1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11
12 /**
13 * ice_vsi_type_str - maps VSI type enum to string equivalents
14 * @vsi_type: VSI type enum
15 */
ice_vsi_type_str(enum ice_vsi_type vsi_type)16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
17 {
18 switch (vsi_type) {
19 case ICE_VSI_PF:
20 return "ICE_VSI_PF";
21 case ICE_VSI_VF:
22 return "ICE_VSI_VF";
23 case ICE_VSI_CTRL:
24 return "ICE_VSI_CTRL";
25 case ICE_VSI_LB:
26 return "ICE_VSI_LB";
27 default:
28 return "unknown";
29 }
30 }
31
32 /**
33 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
34 * @vsi: the VSI being configured
35 * @ena: start or stop the Rx rings
36 *
37 * First enable/disable all of the Rx rings, flush any remaining writes, and
38 * then verify that they have all been enabled/disabled successfully. This will
39 * let all of the register writes complete when enabling/disabling the Rx rings
40 * before waiting for the change in hardware to complete.
41 */
ice_vsi_ctrl_all_rx_rings(struct ice_vsi * vsi,bool ena)42 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
43 {
44 int ret = 0;
45 u16 i;
46
47 for (i = 0; i < vsi->num_rxq; i++)
48 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
49
50 ice_flush(&vsi->back->hw);
51
52 for (i = 0; i < vsi->num_rxq; i++) {
53 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
54 if (ret)
55 break;
56 }
57
58 return ret;
59 }
60
61 /**
62 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
63 * @vsi: VSI pointer
64 *
65 * On error: returns error code (negative)
66 * On success: returns 0
67 */
ice_vsi_alloc_arrays(struct ice_vsi * vsi)68 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
69 {
70 struct ice_pf *pf = vsi->back;
71 struct device *dev;
72
73 dev = ice_pf_to_dev(pf);
74
75 /* allocate memory for both Tx and Rx ring pointers */
76 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
77 sizeof(*vsi->tx_rings), GFP_KERNEL);
78 if (!vsi->tx_rings)
79 return -ENOMEM;
80
81 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
82 sizeof(*vsi->rx_rings), GFP_KERNEL);
83 if (!vsi->rx_rings)
84 goto err_rings;
85
86 /* txq_map needs to have enough space to track both Tx (stack) rings
87 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
88 * so use num_possible_cpus() as we want to always provide XDP ring
89 * per CPU, regardless of queue count settings from user that might
90 * have come from ethtool's set_channels() callback;
91 */
92 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
93 sizeof(*vsi->txq_map), GFP_KERNEL);
94
95 if (!vsi->txq_map)
96 goto err_txq_map;
97
98 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
99 sizeof(*vsi->rxq_map), GFP_KERNEL);
100 if (!vsi->rxq_map)
101 goto err_rxq_map;
102
103 /* There is no need to allocate q_vectors for a loopback VSI. */
104 if (vsi->type == ICE_VSI_LB)
105 return 0;
106
107 /* allocate memory for q_vector pointers */
108 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
109 sizeof(*vsi->q_vectors), GFP_KERNEL);
110 if (!vsi->q_vectors)
111 goto err_vectors;
112
113 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
114 if (!vsi->af_xdp_zc_qps)
115 goto err_zc_qps;
116
117 return 0;
118
119 err_zc_qps:
120 devm_kfree(dev, vsi->q_vectors);
121 err_vectors:
122 devm_kfree(dev, vsi->rxq_map);
123 err_rxq_map:
124 devm_kfree(dev, vsi->txq_map);
125 err_txq_map:
126 devm_kfree(dev, vsi->rx_rings);
127 err_rings:
128 devm_kfree(dev, vsi->tx_rings);
129 return -ENOMEM;
130 }
131
132 /**
133 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
134 * @vsi: the VSI being configured
135 */
ice_vsi_set_num_desc(struct ice_vsi * vsi)136 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
137 {
138 switch (vsi->type) {
139 case ICE_VSI_PF:
140 case ICE_VSI_CTRL:
141 case ICE_VSI_LB:
142 /* a user could change the values of num_[tr]x_desc using
143 * ethtool -G so we should keep those values instead of
144 * overwriting them with the defaults.
145 */
146 if (!vsi->num_rx_desc)
147 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
148 if (!vsi->num_tx_desc)
149 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
150 break;
151 default:
152 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
153 vsi->type);
154 break;
155 }
156 }
157
158 /**
159 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
160 * @vsi: the VSI being configured
161 * @vf_id: ID of the VF being configured
162 *
163 * Return 0 on success and a negative value on error
164 */
ice_vsi_set_num_qs(struct ice_vsi * vsi,u16 vf_id)165 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
166 {
167 struct ice_pf *pf = vsi->back;
168 struct ice_vf *vf = NULL;
169
170 if (vsi->type == ICE_VSI_VF)
171 vsi->vf_id = vf_id;
172 else
173 vsi->vf_id = ICE_INVAL_VFID;
174
175 switch (vsi->type) {
176 case ICE_VSI_PF:
177 if (vsi->req_txq) {
178 vsi->alloc_txq = vsi->req_txq;
179 vsi->num_txq = vsi->req_txq;
180 } else {
181 vsi->alloc_txq = min3(pf->num_lan_msix,
182 ice_get_avail_txq_count(pf),
183 (u16)num_online_cpus());
184 }
185
186 pf->num_lan_tx = vsi->alloc_txq;
187
188 /* only 1 Rx queue unless RSS is enabled */
189 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
190 vsi->alloc_rxq = 1;
191 } else {
192 if (vsi->req_rxq) {
193 vsi->alloc_rxq = vsi->req_rxq;
194 vsi->num_rxq = vsi->req_rxq;
195 } else {
196 vsi->alloc_rxq = min3(pf->num_lan_msix,
197 ice_get_avail_rxq_count(pf),
198 (u16)num_online_cpus());
199 }
200 }
201
202 pf->num_lan_rx = vsi->alloc_rxq;
203
204 vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
205 max_t(int, vsi->alloc_rxq,
206 vsi->alloc_txq));
207 break;
208 case ICE_VSI_VF:
209 vf = &pf->vf[vsi->vf_id];
210 if (vf->num_req_qs)
211 vf->num_vf_qs = vf->num_req_qs;
212 vsi->alloc_txq = vf->num_vf_qs;
213 vsi->alloc_rxq = vf->num_vf_qs;
214 /* pf->num_msix_per_vf includes (VF miscellaneous vector +
215 * data queue interrupts). Since vsi->num_q_vectors is number
216 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
217 * original vector count
218 */
219 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF;
220 break;
221 case ICE_VSI_CTRL:
222 vsi->alloc_txq = 1;
223 vsi->alloc_rxq = 1;
224 vsi->num_q_vectors = 1;
225 break;
226 case ICE_VSI_LB:
227 vsi->alloc_txq = 1;
228 vsi->alloc_rxq = 1;
229 break;
230 default:
231 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type);
232 break;
233 }
234
235 ice_vsi_set_num_desc(vsi);
236 }
237
238 /**
239 * ice_get_free_slot - get the next non-NULL location index in array
240 * @array: array to search
241 * @size: size of the array
242 * @curr: last known occupied index to be used as a search hint
243 *
244 * void * is being used to keep the functionality generic. This lets us use this
245 * function on any array of pointers.
246 */
ice_get_free_slot(void * array,int size,int curr)247 static int ice_get_free_slot(void *array, int size, int curr)
248 {
249 int **tmp_array = (int **)array;
250 int next;
251
252 if (curr < (size - 1) && !tmp_array[curr + 1]) {
253 next = curr + 1;
254 } else {
255 int i = 0;
256
257 while ((i < size) && (tmp_array[i]))
258 i++;
259 if (i == size)
260 next = ICE_NO_VSI;
261 else
262 next = i;
263 }
264 return next;
265 }
266
267 /**
268 * ice_vsi_delete - delete a VSI from the switch
269 * @vsi: pointer to VSI being removed
270 */
ice_vsi_delete(struct ice_vsi * vsi)271 static void ice_vsi_delete(struct ice_vsi *vsi)
272 {
273 struct ice_pf *pf = vsi->back;
274 struct ice_vsi_ctx *ctxt;
275 enum ice_status status;
276
277 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
278 if (!ctxt)
279 return;
280
281 if (vsi->type == ICE_VSI_VF)
282 ctxt->vf_num = vsi->vf_id;
283 ctxt->vsi_num = vsi->vsi_num;
284
285 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
286
287 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
288 if (status)
289 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n",
290 vsi->vsi_num, ice_stat_str(status));
291
292 kfree(ctxt);
293 }
294
295 /**
296 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
297 * @vsi: pointer to VSI being cleared
298 */
ice_vsi_free_arrays(struct ice_vsi * vsi)299 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
300 {
301 struct ice_pf *pf = vsi->back;
302 struct device *dev;
303
304 dev = ice_pf_to_dev(pf);
305
306 if (vsi->af_xdp_zc_qps) {
307 bitmap_free(vsi->af_xdp_zc_qps);
308 vsi->af_xdp_zc_qps = NULL;
309 }
310 /* free the ring and vector containers */
311 if (vsi->q_vectors) {
312 devm_kfree(dev, vsi->q_vectors);
313 vsi->q_vectors = NULL;
314 }
315 if (vsi->tx_rings) {
316 devm_kfree(dev, vsi->tx_rings);
317 vsi->tx_rings = NULL;
318 }
319 if (vsi->rx_rings) {
320 devm_kfree(dev, vsi->rx_rings);
321 vsi->rx_rings = NULL;
322 }
323 if (vsi->txq_map) {
324 devm_kfree(dev, vsi->txq_map);
325 vsi->txq_map = NULL;
326 }
327 if (vsi->rxq_map) {
328 devm_kfree(dev, vsi->rxq_map);
329 vsi->rxq_map = NULL;
330 }
331 }
332
333 /**
334 * ice_vsi_clear - clean up and deallocate the provided VSI
335 * @vsi: pointer to VSI being cleared
336 *
337 * This deallocates the VSI's queue resources, removes it from the PF's
338 * VSI array if necessary, and deallocates the VSI
339 *
340 * Returns 0 on success, negative on failure
341 */
ice_vsi_clear(struct ice_vsi * vsi)342 static int ice_vsi_clear(struct ice_vsi *vsi)
343 {
344 struct ice_pf *pf = NULL;
345 struct device *dev;
346
347 if (!vsi)
348 return 0;
349
350 if (!vsi->back)
351 return -EINVAL;
352
353 pf = vsi->back;
354 dev = ice_pf_to_dev(pf);
355
356 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
357 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
358 return -EINVAL;
359 }
360
361 mutex_lock(&pf->sw_mutex);
362 /* updates the PF for this cleared VSI */
363
364 pf->vsi[vsi->idx] = NULL;
365 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
366 pf->next_vsi = vsi->idx;
367 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL &&
368 vsi->vf_id != ICE_INVAL_VFID)
369 pf->next_vsi = vsi->idx;
370
371 ice_vsi_free_arrays(vsi);
372 mutex_unlock(&pf->sw_mutex);
373 devm_kfree(dev, vsi);
374
375 return 0;
376 }
377
378 /**
379 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
380 * @irq: interrupt number
381 * @data: pointer to a q_vector
382 */
ice_msix_clean_ctrl_vsi(int __always_unused irq,void * data)383 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
384 {
385 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
386
387 if (!q_vector->tx.ring)
388 return IRQ_HANDLED;
389
390 #define FDIR_RX_DESC_CLEAN_BUDGET 64
391 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET);
392 ice_clean_ctrl_tx_irq(q_vector->tx.ring);
393
394 return IRQ_HANDLED;
395 }
396
397 /**
398 * ice_msix_clean_rings - MSIX mode Interrupt Handler
399 * @irq: interrupt number
400 * @data: pointer to a q_vector
401 */
ice_msix_clean_rings(int __always_unused irq,void * data)402 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
403 {
404 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
405
406 if (!q_vector->tx.ring && !q_vector->rx.ring)
407 return IRQ_HANDLED;
408
409 q_vector->total_events++;
410
411 napi_schedule(&q_vector->napi);
412
413 return IRQ_HANDLED;
414 }
415
416 /**
417 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
418 * @pf: board private structure
419 * @vsi_type: type of VSI
420 * @vf_id: ID of the VF being configured
421 *
422 * returns a pointer to a VSI on success, NULL on failure.
423 */
424 static struct ice_vsi *
ice_vsi_alloc(struct ice_pf * pf,enum ice_vsi_type vsi_type,u16 vf_id)425 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id)
426 {
427 struct device *dev = ice_pf_to_dev(pf);
428 struct ice_vsi *vsi = NULL;
429
430 /* Need to protect the allocation of the VSIs at the PF level */
431 mutex_lock(&pf->sw_mutex);
432
433 /* If we have already allocated our maximum number of VSIs,
434 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
435 * is available to be populated
436 */
437 if (pf->next_vsi == ICE_NO_VSI) {
438 dev_dbg(dev, "out of VSI slots!\n");
439 goto unlock_pf;
440 }
441
442 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
443 if (!vsi)
444 goto unlock_pf;
445
446 vsi->type = vsi_type;
447 vsi->back = pf;
448 set_bit(ICE_VSI_DOWN, vsi->state);
449
450 if (vsi_type == ICE_VSI_VF)
451 ice_vsi_set_num_qs(vsi, vf_id);
452 else
453 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
454
455 switch (vsi->type) {
456 case ICE_VSI_PF:
457 if (ice_vsi_alloc_arrays(vsi))
458 goto err_rings;
459
460 /* Setup default MSIX irq handler for VSI */
461 vsi->irq_handler = ice_msix_clean_rings;
462 break;
463 case ICE_VSI_CTRL:
464 if (ice_vsi_alloc_arrays(vsi))
465 goto err_rings;
466
467 /* Setup ctrl VSI MSIX irq handler */
468 vsi->irq_handler = ice_msix_clean_ctrl_vsi;
469 break;
470 case ICE_VSI_VF:
471 if (ice_vsi_alloc_arrays(vsi))
472 goto err_rings;
473 break;
474 case ICE_VSI_LB:
475 if (ice_vsi_alloc_arrays(vsi))
476 goto err_rings;
477 break;
478 default:
479 dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
480 goto unlock_pf;
481 }
482
483 if (vsi->type == ICE_VSI_CTRL && vf_id == ICE_INVAL_VFID) {
484 /* Use the last VSI slot as the index for PF control VSI */
485 vsi->idx = pf->num_alloc_vsi - 1;
486 pf->ctrl_vsi_idx = vsi->idx;
487 pf->vsi[vsi->idx] = vsi;
488 } else {
489 /* fill slot and make note of the index */
490 vsi->idx = pf->next_vsi;
491 pf->vsi[pf->next_vsi] = vsi;
492
493 /* prepare pf->next_vsi for next use */
494 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
495 pf->next_vsi);
496 }
497
498 if (vsi->type == ICE_VSI_CTRL && vf_id != ICE_INVAL_VFID)
499 pf->vf[vf_id].ctrl_vsi_idx = vsi->idx;
500 goto unlock_pf;
501
502 err_rings:
503 devm_kfree(dev, vsi);
504 vsi = NULL;
505 unlock_pf:
506 mutex_unlock(&pf->sw_mutex);
507 return vsi;
508 }
509
510 /**
511 * ice_alloc_fd_res - Allocate FD resource for a VSI
512 * @vsi: pointer to the ice_vsi
513 *
514 * This allocates the FD resources
515 *
516 * Returns 0 on success, -EPERM on no-op or -EIO on failure
517 */
ice_alloc_fd_res(struct ice_vsi * vsi)518 static int ice_alloc_fd_res(struct ice_vsi *vsi)
519 {
520 struct ice_pf *pf = vsi->back;
521 u32 g_val, b_val;
522
523 /* Flow Director filters are only allocated/assigned to the PF VSI which
524 * passes the traffic. The CTRL VSI is only used to add/delete filters
525 * so we don't allocate resources to it
526 */
527
528 /* FD filters from guaranteed pool per VSI */
529 g_val = pf->hw.func_caps.fd_fltr_guar;
530 if (!g_val)
531 return -EPERM;
532
533 /* FD filters from best effort pool */
534 b_val = pf->hw.func_caps.fd_fltr_best_effort;
535 if (!b_val)
536 return -EPERM;
537
538 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF))
539 return -EPERM;
540
541 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
542 return -EPERM;
543
544 vsi->num_gfltr = g_val / pf->num_alloc_vsi;
545
546 /* each VSI gets same "best_effort" quota */
547 vsi->num_bfltr = b_val;
548
549 if (vsi->type == ICE_VSI_VF) {
550 vsi->num_gfltr = 0;
551
552 /* each VSI gets same "best_effort" quota */
553 vsi->num_bfltr = b_val;
554 }
555
556 return 0;
557 }
558
559 /**
560 * ice_vsi_get_qs - Assign queues from PF to VSI
561 * @vsi: the VSI to assign queues to
562 *
563 * Returns 0 on success and a negative value on error
564 */
ice_vsi_get_qs(struct ice_vsi * vsi)565 static int ice_vsi_get_qs(struct ice_vsi *vsi)
566 {
567 struct ice_pf *pf = vsi->back;
568 struct ice_qs_cfg tx_qs_cfg = {
569 .qs_mutex = &pf->avail_q_mutex,
570 .pf_map = pf->avail_txqs,
571 .pf_map_size = pf->max_pf_txqs,
572 .q_count = vsi->alloc_txq,
573 .scatter_count = ICE_MAX_SCATTER_TXQS,
574 .vsi_map = vsi->txq_map,
575 .vsi_map_offset = 0,
576 .mapping_mode = ICE_VSI_MAP_CONTIG
577 };
578 struct ice_qs_cfg rx_qs_cfg = {
579 .qs_mutex = &pf->avail_q_mutex,
580 .pf_map = pf->avail_rxqs,
581 .pf_map_size = pf->max_pf_rxqs,
582 .q_count = vsi->alloc_rxq,
583 .scatter_count = ICE_MAX_SCATTER_RXQS,
584 .vsi_map = vsi->rxq_map,
585 .vsi_map_offset = 0,
586 .mapping_mode = ICE_VSI_MAP_CONTIG
587 };
588 int ret;
589
590 ret = __ice_vsi_get_qs(&tx_qs_cfg);
591 if (ret)
592 return ret;
593 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
594
595 ret = __ice_vsi_get_qs(&rx_qs_cfg);
596 if (ret)
597 return ret;
598 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
599
600 return 0;
601 }
602
603 /**
604 * ice_vsi_put_qs - Release queues from VSI to PF
605 * @vsi: the VSI that is going to release queues
606 */
ice_vsi_put_qs(struct ice_vsi * vsi)607 static void ice_vsi_put_qs(struct ice_vsi *vsi)
608 {
609 struct ice_pf *pf = vsi->back;
610 int i;
611
612 mutex_lock(&pf->avail_q_mutex);
613
614 for (i = 0; i < vsi->alloc_txq; i++) {
615 clear_bit(vsi->txq_map[i], pf->avail_txqs);
616 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
617 }
618
619 for (i = 0; i < vsi->alloc_rxq; i++) {
620 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
621 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
622 }
623
624 mutex_unlock(&pf->avail_q_mutex);
625 }
626
627 /**
628 * ice_is_safe_mode
629 * @pf: pointer to the PF struct
630 *
631 * returns true if driver is in safe mode, false otherwise
632 */
ice_is_safe_mode(struct ice_pf * pf)633 bool ice_is_safe_mode(struct ice_pf *pf)
634 {
635 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
636 }
637
638 /**
639 * ice_is_aux_ena
640 * @pf: pointer to the PF struct
641 *
642 * returns true if AUX devices/drivers are supported, false otherwise
643 */
ice_is_aux_ena(struct ice_pf * pf)644 bool ice_is_aux_ena(struct ice_pf *pf)
645 {
646 return test_bit(ICE_FLAG_AUX_ENA, pf->flags);
647 }
648
649 /**
650 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
651 * @vsi: the VSI being cleaned up
652 *
653 * This function deletes RSS input set for all flows that were configured
654 * for this VSI
655 */
ice_vsi_clean_rss_flow_fld(struct ice_vsi * vsi)656 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
657 {
658 struct ice_pf *pf = vsi->back;
659 enum ice_status status;
660
661 if (ice_is_safe_mode(pf))
662 return;
663
664 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
665 if (status)
666 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n",
667 vsi->vsi_num, ice_stat_str(status));
668 }
669
670 /**
671 * ice_rss_clean - Delete RSS related VSI structures and configuration
672 * @vsi: the VSI being removed
673 */
ice_rss_clean(struct ice_vsi * vsi)674 static void ice_rss_clean(struct ice_vsi *vsi)
675 {
676 struct ice_pf *pf = vsi->back;
677 struct device *dev;
678
679 dev = ice_pf_to_dev(pf);
680
681 if (vsi->rss_hkey_user)
682 devm_kfree(dev, vsi->rss_hkey_user);
683 if (vsi->rss_lut_user)
684 devm_kfree(dev, vsi->rss_lut_user);
685
686 ice_vsi_clean_rss_flow_fld(vsi);
687 /* remove RSS replay list */
688 if (!ice_is_safe_mode(pf))
689 ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
690 }
691
692 /**
693 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
694 * @vsi: the VSI being configured
695 */
ice_vsi_set_rss_params(struct ice_vsi * vsi)696 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
697 {
698 struct ice_hw_common_caps *cap;
699 struct ice_pf *pf = vsi->back;
700
701 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
702 vsi->rss_size = 1;
703 return;
704 }
705
706 cap = &pf->hw.func_caps.common_cap;
707 switch (vsi->type) {
708 case ICE_VSI_PF:
709 /* PF VSI will inherit RSS instance of PF */
710 vsi->rss_table_size = (u16)cap->rss_table_size;
711 vsi->rss_size = min_t(u16, num_online_cpus(),
712 BIT(cap->rss_table_entry_width));
713 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
714 break;
715 case ICE_VSI_VF:
716 /* VF VSI will get a small RSS table.
717 * For VSI_LUT, LUT size should be set to 64 bytes.
718 */
719 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
720 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
721 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
722 break;
723 case ICE_VSI_LB:
724 break;
725 default:
726 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
727 ice_vsi_type_str(vsi->type));
728 break;
729 }
730 }
731
732 /**
733 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
734 * @ctxt: the VSI context being set
735 *
736 * This initializes a default VSI context for all sections except the Queues.
737 */
ice_set_dflt_vsi_ctx(struct ice_vsi_ctx * ctxt)738 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
739 {
740 u32 table = 0;
741
742 memset(&ctxt->info, 0, sizeof(ctxt->info));
743 /* VSI's should be allocated from shared pool */
744 ctxt->alloc_from_pool = true;
745 /* Src pruning enabled by default */
746 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
747 /* Traffic from VSI can be sent to LAN */
748 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
749 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
750 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
751 * packets untagged/tagged.
752 */
753 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
754 ICE_AQ_VSI_VLAN_MODE_M) >>
755 ICE_AQ_VSI_VLAN_MODE_S);
756 /* Have 1:1 UP mapping for both ingress/egress tables */
757 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
758 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
759 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
760 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
761 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
762 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
763 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
764 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
765 ctxt->info.ingress_table = cpu_to_le32(table);
766 ctxt->info.egress_table = cpu_to_le32(table);
767 /* Have 1:1 UP mapping for outer to inner UP table */
768 ctxt->info.outer_up_table = cpu_to_le32(table);
769 /* No Outer tag support outer_tag_flags remains to zero */
770 }
771
772 /**
773 * ice_vsi_setup_q_map - Setup a VSI queue map
774 * @vsi: the VSI being configured
775 * @ctxt: VSI context structure
776 */
ice_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)777 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
778 {
779 u16 offset = 0, qmap = 0, tx_count = 0, pow = 0;
780 u16 num_txq_per_tc, num_rxq_per_tc;
781 u16 qcount_tx = vsi->alloc_txq;
782 u16 qcount_rx = vsi->alloc_rxq;
783 bool ena_tc0 = false;
784 u8 netdev_tc = 0;
785 int i;
786
787 /* at least TC0 should be enabled by default */
788 if (vsi->tc_cfg.numtc) {
789 if (!(vsi->tc_cfg.ena_tc & BIT(0)))
790 ena_tc0 = true;
791 } else {
792 ena_tc0 = true;
793 }
794
795 if (ena_tc0) {
796 vsi->tc_cfg.numtc++;
797 vsi->tc_cfg.ena_tc |= 1;
798 }
799
800 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
801 if (!num_rxq_per_tc)
802 num_rxq_per_tc = 1;
803 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
804 if (!num_txq_per_tc)
805 num_txq_per_tc = 1;
806
807 /* find the (rounded up) power-of-2 of qcount */
808 pow = (u16)order_base_2(num_rxq_per_tc);
809
810 /* TC mapping is a function of the number of Rx queues assigned to the
811 * VSI for each traffic class and the offset of these queues.
812 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
813 * queues allocated to TC0. No:of queues is a power-of-2.
814 *
815 * If TC is not enabled, the queue offset is set to 0, and allocate one
816 * queue, this way, traffic for the given TC will be sent to the default
817 * queue.
818 *
819 * Setup number and offset of Rx queues for all TCs for the VSI
820 */
821 ice_for_each_traffic_class(i) {
822 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
823 /* TC is not enabled */
824 vsi->tc_cfg.tc_info[i].qoffset = 0;
825 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
826 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
827 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
828 ctxt->info.tc_mapping[i] = 0;
829 continue;
830 }
831
832 /* TC is enabled */
833 vsi->tc_cfg.tc_info[i].qoffset = offset;
834 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
835 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
836 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
837
838 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
839 ICE_AQ_VSI_TC_Q_OFFSET_M) |
840 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
841 ICE_AQ_VSI_TC_Q_NUM_M);
842 offset += num_rxq_per_tc;
843 tx_count += num_txq_per_tc;
844 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
845 }
846
847 /* if offset is non-zero, means it is calculated correctly based on
848 * enabled TCs for a given VSI otherwise qcount_rx will always
849 * be correct and non-zero because it is based off - VSI's
850 * allocated Rx queues which is at least 1 (hence qcount_tx will be
851 * at least 1)
852 */
853 if (offset)
854 vsi->num_rxq = offset;
855 else
856 vsi->num_rxq = num_rxq_per_tc;
857
858 vsi->num_txq = tx_count;
859
860 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
861 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
862 /* since there is a chance that num_rxq could have been changed
863 * in the above for loop, make num_txq equal to num_rxq.
864 */
865 vsi->num_txq = vsi->num_rxq;
866 }
867
868 /* Rx queue mapping */
869 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
870 /* q_mapping buffer holds the info for the first queue allocated for
871 * this VSI in the PF space and also the number of queues associated
872 * with this VSI.
873 */
874 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
875 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
876 }
877
878 /**
879 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
880 * @ctxt: the VSI context being set
881 * @vsi: the VSI being configured
882 */
ice_set_fd_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)883 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
884 {
885 u8 dflt_q_group, dflt_q_prio;
886 u16 dflt_q, report_q, val;
887
888 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
889 vsi->type != ICE_VSI_VF)
890 return;
891
892 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
893 ctxt->info.valid_sections |= cpu_to_le16(val);
894 dflt_q = 0;
895 dflt_q_group = 0;
896 report_q = 0;
897 dflt_q_prio = 0;
898
899 /* enable flow director filtering/programming */
900 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
901 ctxt->info.fd_options = cpu_to_le16(val);
902 /* max of allocated flow director filters */
903 ctxt->info.max_fd_fltr_dedicated =
904 cpu_to_le16(vsi->num_gfltr);
905 /* max of shared flow director filters any VSI may program */
906 ctxt->info.max_fd_fltr_shared =
907 cpu_to_le16(vsi->num_bfltr);
908 /* default queue index within the VSI of the default FD */
909 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
910 ICE_AQ_VSI_FD_DEF_Q_M);
911 /* target queue or queue group to the FD filter */
912 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
913 ICE_AQ_VSI_FD_DEF_GRP_M);
914 ctxt->info.fd_def_q = cpu_to_le16(val);
915 /* queue index on which FD filter completion is reported */
916 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
917 ICE_AQ_VSI_FD_REPORT_Q_M);
918 /* priority of the default qindex action */
919 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
920 ICE_AQ_VSI_FD_DEF_PRIORITY_M);
921 ctxt->info.fd_report_opt = cpu_to_le16(val);
922 }
923
924 /**
925 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
926 * @ctxt: the VSI context being set
927 * @vsi: the VSI being configured
928 */
ice_set_rss_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)929 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
930 {
931 u8 lut_type, hash_type;
932 struct device *dev;
933 struct ice_pf *pf;
934
935 pf = vsi->back;
936 dev = ice_pf_to_dev(pf);
937
938 switch (vsi->type) {
939 case ICE_VSI_PF:
940 /* PF VSI will inherit RSS instance of PF */
941 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
942 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
943 break;
944 case ICE_VSI_VF:
945 /* VF VSI will gets a small RSS table which is a VSI LUT type */
946 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
947 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
948 break;
949 default:
950 dev_dbg(dev, "Unsupported VSI type %s\n",
951 ice_vsi_type_str(vsi->type));
952 return;
953 }
954
955 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
956 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
957 (hash_type & ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
958 }
959
960 /**
961 * ice_vsi_init - Create and initialize a VSI
962 * @vsi: the VSI being configured
963 * @init_vsi: is this call creating a VSI
964 *
965 * This initializes a VSI context depending on the VSI type to be added and
966 * passes it down to the add_vsi aq command to create a new VSI.
967 */
ice_vsi_init(struct ice_vsi * vsi,bool init_vsi)968 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
969 {
970 struct ice_pf *pf = vsi->back;
971 struct ice_hw *hw = &pf->hw;
972 struct ice_vsi_ctx *ctxt;
973 struct device *dev;
974 int ret = 0;
975
976 dev = ice_pf_to_dev(pf);
977 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
978 if (!ctxt)
979 return -ENOMEM;
980
981 switch (vsi->type) {
982 case ICE_VSI_CTRL:
983 case ICE_VSI_LB:
984 case ICE_VSI_PF:
985 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
986 break;
987 case ICE_VSI_VF:
988 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
989 /* VF number here is the absolute VF number (0-255) */
990 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
991 break;
992 default:
993 ret = -ENODEV;
994 goto out;
995 }
996
997 ice_set_dflt_vsi_ctx(ctxt);
998 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
999 ice_set_fd_vsi_ctx(ctxt, vsi);
1000 /* if the switch is in VEB mode, allow VSI loopback */
1001 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1002 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1003
1004 /* Set LUT type and HASH type if RSS is enabled */
1005 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1006 vsi->type != ICE_VSI_CTRL) {
1007 ice_set_rss_vsi_ctx(ctxt, vsi);
1008 /* if updating VSI context, make sure to set valid_section:
1009 * to indicate which section of VSI context being updated
1010 */
1011 if (!init_vsi)
1012 ctxt->info.valid_sections |=
1013 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1014 }
1015
1016 ctxt->info.sw_id = vsi->port_info->sw_id;
1017 ice_vsi_setup_q_map(vsi, ctxt);
1018 if (!init_vsi) /* means VSI being updated */
1019 /* must to indicate which section of VSI context are
1020 * being modified
1021 */
1022 ctxt->info.valid_sections |=
1023 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1024
1025 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off
1026 * respectively
1027 */
1028 if (vsi->type == ICE_VSI_VF) {
1029 ctxt->info.valid_sections |=
1030 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1031 if (pf->vf[vsi->vf_id].spoofchk) {
1032 ctxt->info.sec_flags |=
1033 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1034 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1035 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
1036 } else {
1037 ctxt->info.sec_flags &=
1038 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1039 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1040 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S));
1041 }
1042 }
1043
1044 /* Allow control frames out of main VSI */
1045 if (vsi->type == ICE_VSI_PF) {
1046 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1047 ctxt->info.valid_sections |=
1048 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1049 }
1050
1051 if (init_vsi) {
1052 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1053 if (ret) {
1054 dev_err(dev, "Add VSI failed, err %d\n", ret);
1055 ret = -EIO;
1056 goto out;
1057 }
1058 } else {
1059 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1060 if (ret) {
1061 dev_err(dev, "Update VSI failed, err %d\n", ret);
1062 ret = -EIO;
1063 goto out;
1064 }
1065 }
1066
1067 /* keep context for update VSI operations */
1068 vsi->info = ctxt->info;
1069
1070 /* record VSI number returned */
1071 vsi->vsi_num = ctxt->vsi_num;
1072
1073 out:
1074 kfree(ctxt);
1075 return ret;
1076 }
1077
1078 /**
1079 * ice_free_res - free a block of resources
1080 * @res: pointer to the resource
1081 * @index: starting index previously returned by ice_get_res
1082 * @id: identifier to track owner
1083 *
1084 * Returns number of resources freed
1085 */
ice_free_res(struct ice_res_tracker * res,u16 index,u16 id)1086 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
1087 {
1088 int count = 0;
1089 int i;
1090
1091 if (!res || index >= res->end)
1092 return -EINVAL;
1093
1094 id |= ICE_RES_VALID_BIT;
1095 for (i = index; i < res->end && res->list[i] == id; i++) {
1096 res->list[i] = 0;
1097 count++;
1098 }
1099
1100 return count;
1101 }
1102
1103 /**
1104 * ice_search_res - Search the tracker for a block of resources
1105 * @res: pointer to the resource
1106 * @needed: size of the block needed
1107 * @id: identifier to track owner
1108 *
1109 * Returns the base item index of the block, or -ENOMEM for error
1110 */
ice_search_res(struct ice_res_tracker * res,u16 needed,u16 id)1111 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
1112 {
1113 u16 start = 0, end = 0;
1114
1115 if (needed > res->end)
1116 return -ENOMEM;
1117
1118 id |= ICE_RES_VALID_BIT;
1119
1120 do {
1121 /* skip already allocated entries */
1122 if (res->list[end++] & ICE_RES_VALID_BIT) {
1123 start = end;
1124 if ((start + needed) > res->end)
1125 break;
1126 }
1127
1128 if (end == (start + needed)) {
1129 int i = start;
1130
1131 /* there was enough, so assign it to the requestor */
1132 while (i != end)
1133 res->list[i++] = id;
1134
1135 return start;
1136 }
1137 } while (end < res->end);
1138
1139 return -ENOMEM;
1140 }
1141
1142 /**
1143 * ice_get_free_res_count - Get free count from a resource tracker
1144 * @res: Resource tracker instance
1145 */
ice_get_free_res_count(struct ice_res_tracker * res)1146 static u16 ice_get_free_res_count(struct ice_res_tracker *res)
1147 {
1148 u16 i, count = 0;
1149
1150 for (i = 0; i < res->end; i++)
1151 if (!(res->list[i] & ICE_RES_VALID_BIT))
1152 count++;
1153
1154 return count;
1155 }
1156
1157 /**
1158 * ice_get_res - get a block of resources
1159 * @pf: board private structure
1160 * @res: pointer to the resource
1161 * @needed: size of the block needed
1162 * @id: identifier to track owner
1163 *
1164 * Returns the base item index of the block, or negative for error
1165 */
1166 int
ice_get_res(struct ice_pf * pf,struct ice_res_tracker * res,u16 needed,u16 id)1167 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
1168 {
1169 if (!res || !pf)
1170 return -EINVAL;
1171
1172 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
1173 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
1174 needed, res->num_entries, id);
1175 return -EINVAL;
1176 }
1177
1178 return ice_search_res(res, needed, id);
1179 }
1180
1181 /**
1182 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1183 * @vsi: ptr to the VSI
1184 *
1185 * This should only be called after ice_vsi_alloc() which allocates the
1186 * corresponding SW VSI structure and initializes num_queue_pairs for the
1187 * newly allocated VSI.
1188 *
1189 * Returns 0 on success or negative on failure
1190 */
ice_vsi_setup_vector_base(struct ice_vsi * vsi)1191 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1192 {
1193 struct ice_pf *pf = vsi->back;
1194 struct device *dev;
1195 u16 num_q_vectors;
1196 int base;
1197
1198 dev = ice_pf_to_dev(pf);
1199 /* SRIOV doesn't grab irq_tracker entries for each VSI */
1200 if (vsi->type == ICE_VSI_VF)
1201 return 0;
1202
1203 if (vsi->base_vector) {
1204 dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
1205 vsi->vsi_num, vsi->base_vector);
1206 return -EEXIST;
1207 }
1208
1209 num_q_vectors = vsi->num_q_vectors;
1210 /* reserve slots from OS requested IRQs */
1211 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) {
1212 int i;
1213
1214 ice_for_each_vf(pf, i) {
1215 struct ice_vf *vf = &pf->vf[i];
1216
1217 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) {
1218 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector;
1219 break;
1220 }
1221 }
1222 if (i == pf->num_alloc_vfs)
1223 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1224 ICE_RES_VF_CTRL_VEC_ID);
1225 } else {
1226 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1227 vsi->idx);
1228 }
1229
1230 if (base < 0) {
1231 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
1232 ice_get_free_res_count(pf->irq_tracker),
1233 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
1234 return -ENOENT;
1235 }
1236 vsi->base_vector = (u16)base;
1237 pf->num_avail_sw_msix -= num_q_vectors;
1238
1239 return 0;
1240 }
1241
1242 /**
1243 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1244 * @vsi: the VSI having rings deallocated
1245 */
ice_vsi_clear_rings(struct ice_vsi * vsi)1246 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1247 {
1248 int i;
1249
1250 /* Avoid stale references by clearing map from vector to ring */
1251 if (vsi->q_vectors) {
1252 ice_for_each_q_vector(vsi, i) {
1253 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1254
1255 if (q_vector) {
1256 q_vector->tx.ring = NULL;
1257 q_vector->rx.ring = NULL;
1258 }
1259 }
1260 }
1261
1262 if (vsi->tx_rings) {
1263 for (i = 0; i < vsi->alloc_txq; i++) {
1264 if (vsi->tx_rings[i]) {
1265 kfree_rcu(vsi->tx_rings[i], rcu);
1266 WRITE_ONCE(vsi->tx_rings[i], NULL);
1267 }
1268 }
1269 }
1270 if (vsi->rx_rings) {
1271 for (i = 0; i < vsi->alloc_rxq; i++) {
1272 if (vsi->rx_rings[i]) {
1273 kfree_rcu(vsi->rx_rings[i], rcu);
1274 WRITE_ONCE(vsi->rx_rings[i], NULL);
1275 }
1276 }
1277 }
1278 }
1279
1280 /**
1281 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1282 * @vsi: VSI which is having rings allocated
1283 */
ice_vsi_alloc_rings(struct ice_vsi * vsi)1284 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1285 {
1286 struct ice_pf *pf = vsi->back;
1287 struct device *dev;
1288 u16 i;
1289
1290 dev = ice_pf_to_dev(pf);
1291 /* Allocate Tx rings */
1292 for (i = 0; i < vsi->alloc_txq; i++) {
1293 struct ice_ring *ring;
1294
1295 /* allocate with kzalloc(), free with kfree_rcu() */
1296 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1297
1298 if (!ring)
1299 goto err_out;
1300
1301 ring->q_index = i;
1302 ring->reg_idx = vsi->txq_map[i];
1303 ring->ring_active = false;
1304 ring->vsi = vsi;
1305 ring->tx_tstamps = &pf->ptp.port.tx;
1306 ring->dev = dev;
1307 ring->count = vsi->num_tx_desc;
1308 ring->txq_teid = ICE_INVAL_TEID;
1309 WRITE_ONCE(vsi->tx_rings[i], ring);
1310 }
1311
1312 /* Allocate Rx rings */
1313 for (i = 0; i < vsi->alloc_rxq; i++) {
1314 struct ice_ring *ring;
1315
1316 /* allocate with kzalloc(), free with kfree_rcu() */
1317 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1318 if (!ring)
1319 goto err_out;
1320
1321 ring->q_index = i;
1322 ring->reg_idx = vsi->rxq_map[i];
1323 ring->ring_active = false;
1324 ring->vsi = vsi;
1325 ring->netdev = vsi->netdev;
1326 ring->dev = dev;
1327 ring->count = vsi->num_rx_desc;
1328 WRITE_ONCE(vsi->rx_rings[i], ring);
1329 }
1330
1331 return 0;
1332
1333 err_out:
1334 ice_vsi_clear_rings(vsi);
1335 return -ENOMEM;
1336 }
1337
1338 /**
1339 * ice_vsi_manage_rss_lut - disable/enable RSS
1340 * @vsi: the VSI being changed
1341 * @ena: boolean value indicating if this is an enable or disable request
1342 *
1343 * In the event of disable request for RSS, this function will zero out RSS
1344 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1345 * LUT.
1346 */
ice_vsi_manage_rss_lut(struct ice_vsi * vsi,bool ena)1347 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1348 {
1349 u8 *lut;
1350
1351 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1352 if (!lut)
1353 return;
1354
1355 if (ena) {
1356 if (vsi->rss_lut_user)
1357 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1358 else
1359 ice_fill_rss_lut(lut, vsi->rss_table_size,
1360 vsi->rss_size);
1361 }
1362
1363 ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1364 kfree(lut);
1365 }
1366
1367 /**
1368 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1369 * @vsi: VSI to be configured
1370 */
ice_vsi_cfg_rss_lut_key(struct ice_vsi * vsi)1371 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1372 {
1373 struct ice_pf *pf = vsi->back;
1374 struct device *dev;
1375 u8 *lut, *key;
1376 int err;
1377
1378 dev = ice_pf_to_dev(pf);
1379 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1380
1381 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1382 if (!lut)
1383 return -ENOMEM;
1384
1385 if (vsi->rss_lut_user)
1386 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1387 else
1388 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1389
1390 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1391 if (err) {
1392 dev_err(dev, "set_rss_lut failed, error %d\n", err);
1393 goto ice_vsi_cfg_rss_exit;
1394 }
1395
1396 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1397 if (!key) {
1398 err = -ENOMEM;
1399 goto ice_vsi_cfg_rss_exit;
1400 }
1401
1402 if (vsi->rss_hkey_user)
1403 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1404 else
1405 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1406
1407 err = ice_set_rss_key(vsi, key);
1408 if (err)
1409 dev_err(dev, "set_rss_key failed, error %d\n", err);
1410
1411 kfree(key);
1412 ice_vsi_cfg_rss_exit:
1413 kfree(lut);
1414 return err;
1415 }
1416
1417 /**
1418 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1419 * @vsi: VSI to be configured
1420 *
1421 * This function will only be called during the VF VSI setup. Upon successful
1422 * completion of package download, this function will configure default RSS
1423 * input sets for VF VSI.
1424 */
ice_vsi_set_vf_rss_flow_fld(struct ice_vsi * vsi)1425 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1426 {
1427 struct ice_pf *pf = vsi->back;
1428 enum ice_status status;
1429 struct device *dev;
1430
1431 dev = ice_pf_to_dev(pf);
1432 if (ice_is_safe_mode(pf)) {
1433 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1434 vsi->vsi_num);
1435 return;
1436 }
1437
1438 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1439 if (status)
1440 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n",
1441 vsi->vsi_num, ice_stat_str(status));
1442 }
1443
1444 /**
1445 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1446 * @vsi: VSI to be configured
1447 *
1448 * This function will only be called after successful download package call
1449 * during initialization of PF. Since the downloaded package will erase the
1450 * RSS section, this function will configure RSS input sets for different
1451 * flow types. The last profile added has the highest priority, therefore 2
1452 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1453 * (i.e. IPv4 src/dst TCP src/dst port).
1454 */
ice_vsi_set_rss_flow_fld(struct ice_vsi * vsi)1455 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1456 {
1457 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1458 struct ice_pf *pf = vsi->back;
1459 struct ice_hw *hw = &pf->hw;
1460 enum ice_status status;
1461 struct device *dev;
1462
1463 dev = ice_pf_to_dev(pf);
1464 if (ice_is_safe_mode(pf)) {
1465 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1466 vsi_num);
1467 return;
1468 }
1469 /* configure RSS for IPv4 with input set IP src/dst */
1470 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1471 ICE_FLOW_SEG_HDR_IPV4);
1472 if (status)
1473 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n",
1474 vsi_num, ice_stat_str(status));
1475
1476 /* configure RSS for IPv6 with input set IPv6 src/dst */
1477 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1478 ICE_FLOW_SEG_HDR_IPV6);
1479 if (status)
1480 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n",
1481 vsi_num, ice_stat_str(status));
1482
1483 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1484 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1485 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1486 if (status)
1487 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n",
1488 vsi_num, ice_stat_str(status));
1489
1490 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1491 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1492 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1493 if (status)
1494 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n",
1495 vsi_num, ice_stat_str(status));
1496
1497 /* configure RSS for sctp4 with input set IP src/dst */
1498 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1499 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1500 if (status)
1501 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n",
1502 vsi_num, ice_stat_str(status));
1503
1504 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1505 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1506 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1507 if (status)
1508 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n",
1509 vsi_num, ice_stat_str(status));
1510
1511 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1512 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1513 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1514 if (status)
1515 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n",
1516 vsi_num, ice_stat_str(status));
1517
1518 /* configure RSS for sctp6 with input set IPv6 src/dst */
1519 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1520 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1521 if (status)
1522 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n",
1523 vsi_num, ice_stat_str(status));
1524
1525 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI,
1526 ICE_FLOW_SEG_HDR_ESP);
1527 if (status)
1528 dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n",
1529 vsi_num, status);
1530 }
1531
1532 /**
1533 * ice_pf_state_is_nominal - checks the PF for nominal state
1534 * @pf: pointer to PF to check
1535 *
1536 * Check the PF's state for a collection of bits that would indicate
1537 * the PF is in a state that would inhibit normal operation for
1538 * driver functionality.
1539 *
1540 * Returns true if PF is in a nominal state, false otherwise
1541 */
ice_pf_state_is_nominal(struct ice_pf * pf)1542 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1543 {
1544 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1545
1546 if (!pf)
1547 return false;
1548
1549 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1550 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1551 return false;
1552
1553 return true;
1554 }
1555
1556 /**
1557 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1558 * @vsi: the VSI to be updated
1559 */
ice_update_eth_stats(struct ice_vsi * vsi)1560 void ice_update_eth_stats(struct ice_vsi *vsi)
1561 {
1562 struct ice_eth_stats *prev_es, *cur_es;
1563 struct ice_hw *hw = &vsi->back->hw;
1564 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1565
1566 prev_es = &vsi->eth_stats_prev;
1567 cur_es = &vsi->eth_stats;
1568
1569 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1570 &prev_es->rx_bytes, &cur_es->rx_bytes);
1571
1572 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1573 &prev_es->rx_unicast, &cur_es->rx_unicast);
1574
1575 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1576 &prev_es->rx_multicast, &cur_es->rx_multicast);
1577
1578 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1579 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1580
1581 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1582 &prev_es->rx_discards, &cur_es->rx_discards);
1583
1584 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1585 &prev_es->tx_bytes, &cur_es->tx_bytes);
1586
1587 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1588 &prev_es->tx_unicast, &cur_es->tx_unicast);
1589
1590 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1591 &prev_es->tx_multicast, &cur_es->tx_multicast);
1592
1593 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1594 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1595
1596 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1597 &prev_es->tx_errors, &cur_es->tx_errors);
1598
1599 vsi->stat_offsets_loaded = true;
1600 }
1601
1602 /**
1603 * ice_vsi_add_vlan - Add VSI membership for given VLAN
1604 * @vsi: the VSI being configured
1605 * @vid: VLAN ID to be added
1606 * @action: filter action to be performed on match
1607 */
1608 int
ice_vsi_add_vlan(struct ice_vsi * vsi,u16 vid,enum ice_sw_fwd_act_type action)1609 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action)
1610 {
1611 struct ice_pf *pf = vsi->back;
1612 struct device *dev;
1613 int err = 0;
1614
1615 dev = ice_pf_to_dev(pf);
1616
1617 if (!ice_fltr_add_vlan(vsi, vid, action)) {
1618 vsi->num_vlan++;
1619 } else {
1620 err = -ENODEV;
1621 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid,
1622 vsi->vsi_num);
1623 }
1624
1625 return err;
1626 }
1627
1628 /**
1629 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1630 * @vsi: the VSI being configured
1631 * @vid: VLAN ID to be removed
1632 *
1633 * Returns 0 on success and negative on failure
1634 */
ice_vsi_kill_vlan(struct ice_vsi * vsi,u16 vid)1635 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1636 {
1637 struct ice_pf *pf = vsi->back;
1638 enum ice_status status;
1639 struct device *dev;
1640 int err = 0;
1641
1642 dev = ice_pf_to_dev(pf);
1643
1644 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI);
1645 if (!status) {
1646 vsi->num_vlan--;
1647 } else if (status == ICE_ERR_DOES_NOT_EXIST) {
1648 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n",
1649 vid, vsi->vsi_num, ice_stat_str(status));
1650 } else {
1651 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n",
1652 vid, vsi->vsi_num, ice_stat_str(status));
1653 err = -EIO;
1654 }
1655
1656 return err;
1657 }
1658
1659 /**
1660 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1661 * @vsi: VSI
1662 */
ice_vsi_cfg_frame_size(struct ice_vsi * vsi)1663 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1664 {
1665 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1666 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1667 vsi->rx_buf_len = ICE_RXBUF_2048;
1668 #if (PAGE_SIZE < 8192)
1669 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1670 (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1671 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1672 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1673 #endif
1674 } else {
1675 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1676 #if (PAGE_SIZE < 8192)
1677 vsi->rx_buf_len = ICE_RXBUF_3072;
1678 #else
1679 vsi->rx_buf_len = ICE_RXBUF_2048;
1680 #endif
1681 }
1682 }
1683
1684 /**
1685 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1686 * @hw: HW pointer
1687 * @pf_q: index of the Rx queue in the PF's queue space
1688 * @rxdid: flexible descriptor RXDID
1689 * @prio: priority for the RXDID for this queue
1690 * @ena_ts: true to enable timestamp and false to disable timestamp
1691 */
1692 void
ice_write_qrxflxp_cntxt(struct ice_hw * hw,u16 pf_q,u32 rxdid,u32 prio,bool ena_ts)1693 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1694 bool ena_ts)
1695 {
1696 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1697
1698 /* clear any previous values */
1699 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1700 QRXFLXP_CNTXT_RXDID_PRIO_M |
1701 QRXFLXP_CNTXT_TS_M);
1702
1703 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1704 QRXFLXP_CNTXT_RXDID_IDX_M;
1705
1706 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1707 QRXFLXP_CNTXT_RXDID_PRIO_M;
1708
1709 if (ena_ts)
1710 /* Enable TimeSync on this queue */
1711 regval |= QRXFLXP_CNTXT_TS_M;
1712
1713 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1714 }
1715
ice_vsi_cfg_single_rxq(struct ice_vsi * vsi,u16 q_idx)1716 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
1717 {
1718 if (q_idx >= vsi->num_rxq)
1719 return -EINVAL;
1720
1721 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
1722 }
1723
ice_vsi_cfg_single_txq(struct ice_vsi * vsi,struct ice_ring ** tx_rings,u16 q_idx)1724 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_ring **tx_rings, u16 q_idx)
1725 {
1726 struct ice_aqc_add_tx_qgrp *qg_buf;
1727 int err;
1728
1729 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
1730 return -EINVAL;
1731
1732 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1733 if (!qg_buf)
1734 return -ENOMEM;
1735
1736 qg_buf->num_txqs = 1;
1737
1738 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
1739 kfree(qg_buf);
1740 return err;
1741 }
1742
1743 /**
1744 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1745 * @vsi: the VSI being configured
1746 *
1747 * Return 0 on success and a negative value on error
1748 * Configure the Rx VSI for operation.
1749 */
ice_vsi_cfg_rxqs(struct ice_vsi * vsi)1750 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1751 {
1752 u16 i;
1753
1754 if (vsi->type == ICE_VSI_VF)
1755 goto setup_rings;
1756
1757 ice_vsi_cfg_frame_size(vsi);
1758 setup_rings:
1759 /* set up individual rings */
1760 ice_for_each_rxq(vsi, i) {
1761 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
1762
1763 if (err)
1764 return err;
1765 }
1766
1767 return 0;
1768 }
1769
1770 /**
1771 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1772 * @vsi: the VSI being configured
1773 * @rings: Tx ring array to be configured
1774 * @count: number of Tx ring array elements
1775 *
1776 * Return 0 on success and a negative value on error
1777 * Configure the Tx VSI for operation.
1778 */
1779 static int
ice_vsi_cfg_txqs(struct ice_vsi * vsi,struct ice_ring ** rings,u16 count)1780 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, u16 count)
1781 {
1782 struct ice_aqc_add_tx_qgrp *qg_buf;
1783 u16 q_idx = 0;
1784 int err = 0;
1785
1786 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1787 if (!qg_buf)
1788 return -ENOMEM;
1789
1790 qg_buf->num_txqs = 1;
1791
1792 for (q_idx = 0; q_idx < count; q_idx++) {
1793 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1794 if (err)
1795 goto err_cfg_txqs;
1796 }
1797
1798 err_cfg_txqs:
1799 kfree(qg_buf);
1800 return err;
1801 }
1802
1803 /**
1804 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1805 * @vsi: the VSI being configured
1806 *
1807 * Return 0 on success and a negative value on error
1808 * Configure the Tx VSI for operation.
1809 */
ice_vsi_cfg_lan_txqs(struct ice_vsi * vsi)1810 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1811 {
1812 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1813 }
1814
1815 /**
1816 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1817 * @vsi: the VSI being configured
1818 *
1819 * Return 0 on success and a negative value on error
1820 * Configure the Tx queues dedicated for XDP in given VSI for operation.
1821 */
ice_vsi_cfg_xdp_txqs(struct ice_vsi * vsi)1822 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1823 {
1824 int ret;
1825 int i;
1826
1827 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1828 if (ret)
1829 return ret;
1830
1831 for (i = 0; i < vsi->num_xdp_txq; i++)
1832 vsi->xdp_rings[i]->xsk_pool = ice_xsk_pool(vsi->xdp_rings[i]);
1833
1834 return ret;
1835 }
1836
1837 /**
1838 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1839 * @intrl: interrupt rate limit in usecs
1840 * @gran: interrupt rate limit granularity in usecs
1841 *
1842 * This function converts a decimal interrupt rate limit in usecs to the format
1843 * expected by firmware.
1844 */
ice_intrl_usec_to_reg(u8 intrl,u8 gran)1845 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1846 {
1847 u32 val = intrl / gran;
1848
1849 if (val)
1850 return val | GLINT_RATE_INTRL_ENA_M;
1851 return 0;
1852 }
1853
1854 /**
1855 * ice_write_intrl - write throttle rate limit to interrupt specific register
1856 * @q_vector: pointer to interrupt specific structure
1857 * @intrl: throttle rate limit in microseconds to write
1858 */
ice_write_intrl(struct ice_q_vector * q_vector,u8 intrl)1859 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1860 {
1861 struct ice_hw *hw = &q_vector->vsi->back->hw;
1862
1863 wr32(hw, GLINT_RATE(q_vector->reg_idx),
1864 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1865 }
1866
1867 /**
1868 * __ice_write_itr - write throttle rate to register
1869 * @q_vector: pointer to interrupt data structure
1870 * @rc: pointer to ring container
1871 * @itr: throttle rate in microseconds to write
1872 */
__ice_write_itr(struct ice_q_vector * q_vector,struct ice_ring_container * rc,u16 itr)1873 static void __ice_write_itr(struct ice_q_vector *q_vector,
1874 struct ice_ring_container *rc, u16 itr)
1875 {
1876 struct ice_hw *hw = &q_vector->vsi->back->hw;
1877
1878 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1879 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1880 }
1881
1882 /**
1883 * ice_write_itr - write throttle rate to queue specific register
1884 * @rc: pointer to ring container
1885 * @itr: throttle rate in microseconds to write
1886 */
ice_write_itr(struct ice_ring_container * rc,u16 itr)1887 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
1888 {
1889 struct ice_q_vector *q_vector;
1890
1891 if (!rc->ring)
1892 return;
1893
1894 q_vector = rc->ring->q_vector;
1895
1896 __ice_write_itr(q_vector, rc, itr);
1897 }
1898
1899 /**
1900 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1901 * @vsi: the VSI being configured
1902 *
1903 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1904 * for the VF VSI.
1905 */
ice_vsi_cfg_msix(struct ice_vsi * vsi)1906 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1907 {
1908 struct ice_pf *pf = vsi->back;
1909 struct ice_hw *hw = &pf->hw;
1910 u16 txq = 0, rxq = 0;
1911 int i, q;
1912
1913 for (i = 0; i < vsi->num_q_vectors; i++) {
1914 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1915 u16 reg_idx = q_vector->reg_idx;
1916
1917 ice_cfg_itr(hw, q_vector);
1918
1919 /* Both Transmit Queue Interrupt Cause Control register
1920 * and Receive Queue Interrupt Cause control register
1921 * expects MSIX_INDX field to be the vector index
1922 * within the function space and not the absolute
1923 * vector index across PF or across device.
1924 * For SR-IOV VF VSIs queue vector index always starts
1925 * with 1 since first vector index(0) is used for OICR
1926 * in VF space. Since VMDq and other PF VSIs are within
1927 * the PF function space, use the vector index that is
1928 * tracked for this PF.
1929 */
1930 for (q = 0; q < q_vector->num_ring_tx; q++) {
1931 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1932 q_vector->tx.itr_idx);
1933 txq++;
1934 }
1935
1936 for (q = 0; q < q_vector->num_ring_rx; q++) {
1937 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1938 q_vector->rx.itr_idx);
1939 rxq++;
1940 }
1941 }
1942 }
1943
1944 /**
1945 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
1946 * @vsi: the VSI being changed
1947 */
ice_vsi_manage_vlan_insertion(struct ice_vsi * vsi)1948 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
1949 {
1950 struct ice_hw *hw = &vsi->back->hw;
1951 struct ice_vsi_ctx *ctxt;
1952 enum ice_status status;
1953 int ret = 0;
1954
1955 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1956 if (!ctxt)
1957 return -ENOMEM;
1958
1959 /* Here we are configuring the VSI to let the driver add VLAN tags by
1960 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
1961 * insertion happens in the Tx hot path, in ice_tx_map.
1962 */
1963 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
1964
1965 /* Preserve existing VLAN strip setting */
1966 ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
1967 ICE_AQ_VSI_VLAN_EMOD_M);
1968
1969 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1970
1971 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1972 if (status) {
1973 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n",
1974 ice_stat_str(status),
1975 ice_aq_str(hw->adminq.sq_last_status));
1976 ret = -EIO;
1977 goto out;
1978 }
1979
1980 vsi->info.vlan_flags = ctxt->info.vlan_flags;
1981 out:
1982 kfree(ctxt);
1983 return ret;
1984 }
1985
1986 /**
1987 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
1988 * @vsi: the VSI being changed
1989 * @ena: boolean value indicating if this is a enable or disable request
1990 */
ice_vsi_manage_vlan_stripping(struct ice_vsi * vsi,bool ena)1991 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
1992 {
1993 struct ice_hw *hw = &vsi->back->hw;
1994 struct ice_vsi_ctx *ctxt;
1995 enum ice_status status;
1996 int ret = 0;
1997
1998 /* do not allow modifying VLAN stripping when a port VLAN is configured
1999 * on this VSI
2000 */
2001 if (vsi->info.pvid)
2002 return 0;
2003
2004 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
2005 if (!ctxt)
2006 return -ENOMEM;
2007
2008 /* Here we are configuring what the VSI should do with the VLAN tag in
2009 * the Rx packet. We can either leave the tag in the packet or put it in
2010 * the Rx descriptor.
2011 */
2012 if (ena)
2013 /* Strip VLAN tag from Rx packet and put it in the desc */
2014 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
2015 else
2016 /* Disable stripping. Leave tag in packet */
2017 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
2018
2019 /* Allow all packets untagged/tagged */
2020 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
2021
2022 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
2023
2024 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
2025 if (status) {
2026 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n",
2027 ena, ice_stat_str(status),
2028 ice_aq_str(hw->adminq.sq_last_status));
2029 ret = -EIO;
2030 goto out;
2031 }
2032
2033 vsi->info.vlan_flags = ctxt->info.vlan_flags;
2034 out:
2035 kfree(ctxt);
2036 return ret;
2037 }
2038
2039 /**
2040 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2041 * @vsi: the VSI whose rings are to be enabled
2042 *
2043 * Returns 0 on success and a negative value on error
2044 */
ice_vsi_start_all_rx_rings(struct ice_vsi * vsi)2045 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2046 {
2047 return ice_vsi_ctrl_all_rx_rings(vsi, true);
2048 }
2049
2050 /**
2051 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2052 * @vsi: the VSI whose rings are to be disabled
2053 *
2054 * Returns 0 on success and a negative value on error
2055 */
ice_vsi_stop_all_rx_rings(struct ice_vsi * vsi)2056 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2057 {
2058 return ice_vsi_ctrl_all_rx_rings(vsi, false);
2059 }
2060
2061 /**
2062 * ice_vsi_stop_tx_rings - Disable Tx rings
2063 * @vsi: the VSI being configured
2064 * @rst_src: reset source
2065 * @rel_vmvf_num: Relative ID of VF/VM
2066 * @rings: Tx ring array to be stopped
2067 * @count: number of Tx ring array elements
2068 */
2069 static int
ice_vsi_stop_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_ring ** rings,u16 count)2070 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2071 u16 rel_vmvf_num, struct ice_ring **rings, u16 count)
2072 {
2073 u16 q_idx;
2074
2075 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2076 return -EINVAL;
2077
2078 for (q_idx = 0; q_idx < count; q_idx++) {
2079 struct ice_txq_meta txq_meta = { };
2080 int status;
2081
2082 if (!rings || !rings[q_idx])
2083 return -EINVAL;
2084
2085 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2086 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2087 rings[q_idx], &txq_meta);
2088
2089 if (status)
2090 return status;
2091 }
2092
2093 return 0;
2094 }
2095
2096 /**
2097 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2098 * @vsi: the VSI being configured
2099 * @rst_src: reset source
2100 * @rel_vmvf_num: Relative ID of VF/VM
2101 */
2102 int
ice_vsi_stop_lan_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num)2103 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2104 u16 rel_vmvf_num)
2105 {
2106 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2107 }
2108
2109 /**
2110 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2111 * @vsi: the VSI being configured
2112 */
ice_vsi_stop_xdp_tx_rings(struct ice_vsi * vsi)2113 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2114 {
2115 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2116 }
2117
2118 /**
2119 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2120 * @vsi: VSI to check whether or not VLAN pruning is enabled.
2121 *
2122 * returns true if Rx VLAN pruning is enabled and false otherwise.
2123 */
ice_vsi_is_vlan_pruning_ena(struct ice_vsi * vsi)2124 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2125 {
2126 if (!vsi)
2127 return false;
2128
2129 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2130 }
2131
2132 /**
2133 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2134 * @vsi: VSI to enable or disable VLAN pruning on
2135 * @ena: set to true to enable VLAN pruning and false to disable it
2136 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2137 *
2138 * returns 0 if VSI is updated, negative otherwise
2139 */
ice_cfg_vlan_pruning(struct ice_vsi * vsi,bool ena,bool vlan_promisc)2140 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2141 {
2142 struct ice_vsi_ctx *ctxt;
2143 struct ice_pf *pf;
2144 int status;
2145
2146 if (!vsi)
2147 return -EINVAL;
2148
2149 /* Don't enable VLAN pruning if the netdev is currently in promiscuous
2150 * mode. VLAN pruning will be enabled when the interface exits
2151 * promiscuous mode if any VLAN filters are active.
2152 */
2153 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena)
2154 return 0;
2155
2156 pf = vsi->back;
2157 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
2158 if (!ctxt)
2159 return -ENOMEM;
2160
2161 ctxt->info = vsi->info;
2162
2163 if (ena)
2164 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2165 else
2166 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2167
2168 if (!vlan_promisc)
2169 ctxt->info.valid_sections =
2170 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
2171
2172 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2173 if (status) {
2174 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n",
2175 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num,
2176 ice_stat_str(status),
2177 ice_aq_str(pf->hw.adminq.sq_last_status));
2178 goto err_out;
2179 }
2180
2181 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2182
2183 kfree(ctxt);
2184 return 0;
2185
2186 err_out:
2187 kfree(ctxt);
2188 return -EIO;
2189 }
2190
ice_vsi_set_tc_cfg(struct ice_vsi * vsi)2191 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2192 {
2193 struct ice_dcbx_cfg *cfg = &vsi->port_info->qos_cfg.local_dcbx_cfg;
2194
2195 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2196 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2197 }
2198
2199 /**
2200 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2201 * @vsi: VSI to set the q_vectors register index on
2202 */
2203 static int
ice_vsi_set_q_vectors_reg_idx(struct ice_vsi * vsi)2204 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2205 {
2206 u16 i;
2207
2208 if (!vsi || !vsi->q_vectors)
2209 return -EINVAL;
2210
2211 ice_for_each_q_vector(vsi, i) {
2212 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2213
2214 if (!q_vector) {
2215 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
2216 i, vsi->vsi_num);
2217 goto clear_reg_idx;
2218 }
2219
2220 if (vsi->type == ICE_VSI_VF) {
2221 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
2222
2223 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2224 } else {
2225 q_vector->reg_idx =
2226 q_vector->v_idx + vsi->base_vector;
2227 }
2228 }
2229
2230 return 0;
2231
2232 clear_reg_idx:
2233 ice_for_each_q_vector(vsi, i) {
2234 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2235
2236 if (q_vector)
2237 q_vector->reg_idx = 0;
2238 }
2239
2240 return -EINVAL;
2241 }
2242
2243 /**
2244 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2245 * @vsi: the VSI being configured
2246 * @tx: bool to determine Tx or Rx rule
2247 * @create: bool to determine create or remove Rule
2248 */
ice_cfg_sw_lldp(struct ice_vsi * vsi,bool tx,bool create)2249 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2250 {
2251 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2252 enum ice_sw_fwd_act_type act);
2253 struct ice_pf *pf = vsi->back;
2254 enum ice_status status;
2255 struct device *dev;
2256
2257 dev = ice_pf_to_dev(pf);
2258 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2259
2260 if (tx) {
2261 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2262 ICE_DROP_PACKET);
2263 } else {
2264 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2265 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2266 create);
2267 } else {
2268 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2269 ICE_FWD_TO_VSI);
2270 }
2271 }
2272
2273 if (status)
2274 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n",
2275 create ? "adding" : "removing", tx ? "TX" : "RX",
2276 vsi->vsi_num, ice_stat_str(status));
2277 }
2278
2279 /**
2280 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2281 * @vsi: pointer to the VSI
2282 *
2283 * This function will allocate new scheduler aggregator now if needed and will
2284 * move specified VSI into it.
2285 */
ice_set_agg_vsi(struct ice_vsi * vsi)2286 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2287 {
2288 struct device *dev = ice_pf_to_dev(vsi->back);
2289 struct ice_agg_node *agg_node_iter = NULL;
2290 u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2291 struct ice_agg_node *agg_node = NULL;
2292 int node_offset, max_agg_nodes = 0;
2293 struct ice_port_info *port_info;
2294 struct ice_pf *pf = vsi->back;
2295 u32 agg_node_id_start = 0;
2296 enum ice_status status;
2297
2298 /* create (as needed) scheduler aggregator node and move VSI into
2299 * corresponding aggregator node
2300 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2301 * - VF aggregator nodes will contain VF VSI
2302 */
2303 port_info = pf->hw.port_info;
2304 if (!port_info)
2305 return;
2306
2307 switch (vsi->type) {
2308 case ICE_VSI_CTRL:
2309 case ICE_VSI_LB:
2310 case ICE_VSI_PF:
2311 max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2312 agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2313 agg_node_iter = &pf->pf_agg_node[0];
2314 break;
2315 case ICE_VSI_VF:
2316 /* user can create 'n' VFs on a given PF, but since max children
2317 * per aggregator node can be only 64. Following code handles
2318 * aggregator(s) for VF VSIs, either selects a agg_node which
2319 * was already created provided num_vsis < 64, otherwise
2320 * select next available node, which will be created
2321 */
2322 max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2323 agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2324 agg_node_iter = &pf->vf_agg_node[0];
2325 break;
2326 default:
2327 /* other VSI type, handle later if needed */
2328 dev_dbg(dev, "unexpected VSI type %s\n",
2329 ice_vsi_type_str(vsi->type));
2330 return;
2331 }
2332
2333 /* find the appropriate aggregator node */
2334 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2335 /* see if we can find space in previously created
2336 * node if num_vsis < 64, otherwise skip
2337 */
2338 if (agg_node_iter->num_vsis &&
2339 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2340 agg_node_iter++;
2341 continue;
2342 }
2343
2344 if (agg_node_iter->valid &&
2345 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2346 agg_id = agg_node_iter->agg_id;
2347 agg_node = agg_node_iter;
2348 break;
2349 }
2350
2351 /* find unclaimed agg_id */
2352 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2353 agg_id = node_offset + agg_node_id_start;
2354 agg_node = agg_node_iter;
2355 break;
2356 }
2357 /* move to next agg_node */
2358 agg_node_iter++;
2359 }
2360
2361 if (!agg_node)
2362 return;
2363
2364 /* if selected aggregator node was not created, create it */
2365 if (!agg_node->valid) {
2366 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2367 (u8)vsi->tc_cfg.ena_tc);
2368 if (status) {
2369 dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2370 agg_id);
2371 return;
2372 }
2373 /* aggregator node is created, store the neeeded info */
2374 agg_node->valid = true;
2375 agg_node->agg_id = agg_id;
2376 }
2377
2378 /* move VSI to corresponding aggregator node */
2379 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2380 (u8)vsi->tc_cfg.ena_tc);
2381 if (status) {
2382 dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2383 vsi->idx, agg_id);
2384 return;
2385 }
2386
2387 /* keep active children count for aggregator node */
2388 agg_node->num_vsis++;
2389
2390 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2391 * to aggregator node
2392 */
2393 vsi->agg_node = agg_node;
2394 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2395 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2396 vsi->agg_node->num_vsis);
2397 }
2398
2399 /**
2400 * ice_vsi_setup - Set up a VSI by a given type
2401 * @pf: board private structure
2402 * @pi: pointer to the port_info instance
2403 * @vsi_type: VSI type
2404 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2405 * used only for ICE_VSI_VF VSI type. For other VSI types, should
2406 * fill-in ICE_INVAL_VFID as input.
2407 *
2408 * This allocates the sw VSI structure and its queue resources.
2409 *
2410 * Returns pointer to the successfully allocated and configured VSI sw struct on
2411 * success, NULL on failure.
2412 */
2413 struct ice_vsi *
ice_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi,enum ice_vsi_type vsi_type,u16 vf_id)2414 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2415 enum ice_vsi_type vsi_type, u16 vf_id)
2416 {
2417 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2418 struct device *dev = ice_pf_to_dev(pf);
2419 enum ice_status status;
2420 struct ice_vsi *vsi;
2421 int ret, i;
2422
2423 if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL)
2424 vsi = ice_vsi_alloc(pf, vsi_type, vf_id);
2425 else
2426 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID);
2427
2428 if (!vsi) {
2429 dev_err(dev, "could not allocate VSI\n");
2430 return NULL;
2431 }
2432
2433 vsi->port_info = pi;
2434 vsi->vsw = pf->first_sw;
2435 if (vsi->type == ICE_VSI_PF)
2436 vsi->ethtype = ETH_P_PAUSE;
2437
2438 if (vsi->type == ICE_VSI_VF || vsi->type == ICE_VSI_CTRL)
2439 vsi->vf_id = vf_id;
2440
2441 ice_alloc_fd_res(vsi);
2442
2443 if (ice_vsi_get_qs(vsi)) {
2444 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2445 vsi->idx);
2446 goto unroll_vsi_alloc;
2447 }
2448
2449 /* set RSS capabilities */
2450 ice_vsi_set_rss_params(vsi);
2451
2452 /* set TC configuration */
2453 ice_vsi_set_tc_cfg(vsi);
2454
2455 /* create the VSI */
2456 ret = ice_vsi_init(vsi, true);
2457 if (ret)
2458 goto unroll_get_qs;
2459
2460 switch (vsi->type) {
2461 case ICE_VSI_CTRL:
2462 case ICE_VSI_PF:
2463 ret = ice_vsi_alloc_q_vectors(vsi);
2464 if (ret)
2465 goto unroll_vsi_init;
2466
2467 ret = ice_vsi_setup_vector_base(vsi);
2468 if (ret)
2469 goto unroll_alloc_q_vector;
2470
2471 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2472 if (ret)
2473 goto unroll_vector_base;
2474
2475 ret = ice_vsi_alloc_rings(vsi);
2476 if (ret)
2477 goto unroll_vector_base;
2478
2479 /* Always add VLAN ID 0 switch rule by default. This is needed
2480 * in order to allow all untagged and 0 tagged priority traffic
2481 * if Rx VLAN pruning is enabled. Also there are cases where we
2482 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid()
2483 * so this handles those cases (i.e. adding the PF to a bridge
2484 * without the 8021q module loaded).
2485 */
2486 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI);
2487 if (ret)
2488 goto unroll_clear_rings;
2489
2490 ice_vsi_map_rings_to_vectors(vsi);
2491
2492 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2493 if (vsi->type != ICE_VSI_CTRL)
2494 /* Do not exit if configuring RSS had an issue, at
2495 * least receive traffic on first queue. Hence no
2496 * need to capture return value
2497 */
2498 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2499 ice_vsi_cfg_rss_lut_key(vsi);
2500 ice_vsi_set_rss_flow_fld(vsi);
2501 }
2502 ice_init_arfs(vsi);
2503 break;
2504 case ICE_VSI_VF:
2505 /* VF driver will take care of creating netdev for this type and
2506 * map queues to vectors through Virtchnl, PF driver only
2507 * creates a VSI and corresponding structures for bookkeeping
2508 * purpose
2509 */
2510 ret = ice_vsi_alloc_q_vectors(vsi);
2511 if (ret)
2512 goto unroll_vsi_init;
2513
2514 ret = ice_vsi_alloc_rings(vsi);
2515 if (ret)
2516 goto unroll_alloc_q_vector;
2517
2518 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2519 if (ret)
2520 goto unroll_vector_base;
2521
2522 /* Do not exit if configuring RSS had an issue, at least
2523 * receive traffic on first queue. Hence no need to capture
2524 * return value
2525 */
2526 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2527 ice_vsi_cfg_rss_lut_key(vsi);
2528 ice_vsi_set_vf_rss_flow_fld(vsi);
2529 }
2530 break;
2531 case ICE_VSI_LB:
2532 ret = ice_vsi_alloc_rings(vsi);
2533 if (ret)
2534 goto unroll_vsi_init;
2535 break;
2536 default:
2537 /* clean up the resources and exit */
2538 goto unroll_vsi_init;
2539 }
2540
2541 /* configure VSI nodes based on number of queues and TC's */
2542 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2543 max_txqs[i] = vsi->alloc_txq;
2544
2545 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2546 max_txqs);
2547 if (status) {
2548 dev_err(dev, "VSI %d failed lan queue config, error %s\n",
2549 vsi->vsi_num, ice_stat_str(status));
2550 goto unroll_clear_rings;
2551 }
2552
2553 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2554 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2555 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2556 * The rule is added once for PF VSI in order to create appropriate
2557 * recipe, since VSI/VSI list is ignored with drop action...
2558 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
2559 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2560 * settings in the HW.
2561 */
2562 if (!ice_is_safe_mode(pf))
2563 if (vsi->type == ICE_VSI_PF) {
2564 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2565 ICE_DROP_PACKET);
2566 ice_cfg_sw_lldp(vsi, true, true);
2567 }
2568
2569 if (!vsi->agg_node)
2570 ice_set_agg_vsi(vsi);
2571 return vsi;
2572
2573 unroll_clear_rings:
2574 ice_vsi_clear_rings(vsi);
2575 unroll_vector_base:
2576 /* reclaim SW interrupts back to the common pool */
2577 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2578 pf->num_avail_sw_msix += vsi->num_q_vectors;
2579 unroll_alloc_q_vector:
2580 ice_vsi_free_q_vectors(vsi);
2581 unroll_vsi_init:
2582 ice_vsi_delete(vsi);
2583 unroll_get_qs:
2584 ice_vsi_put_qs(vsi);
2585 unroll_vsi_alloc:
2586 if (vsi_type == ICE_VSI_VF)
2587 ice_enable_lag(pf->lag);
2588 ice_vsi_clear(vsi);
2589
2590 return NULL;
2591 }
2592
2593 /**
2594 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2595 * @vsi: the VSI being cleaned up
2596 */
ice_vsi_release_msix(struct ice_vsi * vsi)2597 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2598 {
2599 struct ice_pf *pf = vsi->back;
2600 struct ice_hw *hw = &pf->hw;
2601 u32 txq = 0;
2602 u32 rxq = 0;
2603 int i, q;
2604
2605 for (i = 0; i < vsi->num_q_vectors; i++) {
2606 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2607
2608 ice_write_intrl(q_vector, 0);
2609 for (q = 0; q < q_vector->num_ring_tx; q++) {
2610 ice_write_itr(&q_vector->tx, 0);
2611 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2612 if (ice_is_xdp_ena_vsi(vsi)) {
2613 u32 xdp_txq = txq + vsi->num_xdp_txq;
2614
2615 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2616 }
2617 txq++;
2618 }
2619
2620 for (q = 0; q < q_vector->num_ring_rx; q++) {
2621 ice_write_itr(&q_vector->rx, 0);
2622 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2623 rxq++;
2624 }
2625 }
2626
2627 ice_flush(hw);
2628 }
2629
2630 /**
2631 * ice_vsi_free_irq - Free the IRQ association with the OS
2632 * @vsi: the VSI being configured
2633 */
ice_vsi_free_irq(struct ice_vsi * vsi)2634 void ice_vsi_free_irq(struct ice_vsi *vsi)
2635 {
2636 struct ice_pf *pf = vsi->back;
2637 int base = vsi->base_vector;
2638 int i;
2639
2640 if (!vsi->q_vectors || !vsi->irqs_ready)
2641 return;
2642
2643 ice_vsi_release_msix(vsi);
2644 if (vsi->type == ICE_VSI_VF)
2645 return;
2646
2647 vsi->irqs_ready = false;
2648 ice_for_each_q_vector(vsi, i) {
2649 u16 vector = i + base;
2650 int irq_num;
2651
2652 irq_num = pf->msix_entries[vector].vector;
2653
2654 /* free only the irqs that were actually requested */
2655 if (!vsi->q_vectors[i] ||
2656 !(vsi->q_vectors[i]->num_ring_tx ||
2657 vsi->q_vectors[i]->num_ring_rx))
2658 continue;
2659
2660 /* clear the affinity notifier in the IRQ descriptor */
2661 irq_set_affinity_notifier(irq_num, NULL);
2662
2663 /* clear the affinity_mask in the IRQ descriptor */
2664 irq_set_affinity_hint(irq_num, NULL);
2665 synchronize_irq(irq_num);
2666 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2667 }
2668 }
2669
2670 /**
2671 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2672 * @vsi: the VSI having resources freed
2673 */
ice_vsi_free_tx_rings(struct ice_vsi * vsi)2674 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2675 {
2676 int i;
2677
2678 if (!vsi->tx_rings)
2679 return;
2680
2681 ice_for_each_txq(vsi, i)
2682 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2683 ice_free_tx_ring(vsi->tx_rings[i]);
2684 }
2685
2686 /**
2687 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2688 * @vsi: the VSI having resources freed
2689 */
ice_vsi_free_rx_rings(struct ice_vsi * vsi)2690 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2691 {
2692 int i;
2693
2694 if (!vsi->rx_rings)
2695 return;
2696
2697 ice_for_each_rxq(vsi, i)
2698 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2699 ice_free_rx_ring(vsi->rx_rings[i]);
2700 }
2701
2702 /**
2703 * ice_vsi_close - Shut down a VSI
2704 * @vsi: the VSI being shut down
2705 */
ice_vsi_close(struct ice_vsi * vsi)2706 void ice_vsi_close(struct ice_vsi *vsi)
2707 {
2708 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2709 ice_down(vsi);
2710
2711 ice_vsi_free_irq(vsi);
2712 ice_vsi_free_tx_rings(vsi);
2713 ice_vsi_free_rx_rings(vsi);
2714 }
2715
2716 /**
2717 * ice_ena_vsi - resume a VSI
2718 * @vsi: the VSI being resume
2719 * @locked: is the rtnl_lock already held
2720 */
ice_ena_vsi(struct ice_vsi * vsi,bool locked)2721 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2722 {
2723 int err = 0;
2724
2725 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2726 return 0;
2727
2728 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2729
2730 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2731 if (netif_running(vsi->netdev)) {
2732 if (!locked)
2733 rtnl_lock();
2734
2735 err = ice_open_internal(vsi->netdev);
2736
2737 if (!locked)
2738 rtnl_unlock();
2739 }
2740 } else if (vsi->type == ICE_VSI_CTRL) {
2741 err = ice_vsi_open_ctrl(vsi);
2742 }
2743
2744 return err;
2745 }
2746
2747 /**
2748 * ice_dis_vsi - pause a VSI
2749 * @vsi: the VSI being paused
2750 * @locked: is the rtnl_lock already held
2751 */
ice_dis_vsi(struct ice_vsi * vsi,bool locked)2752 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2753 {
2754 if (test_bit(ICE_VSI_DOWN, vsi->state))
2755 return;
2756
2757 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2758
2759 if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2760 if (netif_running(vsi->netdev)) {
2761 if (!locked)
2762 rtnl_lock();
2763
2764 ice_vsi_close(vsi);
2765
2766 if (!locked)
2767 rtnl_unlock();
2768 } else {
2769 ice_vsi_close(vsi);
2770 }
2771 } else if (vsi->type == ICE_VSI_CTRL) {
2772 ice_vsi_close(vsi);
2773 }
2774 }
2775
2776 /**
2777 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2778 * @vsi: the VSI being un-configured
2779 */
ice_vsi_dis_irq(struct ice_vsi * vsi)2780 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2781 {
2782 int base = vsi->base_vector;
2783 struct ice_pf *pf = vsi->back;
2784 struct ice_hw *hw = &pf->hw;
2785 u32 val;
2786 int i;
2787
2788 /* disable interrupt causation from each queue */
2789 if (vsi->tx_rings) {
2790 ice_for_each_txq(vsi, i) {
2791 if (vsi->tx_rings[i]) {
2792 u16 reg;
2793
2794 reg = vsi->tx_rings[i]->reg_idx;
2795 val = rd32(hw, QINT_TQCTL(reg));
2796 val &= ~QINT_TQCTL_CAUSE_ENA_M;
2797 wr32(hw, QINT_TQCTL(reg), val);
2798 }
2799 }
2800 }
2801
2802 if (vsi->rx_rings) {
2803 ice_for_each_rxq(vsi, i) {
2804 if (vsi->rx_rings[i]) {
2805 u16 reg;
2806
2807 reg = vsi->rx_rings[i]->reg_idx;
2808 val = rd32(hw, QINT_RQCTL(reg));
2809 val &= ~QINT_RQCTL_CAUSE_ENA_M;
2810 wr32(hw, QINT_RQCTL(reg), val);
2811 }
2812 }
2813 }
2814
2815 /* disable each interrupt */
2816 ice_for_each_q_vector(vsi, i) {
2817 if (!vsi->q_vectors[i])
2818 continue;
2819 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2820 }
2821
2822 ice_flush(hw);
2823
2824 /* don't call synchronize_irq() for VF's from the host */
2825 if (vsi->type == ICE_VSI_VF)
2826 return;
2827
2828 ice_for_each_q_vector(vsi, i)
2829 synchronize_irq(pf->msix_entries[i + base].vector);
2830 }
2831
2832 /**
2833 * ice_napi_del - Remove NAPI handler for the VSI
2834 * @vsi: VSI for which NAPI handler is to be removed
2835 */
ice_napi_del(struct ice_vsi * vsi)2836 void ice_napi_del(struct ice_vsi *vsi)
2837 {
2838 int v_idx;
2839
2840 if (!vsi->netdev)
2841 return;
2842
2843 ice_for_each_q_vector(vsi, v_idx)
2844 netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2845 }
2846
2847 /**
2848 * ice_vsi_release - Delete a VSI and free its resources
2849 * @vsi: the VSI being removed
2850 *
2851 * Returns 0 on success or < 0 on error
2852 */
ice_vsi_release(struct ice_vsi * vsi)2853 int ice_vsi_release(struct ice_vsi *vsi)
2854 {
2855 enum ice_status err;
2856 struct ice_pf *pf;
2857
2858 if (!vsi->back)
2859 return -ENODEV;
2860 pf = vsi->back;
2861
2862 /* do not unregister while driver is in the reset recovery pending
2863 * state. Since reset/rebuild happens through PF service task workqueue,
2864 * it's not a good idea to unregister netdev that is associated to the
2865 * PF that is running the work queue items currently. This is done to
2866 * avoid check_flush_dependency() warning on this wq
2867 */
2868 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) &&
2869 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) {
2870 unregister_netdev(vsi->netdev);
2871 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
2872 }
2873
2874 if (vsi->type == ICE_VSI_PF)
2875 ice_devlink_destroy_pf_port(pf);
2876
2877 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2878 ice_rss_clean(vsi);
2879
2880 /* Disable VSI and free resources */
2881 if (vsi->type != ICE_VSI_LB)
2882 ice_vsi_dis_irq(vsi);
2883 ice_vsi_close(vsi);
2884
2885 /* SR-IOV determines needed MSIX resources all at once instead of per
2886 * VSI since when VFs are spawned we know how many VFs there are and how
2887 * many interrupts each VF needs. SR-IOV MSIX resources are also
2888 * cleared in the same manner.
2889 */
2890 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) {
2891 int i;
2892
2893 ice_for_each_vf(pf, i) {
2894 struct ice_vf *vf = &pf->vf[i];
2895
2896 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI)
2897 break;
2898 }
2899 if (i == pf->num_alloc_vfs) {
2900 /* No other VFs left that have control VSI, reclaim SW
2901 * interrupts back to the common pool
2902 */
2903 ice_free_res(pf->irq_tracker, vsi->base_vector,
2904 ICE_RES_VF_CTRL_VEC_ID);
2905 pf->num_avail_sw_msix += vsi->num_q_vectors;
2906 }
2907 } else if (vsi->type != ICE_VSI_VF) {
2908 /* reclaim SW interrupts back to the common pool */
2909 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2910 pf->num_avail_sw_msix += vsi->num_q_vectors;
2911 }
2912
2913 if (!ice_is_safe_mode(pf)) {
2914 if (vsi->type == ICE_VSI_PF) {
2915 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2916 ICE_DROP_PACKET);
2917 ice_cfg_sw_lldp(vsi, true, false);
2918 /* The Rx rule will only exist to remove if the LLDP FW
2919 * engine is currently stopped
2920 */
2921 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2922 ice_cfg_sw_lldp(vsi, false, false);
2923 }
2924 }
2925
2926 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi))
2927 ice_clear_dflt_vsi(pf->first_sw);
2928 ice_fltr_remove_all(vsi);
2929 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2930 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2931 if (err)
2932 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2933 vsi->vsi_num, err);
2934 ice_vsi_delete(vsi);
2935 ice_vsi_free_q_vectors(vsi);
2936
2937 if (vsi->netdev) {
2938 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) {
2939 unregister_netdev(vsi->netdev);
2940 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
2941 }
2942 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) {
2943 free_netdev(vsi->netdev);
2944 vsi->netdev = NULL;
2945 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
2946 }
2947 }
2948
2949 if (vsi->type == ICE_VSI_VF &&
2950 vsi->agg_node && vsi->agg_node->valid)
2951 vsi->agg_node->num_vsis--;
2952 ice_vsi_clear_rings(vsi);
2953
2954 ice_vsi_put_qs(vsi);
2955
2956 /* retain SW VSI data structure since it is needed to unregister and
2957 * free VSI netdev when PF is not in reset recovery pending state,\
2958 * for ex: during rmmod.
2959 */
2960 if (!ice_is_reset_in_progress(pf->state))
2961 ice_vsi_clear(vsi);
2962
2963 return 0;
2964 }
2965
2966 /**
2967 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2968 * @vsi: VSI connected with q_vectors
2969 * @coalesce: array of struct with stored coalesce
2970 *
2971 * Returns array size.
2972 */
2973 static int
ice_vsi_rebuild_get_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce)2974 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2975 struct ice_coalesce_stored *coalesce)
2976 {
2977 int i;
2978
2979 ice_for_each_q_vector(vsi, i) {
2980 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2981
2982 coalesce[i].itr_tx = q_vector->tx.itr_settings;
2983 coalesce[i].itr_rx = q_vector->rx.itr_settings;
2984 coalesce[i].intrl = q_vector->intrl;
2985
2986 if (i < vsi->num_txq)
2987 coalesce[i].tx_valid = true;
2988 if (i < vsi->num_rxq)
2989 coalesce[i].rx_valid = true;
2990 }
2991
2992 return vsi->num_q_vectors;
2993 }
2994
2995 /**
2996 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2997 * @vsi: VSI connected with q_vectors
2998 * @coalesce: pointer to array of struct with stored coalesce
2999 * @size: size of coalesce array
3000 *
3001 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
3002 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
3003 * to default value.
3004 */
3005 static void
ice_vsi_rebuild_set_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce,int size)3006 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3007 struct ice_coalesce_stored *coalesce, int size)
3008 {
3009 struct ice_ring_container *rc;
3010 int i;
3011
3012 if ((size && !coalesce) || !vsi)
3013 return;
3014
3015 /* There are a couple of cases that have to be handled here:
3016 * 1. The case where the number of queue vectors stays the same, but
3017 * the number of Tx or Rx rings changes (the first for loop)
3018 * 2. The case where the number of queue vectors increased (the
3019 * second for loop)
3020 */
3021 for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3022 /* There are 2 cases to handle here and they are the same for
3023 * both Tx and Rx:
3024 * if the entry was valid previously (coalesce[i].[tr]x_valid
3025 * and the loop variable is less than the number of rings
3026 * allocated, then write the previous values
3027 *
3028 * if the entry was not valid previously, but the number of
3029 * rings is less than are allocated (this means the number of
3030 * rings increased from previously), then write out the
3031 * values in the first element
3032 *
3033 * Also, always write the ITR, even if in ITR_IS_DYNAMIC
3034 * as there is no harm because the dynamic algorithm
3035 * will just overwrite.
3036 */
3037 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3038 rc = &vsi->q_vectors[i]->rx;
3039 rc->itr_settings = coalesce[i].itr_rx;
3040 ice_write_itr(rc, rc->itr_setting);
3041 } else if (i < vsi->alloc_rxq) {
3042 rc = &vsi->q_vectors[i]->rx;
3043 rc->itr_settings = coalesce[0].itr_rx;
3044 ice_write_itr(rc, rc->itr_setting);
3045 }
3046
3047 if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3048 rc = &vsi->q_vectors[i]->tx;
3049 rc->itr_settings = coalesce[i].itr_tx;
3050 ice_write_itr(rc, rc->itr_setting);
3051 } else if (i < vsi->alloc_txq) {
3052 rc = &vsi->q_vectors[i]->tx;
3053 rc->itr_settings = coalesce[0].itr_tx;
3054 ice_write_itr(rc, rc->itr_setting);
3055 }
3056
3057 vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3058 ice_write_intrl(vsi->q_vectors[i], coalesce[i].intrl);
3059 }
3060
3061 /* the number of queue vectors increased so write whatever is in
3062 * the first element
3063 */
3064 for (; i < vsi->num_q_vectors; i++) {
3065 /* transmit */
3066 rc = &vsi->q_vectors[i]->tx;
3067 rc->itr_settings = coalesce[0].itr_tx;
3068 ice_write_itr(rc, rc->itr_setting);
3069
3070 /* receive */
3071 rc = &vsi->q_vectors[i]->rx;
3072 rc->itr_settings = coalesce[0].itr_rx;
3073 ice_write_itr(rc, rc->itr_setting);
3074
3075 vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3076 ice_write_intrl(vsi->q_vectors[i], coalesce[0].intrl);
3077 }
3078 }
3079
3080 /**
3081 * ice_vsi_rebuild - Rebuild VSI after reset
3082 * @vsi: VSI to be rebuild
3083 * @init_vsi: is this an initialization or a reconfigure of the VSI
3084 *
3085 * Returns 0 on success and negative value on failure
3086 */
ice_vsi_rebuild(struct ice_vsi * vsi,bool init_vsi)3087 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
3088 {
3089 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3090 struct ice_coalesce_stored *coalesce;
3091 int prev_num_q_vectors = 0;
3092 struct ice_vf *vf = NULL;
3093 enum ice_vsi_type vtype;
3094 enum ice_status status;
3095 struct ice_pf *pf;
3096 int ret, i;
3097
3098 if (!vsi)
3099 return -EINVAL;
3100
3101 pf = vsi->back;
3102 vtype = vsi->type;
3103 if (vtype == ICE_VSI_VF)
3104 vf = &pf->vf[vsi->vf_id];
3105
3106 coalesce = kcalloc(vsi->num_q_vectors,
3107 sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3108 if (!coalesce)
3109 return -ENOMEM;
3110
3111 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3112
3113 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3114 ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
3115 if (ret)
3116 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3117 vsi->vsi_num, ret);
3118 ice_vsi_free_q_vectors(vsi);
3119
3120 /* SR-IOV determines needed MSIX resources all at once instead of per
3121 * VSI since when VFs are spawned we know how many VFs there are and how
3122 * many interrupts each VF needs. SR-IOV MSIX resources are also
3123 * cleared in the same manner.
3124 */
3125 if (vtype != ICE_VSI_VF) {
3126 /* reclaim SW interrupts back to the common pool */
3127 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3128 pf->num_avail_sw_msix += vsi->num_q_vectors;
3129 vsi->base_vector = 0;
3130 }
3131
3132 if (ice_is_xdp_ena_vsi(vsi))
3133 /* return value check can be skipped here, it always returns
3134 * 0 if reset is in progress
3135 */
3136 ice_destroy_xdp_rings(vsi);
3137 ice_vsi_put_qs(vsi);
3138 ice_vsi_clear_rings(vsi);
3139 ice_vsi_free_arrays(vsi);
3140 if (vtype == ICE_VSI_VF)
3141 ice_vsi_set_num_qs(vsi, vf->vf_id);
3142 else
3143 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
3144
3145 ret = ice_vsi_alloc_arrays(vsi);
3146 if (ret < 0)
3147 goto err_vsi;
3148
3149 ice_vsi_get_qs(vsi);
3150
3151 ice_alloc_fd_res(vsi);
3152 ice_vsi_set_tc_cfg(vsi);
3153
3154 /* Initialize VSI struct elements and create VSI in FW */
3155 ret = ice_vsi_init(vsi, init_vsi);
3156 if (ret < 0)
3157 goto err_vsi;
3158
3159 switch (vtype) {
3160 case ICE_VSI_CTRL:
3161 case ICE_VSI_PF:
3162 ret = ice_vsi_alloc_q_vectors(vsi);
3163 if (ret)
3164 goto err_rings;
3165
3166 ret = ice_vsi_setup_vector_base(vsi);
3167 if (ret)
3168 goto err_vectors;
3169
3170 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3171 if (ret)
3172 goto err_vectors;
3173
3174 ret = ice_vsi_alloc_rings(vsi);
3175 if (ret)
3176 goto err_vectors;
3177
3178 ice_vsi_map_rings_to_vectors(vsi);
3179 if (ice_is_xdp_ena_vsi(vsi)) {
3180 vsi->num_xdp_txq = vsi->alloc_rxq;
3181 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
3182 if (ret)
3183 goto err_vectors;
3184 }
3185 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
3186 if (vtype != ICE_VSI_CTRL)
3187 /* Do not exit if configuring RSS had an issue, at
3188 * least receive traffic on first queue. Hence no
3189 * need to capture return value
3190 */
3191 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3192 ice_vsi_cfg_rss_lut_key(vsi);
3193 break;
3194 case ICE_VSI_VF:
3195 ret = ice_vsi_alloc_q_vectors(vsi);
3196 if (ret)
3197 goto err_rings;
3198
3199 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3200 if (ret)
3201 goto err_vectors;
3202
3203 ret = ice_vsi_alloc_rings(vsi);
3204 if (ret)
3205 goto err_vectors;
3206
3207 break;
3208 default:
3209 break;
3210 }
3211
3212 /* configure VSI nodes based on number of queues and TC's */
3213 for (i = 0; i < vsi->tc_cfg.numtc; i++) {
3214 max_txqs[i] = vsi->alloc_txq;
3215
3216 if (ice_is_xdp_ena_vsi(vsi))
3217 max_txqs[i] += vsi->num_xdp_txq;
3218 }
3219
3220 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3221 max_txqs);
3222 if (status) {
3223 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n",
3224 vsi->vsi_num, ice_stat_str(status));
3225 if (init_vsi) {
3226 ret = -EIO;
3227 goto err_vectors;
3228 } else {
3229 return ice_schedule_reset(pf, ICE_RESET_PFR);
3230 }
3231 }
3232 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3233 kfree(coalesce);
3234
3235 return 0;
3236
3237 err_vectors:
3238 ice_vsi_free_q_vectors(vsi);
3239 err_rings:
3240 if (vsi->netdev) {
3241 vsi->current_netdev_flags = 0;
3242 unregister_netdev(vsi->netdev);
3243 free_netdev(vsi->netdev);
3244 vsi->netdev = NULL;
3245 }
3246 err_vsi:
3247 ice_vsi_clear(vsi);
3248 set_bit(ICE_RESET_FAILED, pf->state);
3249 kfree(coalesce);
3250 return ret;
3251 }
3252
3253 /**
3254 * ice_is_reset_in_progress - check for a reset in progress
3255 * @state: PF state field
3256 */
ice_is_reset_in_progress(unsigned long * state)3257 bool ice_is_reset_in_progress(unsigned long *state)
3258 {
3259 return test_bit(ICE_RESET_OICR_RECV, state) ||
3260 test_bit(ICE_PFR_REQ, state) ||
3261 test_bit(ICE_CORER_REQ, state) ||
3262 test_bit(ICE_GLOBR_REQ, state);
3263 }
3264
3265 /**
3266 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3267 * @pf: pointer to the PF structure
3268 * @timeout: length of time to wait, in jiffies
3269 *
3270 * Wait (sleep) for a short time until the driver finishes cleaning up from
3271 * a device reset. The caller must be able to sleep. Use this to delay
3272 * operations that could fail while the driver is cleaning up after a device
3273 * reset.
3274 *
3275 * Returns 0 on success, -EBUSY if the reset is not finished within the
3276 * timeout, and -ERESTARTSYS if the thread was interrupted.
3277 */
ice_wait_for_reset(struct ice_pf * pf,unsigned long timeout)3278 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3279 {
3280 long ret;
3281
3282 ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3283 !ice_is_reset_in_progress(pf->state),
3284 timeout);
3285 if (ret < 0)
3286 return ret;
3287 else if (!ret)
3288 return -EBUSY;
3289 else
3290 return 0;
3291 }
3292
3293 #ifdef CONFIG_DCB
3294 /**
3295 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3296 * @vsi: VSI being configured
3297 * @ctx: the context buffer returned from AQ VSI update command
3298 */
ice_vsi_update_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctx)3299 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3300 {
3301 vsi->info.mapping_flags = ctx->info.mapping_flags;
3302 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3303 sizeof(vsi->info.q_mapping));
3304 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3305 sizeof(vsi->info.tc_mapping));
3306 }
3307
3308 /**
3309 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3310 * @vsi: VSI to be configured
3311 * @ena_tc: TC bitmap
3312 *
3313 * VSI queues expected to be quiesced before calling this function
3314 */
ice_vsi_cfg_tc(struct ice_vsi * vsi,u8 ena_tc)3315 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3316 {
3317 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3318 struct ice_pf *pf = vsi->back;
3319 struct ice_vsi_ctx *ctx;
3320 enum ice_status status;
3321 struct device *dev;
3322 int i, ret = 0;
3323 u8 num_tc = 0;
3324
3325 dev = ice_pf_to_dev(pf);
3326
3327 ice_for_each_traffic_class(i) {
3328 /* build bitmap of enabled TCs */
3329 if (ena_tc & BIT(i))
3330 num_tc++;
3331 /* populate max_txqs per TC */
3332 max_txqs[i] = vsi->alloc_txq;
3333 }
3334
3335 vsi->tc_cfg.ena_tc = ena_tc;
3336 vsi->tc_cfg.numtc = num_tc;
3337
3338 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3339 if (!ctx)
3340 return -ENOMEM;
3341
3342 ctx->vf_num = 0;
3343 ctx->info = vsi->info;
3344
3345 ice_vsi_setup_q_map(vsi, ctx);
3346
3347 /* must to indicate which section of VSI context are being modified */
3348 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3349 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3350 if (status) {
3351 dev_info(dev, "Failed VSI Update\n");
3352 ret = -EIO;
3353 goto out;
3354 }
3355
3356 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3357 max_txqs);
3358
3359 if (status) {
3360 dev_err(dev, "VSI %d failed TC config, error %s\n",
3361 vsi->vsi_num, ice_stat_str(status));
3362 ret = -EIO;
3363 goto out;
3364 }
3365 ice_vsi_update_q_map(vsi, ctx);
3366 vsi->info.valid_sections = 0;
3367
3368 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3369 out:
3370 kfree(ctx);
3371 return ret;
3372 }
3373 #endif /* CONFIG_DCB */
3374
3375 /**
3376 * ice_update_ring_stats - Update ring statistics
3377 * @ring: ring to update
3378 * @pkts: number of processed packets
3379 * @bytes: number of processed bytes
3380 *
3381 * This function assumes that caller has acquired a u64_stats_sync lock.
3382 */
ice_update_ring_stats(struct ice_ring * ring,u64 pkts,u64 bytes)3383 static void ice_update_ring_stats(struct ice_ring *ring, u64 pkts, u64 bytes)
3384 {
3385 ring->stats.bytes += bytes;
3386 ring->stats.pkts += pkts;
3387 }
3388
3389 /**
3390 * ice_update_tx_ring_stats - Update Tx ring specific counters
3391 * @tx_ring: ring to update
3392 * @pkts: number of processed packets
3393 * @bytes: number of processed bytes
3394 */
ice_update_tx_ring_stats(struct ice_ring * tx_ring,u64 pkts,u64 bytes)3395 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes)
3396 {
3397 u64_stats_update_begin(&tx_ring->syncp);
3398 ice_update_ring_stats(tx_ring, pkts, bytes);
3399 u64_stats_update_end(&tx_ring->syncp);
3400 }
3401
3402 /**
3403 * ice_update_rx_ring_stats - Update Rx ring specific counters
3404 * @rx_ring: ring to update
3405 * @pkts: number of processed packets
3406 * @bytes: number of processed bytes
3407 */
ice_update_rx_ring_stats(struct ice_ring * rx_ring,u64 pkts,u64 bytes)3408 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes)
3409 {
3410 u64_stats_update_begin(&rx_ring->syncp);
3411 ice_update_ring_stats(rx_ring, pkts, bytes);
3412 u64_stats_update_end(&rx_ring->syncp);
3413 }
3414
3415 /**
3416 * ice_status_to_errno - convert from enum ice_status to Linux errno
3417 * @err: ice_status value to convert
3418 */
ice_status_to_errno(enum ice_status err)3419 int ice_status_to_errno(enum ice_status err)
3420 {
3421 switch (err) {
3422 case ICE_SUCCESS:
3423 return 0;
3424 case ICE_ERR_DOES_NOT_EXIST:
3425 return -ENOENT;
3426 case ICE_ERR_OUT_OF_RANGE:
3427 case ICE_ERR_AQ_ERROR:
3428 case ICE_ERR_AQ_TIMEOUT:
3429 case ICE_ERR_AQ_EMPTY:
3430 case ICE_ERR_AQ_FW_CRITICAL:
3431 return -EIO;
3432 case ICE_ERR_PARAM:
3433 case ICE_ERR_INVAL_SIZE:
3434 return -EINVAL;
3435 case ICE_ERR_NO_MEMORY:
3436 return -ENOMEM;
3437 case ICE_ERR_MAX_LIMIT:
3438 return -EAGAIN;
3439 case ICE_ERR_RESET_ONGOING:
3440 return -EBUSY;
3441 case ICE_ERR_AQ_FULL:
3442 return -ENOSPC;
3443 default:
3444 return -EINVAL;
3445 }
3446 }
3447
3448 /**
3449 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3450 * @sw: switch to check if its default forwarding VSI is free
3451 *
3452 * Return true if the default forwarding VSI is already being used, else returns
3453 * false signalling that it's available to use.
3454 */
ice_is_dflt_vsi_in_use(struct ice_sw * sw)3455 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw)
3456 {
3457 return (sw->dflt_vsi && sw->dflt_vsi_ena);
3458 }
3459
3460 /**
3461 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3462 * @sw: switch for the default forwarding VSI to compare against
3463 * @vsi: VSI to compare against default forwarding VSI
3464 *
3465 * If this VSI passed in is the default forwarding VSI then return true, else
3466 * return false
3467 */
ice_is_vsi_dflt_vsi(struct ice_sw * sw,struct ice_vsi * vsi)3468 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3469 {
3470 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena);
3471 }
3472
3473 /**
3474 * ice_set_dflt_vsi - set the default forwarding VSI
3475 * @sw: switch used to assign the default forwarding VSI
3476 * @vsi: VSI getting set as the default forwarding VSI on the switch
3477 *
3478 * If the VSI passed in is already the default VSI and it's enabled just return
3479 * success.
3480 *
3481 * If there is already a default VSI on the switch and it's enabled then return
3482 * -EEXIST since there can only be one default VSI per switch.
3483 *
3484 * Otherwise try to set the VSI passed in as the switch's default VSI and
3485 * return the result.
3486 */
ice_set_dflt_vsi(struct ice_sw * sw,struct ice_vsi * vsi)3487 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3488 {
3489 enum ice_status status;
3490 struct device *dev;
3491
3492 if (!sw || !vsi)
3493 return -EINVAL;
3494
3495 dev = ice_pf_to_dev(vsi->back);
3496
3497 /* the VSI passed in is already the default VSI */
3498 if (ice_is_vsi_dflt_vsi(sw, vsi)) {
3499 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3500 vsi->vsi_num);
3501 return 0;
3502 }
3503
3504 /* another VSI is already the default VSI for this switch */
3505 if (ice_is_dflt_vsi_in_use(sw)) {
3506 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n",
3507 sw->dflt_vsi->vsi_num);
3508 return -EEXIST;
3509 }
3510
3511 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX);
3512 if (status) {
3513 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n",
3514 vsi->vsi_num, ice_stat_str(status));
3515 return -EIO;
3516 }
3517
3518 sw->dflt_vsi = vsi;
3519 sw->dflt_vsi_ena = true;
3520
3521 return 0;
3522 }
3523
3524 /**
3525 * ice_clear_dflt_vsi - clear the default forwarding VSI
3526 * @sw: switch used to clear the default VSI
3527 *
3528 * If the switch has no default VSI or it's not enabled then return error.
3529 *
3530 * Otherwise try to clear the default VSI and return the result.
3531 */
ice_clear_dflt_vsi(struct ice_sw * sw)3532 int ice_clear_dflt_vsi(struct ice_sw *sw)
3533 {
3534 struct ice_vsi *dflt_vsi;
3535 enum ice_status status;
3536 struct device *dev;
3537
3538 if (!sw)
3539 return -EINVAL;
3540
3541 dev = ice_pf_to_dev(sw->pf);
3542
3543 dflt_vsi = sw->dflt_vsi;
3544
3545 /* there is no default VSI configured */
3546 if (!ice_is_dflt_vsi_in_use(sw))
3547 return -ENODEV;
3548
3549 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false,
3550 ICE_FLTR_RX);
3551 if (status) {
3552 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n",
3553 dflt_vsi->vsi_num, ice_stat_str(status));
3554 return -EIO;
3555 }
3556
3557 sw->dflt_vsi = NULL;
3558 sw->dflt_vsi_ena = false;
3559
3560 return 0;
3561 }
3562
3563 /**
3564 * ice_set_link - turn on/off physical link
3565 * @vsi: VSI to modify physical link on
3566 * @ena: turn on/off physical link
3567 */
ice_set_link(struct ice_vsi * vsi,bool ena)3568 int ice_set_link(struct ice_vsi *vsi, bool ena)
3569 {
3570 struct device *dev = ice_pf_to_dev(vsi->back);
3571 struct ice_port_info *pi = vsi->port_info;
3572 struct ice_hw *hw = pi->hw;
3573 enum ice_status status;
3574
3575 if (vsi->type != ICE_VSI_PF)
3576 return -EINVAL;
3577
3578 status = ice_aq_set_link_restart_an(pi, ena, NULL);
3579
3580 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3581 * this is not a fatal error, so print a warning message and return
3582 * a success code. Return an error if FW returns an error code other
3583 * than ICE_AQ_RC_EMODE
3584 */
3585 if (status == ICE_ERR_AQ_ERROR) {
3586 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3587 dev_warn(dev, "can't set link to %s, err %s aq_err %s. not fatal, continuing\n",
3588 (ena ? "ON" : "OFF"), ice_stat_str(status),
3589 ice_aq_str(hw->adminq.sq_last_status));
3590 } else if (status) {
3591 dev_err(dev, "can't set link to %s, err %s aq_err %s\n",
3592 (ena ? "ON" : "OFF"), ice_stat_str(status),
3593 ice_aq_str(hw->adminq.sq_last_status));
3594 return -EIO;
3595 }
3596
3597 return 0;
3598 }
3599