1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2005, Intec Automation Inc.
4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
5 */
6
7 #include <linux/mtd/spi-nor.h>
8
9 #include "core.h"
10
11 #define SPINOR_OP_MT_DTR_RD 0xfd /* Fast Read opcode in DTR mode */
12 #define SPINOR_OP_MT_RD_ANY_REG 0x85 /* Read volatile register */
13 #define SPINOR_OP_MT_WR_ANY_REG 0x81 /* Write volatile register */
14 #define SPINOR_REG_MT_CFR0V 0x00 /* For setting octal DTR mode */
15 #define SPINOR_REG_MT_CFR1V 0x01 /* For setting dummy cycles */
16 #define SPINOR_MT_OCT_DTR 0xe7 /* Enable Octal DTR. */
17 #define SPINOR_MT_EXSPI 0xff /* Enable Extended SPI (default) */
18
spi_nor_micron_octal_dtr_enable(struct spi_nor * nor,bool enable)19 static int spi_nor_micron_octal_dtr_enable(struct spi_nor *nor, bool enable)
20 {
21 struct spi_mem_op op;
22 u8 *buf = nor->bouncebuf;
23 int ret;
24
25 if (enable) {
26 /* Use 20 dummy cycles for memory array reads. */
27 ret = spi_nor_write_enable(nor);
28 if (ret)
29 return ret;
30
31 *buf = 20;
32 op = (struct spi_mem_op)
33 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 1),
34 SPI_MEM_OP_ADDR(3, SPINOR_REG_MT_CFR1V, 1),
35 SPI_MEM_OP_NO_DUMMY,
36 SPI_MEM_OP_DATA_OUT(1, buf, 1));
37
38 ret = spi_mem_exec_op(nor->spimem, &op);
39 if (ret)
40 return ret;
41
42 ret = spi_nor_wait_till_ready(nor);
43 if (ret)
44 return ret;
45 }
46
47 ret = spi_nor_write_enable(nor);
48 if (ret)
49 return ret;
50
51 if (enable)
52 *buf = SPINOR_MT_OCT_DTR;
53 else
54 *buf = SPINOR_MT_EXSPI;
55
56 op = (struct spi_mem_op)
57 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 1),
58 SPI_MEM_OP_ADDR(enable ? 3 : 4,
59 SPINOR_REG_MT_CFR0V, 1),
60 SPI_MEM_OP_NO_DUMMY,
61 SPI_MEM_OP_DATA_OUT(1, buf, 1));
62
63 if (!enable)
64 spi_nor_spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
65
66 ret = spi_mem_exec_op(nor->spimem, &op);
67 if (ret)
68 return ret;
69
70 /* Read flash ID to make sure the switch was successful. */
71 op = (struct spi_mem_op)
72 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
73 SPI_MEM_OP_NO_ADDR,
74 SPI_MEM_OP_DUMMY(enable ? 8 : 0, 1),
75 SPI_MEM_OP_DATA_IN(round_up(nor->info->id_len, 2),
76 buf, 1));
77
78 if (enable)
79 spi_nor_spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
80
81 ret = spi_mem_exec_op(nor->spimem, &op);
82 if (ret)
83 return ret;
84
85 if (memcmp(buf, nor->info->id, nor->info->id_len))
86 return -EINVAL;
87
88 return 0;
89 }
90
mt35xu512aba_default_init(struct spi_nor * nor)91 static void mt35xu512aba_default_init(struct spi_nor *nor)
92 {
93 nor->params->octal_dtr_enable = spi_nor_micron_octal_dtr_enable;
94 }
95
mt35xu512aba_post_sfdp_fixup(struct spi_nor * nor)96 static void mt35xu512aba_post_sfdp_fixup(struct spi_nor *nor)
97 {
98 /* Set the Fast Read settings. */
99 nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
100 spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
101 0, 20, SPINOR_OP_MT_DTR_RD,
102 SNOR_PROTO_8_8_8_DTR);
103
104 nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
105 nor->params->rdsr_dummy = 8;
106 nor->params->rdsr_addr_nbytes = 0;
107
108 /*
109 * The BFPT quad enable field is set to a reserved value so the quad
110 * enable function is ignored by spi_nor_parse_bfpt(). Make sure we
111 * disable it.
112 */
113 nor->params->quad_enable = NULL;
114 }
115
116 static struct spi_nor_fixups mt35xu512aba_fixups = {
117 .default_init = mt35xu512aba_default_init,
118 .post_sfdp = mt35xu512aba_post_sfdp_fixup,
119 };
120
121 static const struct flash_info micron_parts[] = {
122 { "mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512,
123 SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ |
124 SPI_NOR_4B_OPCODES | SPI_NOR_OCTAL_DTR_READ |
125 SPI_NOR_OCTAL_DTR_PP |
126 SPI_NOR_IO_MODE_EN_VOLATILE)
127 .fixups = &mt35xu512aba_fixups},
128 { "mt35xu02g", INFO(0x2c5b1c, 0, 128 * 1024, 2048,
129 SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ |
130 SPI_NOR_4B_OPCODES) },
131 };
132
133 static const struct flash_info st_parts[] = {
134 { "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32,
135 SECT_4K | SPI_NOR_QUAD_READ) },
136 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64,
137 SPI_NOR_QUAD_READ) },
138 { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64,
139 SPI_NOR_QUAD_READ) },
140 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128,
141 SECT_4K | SPI_NOR_QUAD_READ) },
142 { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128,
143 SECT_4K | SPI_NOR_QUAD_READ) },
144 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256,
145 SECT_4K | USE_FSR | SPI_NOR_QUAD_READ |
146 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB |
147 SPI_NOR_4BIT_BP | SPI_NOR_BP3_SR_BIT6) },
148 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256,
149 SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
150 { "mt25ql256a", INFO6(0x20ba19, 0x104400, 64 * 1024, 512,
151 SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
152 SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
153 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K |
154 USE_FSR | SPI_NOR_DUAL_READ |
155 SPI_NOR_QUAD_READ) },
156 { "mt25qu256a", INFO6(0x20bb19, 0x104400, 64 * 1024, 512,
157 SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
158 SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
159 { "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512,
160 SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
161 { "mt25ql512a", INFO6(0x20ba20, 0x104400, 64 * 1024, 1024,
162 SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
163 SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
164 { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024,
165 SECT_4K | USE_FSR | SPI_NOR_QUAD_READ |
166 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB |
167 SPI_NOR_4BIT_BP | SPI_NOR_BP3_SR_BIT6) },
168 { "mt25qu512a", INFO6(0x20bb20, 0x104400, 64 * 1024, 1024,
169 SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
170 SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
171 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024,
172 SECT_4K | USE_FSR | SPI_NOR_QUAD_READ |
173 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB |
174 SPI_NOR_4BIT_BP | SPI_NOR_BP3_SR_BIT6) },
175 { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048,
176 SECT_4K | USE_FSR | SPI_NOR_QUAD_READ |
177 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB |
178 SPI_NOR_4BIT_BP | SPI_NOR_BP3_SR_BIT6 |
179 NO_CHIP_ERASE) },
180 { "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048,
181 SECT_4K | USE_FSR | SPI_NOR_QUAD_READ |
182 NO_CHIP_ERASE) },
183 { "mt25ql02g", INFO(0x20ba22, 0, 64 * 1024, 4096,
184 SECT_4K | USE_FSR | SPI_NOR_QUAD_READ |
185 NO_CHIP_ERASE) },
186 { "mt25qu02g", INFO(0x20bb22, 0, 64 * 1024, 4096,
187 SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
188 SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
189
190 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
191 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
192 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
193 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
194 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
195 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
196 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
197 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
198 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
199
200 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
201 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
202 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
203 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
204 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
205 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
206 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
207 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
208 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
209
210 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
211 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
212 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
213
214 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
215 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
216 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
217
218 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
219 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
220 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
221 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
222 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
223 { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
224 };
225
226 /**
227 * st_micron_set_4byte_addr_mode() - Set 4-byte address mode for ST and Micron
228 * flashes.
229 * @nor: pointer to 'struct spi_nor'.
230 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
231 * address mode.
232 *
233 * Return: 0 on success, -errno otherwise.
234 */
st_micron_set_4byte_addr_mode(struct spi_nor * nor,bool enable)235 static int st_micron_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
236 {
237 int ret;
238
239 ret = spi_nor_write_enable(nor);
240 if (ret)
241 return ret;
242
243 ret = spi_nor_set_4byte_addr_mode(nor, enable);
244 if (ret)
245 return ret;
246
247 return spi_nor_write_disable(nor);
248 }
249
micron_st_default_init(struct spi_nor * nor)250 static void micron_st_default_init(struct spi_nor *nor)
251 {
252 nor->flags |= SNOR_F_HAS_LOCK;
253 nor->flags &= ~SNOR_F_HAS_16BIT_SR;
254 nor->params->quad_enable = NULL;
255 nor->params->set_4byte_addr_mode = st_micron_set_4byte_addr_mode;
256 }
257
258 static const struct spi_nor_fixups micron_st_fixups = {
259 .default_init = micron_st_default_init,
260 };
261
262 const struct spi_nor_manufacturer spi_nor_micron = {
263 .name = "micron",
264 .parts = micron_parts,
265 .nparts = ARRAY_SIZE(micron_parts),
266 .fixups = µn_st_fixups,
267 };
268
269 const struct spi_nor_manufacturer spi_nor_st = {
270 .name = "st",
271 .parts = st_parts,
272 .nparts = ARRAY_SIZE(st_parts),
273 .fixups = µn_st_fixups,
274 };
275