• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2008 Intel Corporation. */
3 
4 /* ixgb_hw.c
5  * Shared functions for accessing and configuring the adapter
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/pci_ids.h>
11 #include "ixgb_hw.h"
12 #include "ixgb_ids.h"
13 
14 #include <linux/etherdevice.h>
15 
16 /*  Local function prototypes */
17 
18 static u32 ixgb_hash_mc_addr(struct ixgb_hw *hw, u8 * mc_addr);
19 
20 static void ixgb_mta_set(struct ixgb_hw *hw, u32 hash_value);
21 
22 static void ixgb_get_bus_info(struct ixgb_hw *hw);
23 
24 static bool ixgb_link_reset(struct ixgb_hw *hw);
25 
26 static void ixgb_optics_reset(struct ixgb_hw *hw);
27 
28 static void ixgb_optics_reset_bcm(struct ixgb_hw *hw);
29 
30 static ixgb_phy_type ixgb_identify_phy(struct ixgb_hw *hw);
31 
32 static void ixgb_clear_hw_cntrs(struct ixgb_hw *hw);
33 
34 static void ixgb_clear_vfta(struct ixgb_hw *hw);
35 
36 static void ixgb_init_rx_addrs(struct ixgb_hw *hw);
37 
38 static u16 ixgb_read_phy_reg(struct ixgb_hw *hw,
39 				  u32 reg_address,
40 				  u32 phy_address,
41 				  u32 device_type);
42 
43 static bool ixgb_setup_fc(struct ixgb_hw *hw);
44 
45 static bool mac_addr_valid(u8 *mac_addr);
46 
ixgb_mac_reset(struct ixgb_hw * hw)47 static u32 ixgb_mac_reset(struct ixgb_hw *hw)
48 {
49 	u32 ctrl_reg;
50 
51 	ctrl_reg =  IXGB_CTRL0_RST |
52 				IXGB_CTRL0_SDP3_DIR |   /* All pins are Output=1 */
53 				IXGB_CTRL0_SDP2_DIR |
54 				IXGB_CTRL0_SDP1_DIR |
55 				IXGB_CTRL0_SDP0_DIR |
56 				IXGB_CTRL0_SDP3	 |   /* Initial value 1101   */
57 				IXGB_CTRL0_SDP2	 |
58 				IXGB_CTRL0_SDP0;
59 
60 #ifdef HP_ZX1
61 	/* Workaround for 82597EX reset errata */
62 	IXGB_WRITE_REG_IO(hw, CTRL0, ctrl_reg);
63 #else
64 	IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
65 #endif
66 
67 	/* Delay a few ms just to allow the reset to complete */
68 	msleep(IXGB_DELAY_AFTER_RESET);
69 	ctrl_reg = IXGB_READ_REG(hw, CTRL0);
70 #ifdef DBG
71 	/* Make sure the self-clearing global reset bit did self clear */
72 	ASSERT(!(ctrl_reg & IXGB_CTRL0_RST));
73 #endif
74 
75 	if (hw->subsystem_vendor_id == PCI_VENDOR_ID_SUN) {
76 		ctrl_reg =  /* Enable interrupt from XFP and SerDes */
77 			   IXGB_CTRL1_GPI0_EN |
78 			   IXGB_CTRL1_SDP6_DIR |
79 			   IXGB_CTRL1_SDP7_DIR |
80 			   IXGB_CTRL1_SDP6 |
81 			   IXGB_CTRL1_SDP7;
82 		IXGB_WRITE_REG(hw, CTRL1, ctrl_reg);
83 		ixgb_optics_reset_bcm(hw);
84 	}
85 
86 	if (hw->phy_type == ixgb_phy_type_txn17401)
87 		ixgb_optics_reset(hw);
88 
89 	return ctrl_reg;
90 }
91 
92 /******************************************************************************
93  * Reset the transmit and receive units; mask and clear all interrupts.
94  *
95  * hw - Struct containing variables accessed by shared code
96  *****************************************************************************/
97 bool
ixgb_adapter_stop(struct ixgb_hw * hw)98 ixgb_adapter_stop(struct ixgb_hw *hw)
99 {
100 	u32 ctrl_reg;
101 
102 	ENTER();
103 
104 	/* If we are stopped or resetting exit gracefully and wait to be
105 	 * started again before accessing the hardware.
106 	 */
107 	if (hw->adapter_stopped) {
108 		pr_debug("Exiting because the adapter is already stopped!!!\n");
109 		return false;
110 	}
111 
112 	/* Set the Adapter Stopped flag so other driver functions stop
113 	 * touching the Hardware.
114 	 */
115 	hw->adapter_stopped = true;
116 
117 	/* Clear interrupt mask to stop board from generating interrupts */
118 	pr_debug("Masking off all interrupts\n");
119 	IXGB_WRITE_REG(hw, IMC, 0xFFFFFFFF);
120 
121 	/* Disable the Transmit and Receive units.  Then delay to allow
122 	 * any pending transactions to complete before we hit the MAC with
123 	 * the global reset.
124 	 */
125 	IXGB_WRITE_REG(hw, RCTL, IXGB_READ_REG(hw, RCTL) & ~IXGB_RCTL_RXEN);
126 	IXGB_WRITE_REG(hw, TCTL, IXGB_READ_REG(hw, TCTL) & ~IXGB_TCTL_TXEN);
127 	IXGB_WRITE_FLUSH(hw);
128 	msleep(IXGB_DELAY_BEFORE_RESET);
129 
130 	/* Issue a global reset to the MAC.  This will reset the chip's
131 	 * transmit, receive, DMA, and link units.  It will not effect
132 	 * the current PCI configuration.  The global reset bit is self-
133 	 * clearing, and should clear within a microsecond.
134 	 */
135 	pr_debug("Issuing a global reset to MAC\n");
136 
137 	ctrl_reg = ixgb_mac_reset(hw);
138 
139 	/* Clear interrupt mask to stop board from generating interrupts */
140 	pr_debug("Masking off all interrupts\n");
141 	IXGB_WRITE_REG(hw, IMC, 0xffffffff);
142 
143 	/* Clear any pending interrupt events. */
144 	IXGB_READ_REG(hw, ICR);
145 
146 	return ctrl_reg & IXGB_CTRL0_RST;
147 }
148 
149 
150 /******************************************************************************
151  * Identifies the vendor of the optics module on the adapter.  The SR adapters
152  * support two different types of XPAK optics, so it is necessary to determine
153  * which optics are present before applying any optics-specific workarounds.
154  *
155  * hw - Struct containing variables accessed by shared code.
156  *
157  * Returns: the vendor of the XPAK optics module.
158  *****************************************************************************/
159 static ixgb_xpak_vendor
ixgb_identify_xpak_vendor(struct ixgb_hw * hw)160 ixgb_identify_xpak_vendor(struct ixgb_hw *hw)
161 {
162 	u32 i;
163 	u16 vendor_name[5];
164 	ixgb_xpak_vendor xpak_vendor;
165 
166 	ENTER();
167 
168 	/* Read the first few bytes of the vendor string from the XPAK NVR
169 	 * registers.  These are standard XENPAK/XPAK registers, so all XPAK
170 	 * devices should implement them. */
171 	for (i = 0; i < 5; i++) {
172 		vendor_name[i] = ixgb_read_phy_reg(hw,
173 						   MDIO_PMA_PMD_XPAK_VENDOR_NAME
174 						   + i, IXGB_PHY_ADDRESS,
175 						   MDIO_MMD_PMAPMD);
176 	}
177 
178 	/* Determine the actual vendor */
179 	if (vendor_name[0] == 'I' &&
180 	    vendor_name[1] == 'N' &&
181 	    vendor_name[2] == 'T' &&
182 	    vendor_name[3] == 'E' && vendor_name[4] == 'L') {
183 		xpak_vendor = ixgb_xpak_vendor_intel;
184 	} else {
185 		xpak_vendor = ixgb_xpak_vendor_infineon;
186 	}
187 
188 	return xpak_vendor;
189 }
190 
191 /******************************************************************************
192  * Determine the physical layer module on the adapter.
193  *
194  * hw - Struct containing variables accessed by shared code.  The device_id
195  *      field must be (correctly) populated before calling this routine.
196  *
197  * Returns: the phy type of the adapter.
198  *****************************************************************************/
199 static ixgb_phy_type
ixgb_identify_phy(struct ixgb_hw * hw)200 ixgb_identify_phy(struct ixgb_hw *hw)
201 {
202 	ixgb_phy_type phy_type;
203 	ixgb_xpak_vendor xpak_vendor;
204 
205 	ENTER();
206 
207 	/* Infer the transceiver/phy type from the device id */
208 	switch (hw->device_id) {
209 	case IXGB_DEVICE_ID_82597EX:
210 		pr_debug("Identified TXN17401 optics\n");
211 		phy_type = ixgb_phy_type_txn17401;
212 		break;
213 
214 	case IXGB_DEVICE_ID_82597EX_SR:
215 		/* The SR adapters carry two different types of XPAK optics
216 		 * modules; read the vendor identifier to determine the exact
217 		 * type of optics. */
218 		xpak_vendor = ixgb_identify_xpak_vendor(hw);
219 		if (xpak_vendor == ixgb_xpak_vendor_intel) {
220 			pr_debug("Identified TXN17201 optics\n");
221 			phy_type = ixgb_phy_type_txn17201;
222 		} else {
223 			pr_debug("Identified G6005 optics\n");
224 			phy_type = ixgb_phy_type_g6005;
225 		}
226 		break;
227 	case IXGB_DEVICE_ID_82597EX_LR:
228 		pr_debug("Identified G6104 optics\n");
229 		phy_type = ixgb_phy_type_g6104;
230 		break;
231 	case IXGB_DEVICE_ID_82597EX_CX4:
232 		pr_debug("Identified CX4\n");
233 		xpak_vendor = ixgb_identify_xpak_vendor(hw);
234 		if (xpak_vendor == ixgb_xpak_vendor_intel) {
235 			pr_debug("Identified TXN17201 optics\n");
236 			phy_type = ixgb_phy_type_txn17201;
237 		} else {
238 			pr_debug("Identified G6005 optics\n");
239 			phy_type = ixgb_phy_type_g6005;
240 		}
241 		break;
242 	default:
243 		pr_debug("Unknown physical layer module\n");
244 		phy_type = ixgb_phy_type_unknown;
245 		break;
246 	}
247 
248 	/* update phy type for sun specific board */
249 	if (hw->subsystem_vendor_id == PCI_VENDOR_ID_SUN)
250 		phy_type = ixgb_phy_type_bcm;
251 
252 	return phy_type;
253 }
254 
255 /******************************************************************************
256  * Performs basic configuration of the adapter.
257  *
258  * hw - Struct containing variables accessed by shared code
259  *
260  * Resets the controller.
261  * Reads and validates the EEPROM.
262  * Initializes the receive address registers.
263  * Initializes the multicast table.
264  * Clears all on-chip counters.
265  * Calls routine to setup flow control settings.
266  * Leaves the transmit and receive units disabled and uninitialized.
267  *
268  * Returns:
269  *      true if successful,
270  *      false if unrecoverable problems were encountered.
271  *****************************************************************************/
272 bool
ixgb_init_hw(struct ixgb_hw * hw)273 ixgb_init_hw(struct ixgb_hw *hw)
274 {
275 	u32 i;
276 	bool status;
277 
278 	ENTER();
279 
280 	/* Issue a global reset to the MAC.  This will reset the chip's
281 	 * transmit, receive, DMA, and link units.  It will not effect
282 	 * the current PCI configuration.  The global reset bit is self-
283 	 * clearing, and should clear within a microsecond.
284 	 */
285 	pr_debug("Issuing a global reset to MAC\n");
286 
287 	ixgb_mac_reset(hw);
288 
289 	pr_debug("Issuing an EE reset to MAC\n");
290 #ifdef HP_ZX1
291 	/* Workaround for 82597EX reset errata */
292 	IXGB_WRITE_REG_IO(hw, CTRL1, IXGB_CTRL1_EE_RST);
293 #else
294 	IXGB_WRITE_REG(hw, CTRL1, IXGB_CTRL1_EE_RST);
295 #endif
296 
297 	/* Delay a few ms just to allow the reset to complete */
298 	msleep(IXGB_DELAY_AFTER_EE_RESET);
299 
300 	if (!ixgb_get_eeprom_data(hw))
301 		return false;
302 
303 	/* Use the device id to determine the type of phy/transceiver. */
304 	hw->device_id = ixgb_get_ee_device_id(hw);
305 	hw->phy_type = ixgb_identify_phy(hw);
306 
307 	/* Setup the receive addresses.
308 	 * Receive Address Registers (RARs 0 - 15).
309 	 */
310 	ixgb_init_rx_addrs(hw);
311 
312 	/*
313 	 * Check that a valid MAC address has been set.
314 	 * If it is not valid, we fail hardware init.
315 	 */
316 	if (!mac_addr_valid(hw->curr_mac_addr)) {
317 		pr_debug("MAC address invalid after ixgb_init_rx_addrs\n");
318 		return(false);
319 	}
320 
321 	/* tell the routines in this file they can access hardware again */
322 	hw->adapter_stopped = false;
323 
324 	/* Fill in the bus_info structure */
325 	ixgb_get_bus_info(hw);
326 
327 	/* Zero out the Multicast HASH table */
328 	pr_debug("Zeroing the MTA\n");
329 	for (i = 0; i < IXGB_MC_TBL_SIZE; i++)
330 		IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
331 
332 	/* Zero out the VLAN Filter Table Array */
333 	ixgb_clear_vfta(hw);
334 
335 	/* Zero all of the hardware counters */
336 	ixgb_clear_hw_cntrs(hw);
337 
338 	/* Call a subroutine to setup flow control. */
339 	status = ixgb_setup_fc(hw);
340 
341 	/* 82597EX errata: Call check-for-link in case lane deskew is locked */
342 	ixgb_check_for_link(hw);
343 
344 	return status;
345 }
346 
347 /******************************************************************************
348  * Initializes receive address filters.
349  *
350  * hw - Struct containing variables accessed by shared code
351  *
352  * Places the MAC address in receive address register 0 and clears the rest
353  * of the receive address registers. Clears the multicast table. Assumes
354  * the receiver is in reset when the routine is called.
355  *****************************************************************************/
356 static void
ixgb_init_rx_addrs(struct ixgb_hw * hw)357 ixgb_init_rx_addrs(struct ixgb_hw *hw)
358 {
359 	u32 i;
360 
361 	ENTER();
362 
363 	/*
364 	 * If the current mac address is valid, assume it is a software override
365 	 * to the permanent address.
366 	 * Otherwise, use the permanent address from the eeprom.
367 	 */
368 	if (!mac_addr_valid(hw->curr_mac_addr)) {
369 
370 		/* Get the MAC address from the eeprom for later reference */
371 		ixgb_get_ee_mac_addr(hw, hw->curr_mac_addr);
372 
373 		pr_debug("Keeping Permanent MAC Addr = %pM\n",
374 			 hw->curr_mac_addr);
375 	} else {
376 
377 		/* Setup the receive address. */
378 		pr_debug("Overriding MAC Address in RAR[0]\n");
379 		pr_debug("New MAC Addr = %pM\n", hw->curr_mac_addr);
380 
381 		ixgb_rar_set(hw, hw->curr_mac_addr, 0);
382 	}
383 
384 	/* Zero out the other 15 receive addresses. */
385 	pr_debug("Clearing RAR[1-15]\n");
386 	for (i = 1; i < IXGB_RAR_ENTRIES; i++) {
387 		/* Write high reg first to disable the AV bit first */
388 		IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
389 		IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
390 	}
391 }
392 
393 /******************************************************************************
394  * Updates the MAC's list of multicast addresses.
395  *
396  * hw - Struct containing variables accessed by shared code
397  * mc_addr_list - the list of new multicast addresses
398  * mc_addr_count - number of addresses
399  * pad - number of bytes between addresses in the list
400  *
401  * The given list replaces any existing list. Clears the last 15 receive
402  * address registers and the multicast table. Uses receive address registers
403  * for the first 15 multicast addresses, and hashes the rest into the
404  * multicast table.
405  *****************************************************************************/
406 void
ixgb_mc_addr_list_update(struct ixgb_hw * hw,u8 * mc_addr_list,u32 mc_addr_count,u32 pad)407 ixgb_mc_addr_list_update(struct ixgb_hw *hw,
408 			  u8 *mc_addr_list,
409 			  u32 mc_addr_count,
410 			  u32 pad)
411 {
412 	u32 hash_value;
413 	u32 i;
414 	u32 rar_used_count = 1;		/* RAR[0] is used for our MAC address */
415 	u8 *mca;
416 
417 	ENTER();
418 
419 	/* Set the new number of MC addresses that we are being requested to use. */
420 	hw->num_mc_addrs = mc_addr_count;
421 
422 	/* Clear RAR[1-15] */
423 	pr_debug("Clearing RAR[1-15]\n");
424 	for (i = rar_used_count; i < IXGB_RAR_ENTRIES; i++) {
425 		IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
426 		IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
427 	}
428 
429 	/* Clear the MTA */
430 	pr_debug("Clearing MTA\n");
431 	for (i = 0; i < IXGB_MC_TBL_SIZE; i++)
432 		IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
433 
434 	/* Add the new addresses */
435 	mca = mc_addr_list;
436 	for (i = 0; i < mc_addr_count; i++) {
437 		pr_debug("Adding the multicast addresses:\n");
438 		pr_debug("MC Addr #%d = %pM\n", i, mca);
439 
440 		/* Place this multicast address in the RAR if there is room, *
441 		 * else put it in the MTA
442 		 */
443 		if (rar_used_count < IXGB_RAR_ENTRIES) {
444 			ixgb_rar_set(hw, mca, rar_used_count);
445 			pr_debug("Added a multicast address to RAR[%d]\n", i);
446 			rar_used_count++;
447 		} else {
448 			hash_value = ixgb_hash_mc_addr(hw, mca);
449 
450 			pr_debug("Hash value = 0x%03X\n", hash_value);
451 
452 			ixgb_mta_set(hw, hash_value);
453 		}
454 
455 		mca += ETH_ALEN + pad;
456 	}
457 
458 	pr_debug("MC Update Complete\n");
459 }
460 
461 /******************************************************************************
462  * Hashes an address to determine its location in the multicast table
463  *
464  * hw - Struct containing variables accessed by shared code
465  * mc_addr - the multicast address to hash
466  *
467  * Returns:
468  *      The hash value
469  *****************************************************************************/
470 static u32
ixgb_hash_mc_addr(struct ixgb_hw * hw,u8 * mc_addr)471 ixgb_hash_mc_addr(struct ixgb_hw *hw,
472 		   u8 *mc_addr)
473 {
474 	u32 hash_value = 0;
475 
476 	ENTER();
477 
478 	/* The portion of the address that is used for the hash table is
479 	 * determined by the mc_filter_type setting.
480 	 */
481 	switch (hw->mc_filter_type) {
482 		/* [0] [1] [2] [3] [4] [5]
483 		 * 01  AA  00  12  34  56
484 		 * LSB                 MSB - According to H/W docs */
485 	case 0:
486 		/* [47:36] i.e. 0x563 for above example address */
487 		hash_value =
488 		    ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
489 		break;
490 	case 1:		/* [46:35] i.e. 0xAC6 for above example address */
491 		hash_value =
492 		    ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
493 		break;
494 	case 2:		/* [45:34] i.e. 0x5D8 for above example address */
495 		hash_value =
496 		    ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
497 		break;
498 	case 3:		/* [43:32] i.e. 0x634 for above example address */
499 		hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
500 		break;
501 	default:
502 		/* Invalid mc_filter_type, what should we do? */
503 		pr_debug("MC filter type param set incorrectly\n");
504 		ASSERT(0);
505 		break;
506 	}
507 
508 	hash_value &= 0xFFF;
509 	return hash_value;
510 }
511 
512 /******************************************************************************
513  * Sets the bit in the multicast table corresponding to the hash value.
514  *
515  * hw - Struct containing variables accessed by shared code
516  * hash_value - Multicast address hash value
517  *****************************************************************************/
518 static void
ixgb_mta_set(struct ixgb_hw * hw,u32 hash_value)519 ixgb_mta_set(struct ixgb_hw *hw,
520 		  u32 hash_value)
521 {
522 	u32 hash_bit, hash_reg;
523 	u32 mta_reg;
524 
525 	/* The MTA is a register array of 128 32-bit registers.
526 	 * It is treated like an array of 4096 bits.  We want to set
527 	 * bit BitArray[hash_value]. So we figure out what register
528 	 * the bit is in, read it, OR in the new bit, then write
529 	 * back the new value.  The register is determined by the
530 	 * upper 7 bits of the hash value and the bit within that
531 	 * register are determined by the lower 5 bits of the value.
532 	 */
533 	hash_reg = (hash_value >> 5) & 0x7F;
534 	hash_bit = hash_value & 0x1F;
535 
536 	mta_reg = IXGB_READ_REG_ARRAY(hw, MTA, hash_reg);
537 
538 	mta_reg |= (1 << hash_bit);
539 
540 	IXGB_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta_reg);
541 }
542 
543 /******************************************************************************
544  * Puts an ethernet address into a receive address register.
545  *
546  * hw - Struct containing variables accessed by shared code
547  * addr - Address to put into receive address register
548  * index - Receive address register to write
549  *****************************************************************************/
550 void
ixgb_rar_set(struct ixgb_hw * hw,const u8 * addr,u32 index)551 ixgb_rar_set(struct ixgb_hw *hw,
552 		  const u8 *addr,
553 		  u32 index)
554 {
555 	u32 rar_low, rar_high;
556 
557 	ENTER();
558 
559 	/* HW expects these in little endian so we reverse the byte order
560 	 * from network order (big endian) to little endian
561 	 */
562 	rar_low = ((u32) addr[0] |
563 		   ((u32)addr[1] << 8) |
564 		   ((u32)addr[2] << 16) |
565 		   ((u32)addr[3] << 24));
566 
567 	rar_high = ((u32) addr[4] |
568 			((u32)addr[5] << 8) |
569 			IXGB_RAH_AV);
570 
571 	IXGB_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
572 	IXGB_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
573 }
574 
575 /******************************************************************************
576  * Writes a value to the specified offset in the VLAN filter table.
577  *
578  * hw - Struct containing variables accessed by shared code
579  * offset - Offset in VLAN filer table to write
580  * value - Value to write into VLAN filter table
581  *****************************************************************************/
582 void
ixgb_write_vfta(struct ixgb_hw * hw,u32 offset,u32 value)583 ixgb_write_vfta(struct ixgb_hw *hw,
584 		 u32 offset,
585 		 u32 value)
586 {
587 	IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, value);
588 }
589 
590 /******************************************************************************
591  * Clears the VLAN filer table
592  *
593  * hw - Struct containing variables accessed by shared code
594  *****************************************************************************/
595 static void
ixgb_clear_vfta(struct ixgb_hw * hw)596 ixgb_clear_vfta(struct ixgb_hw *hw)
597 {
598 	u32 offset;
599 
600 	for (offset = 0; offset < IXGB_VLAN_FILTER_TBL_SIZE; offset++)
601 		IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
602 }
603 
604 /******************************************************************************
605  * Configures the flow control settings based on SW configuration.
606  *
607  * hw - Struct containing variables accessed by shared code
608  *****************************************************************************/
609 
610 static bool
ixgb_setup_fc(struct ixgb_hw * hw)611 ixgb_setup_fc(struct ixgb_hw *hw)
612 {
613 	u32 ctrl_reg;
614 	u32 pap_reg = 0;   /* by default, assume no pause time */
615 	bool status = true;
616 
617 	ENTER();
618 
619 	/* Get the current control reg 0 settings */
620 	ctrl_reg = IXGB_READ_REG(hw, CTRL0);
621 
622 	/* Clear the Receive Pause Enable and Transmit Pause Enable bits */
623 	ctrl_reg &= ~(IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
624 
625 	/* The possible values of the "flow_control" parameter are:
626 	 *      0:  Flow control is completely disabled
627 	 *      1:  Rx flow control is enabled (we can receive pause frames
628 	 *          but not send pause frames).
629 	 *      2:  Tx flow control is enabled (we can send pause frames
630 	 *          but we do not support receiving pause frames).
631 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
632 	 *  other:  Invalid.
633 	 */
634 	switch (hw->fc.type) {
635 	case ixgb_fc_none:	/* 0 */
636 		/* Set CMDC bit to disable Rx Flow control */
637 		ctrl_reg |= (IXGB_CTRL0_CMDC);
638 		break;
639 	case ixgb_fc_rx_pause:	/* 1 */
640 		/* RX Flow control is enabled, and TX Flow control is
641 		 * disabled.
642 		 */
643 		ctrl_reg |= (IXGB_CTRL0_RPE);
644 		break;
645 	case ixgb_fc_tx_pause:	/* 2 */
646 		/* TX Flow control is enabled, and RX Flow control is
647 		 * disabled, by a software over-ride.
648 		 */
649 		ctrl_reg |= (IXGB_CTRL0_TPE);
650 		pap_reg = hw->fc.pause_time;
651 		break;
652 	case ixgb_fc_full:	/* 3 */
653 		/* Flow control (both RX and TX) is enabled by a software
654 		 * over-ride.
655 		 */
656 		ctrl_reg |= (IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
657 		pap_reg = hw->fc.pause_time;
658 		break;
659 	default:
660 		/* We should never get here.  The value should be 0-3. */
661 		pr_debug("Flow control param set incorrectly\n");
662 		ASSERT(0);
663 		break;
664 	}
665 
666 	/* Write the new settings */
667 	IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
668 
669 	if (pap_reg != 0)
670 		IXGB_WRITE_REG(hw, PAP, pap_reg);
671 
672 	/* Set the flow control receive threshold registers.  Normally,
673 	 * these registers will be set to a default threshold that may be
674 	 * adjusted later by the driver's runtime code.  However, if the
675 	 * ability to transmit pause frames in not enabled, then these
676 	 * registers will be set to 0.
677 	 */
678 	if (!(hw->fc.type & ixgb_fc_tx_pause)) {
679 		IXGB_WRITE_REG(hw, FCRTL, 0);
680 		IXGB_WRITE_REG(hw, FCRTH, 0);
681 	} else {
682 	   /* We need to set up the Receive Threshold high and low water
683 	    * marks as well as (optionally) enabling the transmission of XON
684 	    * frames. */
685 		if (hw->fc.send_xon) {
686 			IXGB_WRITE_REG(hw, FCRTL,
687 				(hw->fc.low_water | IXGB_FCRTL_XONE));
688 		} else {
689 			IXGB_WRITE_REG(hw, FCRTL, hw->fc.low_water);
690 		}
691 		IXGB_WRITE_REG(hw, FCRTH, hw->fc.high_water);
692 	}
693 	return status;
694 }
695 
696 /******************************************************************************
697  * Reads a word from a device over the Management Data Interface (MDI) bus.
698  * This interface is used to manage Physical layer devices.
699  *
700  * hw          - Struct containing variables accessed by hw code
701  * reg_address - Offset of device register being read.
702  * phy_address - Address of device on MDI.
703  *
704  * Returns:  Data word (16 bits) from MDI device.
705  *
706  * The 82597EX has support for several MDI access methods.  This routine
707  * uses the new protocol MDI Single Command and Address Operation.
708  * This requires that first an address cycle command is sent, followed by a
709  * read command.
710  *****************************************************************************/
711 static u16
ixgb_read_phy_reg(struct ixgb_hw * hw,u32 reg_address,u32 phy_address,u32 device_type)712 ixgb_read_phy_reg(struct ixgb_hw *hw,
713 		u32 reg_address,
714 		u32 phy_address,
715 		u32 device_type)
716 {
717 	u32 i;
718 	u32 data;
719 	u32 command = 0;
720 
721 	ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
722 	ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
723 	ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
724 
725 	/* Setup and write the address cycle command */
726 	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
727 		   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
728 		   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
729 		   (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
730 
731 	IXGB_WRITE_REG(hw, MSCA, command);
732 
733     /**************************************************************
734     ** Check every 10 usec to see if the address cycle completed
735     ** The COMMAND bit will clear when the operation is complete.
736     ** This may take as long as 64 usecs (we'll wait 100 usecs max)
737     ** from the CPU Write to the Ready bit assertion.
738     **************************************************************/
739 
740 	for (i = 0; i < 10; i++)
741 	{
742 		udelay(10);
743 
744 		command = IXGB_READ_REG(hw, MSCA);
745 
746 		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
747 			break;
748 	}
749 
750 	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
751 
752 	/* Address cycle complete, setup and write the read command */
753 	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
754 		   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
755 		   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
756 		   (IXGB_MSCA_READ | IXGB_MSCA_MDI_COMMAND));
757 
758 	IXGB_WRITE_REG(hw, MSCA, command);
759 
760     /**************************************************************
761     ** Check every 10 usec to see if the read command completed
762     ** The COMMAND bit will clear when the operation is complete.
763     ** The read may take as long as 64 usecs (we'll wait 100 usecs max)
764     ** from the CPU Write to the Ready bit assertion.
765     **************************************************************/
766 
767 	for (i = 0; i < 10; i++)
768 	{
769 		udelay(10);
770 
771 		command = IXGB_READ_REG(hw, MSCA);
772 
773 		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
774 			break;
775 	}
776 
777 	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
778 
779 	/* Operation is complete, get the data from the MDIO Read/Write Data
780 	 * register and return.
781 	 */
782 	data = IXGB_READ_REG(hw, MSRWD);
783 	data >>= IXGB_MSRWD_READ_DATA_SHIFT;
784 	return((u16) data);
785 }
786 
787 /******************************************************************************
788  * Writes a word to a device over the Management Data Interface (MDI) bus.
789  * This interface is used to manage Physical layer devices.
790  *
791  * hw          - Struct containing variables accessed by hw code
792  * reg_address - Offset of device register being read.
793  * phy_address - Address of device on MDI.
794  * device_type - Also known as the Device ID or DID.
795  * data        - 16-bit value to be written
796  *
797  * Returns:  void.
798  *
799  * The 82597EX has support for several MDI access methods.  This routine
800  * uses the new protocol MDI Single Command and Address Operation.
801  * This requires that first an address cycle command is sent, followed by a
802  * write command.
803  *****************************************************************************/
804 static void
ixgb_write_phy_reg(struct ixgb_hw * hw,u32 reg_address,u32 phy_address,u32 device_type,u16 data)805 ixgb_write_phy_reg(struct ixgb_hw *hw,
806 			u32 reg_address,
807 			u32 phy_address,
808 			u32 device_type,
809 			u16 data)
810 {
811 	u32 i;
812 	u32 command = 0;
813 
814 	ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
815 	ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
816 	ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
817 
818 	/* Put the data in the MDIO Read/Write Data register */
819 	IXGB_WRITE_REG(hw, MSRWD, (u32)data);
820 
821 	/* Setup and write the address cycle command */
822 	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT)  |
823 			   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
824 			   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
825 			   (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
826 
827 	IXGB_WRITE_REG(hw, MSCA, command);
828 
829 	/**************************************************************
830 	** Check every 10 usec to see if the address cycle completed
831 	** The COMMAND bit will clear when the operation is complete.
832 	** This may take as long as 64 usecs (we'll wait 100 usecs max)
833 	** from the CPU Write to the Ready bit assertion.
834 	**************************************************************/
835 
836 	for (i = 0; i < 10; i++)
837 	{
838 		udelay(10);
839 
840 		command = IXGB_READ_REG(hw, MSCA);
841 
842 		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
843 			break;
844 	}
845 
846 	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
847 
848 	/* Address cycle complete, setup and write the write command */
849 	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT)  |
850 			   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
851 			   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
852 			   (IXGB_MSCA_WRITE | IXGB_MSCA_MDI_COMMAND));
853 
854 	IXGB_WRITE_REG(hw, MSCA, command);
855 
856 	/**************************************************************
857 	** Check every 10 usec to see if the read command completed
858 	** The COMMAND bit will clear when the operation is complete.
859 	** The write may take as long as 64 usecs (we'll wait 100 usecs max)
860 	** from the CPU Write to the Ready bit assertion.
861 	**************************************************************/
862 
863 	for (i = 0; i < 10; i++)
864 	{
865 		udelay(10);
866 
867 		command = IXGB_READ_REG(hw, MSCA);
868 
869 		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
870 			break;
871 	}
872 
873 	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
874 
875 	/* Operation is complete, return. */
876 }
877 
878 /******************************************************************************
879  * Checks to see if the link status of the hardware has changed.
880  *
881  * hw - Struct containing variables accessed by hw code
882  *
883  * Called by any function that needs to check the link status of the adapter.
884  *****************************************************************************/
885 void
ixgb_check_for_link(struct ixgb_hw * hw)886 ixgb_check_for_link(struct ixgb_hw *hw)
887 {
888 	u32 status_reg;
889 	u32 xpcss_reg;
890 
891 	ENTER();
892 
893 	xpcss_reg = IXGB_READ_REG(hw, XPCSS);
894 	status_reg = IXGB_READ_REG(hw, STATUS);
895 
896 	if ((xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
897 	    (status_reg & IXGB_STATUS_LU)) {
898 		hw->link_up = true;
899 	} else if (!(xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
900 		   (status_reg & IXGB_STATUS_LU)) {
901 		pr_debug("XPCSS Not Aligned while Status:LU is set\n");
902 		hw->link_up = ixgb_link_reset(hw);
903 	} else {
904 		/*
905 		 * 82597EX errata.  Since the lane deskew problem may prevent
906 		 * link, reset the link before reporting link down.
907 		 */
908 		hw->link_up = ixgb_link_reset(hw);
909 	}
910 	/*  Anything else for 10 Gig?? */
911 }
912 
913 /******************************************************************************
914  * Check for a bad link condition that may have occurred.
915  * The indication is that the RFC / LFC registers may be incrementing
916  * continually.  A full adapter reset is required to recover.
917  *
918  * hw - Struct containing variables accessed by hw code
919  *
920  * Called by any function that needs to check the link status of the adapter.
921  *****************************************************************************/
ixgb_check_for_bad_link(struct ixgb_hw * hw)922 bool ixgb_check_for_bad_link(struct ixgb_hw *hw)
923 {
924 	u32 newLFC, newRFC;
925 	bool bad_link_returncode = false;
926 
927 	if (hw->phy_type == ixgb_phy_type_txn17401) {
928 		newLFC = IXGB_READ_REG(hw, LFC);
929 		newRFC = IXGB_READ_REG(hw, RFC);
930 		if ((hw->lastLFC + 250 < newLFC)
931 		    || (hw->lastRFC + 250 < newRFC)) {
932 			pr_debug("BAD LINK! too many LFC/RFC since last check\n");
933 			bad_link_returncode = true;
934 		}
935 		hw->lastLFC = newLFC;
936 		hw->lastRFC = newRFC;
937 	}
938 
939 	return bad_link_returncode;
940 }
941 
942 /******************************************************************************
943  * Clears all hardware statistics counters.
944  *
945  * hw - Struct containing variables accessed by shared code
946  *****************************************************************************/
947 static void
ixgb_clear_hw_cntrs(struct ixgb_hw * hw)948 ixgb_clear_hw_cntrs(struct ixgb_hw *hw)
949 {
950 	ENTER();
951 
952 	/* if we are stopped or resetting exit gracefully */
953 	if (hw->adapter_stopped) {
954 		pr_debug("Exiting because the adapter is stopped!!!\n");
955 		return;
956 	}
957 
958 	IXGB_READ_REG(hw, TPRL);
959 	IXGB_READ_REG(hw, TPRH);
960 	IXGB_READ_REG(hw, GPRCL);
961 	IXGB_READ_REG(hw, GPRCH);
962 	IXGB_READ_REG(hw, BPRCL);
963 	IXGB_READ_REG(hw, BPRCH);
964 	IXGB_READ_REG(hw, MPRCL);
965 	IXGB_READ_REG(hw, MPRCH);
966 	IXGB_READ_REG(hw, UPRCL);
967 	IXGB_READ_REG(hw, UPRCH);
968 	IXGB_READ_REG(hw, VPRCL);
969 	IXGB_READ_REG(hw, VPRCH);
970 	IXGB_READ_REG(hw, JPRCL);
971 	IXGB_READ_REG(hw, JPRCH);
972 	IXGB_READ_REG(hw, GORCL);
973 	IXGB_READ_REG(hw, GORCH);
974 	IXGB_READ_REG(hw, TORL);
975 	IXGB_READ_REG(hw, TORH);
976 	IXGB_READ_REG(hw, RNBC);
977 	IXGB_READ_REG(hw, RUC);
978 	IXGB_READ_REG(hw, ROC);
979 	IXGB_READ_REG(hw, RLEC);
980 	IXGB_READ_REG(hw, CRCERRS);
981 	IXGB_READ_REG(hw, ICBC);
982 	IXGB_READ_REG(hw, ECBC);
983 	IXGB_READ_REG(hw, MPC);
984 	IXGB_READ_REG(hw, TPTL);
985 	IXGB_READ_REG(hw, TPTH);
986 	IXGB_READ_REG(hw, GPTCL);
987 	IXGB_READ_REG(hw, GPTCH);
988 	IXGB_READ_REG(hw, BPTCL);
989 	IXGB_READ_REG(hw, BPTCH);
990 	IXGB_READ_REG(hw, MPTCL);
991 	IXGB_READ_REG(hw, MPTCH);
992 	IXGB_READ_REG(hw, UPTCL);
993 	IXGB_READ_REG(hw, UPTCH);
994 	IXGB_READ_REG(hw, VPTCL);
995 	IXGB_READ_REG(hw, VPTCH);
996 	IXGB_READ_REG(hw, JPTCL);
997 	IXGB_READ_REG(hw, JPTCH);
998 	IXGB_READ_REG(hw, GOTCL);
999 	IXGB_READ_REG(hw, GOTCH);
1000 	IXGB_READ_REG(hw, TOTL);
1001 	IXGB_READ_REG(hw, TOTH);
1002 	IXGB_READ_REG(hw, DC);
1003 	IXGB_READ_REG(hw, PLT64C);
1004 	IXGB_READ_REG(hw, TSCTC);
1005 	IXGB_READ_REG(hw, TSCTFC);
1006 	IXGB_READ_REG(hw, IBIC);
1007 	IXGB_READ_REG(hw, RFC);
1008 	IXGB_READ_REG(hw, LFC);
1009 	IXGB_READ_REG(hw, PFRC);
1010 	IXGB_READ_REG(hw, PFTC);
1011 	IXGB_READ_REG(hw, MCFRC);
1012 	IXGB_READ_REG(hw, MCFTC);
1013 	IXGB_READ_REG(hw, XONRXC);
1014 	IXGB_READ_REG(hw, XONTXC);
1015 	IXGB_READ_REG(hw, XOFFRXC);
1016 	IXGB_READ_REG(hw, XOFFTXC);
1017 	IXGB_READ_REG(hw, RJC);
1018 }
1019 
1020 /******************************************************************************
1021  * Turns on the software controllable LED
1022  *
1023  * hw - Struct containing variables accessed by shared code
1024  *****************************************************************************/
1025 void
ixgb_led_on(struct ixgb_hw * hw)1026 ixgb_led_on(struct ixgb_hw *hw)
1027 {
1028 	u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
1029 
1030 	/* To turn on the LED, clear software-definable pin 0 (SDP0). */
1031 	ctrl0_reg &= ~IXGB_CTRL0_SDP0;
1032 	IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
1033 }
1034 
1035 /******************************************************************************
1036  * Turns off the software controllable LED
1037  *
1038  * hw - Struct containing variables accessed by shared code
1039  *****************************************************************************/
1040 void
ixgb_led_off(struct ixgb_hw * hw)1041 ixgb_led_off(struct ixgb_hw *hw)
1042 {
1043 	u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
1044 
1045 	/* To turn off the LED, set software-definable pin 0 (SDP0). */
1046 	ctrl0_reg |= IXGB_CTRL0_SDP0;
1047 	IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
1048 }
1049 
1050 /******************************************************************************
1051  * Gets the current PCI bus type, speed, and width of the hardware
1052  *
1053  * hw - Struct containing variables accessed by shared code
1054  *****************************************************************************/
1055 static void
ixgb_get_bus_info(struct ixgb_hw * hw)1056 ixgb_get_bus_info(struct ixgb_hw *hw)
1057 {
1058 	u32 status_reg;
1059 
1060 	status_reg = IXGB_READ_REG(hw, STATUS);
1061 
1062 	hw->bus.type = (status_reg & IXGB_STATUS_PCIX_MODE) ?
1063 		ixgb_bus_type_pcix : ixgb_bus_type_pci;
1064 
1065 	if (hw->bus.type == ixgb_bus_type_pci) {
1066 		hw->bus.speed = (status_reg & IXGB_STATUS_PCI_SPD) ?
1067 			ixgb_bus_speed_66 : ixgb_bus_speed_33;
1068 	} else {
1069 		switch (status_reg & IXGB_STATUS_PCIX_SPD_MASK) {
1070 		case IXGB_STATUS_PCIX_SPD_66:
1071 			hw->bus.speed = ixgb_bus_speed_66;
1072 			break;
1073 		case IXGB_STATUS_PCIX_SPD_100:
1074 			hw->bus.speed = ixgb_bus_speed_100;
1075 			break;
1076 		case IXGB_STATUS_PCIX_SPD_133:
1077 			hw->bus.speed = ixgb_bus_speed_133;
1078 			break;
1079 		default:
1080 			hw->bus.speed = ixgb_bus_speed_reserved;
1081 			break;
1082 		}
1083 	}
1084 
1085 	hw->bus.width = (status_reg & IXGB_STATUS_BUS64) ?
1086 		ixgb_bus_width_64 : ixgb_bus_width_32;
1087 }
1088 
1089 /******************************************************************************
1090  * Tests a MAC address to ensure it is a valid Individual Address
1091  *
1092  * mac_addr - pointer to MAC address.
1093  *
1094  *****************************************************************************/
1095 static bool
mac_addr_valid(u8 * mac_addr)1096 mac_addr_valid(u8 *mac_addr)
1097 {
1098 	bool is_valid = true;
1099 	ENTER();
1100 
1101 	/* Make sure it is not a multicast address */
1102 	if (is_multicast_ether_addr(mac_addr)) {
1103 		pr_debug("MAC address is multicast\n");
1104 		is_valid = false;
1105 	}
1106 	/* Not a broadcast address */
1107 	else if (is_broadcast_ether_addr(mac_addr)) {
1108 		pr_debug("MAC address is broadcast\n");
1109 		is_valid = false;
1110 	}
1111 	/* Reject the zero address */
1112 	else if (is_zero_ether_addr(mac_addr)) {
1113 		pr_debug("MAC address is all zeros\n");
1114 		is_valid = false;
1115 	}
1116 	return is_valid;
1117 }
1118 
1119 /******************************************************************************
1120  * Resets the 10GbE link.  Waits the settle time and returns the state of
1121  * the link.
1122  *
1123  * hw - Struct containing variables accessed by shared code
1124  *****************************************************************************/
1125 static bool
ixgb_link_reset(struct ixgb_hw * hw)1126 ixgb_link_reset(struct ixgb_hw *hw)
1127 {
1128 	bool link_status = false;
1129 	u8 wait_retries = MAX_RESET_ITERATIONS;
1130 	u8 lrst_retries = MAX_RESET_ITERATIONS;
1131 
1132 	do {
1133 		/* Reset the link */
1134 		IXGB_WRITE_REG(hw, CTRL0,
1135 			       IXGB_READ_REG(hw, CTRL0) | IXGB_CTRL0_LRST);
1136 
1137 		/* Wait for link-up and lane re-alignment */
1138 		do {
1139 			udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET);
1140 			link_status =
1141 			    ((IXGB_READ_REG(hw, STATUS) & IXGB_STATUS_LU)
1142 			     && (IXGB_READ_REG(hw, XPCSS) &
1143 				 IXGB_XPCSS_ALIGN_STATUS)) ? true : false;
1144 		} while (!link_status && --wait_retries);
1145 
1146 	} while (!link_status && --lrst_retries);
1147 
1148 	return link_status;
1149 }
1150 
1151 /******************************************************************************
1152  * Resets the 10GbE optics module.
1153  *
1154  * hw - Struct containing variables accessed by shared code
1155  *****************************************************************************/
1156 static void
ixgb_optics_reset(struct ixgb_hw * hw)1157 ixgb_optics_reset(struct ixgb_hw *hw)
1158 {
1159 	if (hw->phy_type == ixgb_phy_type_txn17401) {
1160 		ixgb_write_phy_reg(hw,
1161 				   MDIO_CTRL1,
1162 				   IXGB_PHY_ADDRESS,
1163 				   MDIO_MMD_PMAPMD,
1164 				   MDIO_CTRL1_RESET);
1165 
1166 		ixgb_read_phy_reg(hw, MDIO_CTRL1, IXGB_PHY_ADDRESS, MDIO_MMD_PMAPMD);
1167 	}
1168 }
1169 
1170 /******************************************************************************
1171  * Resets the 10GbE optics module for Sun variant NIC.
1172  *
1173  * hw - Struct containing variables accessed by shared code
1174  *****************************************************************************/
1175 
1176 #define   IXGB_BCM8704_USER_PMD_TX_CTRL_REG         0xC803
1177 #define   IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL     0x0164
1178 #define   IXGB_BCM8704_USER_CTRL_REG                0xC800
1179 #define   IXGB_BCM8704_USER_CTRL_REG_VAL            0x7FBF
1180 #define   IXGB_BCM8704_USER_DEV3_ADDR               0x0003
1181 #define   IXGB_SUN_PHY_ADDRESS                      0x0000
1182 #define   IXGB_SUN_PHY_RESET_DELAY                     305
1183 
1184 static void
ixgb_optics_reset_bcm(struct ixgb_hw * hw)1185 ixgb_optics_reset_bcm(struct ixgb_hw *hw)
1186 {
1187 	u32 ctrl = IXGB_READ_REG(hw, CTRL0);
1188 	ctrl &= ~IXGB_CTRL0_SDP2;
1189 	ctrl |= IXGB_CTRL0_SDP3;
1190 	IXGB_WRITE_REG(hw, CTRL0, ctrl);
1191 	IXGB_WRITE_FLUSH(hw);
1192 
1193 	/* SerDes needs extra delay */
1194 	msleep(IXGB_SUN_PHY_RESET_DELAY);
1195 
1196 	/* Broadcom 7408L configuration */
1197 	/* Reference clock config */
1198 	ixgb_write_phy_reg(hw,
1199 			   IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
1200 			   IXGB_SUN_PHY_ADDRESS,
1201 			   IXGB_BCM8704_USER_DEV3_ADDR,
1202 			   IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL);
1203 	/*  we must read the registers twice */
1204 	ixgb_read_phy_reg(hw,
1205 			  IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
1206 			  IXGB_SUN_PHY_ADDRESS,
1207 			  IXGB_BCM8704_USER_DEV3_ADDR);
1208 	ixgb_read_phy_reg(hw,
1209 			  IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
1210 			  IXGB_SUN_PHY_ADDRESS,
1211 			  IXGB_BCM8704_USER_DEV3_ADDR);
1212 
1213 	ixgb_write_phy_reg(hw,
1214 			   IXGB_BCM8704_USER_CTRL_REG,
1215 			   IXGB_SUN_PHY_ADDRESS,
1216 			   IXGB_BCM8704_USER_DEV3_ADDR,
1217 			   IXGB_BCM8704_USER_CTRL_REG_VAL);
1218 	ixgb_read_phy_reg(hw,
1219 			  IXGB_BCM8704_USER_CTRL_REG,
1220 			  IXGB_SUN_PHY_ADDRESS,
1221 			  IXGB_BCM8704_USER_DEV3_ADDR);
1222 	ixgb_read_phy_reg(hw,
1223 			  IXGB_BCM8704_USER_CTRL_REG,
1224 			  IXGB_SUN_PHY_ADDRESS,
1225 			  IXGB_BCM8704_USER_DEV3_ADDR);
1226 
1227 	/* SerDes needs extra delay */
1228 	msleep(IXGB_SUN_PHY_RESET_DELAY);
1229 }
1230