• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/device.h>
5 #include <linux/dma-direction.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/err.h>
8 #include <linux/pci.h>
9 #include <linux/slab.h>
10 #include "hclgevf_cmd.h"
11 #include "hclgevf_main.h"
12 #include "hnae3.h"
13 
14 #define cmq_ring_to_dev(ring)   (&(ring)->dev->pdev->dev)
15 
hclgevf_ring_space(struct hclgevf_cmq_ring * ring)16 static int hclgevf_ring_space(struct hclgevf_cmq_ring *ring)
17 {
18 	int ntc = ring->next_to_clean;
19 	int ntu = ring->next_to_use;
20 	int used;
21 
22 	used = (ntu - ntc + ring->desc_num) % ring->desc_num;
23 
24 	return ring->desc_num - used - 1;
25 }
26 
hclgevf_is_valid_csq_clean_head(struct hclgevf_cmq_ring * ring,int head)27 static int hclgevf_is_valid_csq_clean_head(struct hclgevf_cmq_ring *ring,
28 					   int head)
29 {
30 	int ntu = ring->next_to_use;
31 	int ntc = ring->next_to_clean;
32 
33 	if (ntu > ntc)
34 		return head >= ntc && head <= ntu;
35 
36 	return head >= ntc || head <= ntu;
37 }
38 
hclgevf_cmd_csq_clean(struct hclgevf_hw * hw)39 static int hclgevf_cmd_csq_clean(struct hclgevf_hw *hw)
40 {
41 	struct hclgevf_dev *hdev = container_of(hw, struct hclgevf_dev, hw);
42 	struct hclgevf_cmq_ring *csq = &hw->cmq.csq;
43 	int clean;
44 	u32 head;
45 
46 	head = hclgevf_read_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG);
47 	rmb(); /* Make sure head is ready before touch any data */
48 
49 	if (!hclgevf_is_valid_csq_clean_head(csq, head)) {
50 		dev_warn(&hdev->pdev->dev, "wrong cmd head (%u, %d-%d)\n", head,
51 			 csq->next_to_use, csq->next_to_clean);
52 		dev_warn(&hdev->pdev->dev,
53 			 "Disabling any further commands to IMP firmware\n");
54 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
55 		return -EIO;
56 	}
57 
58 	clean = (head - csq->next_to_clean + csq->desc_num) % csq->desc_num;
59 	csq->next_to_clean = head;
60 	return clean;
61 }
62 
hclgevf_cmd_csq_done(struct hclgevf_hw * hw)63 static bool hclgevf_cmd_csq_done(struct hclgevf_hw *hw)
64 {
65 	u32 head;
66 
67 	head = hclgevf_read_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG);
68 
69 	return head == hw->cmq.csq.next_to_use;
70 }
71 
hclgevf_is_special_opcode(u16 opcode)72 static bool hclgevf_is_special_opcode(u16 opcode)
73 {
74 	const u16 spec_opcode[] = {0x30, 0x31, 0x32};
75 	int i;
76 
77 	for (i = 0; i < ARRAY_SIZE(spec_opcode); i++) {
78 		if (spec_opcode[i] == opcode)
79 			return true;
80 	}
81 
82 	return false;
83 }
84 
hclgevf_cmd_config_regs(struct hclgevf_cmq_ring * ring)85 static void hclgevf_cmd_config_regs(struct hclgevf_cmq_ring *ring)
86 {
87 	struct hclgevf_dev *hdev = ring->dev;
88 	struct hclgevf_hw *hw = &hdev->hw;
89 	u32 reg_val;
90 
91 	if (ring->flag == HCLGEVF_TYPE_CSQ) {
92 		reg_val = lower_32_bits(ring->desc_dma_addr);
93 		hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_BASEADDR_L_REG, reg_val);
94 		reg_val = upper_32_bits(ring->desc_dma_addr);
95 		hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_BASEADDR_H_REG, reg_val);
96 
97 		reg_val = hclgevf_read_dev(hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
98 		reg_val &= HCLGEVF_NIC_SW_RST_RDY;
99 		reg_val |= (ring->desc_num >> HCLGEVF_NIC_CMQ_DESC_NUM_S);
100 		hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_DEPTH_REG, reg_val);
101 
102 		hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG, 0);
103 		hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_TAIL_REG, 0);
104 	} else {
105 		reg_val = lower_32_bits(ring->desc_dma_addr);
106 		hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_BASEADDR_L_REG, reg_val);
107 		reg_val = upper_32_bits(ring->desc_dma_addr);
108 		hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_BASEADDR_H_REG, reg_val);
109 
110 		reg_val = (ring->desc_num >> HCLGEVF_NIC_CMQ_DESC_NUM_S);
111 		hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_DEPTH_REG, reg_val);
112 
113 		hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_HEAD_REG, 0);
114 		hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_TAIL_REG, 0);
115 	}
116 }
117 
hclgevf_cmd_init_regs(struct hclgevf_hw * hw)118 static void hclgevf_cmd_init_regs(struct hclgevf_hw *hw)
119 {
120 	hclgevf_cmd_config_regs(&hw->cmq.csq);
121 	hclgevf_cmd_config_regs(&hw->cmq.crq);
122 }
123 
hclgevf_alloc_cmd_desc(struct hclgevf_cmq_ring * ring)124 static int hclgevf_alloc_cmd_desc(struct hclgevf_cmq_ring *ring)
125 {
126 	int size = ring->desc_num * sizeof(struct hclgevf_desc);
127 
128 	ring->desc = dma_alloc_coherent(cmq_ring_to_dev(ring), size,
129 					&ring->desc_dma_addr, GFP_KERNEL);
130 	if (!ring->desc)
131 		return -ENOMEM;
132 
133 	return 0;
134 }
135 
hclgevf_free_cmd_desc(struct hclgevf_cmq_ring * ring)136 static void hclgevf_free_cmd_desc(struct hclgevf_cmq_ring *ring)
137 {
138 	int size  = ring->desc_num * sizeof(struct hclgevf_desc);
139 
140 	if (ring->desc) {
141 		dma_free_coherent(cmq_ring_to_dev(ring), size,
142 				  ring->desc, ring->desc_dma_addr);
143 		ring->desc = NULL;
144 	}
145 }
146 
hclgevf_alloc_cmd_queue(struct hclgevf_dev * hdev,int ring_type)147 static int hclgevf_alloc_cmd_queue(struct hclgevf_dev *hdev, int ring_type)
148 {
149 	struct hclgevf_hw *hw = &hdev->hw;
150 	struct hclgevf_cmq_ring *ring =
151 		(ring_type == HCLGEVF_TYPE_CSQ) ? &hw->cmq.csq : &hw->cmq.crq;
152 	int ret;
153 
154 	ring->dev = hdev;
155 	ring->flag = ring_type;
156 
157 	/* allocate CSQ/CRQ descriptor */
158 	ret = hclgevf_alloc_cmd_desc(ring);
159 	if (ret)
160 		dev_err(&hdev->pdev->dev, "failed(%d) to alloc %s desc\n", ret,
161 			(ring_type == HCLGEVF_TYPE_CSQ) ? "CSQ" : "CRQ");
162 
163 	return ret;
164 }
165 
hclgevf_cmd_setup_basic_desc(struct hclgevf_desc * desc,enum hclgevf_opcode_type opcode,bool is_read)166 void hclgevf_cmd_setup_basic_desc(struct hclgevf_desc *desc,
167 				  enum hclgevf_opcode_type opcode, bool is_read)
168 {
169 	memset(desc, 0, sizeof(struct hclgevf_desc));
170 	desc->opcode = cpu_to_le16(opcode);
171 	desc->flag = cpu_to_le16(HCLGEVF_CMD_FLAG_NO_INTR |
172 				 HCLGEVF_CMD_FLAG_IN);
173 	if (is_read)
174 		desc->flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_WR);
175 	else
176 		desc->flag &= cpu_to_le16(~HCLGEVF_CMD_FLAG_WR);
177 }
178 
179 struct vf_errcode {
180 	u32 imp_errcode;
181 	int common_errno;
182 };
183 
hclgevf_cmd_copy_desc(struct hclgevf_hw * hw,struct hclgevf_desc * desc,int num)184 static void hclgevf_cmd_copy_desc(struct hclgevf_hw *hw,
185 				  struct hclgevf_desc *desc, int num)
186 {
187 	struct hclgevf_desc *desc_to_use;
188 	int handle = 0;
189 
190 	while (handle < num) {
191 		desc_to_use = &hw->cmq.csq.desc[hw->cmq.csq.next_to_use];
192 		*desc_to_use = desc[handle];
193 		(hw->cmq.csq.next_to_use)++;
194 		if (hw->cmq.csq.next_to_use == hw->cmq.csq.desc_num)
195 			hw->cmq.csq.next_to_use = 0;
196 		handle++;
197 	}
198 }
199 
hclgevf_cmd_convert_err_code(u16 desc_ret)200 static int hclgevf_cmd_convert_err_code(u16 desc_ret)
201 {
202 	struct vf_errcode hclgevf_cmd_errcode[] = {
203 		{HCLGEVF_CMD_EXEC_SUCCESS, 0},
204 		{HCLGEVF_CMD_NO_AUTH, -EPERM},
205 		{HCLGEVF_CMD_NOT_SUPPORTED, -EOPNOTSUPP},
206 		{HCLGEVF_CMD_QUEUE_FULL, -EXFULL},
207 		{HCLGEVF_CMD_NEXT_ERR, -ENOSR},
208 		{HCLGEVF_CMD_UNEXE_ERR, -ENOTBLK},
209 		{HCLGEVF_CMD_PARA_ERR, -EINVAL},
210 		{HCLGEVF_CMD_RESULT_ERR, -ERANGE},
211 		{HCLGEVF_CMD_TIMEOUT, -ETIME},
212 		{HCLGEVF_CMD_HILINK_ERR, -ENOLINK},
213 		{HCLGEVF_CMD_QUEUE_ILLEGAL, -ENXIO},
214 		{HCLGEVF_CMD_INVALID, -EBADR},
215 	};
216 	u32 errcode_count = ARRAY_SIZE(hclgevf_cmd_errcode);
217 	u32 i;
218 
219 	for (i = 0; i < errcode_count; i++)
220 		if (hclgevf_cmd_errcode[i].imp_errcode == desc_ret)
221 			return hclgevf_cmd_errcode[i].common_errno;
222 
223 	return -EIO;
224 }
225 
hclgevf_cmd_check_retval(struct hclgevf_hw * hw,struct hclgevf_desc * desc,int num,int ntc)226 static int hclgevf_cmd_check_retval(struct hclgevf_hw *hw,
227 				    struct hclgevf_desc *desc, int num, int ntc)
228 {
229 	u16 opcode, desc_ret;
230 	int handle;
231 
232 	opcode = le16_to_cpu(desc[0].opcode);
233 	for (handle = 0; handle < num; handle++) {
234 		/* Get the result of hardware write back */
235 		desc[handle] = hw->cmq.csq.desc[ntc];
236 		ntc++;
237 		if (ntc == hw->cmq.csq.desc_num)
238 			ntc = 0;
239 	}
240 	if (likely(!hclgevf_is_special_opcode(opcode)))
241 		desc_ret = le16_to_cpu(desc[num - 1].retval);
242 	else
243 		desc_ret = le16_to_cpu(desc[0].retval);
244 	hw->cmq.last_status = desc_ret;
245 
246 	return hclgevf_cmd_convert_err_code(desc_ret);
247 }
248 
hclgevf_cmd_check_result(struct hclgevf_hw * hw,struct hclgevf_desc * desc,int num,int ntc)249 static int hclgevf_cmd_check_result(struct hclgevf_hw *hw,
250 				    struct hclgevf_desc *desc, int num, int ntc)
251 {
252 	struct hclgevf_dev *hdev = (struct hclgevf_dev *)hw->hdev;
253 	bool is_completed = false;
254 	u32 timeout = 0;
255 	int handle, ret;
256 
257 	/* If the command is sync, wait for the firmware to write back,
258 	 * if multi descriptors to be sent, use the first one to check
259 	 */
260 	if (HCLGEVF_SEND_SYNC(le16_to_cpu(desc->flag))) {
261 		do {
262 			if (hclgevf_cmd_csq_done(hw)) {
263 				is_completed = true;
264 				break;
265 			}
266 			udelay(1);
267 			timeout++;
268 		} while (timeout < hw->cmq.tx_timeout);
269 	}
270 
271 	if (!is_completed)
272 		ret = -EBADE;
273 	else
274 		ret = hclgevf_cmd_check_retval(hw, desc, num, ntc);
275 
276 	/* Clean the command send queue */
277 	handle = hclgevf_cmd_csq_clean(hw);
278 	if (handle < 0)
279 		ret = handle;
280 	else if (handle != num)
281 		dev_warn(&hdev->pdev->dev,
282 			 "cleaned %d, need to clean %d\n", handle, num);
283 	return ret;
284 }
285 
286 /* hclgevf_cmd_send - send command to command queue
287  * @hw: pointer to the hw struct
288  * @desc: prefilled descriptor for describing the command
289  * @num : the number of descriptors to be sent
290  *
291  * This is the main send command for command queue, it
292  * sends the queue, cleans the queue, etc
293  */
hclgevf_cmd_send(struct hclgevf_hw * hw,struct hclgevf_desc * desc,int num)294 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclgevf_desc *desc, int num)
295 {
296 	struct hclgevf_dev *hdev = (struct hclgevf_dev *)hw->hdev;
297 	struct hclgevf_cmq_ring *csq = &hw->cmq.csq;
298 	int ret;
299 	int ntc;
300 
301 	spin_lock_bh(&hw->cmq.csq.lock);
302 
303 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state)) {
304 		spin_unlock_bh(&hw->cmq.csq.lock);
305 		return -EBUSY;
306 	}
307 
308 	if (num > hclgevf_ring_space(&hw->cmq.csq)) {
309 		/* If CMDQ ring is full, SW HEAD and HW HEAD may be different,
310 		 * need update the SW HEAD pointer csq->next_to_clean
311 		 */
312 		csq->next_to_clean = hclgevf_read_dev(hw,
313 						      HCLGEVF_NIC_CSQ_HEAD_REG);
314 		spin_unlock_bh(&hw->cmq.csq.lock);
315 		return -EBUSY;
316 	}
317 
318 	/* Record the location of desc in the ring for this time
319 	 * which will be use for hardware to write back
320 	 */
321 	ntc = hw->cmq.csq.next_to_use;
322 
323 	hclgevf_cmd_copy_desc(hw, desc, num);
324 
325 	/* Write to hardware */
326 	hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_TAIL_REG,
327 			  hw->cmq.csq.next_to_use);
328 
329 	ret = hclgevf_cmd_check_result(hw, desc, num, ntc);
330 
331 	spin_unlock_bh(&hw->cmq.csq.lock);
332 
333 	return ret;
334 }
335 
hclgevf_set_default_capability(struct hclgevf_dev * hdev)336 static void hclgevf_set_default_capability(struct hclgevf_dev *hdev)
337 {
338 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
339 
340 	set_bit(HNAE3_DEV_SUPPORT_FD_B, ae_dev->caps);
341 	set_bit(HNAE3_DEV_SUPPORT_GRO_B, ae_dev->caps);
342 	set_bit(HNAE3_DEV_SUPPORT_FEC_B, ae_dev->caps);
343 }
344 
345 static const struct hclgevf_caps_bit_map hclgevf_cmd_caps_bit_map0[] = {
346 	{HCLGEVF_CAP_UDP_GSO_B, HNAE3_DEV_SUPPORT_UDP_GSO_B},
347 	{HCLGEVF_CAP_INT_QL_B, HNAE3_DEV_SUPPORT_INT_QL_B},
348 	{HCLGEVF_CAP_TQP_TXRX_INDEP_B, HNAE3_DEV_SUPPORT_TQP_TXRX_INDEP_B},
349 	{HCLGEVF_CAP_HW_TX_CSUM_B, HNAE3_DEV_SUPPORT_HW_TX_CSUM_B},
350 	{HCLGEVF_CAP_UDP_TUNNEL_CSUM_B, HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B},
351 	{HCLGEVF_CAP_RXD_ADV_LAYOUT_B, HNAE3_DEV_SUPPORT_RXD_ADV_LAYOUT_B},
352 };
353 
hclgevf_parse_capability(struct hclgevf_dev * hdev,struct hclgevf_query_version_cmd * cmd)354 static void hclgevf_parse_capability(struct hclgevf_dev *hdev,
355 				     struct hclgevf_query_version_cmd *cmd)
356 {
357 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
358 	u32 caps, i;
359 
360 	caps = __le32_to_cpu(cmd->caps[0]);
361 	for (i = 0; i < ARRAY_SIZE(hclgevf_cmd_caps_bit_map0); i++)
362 		if (hnae3_get_bit(caps, hclgevf_cmd_caps_bit_map0[i].imp_bit))
363 			set_bit(hclgevf_cmd_caps_bit_map0[i].local_bit,
364 				ae_dev->caps);
365 }
366 
hclgevf_build_api_caps(void)367 static __le32 hclgevf_build_api_caps(void)
368 {
369 	u32 api_caps = 0;
370 
371 	hnae3_set_bit(api_caps, HCLGEVF_API_CAP_FLEX_RSS_TBL_B, 1);
372 
373 	return cpu_to_le32(api_caps);
374 }
375 
hclgevf_cmd_query_version_and_capability(struct hclgevf_dev * hdev)376 static int hclgevf_cmd_query_version_and_capability(struct hclgevf_dev *hdev)
377 {
378 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
379 	struct hclgevf_query_version_cmd *resp;
380 	struct hclgevf_desc desc;
381 	int status;
382 
383 	resp = (struct hclgevf_query_version_cmd *)desc.data;
384 
385 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_FW_VER, 1);
386 	resp->api_caps = hclgevf_build_api_caps();
387 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
388 	if (status)
389 		return status;
390 
391 	hdev->fw_version = le32_to_cpu(resp->firmware);
392 
393 	ae_dev->dev_version = le32_to_cpu(resp->hardware) <<
394 				 HNAE3_PCI_REVISION_BIT_SIZE;
395 	ae_dev->dev_version |= hdev->pdev->revision;
396 
397 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
398 		hclgevf_set_default_capability(hdev);
399 
400 	hclgevf_parse_capability(hdev, resp);
401 
402 	return status;
403 }
404 
hclgevf_cmd_queue_init(struct hclgevf_dev * hdev)405 int hclgevf_cmd_queue_init(struct hclgevf_dev *hdev)
406 {
407 	int ret;
408 
409 	/* Setup the lock for command queue */
410 	spin_lock_init(&hdev->hw.cmq.csq.lock);
411 	spin_lock_init(&hdev->hw.cmq.crq.lock);
412 
413 	hdev->hw.cmq.tx_timeout = HCLGEVF_CMDQ_TX_TIMEOUT;
414 	hdev->hw.cmq.csq.desc_num = HCLGEVF_NIC_CMQ_DESC_NUM;
415 	hdev->hw.cmq.crq.desc_num = HCLGEVF_NIC_CMQ_DESC_NUM;
416 
417 	ret = hclgevf_alloc_cmd_queue(hdev, HCLGEVF_TYPE_CSQ);
418 	if (ret) {
419 		dev_err(&hdev->pdev->dev,
420 			"CSQ ring setup error %d\n", ret);
421 		return ret;
422 	}
423 
424 	ret = hclgevf_alloc_cmd_queue(hdev, HCLGEVF_TYPE_CRQ);
425 	if (ret) {
426 		dev_err(&hdev->pdev->dev,
427 			"CRQ ring setup error %d\n", ret);
428 		goto err_csq;
429 	}
430 
431 	return 0;
432 err_csq:
433 	hclgevf_free_cmd_desc(&hdev->hw.cmq.csq);
434 	return ret;
435 }
436 
hclgevf_cmd_init(struct hclgevf_dev * hdev)437 int hclgevf_cmd_init(struct hclgevf_dev *hdev)
438 {
439 	int ret;
440 
441 	spin_lock_bh(&hdev->hw.cmq.csq.lock);
442 	spin_lock(&hdev->hw.cmq.crq.lock);
443 
444 	/* initialize the pointers of async rx queue of mailbox */
445 	hdev->arq.hdev = hdev;
446 	hdev->arq.head = 0;
447 	hdev->arq.tail = 0;
448 	atomic_set(&hdev->arq.count, 0);
449 	hdev->hw.cmq.csq.next_to_clean = 0;
450 	hdev->hw.cmq.csq.next_to_use = 0;
451 	hdev->hw.cmq.crq.next_to_clean = 0;
452 	hdev->hw.cmq.crq.next_to_use = 0;
453 
454 	hclgevf_cmd_init_regs(&hdev->hw);
455 
456 	spin_unlock(&hdev->hw.cmq.crq.lock);
457 	spin_unlock_bh(&hdev->hw.cmq.csq.lock);
458 
459 	clear_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
460 
461 	/* Check if there is new reset pending, because the higher level
462 	 * reset may happen when lower level reset is being processed.
463 	 */
464 	if (hclgevf_is_reset_pending(hdev)) {
465 		ret = -EBUSY;
466 		goto err_cmd_init;
467 	}
468 
469 	/* get version and device capabilities */
470 	ret = hclgevf_cmd_query_version_and_capability(hdev);
471 	if (ret) {
472 		dev_err(&hdev->pdev->dev,
473 			"failed to query version and capabilities, ret = %d\n", ret);
474 		goto err_cmd_init;
475 	}
476 
477 	dev_info(&hdev->pdev->dev, "The firmware version is %lu.%lu.%lu.%lu\n",
478 		 hnae3_get_field(hdev->fw_version, HNAE3_FW_VERSION_BYTE3_MASK,
479 				 HNAE3_FW_VERSION_BYTE3_SHIFT),
480 		 hnae3_get_field(hdev->fw_version, HNAE3_FW_VERSION_BYTE2_MASK,
481 				 HNAE3_FW_VERSION_BYTE2_SHIFT),
482 		 hnae3_get_field(hdev->fw_version, HNAE3_FW_VERSION_BYTE1_MASK,
483 				 HNAE3_FW_VERSION_BYTE1_SHIFT),
484 		 hnae3_get_field(hdev->fw_version, HNAE3_FW_VERSION_BYTE0_MASK,
485 				 HNAE3_FW_VERSION_BYTE0_SHIFT));
486 
487 	return 0;
488 
489 err_cmd_init:
490 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
491 
492 	return ret;
493 }
494 
hclgevf_cmd_uninit_regs(struct hclgevf_hw * hw)495 static void hclgevf_cmd_uninit_regs(struct hclgevf_hw *hw)
496 {
497 	hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_BASEADDR_L_REG, 0);
498 	hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_BASEADDR_H_REG, 0);
499 	hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_DEPTH_REG, 0);
500 	hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG, 0);
501 	hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_TAIL_REG, 0);
502 	hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_BASEADDR_L_REG, 0);
503 	hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_BASEADDR_H_REG, 0);
504 	hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_DEPTH_REG, 0);
505 	hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_HEAD_REG, 0);
506 	hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_TAIL_REG, 0);
507 }
508 
hclgevf_cmd_uninit(struct hclgevf_dev * hdev)509 void hclgevf_cmd_uninit(struct hclgevf_dev *hdev)
510 {
511 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
512 	/* wait to ensure that the firmware completes the possible left
513 	 * over commands.
514 	 */
515 	msleep(HCLGEVF_CMDQ_CLEAR_WAIT_TIME);
516 	spin_lock_bh(&hdev->hw.cmq.csq.lock);
517 	spin_lock(&hdev->hw.cmq.crq.lock);
518 	hclgevf_cmd_uninit_regs(&hdev->hw);
519 	spin_unlock(&hdev->hw.cmq.crq.lock);
520 	spin_unlock_bh(&hdev->hw.cmq.csq.lock);
521 
522 	hclgevf_free_cmd_desc(&hdev->hw.cmq.csq);
523 	hclgevf_free_cmd_desc(&hdev->hw.cmq.crq);
524 }
525