609 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2610 data_size = wc->n_blocks * (size_t)wc->block_size;
2611 if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2612 (offset + data_size < offset))
2613 goto overflow;
2614 if (offset + data_size > wc->memory_map_size) {
2615 ti->error = "Memory area is too small";
2616 r = -EINVAL;
2617 goto bad;
2618 }
2619
2620 wc->metadata_sectors = offset >> SECTOR_SHIFT;
2621 wc->block_start = (char *)sb(wc) + offset;
2622
2623 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2624 x += 50;
2625 do_div(x, 100);
2626 wc->freelist_high_watermark = x;
2627 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2628 x += 50;
2629 do_div(x, 100);
2630 wc->freelist_low_watermark = x;
2631
2632 if (wc->cleaner)
2633 activate_cleaner(wc);
2634
2635 r = writecache_alloc_entries(wc);
2636 if (r) {
2637 ti->error = "Cannot allocate memory";
2638 goto bad;
2639 }
2640
2641 ti->num_flush_bios = WC_MODE_PMEM(wc) ? 1 : 2;
2642 ti->flush_supported = true;
2643 ti->num_discard_bios = 1;
2644
2645 if (WC_MODE_PMEM(wc))
2646 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2647
2648 return 0;
2649
2650 bad_arguments:
2651 r = -EINVAL;
2652 ti->error = "Bad arguments";
2653 bad:
2654 writecache_dtr(ti);
2655 return r;
2656 }
2657
writecache_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)2658 static void writecache_status(struct dm_target *ti, status_type_t type,
2659 unsigned status_flags, char *result, unsigned maxlen)
2660 {
2661 struct dm_writecache *wc = ti->private;
2662 unsigned extra_args;
2663 unsigned sz = 0;
2664
2665 switch (type) {
2666 case STATUSTYPE_INFO:
2667 DMEMIT("%ld %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu",
2668 writecache_has_error(wc),
2669 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2670 (unsigned long long)wc->writeback_size,
2671 wc->stats.reads,
2672 wc->stats.read_hits,
2673 wc->stats.writes,
2674 wc->stats.write_hits_uncommitted,
2675 wc->stats.write_hits_committed,
2676 wc->stats.writes_around,
2677 wc->stats.writes_allocate,
2678 wc->stats.writes_blocked_on_freelist,
2679 wc->stats.flushes,
2680 wc->stats.discards);
2681 break;
2682 case STATUSTYPE_TABLE:
2683 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2684 wc->dev->name, wc->ssd_dev->name, wc->block_size);
2685 extra_args = 0;
2686 if (wc->start_sector_set)
2687 extra_args += 2;
2688 if (wc->high_wm_percent_set)
2689 extra_args += 2;
2690 if (wc->low_wm_percent_set)
2691 extra_args += 2;
2692 if (wc->max_writeback_jobs_set)
2693 extra_args += 2;
2694 if (wc->autocommit_blocks_set)
2695 extra_args += 2;
2696 if (wc->autocommit_time_set)
2697 extra_args += 2;
2698 if (wc->max_age_set)
2699 extra_args += 2;
2700 if (wc->cleaner_set)
2701 extra_args++;
2702 if (wc->writeback_fua_set)
2703 extra_args++;
2704 if (wc->metadata_only)
2705 extra_args++;
2706 if (wc->pause_set)
2707 extra_args += 2;
2708
2709 DMEMIT("%u", extra_args);
2710 if (wc->start_sector_set)
2711 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2712 if (wc->high_wm_percent_set)
2713 DMEMIT(" high_watermark %u", wc->high_wm_percent_value);
2714 if (wc->low_wm_percent_set)
2715 DMEMIT(" low_watermark %u", wc->low_wm_percent_value);
2716 if (wc->max_writeback_jobs_set)
2717 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2718 if (wc->autocommit_blocks_set)
2719 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2720 if (wc->autocommit_time_set)
2721 DMEMIT(" autocommit_time %u", wc->autocommit_time_value);
2722 if (wc->max_age_set)
2723 DMEMIT(" max_age %u", wc->max_age_value);
2724 if (wc->cleaner_set)
2725 DMEMIT(" cleaner");
2726 if (wc->writeback_fua_set)
2727 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2728 if (wc->metadata_only)
2729 DMEMIT(" metadata_only");
2730 if (wc->pause_set)
2731 DMEMIT(" pause_writeback %u", wc->pause_value);
2732 break;
2733 case STATUSTYPE_IMA:
2734 *result = '\0';
2735 break;
2736 }
2737 }
2738
2739 static struct target_type writecache_target = {
2740 .name = "writecache",
2741 .version = {1, 6, 0},
2742 .module = THIS_MODULE,
2743 .ctr = writecache_ctr,
2744 .dtr = writecache_dtr,
2745 .status = writecache_status,
2746 .postsuspend = writecache_suspend,
2747 .resume = writecache_resume,
2748 .message = writecache_message,
2749 .map = writecache_map,
2750 .end_io = writecache_end_io,
2751 .iterate_devices = writecache_iterate_devices,
2752 .io_hints = writecache_io_hints,
2753 };
2754
dm_writecache_init(void)2755 static int __init dm_writecache_init(void)
2756 {
2757 int r;
2758
2759 r = dm_register_target(&writecache_target);
2760 if (r < 0) {
2761 DMERR("register failed %d", r);
2762 return r;
2763 }
2764
2765 return 0;
2766 }
2767
dm_writecache_exit(void)2768 static void __exit dm_writecache_exit(void)
2769 {
2770 dm_unregister_target(&writecache_target);
2771 }
2772
2773 module_init(dm_writecache_init);
2774 module_exit(dm_writecache_exit);
2775
2776 MODULE_DESCRIPTION(DM_NAME " writecache target");
2777 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2778 MODULE_LICENSE("GPL");
2779