1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2008 Intel Corporation. */
3
4 /* ixgb_hw.c
5 * Shared functions for accessing and configuring the adapter
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/pci_ids.h>
11 #include "ixgb_hw.h"
12 #include "ixgb_ids.h"
13
14 #include <linux/etherdevice.h>
15
16 /* Local function prototypes */
17
18 static u32 ixgb_hash_mc_addr(struct ixgb_hw *hw, u8 * mc_addr);
19
20 static void ixgb_mta_set(struct ixgb_hw *hw, u32 hash_value);
21
22 static void ixgb_get_bus_info(struct ixgb_hw *hw);
23
24 static bool ixgb_link_reset(struct ixgb_hw *hw);
25
26 static void ixgb_optics_reset(struct ixgb_hw *hw);
27
28 static void ixgb_optics_reset_bcm(struct ixgb_hw *hw);
29
30 static ixgb_phy_type ixgb_identify_phy(struct ixgb_hw *hw);
31
32 static void ixgb_clear_hw_cntrs(struct ixgb_hw *hw);
33
34 static void ixgb_clear_vfta(struct ixgb_hw *hw);
35
36 static void ixgb_init_rx_addrs(struct ixgb_hw *hw);
37
38 static u16 ixgb_read_phy_reg(struct ixgb_hw *hw,
39 u32 reg_address,
40 u32 phy_address,
41 u32 device_type);
42
43 static bool ixgb_setup_fc(struct ixgb_hw *hw);
44
45 static bool mac_addr_valid(u8 *mac_addr);
46
ixgb_mac_reset(struct ixgb_hw * hw)47 static u32 ixgb_mac_reset(struct ixgb_hw *hw)
48 {
49 u32 ctrl_reg;
50
51 ctrl_reg = IXGB_CTRL0_RST |
52 IXGB_CTRL0_SDP3_DIR | /* All pins are Output=1 */
53 IXGB_CTRL0_SDP2_DIR |
54 IXGB_CTRL0_SDP1_DIR |
55 IXGB_CTRL0_SDP0_DIR |
56 IXGB_CTRL0_SDP3 | /* Initial value 1101 */
57 IXGB_CTRL0_SDP2 |
58 IXGB_CTRL0_SDP0;
59
60 #ifdef HP_ZX1
61 /* Workaround for 82597EX reset errata */
62 IXGB_WRITE_REG_IO(hw, CTRL0, ctrl_reg);
63 #else
64 IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
65 #endif
66
67 /* Delay a few ms just to allow the reset to complete */
68 msleep(IXGB_DELAY_AFTER_RESET);
69 ctrl_reg = IXGB_READ_REG(hw, CTRL0);
70 #ifdef DBG
71 /* Make sure the self-clearing global reset bit did self clear */
72 ASSERT(!(ctrl_reg & IXGB_CTRL0_RST));
73 #endif
74
75 if (hw->subsystem_vendor_id == PCI_VENDOR_ID_SUN) {
76 ctrl_reg = /* Enable interrupt from XFP and SerDes */
77 IXGB_CTRL1_GPI0_EN |
78 IXGB_CTRL1_SDP6_DIR |
79 IXGB_CTRL1_SDP7_DIR |
80 IXGB_CTRL1_SDP6 |
81 IXGB_CTRL1_SDP7;
82 IXGB_WRITE_REG(hw, CTRL1, ctrl_reg);
83 ixgb_optics_reset_bcm(hw);
84 }
85
86 if (hw->phy_type == ixgb_phy_type_txn17401)
87 ixgb_optics_reset(hw);
88
89 return ctrl_reg;
90 }
91
92 /******************************************************************************
93 * Reset the transmit and receive units; mask and clear all interrupts.
94 *
95 * hw - Struct containing variables accessed by shared code
96 *****************************************************************************/
97 bool
ixgb_adapter_stop(struct ixgb_hw * hw)98 ixgb_adapter_stop(struct ixgb_hw *hw)
99 {
100 u32 ctrl_reg;
101
102 ENTER();
103
104 /* If we are stopped or resetting exit gracefully and wait to be
105 * started again before accessing the hardware.
106 */
107 if (hw->adapter_stopped) {
108 pr_debug("Exiting because the adapter is already stopped!!!\n");
109 return false;
110 }
111
112 /* Set the Adapter Stopped flag so other driver functions stop
113 * touching the Hardware.
114 */
115 hw->adapter_stopped = true;
116
117 /* Clear interrupt mask to stop board from generating interrupts */
118 pr_debug("Masking off all interrupts\n");
119 IXGB_WRITE_REG(hw, IMC, 0xFFFFFFFF);
120
121 /* Disable the Transmit and Receive units. Then delay to allow
122 * any pending transactions to complete before we hit the MAC with
123 * the global reset.
124 */
125 IXGB_WRITE_REG(hw, RCTL, IXGB_READ_REG(hw, RCTL) & ~IXGB_RCTL_RXEN);
126 IXGB_WRITE_REG(hw, TCTL, IXGB_READ_REG(hw, TCTL) & ~IXGB_TCTL_TXEN);
127 IXGB_WRITE_FLUSH(hw);
128 msleep(IXGB_DELAY_BEFORE_RESET);
129
130 /* Issue a global reset to the MAC. This will reset the chip's
131 * transmit, receive, DMA, and link units. It will not effect
132 * the current PCI configuration. The global reset bit is self-
133 * clearing, and should clear within a microsecond.
134 */
135 pr_debug("Issuing a global reset to MAC\n");
136
137 ctrl_reg = ixgb_mac_reset(hw);
138
139 /* Clear interrupt mask to stop board from generating interrupts */
140 pr_debug("Masking off all interrupts\n");
141 IXGB_WRITE_REG(hw, IMC, 0xffffffff);
142
143 /* Clear any pending interrupt events. */
144 IXGB_READ_REG(hw, ICR);
145
146 return ctrl_reg & IXGB_CTRL0_RST;
147 }
148
149
150 /******************************************************************************
151 * Identifies the vendor of the optics module on the adapter. The SR adapters
152 * support two different types of XPAK optics, so it is necessary to determine
153 * which optics are present before applying any optics-specific workarounds.
154 *
155 * hw - Struct containing variables accessed by shared code.
156 *
157 * Returns: the vendor of the XPAK optics module.
158 *****************************************************************************/
159 static ixgb_xpak_vendor
ixgb_identify_xpak_vendor(struct ixgb_hw * hw)160 ixgb_identify_xpak_vendor(struct ixgb_hw *hw)
161 {
162 u32 i;
163 u16 vendor_name[5];
164 ixgb_xpak_vendor xpak_vendor;
165
166 ENTER();
167
168 /* Read the first few bytes of the vendor string from the XPAK NVR
169 * registers. These are standard XENPAK/XPAK registers, so all XPAK
170 * devices should implement them. */
171 for (i = 0; i < 5; i++) {
172 vendor_name[i] = ixgb_read_phy_reg(hw,
173 MDIO_PMA_PMD_XPAK_VENDOR_NAME
174 + i, IXGB_PHY_ADDRESS,
175 MDIO_MMD_PMAPMD);
176 }
177
178 /* Determine the actual vendor */
179 if (vendor_name[0] == 'I' &&
180 vendor_name[1] == 'N' &&
181 vendor_name[2] == 'T' &&
182 vendor_name[3] == 'E' && vendor_name[4] == 'L') {
183 xpak_vendor = ixgb_xpak_vendor_intel;
184 } else {
185 xpak_vendor = ixgb_xpak_vendor_infineon;
186 }
187
188 return xpak_vendor;
189 }
190
191 /******************************************************************************
192 * Determine the physical layer module on the adapter.
193 *
194 * hw - Struct containing variables accessed by shared code. The device_id
195 * field must be (correctly) populated before calling this routine.
196 *
197 * Returns: the phy type of the adapter.
198 *****************************************************************************/
199 static ixgb_phy_type
ixgb_identify_phy(struct ixgb_hw * hw)200 ixgb_identify_phy(struct ixgb_hw *hw)
201 {
202 ixgb_phy_type phy_type;
203 ixgb_xpak_vendor xpak_vendor;
204
205 ENTER();
206
207 /* Infer the transceiver/phy type from the device id */
208 switch (hw->device_id) {
209 case IXGB_DEVICE_ID_82597EX:
210 pr_debug("Identified TXN17401 optics\n");
211 phy_type = ixgb_phy_type_txn17401;
212 break;
213
214 case IXGB_DEVICE_ID_82597EX_SR:
215 /* The SR adapters carry two different types of XPAK optics
216 * modules; read the vendor identifier to determine the exact
217 * type of optics. */
218 xpak_vendor = ixgb_identify_xpak_vendor(hw);
219 if (xpak_vendor == ixgb_xpak_vendor_intel) {
220 pr_debug("Identified TXN17201 optics\n");
221 phy_type = ixgb_phy_type_txn17201;
222 } else {
223 pr_debug("Identified G6005 optics\n");
224 phy_type = ixgb_phy_type_g6005;
225 }
226 break;
227 case IXGB_DEVICE_ID_82597EX_LR:
228 pr_debug("Identified G6104 optics\n");
229 phy_type = ixgb_phy_type_g6104;
230 break;
231 case IXGB_DEVICE_ID_82597EX_CX4:
232 pr_debug("Identified CX4\n");
233 xpak_vendor = ixgb_identify_xpak_vendor(hw);
234 if (xpak_vendor == ixgb_xpak_vendor_intel) {
235 pr_debug("Identified TXN17201 optics\n");
236 phy_type = ixgb_phy_type_txn17201;
237 } else {
238 pr_debug("Identified G6005 optics\n");
239 phy_type = ixgb_phy_type_g6005;
240 }
241 break;
242 default:
243 pr_debug("Unknown physical layer module\n");
244 phy_type = ixgb_phy_type_unknown;
245 break;
246 }
247
248 /* update phy type for sun specific board */
249 if (hw->subsystem_vendor_id == PCI_VENDOR_ID_SUN)
250 phy_type = ixgb_phy_type_bcm;
251
252 return phy_type;
253 }
254
255 /******************************************************************************
256 * Performs basic configuration of the adapter.
257 *
258 * hw - Struct containing variables accessed by shared code
259 *
260 * Resets the controller.
261 * Reads and validates the EEPROM.
262 * Initializes the receive address registers.
263 * Initializes the multicast table.
264 * Clears all on-chip counters.
265 * Calls routine to setup flow control settings.
266 * Leaves the transmit and receive units disabled and uninitialized.
267 *
268 * Returns:
269 * true if successful,
270 * false if unrecoverable problems were encountered.
271 *****************************************************************************/
272 bool
ixgb_init_hw(struct ixgb_hw * hw)273 ixgb_init_hw(struct ixgb_hw *hw)
274 {
275 u32 i;
276 bool status;
277
278 ENTER();
279
280 /* Issue a global reset to the MAC. This will reset the chip's
281 * transmit, receive, DMA, and link units. It will not effect
282 * the current PCI configuration. The global reset bit is self-
283 * clearing, and should clear within a microsecond.
284 */
285 pr_debug("Issuing a global reset to MAC\n");
286
287 ixgb_mac_reset(hw);
288
289 pr_debug("Issuing an EE reset to MAC\n");
290 #ifdef HP_ZX1
291 /* Workaround for 82597EX reset errata */
292 IXGB_WRITE_REG_IO(hw, CTRL1, IXGB_CTRL1_EE_RST);
293 #else
294 IXGB_WRITE_REG(hw, CTRL1, IXGB_CTRL1_EE_RST);
295 #endif
296
297 /* Delay a few ms just to allow the reset to complete */
298 msleep(IXGB_DELAY_AFTER_EE_RESET);
299
300 if (!ixgb_get_eeprom_data(hw))
301 return false;
302
303 /* Use the device id to determine the type of phy/transceiver. */
304 hw->device_id = ixgb_get_ee_device_id(hw);
305 hw->phy_type = ixgb_identify_phy(hw);
306
307 /* Setup the receive addresses.
308 * Receive Address Registers (RARs 0 - 15).
309 */
310 ixgb_init_rx_addrs(hw);
311
312 /*
313 * Check that a valid MAC address has been set.
314 * If it is not valid, we fail hardware init.
315 */
316 if (!mac_addr_valid(hw->curr_mac_addr)) {
317 pr_debug("MAC address invalid after ixgb_init_rx_addrs\n");
318 return(false);
319 }
320
321 /* tell the routines in this file they can access hardware again */
322 hw->adapter_stopped = false;
323
324 /* Fill in the bus_info structure */
325 ixgb_get_bus_info(hw);
326
327 /* Zero out the Multicast HASH table */
328 pr_debug("Zeroing the MTA\n");
329 for (i = 0; i < IXGB_MC_TBL_SIZE; i++)
330 IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
331
332 /* Zero out the VLAN Filter Table Array */
333 ixgb_clear_vfta(hw);
334
335 /* Zero all of the hardware counters */
336 ixgb_clear_hw_cntrs(hw);
337
338 /* Call a subroutine to setup flow control. */
339 status = ixgb_setup_fc(hw);
340
341 /* 82597EX errata: Call check-for-link in case lane deskew is locked */
342 ixgb_check_for_link(hw);
343
344 return status;
345 }
346
347 /******************************************************************************
348 * Initializes receive address filters.
349 *
350 * hw - Struct containing variables accessed by shared code
351 *
352 * Places the MAC address in receive address register 0 and clears the rest
353 * of the receive address registers. Clears the multicast table. Assumes
354 * the receiver is in reset when the routine is called.
355 *****************************************************************************/
356 static void
ixgb_init_rx_addrs(struct ixgb_hw * hw)357 ixgb_init_rx_addrs(struct ixgb_hw *hw)
358 {
359 u32 i;
360
361 ENTER();
362
363 /*
364 * If the current mac address is valid, assume it is a software override
365 * to the permanent address.
366 * Otherwise, use the permanent address from the eeprom.
367 */
368 if (!mac_addr_valid(hw->curr_mac_addr)) {
369
370 /* Get the MAC address from the eeprom for later reference */
371 ixgb_get_ee_mac_addr(hw, hw->curr_mac_addr);
372
373 pr_debug("Keeping Permanent MAC Addr = %pM\n",
374 hw->curr_mac_addr);
375 } else {
376
377 /* Setup the receive address. */
378 pr_debug("Overriding MAC Address in RAR[0]\n");
379 pr_debug("New MAC Addr = %pM\n", hw->curr_mac_addr);
380
381 ixgb_rar_set(hw, hw->curr_mac_addr, 0);
382 }
383
384 /* Zero out the other 15 receive addresses. */
385 pr_debug("Clearing RAR[1-15]\n");
386 for (i = 1; i < IXGB_RAR_ENTRIES; i++) {
387 /* Write high reg first to disable the AV bit first */
388 IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
389 IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
390 }
391 }
392
393 /******************************************************************************
394 * Updates the MAC's list of multicast addresses.
395 *
396 * hw - Struct containing variables accessed by shared code
397 * mc_addr_list - the list of new multicast addresses
398 * mc_addr_count - number of addresses
399 * pad - number of bytes between addresses in the list
400 *
401 * The given list replaces any existing list. Clears the last 15 receive
402 * address registers and the multicast table. Uses receive address registers
403 * for the first 15 multicast addresses, and hashes the rest into the
404 * multicast table.
405 *****************************************************************************/
406 void
ixgb_mc_addr_list_update(struct ixgb_hw * hw,u8 * mc_addr_list,u32 mc_addr_count,u32 pad)407 ixgb_mc_addr_list_update(struct ixgb_hw *hw,
408 u8 *mc_addr_list,
409 u32 mc_addr_count,
410 u32 pad)
411 {
412 u32 hash_value;
413 u32 i;
414 u32 rar_used_count = 1; /* RAR[0] is used for our MAC address */
415 u8 *mca;
416
417 ENTER();
418
419 /* Set the new number of MC addresses that we are being requested to use. */
420 hw->num_mc_addrs = mc_addr_count;
421
422 /* Clear RAR[1-15] */
423 pr_debug("Clearing RAR[1-15]\n");
424 for (i = rar_used_count; i < IXGB_RAR_ENTRIES; i++) {
425 IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
426 IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
427 }
428
429 /* Clear the MTA */
430 pr_debug("Clearing MTA\n");
431 for (i = 0; i < IXGB_MC_TBL_SIZE; i++)
432 IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
433
434 /* Add the new addresses */
435 mca = mc_addr_list;
436 for (i = 0; i < mc_addr_count; i++) {
437 pr_debug("Adding the multicast addresses:\n");
438 pr_debug("MC Addr #%d = %pM\n", i, mca);
439
440 /* Place this multicast address in the RAR if there is room, *
441 * else put it in the MTA
442 */
443 if (rar_used_count < IXGB_RAR_ENTRIES) {
444 ixgb_rar_set(hw, mca, rar_used_count);
445 pr_debug("Added a multicast address to RAR[%d]\n", i);
446 rar_used_count++;
447 } else {
448 hash_value = ixgb_hash_mc_addr(hw, mca);
449
450 pr_debug("Hash value = 0x%03X\n", hash_value);
451
452 ixgb_mta_set(hw, hash_value);
453 }
454
455 mca += ETH_ALEN + pad;
456 }
457
458 pr_debug("MC Update Complete\n");
459 }
460
461 /******************************************************************************
462 * Hashes an address to determine its location in the multicast table
463 *
464 * hw - Struct containing variables accessed by shared code
465 * mc_addr - the multicast address to hash
466 *
467 * Returns:
468 * The hash value
469 *****************************************************************************/
470 static u32
ixgb_hash_mc_addr(struct ixgb_hw * hw,u8 * mc_addr)471 ixgb_hash_mc_addr(struct ixgb_hw *hw,
472 u8 *mc_addr)
473 {
474 u32 hash_value = 0;
475
476 ENTER();
477
478 /* The portion of the address that is used for the hash table is
479 * determined by the mc_filter_type setting.
480 */
481 switch (hw->mc_filter_type) {
482 /* [0] [1] [2] [3] [4] [5]
483 * 01 AA 00 12 34 56
484 * LSB MSB - According to H/W docs */
485 case 0:
486 /* [47:36] i.e. 0x563 for above example address */
487 hash_value =
488 ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
489 break;
490 case 1: /* [46:35] i.e. 0xAC6 for above example address */
491 hash_value =
492 ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
493 break;
494 case 2: /* [45:34] i.e. 0x5D8 for above example address */
495 hash_value =
496 ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
497 break;
498 case 3: /* [43:32] i.e. 0x634 for above example address */
499 hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
500 break;
501 default:
502 /* Invalid mc_filter_type, what should we do? */
503 pr_debug("MC filter type param set incorrectly\n");
504 ASSERT(0);
505 break;
506 }
507
508 hash_value &= 0xFFF;
509 return hash_value;
510 }
511
512 /******************************************************************************
513 * Sets the bit in the multicast table corresponding to the hash value.
514 *
515 * hw - Struct containing variables accessed by shared code
516 * hash_value - Multicast address hash value
517 *****************************************************************************/
518 static void
ixgb_mta_set(struct ixgb_hw * hw,u32 hash_value)519 ixgb_mta_set(struct ixgb_hw *hw,
520 u32 hash_value)
521 {
522 u32 hash_bit, hash_reg;
523 u32 mta_reg;
524
525 /* The MTA is a register array of 128 32-bit registers.
526 * It is treated like an array of 4096 bits. We want to set
527 * bit BitArray[hash_value]. So we figure out what register
528 * the bit is in, read it, OR in the new bit, then write
529 * back the new value. The register is determined by the
530 * upper 7 bits of the hash value and the bit within that
531 * register are determined by the lower 5 bits of the value.
532 */
533 hash_reg = (hash_value >> 5) & 0x7F;
534 hash_bit = hash_value & 0x1F;
535
536 mta_reg = IXGB_READ_REG_ARRAY(hw, MTA, hash_reg);
537
538 mta_reg |= (1 << hash_bit);
539
540 IXGB_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta_reg);
541 }
542
543 /******************************************************************************
544 * Puts an ethernet address into a receive address register.
545 *
546 * hw - Struct containing variables accessed by shared code
547 * addr - Address to put into receive address register
548 * index - Receive address register to write
549 *****************************************************************************/
550 void
ixgb_rar_set(struct ixgb_hw * hw,const u8 * addr,u32 index)551 ixgb_rar_set(struct ixgb_hw *hw,
552 const u8 *addr,
553 u32 index)
554 {
555 u32 rar_low, rar_high;
556
557 ENTER();
558
559 /* HW expects these in little endian so we reverse the byte order
560 * from network order (big endian) to little endian
561 */
562 rar_low = ((u32) addr[0] |
563 ((u32)addr[1] << 8) |
564 ((u32)addr[2] << 16) |
565 ((u32)addr[3] << 24));
566
567 rar_high = ((u32) addr[4] |
568 ((u32)addr[5] << 8) |
569 IXGB_RAH_AV);
570
571 IXGB_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
572 IXGB_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
573 }
574
575 /******************************************************************************
576 * Writes a value to the specified offset in the VLAN filter table.
577 *
578 * hw - Struct containing variables accessed by shared code
579 * offset - Offset in VLAN filer table to write
580 * value - Value to write into VLAN filter table
581 *****************************************************************************/
582 void
ixgb_write_vfta(struct ixgb_hw * hw,u32 offset,u32 value)583 ixgb_write_vfta(struct ixgb_hw *hw,
584 u32 offset,
585 u32 value)
586 {
587 IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, value);
588 }
589
590 /******************************************************************************
591 * Clears the VLAN filer table
592 *
593 * hw - Struct containing variables accessed by shared code
594 *****************************************************************************/
595 static void
ixgb_clear_vfta(struct ixgb_hw * hw)596 ixgb_clear_vfta(struct ixgb_hw *hw)
597 {
598 u32 offset;
599
600 for (offset = 0; offset < IXGB_VLAN_FILTER_TBL_SIZE; offset++)
601 IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
602 }
603
604 /******************************************************************************
605 * Configures the flow control settings based on SW configuration.
606 *
607 * hw - Struct containing variables accessed by shared code
608 *****************************************************************************/
609
610 static bool
ixgb_setup_fc(struct ixgb_hw * hw)611 ixgb_setup_fc(struct ixgb_hw *hw)
612 {
613 u32 ctrl_reg;
614 u32 pap_reg = 0; /* by default, assume no pause time */
615 bool status = true;
616
617 ENTER();
618
619 /* Get the current control reg 0 settings */
620 ctrl_reg = IXGB_READ_REG(hw, CTRL0);
621
622 /* Clear the Receive Pause Enable and Transmit Pause Enable bits */
623 ctrl_reg &= ~(IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
624
625 /* The possible values of the "flow_control" parameter are:
626 * 0: Flow control is completely disabled
627 * 1: Rx flow control is enabled (we can receive pause frames
628 * but not send pause frames).
629 * 2: Tx flow control is enabled (we can send pause frames
630 * but we do not support receiving pause frames).
631 * 3: Both Rx and TX flow control (symmetric) are enabled.
632 * other: Invalid.
633 */
634 switch (hw->fc.type) {
635 case ixgb_fc_none: /* 0 */
636 /* Set CMDC bit to disable Rx Flow control */
637 ctrl_reg |= (IXGB_CTRL0_CMDC);
638 break;
639 case ixgb_fc_rx_pause: /* 1 */
640 /* RX Flow control is enabled, and TX Flow control is
641 * disabled.
642 */
643 ctrl_reg |= (IXGB_CTRL0_RPE);
644 break;
645 case ixgb_fc_tx_pause: /* 2 */
646 /* TX Flow control is enabled, and RX Flow control is
647 * disabled, by a software over-ride.
648 */
649 ctrl_reg |= (IXGB_CTRL0_TPE);
650 pap_reg = hw->fc.pause_time;
651 break;
652 case ixgb_fc_full: /* 3 */
653 /* Flow control (both RX and TX) is enabled by a software
654 * over-ride.
655 */
656 ctrl_reg |= (IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
657 pap_reg = hw->fc.pause_time;
658 break;
659 default:
660 /* We should never get here. The value should be 0-3. */
661 pr_debug("Flow control param set incorrectly\n");
662 ASSERT(0);
663 break;
664 }
665
666 /* Write the new settings */
667 IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
668
669 if (pap_reg != 0)
670 IXGB_WRITE_REG(hw, PAP, pap_reg);
671
672 /* Set the flow control receive threshold registers. Normally,
673 * these registers will be set to a default threshold that may be
674 * adjusted later by the driver's runtime code. However, if the
675 * ability to transmit pause frames in not enabled, then these
676 * registers will be set to 0.
677 */
678 if (!(hw->fc.type & ixgb_fc_tx_pause)) {
679 IXGB_WRITE_REG(hw, FCRTL, 0);
680 IXGB_WRITE_REG(hw, FCRTH, 0);
681 } else {
682 /* We need to set up the Receive Threshold high and low water
683 * marks as well as (optionally) enabling the transmission of XON
684 * frames. */
685 if (hw->fc.send_xon) {
686 IXGB_WRITE_REG(hw, FCRTL,
687 (hw->fc.low_water | IXGB_FCRTL_XONE));
688 } else {
689 IXGB_WRITE_REG(hw, FCRTL, hw->fc.low_water);
690 }
691 IXGB_WRITE_REG(hw, FCRTH, hw->fc.high_water);
692 }
693 return status;
694 }
695
696 /******************************************************************************
697 * Reads a word from a device over the Management Data Interface (MDI) bus.
698 * This interface is used to manage Physical layer devices.
699 *
700 * hw - Struct containing variables accessed by hw code
701 * reg_address - Offset of device register being read.
702 * phy_address - Address of device on MDI.
703 *
704 * Returns: Data word (16 bits) from MDI device.
705 *
706 * The 82597EX has support for several MDI access methods. This routine
707 * uses the new protocol MDI Single Command and Address Operation.
708 * This requires that first an address cycle command is sent, followed by a
709 * read command.
710 *****************************************************************************/
711 static u16
ixgb_read_phy_reg(struct ixgb_hw * hw,u32 reg_address,u32 phy_address,u32 device_type)712 ixgb_read_phy_reg(struct ixgb_hw *hw,
713 u32 reg_address,
714 u32 phy_address,
715 u32 device_type)
716 {
717 u32 i;
718 u32 data;
719 u32 command = 0;
720
721 ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
722 ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
723 ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
724
725 /* Setup and write the address cycle command */
726 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
727 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
728 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
729 (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
730
731 IXGB_WRITE_REG(hw, MSCA, command);
732
733 /**************************************************************
734 ** Check every 10 usec to see if the address cycle completed
735 ** The COMMAND bit will clear when the operation is complete.
736 ** This may take as long as 64 usecs (we'll wait 100 usecs max)
737 ** from the CPU Write to the Ready bit assertion.
738 **************************************************************/
739
740 for (i = 0; i < 10; i++)
741 {
742 udelay(10);
743
744 command = IXGB_READ_REG(hw, MSCA);
745
746 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
747 break;
748 }
749
750 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
751
752 /* Address cycle complete, setup and write the read command */
753 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
754 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
755 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
756 (IXGB_MSCA_READ | IXGB_MSCA_MDI_COMMAND));
757
758 IXGB_WRITE_REG(hw, MSCA, command);
759
760 /**************************************************************
761 ** Check every 10 usec to see if the read command completed
762 ** The COMMAND bit will clear when the operation is complete.
763 ** The read may take as long as 64 usecs (we'll wait 100 usecs max)
764 ** from the CPU Write to the Ready bit assertion.
765 **************************************************************/
766
767 for (i = 0; i < 10; i++)
768 {
769 udelay(10);
770
771 command = IXGB_READ_REG(hw, MSCA);
772
773 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
774 break;
775 }
776
777 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
778
779 /* Operation is complete, get the data from the MDIO Read/Write Data
780 * register and return.
781 */
782 data = IXGB_READ_REG(hw, MSRWD);
783 data >>= IXGB_MSRWD_READ_DATA_SHIFT;
784 return((u16) data);
785 }
786
787 /******************************************************************************
788 * Writes a word to a device over the Management Data Interface (MDI) bus.
789 * This interface is used to manage Physical layer devices.
790 *
791 * hw - Struct containing variables accessed by hw code
792 * reg_address - Offset of device register being read.
793 * phy_address - Address of device on MDI.
794 * device_type - Also known as the Device ID or DID.
795 * data - 16-bit value to be written
796 *
797 * Returns: void.
798 *
799 * The 82597EX has support for several MDI access methods. This routine
800 * uses the new protocol MDI Single Command and Address Operation.
801 * This requires that first an address cycle command is sent, followed by a
802 * write command.
803 *****************************************************************************/
804 static void
ixgb_write_phy_reg(struct ixgb_hw * hw,u32 reg_address,u32 phy_address,u32 device_type,u16 data)805 ixgb_write_phy_reg(struct ixgb_hw *hw,
806 u32 reg_address,
807 u32 phy_address,
808 u32 device_type,
809 u16 data)
810 {
811 u32 i;
812 u32 command = 0;
813
814 ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
815 ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
816 ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
817
818 /* Put the data in the MDIO Read/Write Data register */
819 IXGB_WRITE_REG(hw, MSRWD, (u32)data);
820
821 /* Setup and write the address cycle command */
822 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
823 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
824 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
825 (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
826
827 IXGB_WRITE_REG(hw, MSCA, command);
828
829 /**************************************************************
830 ** Check every 10 usec to see if the address cycle completed
831 ** The COMMAND bit will clear when the operation is complete.
832 ** This may take as long as 64 usecs (we'll wait 100 usecs max)
833 ** from the CPU Write to the Ready bit assertion.
834 **************************************************************/
835
836 for (i = 0; i < 10; i++)
837 {
838 udelay(10);
839
840 command = IXGB_READ_REG(hw, MSCA);
841
842 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
843 break;
844 }
845
846 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
847
848 /* Address cycle complete, setup and write the write command */
849 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
850 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
851 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
852 (IXGB_MSCA_WRITE | IXGB_MSCA_MDI_COMMAND));
853
854 IXGB_WRITE_REG(hw, MSCA, command);
855
856 /**************************************************************
857 ** Check every 10 usec to see if the read command completed
858 ** The COMMAND bit will clear when the operation is complete.
859 ** The write may take as long as 64 usecs (we'll wait 100 usecs max)
860 ** from the CPU Write to the Ready bit assertion.
861 **************************************************************/
862
863 for (i = 0; i < 10; i++)
864 {
865 udelay(10);
866
867 command = IXGB_READ_REG(hw, MSCA);
868
869 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
870 break;
871 }
872
873 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
874
875 /* Operation is complete, return. */
876 }
877
878 /******************************************************************************
879 * Checks to see if the link status of the hardware has changed.
880 *
881 * hw - Struct containing variables accessed by hw code
882 *
883 * Called by any function that needs to check the link status of the adapter.
884 *****************************************************************************/
885 void
ixgb_check_for_link(struct ixgb_hw * hw)886 ixgb_check_for_link(struct ixgb_hw *hw)
887 {
888 u32 status_reg;
889 u32 xpcss_reg;
890
891 ENTER();
892
893 xpcss_reg = IXGB_READ_REG(hw, XPCSS);
894 status_reg = IXGB_READ_REG(hw, STATUS);
895
896 if ((xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
897 (status_reg & IXGB_STATUS_LU)) {
898 hw->link_up = true;
899 } else if (!(xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
900 (status_reg & IXGB_STATUS_LU)) {
901 pr_debug("XPCSS Not Aligned while Status:LU is set\n");
902 hw->link_up = ixgb_link_reset(hw);
903 } else {
904 /*
905 * 82597EX errata. Since the lane deskew problem may prevent
906 * link, reset the link before reporting link down.
907 */
908 hw->link_up = ixgb_link_reset(hw);
909 }
910 /* Anything else for 10 Gig?? */
911 }
912
913 /******************************************************************************
914 * Check for a bad link condition that may have occurred.
915 * The indication is that the RFC / LFC registers may be incrementing
916 * continually. A full adapter reset is required to recover.
917 *
918 * hw - Struct containing variables accessed by hw code
919 *
920 * Called by any function that needs to check the link status of the adapter.
921 *****************************************************************************/
ixgb_check_for_bad_link(struct ixgb_hw * hw)922 bool ixgb_check_for_bad_link(struct ixgb_hw *hw)
923 {
924 u32 newLFC, newRFC;
925 bool bad_link_returncode = false;
926
927 if (hw->phy_type == ixgb_phy_type_txn17401) {
928 newLFC = IXGB_READ_REG(hw, LFC);
929 newRFC = IXGB_READ_REG(hw, RFC);
930 if ((hw->lastLFC + 250 < newLFC)
931 || (hw->lastRFC + 250 < newRFC)) {
932 pr_debug("BAD LINK! too many LFC/RFC since last check\n");
933 bad_link_returncode = true;
934 }
935 hw->lastLFC = newLFC;
936 hw->lastRFC = newRFC;
937 }
938
939 return bad_link_returncode;
940 }
941
942 /******************************************************************************
943 * Clears all hardware statistics counters.
944 *
945 * hw - Struct containing variables accessed by shared code
946 *****************************************************************************/
947 static void
ixgb_clear_hw_cntrs(struct ixgb_hw * hw)948 ixgb_clear_hw_cntrs(struct ixgb_hw *hw)
949 {
950 ENTER();
951
952 /* if we are stopped or resetting exit gracefully */
953 if (hw->adapter_stopped) {
954 pr_debug("Exiting because the adapter is stopped!!!\n");
955 return;
956 }
957
958 IXGB_READ_REG(hw, TPRL);
959 IXGB_READ_REG(hw, TPRH);
960 IXGB_READ_REG(hw, GPRCL);
961 IXGB_READ_REG(hw, GPRCH);
962 IXGB_READ_REG(hw, BPRCL);
963 IXGB_READ_REG(hw, BPRCH);
964 IXGB_READ_REG(hw, MPRCL);
965 IXGB_READ_REG(hw, MPRCH);
966 IXGB_READ_REG(hw, UPRCL);
967 IXGB_READ_REG(hw, UPRCH);
968 IXGB_READ_REG(hw, VPRCL);
969 IXGB_READ_REG(hw, VPRCH);
970 IXGB_READ_REG(hw, JPRCL);
971 IXGB_READ_REG(hw, JPRCH);
972 IXGB_READ_REG(hw, GORCL);
973 IXGB_READ_REG(hw, GORCH);
974 IXGB_READ_REG(hw, TORL);
975 IXGB_READ_REG(hw, TORH);
976 IXGB_READ_REG(hw, RNBC);
977 IXGB_READ_REG(hw, RUC);
978 IXGB_READ_REG(hw, ROC);
979 IXGB_READ_REG(hw, RLEC);
980 IXGB_READ_REG(hw, CRCERRS);
981 IXGB_READ_REG(hw, ICBC);
982 IXGB_READ_REG(hw, ECBC);
983 IXGB_READ_REG(hw, MPC);
984 IXGB_READ_REG(hw, TPTL);
985 IXGB_READ_REG(hw, TPTH);
986 IXGB_READ_REG(hw, GPTCL);
987 IXGB_READ_REG(hw, GPTCH);
988 IXGB_READ_REG(hw, BPTCL);
989 IXGB_READ_REG(hw, BPTCH);
990 IXGB_READ_REG(hw, MPTCL);
991 IXGB_READ_REG(hw, MPTCH);
992 IXGB_READ_REG(hw, UPTCL);
993 IXGB_READ_REG(hw, UPTCH);
994 IXGB_READ_REG(hw, VPTCL);
995 IXGB_READ_REG(hw, VPTCH);
996 IXGB_READ_REG(hw, JPTCL);
997 IXGB_READ_REG(hw, JPTCH);
998 IXGB_READ_REG(hw, GOTCL);
999 IXGB_READ_REG(hw, GOTCH);
1000 IXGB_READ_REG(hw, TOTL);
1001 IXGB_READ_REG(hw, TOTH);
1002 IXGB_READ_REG(hw, DC);
1003 IXGB_READ_REG(hw, PLT64C);
1004 IXGB_READ_REG(hw, TSCTC);
1005 IXGB_READ_REG(hw, TSCTFC);
1006 IXGB_READ_REG(hw, IBIC);
1007 IXGB_READ_REG(hw, RFC);
1008 IXGB_READ_REG(hw, LFC);
1009 IXGB_READ_REG(hw, PFRC);
1010 IXGB_READ_REG(hw, PFTC);
1011 IXGB_READ_REG(hw, MCFRC);
1012 IXGB_READ_REG(hw, MCFTC);
1013 IXGB_READ_REG(hw, XONRXC);
1014 IXGB_READ_REG(hw, XONTXC);
1015 IXGB_READ_REG(hw, XOFFRXC);
1016 IXGB_READ_REG(hw, XOFFTXC);
1017 IXGB_READ_REG(hw, RJC);
1018 }
1019
1020 /******************************************************************************
1021 * Turns on the software controllable LED
1022 *
1023 * hw - Struct containing variables accessed by shared code
1024 *****************************************************************************/
1025 void
ixgb_led_on(struct ixgb_hw * hw)1026 ixgb_led_on(struct ixgb_hw *hw)
1027 {
1028 u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
1029
1030 /* To turn on the LED, clear software-definable pin 0 (SDP0). */
1031 ctrl0_reg &= ~IXGB_CTRL0_SDP0;
1032 IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
1033 }
1034
1035 /******************************************************************************
1036 * Turns off the software controllable LED
1037 *
1038 * hw - Struct containing variables accessed by shared code
1039 *****************************************************************************/
1040 void
ixgb_led_off(struct ixgb_hw * hw)1041 ixgb_led_off(struct ixgb_hw *hw)
1042 {
1043 u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
1044
1045 /* To turn off the LED, set software-definable pin 0 (SDP0). */
1046 ctrl0_reg |= IXGB_CTRL0_SDP0;
1047 IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
1048 }
1049
1050 /******************************************************************************
1051 * Gets the current PCI bus type, speed, and width of the hardware
1052 *
1053 * hw - Struct containing variables accessed by shared code
1054 *****************************************************************************/
1055 static void
ixgb_get_bus_info(struct ixgb_hw * hw)1056 ixgb_get_bus_info(struct ixgb_hw *hw)
1057 {
1058 u32 status_reg;
1059
1060 status_reg = IXGB_READ_REG(hw, STATUS);
1061
1062 hw->bus.type = (status_reg & IXGB_STATUS_PCIX_MODE) ?
1063 ixgb_bus_type_pcix : ixgb_bus_type_pci;
1064
1065 if (hw->bus.type == ixgb_bus_type_pci) {
1066 hw->bus.speed = (status_reg & IXGB_STATUS_PCI_SPD) ?
1067 ixgb_bus_speed_66 : ixgb_bus_speed_33;
1068 } else {
1069 switch (status_reg & IXGB_STATUS_PCIX_SPD_MASK) {
1070 case IXGB_STATUS_PCIX_SPD_66:
1071 hw->bus.speed = ixgb_bus_speed_66;
1072 break;
1073 case IXGB_STATUS_PCIX_SPD_100:
1074 hw->bus.speed = ixgb_bus_speed_100;
1075 break;
1076 case IXGB_STATUS_PCIX_SPD_133:
1077 hw->bus.speed = ixgb_bus_speed_133;
1078 break;
1079 default:
1080 hw->bus.speed = ixgb_bus_speed_reserved;
1081 break;
1082 }
1083 }
1084
1085 hw->bus.width = (status_reg & IXGB_STATUS_BUS64) ?
1086 ixgb_bus_width_64 : ixgb_bus_width_32;
1087 }
1088
1089 /******************************************************************************
1090 * Tests a MAC address to ensure it is a valid Individual Address
1091 *
1092 * mac_addr - pointer to MAC address.
1093 *
1094 *****************************************************************************/
1095 static bool
mac_addr_valid(u8 * mac_addr)1096 mac_addr_valid(u8 *mac_addr)
1097 {
1098 bool is_valid = true;
1099 ENTER();
1100
1101 /* Make sure it is not a multicast address */
1102 if (is_multicast_ether_addr(mac_addr)) {
1103 pr_debug("MAC address is multicast\n");
1104 is_valid = false;
1105 }
1106 /* Not a broadcast address */
1107 else if (is_broadcast_ether_addr(mac_addr)) {
1108 pr_debug("MAC address is broadcast\n");
1109 is_valid = false;
1110 }
1111 /* Reject the zero address */
1112 else if (is_zero_ether_addr(mac_addr)) {
1113 pr_debug("MAC address is all zeros\n");
1114 is_valid = false;
1115 }
1116 return is_valid;
1117 }
1118
1119 /******************************************************************************
1120 * Resets the 10GbE link. Waits the settle time and returns the state of
1121 * the link.
1122 *
1123 * hw - Struct containing variables accessed by shared code
1124 *****************************************************************************/
1125 static bool
ixgb_link_reset(struct ixgb_hw * hw)1126 ixgb_link_reset(struct ixgb_hw *hw)
1127 {
1128 bool link_status = false;
1129 u8 wait_retries = MAX_RESET_ITERATIONS;
1130 u8 lrst_retries = MAX_RESET_ITERATIONS;
1131
1132 do {
1133 /* Reset the link */
1134 IXGB_WRITE_REG(hw, CTRL0,
1135 IXGB_READ_REG(hw, CTRL0) | IXGB_CTRL0_LRST);
1136
1137 /* Wait for link-up and lane re-alignment */
1138 do {
1139 udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET);
1140 link_status =
1141 ((IXGB_READ_REG(hw, STATUS) & IXGB_STATUS_LU)
1142 && (IXGB_READ_REG(hw, XPCSS) &
1143 IXGB_XPCSS_ALIGN_STATUS)) ? true : false;
1144 } while (!link_status && --wait_retries);
1145
1146 } while (!link_status && --lrst_retries);
1147
1148 return link_status;
1149 }
1150
1151 /******************************************************************************
1152 * Resets the 10GbE optics module.
1153 *
1154 * hw - Struct containing variables accessed by shared code
1155 *****************************************************************************/
1156 static void
ixgb_optics_reset(struct ixgb_hw * hw)1157 ixgb_optics_reset(struct ixgb_hw *hw)
1158 {
1159 if (hw->phy_type == ixgb_phy_type_txn17401) {
1160 ixgb_write_phy_reg(hw,
1161 MDIO_CTRL1,
1162 IXGB_PHY_ADDRESS,
1163 MDIO_MMD_PMAPMD,
1164 MDIO_CTRL1_RESET);
1165
1166 ixgb_read_phy_reg(hw, MDIO_CTRL1, IXGB_PHY_ADDRESS, MDIO_MMD_PMAPMD);
1167 }
1168 }
1169
1170 /******************************************************************************
1171 * Resets the 10GbE optics module for Sun variant NIC.
1172 *
1173 * hw - Struct containing variables accessed by shared code
1174 *****************************************************************************/
1175
1176 #define IXGB_BCM8704_USER_PMD_TX_CTRL_REG 0xC803
1177 #define IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL 0x0164
1178 #define IXGB_BCM8704_USER_CTRL_REG 0xC800
1179 #define IXGB_BCM8704_USER_CTRL_REG_VAL 0x7FBF
1180 #define IXGB_BCM8704_USER_DEV3_ADDR 0x0003
1181 #define IXGB_SUN_PHY_ADDRESS 0x0000
1182 #define IXGB_SUN_PHY_RESET_DELAY 305
1183
1184 static void
ixgb_optics_reset_bcm(struct ixgb_hw * hw)1185 ixgb_optics_reset_bcm(struct ixgb_hw *hw)
1186 {
1187 u32 ctrl = IXGB_READ_REG(hw, CTRL0);
1188 ctrl &= ~IXGB_CTRL0_SDP2;
1189 ctrl |= IXGB_CTRL0_SDP3;
1190 IXGB_WRITE_REG(hw, CTRL0, ctrl);
1191 IXGB_WRITE_FLUSH(hw);
1192
1193 /* SerDes needs extra delay */
1194 msleep(IXGB_SUN_PHY_RESET_DELAY);
1195
1196 /* Broadcom 7408L configuration */
1197 /* Reference clock config */
1198 ixgb_write_phy_reg(hw,
1199 IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
1200 IXGB_SUN_PHY_ADDRESS,
1201 IXGB_BCM8704_USER_DEV3_ADDR,
1202 IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL);
1203 /* we must read the registers twice */
1204 ixgb_read_phy_reg(hw,
1205 IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
1206 IXGB_SUN_PHY_ADDRESS,
1207 IXGB_BCM8704_USER_DEV3_ADDR);
1208 ixgb_read_phy_reg(hw,
1209 IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
1210 IXGB_SUN_PHY_ADDRESS,
1211 IXGB_BCM8704_USER_DEV3_ADDR);
1212
1213 ixgb_write_phy_reg(hw,
1214 IXGB_BCM8704_USER_CTRL_REG,
1215 IXGB_SUN_PHY_ADDRESS,
1216 IXGB_BCM8704_USER_DEV3_ADDR,
1217 IXGB_BCM8704_USER_CTRL_REG_VAL);
1218 ixgb_read_phy_reg(hw,
1219 IXGB_BCM8704_USER_CTRL_REG,
1220 IXGB_SUN_PHY_ADDRESS,
1221 IXGB_BCM8704_USER_DEV3_ADDR);
1222 ixgb_read_phy_reg(hw,
1223 IXGB_BCM8704_USER_CTRL_REG,
1224 IXGB_SUN_PHY_ADDRESS,
1225 IXGB_BCM8704_USER_DEV3_ADDR);
1226
1227 /* SerDes needs extra delay */
1228 msleep(IXGB_SUN_PHY_RESET_DELAY);
1229 }
1230