• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * ASPEED Static Memory Controller driver
4  *
5  * Copyright (c) 2015-2016, IBM Corporation.
6  */
7 
8 #include <linux/bug.h>
9 #include <linux/device.h>
10 #include <linux/io.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/mtd/mtd.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/mtd/spi-nor.h>
16 #include <linux/of.h>
17 #include <linux/of_platform.h>
18 #include <linux/sizes.h>
19 #include <linux/sysfs.h>
20 
21 #define DEVICE_NAME	"aspeed-smc"
22 
23 /*
24  * The driver only support SPI flash
25  */
26 enum aspeed_smc_flash_type {
27 	smc_type_nor  = 0,
28 	smc_type_nand = 1,
29 	smc_type_spi  = 2,
30 };
31 
32 struct aspeed_smc_chip;
33 
34 struct aspeed_smc_info {
35 	u32 maxsize;		/* maximum size of chip window */
36 	u8 nce;			/* number of chip enables */
37 	bool hastype;		/* flash type field exists in config reg */
38 	u8 we0;			/* shift for write enable bit for CE0 */
39 	u8 ctl0;		/* offset in regs of ctl for CE0 */
40 
41 	void (*set_4b)(struct aspeed_smc_chip *chip);
42 };
43 
44 static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip);
45 static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip);
46 
47 static const struct aspeed_smc_info fmc_2400_info = {
48 	.maxsize = 64 * 1024 * 1024,
49 	.nce = 5,
50 	.hastype = true,
51 	.we0 = 16,
52 	.ctl0 = 0x10,
53 	.set_4b = aspeed_smc_chip_set_4b,
54 };
55 
56 static const struct aspeed_smc_info spi_2400_info = {
57 	.maxsize = 64 * 1024 * 1024,
58 	.nce = 1,
59 	.hastype = false,
60 	.we0 = 0,
61 	.ctl0 = 0x04,
62 	.set_4b = aspeed_smc_chip_set_4b_spi_2400,
63 };
64 
65 static const struct aspeed_smc_info fmc_2500_info = {
66 	.maxsize = 256 * 1024 * 1024,
67 	.nce = 3,
68 	.hastype = true,
69 	.we0 = 16,
70 	.ctl0 = 0x10,
71 	.set_4b = aspeed_smc_chip_set_4b,
72 };
73 
74 static const struct aspeed_smc_info spi_2500_info = {
75 	.maxsize = 128 * 1024 * 1024,
76 	.nce = 2,
77 	.hastype = false,
78 	.we0 = 16,
79 	.ctl0 = 0x10,
80 	.set_4b = aspeed_smc_chip_set_4b,
81 };
82 
83 enum aspeed_smc_ctl_reg_value {
84 	smc_base,		/* base value without mode for other commands */
85 	smc_read,		/* command reg for (maybe fast) reads */
86 	smc_write,		/* command reg for writes */
87 	smc_max,
88 };
89 
90 struct aspeed_smc_controller;
91 
92 struct aspeed_smc_chip {
93 	int cs;
94 	struct aspeed_smc_controller *controller;
95 	void __iomem *ctl;			/* control register */
96 	void __iomem *ahb_base;			/* base of chip window */
97 	u32 ahb_window_size;			/* chip mapping window size */
98 	u32 ctl_val[smc_max];			/* control settings */
99 	enum aspeed_smc_flash_type type;	/* what type of flash */
100 	struct spi_nor nor;
101 };
102 
103 struct aspeed_smc_controller {
104 	struct device *dev;
105 
106 	struct mutex mutex;			/* controller access mutex */
107 	const struct aspeed_smc_info *info;	/* type info of controller */
108 	void __iomem *regs;			/* controller registers */
109 	void __iomem *ahb_base;			/* per-chip windows resource */
110 	u32 ahb_window_size;			/* full mapping window size */
111 
112 	struct aspeed_smc_chip *chips[];	/* pointers to attached chips */
113 };
114 
115 /*
116  * SPI Flash Configuration Register (AST2500 SPI)
117  *     or
118  * Type setting Register (AST2500 FMC).
119  * CE0 and CE1 can only be of type SPI. CE2 can be of type NOR but the
120  * driver does not support it.
121  */
122 #define CONFIG_REG			0x0
123 #define CONFIG_DISABLE_LEGACY		BIT(31) /* 1 */
124 
125 #define CONFIG_CE2_WRITE		BIT(18)
126 #define CONFIG_CE1_WRITE		BIT(17)
127 #define CONFIG_CE0_WRITE		BIT(16)
128 
129 #define CONFIG_CE2_TYPE			BIT(4) /* AST2500 FMC only */
130 #define CONFIG_CE1_TYPE			BIT(2) /* AST2500 FMC only */
131 #define CONFIG_CE0_TYPE			BIT(0) /* AST2500 FMC only */
132 
133 /*
134  * CE Control Register
135  */
136 #define CE_CONTROL_REG			0x4
137 
138 /*
139  * CEx Control Register
140  */
141 #define CONTROL_AAF_MODE		BIT(31)
142 #define CONTROL_IO_MODE_MASK		GENMASK(30, 28)
143 #define CONTROL_IO_DUAL_DATA		BIT(29)
144 #define CONTROL_IO_DUAL_ADDR_DATA	(BIT(29) | BIT(28))
145 #define CONTROL_IO_QUAD_DATA		BIT(30)
146 #define CONTROL_IO_QUAD_ADDR_DATA	(BIT(30) | BIT(28))
147 #define CONTROL_CE_INACTIVE_SHIFT	24
148 #define CONTROL_CE_INACTIVE_MASK	GENMASK(27, \
149 					CONTROL_CE_INACTIVE_SHIFT)
150 /* 0 = 16T ... 15 = 1T   T=HCLK */
151 #define CONTROL_COMMAND_SHIFT		16
152 #define CONTROL_DUMMY_COMMAND_OUT	BIT(15)
153 #define CONTROL_IO_DUMMY_HI		BIT(14)
154 #define CONTROL_IO_DUMMY_HI_SHIFT	14
155 #define CONTROL_CLK_DIV4		BIT(13) /* others */
156 #define CONTROL_IO_ADDRESS_4B		BIT(13) /* AST2400 SPI */
157 #define CONTROL_RW_MERGE		BIT(12)
158 #define CONTROL_IO_DUMMY_LO_SHIFT	6
159 #define CONTROL_IO_DUMMY_LO		GENMASK(7, \
160 						CONTROL_IO_DUMMY_LO_SHIFT)
161 #define CONTROL_IO_DUMMY_MASK		(CONTROL_IO_DUMMY_HI | \
162 					 CONTROL_IO_DUMMY_LO)
163 #define CONTROL_IO_DUMMY_SET(dummy)				 \
164 	(((((dummy) >> 2) & 0x1) << CONTROL_IO_DUMMY_HI_SHIFT) | \
165 	 (((dummy) & 0x3) << CONTROL_IO_DUMMY_LO_SHIFT))
166 
167 #define CONTROL_CLOCK_FREQ_SEL_SHIFT	8
168 #define CONTROL_CLOCK_FREQ_SEL_MASK	GENMASK(11, \
169 						CONTROL_CLOCK_FREQ_SEL_SHIFT)
170 #define CONTROL_LSB_FIRST		BIT(5)
171 #define CONTROL_CLOCK_MODE_3		BIT(4)
172 #define CONTROL_IN_DUAL_DATA		BIT(3)
173 #define CONTROL_CE_STOP_ACTIVE_CONTROL	BIT(2)
174 #define CONTROL_COMMAND_MODE_MASK	GENMASK(1, 0)
175 #define CONTROL_COMMAND_MODE_NORMAL	0
176 #define CONTROL_COMMAND_MODE_FREAD	1
177 #define CONTROL_COMMAND_MODE_WRITE	2
178 #define CONTROL_COMMAND_MODE_USER	3
179 
180 #define CONTROL_KEEP_MASK						\
181 	(CONTROL_AAF_MODE | CONTROL_CE_INACTIVE_MASK | CONTROL_CLK_DIV4 | \
182 	 CONTROL_CLOCK_FREQ_SEL_MASK | CONTROL_LSB_FIRST | CONTROL_CLOCK_MODE_3)
183 
184 /*
185  * The Segment Register uses a 8MB unit to encode the start address
186  * and the end address of the mapping window of a flash SPI slave :
187  *
188  *        | byte 1 | byte 2 | byte 3 | byte 4 |
189  *        +--------+--------+--------+--------+
190  *        |  end   |  start |   0    |   0    |
191  */
192 #define SEGMENT_ADDR_REG0		0x30
193 #define SEGMENT_ADDR_START(_r)		((((_r) >> 16) & 0xFF) << 23)
194 #define SEGMENT_ADDR_END(_r)		((((_r) >> 24) & 0xFF) << 23)
195 #define SEGMENT_ADDR_VALUE(start, end)					\
196 	(((((start) >> 23) & 0xFF) << 16) | ((((end) >> 23) & 0xFF) << 24))
197 #define SEGMENT_ADDR_REG(controller, cs)	\
198 	((controller)->regs + SEGMENT_ADDR_REG0 + (cs) * 4)
199 
200 /*
201  * In user mode all data bytes read or written to the chip decode address
202  * range are transferred to or from the SPI bus. The range is treated as a
203  * fifo of arbitratry 1, 2, or 4 byte width but each write has to be aligned
204  * to its size. The address within the multiple 8kB range is ignored when
205  * sending bytes to the SPI bus.
206  *
207  * On the arm architecture, as of Linux version 4.3, memcpy_fromio and
208  * memcpy_toio on little endian targets use the optimized memcpy routines
209  * that were designed for well behavied memory storage. These routines
210  * have a stutter if the source and destination are not both word aligned,
211  * once with a duplicate access to the source after aligning to the
212  * destination to a word boundary, and again with a duplicate access to
213  * the source when the final byte count is not word aligned.
214  *
215  * When writing or reading the fifo this stutter discards data or sends
216  * too much data to the fifo and can not be used by this driver.
217  *
218  * While the low level io string routines that implement the insl family do
219  * the desired accesses and memory increments, the cross architecture io
220  * macros make them essentially impossible to use on a memory mapped address
221  * instead of a a token from the call to iomap of an io port.
222  *
223  * These fifo routines use readl and friends to a constant io port and update
224  * the memory buffer pointer and count via explicit code. The final updates
225  * to len are optimistically suppressed.
226  */
aspeed_smc_read_from_ahb(void * buf,void __iomem * src,size_t len)227 static int aspeed_smc_read_from_ahb(void *buf, void __iomem *src, size_t len)
228 {
229 	size_t offset = 0;
230 
231 	if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
232 	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
233 		ioread32_rep(src, buf, len >> 2);
234 		offset = len & ~0x3;
235 		len -= offset;
236 	}
237 	ioread8_rep(src, (u8 *)buf + offset, len);
238 	return 0;
239 }
240 
aspeed_smc_write_to_ahb(void __iomem * dst,const void * buf,size_t len)241 static int aspeed_smc_write_to_ahb(void __iomem *dst, const void *buf,
242 				   size_t len)
243 {
244 	size_t offset = 0;
245 
246 	if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
247 	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
248 		iowrite32_rep(dst, buf, len >> 2);
249 		offset = len & ~0x3;
250 		len -= offset;
251 	}
252 	iowrite8_rep(dst, (const u8 *)buf + offset, len);
253 	return 0;
254 }
255 
aspeed_smc_chip_write_bit(struct aspeed_smc_chip * chip)256 static inline u32 aspeed_smc_chip_write_bit(struct aspeed_smc_chip *chip)
257 {
258 	return BIT(chip->controller->info->we0 + chip->cs);
259 }
260 
aspeed_smc_chip_check_config(struct aspeed_smc_chip * chip)261 static void aspeed_smc_chip_check_config(struct aspeed_smc_chip *chip)
262 {
263 	struct aspeed_smc_controller *controller = chip->controller;
264 	u32 reg;
265 
266 	reg = readl(controller->regs + CONFIG_REG);
267 
268 	if (reg & aspeed_smc_chip_write_bit(chip))
269 		return;
270 
271 	dev_dbg(controller->dev, "config write is not set ! @%p: 0x%08x\n",
272 		controller->regs + CONFIG_REG, reg);
273 	reg |= aspeed_smc_chip_write_bit(chip);
274 	writel(reg, controller->regs + CONFIG_REG);
275 }
276 
aspeed_smc_start_user(struct spi_nor * nor)277 static void aspeed_smc_start_user(struct spi_nor *nor)
278 {
279 	struct aspeed_smc_chip *chip = nor->priv;
280 	u32 ctl = chip->ctl_val[smc_base];
281 
282 	/*
283 	 * When the chip is controlled in user mode, we need write
284 	 * access to send the opcodes to it. So check the config.
285 	 */
286 	aspeed_smc_chip_check_config(chip);
287 
288 	ctl |= CONTROL_COMMAND_MODE_USER |
289 		CONTROL_CE_STOP_ACTIVE_CONTROL;
290 	writel(ctl, chip->ctl);
291 
292 	ctl &= ~CONTROL_CE_STOP_ACTIVE_CONTROL;
293 	writel(ctl, chip->ctl);
294 }
295 
aspeed_smc_stop_user(struct spi_nor * nor)296 static void aspeed_smc_stop_user(struct spi_nor *nor)
297 {
298 	struct aspeed_smc_chip *chip = nor->priv;
299 
300 	u32 ctl = chip->ctl_val[smc_read];
301 	u32 ctl2 = ctl | CONTROL_COMMAND_MODE_USER |
302 		CONTROL_CE_STOP_ACTIVE_CONTROL;
303 
304 	writel(ctl2, chip->ctl);	/* stop user CE control */
305 	writel(ctl, chip->ctl);		/* default to fread or read mode */
306 }
307 
aspeed_smc_prep(struct spi_nor * nor)308 static int aspeed_smc_prep(struct spi_nor *nor)
309 {
310 	struct aspeed_smc_chip *chip = nor->priv;
311 
312 	mutex_lock(&chip->controller->mutex);
313 	return 0;
314 }
315 
aspeed_smc_unprep(struct spi_nor * nor)316 static void aspeed_smc_unprep(struct spi_nor *nor)
317 {
318 	struct aspeed_smc_chip *chip = nor->priv;
319 
320 	mutex_unlock(&chip->controller->mutex);
321 }
322 
aspeed_smc_read_reg(struct spi_nor * nor,u8 opcode,u8 * buf,size_t len)323 static int aspeed_smc_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
324 			       size_t len)
325 {
326 	struct aspeed_smc_chip *chip = nor->priv;
327 
328 	aspeed_smc_start_user(nor);
329 	aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
330 	aspeed_smc_read_from_ahb(buf, chip->ahb_base, len);
331 	aspeed_smc_stop_user(nor);
332 	return 0;
333 }
334 
aspeed_smc_write_reg(struct spi_nor * nor,u8 opcode,const u8 * buf,size_t len)335 static int aspeed_smc_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf,
336 				size_t len)
337 {
338 	struct aspeed_smc_chip *chip = nor->priv;
339 
340 	aspeed_smc_start_user(nor);
341 	aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
342 	aspeed_smc_write_to_ahb(chip->ahb_base, buf, len);
343 	aspeed_smc_stop_user(nor);
344 	return 0;
345 }
346 
aspeed_smc_send_cmd_addr(struct spi_nor * nor,u8 cmd,u32 addr)347 static void aspeed_smc_send_cmd_addr(struct spi_nor *nor, u8 cmd, u32 addr)
348 {
349 	struct aspeed_smc_chip *chip = nor->priv;
350 	__be32 temp;
351 	u32 cmdaddr;
352 
353 	switch (nor->addr_width) {
354 	default:
355 		WARN_ONCE(1, "Unexpected address width %u, defaulting to 3\n",
356 			  nor->addr_width);
357 		fallthrough;
358 	case 3:
359 		cmdaddr = addr & 0xFFFFFF;
360 		cmdaddr |= cmd << 24;
361 
362 		temp = cpu_to_be32(cmdaddr);
363 		aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
364 		break;
365 	case 4:
366 		temp = cpu_to_be32(addr);
367 		aspeed_smc_write_to_ahb(chip->ahb_base, &cmd, 1);
368 		aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
369 		break;
370 	}
371 }
372 
aspeed_smc_read_user(struct spi_nor * nor,loff_t from,size_t len,u_char * read_buf)373 static ssize_t aspeed_smc_read_user(struct spi_nor *nor, loff_t from,
374 				    size_t len, u_char *read_buf)
375 {
376 	struct aspeed_smc_chip *chip = nor->priv;
377 	int i;
378 	u8 dummy = 0xFF;
379 
380 	aspeed_smc_start_user(nor);
381 	aspeed_smc_send_cmd_addr(nor, nor->read_opcode, from);
382 	for (i = 0; i < chip->nor.read_dummy / 8; i++)
383 		aspeed_smc_write_to_ahb(chip->ahb_base, &dummy, sizeof(dummy));
384 
385 	aspeed_smc_read_from_ahb(read_buf, chip->ahb_base, len);
386 	aspeed_smc_stop_user(nor);
387 	return len;
388 }
389 
aspeed_smc_write_user(struct spi_nor * nor,loff_t to,size_t len,const u_char * write_buf)390 static ssize_t aspeed_smc_write_user(struct spi_nor *nor, loff_t to,
391 				     size_t len, const u_char *write_buf)
392 {
393 	struct aspeed_smc_chip *chip = nor->priv;
394 
395 	aspeed_smc_start_user(nor);
396 	aspeed_smc_send_cmd_addr(nor, nor->program_opcode, to);
397 	aspeed_smc_write_to_ahb(chip->ahb_base, write_buf, len);
398 	aspeed_smc_stop_user(nor);
399 	return len;
400 }
401 
aspeed_smc_unregister(struct aspeed_smc_controller * controller)402 static int aspeed_smc_unregister(struct aspeed_smc_controller *controller)
403 {
404 	struct aspeed_smc_chip *chip;
405 	int n;
406 
407 	for (n = 0; n < controller->info->nce; n++) {
408 		chip = controller->chips[n];
409 		if (chip)
410 			mtd_device_unregister(&chip->nor.mtd);
411 	}
412 
413 	return 0;
414 }
415 
aspeed_smc_remove(struct platform_device * dev)416 static int aspeed_smc_remove(struct platform_device *dev)
417 {
418 	return aspeed_smc_unregister(platform_get_drvdata(dev));
419 }
420 
421 static const struct of_device_id aspeed_smc_matches[] = {
422 	{ .compatible = "aspeed,ast2400-fmc", .data = &fmc_2400_info },
423 	{ .compatible = "aspeed,ast2400-spi", .data = &spi_2400_info },
424 	{ .compatible = "aspeed,ast2500-fmc", .data = &fmc_2500_info },
425 	{ .compatible = "aspeed,ast2500-spi", .data = &spi_2500_info },
426 	{ }
427 };
428 MODULE_DEVICE_TABLE(of, aspeed_smc_matches);
429 
430 /*
431  * Each chip has a mapping window defined by a segment address
432  * register defining a start and an end address on the AHB bus. These
433  * addresses can be configured to fit the chip size and offer a
434  * contiguous memory region across chips. For the moment, we only
435  * check that each chip segment is valid.
436  */
aspeed_smc_chip_base(struct aspeed_smc_chip * chip,struct resource * res)437 static void __iomem *aspeed_smc_chip_base(struct aspeed_smc_chip *chip,
438 					  struct resource *res)
439 {
440 	struct aspeed_smc_controller *controller = chip->controller;
441 	u32 offset = 0;
442 	u32 reg;
443 
444 	if (controller->info->nce > 1) {
445 		reg = readl(SEGMENT_ADDR_REG(controller, chip->cs));
446 
447 		if (SEGMENT_ADDR_START(reg) >= SEGMENT_ADDR_END(reg))
448 			return NULL;
449 
450 		offset = SEGMENT_ADDR_START(reg) - res->start;
451 	}
452 
453 	return controller->ahb_base + offset;
454 }
455 
aspeed_smc_ahb_base_phy(struct aspeed_smc_controller * controller)456 static u32 aspeed_smc_ahb_base_phy(struct aspeed_smc_controller *controller)
457 {
458 	u32 seg0_val = readl(SEGMENT_ADDR_REG(controller, 0));
459 
460 	return SEGMENT_ADDR_START(seg0_val);
461 }
462 
chip_set_segment(struct aspeed_smc_chip * chip,u32 cs,u32 start,u32 size)463 static u32 chip_set_segment(struct aspeed_smc_chip *chip, u32 cs, u32 start,
464 			    u32 size)
465 {
466 	struct aspeed_smc_controller *controller = chip->controller;
467 	void __iomem *seg_reg;
468 	u32 seg_oldval, seg_newval, ahb_base_phy, end;
469 
470 	ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
471 
472 	seg_reg = SEGMENT_ADDR_REG(controller, cs);
473 	seg_oldval = readl(seg_reg);
474 
475 	/*
476 	 * If the chip size is not specified, use the default segment
477 	 * size, but take into account the possible overlap with the
478 	 * previous segment
479 	 */
480 	if (!size)
481 		size = SEGMENT_ADDR_END(seg_oldval) - start;
482 
483 	/*
484 	 * The segment cannot exceed the maximum window size of the
485 	 * controller.
486 	 */
487 	if (start + size > ahb_base_phy + controller->ahb_window_size) {
488 		size = ahb_base_phy + controller->ahb_window_size - start;
489 		dev_warn(chip->nor.dev, "CE%d window resized to %dMB",
490 			 cs, size >> 20);
491 	}
492 
493 	end = start + size;
494 	seg_newval = SEGMENT_ADDR_VALUE(start, end);
495 	writel(seg_newval, seg_reg);
496 
497 	/*
498 	 * Restore default value if something goes wrong. The chip
499 	 * might have set some bogus value and we would loose access
500 	 * to the chip.
501 	 */
502 	if (seg_newval != readl(seg_reg)) {
503 		dev_err(chip->nor.dev, "CE%d window invalid", cs);
504 		writel(seg_oldval, seg_reg);
505 		start = SEGMENT_ADDR_START(seg_oldval);
506 		end = SEGMENT_ADDR_END(seg_oldval);
507 		size = end - start;
508 	}
509 
510 	dev_info(chip->nor.dev, "CE%d window [ 0x%.8x - 0x%.8x ] %dMB",
511 		 cs, start, end, size >> 20);
512 
513 	return size;
514 }
515 
516 /*
517  * The segment register defines the mapping window on the AHB bus and
518  * it needs to be configured depending on the chip size. The segment
519  * register of the following CE also needs to be tuned in order to
520  * provide a contiguous window across multiple chips.
521  *
522  * This is expected to be called in increasing CE order
523  */
aspeed_smc_chip_set_segment(struct aspeed_smc_chip * chip)524 static u32 aspeed_smc_chip_set_segment(struct aspeed_smc_chip *chip)
525 {
526 	struct aspeed_smc_controller *controller = chip->controller;
527 	u32 ahb_base_phy, start;
528 	u32 size = chip->nor.mtd.size;
529 
530 	/*
531 	 * Each controller has a chip size limit for direct memory
532 	 * access
533 	 */
534 	if (size > controller->info->maxsize)
535 		size = controller->info->maxsize;
536 
537 	/*
538 	 * The AST2400 SPI controller only handles one chip and does
539 	 * not have segment registers. Let's use the chip size for the
540 	 * AHB window.
541 	 */
542 	if (controller->info == &spi_2400_info)
543 		goto out;
544 
545 	/*
546 	 * The AST2500 SPI controller has a HW bug when the CE0 chip
547 	 * size reaches 128MB. Enforce a size limit of 120MB to
548 	 * prevent the controller from using bogus settings in the
549 	 * segment register.
550 	 */
551 	if (chip->cs == 0 && controller->info == &spi_2500_info &&
552 	    size == SZ_128M) {
553 		size = 120 << 20;
554 		dev_info(chip->nor.dev,
555 			 "CE%d window resized to %dMB (AST2500 HW quirk)",
556 			 chip->cs, size >> 20);
557 	}
558 
559 	ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
560 
561 	/*
562 	 * As a start address for the current segment, use the default
563 	 * start address if we are handling CE0 or use the previous
564 	 * segment ending address
565 	 */
566 	if (chip->cs) {
567 		u32 prev = readl(SEGMENT_ADDR_REG(controller, chip->cs - 1));
568 
569 		start = SEGMENT_ADDR_END(prev);
570 	} else {
571 		start = ahb_base_phy;
572 	}
573 
574 	size = chip_set_segment(chip, chip->cs, start, size);
575 
576 	/* Update chip base address on the AHB bus */
577 	chip->ahb_base = controller->ahb_base + (start - ahb_base_phy);
578 
579 	/*
580 	 * Now, make sure the next segment does not overlap with the
581 	 * current one we just configured, even if there is no
582 	 * available chip. That could break access in Command Mode.
583 	 */
584 	if (chip->cs < controller->info->nce - 1)
585 		chip_set_segment(chip, chip->cs + 1, start + size, 0);
586 
587 out:
588 	if (size < chip->nor.mtd.size)
589 		dev_warn(chip->nor.dev,
590 			 "CE%d window too small for chip %dMB",
591 			 chip->cs, (u32)chip->nor.mtd.size >> 20);
592 
593 	return size;
594 }
595 
aspeed_smc_chip_enable_write(struct aspeed_smc_chip * chip)596 static void aspeed_smc_chip_enable_write(struct aspeed_smc_chip *chip)
597 {
598 	struct aspeed_smc_controller *controller = chip->controller;
599 	u32 reg;
600 
601 	reg = readl(controller->regs + CONFIG_REG);
602 
603 	reg |= aspeed_smc_chip_write_bit(chip);
604 	writel(reg, controller->regs + CONFIG_REG);
605 }
606 
aspeed_smc_chip_set_type(struct aspeed_smc_chip * chip,int type)607 static void aspeed_smc_chip_set_type(struct aspeed_smc_chip *chip, int type)
608 {
609 	struct aspeed_smc_controller *controller = chip->controller;
610 	u32 reg;
611 
612 	chip->type = type;
613 
614 	reg = readl(controller->regs + CONFIG_REG);
615 	reg &= ~(3 << (chip->cs * 2));
616 	reg |= chip->type << (chip->cs * 2);
617 	writel(reg, controller->regs + CONFIG_REG);
618 }
619 
620 /*
621  * The first chip of the AST2500 FMC flash controller is strapped by
622  * hardware, or autodetected, but other chips need to be set. Enforce
623  * the 4B setting for all chips.
624  */
aspeed_smc_chip_set_4b(struct aspeed_smc_chip * chip)625 static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip)
626 {
627 	struct aspeed_smc_controller *controller = chip->controller;
628 	u32 reg;
629 
630 	reg = readl(controller->regs + CE_CONTROL_REG);
631 	reg |= 1 << chip->cs;
632 	writel(reg, controller->regs + CE_CONTROL_REG);
633 }
634 
635 /*
636  * The AST2400 SPI flash controller does not have a CE Control
637  * register. It uses the CE0 control register to set 4Byte mode at the
638  * controller level.
639  */
aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip * chip)640 static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip)
641 {
642 	chip->ctl_val[smc_base] |= CONTROL_IO_ADDRESS_4B;
643 	chip->ctl_val[smc_read] |= CONTROL_IO_ADDRESS_4B;
644 }
645 
aspeed_smc_chip_setup_init(struct aspeed_smc_chip * chip,struct resource * res)646 static int aspeed_smc_chip_setup_init(struct aspeed_smc_chip *chip,
647 				      struct resource *res)
648 {
649 	struct aspeed_smc_controller *controller = chip->controller;
650 	const struct aspeed_smc_info *info = controller->info;
651 	u32 reg, base_reg;
652 
653 	/*
654 	 * Always turn on the write enable bit to allow opcodes to be
655 	 * sent in user mode.
656 	 */
657 	aspeed_smc_chip_enable_write(chip);
658 
659 	/* The driver only supports SPI type flash */
660 	if (info->hastype)
661 		aspeed_smc_chip_set_type(chip, smc_type_spi);
662 
663 	/*
664 	 * Configure chip base address in memory
665 	 */
666 	chip->ahb_base = aspeed_smc_chip_base(chip, res);
667 	if (!chip->ahb_base) {
668 		dev_warn(chip->nor.dev, "CE%d window closed", chip->cs);
669 		return -EINVAL;
670 	}
671 
672 	/*
673 	 * Get value of the inherited control register. U-Boot usually
674 	 * does some timing calibration on the FMC chip, so it's good
675 	 * to keep them. In the future, we should handle calibration
676 	 * from Linux.
677 	 */
678 	reg = readl(chip->ctl);
679 	dev_dbg(controller->dev, "control register: %08x\n", reg);
680 
681 	base_reg = reg & CONTROL_KEEP_MASK;
682 	if (base_reg != reg) {
683 		dev_dbg(controller->dev,
684 			"control register changed to: %08x\n",
685 			base_reg);
686 	}
687 	chip->ctl_val[smc_base] = base_reg;
688 
689 	/*
690 	 * Retain the prior value of the control register as the
691 	 * default if it was normal access mode. Otherwise start with
692 	 * the sanitized base value set to read mode.
693 	 */
694 	if ((reg & CONTROL_COMMAND_MODE_MASK) ==
695 	    CONTROL_COMMAND_MODE_NORMAL)
696 		chip->ctl_val[smc_read] = reg;
697 	else
698 		chip->ctl_val[smc_read] = chip->ctl_val[smc_base] |
699 			CONTROL_COMMAND_MODE_NORMAL;
700 
701 	dev_dbg(controller->dev, "default control register: %08x\n",
702 		chip->ctl_val[smc_read]);
703 	return 0;
704 }
705 
aspeed_smc_chip_setup_finish(struct aspeed_smc_chip * chip)706 static int aspeed_smc_chip_setup_finish(struct aspeed_smc_chip *chip)
707 {
708 	struct aspeed_smc_controller *controller = chip->controller;
709 	const struct aspeed_smc_info *info = controller->info;
710 	u32 cmd;
711 
712 	if (chip->nor.addr_width == 4 && info->set_4b)
713 		info->set_4b(chip);
714 
715 	/* This is for direct AHB access when using Command Mode. */
716 	chip->ahb_window_size = aspeed_smc_chip_set_segment(chip);
717 
718 	/*
719 	 * base mode has not been optimized yet. use it for writes.
720 	 */
721 	chip->ctl_val[smc_write] = chip->ctl_val[smc_base] |
722 		chip->nor.program_opcode << CONTROL_COMMAND_SHIFT |
723 		CONTROL_COMMAND_MODE_WRITE;
724 
725 	dev_dbg(controller->dev, "write control register: %08x\n",
726 		chip->ctl_val[smc_write]);
727 
728 	/*
729 	 * TODO: Adjust clocks if fast read is supported and interpret
730 	 * SPI NOR flags to adjust controller settings.
731 	 */
732 	if (chip->nor.read_proto == SNOR_PROTO_1_1_1) {
733 		if (chip->nor.read_dummy == 0)
734 			cmd = CONTROL_COMMAND_MODE_NORMAL;
735 		else
736 			cmd = CONTROL_COMMAND_MODE_FREAD;
737 	} else {
738 		dev_err(chip->nor.dev, "unsupported SPI read mode\n");
739 		return -EINVAL;
740 	}
741 
742 	chip->ctl_val[smc_read] |= cmd |
743 		CONTROL_IO_DUMMY_SET(chip->nor.read_dummy / 8);
744 
745 	dev_dbg(controller->dev, "base control register: %08x\n",
746 		chip->ctl_val[smc_read]);
747 	return 0;
748 }
749 
750 static const struct spi_nor_controller_ops aspeed_smc_controller_ops = {
751 	.prepare = aspeed_smc_prep,
752 	.unprepare = aspeed_smc_unprep,
753 	.read_reg = aspeed_smc_read_reg,
754 	.write_reg = aspeed_smc_write_reg,
755 	.read = aspeed_smc_read_user,
756 	.write = aspeed_smc_write_user,
757 };
758 
aspeed_smc_setup_flash(struct aspeed_smc_controller * controller,struct device_node * np,struct resource * r)759 static int aspeed_smc_setup_flash(struct aspeed_smc_controller *controller,
760 				  struct device_node *np, struct resource *r)
761 {
762 	const struct spi_nor_hwcaps hwcaps = {
763 		.mask = SNOR_HWCAPS_READ |
764 			SNOR_HWCAPS_READ_FAST |
765 			SNOR_HWCAPS_PP,
766 	};
767 	const struct aspeed_smc_info *info = controller->info;
768 	struct device *dev = controller->dev;
769 	struct device_node *child;
770 	unsigned int cs;
771 	int ret = -ENODEV;
772 
773 	for_each_available_child_of_node(np, child) {
774 		struct aspeed_smc_chip *chip;
775 		struct spi_nor *nor;
776 		struct mtd_info *mtd;
777 
778 		/* This driver does not support NAND or NOR flash devices. */
779 		if (!of_device_is_compatible(child, "jedec,spi-nor"))
780 			continue;
781 
782 		ret = of_property_read_u32(child, "reg", &cs);
783 		if (ret) {
784 			dev_err(dev, "Couldn't not read chip select.\n");
785 			break;
786 		}
787 
788 		if (cs >= info->nce) {
789 			dev_err(dev, "Chip select %d out of range.\n",
790 				cs);
791 			ret = -ERANGE;
792 			break;
793 		}
794 
795 		if (controller->chips[cs]) {
796 			dev_err(dev, "Chip select %d already in use by %s\n",
797 				cs, dev_name(controller->chips[cs]->nor.dev));
798 			ret = -EBUSY;
799 			break;
800 		}
801 
802 		chip = devm_kzalloc(controller->dev, sizeof(*chip), GFP_KERNEL);
803 		if (!chip) {
804 			ret = -ENOMEM;
805 			break;
806 		}
807 
808 		chip->controller = controller;
809 		chip->ctl = controller->regs + info->ctl0 + cs * 4;
810 		chip->cs = cs;
811 
812 		nor = &chip->nor;
813 		mtd = &nor->mtd;
814 
815 		nor->dev = dev;
816 		nor->priv = chip;
817 		spi_nor_set_flash_node(nor, child);
818 		nor->controller_ops = &aspeed_smc_controller_ops;
819 
820 		ret = aspeed_smc_chip_setup_init(chip, r);
821 		if (ret)
822 			break;
823 
824 		/*
825 		 * TODO: Add support for Dual and Quad SPI protocols
826 		 * attach when board support is present as determined
827 		 * by of property.
828 		 */
829 		ret = spi_nor_scan(nor, NULL, &hwcaps);
830 		if (ret)
831 			break;
832 
833 		ret = aspeed_smc_chip_setup_finish(chip);
834 		if (ret)
835 			break;
836 
837 		ret = mtd_device_register(mtd, NULL, 0);
838 		if (ret)
839 			break;
840 
841 		controller->chips[cs] = chip;
842 	}
843 
844 	if (ret) {
845 		of_node_put(child);
846 		aspeed_smc_unregister(controller);
847 	}
848 
849 	return ret;
850 }
851 
aspeed_smc_probe(struct platform_device * pdev)852 static int aspeed_smc_probe(struct platform_device *pdev)
853 {
854 	struct device_node *np = pdev->dev.of_node;
855 	struct device *dev = &pdev->dev;
856 	struct aspeed_smc_controller *controller;
857 	const struct of_device_id *match;
858 	const struct aspeed_smc_info *info;
859 	struct resource *res;
860 	int ret;
861 
862 	match = of_match_device(aspeed_smc_matches, &pdev->dev);
863 	if (!match || !match->data)
864 		return -ENODEV;
865 	info = match->data;
866 
867 	controller = devm_kzalloc(&pdev->dev,
868 				  struct_size(controller, chips, info->nce),
869 				  GFP_KERNEL);
870 	if (!controller)
871 		return -ENOMEM;
872 	controller->info = info;
873 	controller->dev = dev;
874 
875 	mutex_init(&controller->mutex);
876 	platform_set_drvdata(pdev, controller);
877 
878 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
879 	controller->regs = devm_ioremap_resource(dev, res);
880 	if (IS_ERR(controller->regs))
881 		return PTR_ERR(controller->regs);
882 
883 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
884 	controller->ahb_base = devm_ioremap_resource(dev, res);
885 	if (IS_ERR(controller->ahb_base))
886 		return PTR_ERR(controller->ahb_base);
887 
888 	controller->ahb_window_size = resource_size(res);
889 
890 	ret = aspeed_smc_setup_flash(controller, np, res);
891 	if (ret)
892 		dev_err(dev, "Aspeed SMC probe failed %d\n", ret);
893 
894 	return ret;
895 }
896 
897 static struct platform_driver aspeed_smc_driver = {
898 	.probe = aspeed_smc_probe,
899 	.remove = aspeed_smc_remove,
900 	.driver = {
901 		.name = DEVICE_NAME,
902 		.of_match_table = aspeed_smc_matches,
903 	}
904 };
905 
906 module_platform_driver(aspeed_smc_driver);
907 
908 MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
909 MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
910 MODULE_LICENSE("GPL v2");
911