• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for Renesas R-Car MIPI CSI-2 Receiver
4  *
5  * Copyright (C) 2018 Renesas Electronics Corp.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/of_device.h>
14 #include <linux/of_graph.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/reset.h>
18 #include <linux/sys_soc.h>
19 
20 #include <media/v4l2-ctrls.h>
21 #include <media/v4l2-device.h>
22 #include <media/v4l2-fwnode.h>
23 #include <media/v4l2-mc.h>
24 #include <media/v4l2-subdev.h>
25 
26 struct rcar_csi2;
27 
28 /* Register offsets and bits */
29 
30 /* Control Timing Select */
31 #define TREF_REG			0x00
32 #define TREF_TREF			BIT(0)
33 
34 /* Software Reset */
35 #define SRST_REG			0x04
36 #define SRST_SRST			BIT(0)
37 
38 /* PHY Operation Control */
39 #define PHYCNT_REG			0x08
40 #define PHYCNT_SHUTDOWNZ		BIT(17)
41 #define PHYCNT_RSTZ			BIT(16)
42 #define PHYCNT_ENABLECLK		BIT(4)
43 #define PHYCNT_ENABLE_3			BIT(3)
44 #define PHYCNT_ENABLE_2			BIT(2)
45 #define PHYCNT_ENABLE_1			BIT(1)
46 #define PHYCNT_ENABLE_0			BIT(0)
47 
48 /* Checksum Control */
49 #define CHKSUM_REG			0x0c
50 #define CHKSUM_ECC_EN			BIT(1)
51 #define CHKSUM_CRC_EN			BIT(0)
52 
53 /*
54  * Channel Data Type Select
55  * VCDT[0-15]:  Channel 0 VCDT[16-31]:  Channel 1
56  * VCDT2[0-15]: Channel 2 VCDT2[16-31]: Channel 3
57  */
58 #define VCDT_REG			0x10
59 #define VCDT2_REG			0x14
60 #define VCDT_VCDTN_EN			BIT(15)
61 #define VCDT_SEL_VC(n)			(((n) & 0x3) << 8)
62 #define VCDT_SEL_DTN_ON			BIT(6)
63 #define VCDT_SEL_DT(n)			(((n) & 0x3f) << 0)
64 
65 /* Frame Data Type Select */
66 #define FRDT_REG			0x18
67 
68 /* Field Detection Control */
69 #define FLD_REG				0x1c
70 #define FLD_FLD_NUM(n)			(((n) & 0xff) << 16)
71 #define FLD_DET_SEL(n)			(((n) & 0x3) << 4)
72 #define FLD_FLD_EN4			BIT(3)
73 #define FLD_FLD_EN3			BIT(2)
74 #define FLD_FLD_EN2			BIT(1)
75 #define FLD_FLD_EN			BIT(0)
76 
77 /* Automatic Standby Control */
78 #define ASTBY_REG			0x20
79 
80 /* Long Data Type Setting 0 */
81 #define LNGDT0_REG			0x28
82 
83 /* Long Data Type Setting 1 */
84 #define LNGDT1_REG			0x2c
85 
86 /* Interrupt Enable */
87 #define INTEN_REG			0x30
88 #define INTEN_INT_AFIFO_OF		BIT(27)
89 #define INTEN_INT_ERRSOTHS		BIT(4)
90 #define INTEN_INT_ERRSOTSYNCHS		BIT(3)
91 
92 /* Interrupt Source Mask */
93 #define INTCLOSE_REG			0x34
94 
95 /* Interrupt Status Monitor */
96 #define INTSTATE_REG			0x38
97 #define INTSTATE_INT_ULPS_START		BIT(7)
98 #define INTSTATE_INT_ULPS_END		BIT(6)
99 
100 /* Interrupt Error Status Monitor */
101 #define INTERRSTATE_REG			0x3c
102 
103 /* Short Packet Data */
104 #define SHPDAT_REG			0x40
105 
106 /* Short Packet Count */
107 #define SHPCNT_REG			0x44
108 
109 /* LINK Operation Control */
110 #define LINKCNT_REG			0x48
111 #define LINKCNT_MONITOR_EN		BIT(31)
112 #define LINKCNT_REG_MONI_PACT_EN	BIT(25)
113 #define LINKCNT_ICLK_NONSTOP		BIT(24)
114 
115 /* Lane Swap */
116 #define LSWAP_REG			0x4c
117 #define LSWAP_L3SEL(n)			(((n) & 0x3) << 6)
118 #define LSWAP_L2SEL(n)			(((n) & 0x3) << 4)
119 #define LSWAP_L1SEL(n)			(((n) & 0x3) << 2)
120 #define LSWAP_L0SEL(n)			(((n) & 0x3) << 0)
121 
122 /* PHY Test Interface Write Register */
123 #define PHTW_REG			0x50
124 #define PHTW_DWEN			BIT(24)
125 #define PHTW_TESTDIN_DATA(n)		(((n & 0xff)) << 16)
126 #define PHTW_CWEN			BIT(8)
127 #define PHTW_TESTDIN_CODE(n)		((n & 0xff))
128 
129 struct phtw_value {
130 	u16 data;
131 	u16 code;
132 };
133 
134 struct rcsi2_mbps_reg {
135 	u16 mbps;
136 	u16 reg;
137 };
138 
139 static const struct rcsi2_mbps_reg phtw_mbps_h3_v3h_m3n[] = {
140 	{ .mbps =   80, .reg = 0x86 },
141 	{ .mbps =   90, .reg = 0x86 },
142 	{ .mbps =  100, .reg = 0x87 },
143 	{ .mbps =  110, .reg = 0x87 },
144 	{ .mbps =  120, .reg = 0x88 },
145 	{ .mbps =  130, .reg = 0x88 },
146 	{ .mbps =  140, .reg = 0x89 },
147 	{ .mbps =  150, .reg = 0x89 },
148 	{ .mbps =  160, .reg = 0x8a },
149 	{ .mbps =  170, .reg = 0x8a },
150 	{ .mbps =  180, .reg = 0x8b },
151 	{ .mbps =  190, .reg = 0x8b },
152 	{ .mbps =  205, .reg = 0x8c },
153 	{ .mbps =  220, .reg = 0x8d },
154 	{ .mbps =  235, .reg = 0x8e },
155 	{ .mbps =  250, .reg = 0x8e },
156 	{ /* sentinel */ },
157 };
158 
159 static const struct rcsi2_mbps_reg phtw_mbps_v3m_e3[] = {
160 	{ .mbps =   80, .reg = 0x00 },
161 	{ .mbps =   90, .reg = 0x20 },
162 	{ .mbps =  100, .reg = 0x40 },
163 	{ .mbps =  110, .reg = 0x02 },
164 	{ .mbps =  130, .reg = 0x22 },
165 	{ .mbps =  140, .reg = 0x42 },
166 	{ .mbps =  150, .reg = 0x04 },
167 	{ .mbps =  170, .reg = 0x24 },
168 	{ .mbps =  180, .reg = 0x44 },
169 	{ .mbps =  200, .reg = 0x06 },
170 	{ .mbps =  220, .reg = 0x26 },
171 	{ .mbps =  240, .reg = 0x46 },
172 	{ .mbps =  250, .reg = 0x08 },
173 	{ .mbps =  270, .reg = 0x28 },
174 	{ .mbps =  300, .reg = 0x0a },
175 	{ .mbps =  330, .reg = 0x2a },
176 	{ .mbps =  360, .reg = 0x4a },
177 	{ .mbps =  400, .reg = 0x0c },
178 	{ .mbps =  450, .reg = 0x2c },
179 	{ .mbps =  500, .reg = 0x0e },
180 	{ .mbps =  550, .reg = 0x2e },
181 	{ .mbps =  600, .reg = 0x10 },
182 	{ .mbps =  650, .reg = 0x30 },
183 	{ .mbps =  700, .reg = 0x12 },
184 	{ .mbps =  750, .reg = 0x32 },
185 	{ .mbps =  800, .reg = 0x52 },
186 	{ .mbps =  850, .reg = 0x72 },
187 	{ .mbps =  900, .reg = 0x14 },
188 	{ .mbps =  950, .reg = 0x34 },
189 	{ .mbps = 1000, .reg = 0x54 },
190 	{ .mbps = 1050, .reg = 0x74 },
191 	{ .mbps = 1125, .reg = 0x16 },
192 	{ /* sentinel */ },
193 };
194 
195 /* PHY Test Interface Clear */
196 #define PHTC_REG			0x58
197 #define PHTC_TESTCLR			BIT(0)
198 
199 /* PHY Frequency Control */
200 #define PHYPLL_REG			0x68
201 #define PHYPLL_HSFREQRANGE(n)		((n) << 16)
202 
203 static const struct rcsi2_mbps_reg hsfreqrange_h3_v3h_m3n[] = {
204 	{ .mbps =   80, .reg = 0x00 },
205 	{ .mbps =   90, .reg = 0x10 },
206 	{ .mbps =  100, .reg = 0x20 },
207 	{ .mbps =  110, .reg = 0x30 },
208 	{ .mbps =  120, .reg = 0x01 },
209 	{ .mbps =  130, .reg = 0x11 },
210 	{ .mbps =  140, .reg = 0x21 },
211 	{ .mbps =  150, .reg = 0x31 },
212 	{ .mbps =  160, .reg = 0x02 },
213 	{ .mbps =  170, .reg = 0x12 },
214 	{ .mbps =  180, .reg = 0x22 },
215 	{ .mbps =  190, .reg = 0x32 },
216 	{ .mbps =  205, .reg = 0x03 },
217 	{ .mbps =  220, .reg = 0x13 },
218 	{ .mbps =  235, .reg = 0x23 },
219 	{ .mbps =  250, .reg = 0x33 },
220 	{ .mbps =  275, .reg = 0x04 },
221 	{ .mbps =  300, .reg = 0x14 },
222 	{ .mbps =  325, .reg = 0x25 },
223 	{ .mbps =  350, .reg = 0x35 },
224 	{ .mbps =  400, .reg = 0x05 },
225 	{ .mbps =  450, .reg = 0x16 },
226 	{ .mbps =  500, .reg = 0x26 },
227 	{ .mbps =  550, .reg = 0x37 },
228 	{ .mbps =  600, .reg = 0x07 },
229 	{ .mbps =  650, .reg = 0x18 },
230 	{ .mbps =  700, .reg = 0x28 },
231 	{ .mbps =  750, .reg = 0x39 },
232 	{ .mbps =  800, .reg = 0x09 },
233 	{ .mbps =  850, .reg = 0x19 },
234 	{ .mbps =  900, .reg = 0x29 },
235 	{ .mbps =  950, .reg = 0x3a },
236 	{ .mbps = 1000, .reg = 0x0a },
237 	{ .mbps = 1050, .reg = 0x1a },
238 	{ .mbps = 1100, .reg = 0x2a },
239 	{ .mbps = 1150, .reg = 0x3b },
240 	{ .mbps = 1200, .reg = 0x0b },
241 	{ .mbps = 1250, .reg = 0x1b },
242 	{ .mbps = 1300, .reg = 0x2b },
243 	{ .mbps = 1350, .reg = 0x3c },
244 	{ .mbps = 1400, .reg = 0x0c },
245 	{ .mbps = 1450, .reg = 0x1c },
246 	{ .mbps = 1500, .reg = 0x2c },
247 	{ /* sentinel */ },
248 };
249 
250 static const struct rcsi2_mbps_reg hsfreqrange_m3w_h3es1[] = {
251 	{ .mbps =   80,	.reg = 0x00 },
252 	{ .mbps =   90,	.reg = 0x10 },
253 	{ .mbps =  100,	.reg = 0x20 },
254 	{ .mbps =  110,	.reg = 0x30 },
255 	{ .mbps =  120,	.reg = 0x01 },
256 	{ .mbps =  130,	.reg = 0x11 },
257 	{ .mbps =  140,	.reg = 0x21 },
258 	{ .mbps =  150,	.reg = 0x31 },
259 	{ .mbps =  160,	.reg = 0x02 },
260 	{ .mbps =  170,	.reg = 0x12 },
261 	{ .mbps =  180,	.reg = 0x22 },
262 	{ .mbps =  190,	.reg = 0x32 },
263 	{ .mbps =  205,	.reg = 0x03 },
264 	{ .mbps =  220,	.reg = 0x13 },
265 	{ .mbps =  235,	.reg = 0x23 },
266 	{ .mbps =  250,	.reg = 0x33 },
267 	{ .mbps =  275,	.reg = 0x04 },
268 	{ .mbps =  300,	.reg = 0x14 },
269 	{ .mbps =  325,	.reg = 0x05 },
270 	{ .mbps =  350,	.reg = 0x15 },
271 	{ .mbps =  400,	.reg = 0x25 },
272 	{ .mbps =  450,	.reg = 0x06 },
273 	{ .mbps =  500,	.reg = 0x16 },
274 	{ .mbps =  550,	.reg = 0x07 },
275 	{ .mbps =  600,	.reg = 0x17 },
276 	{ .mbps =  650,	.reg = 0x08 },
277 	{ .mbps =  700,	.reg = 0x18 },
278 	{ .mbps =  750,	.reg = 0x09 },
279 	{ .mbps =  800,	.reg = 0x19 },
280 	{ .mbps =  850,	.reg = 0x29 },
281 	{ .mbps =  900,	.reg = 0x39 },
282 	{ .mbps =  950,	.reg = 0x0a },
283 	{ .mbps = 1000,	.reg = 0x1a },
284 	{ .mbps = 1050,	.reg = 0x2a },
285 	{ .mbps = 1100,	.reg = 0x3a },
286 	{ .mbps = 1150,	.reg = 0x0b },
287 	{ .mbps = 1200,	.reg = 0x1b },
288 	{ .mbps = 1250,	.reg = 0x2b },
289 	{ .mbps = 1300,	.reg = 0x3b },
290 	{ .mbps = 1350,	.reg = 0x0c },
291 	{ .mbps = 1400,	.reg = 0x1c },
292 	{ .mbps = 1450,	.reg = 0x2c },
293 	{ .mbps = 1500,	.reg = 0x3c },
294 	{ /* sentinel */ },
295 };
296 
297 /* PHY ESC Error Monitor */
298 #define PHEERM_REG			0x74
299 
300 /* PHY Clock Lane Monitor */
301 #define PHCLM_REG			0x78
302 #define PHCLM_STOPSTATECKL		BIT(0)
303 
304 /* PHY Data Lane Monitor */
305 #define PHDLM_REG			0x7c
306 
307 /* CSI0CLK Frequency Configuration Preset Register */
308 #define CSI0CLKFCPR_REG			0x260
309 #define CSI0CLKFREQRANGE(n)		((n & 0x3f) << 16)
310 
311 struct rcar_csi2_format {
312 	u32 code;
313 	unsigned int datatype;
314 	unsigned int bpp;
315 };
316 
317 static const struct rcar_csi2_format rcar_csi2_formats[] = {
318 	{ .code = MEDIA_BUS_FMT_RGB888_1X24,	.datatype = 0x24, .bpp = 24 },
319 	{ .code = MEDIA_BUS_FMT_UYVY8_1X16,	.datatype = 0x1e, .bpp = 16 },
320 	{ .code = MEDIA_BUS_FMT_YUYV8_1X16,	.datatype = 0x1e, .bpp = 16 },
321 	{ .code = MEDIA_BUS_FMT_UYVY8_2X8,	.datatype = 0x1e, .bpp = 16 },
322 	{ .code = MEDIA_BUS_FMT_YUYV10_2X10,	.datatype = 0x1e, .bpp = 20 },
323 	{ .code = MEDIA_BUS_FMT_Y10_1X10,	.datatype = 0x2b, .bpp = 10 },
324 	{ .code = MEDIA_BUS_FMT_SBGGR8_1X8,     .datatype = 0x2a, .bpp = 8 },
325 	{ .code = MEDIA_BUS_FMT_SGBRG8_1X8,     .datatype = 0x2a, .bpp = 8 },
326 	{ .code = MEDIA_BUS_FMT_SGRBG8_1X8,     .datatype = 0x2a, .bpp = 8 },
327 	{ .code = MEDIA_BUS_FMT_SRGGB8_1X8,     .datatype = 0x2a, .bpp = 8 },
328 	{ .code = MEDIA_BUS_FMT_Y8_1X8,		.datatype = 0x2a, .bpp = 8 },
329 };
330 
rcsi2_code_to_fmt(unsigned int code)331 static const struct rcar_csi2_format *rcsi2_code_to_fmt(unsigned int code)
332 {
333 	unsigned int i;
334 
335 	for (i = 0; i < ARRAY_SIZE(rcar_csi2_formats); i++)
336 		if (rcar_csi2_formats[i].code == code)
337 			return &rcar_csi2_formats[i];
338 
339 	return NULL;
340 }
341 
342 enum rcar_csi2_pads {
343 	RCAR_CSI2_SINK,
344 	RCAR_CSI2_SOURCE_VC0,
345 	RCAR_CSI2_SOURCE_VC1,
346 	RCAR_CSI2_SOURCE_VC2,
347 	RCAR_CSI2_SOURCE_VC3,
348 	NR_OF_RCAR_CSI2_PAD,
349 };
350 
351 struct rcar_csi2_info {
352 	int (*init_phtw)(struct rcar_csi2 *priv, unsigned int mbps);
353 	int (*phy_post_init)(struct rcar_csi2 *priv);
354 	const struct rcsi2_mbps_reg *hsfreqrange;
355 	unsigned int csi0clkfreqrange;
356 	unsigned int num_channels;
357 	bool clear_ulps;
358 };
359 
360 struct rcar_csi2 {
361 	struct device *dev;
362 	void __iomem *base;
363 	const struct rcar_csi2_info *info;
364 	struct reset_control *rstc;
365 
366 	struct v4l2_subdev subdev;
367 	struct media_pad pads[NR_OF_RCAR_CSI2_PAD];
368 
369 	struct v4l2_async_notifier notifier;
370 	struct v4l2_subdev *remote;
371 	unsigned int remote_pad;
372 
373 	struct v4l2_mbus_framefmt mf;
374 
375 	struct mutex lock;
376 	int stream_count;
377 
378 	unsigned short lanes;
379 	unsigned char lane_swap[4];
380 };
381 
sd_to_csi2(struct v4l2_subdev * sd)382 static inline struct rcar_csi2 *sd_to_csi2(struct v4l2_subdev *sd)
383 {
384 	return container_of(sd, struct rcar_csi2, subdev);
385 }
386 
notifier_to_csi2(struct v4l2_async_notifier * n)387 static inline struct rcar_csi2 *notifier_to_csi2(struct v4l2_async_notifier *n)
388 {
389 	return container_of(n, struct rcar_csi2, notifier);
390 }
391 
rcsi2_read(struct rcar_csi2 * priv,unsigned int reg)392 static u32 rcsi2_read(struct rcar_csi2 *priv, unsigned int reg)
393 {
394 	return ioread32(priv->base + reg);
395 }
396 
rcsi2_write(struct rcar_csi2 * priv,unsigned int reg,u32 data)397 static void rcsi2_write(struct rcar_csi2 *priv, unsigned int reg, u32 data)
398 {
399 	iowrite32(data, priv->base + reg);
400 }
401 
rcsi2_enter_standby(struct rcar_csi2 * priv)402 static void rcsi2_enter_standby(struct rcar_csi2 *priv)
403 {
404 	rcsi2_write(priv, PHYCNT_REG, 0);
405 	rcsi2_write(priv, PHTC_REG, PHTC_TESTCLR);
406 	reset_control_assert(priv->rstc);
407 	usleep_range(100, 150);
408 	pm_runtime_put(priv->dev);
409 }
410 
rcsi2_exit_standby(struct rcar_csi2 * priv)411 static int rcsi2_exit_standby(struct rcar_csi2 *priv)
412 {
413 	int ret;
414 
415 	ret = pm_runtime_resume_and_get(priv->dev);
416 	if (ret < 0)
417 		return ret;
418 
419 	reset_control_deassert(priv->rstc);
420 
421 	return 0;
422 }
423 
rcsi2_wait_phy_start(struct rcar_csi2 * priv,unsigned int lanes)424 static int rcsi2_wait_phy_start(struct rcar_csi2 *priv,
425 				unsigned int lanes)
426 {
427 	unsigned int timeout;
428 
429 	/* Wait for the clock and data lanes to enter LP-11 state. */
430 	for (timeout = 0; timeout <= 20; timeout++) {
431 		const u32 lane_mask = (1 << lanes) - 1;
432 
433 		if ((rcsi2_read(priv, PHCLM_REG) & PHCLM_STOPSTATECKL)  &&
434 		    (rcsi2_read(priv, PHDLM_REG) & lane_mask) == lane_mask)
435 			return 0;
436 
437 		usleep_range(1000, 2000);
438 	}
439 
440 	dev_err(priv->dev, "Timeout waiting for LP-11 state\n");
441 
442 	return -ETIMEDOUT;
443 }
444 
rcsi2_set_phypll(struct rcar_csi2 * priv,unsigned int mbps)445 static int rcsi2_set_phypll(struct rcar_csi2 *priv, unsigned int mbps)
446 {
447 	const struct rcsi2_mbps_reg *hsfreq;
448 	const struct rcsi2_mbps_reg *hsfreq_prev = NULL;
449 
450 	for (hsfreq = priv->info->hsfreqrange; hsfreq->mbps != 0; hsfreq++) {
451 		if (hsfreq->mbps >= mbps)
452 			break;
453 		hsfreq_prev = hsfreq;
454 	}
455 
456 	if (!hsfreq->mbps) {
457 		dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
458 		return -ERANGE;
459 	}
460 
461 	if (hsfreq_prev &&
462 	    ((mbps - hsfreq_prev->mbps) <= (hsfreq->mbps - mbps)))
463 		hsfreq = hsfreq_prev;
464 
465 	rcsi2_write(priv, PHYPLL_REG, PHYPLL_HSFREQRANGE(hsfreq->reg));
466 
467 	return 0;
468 }
469 
rcsi2_calc_mbps(struct rcar_csi2 * priv,unsigned int bpp,unsigned int lanes)470 static int rcsi2_calc_mbps(struct rcar_csi2 *priv, unsigned int bpp,
471 			   unsigned int lanes)
472 {
473 	struct v4l2_subdev *source;
474 	struct v4l2_ctrl *ctrl;
475 	u64 mbps;
476 
477 	if (!priv->remote)
478 		return -ENODEV;
479 
480 	source = priv->remote;
481 
482 	/* Read the pixel rate control from remote. */
483 	ctrl = v4l2_ctrl_find(source->ctrl_handler, V4L2_CID_PIXEL_RATE);
484 	if (!ctrl) {
485 		dev_err(priv->dev, "no pixel rate control in subdev %s\n",
486 			source->name);
487 		return -EINVAL;
488 	}
489 
490 	/*
491 	 * Calculate the phypll in mbps.
492 	 * link_freq = (pixel_rate * bits_per_sample) / (2 * nr_of_lanes)
493 	 * bps = link_freq * 2
494 	 */
495 	mbps = v4l2_ctrl_g_ctrl_int64(ctrl) * bpp;
496 	do_div(mbps, lanes * 1000000);
497 
498 	return mbps;
499 }
500 
rcsi2_get_active_lanes(struct rcar_csi2 * priv,unsigned int * lanes)501 static int rcsi2_get_active_lanes(struct rcar_csi2 *priv,
502 				  unsigned int *lanes)
503 {
504 	struct v4l2_mbus_config mbus_config = { 0 };
505 	unsigned int num_lanes = UINT_MAX;
506 	int ret;
507 
508 	*lanes = priv->lanes;
509 
510 	ret = v4l2_subdev_call(priv->remote, pad, get_mbus_config,
511 			       priv->remote_pad, &mbus_config);
512 	if (ret == -ENOIOCTLCMD) {
513 		dev_dbg(priv->dev, "No remote mbus configuration available\n");
514 		return 0;
515 	}
516 
517 	if (ret) {
518 		dev_err(priv->dev, "Failed to get remote mbus configuration\n");
519 		return ret;
520 	}
521 
522 	if (mbus_config.type != V4L2_MBUS_CSI2_DPHY) {
523 		dev_err(priv->dev, "Unsupported media bus type %u\n",
524 			mbus_config.type);
525 		return -EINVAL;
526 	}
527 
528 	if (mbus_config.flags & V4L2_MBUS_CSI2_1_LANE)
529 		num_lanes = 1;
530 	else if (mbus_config.flags & V4L2_MBUS_CSI2_2_LANE)
531 		num_lanes = 2;
532 	else if (mbus_config.flags & V4L2_MBUS_CSI2_3_LANE)
533 		num_lanes = 3;
534 	else if (mbus_config.flags & V4L2_MBUS_CSI2_4_LANE)
535 		num_lanes = 4;
536 
537 	if (num_lanes > priv->lanes) {
538 		dev_err(priv->dev,
539 			"Unsupported mbus config: too many data lanes %u\n",
540 			num_lanes);
541 		return -EINVAL;
542 	}
543 
544 	*lanes = num_lanes;
545 
546 	return 0;
547 }
548 
rcsi2_start_receiver(struct rcar_csi2 * priv)549 static int rcsi2_start_receiver(struct rcar_csi2 *priv)
550 {
551 	const struct rcar_csi2_format *format;
552 	u32 phycnt, vcdt = 0, vcdt2 = 0, fld = 0;
553 	unsigned int lanes;
554 	unsigned int i;
555 	int mbps, ret;
556 
557 	dev_dbg(priv->dev, "Input size (%ux%u%c)\n",
558 		priv->mf.width, priv->mf.height,
559 		priv->mf.field == V4L2_FIELD_NONE ? 'p' : 'i');
560 
561 	/* Code is validated in set_fmt. */
562 	format = rcsi2_code_to_fmt(priv->mf.code);
563 	if (!format)
564 		return -EINVAL;
565 
566 	/*
567 	 * Enable all supported CSI-2 channels with virtual channel and
568 	 * data type matching.
569 	 *
570 	 * NOTE: It's not possible to get individual datatype for each
571 	 *       source virtual channel. Once this is possible in V4L2
572 	 *       it should be used here.
573 	 */
574 	for (i = 0; i < priv->info->num_channels; i++) {
575 		u32 vcdt_part;
576 
577 		vcdt_part = VCDT_SEL_VC(i) | VCDT_VCDTN_EN | VCDT_SEL_DTN_ON |
578 			VCDT_SEL_DT(format->datatype);
579 
580 		/* Store in correct reg and offset. */
581 		if (i < 2)
582 			vcdt |= vcdt_part << ((i % 2) * 16);
583 		else
584 			vcdt2 |= vcdt_part << ((i % 2) * 16);
585 	}
586 
587 	if (priv->mf.field == V4L2_FIELD_ALTERNATE) {
588 		fld = FLD_DET_SEL(1) | FLD_FLD_EN4 | FLD_FLD_EN3 | FLD_FLD_EN2
589 			| FLD_FLD_EN;
590 
591 		if (priv->mf.height == 240)
592 			fld |= FLD_FLD_NUM(0);
593 		else
594 			fld |= FLD_FLD_NUM(1);
595 	}
596 
597 	/*
598 	 * Get the number of active data lanes inspecting the remote mbus
599 	 * configuration.
600 	 */
601 	ret = rcsi2_get_active_lanes(priv, &lanes);
602 	if (ret)
603 		return ret;
604 
605 	phycnt = PHYCNT_ENABLECLK;
606 	phycnt |= (1 << lanes) - 1;
607 
608 	mbps = rcsi2_calc_mbps(priv, format->bpp, lanes);
609 	if (mbps < 0)
610 		return mbps;
611 
612 	/* Enable interrupts. */
613 	rcsi2_write(priv, INTEN_REG, INTEN_INT_AFIFO_OF | INTEN_INT_ERRSOTHS
614 		    | INTEN_INT_ERRSOTSYNCHS);
615 
616 	/* Init */
617 	rcsi2_write(priv, TREF_REG, TREF_TREF);
618 	rcsi2_write(priv, PHTC_REG, 0);
619 
620 	/* Configure */
621 	rcsi2_write(priv, VCDT_REG, vcdt);
622 	if (vcdt2)
623 		rcsi2_write(priv, VCDT2_REG, vcdt2);
624 	/* Lanes are zero indexed. */
625 	rcsi2_write(priv, LSWAP_REG,
626 		    LSWAP_L0SEL(priv->lane_swap[0] - 1) |
627 		    LSWAP_L1SEL(priv->lane_swap[1] - 1) |
628 		    LSWAP_L2SEL(priv->lane_swap[2] - 1) |
629 		    LSWAP_L3SEL(priv->lane_swap[3] - 1));
630 
631 	/* Start */
632 	if (priv->info->init_phtw) {
633 		ret = priv->info->init_phtw(priv, mbps);
634 		if (ret)
635 			return ret;
636 	}
637 
638 	if (priv->info->hsfreqrange) {
639 		ret = rcsi2_set_phypll(priv, mbps);
640 		if (ret)
641 			return ret;
642 	}
643 
644 	if (priv->info->csi0clkfreqrange)
645 		rcsi2_write(priv, CSI0CLKFCPR_REG,
646 			    CSI0CLKFREQRANGE(priv->info->csi0clkfreqrange));
647 
648 	rcsi2_write(priv, PHYCNT_REG, phycnt);
649 	rcsi2_write(priv, LINKCNT_REG, LINKCNT_MONITOR_EN |
650 		    LINKCNT_REG_MONI_PACT_EN | LINKCNT_ICLK_NONSTOP);
651 	rcsi2_write(priv, FLD_REG, fld);
652 	rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ);
653 	rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ | PHYCNT_RSTZ);
654 
655 	ret = rcsi2_wait_phy_start(priv, lanes);
656 	if (ret)
657 		return ret;
658 
659 	/* Run post PHY start initialization, if needed. */
660 	if (priv->info->phy_post_init) {
661 		ret = priv->info->phy_post_init(priv);
662 		if (ret)
663 			return ret;
664 	}
665 
666 	/* Clear Ultra Low Power interrupt. */
667 	if (priv->info->clear_ulps)
668 		rcsi2_write(priv, INTSTATE_REG,
669 			    INTSTATE_INT_ULPS_START |
670 			    INTSTATE_INT_ULPS_END);
671 	return 0;
672 }
673 
rcsi2_start(struct rcar_csi2 * priv)674 static int rcsi2_start(struct rcar_csi2 *priv)
675 {
676 	int ret;
677 
678 	ret = rcsi2_exit_standby(priv);
679 	if (ret < 0)
680 		return ret;
681 
682 	ret = rcsi2_start_receiver(priv);
683 	if (ret) {
684 		rcsi2_enter_standby(priv);
685 		return ret;
686 	}
687 
688 	ret = v4l2_subdev_call(priv->remote, video, s_stream, 1);
689 	if (ret) {
690 		rcsi2_enter_standby(priv);
691 		return ret;
692 	}
693 
694 	return 0;
695 }
696 
rcsi2_stop(struct rcar_csi2 * priv)697 static void rcsi2_stop(struct rcar_csi2 *priv)
698 {
699 	rcsi2_enter_standby(priv);
700 	v4l2_subdev_call(priv->remote, video, s_stream, 0);
701 }
702 
rcsi2_s_stream(struct v4l2_subdev * sd,int enable)703 static int rcsi2_s_stream(struct v4l2_subdev *sd, int enable)
704 {
705 	struct rcar_csi2 *priv = sd_to_csi2(sd);
706 	int ret = 0;
707 
708 	mutex_lock(&priv->lock);
709 
710 	if (!priv->remote) {
711 		ret = -ENODEV;
712 		goto out;
713 	}
714 
715 	if (enable && priv->stream_count == 0) {
716 		ret = rcsi2_start(priv);
717 		if (ret)
718 			goto out;
719 	} else if (!enable && priv->stream_count == 1) {
720 		rcsi2_stop(priv);
721 	}
722 
723 	priv->stream_count += enable ? 1 : -1;
724 out:
725 	mutex_unlock(&priv->lock);
726 
727 	return ret;
728 }
729 
rcsi2_set_pad_format(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)730 static int rcsi2_set_pad_format(struct v4l2_subdev *sd,
731 				struct v4l2_subdev_state *sd_state,
732 				struct v4l2_subdev_format *format)
733 {
734 	struct rcar_csi2 *priv = sd_to_csi2(sd);
735 	struct v4l2_mbus_framefmt *framefmt;
736 
737 	if (!rcsi2_code_to_fmt(format->format.code))
738 		format->format.code = rcar_csi2_formats[0].code;
739 
740 	if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
741 		priv->mf = format->format;
742 	} else {
743 		framefmt = v4l2_subdev_get_try_format(sd, sd_state, 0);
744 		*framefmt = format->format;
745 	}
746 
747 	return 0;
748 }
749 
rcsi2_get_pad_format(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)750 static int rcsi2_get_pad_format(struct v4l2_subdev *sd,
751 				struct v4l2_subdev_state *sd_state,
752 				struct v4l2_subdev_format *format)
753 {
754 	struct rcar_csi2 *priv = sd_to_csi2(sd);
755 
756 	if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE)
757 		format->format = priv->mf;
758 	else
759 		format->format = *v4l2_subdev_get_try_format(sd, sd_state, 0);
760 
761 	return 0;
762 }
763 
764 static const struct v4l2_subdev_video_ops rcar_csi2_video_ops = {
765 	.s_stream = rcsi2_s_stream,
766 };
767 
768 static const struct v4l2_subdev_pad_ops rcar_csi2_pad_ops = {
769 	.set_fmt = rcsi2_set_pad_format,
770 	.get_fmt = rcsi2_get_pad_format,
771 };
772 
773 static const struct v4l2_subdev_ops rcar_csi2_subdev_ops = {
774 	.video	= &rcar_csi2_video_ops,
775 	.pad	= &rcar_csi2_pad_ops,
776 };
777 
rcsi2_irq(int irq,void * data)778 static irqreturn_t rcsi2_irq(int irq, void *data)
779 {
780 	struct rcar_csi2 *priv = data;
781 	u32 status, err_status;
782 
783 	status = rcsi2_read(priv, INTSTATE_REG);
784 	err_status = rcsi2_read(priv, INTERRSTATE_REG);
785 
786 	if (!status)
787 		return IRQ_HANDLED;
788 
789 	rcsi2_write(priv, INTSTATE_REG, status);
790 
791 	if (!err_status)
792 		return IRQ_HANDLED;
793 
794 	rcsi2_write(priv, INTERRSTATE_REG, err_status);
795 
796 	dev_info(priv->dev, "Transfer error, restarting CSI-2 receiver\n");
797 
798 	return IRQ_WAKE_THREAD;
799 }
800 
rcsi2_irq_thread(int irq,void * data)801 static irqreturn_t rcsi2_irq_thread(int irq, void *data)
802 {
803 	struct rcar_csi2 *priv = data;
804 
805 	mutex_lock(&priv->lock);
806 	rcsi2_stop(priv);
807 	usleep_range(1000, 2000);
808 	if (rcsi2_start(priv))
809 		dev_warn(priv->dev, "Failed to restart CSI-2 receiver\n");
810 	mutex_unlock(&priv->lock);
811 
812 	return IRQ_HANDLED;
813 }
814 
815 /* -----------------------------------------------------------------------------
816  * Async handling and registration of subdevices and links.
817  */
818 
rcsi2_notify_bound(struct v4l2_async_notifier * notifier,struct v4l2_subdev * subdev,struct v4l2_async_subdev * asd)819 static int rcsi2_notify_bound(struct v4l2_async_notifier *notifier,
820 			      struct v4l2_subdev *subdev,
821 			      struct v4l2_async_subdev *asd)
822 {
823 	struct rcar_csi2 *priv = notifier_to_csi2(notifier);
824 	int pad;
825 
826 	pad = media_entity_get_fwnode_pad(&subdev->entity, asd->match.fwnode,
827 					  MEDIA_PAD_FL_SOURCE);
828 	if (pad < 0) {
829 		dev_err(priv->dev, "Failed to find pad for %s\n", subdev->name);
830 		return pad;
831 	}
832 
833 	priv->remote = subdev;
834 	priv->remote_pad = pad;
835 
836 	dev_dbg(priv->dev, "Bound %s pad: %d\n", subdev->name, pad);
837 
838 	return media_create_pad_link(&subdev->entity, pad,
839 				     &priv->subdev.entity, 0,
840 				     MEDIA_LNK_FL_ENABLED |
841 				     MEDIA_LNK_FL_IMMUTABLE);
842 }
843 
rcsi2_notify_unbind(struct v4l2_async_notifier * notifier,struct v4l2_subdev * subdev,struct v4l2_async_subdev * asd)844 static void rcsi2_notify_unbind(struct v4l2_async_notifier *notifier,
845 				struct v4l2_subdev *subdev,
846 				struct v4l2_async_subdev *asd)
847 {
848 	struct rcar_csi2 *priv = notifier_to_csi2(notifier);
849 
850 	priv->remote = NULL;
851 
852 	dev_dbg(priv->dev, "Unbind %s\n", subdev->name);
853 }
854 
855 static const struct v4l2_async_notifier_operations rcar_csi2_notify_ops = {
856 	.bound = rcsi2_notify_bound,
857 	.unbind = rcsi2_notify_unbind,
858 };
859 
rcsi2_parse_v4l2(struct rcar_csi2 * priv,struct v4l2_fwnode_endpoint * vep)860 static int rcsi2_parse_v4l2(struct rcar_csi2 *priv,
861 			    struct v4l2_fwnode_endpoint *vep)
862 {
863 	unsigned int i;
864 
865 	/* Only port 0 endpoint 0 is valid. */
866 	if (vep->base.port || vep->base.id)
867 		return -ENOTCONN;
868 
869 	if (vep->bus_type != V4L2_MBUS_CSI2_DPHY) {
870 		dev_err(priv->dev, "Unsupported bus: %u\n", vep->bus_type);
871 		return -EINVAL;
872 	}
873 
874 	priv->lanes = vep->bus.mipi_csi2.num_data_lanes;
875 	if (priv->lanes != 1 && priv->lanes != 2 && priv->lanes != 4) {
876 		dev_err(priv->dev, "Unsupported number of data-lanes: %u\n",
877 			priv->lanes);
878 		return -EINVAL;
879 	}
880 
881 	for (i = 0; i < ARRAY_SIZE(priv->lane_swap); i++) {
882 		priv->lane_swap[i] = i < priv->lanes ?
883 			vep->bus.mipi_csi2.data_lanes[i] : i;
884 
885 		/* Check for valid lane number. */
886 		if (priv->lane_swap[i] < 1 || priv->lane_swap[i] > 4) {
887 			dev_err(priv->dev, "data-lanes must be in 1-4 range\n");
888 			return -EINVAL;
889 		}
890 	}
891 
892 	return 0;
893 }
894 
rcsi2_parse_dt(struct rcar_csi2 * priv)895 static int rcsi2_parse_dt(struct rcar_csi2 *priv)
896 {
897 	struct v4l2_async_subdev *asd;
898 	struct fwnode_handle *fwnode;
899 	struct fwnode_handle *ep;
900 	struct v4l2_fwnode_endpoint v4l2_ep = {
901 		.bus_type = V4L2_MBUS_CSI2_DPHY
902 	};
903 	int ret;
904 
905 	ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(priv->dev), 0, 0, 0);
906 	if (!ep) {
907 		dev_err(priv->dev, "Not connected to subdevice\n");
908 		return -EINVAL;
909 	}
910 
911 	ret = v4l2_fwnode_endpoint_parse(ep, &v4l2_ep);
912 	if (ret) {
913 		dev_err(priv->dev, "Could not parse v4l2 endpoint\n");
914 		fwnode_handle_put(ep);
915 		return -EINVAL;
916 	}
917 
918 	ret = rcsi2_parse_v4l2(priv, &v4l2_ep);
919 	if (ret) {
920 		fwnode_handle_put(ep);
921 		return ret;
922 	}
923 
924 	fwnode = fwnode_graph_get_remote_endpoint(ep);
925 	fwnode_handle_put(ep);
926 
927 	dev_dbg(priv->dev, "Found '%pOF'\n", to_of_node(fwnode));
928 
929 	v4l2_async_notifier_init(&priv->notifier);
930 	priv->notifier.ops = &rcar_csi2_notify_ops;
931 
932 	asd = v4l2_async_notifier_add_fwnode_subdev(&priv->notifier, fwnode,
933 						    struct v4l2_async_subdev);
934 	fwnode_handle_put(fwnode);
935 	if (IS_ERR(asd))
936 		return PTR_ERR(asd);
937 
938 	ret = v4l2_async_subdev_notifier_register(&priv->subdev,
939 						  &priv->notifier);
940 	if (ret)
941 		v4l2_async_notifier_cleanup(&priv->notifier);
942 
943 	return ret;
944 }
945 
946 /* -----------------------------------------------------------------------------
947  * PHTW initialization sequences.
948  *
949  * NOTE: Magic values are from the datasheet and lack documentation.
950  */
951 
rcsi2_phtw_write(struct rcar_csi2 * priv,u16 data,u16 code)952 static int rcsi2_phtw_write(struct rcar_csi2 *priv, u16 data, u16 code)
953 {
954 	unsigned int timeout;
955 
956 	rcsi2_write(priv, PHTW_REG,
957 		    PHTW_DWEN | PHTW_TESTDIN_DATA(data) |
958 		    PHTW_CWEN | PHTW_TESTDIN_CODE(code));
959 
960 	/* Wait for DWEN and CWEN to be cleared by hardware. */
961 	for (timeout = 0; timeout <= 20; timeout++) {
962 		if (!(rcsi2_read(priv, PHTW_REG) & (PHTW_DWEN | PHTW_CWEN)))
963 			return 0;
964 
965 		usleep_range(1000, 2000);
966 	}
967 
968 	dev_err(priv->dev, "Timeout waiting for PHTW_DWEN and/or PHTW_CWEN\n");
969 
970 	return -ETIMEDOUT;
971 }
972 
rcsi2_phtw_write_array(struct rcar_csi2 * priv,const struct phtw_value * values)973 static int rcsi2_phtw_write_array(struct rcar_csi2 *priv,
974 				  const struct phtw_value *values)
975 {
976 	const struct phtw_value *value;
977 	int ret;
978 
979 	for (value = values; value->data || value->code; value++) {
980 		ret = rcsi2_phtw_write(priv, value->data, value->code);
981 		if (ret)
982 			return ret;
983 	}
984 
985 	return 0;
986 }
987 
rcsi2_phtw_write_mbps(struct rcar_csi2 * priv,unsigned int mbps,const struct rcsi2_mbps_reg * values,u16 code)988 static int rcsi2_phtw_write_mbps(struct rcar_csi2 *priv, unsigned int mbps,
989 				 const struct rcsi2_mbps_reg *values, u16 code)
990 {
991 	const struct rcsi2_mbps_reg *value;
992 	const struct rcsi2_mbps_reg *prev_value = NULL;
993 
994 	for (value = values; value->mbps; value++) {
995 		if (value->mbps >= mbps)
996 			break;
997 		prev_value = value;
998 	}
999 
1000 	if (prev_value &&
1001 	    ((mbps - prev_value->mbps) <= (value->mbps - mbps)))
1002 		value = prev_value;
1003 
1004 	if (!value->mbps) {
1005 		dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
1006 		return -ERANGE;
1007 	}
1008 
1009 	return rcsi2_phtw_write(priv, value->reg, code);
1010 }
1011 
__rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 * priv,unsigned int mbps)1012 static int __rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv,
1013 					unsigned int mbps)
1014 {
1015 	static const struct phtw_value step1[] = {
1016 		{ .data = 0xcc, .code = 0xe2 },
1017 		{ .data = 0x01, .code = 0xe3 },
1018 		{ .data = 0x11, .code = 0xe4 },
1019 		{ .data = 0x01, .code = 0xe5 },
1020 		{ .data = 0x10, .code = 0x04 },
1021 		{ /* sentinel */ },
1022 	};
1023 
1024 	static const struct phtw_value step2[] = {
1025 		{ .data = 0x38, .code = 0x08 },
1026 		{ .data = 0x01, .code = 0x00 },
1027 		{ .data = 0x4b, .code = 0xac },
1028 		{ .data = 0x03, .code = 0x00 },
1029 		{ .data = 0x80, .code = 0x07 },
1030 		{ /* sentinel */ },
1031 	};
1032 
1033 	int ret;
1034 
1035 	ret = rcsi2_phtw_write_array(priv, step1);
1036 	if (ret)
1037 		return ret;
1038 
1039 	if (mbps != 0 && mbps <= 250) {
1040 		ret = rcsi2_phtw_write(priv, 0x39, 0x05);
1041 		if (ret)
1042 			return ret;
1043 
1044 		ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_h3_v3h_m3n,
1045 					    0xf1);
1046 		if (ret)
1047 			return ret;
1048 	}
1049 
1050 	return rcsi2_phtw_write_array(priv, step2);
1051 }
1052 
rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 * priv,unsigned int mbps)1053 static int rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv, unsigned int mbps)
1054 {
1055 	return __rcsi2_init_phtw_h3_v3h_m3n(priv, mbps);
1056 }
1057 
rcsi2_init_phtw_h3es2(struct rcar_csi2 * priv,unsigned int mbps)1058 static int rcsi2_init_phtw_h3es2(struct rcar_csi2 *priv, unsigned int mbps)
1059 {
1060 	return __rcsi2_init_phtw_h3_v3h_m3n(priv, 0);
1061 }
1062 
rcsi2_init_phtw_v3m_e3(struct rcar_csi2 * priv,unsigned int mbps)1063 static int rcsi2_init_phtw_v3m_e3(struct rcar_csi2 *priv, unsigned int mbps)
1064 {
1065 	return rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3m_e3, 0x44);
1066 }
1067 
rcsi2_phy_post_init_v3m_e3(struct rcar_csi2 * priv)1068 static int rcsi2_phy_post_init_v3m_e3(struct rcar_csi2 *priv)
1069 {
1070 	static const struct phtw_value step1[] = {
1071 		{ .data = 0xee, .code = 0x34 },
1072 		{ .data = 0xee, .code = 0x44 },
1073 		{ .data = 0xee, .code = 0x54 },
1074 		{ .data = 0xee, .code = 0x84 },
1075 		{ .data = 0xee, .code = 0x94 },
1076 		{ /* sentinel */ },
1077 	};
1078 
1079 	return rcsi2_phtw_write_array(priv, step1);
1080 }
1081 
1082 /* -----------------------------------------------------------------------------
1083  * Platform Device Driver.
1084  */
1085 
1086 static const struct media_entity_operations rcar_csi2_entity_ops = {
1087 	.link_validate = v4l2_subdev_link_validate,
1088 };
1089 
rcsi2_probe_resources(struct rcar_csi2 * priv,struct platform_device * pdev)1090 static int rcsi2_probe_resources(struct rcar_csi2 *priv,
1091 				 struct platform_device *pdev)
1092 {
1093 	struct resource *res;
1094 	int irq, ret;
1095 
1096 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1097 	priv->base = devm_ioremap_resource(&pdev->dev, res);
1098 	if (IS_ERR(priv->base))
1099 		return PTR_ERR(priv->base);
1100 
1101 	irq = platform_get_irq(pdev, 0);
1102 	if (irq < 0)
1103 		return irq;
1104 
1105 	ret = devm_request_threaded_irq(&pdev->dev, irq, rcsi2_irq,
1106 					rcsi2_irq_thread, IRQF_SHARED,
1107 					KBUILD_MODNAME, priv);
1108 	if (ret)
1109 		return ret;
1110 
1111 	priv->rstc = devm_reset_control_get(&pdev->dev, NULL);
1112 
1113 	return PTR_ERR_OR_ZERO(priv->rstc);
1114 }
1115 
1116 static const struct rcar_csi2_info rcar_csi2_info_r8a7795 = {
1117 	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1118 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1119 	.csi0clkfreqrange = 0x20,
1120 	.num_channels = 4,
1121 	.clear_ulps = true,
1122 };
1123 
1124 static const struct rcar_csi2_info rcar_csi2_info_r8a7795es1 = {
1125 	.hsfreqrange = hsfreqrange_m3w_h3es1,
1126 	.num_channels = 4,
1127 };
1128 
1129 static const struct rcar_csi2_info rcar_csi2_info_r8a7795es2 = {
1130 	.init_phtw = rcsi2_init_phtw_h3es2,
1131 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1132 	.csi0clkfreqrange = 0x20,
1133 	.num_channels = 4,
1134 	.clear_ulps = true,
1135 };
1136 
1137 static const struct rcar_csi2_info rcar_csi2_info_r8a7796 = {
1138 	.hsfreqrange = hsfreqrange_m3w_h3es1,
1139 	.num_channels = 4,
1140 };
1141 
1142 static const struct rcar_csi2_info rcar_csi2_info_r8a77961 = {
1143 	.hsfreqrange = hsfreqrange_m3w_h3es1,
1144 	.num_channels = 4,
1145 };
1146 
1147 static const struct rcar_csi2_info rcar_csi2_info_r8a77965 = {
1148 	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1149 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1150 	.csi0clkfreqrange = 0x20,
1151 	.num_channels = 4,
1152 	.clear_ulps = true,
1153 };
1154 
1155 static const struct rcar_csi2_info rcar_csi2_info_r8a77970 = {
1156 	.init_phtw = rcsi2_init_phtw_v3m_e3,
1157 	.phy_post_init = rcsi2_phy_post_init_v3m_e3,
1158 	.num_channels = 4,
1159 };
1160 
1161 static const struct rcar_csi2_info rcar_csi2_info_r8a77980 = {
1162 	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1163 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1164 	.csi0clkfreqrange = 0x20,
1165 	.clear_ulps = true,
1166 };
1167 
1168 static const struct rcar_csi2_info rcar_csi2_info_r8a77990 = {
1169 	.init_phtw = rcsi2_init_phtw_v3m_e3,
1170 	.phy_post_init = rcsi2_phy_post_init_v3m_e3,
1171 	.num_channels = 2,
1172 };
1173 
1174 static const struct of_device_id rcar_csi2_of_table[] = {
1175 	{
1176 		.compatible = "renesas,r8a774a1-csi2",
1177 		.data = &rcar_csi2_info_r8a7796,
1178 	},
1179 	{
1180 		.compatible = "renesas,r8a774b1-csi2",
1181 		.data = &rcar_csi2_info_r8a77965,
1182 	},
1183 	{
1184 		.compatible = "renesas,r8a774c0-csi2",
1185 		.data = &rcar_csi2_info_r8a77990,
1186 	},
1187 	{
1188 		.compatible = "renesas,r8a774e1-csi2",
1189 		.data = &rcar_csi2_info_r8a7795,
1190 	},
1191 	{
1192 		.compatible = "renesas,r8a7795-csi2",
1193 		.data = &rcar_csi2_info_r8a7795,
1194 	},
1195 	{
1196 		.compatible = "renesas,r8a7796-csi2",
1197 		.data = &rcar_csi2_info_r8a7796,
1198 	},
1199 	{
1200 		.compatible = "renesas,r8a77961-csi2",
1201 		.data = &rcar_csi2_info_r8a77961,
1202 	},
1203 	{
1204 		.compatible = "renesas,r8a77965-csi2",
1205 		.data = &rcar_csi2_info_r8a77965,
1206 	},
1207 	{
1208 		.compatible = "renesas,r8a77970-csi2",
1209 		.data = &rcar_csi2_info_r8a77970,
1210 	},
1211 	{
1212 		.compatible = "renesas,r8a77980-csi2",
1213 		.data = &rcar_csi2_info_r8a77980,
1214 	},
1215 	{
1216 		.compatible = "renesas,r8a77990-csi2",
1217 		.data = &rcar_csi2_info_r8a77990,
1218 	},
1219 	{ /* sentinel */ },
1220 };
1221 MODULE_DEVICE_TABLE(of, rcar_csi2_of_table);
1222 
1223 static const struct soc_device_attribute r8a7795[] = {
1224 	{
1225 		.soc_id = "r8a7795", .revision = "ES1.*",
1226 		.data = &rcar_csi2_info_r8a7795es1,
1227 	},
1228 	{
1229 		.soc_id = "r8a7795", .revision = "ES2.*",
1230 		.data = &rcar_csi2_info_r8a7795es2,
1231 	},
1232 	{ /* sentinel */ },
1233 };
1234 
rcsi2_probe(struct platform_device * pdev)1235 static int rcsi2_probe(struct platform_device *pdev)
1236 {
1237 	const struct soc_device_attribute *attr;
1238 	struct rcar_csi2 *priv;
1239 	unsigned int i;
1240 	int ret;
1241 
1242 	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
1243 	if (!priv)
1244 		return -ENOMEM;
1245 
1246 	priv->info = of_device_get_match_data(&pdev->dev);
1247 
1248 	/*
1249 	 * The different ES versions of r8a7795 (H3) behave differently but
1250 	 * share the same compatible string.
1251 	 */
1252 	attr = soc_device_match(r8a7795);
1253 	if (attr)
1254 		priv->info = attr->data;
1255 
1256 	priv->dev = &pdev->dev;
1257 
1258 	mutex_init(&priv->lock);
1259 	priv->stream_count = 0;
1260 
1261 	ret = rcsi2_probe_resources(priv, pdev);
1262 	if (ret) {
1263 		dev_err(priv->dev, "Failed to get resources\n");
1264 		return ret;
1265 	}
1266 
1267 	platform_set_drvdata(pdev, priv);
1268 
1269 	ret = rcsi2_parse_dt(priv);
1270 	if (ret)
1271 		return ret;
1272 
1273 	priv->subdev.owner = THIS_MODULE;
1274 	priv->subdev.dev = &pdev->dev;
1275 	v4l2_subdev_init(&priv->subdev, &rcar_csi2_subdev_ops);
1276 	v4l2_set_subdevdata(&priv->subdev, &pdev->dev);
1277 	snprintf(priv->subdev.name, V4L2_SUBDEV_NAME_SIZE, "%s %s",
1278 		 KBUILD_MODNAME, dev_name(&pdev->dev));
1279 	priv->subdev.flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
1280 
1281 	priv->subdev.entity.function = MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER;
1282 	priv->subdev.entity.ops = &rcar_csi2_entity_ops;
1283 
1284 	priv->pads[RCAR_CSI2_SINK].flags = MEDIA_PAD_FL_SINK;
1285 	for (i = RCAR_CSI2_SOURCE_VC0; i < NR_OF_RCAR_CSI2_PAD; i++)
1286 		priv->pads[i].flags = MEDIA_PAD_FL_SOURCE;
1287 
1288 	ret = media_entity_pads_init(&priv->subdev.entity, NR_OF_RCAR_CSI2_PAD,
1289 				     priv->pads);
1290 	if (ret)
1291 		goto error;
1292 
1293 	pm_runtime_enable(&pdev->dev);
1294 
1295 	ret = v4l2_async_register_subdev(&priv->subdev);
1296 	if (ret < 0)
1297 		goto error;
1298 
1299 	dev_info(priv->dev, "%d lanes found\n", priv->lanes);
1300 
1301 	return 0;
1302 
1303 error:
1304 	v4l2_async_notifier_unregister(&priv->notifier);
1305 	v4l2_async_notifier_cleanup(&priv->notifier);
1306 
1307 	return ret;
1308 }
1309 
rcsi2_remove(struct platform_device * pdev)1310 static int rcsi2_remove(struct platform_device *pdev)
1311 {
1312 	struct rcar_csi2 *priv = platform_get_drvdata(pdev);
1313 
1314 	v4l2_async_notifier_unregister(&priv->notifier);
1315 	v4l2_async_notifier_cleanup(&priv->notifier);
1316 	v4l2_async_unregister_subdev(&priv->subdev);
1317 
1318 	pm_runtime_disable(&pdev->dev);
1319 
1320 	return 0;
1321 }
1322 
1323 static struct platform_driver rcar_csi2_pdrv = {
1324 	.remove	= rcsi2_remove,
1325 	.probe	= rcsi2_probe,
1326 	.driver	= {
1327 		.name	= "rcar-csi2",
1328 		.of_match_table	= rcar_csi2_of_table,
1329 	},
1330 };
1331 
1332 module_platform_driver(rcar_csi2_pdrv);
1333 
1334 MODULE_AUTHOR("Niklas Söderlund <niklas.soderlund@ragnatech.se>");
1335 MODULE_DESCRIPTION("Renesas R-Car MIPI CSI-2 receiver driver");
1336 MODULE_LICENSE("GPL");
1337