• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * New driver for Marvell Yukon chipset and SysKonnect Gigabit
4  * Ethernet adapters. Based on earlier sk98lin, e100 and
5  * FreeBSD if_sk drivers.
6  *
7  * This driver intentionally does not support all the features
8  * of the original driver such as link fail-over and link management because
9  * those should be done at higher levels.
10  *
11  * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/in.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/ethtool.h>
23 #include <linux/pci.h>
24 #include <linux/if_vlan.h>
25 #include <linux/ip.h>
26 #include <linux/delay.h>
27 #include <linux/crc32.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/mii.h>
33 #include <linux/slab.h>
34 #include <linux/dmi.h>
35 #include <linux/prefetch.h>
36 #include <asm/irq.h>
37 
38 #include "skge.h"
39 
40 #define DRV_NAME		"skge"
41 #define DRV_VERSION		"1.14"
42 
43 #define DEFAULT_TX_RING_SIZE	128
44 #define DEFAULT_RX_RING_SIZE	512
45 #define MAX_TX_RING_SIZE	1024
46 #define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
47 #define MAX_RX_RING_SIZE	4096
48 #define RX_COPY_THRESHOLD	128
49 #define RX_BUF_SIZE		1536
50 #define PHY_RETRIES	        1000
51 #define ETH_JUMBO_MTU		9000
52 #define TX_WATCHDOG		(5 * HZ)
53 #define BLINK_MS		250
54 #define LINK_HZ			HZ
55 
56 #define SKGE_EEPROM_MAGIC	0x9933aabb
57 
58 
59 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
60 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
61 MODULE_LICENSE("GPL");
62 MODULE_VERSION(DRV_VERSION);
63 
64 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
65 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
66 				NETIF_MSG_IFDOWN);
67 
68 static int debug = -1;	/* defaults above */
69 module_param(debug, int, 0);
70 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
71 
72 static const struct pci_device_id skge_id_table[] = {
73 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },	  /* 3Com 3C940 */
74 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },	  /* 3Com 3C940B */
75 #ifdef CONFIG_SKGE_GENESIS
76 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
77 #endif
78 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
79 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	  /* D-Link DGE-530T (rev.B) */
80 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },	  /* D-Link DGE-530T */
81 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },	  /* D-Link DGE-530T Rev C1 */
82 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },	  /* Marvell Yukon 88E8001/8003/8010 */
83 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },	  /* Belkin */
84 	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, 	  /* CNet PowerG-2000 */
85 	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },	  /* Linksys EG1064 v2 */
86 	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
87 	{ 0 }
88 };
89 MODULE_DEVICE_TABLE(pci, skge_id_table);
90 
91 static int skge_up(struct net_device *dev);
92 static int skge_down(struct net_device *dev);
93 static void skge_phy_reset(struct skge_port *skge);
94 static void skge_tx_clean(struct net_device *dev);
95 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
96 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static void genesis_get_stats(struct skge_port *skge, u64 *data);
98 static void yukon_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_init(struct skge_hw *hw, int port);
100 static void genesis_mac_init(struct skge_hw *hw, int port);
101 static void genesis_link_up(struct skge_port *skge);
102 static void skge_set_multicast(struct net_device *dev);
103 static irqreturn_t skge_intr(int irq, void *dev_id);
104 
105 /* Avoid conditionals by using array */
106 static const int txqaddr[] = { Q_XA1, Q_XA2 };
107 static const int rxqaddr[] = { Q_R1, Q_R2 };
108 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
109 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
110 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
111 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
112 
is_genesis(const struct skge_hw * hw)113 static inline bool is_genesis(const struct skge_hw *hw)
114 {
115 #ifdef CONFIG_SKGE_GENESIS
116 	return hw->chip_id == CHIP_ID_GENESIS;
117 #else
118 	return false;
119 #endif
120 }
121 
skge_get_regs_len(struct net_device * dev)122 static int skge_get_regs_len(struct net_device *dev)
123 {
124 	return 0x4000;
125 }
126 
127 /*
128  * Returns copy of whole control register region
129  * Note: skip RAM address register because accessing it will
130  * 	 cause bus hangs!
131  */
skge_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)132 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
133 			  void *p)
134 {
135 	const struct skge_port *skge = netdev_priv(dev);
136 	const void __iomem *io = skge->hw->regs;
137 
138 	regs->version = 1;
139 	memset(p, 0, regs->len);
140 	memcpy_fromio(p, io, B3_RAM_ADDR);
141 
142 	if (regs->len > B3_RI_WTO_R1) {
143 		memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
144 			      regs->len - B3_RI_WTO_R1);
145 	}
146 }
147 
148 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
wol_supported(const struct skge_hw * hw)149 static u32 wol_supported(const struct skge_hw *hw)
150 {
151 	if (is_genesis(hw))
152 		return 0;
153 
154 	if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
155 		return 0;
156 
157 	return WAKE_MAGIC | WAKE_PHY;
158 }
159 
skge_wol_init(struct skge_port * skge)160 static void skge_wol_init(struct skge_port *skge)
161 {
162 	struct skge_hw *hw = skge->hw;
163 	int port = skge->port;
164 	u16 ctrl;
165 
166 	skge_write16(hw, B0_CTST, CS_RST_CLR);
167 	skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
168 
169 	/* Turn on Vaux */
170 	skge_write8(hw, B0_POWER_CTRL,
171 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
172 
173 	/* WA code for COMA mode -- clear PHY reset */
174 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
175 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
176 		u32 reg = skge_read32(hw, B2_GP_IO);
177 		reg |= GP_DIR_9;
178 		reg &= ~GP_IO_9;
179 		skge_write32(hw, B2_GP_IO, reg);
180 	}
181 
182 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
183 		     GPC_DIS_SLEEP |
184 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
185 		     GPC_ANEG_1 | GPC_RST_SET);
186 
187 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
188 		     GPC_DIS_SLEEP |
189 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
190 		     GPC_ANEG_1 | GPC_RST_CLR);
191 
192 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
193 
194 	/* Force to 10/100 skge_reset will re-enable on resume	 */
195 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
196 		     (PHY_AN_100FULL | PHY_AN_100HALF |
197 		      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
198 	/* no 1000 HD/FD */
199 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
200 	gm_phy_write(hw, port, PHY_MARV_CTRL,
201 		     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
202 		     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
203 
204 
205 	/* Set GMAC to no flow control and auto update for speed/duplex */
206 	gma_write16(hw, port, GM_GP_CTRL,
207 		    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
208 		    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
209 
210 	/* Set WOL address */
211 	memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
212 		    skge->netdev->dev_addr, ETH_ALEN);
213 
214 	/* Turn on appropriate WOL control bits */
215 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
216 	ctrl = 0;
217 	if (skge->wol & WAKE_PHY)
218 		ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
219 	else
220 		ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
221 
222 	if (skge->wol & WAKE_MAGIC)
223 		ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
224 	else
225 		ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
226 
227 	ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
228 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
229 
230 	/* block receiver */
231 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
232 }
233 
skge_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)234 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
235 {
236 	struct skge_port *skge = netdev_priv(dev);
237 
238 	wol->supported = wol_supported(skge->hw);
239 	wol->wolopts = skge->wol;
240 }
241 
skge_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)242 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
243 {
244 	struct skge_port *skge = netdev_priv(dev);
245 	struct skge_hw *hw = skge->hw;
246 
247 	if ((wol->wolopts & ~wol_supported(hw)) ||
248 	    !device_can_wakeup(&hw->pdev->dev))
249 		return -EOPNOTSUPP;
250 
251 	skge->wol = wol->wolopts;
252 
253 	device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
254 
255 	return 0;
256 }
257 
258 /* Determine supported/advertised modes based on hardware.
259  * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
260  */
skge_supported_modes(const struct skge_hw * hw)261 static u32 skge_supported_modes(const struct skge_hw *hw)
262 {
263 	u32 supported;
264 
265 	if (hw->copper) {
266 		supported = (SUPPORTED_10baseT_Half |
267 			     SUPPORTED_10baseT_Full |
268 			     SUPPORTED_100baseT_Half |
269 			     SUPPORTED_100baseT_Full |
270 			     SUPPORTED_1000baseT_Half |
271 			     SUPPORTED_1000baseT_Full |
272 			     SUPPORTED_Autoneg |
273 			     SUPPORTED_TP);
274 
275 		if (is_genesis(hw))
276 			supported &= ~(SUPPORTED_10baseT_Half |
277 				       SUPPORTED_10baseT_Full |
278 				       SUPPORTED_100baseT_Half |
279 				       SUPPORTED_100baseT_Full);
280 
281 		else if (hw->chip_id == CHIP_ID_YUKON)
282 			supported &= ~SUPPORTED_1000baseT_Half;
283 	} else
284 		supported = (SUPPORTED_1000baseT_Full |
285 			     SUPPORTED_1000baseT_Half |
286 			     SUPPORTED_FIBRE |
287 			     SUPPORTED_Autoneg);
288 
289 	return supported;
290 }
291 
skge_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)292 static int skge_get_link_ksettings(struct net_device *dev,
293 				   struct ethtool_link_ksettings *cmd)
294 {
295 	struct skge_port *skge = netdev_priv(dev);
296 	struct skge_hw *hw = skge->hw;
297 	u32 supported, advertising;
298 
299 	supported = skge_supported_modes(hw);
300 
301 	if (hw->copper) {
302 		cmd->base.port = PORT_TP;
303 		cmd->base.phy_address = hw->phy_addr;
304 	} else
305 		cmd->base.port = PORT_FIBRE;
306 
307 	advertising = skge->advertising;
308 	cmd->base.autoneg = skge->autoneg;
309 	cmd->base.speed = skge->speed;
310 	cmd->base.duplex = skge->duplex;
311 
312 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
313 						supported);
314 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
315 						advertising);
316 
317 	return 0;
318 }
319 
skge_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)320 static int skge_set_link_ksettings(struct net_device *dev,
321 				   const struct ethtool_link_ksettings *cmd)
322 {
323 	struct skge_port *skge = netdev_priv(dev);
324 	const struct skge_hw *hw = skge->hw;
325 	u32 supported = skge_supported_modes(hw);
326 	int err = 0;
327 	u32 advertising;
328 
329 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
330 						cmd->link_modes.advertising);
331 
332 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
333 		advertising = supported;
334 		skge->duplex = -1;
335 		skge->speed = -1;
336 	} else {
337 		u32 setting;
338 		u32 speed = cmd->base.speed;
339 
340 		switch (speed) {
341 		case SPEED_1000:
342 			if (cmd->base.duplex == DUPLEX_FULL)
343 				setting = SUPPORTED_1000baseT_Full;
344 			else if (cmd->base.duplex == DUPLEX_HALF)
345 				setting = SUPPORTED_1000baseT_Half;
346 			else
347 				return -EINVAL;
348 			break;
349 		case SPEED_100:
350 			if (cmd->base.duplex == DUPLEX_FULL)
351 				setting = SUPPORTED_100baseT_Full;
352 			else if (cmd->base.duplex == DUPLEX_HALF)
353 				setting = SUPPORTED_100baseT_Half;
354 			else
355 				return -EINVAL;
356 			break;
357 
358 		case SPEED_10:
359 			if (cmd->base.duplex == DUPLEX_FULL)
360 				setting = SUPPORTED_10baseT_Full;
361 			else if (cmd->base.duplex == DUPLEX_HALF)
362 				setting = SUPPORTED_10baseT_Half;
363 			else
364 				return -EINVAL;
365 			break;
366 		default:
367 			return -EINVAL;
368 		}
369 
370 		if ((setting & supported) == 0)
371 			return -EINVAL;
372 
373 		skge->speed = speed;
374 		skge->duplex = cmd->base.duplex;
375 	}
376 
377 	skge->autoneg = cmd->base.autoneg;
378 	skge->advertising = advertising;
379 
380 	if (netif_running(dev)) {
381 		skge_down(dev);
382 		err = skge_up(dev);
383 		if (err) {
384 			dev_close(dev);
385 			return err;
386 		}
387 	}
388 
389 	return 0;
390 }
391 
skge_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)392 static void skge_get_drvinfo(struct net_device *dev,
393 			     struct ethtool_drvinfo *info)
394 {
395 	struct skge_port *skge = netdev_priv(dev);
396 
397 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
398 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
399 	strlcpy(info->bus_info, pci_name(skge->hw->pdev),
400 		sizeof(info->bus_info));
401 }
402 
403 static const struct skge_stat {
404 	char 	   name[ETH_GSTRING_LEN];
405 	u16	   xmac_offset;
406 	u16	   gma_offset;
407 } skge_stats[] = {
408 	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
409 	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },
410 
411 	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
412 	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
413 	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
414 	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
415 	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
416 	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
417 	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
418 	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },
419 
420 	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
421 	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
422 	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
423 	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
424 	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
425 	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
426 
427 	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
428 	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
429 	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
430 	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
431 	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
432 };
433 
skge_get_sset_count(struct net_device * dev,int sset)434 static int skge_get_sset_count(struct net_device *dev, int sset)
435 {
436 	switch (sset) {
437 	case ETH_SS_STATS:
438 		return ARRAY_SIZE(skge_stats);
439 	default:
440 		return -EOPNOTSUPP;
441 	}
442 }
443 
skge_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)444 static void skge_get_ethtool_stats(struct net_device *dev,
445 				   struct ethtool_stats *stats, u64 *data)
446 {
447 	struct skge_port *skge = netdev_priv(dev);
448 
449 	if (is_genesis(skge->hw))
450 		genesis_get_stats(skge, data);
451 	else
452 		yukon_get_stats(skge, data);
453 }
454 
455 /* Use hardware MIB variables for critical path statistics and
456  * transmit feedback not reported at interrupt.
457  * Other errors are accounted for in interrupt handler.
458  */
skge_get_stats(struct net_device * dev)459 static struct net_device_stats *skge_get_stats(struct net_device *dev)
460 {
461 	struct skge_port *skge = netdev_priv(dev);
462 	u64 data[ARRAY_SIZE(skge_stats)];
463 
464 	if (is_genesis(skge->hw))
465 		genesis_get_stats(skge, data);
466 	else
467 		yukon_get_stats(skge, data);
468 
469 	dev->stats.tx_bytes = data[0];
470 	dev->stats.rx_bytes = data[1];
471 	dev->stats.tx_packets = data[2] + data[4] + data[6];
472 	dev->stats.rx_packets = data[3] + data[5] + data[7];
473 	dev->stats.multicast = data[3] + data[5];
474 	dev->stats.collisions = data[10];
475 	dev->stats.tx_aborted_errors = data[12];
476 
477 	return &dev->stats;
478 }
479 
skge_get_strings(struct net_device * dev,u32 stringset,u8 * data)480 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
481 {
482 	int i;
483 
484 	switch (stringset) {
485 	case ETH_SS_STATS:
486 		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
487 			memcpy(data + i * ETH_GSTRING_LEN,
488 			       skge_stats[i].name, ETH_GSTRING_LEN);
489 		break;
490 	}
491 }
492 
skge_get_ring_param(struct net_device * dev,struct ethtool_ringparam * p)493 static void skge_get_ring_param(struct net_device *dev,
494 				struct ethtool_ringparam *p)
495 {
496 	struct skge_port *skge = netdev_priv(dev);
497 
498 	p->rx_max_pending = MAX_RX_RING_SIZE;
499 	p->tx_max_pending = MAX_TX_RING_SIZE;
500 
501 	p->rx_pending = skge->rx_ring.count;
502 	p->tx_pending = skge->tx_ring.count;
503 }
504 
skge_set_ring_param(struct net_device * dev,struct ethtool_ringparam * p)505 static int skge_set_ring_param(struct net_device *dev,
506 			       struct ethtool_ringparam *p)
507 {
508 	struct skge_port *skge = netdev_priv(dev);
509 	int err = 0;
510 
511 	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
512 	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
513 		return -EINVAL;
514 
515 	skge->rx_ring.count = p->rx_pending;
516 	skge->tx_ring.count = p->tx_pending;
517 
518 	if (netif_running(dev)) {
519 		skge_down(dev);
520 		err = skge_up(dev);
521 		if (err)
522 			dev_close(dev);
523 	}
524 
525 	return err;
526 }
527 
skge_get_msglevel(struct net_device * netdev)528 static u32 skge_get_msglevel(struct net_device *netdev)
529 {
530 	struct skge_port *skge = netdev_priv(netdev);
531 	return skge->msg_enable;
532 }
533 
skge_set_msglevel(struct net_device * netdev,u32 value)534 static void skge_set_msglevel(struct net_device *netdev, u32 value)
535 {
536 	struct skge_port *skge = netdev_priv(netdev);
537 	skge->msg_enable = value;
538 }
539 
skge_nway_reset(struct net_device * dev)540 static int skge_nway_reset(struct net_device *dev)
541 {
542 	struct skge_port *skge = netdev_priv(dev);
543 
544 	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
545 		return -EINVAL;
546 
547 	skge_phy_reset(skge);
548 	return 0;
549 }
550 
skge_get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * ecmd)551 static void skge_get_pauseparam(struct net_device *dev,
552 				struct ethtool_pauseparam *ecmd)
553 {
554 	struct skge_port *skge = netdev_priv(dev);
555 
556 	ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
557 			  (skge->flow_control == FLOW_MODE_SYM_OR_REM));
558 	ecmd->tx_pause = (ecmd->rx_pause ||
559 			  (skge->flow_control == FLOW_MODE_LOC_SEND));
560 
561 	ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
562 }
563 
skge_set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * ecmd)564 static int skge_set_pauseparam(struct net_device *dev,
565 			       struct ethtool_pauseparam *ecmd)
566 {
567 	struct skge_port *skge = netdev_priv(dev);
568 	struct ethtool_pauseparam old;
569 	int err = 0;
570 
571 	skge_get_pauseparam(dev, &old);
572 
573 	if (ecmd->autoneg != old.autoneg)
574 		skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
575 	else {
576 		if (ecmd->rx_pause && ecmd->tx_pause)
577 			skge->flow_control = FLOW_MODE_SYMMETRIC;
578 		else if (ecmd->rx_pause && !ecmd->tx_pause)
579 			skge->flow_control = FLOW_MODE_SYM_OR_REM;
580 		else if (!ecmd->rx_pause && ecmd->tx_pause)
581 			skge->flow_control = FLOW_MODE_LOC_SEND;
582 		else
583 			skge->flow_control = FLOW_MODE_NONE;
584 	}
585 
586 	if (netif_running(dev)) {
587 		skge_down(dev);
588 		err = skge_up(dev);
589 		if (err) {
590 			dev_close(dev);
591 			return err;
592 		}
593 	}
594 
595 	return 0;
596 }
597 
598 /* Chip internal frequency for clock calculations */
hwkhz(const struct skge_hw * hw)599 static inline u32 hwkhz(const struct skge_hw *hw)
600 {
601 	return is_genesis(hw) ? 53125 : 78125;
602 }
603 
604 /* Chip HZ to microseconds */
skge_clk2usec(const struct skge_hw * hw,u32 ticks)605 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
606 {
607 	return (ticks * 1000) / hwkhz(hw);
608 }
609 
610 /* Microseconds to chip HZ */
skge_usecs2clk(const struct skge_hw * hw,u32 usec)611 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
612 {
613 	return hwkhz(hw) * usec / 1000;
614 }
615 
skge_get_coalesce(struct net_device * dev,struct ethtool_coalesce * ecmd,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)616 static int skge_get_coalesce(struct net_device *dev,
617 			     struct ethtool_coalesce *ecmd,
618 			     struct kernel_ethtool_coalesce *kernel_coal,
619 			     struct netlink_ext_ack *extack)
620 {
621 	struct skge_port *skge = netdev_priv(dev);
622 	struct skge_hw *hw = skge->hw;
623 	int port = skge->port;
624 
625 	ecmd->rx_coalesce_usecs = 0;
626 	ecmd->tx_coalesce_usecs = 0;
627 
628 	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
629 		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
630 		u32 msk = skge_read32(hw, B2_IRQM_MSK);
631 
632 		if (msk & rxirqmask[port])
633 			ecmd->rx_coalesce_usecs = delay;
634 		if (msk & txirqmask[port])
635 			ecmd->tx_coalesce_usecs = delay;
636 	}
637 
638 	return 0;
639 }
640 
641 /* Note: interrupt timer is per board, but can turn on/off per port */
skge_set_coalesce(struct net_device * dev,struct ethtool_coalesce * ecmd,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)642 static int skge_set_coalesce(struct net_device *dev,
643 			     struct ethtool_coalesce *ecmd,
644 			     struct kernel_ethtool_coalesce *kernel_coal,
645 			     struct netlink_ext_ack *extack)
646 {
647 	struct skge_port *skge = netdev_priv(dev);
648 	struct skge_hw *hw = skge->hw;
649 	int port = skge->port;
650 	u32 msk = skge_read32(hw, B2_IRQM_MSK);
651 	u32 delay = 25;
652 
653 	if (ecmd->rx_coalesce_usecs == 0)
654 		msk &= ~rxirqmask[port];
655 	else if (ecmd->rx_coalesce_usecs < 25 ||
656 		 ecmd->rx_coalesce_usecs > 33333)
657 		return -EINVAL;
658 	else {
659 		msk |= rxirqmask[port];
660 		delay = ecmd->rx_coalesce_usecs;
661 	}
662 
663 	if (ecmd->tx_coalesce_usecs == 0)
664 		msk &= ~txirqmask[port];
665 	else if (ecmd->tx_coalesce_usecs < 25 ||
666 		 ecmd->tx_coalesce_usecs > 33333)
667 		return -EINVAL;
668 	else {
669 		msk |= txirqmask[port];
670 		delay = min(delay, ecmd->rx_coalesce_usecs);
671 	}
672 
673 	skge_write32(hw, B2_IRQM_MSK, msk);
674 	if (msk == 0)
675 		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
676 	else {
677 		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
678 		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
679 	}
680 	return 0;
681 }
682 
683 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
skge_led(struct skge_port * skge,enum led_mode mode)684 static void skge_led(struct skge_port *skge, enum led_mode mode)
685 {
686 	struct skge_hw *hw = skge->hw;
687 	int port = skge->port;
688 
689 	spin_lock_bh(&hw->phy_lock);
690 	if (is_genesis(hw)) {
691 		switch (mode) {
692 		case LED_MODE_OFF:
693 			if (hw->phy_type == SK_PHY_BCOM)
694 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
695 			else {
696 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
697 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
698 			}
699 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
700 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
701 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
702 			break;
703 
704 		case LED_MODE_ON:
705 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
706 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
707 
708 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
709 			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
710 
711 			break;
712 
713 		case LED_MODE_TST:
714 			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
715 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
716 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
717 
718 			if (hw->phy_type == SK_PHY_BCOM)
719 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
720 			else {
721 				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
722 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
723 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
724 			}
725 
726 		}
727 	} else {
728 		switch (mode) {
729 		case LED_MODE_OFF:
730 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
731 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
732 				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
733 				     PHY_M_LED_MO_10(MO_LED_OFF)   |
734 				     PHY_M_LED_MO_100(MO_LED_OFF)  |
735 				     PHY_M_LED_MO_1000(MO_LED_OFF) |
736 				     PHY_M_LED_MO_RX(MO_LED_OFF));
737 			break;
738 		case LED_MODE_ON:
739 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
740 				     PHY_M_LED_PULS_DUR(PULS_170MS) |
741 				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
742 				     PHY_M_LEDC_TX_CTRL |
743 				     PHY_M_LEDC_DP_CTRL);
744 
745 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
746 				     PHY_M_LED_MO_RX(MO_LED_OFF) |
747 				     (skge->speed == SPEED_100 ?
748 				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
749 			break;
750 		case LED_MODE_TST:
751 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
752 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
753 				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
754 				     PHY_M_LED_MO_10(MO_LED_ON)   |
755 				     PHY_M_LED_MO_100(MO_LED_ON)  |
756 				     PHY_M_LED_MO_1000(MO_LED_ON) |
757 				     PHY_M_LED_MO_RX(MO_LED_ON));
758 		}
759 	}
760 	spin_unlock_bh(&hw->phy_lock);
761 }
762 
763 /* blink LED's for finding board */
skge_set_phys_id(struct net_device * dev,enum ethtool_phys_id_state state)764 static int skge_set_phys_id(struct net_device *dev,
765 			    enum ethtool_phys_id_state state)
766 {
767 	struct skge_port *skge = netdev_priv(dev);
768 
769 	switch (state) {
770 	case ETHTOOL_ID_ACTIVE:
771 		return 2;	/* cycle on/off twice per second */
772 
773 	case ETHTOOL_ID_ON:
774 		skge_led(skge, LED_MODE_TST);
775 		break;
776 
777 	case ETHTOOL_ID_OFF:
778 		skge_led(skge, LED_MODE_OFF);
779 		break;
780 
781 	case ETHTOOL_ID_INACTIVE:
782 		/* back to regular LED state */
783 		skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
784 	}
785 
786 	return 0;
787 }
788 
skge_get_eeprom_len(struct net_device * dev)789 static int skge_get_eeprom_len(struct net_device *dev)
790 {
791 	struct skge_port *skge = netdev_priv(dev);
792 	u32 reg2;
793 
794 	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
795 	return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
796 }
797 
skge_vpd_read(struct pci_dev * pdev,int cap,u16 offset)798 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
799 {
800 	u32 val;
801 
802 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
803 
804 	do {
805 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
806 	} while (!(offset & PCI_VPD_ADDR_F));
807 
808 	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
809 	return val;
810 }
811 
skge_vpd_write(struct pci_dev * pdev,int cap,u16 offset,u32 val)812 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
813 {
814 	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
815 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
816 			      offset | PCI_VPD_ADDR_F);
817 
818 	do {
819 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
820 	} while (offset & PCI_VPD_ADDR_F);
821 }
822 
skge_get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)823 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
824 			   u8 *data)
825 {
826 	struct skge_port *skge = netdev_priv(dev);
827 	struct pci_dev *pdev = skge->hw->pdev;
828 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
829 	int length = eeprom->len;
830 	u16 offset = eeprom->offset;
831 
832 	if (!cap)
833 		return -EINVAL;
834 
835 	eeprom->magic = SKGE_EEPROM_MAGIC;
836 
837 	while (length > 0) {
838 		u32 val = skge_vpd_read(pdev, cap, offset);
839 		int n = min_t(int, length, sizeof(val));
840 
841 		memcpy(data, &val, n);
842 		length -= n;
843 		data += n;
844 		offset += n;
845 	}
846 	return 0;
847 }
848 
skge_set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)849 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
850 			   u8 *data)
851 {
852 	struct skge_port *skge = netdev_priv(dev);
853 	struct pci_dev *pdev = skge->hw->pdev;
854 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
855 	int length = eeprom->len;
856 	u16 offset = eeprom->offset;
857 
858 	if (!cap)
859 		return -EINVAL;
860 
861 	if (eeprom->magic != SKGE_EEPROM_MAGIC)
862 		return -EINVAL;
863 
864 	while (length > 0) {
865 		u32 val;
866 		int n = min_t(int, length, sizeof(val));
867 
868 		if (n < sizeof(val))
869 			val = skge_vpd_read(pdev, cap, offset);
870 		memcpy(&val, data, n);
871 
872 		skge_vpd_write(pdev, cap, offset, val);
873 
874 		length -= n;
875 		data += n;
876 		offset += n;
877 	}
878 	return 0;
879 }
880 
881 static const struct ethtool_ops skge_ethtool_ops = {
882 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS,
883 	.get_drvinfo	= skge_get_drvinfo,
884 	.get_regs_len	= skge_get_regs_len,
885 	.get_regs	= skge_get_regs,
886 	.get_wol	= skge_get_wol,
887 	.set_wol	= skge_set_wol,
888 	.get_msglevel	= skge_get_msglevel,
889 	.set_msglevel	= skge_set_msglevel,
890 	.nway_reset	= skge_nway_reset,
891 	.get_link	= ethtool_op_get_link,
892 	.get_eeprom_len	= skge_get_eeprom_len,
893 	.get_eeprom	= skge_get_eeprom,
894 	.set_eeprom	= skge_set_eeprom,
895 	.get_ringparam	= skge_get_ring_param,
896 	.set_ringparam	= skge_set_ring_param,
897 	.get_pauseparam = skge_get_pauseparam,
898 	.set_pauseparam = skge_set_pauseparam,
899 	.get_coalesce	= skge_get_coalesce,
900 	.set_coalesce	= skge_set_coalesce,
901 	.get_strings	= skge_get_strings,
902 	.set_phys_id	= skge_set_phys_id,
903 	.get_sset_count = skge_get_sset_count,
904 	.get_ethtool_stats = skge_get_ethtool_stats,
905 	.get_link_ksettings = skge_get_link_ksettings,
906 	.set_link_ksettings = skge_set_link_ksettings,
907 };
908 
909 /*
910  * Allocate ring elements and chain them together
911  * One-to-one association of board descriptors with ring elements
912  */
skge_ring_alloc(struct skge_ring * ring,void * vaddr,u32 base)913 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
914 {
915 	struct skge_tx_desc *d;
916 	struct skge_element *e;
917 	int i;
918 
919 	ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
920 	if (!ring->start)
921 		return -ENOMEM;
922 
923 	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
924 		e->desc = d;
925 		if (i == ring->count - 1) {
926 			e->next = ring->start;
927 			d->next_offset = base;
928 		} else {
929 			e->next = e + 1;
930 			d->next_offset = base + (i+1) * sizeof(*d);
931 		}
932 	}
933 	ring->to_use = ring->to_clean = ring->start;
934 
935 	return 0;
936 }
937 
938 /* Allocate and setup a new buffer for receiving */
skge_rx_setup(struct skge_port * skge,struct skge_element * e,struct sk_buff * skb,unsigned int bufsize)939 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
940 			 struct sk_buff *skb, unsigned int bufsize)
941 {
942 	struct skge_rx_desc *rd = e->desc;
943 	dma_addr_t map;
944 
945 	map = dma_map_single(&skge->hw->pdev->dev, skb->data, bufsize,
946 			     DMA_FROM_DEVICE);
947 
948 	if (dma_mapping_error(&skge->hw->pdev->dev, map))
949 		return -1;
950 
951 	rd->dma_lo = lower_32_bits(map);
952 	rd->dma_hi = upper_32_bits(map);
953 	e->skb = skb;
954 	rd->csum1_start = ETH_HLEN;
955 	rd->csum2_start = ETH_HLEN;
956 	rd->csum1 = 0;
957 	rd->csum2 = 0;
958 
959 	wmb();
960 
961 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
962 	dma_unmap_addr_set(e, mapaddr, map);
963 	dma_unmap_len_set(e, maplen, bufsize);
964 	return 0;
965 }
966 
967 /* Resume receiving using existing skb,
968  * Note: DMA address is not changed by chip.
969  * 	 MTU not changed while receiver active.
970  */
skge_rx_reuse(struct skge_element * e,unsigned int size)971 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
972 {
973 	struct skge_rx_desc *rd = e->desc;
974 
975 	rd->csum2 = 0;
976 	rd->csum2_start = ETH_HLEN;
977 
978 	wmb();
979 
980 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
981 }
982 
983 
984 /* Free all  buffers in receive ring, assumes receiver stopped */
skge_rx_clean(struct skge_port * skge)985 static void skge_rx_clean(struct skge_port *skge)
986 {
987 	struct skge_hw *hw = skge->hw;
988 	struct skge_ring *ring = &skge->rx_ring;
989 	struct skge_element *e;
990 
991 	e = ring->start;
992 	do {
993 		struct skge_rx_desc *rd = e->desc;
994 		rd->control = 0;
995 		if (e->skb) {
996 			dma_unmap_single(&hw->pdev->dev,
997 					 dma_unmap_addr(e, mapaddr),
998 					 dma_unmap_len(e, maplen),
999 					 DMA_FROM_DEVICE);
1000 			dev_kfree_skb(e->skb);
1001 			e->skb = NULL;
1002 		}
1003 	} while ((e = e->next) != ring->start);
1004 }
1005 
1006 
1007 /* Allocate buffers for receive ring
1008  * For receive:  to_clean is next received frame.
1009  */
skge_rx_fill(struct net_device * dev)1010 static int skge_rx_fill(struct net_device *dev)
1011 {
1012 	struct skge_port *skge = netdev_priv(dev);
1013 	struct skge_ring *ring = &skge->rx_ring;
1014 	struct skge_element *e;
1015 
1016 	e = ring->start;
1017 	do {
1018 		struct sk_buff *skb;
1019 
1020 		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1021 					 GFP_KERNEL);
1022 		if (!skb)
1023 			return -ENOMEM;
1024 
1025 		skb_reserve(skb, NET_IP_ALIGN);
1026 		if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1027 			dev_kfree_skb(skb);
1028 			return -EIO;
1029 		}
1030 	} while ((e = e->next) != ring->start);
1031 
1032 	ring->to_clean = ring->start;
1033 	return 0;
1034 }
1035 
skge_pause(enum pause_status status)1036 static const char *skge_pause(enum pause_status status)
1037 {
1038 	switch (status) {
1039 	case FLOW_STAT_NONE:
1040 		return "none";
1041 	case FLOW_STAT_REM_SEND:
1042 		return "rx only";
1043 	case FLOW_STAT_LOC_SEND:
1044 		return "tx_only";
1045 	case FLOW_STAT_SYMMETRIC:		/* Both station may send PAUSE */
1046 		return "both";
1047 	default:
1048 		return "indeterminated";
1049 	}
1050 }
1051 
1052 
skge_link_up(struct skge_port * skge)1053 static void skge_link_up(struct skge_port *skge)
1054 {
1055 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1056 		    LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1057 
1058 	netif_carrier_on(skge->netdev);
1059 	netif_wake_queue(skge->netdev);
1060 
1061 	netif_info(skge, link, skge->netdev,
1062 		   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1063 		   skge->speed,
1064 		   skge->duplex == DUPLEX_FULL ? "full" : "half",
1065 		   skge_pause(skge->flow_status));
1066 }
1067 
skge_link_down(struct skge_port * skge)1068 static void skge_link_down(struct skge_port *skge)
1069 {
1070 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1071 	netif_carrier_off(skge->netdev);
1072 	netif_stop_queue(skge->netdev);
1073 
1074 	netif_info(skge, link, skge->netdev, "Link is down\n");
1075 }
1076 
xm_link_down(struct skge_hw * hw,int port)1077 static void xm_link_down(struct skge_hw *hw, int port)
1078 {
1079 	struct net_device *dev = hw->dev[port];
1080 	struct skge_port *skge = netdev_priv(dev);
1081 
1082 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1083 
1084 	if (netif_carrier_ok(dev))
1085 		skge_link_down(skge);
1086 }
1087 
__xm_phy_read(struct skge_hw * hw,int port,u16 reg,u16 * val)1088 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1089 {
1090 	int i;
1091 
1092 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1093 	*val = xm_read16(hw, port, XM_PHY_DATA);
1094 
1095 	if (hw->phy_type == SK_PHY_XMAC)
1096 		goto ready;
1097 
1098 	for (i = 0; i < PHY_RETRIES; i++) {
1099 		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1100 			goto ready;
1101 		udelay(1);
1102 	}
1103 
1104 	return -ETIMEDOUT;
1105  ready:
1106 	*val = xm_read16(hw, port, XM_PHY_DATA);
1107 
1108 	return 0;
1109 }
1110 
xm_phy_read(struct skge_hw * hw,int port,u16 reg)1111 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1112 {
1113 	u16 v = 0;
1114 	if (__xm_phy_read(hw, port, reg, &v))
1115 		pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1116 	return v;
1117 }
1118 
xm_phy_write(struct skge_hw * hw,int port,u16 reg,u16 val)1119 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1120 {
1121 	int i;
1122 
1123 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1124 	for (i = 0; i < PHY_RETRIES; i++) {
1125 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1126 			goto ready;
1127 		udelay(1);
1128 	}
1129 	return -EIO;
1130 
1131  ready:
1132 	xm_write16(hw, port, XM_PHY_DATA, val);
1133 	for (i = 0; i < PHY_RETRIES; i++) {
1134 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1135 			return 0;
1136 		udelay(1);
1137 	}
1138 	return -ETIMEDOUT;
1139 }
1140 
genesis_init(struct skge_hw * hw)1141 static void genesis_init(struct skge_hw *hw)
1142 {
1143 	/* set blink source counter */
1144 	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1145 	skge_write8(hw, B2_BSC_CTRL, BSC_START);
1146 
1147 	/* configure mac arbiter */
1148 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1149 
1150 	/* configure mac arbiter timeout values */
1151 	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1152 	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1153 	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1154 	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1155 
1156 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1157 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1158 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1159 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1160 
1161 	/* configure packet arbiter timeout */
1162 	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1163 	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1164 	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1165 	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1166 	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1167 }
1168 
genesis_reset(struct skge_hw * hw,int port)1169 static void genesis_reset(struct skge_hw *hw, int port)
1170 {
1171 	static const u8 zero[8]  = { 0 };
1172 	u32 reg;
1173 
1174 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1175 
1176 	/* reset the statistics module */
1177 	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1178 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1179 	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
1180 	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
1181 	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
1182 
1183 	/* disable Broadcom PHY IRQ */
1184 	if (hw->phy_type == SK_PHY_BCOM)
1185 		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1186 
1187 	xm_outhash(hw, port, XM_HSM, zero);
1188 
1189 	/* Flush TX and RX fifo */
1190 	reg = xm_read32(hw, port, XM_MODE);
1191 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1192 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1193 }
1194 
1195 /* Convert mode to MII values  */
1196 static const u16 phy_pause_map[] = {
1197 	[FLOW_MODE_NONE] =	0,
1198 	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
1199 	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1200 	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1201 };
1202 
1203 /* special defines for FIBER (88E1011S only) */
1204 static const u16 fiber_pause_map[] = {
1205 	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
1206 	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
1207 	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
1208 	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
1209 };
1210 
1211 
1212 /* Check status of Broadcom phy link */
bcom_check_link(struct skge_hw * hw,int port)1213 static void bcom_check_link(struct skge_hw *hw, int port)
1214 {
1215 	struct net_device *dev = hw->dev[port];
1216 	struct skge_port *skge = netdev_priv(dev);
1217 	u16 status;
1218 
1219 	/* read twice because of latch */
1220 	xm_phy_read(hw, port, PHY_BCOM_STAT);
1221 	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1222 
1223 	if ((status & PHY_ST_LSYNC) == 0) {
1224 		xm_link_down(hw, port);
1225 		return;
1226 	}
1227 
1228 	if (skge->autoneg == AUTONEG_ENABLE) {
1229 		u16 lpa, aux;
1230 
1231 		if (!(status & PHY_ST_AN_OVER))
1232 			return;
1233 
1234 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1235 		if (lpa & PHY_B_AN_RF) {
1236 			netdev_notice(dev, "remote fault\n");
1237 			return;
1238 		}
1239 
1240 		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1241 
1242 		/* Check Duplex mismatch */
1243 		switch (aux & PHY_B_AS_AN_RES_MSK) {
1244 		case PHY_B_RES_1000FD:
1245 			skge->duplex = DUPLEX_FULL;
1246 			break;
1247 		case PHY_B_RES_1000HD:
1248 			skge->duplex = DUPLEX_HALF;
1249 			break;
1250 		default:
1251 			netdev_notice(dev, "duplex mismatch\n");
1252 			return;
1253 		}
1254 
1255 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1256 		switch (aux & PHY_B_AS_PAUSE_MSK) {
1257 		case PHY_B_AS_PAUSE_MSK:
1258 			skge->flow_status = FLOW_STAT_SYMMETRIC;
1259 			break;
1260 		case PHY_B_AS_PRR:
1261 			skge->flow_status = FLOW_STAT_REM_SEND;
1262 			break;
1263 		case PHY_B_AS_PRT:
1264 			skge->flow_status = FLOW_STAT_LOC_SEND;
1265 			break;
1266 		default:
1267 			skge->flow_status = FLOW_STAT_NONE;
1268 		}
1269 		skge->speed = SPEED_1000;
1270 	}
1271 
1272 	if (!netif_carrier_ok(dev))
1273 		genesis_link_up(skge);
1274 }
1275 
1276 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1277  * Phy on for 100 or 10Mbit operation
1278  */
bcom_phy_init(struct skge_port * skge)1279 static void bcom_phy_init(struct skge_port *skge)
1280 {
1281 	struct skge_hw *hw = skge->hw;
1282 	int port = skge->port;
1283 	int i;
1284 	u16 id1, r, ext, ctl;
1285 
1286 	/* magic workaround patterns for Broadcom */
1287 	static const struct {
1288 		u16 reg;
1289 		u16 val;
1290 	} A1hack[] = {
1291 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1292 		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1293 		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1294 		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1295 	}, C0hack[] = {
1296 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1297 		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1298 	};
1299 
1300 	/* read Id from external PHY (all have the same address) */
1301 	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1302 
1303 	/* Optimize MDIO transfer by suppressing preamble. */
1304 	r = xm_read16(hw, port, XM_MMU_CMD);
1305 	r |=  XM_MMU_NO_PRE;
1306 	xm_write16(hw, port, XM_MMU_CMD, r);
1307 
1308 	switch (id1) {
1309 	case PHY_BCOM_ID1_C0:
1310 		/*
1311 		 * Workaround BCOM Errata for the C0 type.
1312 		 * Write magic patterns to reserved registers.
1313 		 */
1314 		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1315 			xm_phy_write(hw, port,
1316 				     C0hack[i].reg, C0hack[i].val);
1317 
1318 		break;
1319 	case PHY_BCOM_ID1_A1:
1320 		/*
1321 		 * Workaround BCOM Errata for the A1 type.
1322 		 * Write magic patterns to reserved registers.
1323 		 */
1324 		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1325 			xm_phy_write(hw, port,
1326 				     A1hack[i].reg, A1hack[i].val);
1327 		break;
1328 	}
1329 
1330 	/*
1331 	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1332 	 * Disable Power Management after reset.
1333 	 */
1334 	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1335 	r |= PHY_B_AC_DIS_PM;
1336 	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1337 
1338 	/* Dummy read */
1339 	xm_read16(hw, port, XM_ISRC);
1340 
1341 	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1342 	ctl = PHY_CT_SP1000;	/* always 1000mbit */
1343 
1344 	if (skge->autoneg == AUTONEG_ENABLE) {
1345 		/*
1346 		 * Workaround BCOM Errata #1 for the C5 type.
1347 		 * 1000Base-T Link Acquisition Failure in Slave Mode
1348 		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1349 		 */
1350 		u16 adv = PHY_B_1000C_RD;
1351 		if (skge->advertising & ADVERTISED_1000baseT_Half)
1352 			adv |= PHY_B_1000C_AHD;
1353 		if (skge->advertising & ADVERTISED_1000baseT_Full)
1354 			adv |= PHY_B_1000C_AFD;
1355 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1356 
1357 		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1358 	} else {
1359 		if (skge->duplex == DUPLEX_FULL)
1360 			ctl |= PHY_CT_DUP_MD;
1361 		/* Force to slave */
1362 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1363 	}
1364 
1365 	/* Set autonegotiation pause parameters */
1366 	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1367 		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1368 
1369 	/* Handle Jumbo frames */
1370 	if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1371 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1372 			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1373 
1374 		ext |= PHY_B_PEC_HIGH_LA;
1375 
1376 	}
1377 
1378 	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1379 	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1380 
1381 	/* Use link status change interrupt */
1382 	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1383 }
1384 
xm_phy_init(struct skge_port * skge)1385 static void xm_phy_init(struct skge_port *skge)
1386 {
1387 	struct skge_hw *hw = skge->hw;
1388 	int port = skge->port;
1389 	u16 ctrl = 0;
1390 
1391 	if (skge->autoneg == AUTONEG_ENABLE) {
1392 		if (skge->advertising & ADVERTISED_1000baseT_Half)
1393 			ctrl |= PHY_X_AN_HD;
1394 		if (skge->advertising & ADVERTISED_1000baseT_Full)
1395 			ctrl |= PHY_X_AN_FD;
1396 
1397 		ctrl |= fiber_pause_map[skge->flow_control];
1398 
1399 		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1400 
1401 		/* Restart Auto-negotiation */
1402 		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1403 	} else {
1404 		/* Set DuplexMode in Config register */
1405 		if (skge->duplex == DUPLEX_FULL)
1406 			ctrl |= PHY_CT_DUP_MD;
1407 		/*
1408 		 * Do NOT enable Auto-negotiation here. This would hold
1409 		 * the link down because no IDLEs are transmitted
1410 		 */
1411 	}
1412 
1413 	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1414 
1415 	/* Poll PHY for status changes */
1416 	mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1417 }
1418 
xm_check_link(struct net_device * dev)1419 static int xm_check_link(struct net_device *dev)
1420 {
1421 	struct skge_port *skge = netdev_priv(dev);
1422 	struct skge_hw *hw = skge->hw;
1423 	int port = skge->port;
1424 	u16 status;
1425 
1426 	/* read twice because of latch */
1427 	xm_phy_read(hw, port, PHY_XMAC_STAT);
1428 	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1429 
1430 	if ((status & PHY_ST_LSYNC) == 0) {
1431 		xm_link_down(hw, port);
1432 		return 0;
1433 	}
1434 
1435 	if (skge->autoneg == AUTONEG_ENABLE) {
1436 		u16 lpa, res;
1437 
1438 		if (!(status & PHY_ST_AN_OVER))
1439 			return 0;
1440 
1441 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1442 		if (lpa & PHY_B_AN_RF) {
1443 			netdev_notice(dev, "remote fault\n");
1444 			return 0;
1445 		}
1446 
1447 		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1448 
1449 		/* Check Duplex mismatch */
1450 		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1451 		case PHY_X_RS_FD:
1452 			skge->duplex = DUPLEX_FULL;
1453 			break;
1454 		case PHY_X_RS_HD:
1455 			skge->duplex = DUPLEX_HALF;
1456 			break;
1457 		default:
1458 			netdev_notice(dev, "duplex mismatch\n");
1459 			return 0;
1460 		}
1461 
1462 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1463 		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1464 		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1465 		    (lpa & PHY_X_P_SYM_MD))
1466 			skge->flow_status = FLOW_STAT_SYMMETRIC;
1467 		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1468 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1469 			/* Enable PAUSE receive, disable PAUSE transmit */
1470 			skge->flow_status  = FLOW_STAT_REM_SEND;
1471 		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1472 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1473 			/* Disable PAUSE receive, enable PAUSE transmit */
1474 			skge->flow_status = FLOW_STAT_LOC_SEND;
1475 		else
1476 			skge->flow_status = FLOW_STAT_NONE;
1477 
1478 		skge->speed = SPEED_1000;
1479 	}
1480 
1481 	if (!netif_carrier_ok(dev))
1482 		genesis_link_up(skge);
1483 	return 1;
1484 }
1485 
1486 /* Poll to check for link coming up.
1487  *
1488  * Since internal PHY is wired to a level triggered pin, can't
1489  * get an interrupt when carrier is detected, need to poll for
1490  * link coming up.
1491  */
xm_link_timer(struct timer_list * t)1492 static void xm_link_timer(struct timer_list *t)
1493 {
1494 	struct skge_port *skge = from_timer(skge, t, link_timer);
1495 	struct net_device *dev = skge->netdev;
1496 	struct skge_hw *hw = skge->hw;
1497 	int port = skge->port;
1498 	int i;
1499 	unsigned long flags;
1500 
1501 	if (!netif_running(dev))
1502 		return;
1503 
1504 	spin_lock_irqsave(&hw->phy_lock, flags);
1505 
1506 	/*
1507 	 * Verify that the link by checking GPIO register three times.
1508 	 * This pin has the signal from the link_sync pin connected to it.
1509 	 */
1510 	for (i = 0; i < 3; i++) {
1511 		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1512 			goto link_down;
1513 	}
1514 
1515 	/* Re-enable interrupt to detect link down */
1516 	if (xm_check_link(dev)) {
1517 		u16 msk = xm_read16(hw, port, XM_IMSK);
1518 		msk &= ~XM_IS_INP_ASS;
1519 		xm_write16(hw, port, XM_IMSK, msk);
1520 		xm_read16(hw, port, XM_ISRC);
1521 	} else {
1522 link_down:
1523 		mod_timer(&skge->link_timer,
1524 			  round_jiffies(jiffies + LINK_HZ));
1525 	}
1526 	spin_unlock_irqrestore(&hw->phy_lock, flags);
1527 }
1528 
genesis_mac_init(struct skge_hw * hw,int port)1529 static void genesis_mac_init(struct skge_hw *hw, int port)
1530 {
1531 	struct net_device *dev = hw->dev[port];
1532 	struct skge_port *skge = netdev_priv(dev);
1533 	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1534 	int i;
1535 	u32 r;
1536 	static const u8 zero[6]  = { 0 };
1537 
1538 	for (i = 0; i < 10; i++) {
1539 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1540 			     MFF_SET_MAC_RST);
1541 		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1542 			goto reset_ok;
1543 		udelay(1);
1544 	}
1545 
1546 	netdev_warn(dev, "genesis reset failed\n");
1547 
1548  reset_ok:
1549 	/* Unreset the XMAC. */
1550 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1551 
1552 	/*
1553 	 * Perform additional initialization for external PHYs,
1554 	 * namely for the 1000baseTX cards that use the XMAC's
1555 	 * GMII mode.
1556 	 */
1557 	if (hw->phy_type != SK_PHY_XMAC) {
1558 		/* Take external Phy out of reset */
1559 		r = skge_read32(hw, B2_GP_IO);
1560 		if (port == 0)
1561 			r |= GP_DIR_0|GP_IO_0;
1562 		else
1563 			r |= GP_DIR_2|GP_IO_2;
1564 
1565 		skge_write32(hw, B2_GP_IO, r);
1566 
1567 		/* Enable GMII interface */
1568 		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1569 	}
1570 
1571 
1572 	switch (hw->phy_type) {
1573 	case SK_PHY_XMAC:
1574 		xm_phy_init(skge);
1575 		break;
1576 	case SK_PHY_BCOM:
1577 		bcom_phy_init(skge);
1578 		bcom_check_link(hw, port);
1579 	}
1580 
1581 	/* Set Station Address */
1582 	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1583 
1584 	/* We don't use match addresses so clear */
1585 	for (i = 1; i < 16; i++)
1586 		xm_outaddr(hw, port, XM_EXM(i), zero);
1587 
1588 	/* Clear MIB counters */
1589 	xm_write16(hw, port, XM_STAT_CMD,
1590 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1591 	/* Clear two times according to Errata #3 */
1592 	xm_write16(hw, port, XM_STAT_CMD,
1593 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1594 
1595 	/* configure Rx High Water Mark (XM_RX_HI_WM) */
1596 	xm_write16(hw, port, XM_RX_HI_WM, 1450);
1597 
1598 	/* We don't need the FCS appended to the packet. */
1599 	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1600 	if (jumbo)
1601 		r |= XM_RX_BIG_PK_OK;
1602 
1603 	if (skge->duplex == DUPLEX_HALF) {
1604 		/*
1605 		 * If in manual half duplex mode the other side might be in
1606 		 * full duplex mode, so ignore if a carrier extension is not seen
1607 		 * on frames received
1608 		 */
1609 		r |= XM_RX_DIS_CEXT;
1610 	}
1611 	xm_write16(hw, port, XM_RX_CMD, r);
1612 
1613 	/* We want short frames padded to 60 bytes. */
1614 	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1615 
1616 	/* Increase threshold for jumbo frames on dual port */
1617 	if (hw->ports > 1 && jumbo)
1618 		xm_write16(hw, port, XM_TX_THR, 1020);
1619 	else
1620 		xm_write16(hw, port, XM_TX_THR, 512);
1621 
1622 	/*
1623 	 * Enable the reception of all error frames. This is
1624 	 * a necessary evil due to the design of the XMAC. The
1625 	 * XMAC's receive FIFO is only 8K in size, however jumbo
1626 	 * frames can be up to 9000 bytes in length. When bad
1627 	 * frame filtering is enabled, the XMAC's RX FIFO operates
1628 	 * in 'store and forward' mode. For this to work, the
1629 	 * entire frame has to fit into the FIFO, but that means
1630 	 * that jumbo frames larger than 8192 bytes will be
1631 	 * truncated. Disabling all bad frame filtering causes
1632 	 * the RX FIFO to operate in streaming mode, in which
1633 	 * case the XMAC will start transferring frames out of the
1634 	 * RX FIFO as soon as the FIFO threshold is reached.
1635 	 */
1636 	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1637 
1638 
1639 	/*
1640 	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1641 	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
1642 	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1643 	 */
1644 	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1645 
1646 	/*
1647 	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1648 	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
1649 	 *	  and 'Octets Tx OK Hi Cnt Ov'.
1650 	 */
1651 	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1652 
1653 	/* Configure MAC arbiter */
1654 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1655 
1656 	/* configure timeout values */
1657 	skge_write8(hw, B3_MA_TOINI_RX1, 72);
1658 	skge_write8(hw, B3_MA_TOINI_RX2, 72);
1659 	skge_write8(hw, B3_MA_TOINI_TX1, 72);
1660 	skge_write8(hw, B3_MA_TOINI_TX2, 72);
1661 
1662 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1663 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1664 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1665 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1666 
1667 	/* Configure Rx MAC FIFO */
1668 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1669 	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1670 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1671 
1672 	/* Configure Tx MAC FIFO */
1673 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1674 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1675 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1676 
1677 	if (jumbo) {
1678 		/* Enable frame flushing if jumbo frames used */
1679 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1680 	} else {
1681 		/* enable timeout timers if normal frames */
1682 		skge_write16(hw, B3_PA_CTRL,
1683 			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1684 	}
1685 }
1686 
genesis_stop(struct skge_port * skge)1687 static void genesis_stop(struct skge_port *skge)
1688 {
1689 	struct skge_hw *hw = skge->hw;
1690 	int port = skge->port;
1691 	unsigned retries = 1000;
1692 	u16 cmd;
1693 
1694 	/* Disable Tx and Rx */
1695 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1696 	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1697 	xm_write16(hw, port, XM_MMU_CMD, cmd);
1698 
1699 	genesis_reset(hw, port);
1700 
1701 	/* Clear Tx packet arbiter timeout IRQ */
1702 	skge_write16(hw, B3_PA_CTRL,
1703 		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1704 
1705 	/* Reset the MAC */
1706 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1707 	do {
1708 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1709 		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1710 			break;
1711 	} while (--retries > 0);
1712 
1713 	/* For external PHYs there must be special handling */
1714 	if (hw->phy_type != SK_PHY_XMAC) {
1715 		u32 reg = skge_read32(hw, B2_GP_IO);
1716 		if (port == 0) {
1717 			reg |= GP_DIR_0;
1718 			reg &= ~GP_IO_0;
1719 		} else {
1720 			reg |= GP_DIR_2;
1721 			reg &= ~GP_IO_2;
1722 		}
1723 		skge_write32(hw, B2_GP_IO, reg);
1724 		skge_read32(hw, B2_GP_IO);
1725 	}
1726 
1727 	xm_write16(hw, port, XM_MMU_CMD,
1728 			xm_read16(hw, port, XM_MMU_CMD)
1729 			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1730 
1731 	xm_read16(hw, port, XM_MMU_CMD);
1732 }
1733 
1734 
genesis_get_stats(struct skge_port * skge,u64 * data)1735 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1736 {
1737 	struct skge_hw *hw = skge->hw;
1738 	int port = skge->port;
1739 	int i;
1740 	unsigned long timeout = jiffies + HZ;
1741 
1742 	xm_write16(hw, port,
1743 			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1744 
1745 	/* wait for update to complete */
1746 	while (xm_read16(hw, port, XM_STAT_CMD)
1747 	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1748 		if (time_after(jiffies, timeout))
1749 			break;
1750 		udelay(10);
1751 	}
1752 
1753 	/* special case for 64 bit octet counter */
1754 	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1755 		| xm_read32(hw, port, XM_TXO_OK_LO);
1756 	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1757 		| xm_read32(hw, port, XM_RXO_OK_LO);
1758 
1759 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1760 		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1761 }
1762 
genesis_mac_intr(struct skge_hw * hw,int port)1763 static void genesis_mac_intr(struct skge_hw *hw, int port)
1764 {
1765 	struct net_device *dev = hw->dev[port];
1766 	struct skge_port *skge = netdev_priv(dev);
1767 	u16 status = xm_read16(hw, port, XM_ISRC);
1768 
1769 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1770 		     "mac interrupt status 0x%x\n", status);
1771 
1772 	if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1773 		xm_link_down(hw, port);
1774 		mod_timer(&skge->link_timer, jiffies + 1);
1775 	}
1776 
1777 	if (status & XM_IS_TXF_UR) {
1778 		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1779 		++dev->stats.tx_fifo_errors;
1780 	}
1781 }
1782 
genesis_link_up(struct skge_port * skge)1783 static void genesis_link_up(struct skge_port *skge)
1784 {
1785 	struct skge_hw *hw = skge->hw;
1786 	int port = skge->port;
1787 	u16 cmd, msk;
1788 	u32 mode;
1789 
1790 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1791 
1792 	/*
1793 	 * enabling pause frame reception is required for 1000BT
1794 	 * because the XMAC is not reset if the link is going down
1795 	 */
1796 	if (skge->flow_status == FLOW_STAT_NONE ||
1797 	    skge->flow_status == FLOW_STAT_LOC_SEND)
1798 		/* Disable Pause Frame Reception */
1799 		cmd |= XM_MMU_IGN_PF;
1800 	else
1801 		/* Enable Pause Frame Reception */
1802 		cmd &= ~XM_MMU_IGN_PF;
1803 
1804 	xm_write16(hw, port, XM_MMU_CMD, cmd);
1805 
1806 	mode = xm_read32(hw, port, XM_MODE);
1807 	if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1808 	    skge->flow_status == FLOW_STAT_LOC_SEND) {
1809 		/*
1810 		 * Configure Pause Frame Generation
1811 		 * Use internal and external Pause Frame Generation.
1812 		 * Sending pause frames is edge triggered.
1813 		 * Send a Pause frame with the maximum pause time if
1814 		 * internal oder external FIFO full condition occurs.
1815 		 * Send a zero pause time frame to re-start transmission.
1816 		 */
1817 		/* XM_PAUSE_DA = '010000C28001' (default) */
1818 		/* XM_MAC_PTIME = 0xffff (maximum) */
1819 		/* remember this value is defined in big endian (!) */
1820 		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1821 
1822 		mode |= XM_PAUSE_MODE;
1823 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1824 	} else {
1825 		/*
1826 		 * disable pause frame generation is required for 1000BT
1827 		 * because the XMAC is not reset if the link is going down
1828 		 */
1829 		/* Disable Pause Mode in Mode Register */
1830 		mode &= ~XM_PAUSE_MODE;
1831 
1832 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1833 	}
1834 
1835 	xm_write32(hw, port, XM_MODE, mode);
1836 
1837 	/* Turn on detection of Tx underrun */
1838 	msk = xm_read16(hw, port, XM_IMSK);
1839 	msk &= ~XM_IS_TXF_UR;
1840 	xm_write16(hw, port, XM_IMSK, msk);
1841 
1842 	xm_read16(hw, port, XM_ISRC);
1843 
1844 	/* get MMU Command Reg. */
1845 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1846 	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1847 		cmd |= XM_MMU_GMII_FD;
1848 
1849 	/*
1850 	 * Workaround BCOM Errata (#10523) for all BCom Phys
1851 	 * Enable Power Management after link up
1852 	 */
1853 	if (hw->phy_type == SK_PHY_BCOM) {
1854 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1855 			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1856 			     & ~PHY_B_AC_DIS_PM);
1857 		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1858 	}
1859 
1860 	/* enable Rx/Tx */
1861 	xm_write16(hw, port, XM_MMU_CMD,
1862 			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1863 	skge_link_up(skge);
1864 }
1865 
1866 
bcom_phy_intr(struct skge_port * skge)1867 static inline void bcom_phy_intr(struct skge_port *skge)
1868 {
1869 	struct skge_hw *hw = skge->hw;
1870 	int port = skge->port;
1871 	u16 isrc;
1872 
1873 	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1874 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1875 		     "phy interrupt status 0x%x\n", isrc);
1876 
1877 	if (isrc & PHY_B_IS_PSE)
1878 		pr_err("%s: uncorrectable pair swap error\n",
1879 		       hw->dev[port]->name);
1880 
1881 	/* Workaround BCom Errata:
1882 	 *	enable and disable loopback mode if "NO HCD" occurs.
1883 	 */
1884 	if (isrc & PHY_B_IS_NO_HDCL) {
1885 		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1886 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1887 				  ctrl | PHY_CT_LOOP);
1888 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1889 				  ctrl & ~PHY_CT_LOOP);
1890 	}
1891 
1892 	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1893 		bcom_check_link(hw, port);
1894 
1895 }
1896 
gm_phy_write(struct skge_hw * hw,int port,u16 reg,u16 val)1897 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1898 {
1899 	int i;
1900 
1901 	gma_write16(hw, port, GM_SMI_DATA, val);
1902 	gma_write16(hw, port, GM_SMI_CTRL,
1903 			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1904 	for (i = 0; i < PHY_RETRIES; i++) {
1905 		udelay(1);
1906 
1907 		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1908 			return 0;
1909 	}
1910 
1911 	pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1912 	return -EIO;
1913 }
1914 
__gm_phy_read(struct skge_hw * hw,int port,u16 reg,u16 * val)1915 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1916 {
1917 	int i;
1918 
1919 	gma_write16(hw, port, GM_SMI_CTRL,
1920 			 GM_SMI_CT_PHY_AD(hw->phy_addr)
1921 			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1922 
1923 	for (i = 0; i < PHY_RETRIES; i++) {
1924 		udelay(1);
1925 		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1926 			goto ready;
1927 	}
1928 
1929 	return -ETIMEDOUT;
1930  ready:
1931 	*val = gma_read16(hw, port, GM_SMI_DATA);
1932 	return 0;
1933 }
1934 
gm_phy_read(struct skge_hw * hw,int port,u16 reg)1935 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1936 {
1937 	u16 v = 0;
1938 	if (__gm_phy_read(hw, port, reg, &v))
1939 		pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1940 	return v;
1941 }
1942 
1943 /* Marvell Phy Initialization */
yukon_init(struct skge_hw * hw,int port)1944 static void yukon_init(struct skge_hw *hw, int port)
1945 {
1946 	struct skge_port *skge = netdev_priv(hw->dev[port]);
1947 	u16 ctrl, ct1000, adv;
1948 
1949 	if (skge->autoneg == AUTONEG_ENABLE) {
1950 		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1951 
1952 		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1953 			  PHY_M_EC_MAC_S_MSK);
1954 		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1955 
1956 		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1957 
1958 		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1959 	}
1960 
1961 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1962 	if (skge->autoneg == AUTONEG_DISABLE)
1963 		ctrl &= ~PHY_CT_ANE;
1964 
1965 	ctrl |= PHY_CT_RESET;
1966 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1967 
1968 	ctrl = 0;
1969 	ct1000 = 0;
1970 	adv = PHY_AN_CSMA;
1971 
1972 	if (skge->autoneg == AUTONEG_ENABLE) {
1973 		if (hw->copper) {
1974 			if (skge->advertising & ADVERTISED_1000baseT_Full)
1975 				ct1000 |= PHY_M_1000C_AFD;
1976 			if (skge->advertising & ADVERTISED_1000baseT_Half)
1977 				ct1000 |= PHY_M_1000C_AHD;
1978 			if (skge->advertising & ADVERTISED_100baseT_Full)
1979 				adv |= PHY_M_AN_100_FD;
1980 			if (skge->advertising & ADVERTISED_100baseT_Half)
1981 				adv |= PHY_M_AN_100_HD;
1982 			if (skge->advertising & ADVERTISED_10baseT_Full)
1983 				adv |= PHY_M_AN_10_FD;
1984 			if (skge->advertising & ADVERTISED_10baseT_Half)
1985 				adv |= PHY_M_AN_10_HD;
1986 
1987 			/* Set Flow-control capabilities */
1988 			adv |= phy_pause_map[skge->flow_control];
1989 		} else {
1990 			if (skge->advertising & ADVERTISED_1000baseT_Full)
1991 				adv |= PHY_M_AN_1000X_AFD;
1992 			if (skge->advertising & ADVERTISED_1000baseT_Half)
1993 				adv |= PHY_M_AN_1000X_AHD;
1994 
1995 			adv |= fiber_pause_map[skge->flow_control];
1996 		}
1997 
1998 		/* Restart Auto-negotiation */
1999 		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2000 	} else {
2001 		/* forced speed/duplex settings */
2002 		ct1000 = PHY_M_1000C_MSE;
2003 
2004 		if (skge->duplex == DUPLEX_FULL)
2005 			ctrl |= PHY_CT_DUP_MD;
2006 
2007 		switch (skge->speed) {
2008 		case SPEED_1000:
2009 			ctrl |= PHY_CT_SP1000;
2010 			break;
2011 		case SPEED_100:
2012 			ctrl |= PHY_CT_SP100;
2013 			break;
2014 		}
2015 
2016 		ctrl |= PHY_CT_RESET;
2017 	}
2018 
2019 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2020 
2021 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2022 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2023 
2024 	/* Enable phy interrupt on autonegotiation complete (or link up) */
2025 	if (skge->autoneg == AUTONEG_ENABLE)
2026 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2027 	else
2028 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2029 }
2030 
yukon_reset(struct skge_hw * hw,int port)2031 static void yukon_reset(struct skge_hw *hw, int port)
2032 {
2033 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2034 	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
2035 	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2036 	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2037 	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2038 
2039 	gma_write16(hw, port, GM_RX_CTRL,
2040 			 gma_read16(hw, port, GM_RX_CTRL)
2041 			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2042 }
2043 
2044 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
is_yukon_lite_a0(struct skge_hw * hw)2045 static int is_yukon_lite_a0(struct skge_hw *hw)
2046 {
2047 	u32 reg;
2048 	int ret;
2049 
2050 	if (hw->chip_id != CHIP_ID_YUKON)
2051 		return 0;
2052 
2053 	reg = skge_read32(hw, B2_FAR);
2054 	skge_write8(hw, B2_FAR + 3, 0xff);
2055 	ret = (skge_read8(hw, B2_FAR + 3) != 0);
2056 	skge_write32(hw, B2_FAR, reg);
2057 	return ret;
2058 }
2059 
yukon_mac_init(struct skge_hw * hw,int port)2060 static void yukon_mac_init(struct skge_hw *hw, int port)
2061 {
2062 	struct skge_port *skge = netdev_priv(hw->dev[port]);
2063 	int i;
2064 	u32 reg;
2065 	const u8 *addr = hw->dev[port]->dev_addr;
2066 
2067 	/* WA code for COMA mode -- set PHY reset */
2068 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2069 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2070 		reg = skge_read32(hw, B2_GP_IO);
2071 		reg |= GP_DIR_9 | GP_IO_9;
2072 		skge_write32(hw, B2_GP_IO, reg);
2073 	}
2074 
2075 	/* hard reset */
2076 	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2077 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2078 
2079 	/* WA code for COMA mode -- clear PHY reset */
2080 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2081 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2082 		reg = skge_read32(hw, B2_GP_IO);
2083 		reg |= GP_DIR_9;
2084 		reg &= ~GP_IO_9;
2085 		skge_write32(hw, B2_GP_IO, reg);
2086 	}
2087 
2088 	/* Set hardware config mode */
2089 	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2090 		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2091 	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2092 
2093 	/* Clear GMC reset */
2094 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2095 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2096 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2097 
2098 	if (skge->autoneg == AUTONEG_DISABLE) {
2099 		reg = GM_GPCR_AU_ALL_DIS;
2100 		gma_write16(hw, port, GM_GP_CTRL,
2101 				 gma_read16(hw, port, GM_GP_CTRL) | reg);
2102 
2103 		switch (skge->speed) {
2104 		case SPEED_1000:
2105 			reg &= ~GM_GPCR_SPEED_100;
2106 			reg |= GM_GPCR_SPEED_1000;
2107 			break;
2108 		case SPEED_100:
2109 			reg &= ~GM_GPCR_SPEED_1000;
2110 			reg |= GM_GPCR_SPEED_100;
2111 			break;
2112 		case SPEED_10:
2113 			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2114 			break;
2115 		}
2116 
2117 		if (skge->duplex == DUPLEX_FULL)
2118 			reg |= GM_GPCR_DUP_FULL;
2119 	} else
2120 		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2121 
2122 	switch (skge->flow_control) {
2123 	case FLOW_MODE_NONE:
2124 		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2125 		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2126 		break;
2127 	case FLOW_MODE_LOC_SEND:
2128 		/* disable Rx flow-control */
2129 		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2130 		break;
2131 	case FLOW_MODE_SYMMETRIC:
2132 	case FLOW_MODE_SYM_OR_REM:
2133 		/* enable Tx & Rx flow-control */
2134 		break;
2135 	}
2136 
2137 	gma_write16(hw, port, GM_GP_CTRL, reg);
2138 	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2139 
2140 	yukon_init(hw, port);
2141 
2142 	/* MIB clear */
2143 	reg = gma_read16(hw, port, GM_PHY_ADDR);
2144 	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2145 
2146 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2147 		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2148 	gma_write16(hw, port, GM_PHY_ADDR, reg);
2149 
2150 	/* transmit control */
2151 	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2152 
2153 	/* receive control reg: unicast + multicast + no FCS  */
2154 	gma_write16(hw, port, GM_RX_CTRL,
2155 			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2156 
2157 	/* transmit flow control */
2158 	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2159 
2160 	/* transmit parameter */
2161 	gma_write16(hw, port, GM_TX_PARAM,
2162 			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2163 			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2164 			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2165 
2166 	/* configure the Serial Mode Register */
2167 	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2168 		| GM_SMOD_VLAN_ENA
2169 		| IPG_DATA_VAL(IPG_DATA_DEF);
2170 
2171 	if (hw->dev[port]->mtu > ETH_DATA_LEN)
2172 		reg |= GM_SMOD_JUMBO_ENA;
2173 
2174 	gma_write16(hw, port, GM_SERIAL_MODE, reg);
2175 
2176 	/* physical address: used for pause frames */
2177 	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2178 	/* virtual address for data */
2179 	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2180 
2181 	/* enable interrupt mask for counter overflows */
2182 	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2183 	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2184 	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2185 
2186 	/* Initialize Mac Fifo */
2187 
2188 	/* Configure Rx MAC FIFO */
2189 	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2190 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2191 
2192 	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2193 	if (is_yukon_lite_a0(hw))
2194 		reg &= ~GMF_RX_F_FL_ON;
2195 
2196 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2197 	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2198 	/*
2199 	 * because Pause Packet Truncation in GMAC is not working
2200 	 * we have to increase the Flush Threshold to 64 bytes
2201 	 * in order to flush pause packets in Rx FIFO on Yukon-1
2202 	 */
2203 	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2204 
2205 	/* Configure Tx MAC FIFO */
2206 	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2207 	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2208 }
2209 
2210 /* Go into power down mode */
yukon_suspend(struct skge_hw * hw,int port)2211 static void yukon_suspend(struct skge_hw *hw, int port)
2212 {
2213 	u16 ctrl;
2214 
2215 	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2216 	ctrl |= PHY_M_PC_POL_R_DIS;
2217 	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2218 
2219 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2220 	ctrl |= PHY_CT_RESET;
2221 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2222 
2223 	/* switch IEEE compatible power down mode on */
2224 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2225 	ctrl |= PHY_CT_PDOWN;
2226 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2227 }
2228 
yukon_stop(struct skge_port * skge)2229 static void yukon_stop(struct skge_port *skge)
2230 {
2231 	struct skge_hw *hw = skge->hw;
2232 	int port = skge->port;
2233 
2234 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2235 	yukon_reset(hw, port);
2236 
2237 	gma_write16(hw, port, GM_GP_CTRL,
2238 			 gma_read16(hw, port, GM_GP_CTRL)
2239 			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2240 	gma_read16(hw, port, GM_GP_CTRL);
2241 
2242 	yukon_suspend(hw, port);
2243 
2244 	/* set GPHY Control reset */
2245 	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2246 	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2247 }
2248 
yukon_get_stats(struct skge_port * skge,u64 * data)2249 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2250 {
2251 	struct skge_hw *hw = skge->hw;
2252 	int port = skge->port;
2253 	int i;
2254 
2255 	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2256 		| gma_read32(hw, port, GM_TXO_OK_LO);
2257 	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2258 		| gma_read32(hw, port, GM_RXO_OK_LO);
2259 
2260 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2261 		data[i] = gma_read32(hw, port,
2262 					  skge_stats[i].gma_offset);
2263 }
2264 
yukon_mac_intr(struct skge_hw * hw,int port)2265 static void yukon_mac_intr(struct skge_hw *hw, int port)
2266 {
2267 	struct net_device *dev = hw->dev[port];
2268 	struct skge_port *skge = netdev_priv(dev);
2269 	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2270 
2271 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2272 		     "mac interrupt status 0x%x\n", status);
2273 
2274 	if (status & GM_IS_RX_FF_OR) {
2275 		++dev->stats.rx_fifo_errors;
2276 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2277 	}
2278 
2279 	if (status & GM_IS_TX_FF_UR) {
2280 		++dev->stats.tx_fifo_errors;
2281 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2282 	}
2283 
2284 }
2285 
yukon_speed(const struct skge_hw * hw,u16 aux)2286 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2287 {
2288 	switch (aux & PHY_M_PS_SPEED_MSK) {
2289 	case PHY_M_PS_SPEED_1000:
2290 		return SPEED_1000;
2291 	case PHY_M_PS_SPEED_100:
2292 		return SPEED_100;
2293 	default:
2294 		return SPEED_10;
2295 	}
2296 }
2297 
yukon_link_up(struct skge_port * skge)2298 static void yukon_link_up(struct skge_port *skge)
2299 {
2300 	struct skge_hw *hw = skge->hw;
2301 	int port = skge->port;
2302 	u16 reg;
2303 
2304 	/* Enable Transmit FIFO Underrun */
2305 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2306 
2307 	reg = gma_read16(hw, port, GM_GP_CTRL);
2308 	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2309 		reg |= GM_GPCR_DUP_FULL;
2310 
2311 	/* enable Rx/Tx */
2312 	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2313 	gma_write16(hw, port, GM_GP_CTRL, reg);
2314 
2315 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2316 	skge_link_up(skge);
2317 }
2318 
yukon_link_down(struct skge_port * skge)2319 static void yukon_link_down(struct skge_port *skge)
2320 {
2321 	struct skge_hw *hw = skge->hw;
2322 	int port = skge->port;
2323 	u16 ctrl;
2324 
2325 	ctrl = gma_read16(hw, port, GM_GP_CTRL);
2326 	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2327 	gma_write16(hw, port, GM_GP_CTRL, ctrl);
2328 
2329 	if (skge->flow_status == FLOW_STAT_REM_SEND) {
2330 		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2331 		ctrl |= PHY_M_AN_ASP;
2332 		/* restore Asymmetric Pause bit */
2333 		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2334 	}
2335 
2336 	skge_link_down(skge);
2337 
2338 	yukon_init(hw, port);
2339 }
2340 
yukon_phy_intr(struct skge_port * skge)2341 static void yukon_phy_intr(struct skge_port *skge)
2342 {
2343 	struct skge_hw *hw = skge->hw;
2344 	int port = skge->port;
2345 	const char *reason = NULL;
2346 	u16 istatus, phystat;
2347 
2348 	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2349 	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2350 
2351 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2352 		     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2353 
2354 	if (istatus & PHY_M_IS_AN_COMPL) {
2355 		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2356 		    & PHY_M_AN_RF) {
2357 			reason = "remote fault";
2358 			goto failed;
2359 		}
2360 
2361 		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2362 			reason = "master/slave fault";
2363 			goto failed;
2364 		}
2365 
2366 		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2367 			reason = "speed/duplex";
2368 			goto failed;
2369 		}
2370 
2371 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2372 			? DUPLEX_FULL : DUPLEX_HALF;
2373 		skge->speed = yukon_speed(hw, phystat);
2374 
2375 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
2376 		switch (phystat & PHY_M_PS_PAUSE_MSK) {
2377 		case PHY_M_PS_PAUSE_MSK:
2378 			skge->flow_status = FLOW_STAT_SYMMETRIC;
2379 			break;
2380 		case PHY_M_PS_RX_P_EN:
2381 			skge->flow_status = FLOW_STAT_REM_SEND;
2382 			break;
2383 		case PHY_M_PS_TX_P_EN:
2384 			skge->flow_status = FLOW_STAT_LOC_SEND;
2385 			break;
2386 		default:
2387 			skge->flow_status = FLOW_STAT_NONE;
2388 		}
2389 
2390 		if (skge->flow_status == FLOW_STAT_NONE ||
2391 		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2392 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2393 		else
2394 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2395 		yukon_link_up(skge);
2396 		return;
2397 	}
2398 
2399 	if (istatus & PHY_M_IS_LSP_CHANGE)
2400 		skge->speed = yukon_speed(hw, phystat);
2401 
2402 	if (istatus & PHY_M_IS_DUP_CHANGE)
2403 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2404 	if (istatus & PHY_M_IS_LST_CHANGE) {
2405 		if (phystat & PHY_M_PS_LINK_UP)
2406 			yukon_link_up(skge);
2407 		else
2408 			yukon_link_down(skge);
2409 	}
2410 	return;
2411  failed:
2412 	pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2413 
2414 	/* XXX restart autonegotiation? */
2415 }
2416 
skge_phy_reset(struct skge_port * skge)2417 static void skge_phy_reset(struct skge_port *skge)
2418 {
2419 	struct skge_hw *hw = skge->hw;
2420 	int port = skge->port;
2421 	struct net_device *dev = hw->dev[port];
2422 
2423 	netif_stop_queue(skge->netdev);
2424 	netif_carrier_off(skge->netdev);
2425 
2426 	spin_lock_bh(&hw->phy_lock);
2427 	if (is_genesis(hw)) {
2428 		genesis_reset(hw, port);
2429 		genesis_mac_init(hw, port);
2430 	} else {
2431 		yukon_reset(hw, port);
2432 		yukon_init(hw, port);
2433 	}
2434 	spin_unlock_bh(&hw->phy_lock);
2435 
2436 	skge_set_multicast(dev);
2437 }
2438 
2439 /* Basic MII support */
skge_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)2440 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2441 {
2442 	struct mii_ioctl_data *data = if_mii(ifr);
2443 	struct skge_port *skge = netdev_priv(dev);
2444 	struct skge_hw *hw = skge->hw;
2445 	int err = -EOPNOTSUPP;
2446 
2447 	if (!netif_running(dev))
2448 		return -ENODEV;	/* Phy still in reset */
2449 
2450 	switch (cmd) {
2451 	case SIOCGMIIPHY:
2452 		data->phy_id = hw->phy_addr;
2453 
2454 		fallthrough;
2455 	case SIOCGMIIREG: {
2456 		u16 val = 0;
2457 		spin_lock_bh(&hw->phy_lock);
2458 
2459 		if (is_genesis(hw))
2460 			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2461 		else
2462 			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2463 		spin_unlock_bh(&hw->phy_lock);
2464 		data->val_out = val;
2465 		break;
2466 	}
2467 
2468 	case SIOCSMIIREG:
2469 		spin_lock_bh(&hw->phy_lock);
2470 		if (is_genesis(hw))
2471 			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2472 				   data->val_in);
2473 		else
2474 			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2475 				   data->val_in);
2476 		spin_unlock_bh(&hw->phy_lock);
2477 		break;
2478 	}
2479 	return err;
2480 }
2481 
skge_ramset(struct skge_hw * hw,u16 q,u32 start,size_t len)2482 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2483 {
2484 	u32 end;
2485 
2486 	start /= 8;
2487 	len /= 8;
2488 	end = start + len - 1;
2489 
2490 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2491 	skge_write32(hw, RB_ADDR(q, RB_START), start);
2492 	skge_write32(hw, RB_ADDR(q, RB_WP), start);
2493 	skge_write32(hw, RB_ADDR(q, RB_RP), start);
2494 	skge_write32(hw, RB_ADDR(q, RB_END), end);
2495 
2496 	if (q == Q_R1 || q == Q_R2) {
2497 		/* Set thresholds on receive queue's */
2498 		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2499 			     start + (2*len)/3);
2500 		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2501 			     start + (len/3));
2502 	} else {
2503 		/* Enable store & forward on Tx queue's because
2504 		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2505 		 */
2506 		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2507 	}
2508 
2509 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2510 }
2511 
2512 /* Setup Bus Memory Interface */
skge_qset(struct skge_port * skge,u16 q,const struct skge_element * e)2513 static void skge_qset(struct skge_port *skge, u16 q,
2514 		      const struct skge_element *e)
2515 {
2516 	struct skge_hw *hw = skge->hw;
2517 	u32 watermark = 0x600;
2518 	u64 base = skge->dma + (e->desc - skge->mem);
2519 
2520 	/* optimization to reduce window on 32bit/33mhz */
2521 	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2522 		watermark /= 2;
2523 
2524 	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2525 	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2526 	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2527 	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2528 }
2529 
skge_up(struct net_device * dev)2530 static int skge_up(struct net_device *dev)
2531 {
2532 	struct skge_port *skge = netdev_priv(dev);
2533 	struct skge_hw *hw = skge->hw;
2534 	int port = skge->port;
2535 	u32 chunk, ram_addr;
2536 	size_t rx_size, tx_size;
2537 	int err;
2538 
2539 	if (!is_valid_ether_addr(dev->dev_addr))
2540 		return -EINVAL;
2541 
2542 	netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2543 
2544 	if (dev->mtu > RX_BUF_SIZE)
2545 		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2546 	else
2547 		skge->rx_buf_size = RX_BUF_SIZE;
2548 
2549 
2550 	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2551 	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2552 	skge->mem_size = tx_size + rx_size;
2553 	skge->mem = dma_alloc_coherent(&hw->pdev->dev, skge->mem_size,
2554 				       &skge->dma, GFP_KERNEL);
2555 	if (!skge->mem)
2556 		return -ENOMEM;
2557 
2558 	BUG_ON(skge->dma & 7);
2559 
2560 	if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2561 		dev_err(&hw->pdev->dev, "dma_alloc_coherent region crosses 4G boundary\n");
2562 		err = -EINVAL;
2563 		goto free_pci_mem;
2564 	}
2565 
2566 	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2567 	if (err)
2568 		goto free_pci_mem;
2569 
2570 	err = skge_rx_fill(dev);
2571 	if (err)
2572 		goto free_rx_ring;
2573 
2574 	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2575 			      skge->dma + rx_size);
2576 	if (err)
2577 		goto free_rx_ring;
2578 
2579 	if (hw->ports == 1) {
2580 		err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2581 				  dev->name, hw);
2582 		if (err) {
2583 			netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2584 				   hw->pdev->irq, err);
2585 			goto free_tx_ring;
2586 		}
2587 	}
2588 
2589 	/* Initialize MAC */
2590 	netif_carrier_off(dev);
2591 	spin_lock_bh(&hw->phy_lock);
2592 	if (is_genesis(hw))
2593 		genesis_mac_init(hw, port);
2594 	else
2595 		yukon_mac_init(hw, port);
2596 	spin_unlock_bh(&hw->phy_lock);
2597 
2598 	/* Configure RAMbuffers - equally between ports and tx/rx */
2599 	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2600 	ram_addr = hw->ram_offset + 2 * chunk * port;
2601 
2602 	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2603 	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2604 
2605 	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2606 	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2607 	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2608 
2609 	/* Start receiver BMU */
2610 	wmb();
2611 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2612 	skge_led(skge, LED_MODE_ON);
2613 
2614 	spin_lock_irq(&hw->hw_lock);
2615 	hw->intr_mask |= portmask[port];
2616 	skge_write32(hw, B0_IMSK, hw->intr_mask);
2617 	skge_read32(hw, B0_IMSK);
2618 	spin_unlock_irq(&hw->hw_lock);
2619 
2620 	napi_enable(&skge->napi);
2621 
2622 	skge_set_multicast(dev);
2623 
2624 	return 0;
2625 
2626  free_tx_ring:
2627 	kfree(skge->tx_ring.start);
2628  free_rx_ring:
2629 	skge_rx_clean(skge);
2630 	kfree(skge->rx_ring.start);
2631  free_pci_mem:
2632 	dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2633 			  skge->dma);
2634 	skge->mem = NULL;
2635 
2636 	return err;
2637 }
2638 
2639 /* stop receiver */
skge_rx_stop(struct skge_hw * hw,int port)2640 static void skge_rx_stop(struct skge_hw *hw, int port)
2641 {
2642 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2643 	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2644 		     RB_RST_SET|RB_DIS_OP_MD);
2645 	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2646 }
2647 
skge_down(struct net_device * dev)2648 static int skge_down(struct net_device *dev)
2649 {
2650 	struct skge_port *skge = netdev_priv(dev);
2651 	struct skge_hw *hw = skge->hw;
2652 	int port = skge->port;
2653 
2654 	if (!skge->mem)
2655 		return 0;
2656 
2657 	netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2658 
2659 	netif_tx_disable(dev);
2660 
2661 	if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2662 		del_timer_sync(&skge->link_timer);
2663 
2664 	napi_disable(&skge->napi);
2665 	netif_carrier_off(dev);
2666 
2667 	spin_lock_irq(&hw->hw_lock);
2668 	hw->intr_mask &= ~portmask[port];
2669 	skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2670 	skge_read32(hw, B0_IMSK);
2671 	spin_unlock_irq(&hw->hw_lock);
2672 
2673 	if (hw->ports == 1)
2674 		free_irq(hw->pdev->irq, hw);
2675 
2676 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2677 	if (is_genesis(hw))
2678 		genesis_stop(skge);
2679 	else
2680 		yukon_stop(skge);
2681 
2682 	/* Stop transmitter */
2683 	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2684 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2685 		     RB_RST_SET|RB_DIS_OP_MD);
2686 
2687 
2688 	/* Disable Force Sync bit and Enable Alloc bit */
2689 	skge_write8(hw, SK_REG(port, TXA_CTRL),
2690 		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2691 
2692 	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2693 	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2694 	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2695 
2696 	/* Reset PCI FIFO */
2697 	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2698 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2699 
2700 	/* Reset the RAM Buffer async Tx queue */
2701 	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2702 
2703 	skge_rx_stop(hw, port);
2704 
2705 	if (is_genesis(hw)) {
2706 		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2707 		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2708 	} else {
2709 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2710 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2711 	}
2712 
2713 	skge_led(skge, LED_MODE_OFF);
2714 
2715 	netif_tx_lock_bh(dev);
2716 	skge_tx_clean(dev);
2717 	netif_tx_unlock_bh(dev);
2718 
2719 	skge_rx_clean(skge);
2720 
2721 	kfree(skge->rx_ring.start);
2722 	kfree(skge->tx_ring.start);
2723 	dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2724 			  skge->dma);
2725 	skge->mem = NULL;
2726 	return 0;
2727 }
2728 
skge_avail(const struct skge_ring * ring)2729 static inline int skge_avail(const struct skge_ring *ring)
2730 {
2731 	smp_mb();
2732 	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2733 		+ (ring->to_clean - ring->to_use) - 1;
2734 }
2735 
skge_xmit_frame(struct sk_buff * skb,struct net_device * dev)2736 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2737 				   struct net_device *dev)
2738 {
2739 	struct skge_port *skge = netdev_priv(dev);
2740 	struct skge_hw *hw = skge->hw;
2741 	struct skge_element *e;
2742 	struct skge_tx_desc *td;
2743 	int i;
2744 	u32 control, len;
2745 	dma_addr_t map;
2746 
2747 	if (skb_padto(skb, ETH_ZLEN))
2748 		return NETDEV_TX_OK;
2749 
2750 	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2751 		return NETDEV_TX_BUSY;
2752 
2753 	e = skge->tx_ring.to_use;
2754 	td = e->desc;
2755 	BUG_ON(td->control & BMU_OWN);
2756 	e->skb = skb;
2757 	len = skb_headlen(skb);
2758 	map = dma_map_single(&hw->pdev->dev, skb->data, len, DMA_TO_DEVICE);
2759 	if (dma_mapping_error(&hw->pdev->dev, map))
2760 		goto mapping_error;
2761 
2762 	dma_unmap_addr_set(e, mapaddr, map);
2763 	dma_unmap_len_set(e, maplen, len);
2764 
2765 	td->dma_lo = lower_32_bits(map);
2766 	td->dma_hi = upper_32_bits(map);
2767 
2768 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2769 		const int offset = skb_checksum_start_offset(skb);
2770 
2771 		/* This seems backwards, but it is what the sk98lin
2772 		 * does.  Looks like hardware is wrong?
2773 		 */
2774 		if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2775 		    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2776 			control = BMU_TCP_CHECK;
2777 		else
2778 			control = BMU_UDP_CHECK;
2779 
2780 		td->csum_offs = 0;
2781 		td->csum_start = offset;
2782 		td->csum_write = offset + skb->csum_offset;
2783 	} else
2784 		control = BMU_CHECK;
2785 
2786 	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2787 		control |= BMU_EOF | BMU_IRQ_EOF;
2788 	else {
2789 		struct skge_tx_desc *tf = td;
2790 
2791 		control |= BMU_STFWD;
2792 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2793 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2794 
2795 			map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2796 					       skb_frag_size(frag), DMA_TO_DEVICE);
2797 			if (dma_mapping_error(&hw->pdev->dev, map))
2798 				goto mapping_unwind;
2799 
2800 			e = e->next;
2801 			e->skb = skb;
2802 			tf = e->desc;
2803 			BUG_ON(tf->control & BMU_OWN);
2804 
2805 			tf->dma_lo = lower_32_bits(map);
2806 			tf->dma_hi = upper_32_bits(map);
2807 			dma_unmap_addr_set(e, mapaddr, map);
2808 			dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2809 
2810 			tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2811 		}
2812 		tf->control |= BMU_EOF | BMU_IRQ_EOF;
2813 	}
2814 	/* Make sure all the descriptors written */
2815 	wmb();
2816 	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2817 	wmb();
2818 
2819 	netdev_sent_queue(dev, skb->len);
2820 
2821 	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2822 
2823 	netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2824 		     "tx queued, slot %td, len %d\n",
2825 		     e - skge->tx_ring.start, skb->len);
2826 
2827 	skge->tx_ring.to_use = e->next;
2828 	smp_wmb();
2829 
2830 	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2831 		netdev_dbg(dev, "transmit queue full\n");
2832 		netif_stop_queue(dev);
2833 	}
2834 
2835 	return NETDEV_TX_OK;
2836 
2837 mapping_unwind:
2838 	e = skge->tx_ring.to_use;
2839 	dma_unmap_single(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2840 			 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2841 	while (i-- > 0) {
2842 		e = e->next;
2843 		dma_unmap_page(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2844 			       dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2845 	}
2846 
2847 mapping_error:
2848 	if (net_ratelimit())
2849 		dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2850 	dev_kfree_skb_any(skb);
2851 	return NETDEV_TX_OK;
2852 }
2853 
2854 
2855 /* Free resources associated with this reing element */
skge_tx_unmap(struct pci_dev * pdev,struct skge_element * e,u32 control)2856 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2857 				 u32 control)
2858 {
2859 	/* skb header vs. fragment */
2860 	if (control & BMU_STF)
2861 		dma_unmap_single(&pdev->dev, dma_unmap_addr(e, mapaddr),
2862 				 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2863 	else
2864 		dma_unmap_page(&pdev->dev, dma_unmap_addr(e, mapaddr),
2865 			       dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2866 }
2867 
2868 /* Free all buffers in transmit ring */
skge_tx_clean(struct net_device * dev)2869 static void skge_tx_clean(struct net_device *dev)
2870 {
2871 	struct skge_port *skge = netdev_priv(dev);
2872 	struct skge_element *e;
2873 
2874 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2875 		struct skge_tx_desc *td = e->desc;
2876 
2877 		skge_tx_unmap(skge->hw->pdev, e, td->control);
2878 
2879 		if (td->control & BMU_EOF)
2880 			dev_kfree_skb(e->skb);
2881 		td->control = 0;
2882 	}
2883 
2884 	netdev_reset_queue(dev);
2885 	skge->tx_ring.to_clean = e;
2886 }
2887 
skge_tx_timeout(struct net_device * dev,unsigned int txqueue)2888 static void skge_tx_timeout(struct net_device *dev, unsigned int txqueue)
2889 {
2890 	struct skge_port *skge = netdev_priv(dev);
2891 
2892 	netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2893 
2894 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2895 	skge_tx_clean(dev);
2896 	netif_wake_queue(dev);
2897 }
2898 
skge_change_mtu(struct net_device * dev,int new_mtu)2899 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2900 {
2901 	int err;
2902 
2903 	if (!netif_running(dev)) {
2904 		dev->mtu = new_mtu;
2905 		return 0;
2906 	}
2907 
2908 	skge_down(dev);
2909 
2910 	dev->mtu = new_mtu;
2911 
2912 	err = skge_up(dev);
2913 	if (err)
2914 		dev_close(dev);
2915 
2916 	return err;
2917 }
2918 
2919 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2920 
genesis_add_filter(u8 filter[8],const u8 * addr)2921 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2922 {
2923 	u32 crc, bit;
2924 
2925 	crc = ether_crc_le(ETH_ALEN, addr);
2926 	bit = ~crc & 0x3f;
2927 	filter[bit/8] |= 1 << (bit%8);
2928 }
2929 
genesis_set_multicast(struct net_device * dev)2930 static void genesis_set_multicast(struct net_device *dev)
2931 {
2932 	struct skge_port *skge = netdev_priv(dev);
2933 	struct skge_hw *hw = skge->hw;
2934 	int port = skge->port;
2935 	struct netdev_hw_addr *ha;
2936 	u32 mode;
2937 	u8 filter[8];
2938 
2939 	mode = xm_read32(hw, port, XM_MODE);
2940 	mode |= XM_MD_ENA_HASH;
2941 	if (dev->flags & IFF_PROMISC)
2942 		mode |= XM_MD_ENA_PROM;
2943 	else
2944 		mode &= ~XM_MD_ENA_PROM;
2945 
2946 	if (dev->flags & IFF_ALLMULTI)
2947 		memset(filter, 0xff, sizeof(filter));
2948 	else {
2949 		memset(filter, 0, sizeof(filter));
2950 
2951 		if (skge->flow_status == FLOW_STAT_REM_SEND ||
2952 		    skge->flow_status == FLOW_STAT_SYMMETRIC)
2953 			genesis_add_filter(filter, pause_mc_addr);
2954 
2955 		netdev_for_each_mc_addr(ha, dev)
2956 			genesis_add_filter(filter, ha->addr);
2957 	}
2958 
2959 	xm_write32(hw, port, XM_MODE, mode);
2960 	xm_outhash(hw, port, XM_HSM, filter);
2961 }
2962 
yukon_add_filter(u8 filter[8],const u8 * addr)2963 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2964 {
2965 	u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2966 
2967 	filter[bit / 8] |= 1 << (bit % 8);
2968 }
2969 
yukon_set_multicast(struct net_device * dev)2970 static void yukon_set_multicast(struct net_device *dev)
2971 {
2972 	struct skge_port *skge = netdev_priv(dev);
2973 	struct skge_hw *hw = skge->hw;
2974 	int port = skge->port;
2975 	struct netdev_hw_addr *ha;
2976 	int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2977 			skge->flow_status == FLOW_STAT_SYMMETRIC);
2978 	u16 reg;
2979 	u8 filter[8];
2980 
2981 	memset(filter, 0, sizeof(filter));
2982 
2983 	reg = gma_read16(hw, port, GM_RX_CTRL);
2984 	reg |= GM_RXCR_UCF_ENA;
2985 
2986 	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2987 		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2988 	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
2989 		memset(filter, 0xff, sizeof(filter));
2990 	else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2991 		reg &= ~GM_RXCR_MCF_ENA;
2992 	else {
2993 		reg |= GM_RXCR_MCF_ENA;
2994 
2995 		if (rx_pause)
2996 			yukon_add_filter(filter, pause_mc_addr);
2997 
2998 		netdev_for_each_mc_addr(ha, dev)
2999 			yukon_add_filter(filter, ha->addr);
3000 	}
3001 
3002 
3003 	gma_write16(hw, port, GM_MC_ADDR_H1,
3004 			 (u16)filter[0] | ((u16)filter[1] << 8));
3005 	gma_write16(hw, port, GM_MC_ADDR_H2,
3006 			 (u16)filter[2] | ((u16)filter[3] << 8));
3007 	gma_write16(hw, port, GM_MC_ADDR_H3,
3008 			 (u16)filter[4] | ((u16)filter[5] << 8));
3009 	gma_write16(hw, port, GM_MC_ADDR_H4,
3010 			 (u16)filter[6] | ((u16)filter[7] << 8));
3011 
3012 	gma_write16(hw, port, GM_RX_CTRL, reg);
3013 }
3014 
phy_length(const struct skge_hw * hw,u32 status)3015 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3016 {
3017 	if (is_genesis(hw))
3018 		return status >> XMR_FS_LEN_SHIFT;
3019 	else
3020 		return status >> GMR_FS_LEN_SHIFT;
3021 }
3022 
bad_phy_status(const struct skge_hw * hw,u32 status)3023 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3024 {
3025 	if (is_genesis(hw))
3026 		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3027 	else
3028 		return (status & GMR_FS_ANY_ERR) ||
3029 			(status & GMR_FS_RX_OK) == 0;
3030 }
3031 
skge_set_multicast(struct net_device * dev)3032 static void skge_set_multicast(struct net_device *dev)
3033 {
3034 	struct skge_port *skge = netdev_priv(dev);
3035 
3036 	if (is_genesis(skge->hw))
3037 		genesis_set_multicast(dev);
3038 	else
3039 		yukon_set_multicast(dev);
3040 
3041 }
3042 
3043 
3044 /* Get receive buffer from descriptor.
3045  * Handles copy of small buffers and reallocation failures
3046  */
skge_rx_get(struct net_device * dev,struct skge_element * e,u32 control,u32 status,u16 csum)3047 static struct sk_buff *skge_rx_get(struct net_device *dev,
3048 				   struct skge_element *e,
3049 				   u32 control, u32 status, u16 csum)
3050 {
3051 	struct skge_port *skge = netdev_priv(dev);
3052 	struct sk_buff *skb;
3053 	u16 len = control & BMU_BBC;
3054 
3055 	netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3056 		     "rx slot %td status 0x%x len %d\n",
3057 		     e - skge->rx_ring.start, status, len);
3058 
3059 	if (len > skge->rx_buf_size)
3060 		goto error;
3061 
3062 	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3063 		goto error;
3064 
3065 	if (bad_phy_status(skge->hw, status))
3066 		goto error;
3067 
3068 	if (phy_length(skge->hw, status) != len)
3069 		goto error;
3070 
3071 	if (len < RX_COPY_THRESHOLD) {
3072 		skb = netdev_alloc_skb_ip_align(dev, len);
3073 		if (!skb)
3074 			goto resubmit;
3075 
3076 		dma_sync_single_for_cpu(&skge->hw->pdev->dev,
3077 					dma_unmap_addr(e, mapaddr),
3078 					dma_unmap_len(e, maplen),
3079 					DMA_FROM_DEVICE);
3080 		skb_copy_from_linear_data(e->skb, skb->data, len);
3081 		dma_sync_single_for_device(&skge->hw->pdev->dev,
3082 					   dma_unmap_addr(e, mapaddr),
3083 					   dma_unmap_len(e, maplen),
3084 					   DMA_FROM_DEVICE);
3085 		skge_rx_reuse(e, skge->rx_buf_size);
3086 	} else {
3087 		struct skge_element ee;
3088 		struct sk_buff *nskb;
3089 
3090 		nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3091 		if (!nskb)
3092 			goto resubmit;
3093 
3094 		ee = *e;
3095 
3096 		skb = ee.skb;
3097 		prefetch(skb->data);
3098 
3099 		if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3100 			dev_kfree_skb(nskb);
3101 			goto resubmit;
3102 		}
3103 
3104 		dma_unmap_single(&skge->hw->pdev->dev,
3105 				 dma_unmap_addr(&ee, mapaddr),
3106 				 dma_unmap_len(&ee, maplen), DMA_FROM_DEVICE);
3107 	}
3108 
3109 	skb_put(skb, len);
3110 
3111 	if (dev->features & NETIF_F_RXCSUM) {
3112 		skb->csum = le16_to_cpu(csum);
3113 		skb->ip_summed = CHECKSUM_COMPLETE;
3114 	}
3115 
3116 	skb->protocol = eth_type_trans(skb, dev);
3117 
3118 	return skb;
3119 error:
3120 
3121 	netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3122 		     "rx err, slot %td control 0x%x status 0x%x\n",
3123 		     e - skge->rx_ring.start, control, status);
3124 
3125 	if (is_genesis(skge->hw)) {
3126 		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3127 			dev->stats.rx_length_errors++;
3128 		if (status & XMR_FS_FRA_ERR)
3129 			dev->stats.rx_frame_errors++;
3130 		if (status & XMR_FS_FCS_ERR)
3131 			dev->stats.rx_crc_errors++;
3132 	} else {
3133 		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3134 			dev->stats.rx_length_errors++;
3135 		if (status & GMR_FS_FRAGMENT)
3136 			dev->stats.rx_frame_errors++;
3137 		if (status & GMR_FS_CRC_ERR)
3138 			dev->stats.rx_crc_errors++;
3139 	}
3140 
3141 resubmit:
3142 	skge_rx_reuse(e, skge->rx_buf_size);
3143 	return NULL;
3144 }
3145 
3146 /* Free all buffers in Tx ring which are no longer owned by device */
skge_tx_done(struct net_device * dev)3147 static void skge_tx_done(struct net_device *dev)
3148 {
3149 	struct skge_port *skge = netdev_priv(dev);
3150 	struct skge_ring *ring = &skge->tx_ring;
3151 	struct skge_element *e;
3152 	unsigned int bytes_compl = 0, pkts_compl = 0;
3153 
3154 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3155 
3156 	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3157 		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3158 
3159 		if (control & BMU_OWN)
3160 			break;
3161 
3162 		skge_tx_unmap(skge->hw->pdev, e, control);
3163 
3164 		if (control & BMU_EOF) {
3165 			netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3166 				     "tx done slot %td\n",
3167 				     e - skge->tx_ring.start);
3168 
3169 			pkts_compl++;
3170 			bytes_compl += e->skb->len;
3171 
3172 			dev_consume_skb_any(e->skb);
3173 		}
3174 	}
3175 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
3176 	skge->tx_ring.to_clean = e;
3177 
3178 	/* Can run lockless until we need to synchronize to restart queue. */
3179 	smp_mb();
3180 
3181 	if (unlikely(netif_queue_stopped(dev) &&
3182 		     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3183 		netif_tx_lock(dev);
3184 		if (unlikely(netif_queue_stopped(dev) &&
3185 			     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3186 			netif_wake_queue(dev);
3187 
3188 		}
3189 		netif_tx_unlock(dev);
3190 	}
3191 }
3192 
skge_poll(struct napi_struct * napi,int budget)3193 static int skge_poll(struct napi_struct *napi, int budget)
3194 {
3195 	struct skge_port *skge = container_of(napi, struct skge_port, napi);
3196 	struct net_device *dev = skge->netdev;
3197 	struct skge_hw *hw = skge->hw;
3198 	struct skge_ring *ring = &skge->rx_ring;
3199 	struct skge_element *e;
3200 	int work_done = 0;
3201 
3202 	skge_tx_done(dev);
3203 
3204 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3205 
3206 	for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3207 		struct skge_rx_desc *rd = e->desc;
3208 		struct sk_buff *skb;
3209 		u32 control;
3210 
3211 		rmb();
3212 		control = rd->control;
3213 		if (control & BMU_OWN)
3214 			break;
3215 
3216 		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3217 		if (likely(skb)) {
3218 			napi_gro_receive(napi, skb);
3219 			++work_done;
3220 		}
3221 	}
3222 	ring->to_clean = e;
3223 
3224 	/* restart receiver */
3225 	wmb();
3226 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3227 
3228 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3229 		unsigned long flags;
3230 
3231 		spin_lock_irqsave(&hw->hw_lock, flags);
3232 		hw->intr_mask |= napimask[skge->port];
3233 		skge_write32(hw, B0_IMSK, hw->intr_mask);
3234 		skge_read32(hw, B0_IMSK);
3235 		spin_unlock_irqrestore(&hw->hw_lock, flags);
3236 	}
3237 
3238 	return work_done;
3239 }
3240 
3241 /* Parity errors seem to happen when Genesis is connected to a switch
3242  * with no other ports present. Heartbeat error??
3243  */
skge_mac_parity(struct skge_hw * hw,int port)3244 static void skge_mac_parity(struct skge_hw *hw, int port)
3245 {
3246 	struct net_device *dev = hw->dev[port];
3247 
3248 	++dev->stats.tx_heartbeat_errors;
3249 
3250 	if (is_genesis(hw))
3251 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3252 			     MFF_CLR_PERR);
3253 	else
3254 		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3255 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3256 			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3257 			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3258 }
3259 
skge_mac_intr(struct skge_hw * hw,int port)3260 static void skge_mac_intr(struct skge_hw *hw, int port)
3261 {
3262 	if (is_genesis(hw))
3263 		genesis_mac_intr(hw, port);
3264 	else
3265 		yukon_mac_intr(hw, port);
3266 }
3267 
3268 /* Handle device specific framing and timeout interrupts */
skge_error_irq(struct skge_hw * hw)3269 static void skge_error_irq(struct skge_hw *hw)
3270 {
3271 	struct pci_dev *pdev = hw->pdev;
3272 	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3273 
3274 	if (is_genesis(hw)) {
3275 		/* clear xmac errors */
3276 		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3277 			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3278 		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3279 			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3280 	} else {
3281 		/* Timestamp (unused) overflow */
3282 		if (hwstatus & IS_IRQ_TIST_OV)
3283 			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3284 	}
3285 
3286 	if (hwstatus & IS_RAM_RD_PAR) {
3287 		dev_err(&pdev->dev, "Ram read data parity error\n");
3288 		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3289 	}
3290 
3291 	if (hwstatus & IS_RAM_WR_PAR) {
3292 		dev_err(&pdev->dev, "Ram write data parity error\n");
3293 		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3294 	}
3295 
3296 	if (hwstatus & IS_M1_PAR_ERR)
3297 		skge_mac_parity(hw, 0);
3298 
3299 	if (hwstatus & IS_M2_PAR_ERR)
3300 		skge_mac_parity(hw, 1);
3301 
3302 	if (hwstatus & IS_R1_PAR_ERR) {
3303 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3304 			hw->dev[0]->name);
3305 		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3306 	}
3307 
3308 	if (hwstatus & IS_R2_PAR_ERR) {
3309 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3310 			hw->dev[1]->name);
3311 		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3312 	}
3313 
3314 	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3315 		u16 pci_status, pci_cmd;
3316 
3317 		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3318 		pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3319 
3320 		dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3321 			pci_cmd, pci_status);
3322 
3323 		/* Write the error bits back to clear them. */
3324 		pci_status &= PCI_STATUS_ERROR_BITS;
3325 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3326 		pci_write_config_word(pdev, PCI_COMMAND,
3327 				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3328 		pci_write_config_word(pdev, PCI_STATUS, pci_status);
3329 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3330 
3331 		/* if error still set then just ignore it */
3332 		hwstatus = skge_read32(hw, B0_HWE_ISRC);
3333 		if (hwstatus & IS_IRQ_STAT) {
3334 			dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3335 			hw->intr_mask &= ~IS_HW_ERR;
3336 		}
3337 	}
3338 }
3339 
3340 /*
3341  * Interrupt from PHY are handled in tasklet (softirq)
3342  * because accessing phy registers requires spin wait which might
3343  * cause excess interrupt latency.
3344  */
skge_extirq(struct tasklet_struct * t)3345 static void skge_extirq(struct tasklet_struct *t)
3346 {
3347 	struct skge_hw *hw = from_tasklet(hw, t, phy_task);
3348 	int port;
3349 
3350 	for (port = 0; port < hw->ports; port++) {
3351 		struct net_device *dev = hw->dev[port];
3352 
3353 		if (netif_running(dev)) {
3354 			struct skge_port *skge = netdev_priv(dev);
3355 
3356 			spin_lock(&hw->phy_lock);
3357 			if (!is_genesis(hw))
3358 				yukon_phy_intr(skge);
3359 			else if (hw->phy_type == SK_PHY_BCOM)
3360 				bcom_phy_intr(skge);
3361 			spin_unlock(&hw->phy_lock);
3362 		}
3363 	}
3364 
3365 	spin_lock_irq(&hw->hw_lock);
3366 	hw->intr_mask |= IS_EXT_REG;
3367 	skge_write32(hw, B0_IMSK, hw->intr_mask);
3368 	skge_read32(hw, B0_IMSK);
3369 	spin_unlock_irq(&hw->hw_lock);
3370 }
3371 
skge_intr(int irq,void * dev_id)3372 static irqreturn_t skge_intr(int irq, void *dev_id)
3373 {
3374 	struct skge_hw *hw = dev_id;
3375 	u32 status;
3376 	int handled = 0;
3377 
3378 	spin_lock(&hw->hw_lock);
3379 	/* Reading this register masks IRQ */
3380 	status = skge_read32(hw, B0_SP_ISRC);
3381 	if (status == 0 || status == ~0)
3382 		goto out;
3383 
3384 	handled = 1;
3385 	status &= hw->intr_mask;
3386 	if (status & IS_EXT_REG) {
3387 		hw->intr_mask &= ~IS_EXT_REG;
3388 		tasklet_schedule(&hw->phy_task);
3389 	}
3390 
3391 	if (status & (IS_XA1_F|IS_R1_F)) {
3392 		struct skge_port *skge = netdev_priv(hw->dev[0]);
3393 		hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3394 		napi_schedule(&skge->napi);
3395 	}
3396 
3397 	if (status & IS_PA_TO_TX1)
3398 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3399 
3400 	if (status & IS_PA_TO_RX1) {
3401 		++hw->dev[0]->stats.rx_over_errors;
3402 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3403 	}
3404 
3405 
3406 	if (status & IS_MAC1)
3407 		skge_mac_intr(hw, 0);
3408 
3409 	if (hw->dev[1]) {
3410 		struct skge_port *skge = netdev_priv(hw->dev[1]);
3411 
3412 		if (status & (IS_XA2_F|IS_R2_F)) {
3413 			hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3414 			napi_schedule(&skge->napi);
3415 		}
3416 
3417 		if (status & IS_PA_TO_RX2) {
3418 			++hw->dev[1]->stats.rx_over_errors;
3419 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3420 		}
3421 
3422 		if (status & IS_PA_TO_TX2)
3423 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3424 
3425 		if (status & IS_MAC2)
3426 			skge_mac_intr(hw, 1);
3427 	}
3428 
3429 	if (status & IS_HW_ERR)
3430 		skge_error_irq(hw);
3431 out:
3432 	skge_write32(hw, B0_IMSK, hw->intr_mask);
3433 	skge_read32(hw, B0_IMSK);
3434 	spin_unlock(&hw->hw_lock);
3435 
3436 	return IRQ_RETVAL(handled);
3437 }
3438 
3439 #ifdef CONFIG_NET_POLL_CONTROLLER
skge_netpoll(struct net_device * dev)3440 static void skge_netpoll(struct net_device *dev)
3441 {
3442 	struct skge_port *skge = netdev_priv(dev);
3443 
3444 	disable_irq(dev->irq);
3445 	skge_intr(dev->irq, skge->hw);
3446 	enable_irq(dev->irq);
3447 }
3448 #endif
3449 
skge_set_mac_address(struct net_device * dev,void * p)3450 static int skge_set_mac_address(struct net_device *dev, void *p)
3451 {
3452 	struct skge_port *skge = netdev_priv(dev);
3453 	struct skge_hw *hw = skge->hw;
3454 	unsigned port = skge->port;
3455 	const struct sockaddr *addr = p;
3456 	u16 ctrl;
3457 
3458 	if (!is_valid_ether_addr(addr->sa_data))
3459 		return -EADDRNOTAVAIL;
3460 
3461 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3462 
3463 	if (!netif_running(dev)) {
3464 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3465 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3466 	} else {
3467 		/* disable Rx */
3468 		spin_lock_bh(&hw->phy_lock);
3469 		ctrl = gma_read16(hw, port, GM_GP_CTRL);
3470 		gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3471 
3472 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3473 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3474 
3475 		if (is_genesis(hw))
3476 			xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3477 		else {
3478 			gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3479 			gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3480 		}
3481 
3482 		gma_write16(hw, port, GM_GP_CTRL, ctrl);
3483 		spin_unlock_bh(&hw->phy_lock);
3484 	}
3485 
3486 	return 0;
3487 }
3488 
3489 static const struct {
3490 	u8 id;
3491 	const char *name;
3492 } skge_chips[] = {
3493 	{ CHIP_ID_GENESIS,	"Genesis" },
3494 	{ CHIP_ID_YUKON,	 "Yukon" },
3495 	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
3496 	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
3497 };
3498 
skge_board_name(const struct skge_hw * hw)3499 static const char *skge_board_name(const struct skge_hw *hw)
3500 {
3501 	int i;
3502 	static char buf[16];
3503 
3504 	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3505 		if (skge_chips[i].id == hw->chip_id)
3506 			return skge_chips[i].name;
3507 
3508 	snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3509 	return buf;
3510 }
3511 
3512 
3513 /*
3514  * Setup the board data structure, but don't bring up
3515  * the port(s)
3516  */
skge_reset(struct skge_hw * hw)3517 static int skge_reset(struct skge_hw *hw)
3518 {
3519 	u32 reg;
3520 	u16 ctst, pci_status;
3521 	u8 t8, mac_cfg, pmd_type;
3522 	int i;
3523 
3524 	ctst = skge_read16(hw, B0_CTST);
3525 
3526 	/* do a SW reset */
3527 	skge_write8(hw, B0_CTST, CS_RST_SET);
3528 	skge_write8(hw, B0_CTST, CS_RST_CLR);
3529 
3530 	/* clear PCI errors, if any */
3531 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3532 	skge_write8(hw, B2_TST_CTRL2, 0);
3533 
3534 	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3535 	pci_write_config_word(hw->pdev, PCI_STATUS,
3536 			      pci_status | PCI_STATUS_ERROR_BITS);
3537 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3538 	skge_write8(hw, B0_CTST, CS_MRST_CLR);
3539 
3540 	/* restore CLK_RUN bits (for Yukon-Lite) */
3541 	skge_write16(hw, B0_CTST,
3542 		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3543 
3544 	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3545 	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3546 	pmd_type = skge_read8(hw, B2_PMD_TYP);
3547 	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3548 
3549 	switch (hw->chip_id) {
3550 	case CHIP_ID_GENESIS:
3551 #ifdef CONFIG_SKGE_GENESIS
3552 		switch (hw->phy_type) {
3553 		case SK_PHY_XMAC:
3554 			hw->phy_addr = PHY_ADDR_XMAC;
3555 			break;
3556 		case SK_PHY_BCOM:
3557 			hw->phy_addr = PHY_ADDR_BCOM;
3558 			break;
3559 		default:
3560 			dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3561 			       hw->phy_type);
3562 			return -EOPNOTSUPP;
3563 		}
3564 		break;
3565 #else
3566 		dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3567 		return -EOPNOTSUPP;
3568 #endif
3569 
3570 	case CHIP_ID_YUKON:
3571 	case CHIP_ID_YUKON_LITE:
3572 	case CHIP_ID_YUKON_LP:
3573 		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3574 			hw->copper = 1;
3575 
3576 		hw->phy_addr = PHY_ADDR_MARV;
3577 		break;
3578 
3579 	default:
3580 		dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3581 		       hw->chip_id);
3582 		return -EOPNOTSUPP;
3583 	}
3584 
3585 	mac_cfg = skge_read8(hw, B2_MAC_CFG);
3586 	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3587 	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3588 
3589 	/* read the adapters RAM size */
3590 	t8 = skge_read8(hw, B2_E_0);
3591 	if (is_genesis(hw)) {
3592 		if (t8 == 3) {
3593 			/* special case: 4 x 64k x 36, offset = 0x80000 */
3594 			hw->ram_size = 0x100000;
3595 			hw->ram_offset = 0x80000;
3596 		} else
3597 			hw->ram_size = t8 * 512;
3598 	} else if (t8 == 0)
3599 		hw->ram_size = 0x20000;
3600 	else
3601 		hw->ram_size = t8 * 4096;
3602 
3603 	hw->intr_mask = IS_HW_ERR;
3604 
3605 	/* Use PHY IRQ for all but fiber based Genesis board */
3606 	if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3607 		hw->intr_mask |= IS_EXT_REG;
3608 
3609 	if (is_genesis(hw))
3610 		genesis_init(hw);
3611 	else {
3612 		/* switch power to VCC (WA for VAUX problem) */
3613 		skge_write8(hw, B0_POWER_CTRL,
3614 			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3615 
3616 		/* avoid boards with stuck Hardware error bits */
3617 		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3618 		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3619 			dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3620 			hw->intr_mask &= ~IS_HW_ERR;
3621 		}
3622 
3623 		/* Clear PHY COMA */
3624 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3625 		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3626 		reg &= ~PCI_PHY_COMA;
3627 		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3628 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3629 
3630 
3631 		for (i = 0; i < hw->ports; i++) {
3632 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3633 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3634 		}
3635 	}
3636 
3637 	/* turn off hardware timer (unused) */
3638 	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3639 	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3640 	skge_write8(hw, B0_LED, LED_STAT_ON);
3641 
3642 	/* enable the Tx Arbiters */
3643 	for (i = 0; i < hw->ports; i++)
3644 		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3645 
3646 	/* Initialize ram interface */
3647 	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3648 
3649 	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3650 	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3651 	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3652 	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3653 	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3654 	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3655 	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3656 	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3657 	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3658 	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3659 	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3660 	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3661 
3662 	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3663 
3664 	/* Set interrupt moderation for Transmit only
3665 	 * Receive interrupts avoided by NAPI
3666 	 */
3667 	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3668 	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3669 	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3670 
3671 	/* Leave irq disabled until first port is brought up. */
3672 	skge_write32(hw, B0_IMSK, 0);
3673 
3674 	for (i = 0; i < hw->ports; i++) {
3675 		if (is_genesis(hw))
3676 			genesis_reset(hw, i);
3677 		else
3678 			yukon_reset(hw, i);
3679 	}
3680 
3681 	return 0;
3682 }
3683 
3684 
3685 #ifdef CONFIG_SKGE_DEBUG
3686 
3687 static struct dentry *skge_debug;
3688 
skge_debug_show(struct seq_file * seq,void * v)3689 static int skge_debug_show(struct seq_file *seq, void *v)
3690 {
3691 	struct net_device *dev = seq->private;
3692 	const struct skge_port *skge = netdev_priv(dev);
3693 	const struct skge_hw *hw = skge->hw;
3694 	const struct skge_element *e;
3695 
3696 	if (!netif_running(dev))
3697 		return -ENETDOWN;
3698 
3699 	seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3700 		   skge_read32(hw, B0_IMSK));
3701 
3702 	seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3703 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3704 		const struct skge_tx_desc *t = e->desc;
3705 		seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3706 			   t->control, t->dma_hi, t->dma_lo, t->status,
3707 			   t->csum_offs, t->csum_write, t->csum_start);
3708 	}
3709 
3710 	seq_puts(seq, "\nRx Ring:\n");
3711 	for (e = skge->rx_ring.to_clean; ; e = e->next) {
3712 		const struct skge_rx_desc *r = e->desc;
3713 
3714 		if (r->control & BMU_OWN)
3715 			break;
3716 
3717 		seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3718 			   r->control, r->dma_hi, r->dma_lo, r->status,
3719 			   r->timestamp, r->csum1, r->csum1_start);
3720 	}
3721 
3722 	return 0;
3723 }
3724 DEFINE_SHOW_ATTRIBUTE(skge_debug);
3725 
3726 /*
3727  * Use network device events to create/remove/rename
3728  * debugfs file entries
3729  */
skge_device_event(struct notifier_block * unused,unsigned long event,void * ptr)3730 static int skge_device_event(struct notifier_block *unused,
3731 			     unsigned long event, void *ptr)
3732 {
3733 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3734 	struct skge_port *skge;
3735 
3736 	if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3737 		goto done;
3738 
3739 	skge = netdev_priv(dev);
3740 	switch (event) {
3741 	case NETDEV_CHANGENAME:
3742 		if (skge->debugfs)
3743 			skge->debugfs = debugfs_rename(skge_debug,
3744 						       skge->debugfs,
3745 						       skge_debug, dev->name);
3746 		break;
3747 
3748 	case NETDEV_GOING_DOWN:
3749 		debugfs_remove(skge->debugfs);
3750 		skge->debugfs = NULL;
3751 		break;
3752 
3753 	case NETDEV_UP:
3754 		skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug,
3755 						    dev, &skge_debug_fops);
3756 		break;
3757 	}
3758 
3759 done:
3760 	return NOTIFY_DONE;
3761 }
3762 
3763 static struct notifier_block skge_notifier = {
3764 	.notifier_call = skge_device_event,
3765 };
3766 
3767 
skge_debug_init(void)3768 static __init void skge_debug_init(void)
3769 {
3770 	skge_debug = debugfs_create_dir("skge", NULL);
3771 
3772 	register_netdevice_notifier(&skge_notifier);
3773 }
3774 
skge_debug_cleanup(void)3775 static __exit void skge_debug_cleanup(void)
3776 {
3777 	if (skge_debug) {
3778 		unregister_netdevice_notifier(&skge_notifier);
3779 		debugfs_remove(skge_debug);
3780 		skge_debug = NULL;
3781 	}
3782 }
3783 
3784 #else
3785 #define skge_debug_init()
3786 #define skge_debug_cleanup()
3787 #endif
3788 
3789 static const struct net_device_ops skge_netdev_ops = {
3790 	.ndo_open		= skge_up,
3791 	.ndo_stop		= skge_down,
3792 	.ndo_start_xmit		= skge_xmit_frame,
3793 	.ndo_eth_ioctl		= skge_ioctl,
3794 	.ndo_get_stats		= skge_get_stats,
3795 	.ndo_tx_timeout		= skge_tx_timeout,
3796 	.ndo_change_mtu		= skge_change_mtu,
3797 	.ndo_validate_addr	= eth_validate_addr,
3798 	.ndo_set_rx_mode	= skge_set_multicast,
3799 	.ndo_set_mac_address	= skge_set_mac_address,
3800 #ifdef CONFIG_NET_POLL_CONTROLLER
3801 	.ndo_poll_controller	= skge_netpoll,
3802 #endif
3803 };
3804 
3805 
3806 /* Initialize network device */
skge_devinit(struct skge_hw * hw,int port,int highmem)3807 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3808 				       int highmem)
3809 {
3810 	struct skge_port *skge;
3811 	struct net_device *dev = alloc_etherdev(sizeof(*skge));
3812 
3813 	if (!dev)
3814 		return NULL;
3815 
3816 	SET_NETDEV_DEV(dev, &hw->pdev->dev);
3817 	dev->netdev_ops = &skge_netdev_ops;
3818 	dev->ethtool_ops = &skge_ethtool_ops;
3819 	dev->watchdog_timeo = TX_WATCHDOG;
3820 	dev->irq = hw->pdev->irq;
3821 
3822 	/* MTU range: 60 - 9000 */
3823 	dev->min_mtu = ETH_ZLEN;
3824 	dev->max_mtu = ETH_JUMBO_MTU;
3825 
3826 	if (highmem)
3827 		dev->features |= NETIF_F_HIGHDMA;
3828 
3829 	skge = netdev_priv(dev);
3830 	netif_napi_add(dev, &skge->napi, skge_poll, NAPI_POLL_WEIGHT);
3831 	skge->netdev = dev;
3832 	skge->hw = hw;
3833 	skge->msg_enable = netif_msg_init(debug, default_msg);
3834 
3835 	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3836 	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3837 
3838 	/* Auto speed and flow control */
3839 	skge->autoneg = AUTONEG_ENABLE;
3840 	skge->flow_control = FLOW_MODE_SYM_OR_REM;
3841 	skge->duplex = -1;
3842 	skge->speed = -1;
3843 	skge->advertising = skge_supported_modes(hw);
3844 
3845 	if (device_can_wakeup(&hw->pdev->dev)) {
3846 		skge->wol = wol_supported(hw) & WAKE_MAGIC;
3847 		device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3848 	}
3849 
3850 	hw->dev[port] = dev;
3851 
3852 	skge->port = port;
3853 
3854 	/* Only used for Genesis XMAC */
3855 	if (is_genesis(hw))
3856 		timer_setup(&skge->link_timer, xm_link_timer, 0);
3857 	else {
3858 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3859 		                   NETIF_F_RXCSUM;
3860 		dev->features |= dev->hw_features;
3861 	}
3862 
3863 	/* read the mac address */
3864 	memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3865 
3866 	return dev;
3867 }
3868 
skge_show_addr(struct net_device * dev)3869 static void skge_show_addr(struct net_device *dev)
3870 {
3871 	const struct skge_port *skge = netdev_priv(dev);
3872 
3873 	netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3874 }
3875 
3876 static int only_32bit_dma;
3877 
skge_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3878 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3879 {
3880 	struct net_device *dev, *dev1;
3881 	struct skge_hw *hw;
3882 	int err, using_dac = 0;
3883 
3884 	err = pci_enable_device(pdev);
3885 	if (err) {
3886 		dev_err(&pdev->dev, "cannot enable PCI device\n");
3887 		goto err_out;
3888 	}
3889 
3890 	err = pci_request_regions(pdev, DRV_NAME);
3891 	if (err) {
3892 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3893 		goto err_out_disable_pdev;
3894 	}
3895 
3896 	pci_set_master(pdev);
3897 
3898 	if (!only_32bit_dma && !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3899 		using_dac = 1;
3900 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
3901 	} else if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
3902 		using_dac = 0;
3903 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3904 	}
3905 
3906 	if (err) {
3907 		dev_err(&pdev->dev, "no usable DMA configuration\n");
3908 		goto err_out_free_regions;
3909 	}
3910 
3911 #ifdef __BIG_ENDIAN
3912 	/* byte swap descriptors in hardware */
3913 	{
3914 		u32 reg;
3915 
3916 		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3917 		reg |= PCI_REV_DESC;
3918 		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3919 	}
3920 #endif
3921 
3922 	err = -ENOMEM;
3923 	/* space for skge@pci:0000:04:00.0 */
3924 	hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3925 		     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3926 	if (!hw)
3927 		goto err_out_free_regions;
3928 
3929 	sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3930 
3931 	hw->pdev = pdev;
3932 	spin_lock_init(&hw->hw_lock);
3933 	spin_lock_init(&hw->phy_lock);
3934 	tasklet_setup(&hw->phy_task, skge_extirq);
3935 
3936 	hw->regs = ioremap(pci_resource_start(pdev, 0), 0x4000);
3937 	if (!hw->regs) {
3938 		dev_err(&pdev->dev, "cannot map device registers\n");
3939 		goto err_out_free_hw;
3940 	}
3941 
3942 	err = skge_reset(hw);
3943 	if (err)
3944 		goto err_out_iounmap;
3945 
3946 	pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3947 		DRV_VERSION,
3948 		(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3949 		skge_board_name(hw), hw->chip_rev);
3950 
3951 	dev = skge_devinit(hw, 0, using_dac);
3952 	if (!dev) {
3953 		err = -ENOMEM;
3954 		goto err_out_led_off;
3955 	}
3956 
3957 	/* Some motherboards are broken and has zero in ROM. */
3958 	if (!is_valid_ether_addr(dev->dev_addr))
3959 		dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3960 
3961 	err = register_netdev(dev);
3962 	if (err) {
3963 		dev_err(&pdev->dev, "cannot register net device\n");
3964 		goto err_out_free_netdev;
3965 	}
3966 
3967 	skge_show_addr(dev);
3968 
3969 	if (hw->ports > 1) {
3970 		dev1 = skge_devinit(hw, 1, using_dac);
3971 		if (!dev1) {
3972 			err = -ENOMEM;
3973 			goto err_out_unregister;
3974 		}
3975 
3976 		err = register_netdev(dev1);
3977 		if (err) {
3978 			dev_err(&pdev->dev, "cannot register second net device\n");
3979 			goto err_out_free_dev1;
3980 		}
3981 
3982 		err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3983 				  hw->irq_name, hw);
3984 		if (err) {
3985 			dev_err(&pdev->dev, "cannot assign irq %d\n",
3986 				pdev->irq);
3987 			goto err_out_unregister_dev1;
3988 		}
3989 
3990 		skge_show_addr(dev1);
3991 	}
3992 	pci_set_drvdata(pdev, hw);
3993 
3994 	return 0;
3995 
3996 err_out_unregister_dev1:
3997 	unregister_netdev(dev1);
3998 err_out_free_dev1:
3999 	free_netdev(dev1);
4000 err_out_unregister:
4001 	unregister_netdev(dev);
4002 err_out_free_netdev:
4003 	free_netdev(dev);
4004 err_out_led_off:
4005 	skge_write16(hw, B0_LED, LED_STAT_OFF);
4006 err_out_iounmap:
4007 	iounmap(hw->regs);
4008 err_out_free_hw:
4009 	kfree(hw);
4010 err_out_free_regions:
4011 	pci_release_regions(pdev);
4012 err_out_disable_pdev:
4013 	pci_disable_device(pdev);
4014 err_out:
4015 	return err;
4016 }
4017 
skge_remove(struct pci_dev * pdev)4018 static void skge_remove(struct pci_dev *pdev)
4019 {
4020 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4021 	struct net_device *dev0, *dev1;
4022 
4023 	if (!hw)
4024 		return;
4025 
4026 	dev1 = hw->dev[1];
4027 	if (dev1)
4028 		unregister_netdev(dev1);
4029 	dev0 = hw->dev[0];
4030 	unregister_netdev(dev0);
4031 
4032 	tasklet_kill(&hw->phy_task);
4033 
4034 	spin_lock_irq(&hw->hw_lock);
4035 	hw->intr_mask = 0;
4036 
4037 	if (hw->ports > 1) {
4038 		skge_write32(hw, B0_IMSK, 0);
4039 		skge_read32(hw, B0_IMSK);
4040 	}
4041 	spin_unlock_irq(&hw->hw_lock);
4042 
4043 	skge_write16(hw, B0_LED, LED_STAT_OFF);
4044 	skge_write8(hw, B0_CTST, CS_RST_SET);
4045 
4046 	if (hw->ports > 1)
4047 		free_irq(pdev->irq, hw);
4048 	pci_release_regions(pdev);
4049 	pci_disable_device(pdev);
4050 	if (dev1)
4051 		free_netdev(dev1);
4052 	free_netdev(dev0);
4053 
4054 	iounmap(hw->regs);
4055 	kfree(hw);
4056 }
4057 
4058 #ifdef CONFIG_PM_SLEEP
skge_suspend(struct device * dev)4059 static int skge_suspend(struct device *dev)
4060 {
4061 	struct skge_hw *hw  = dev_get_drvdata(dev);
4062 	int i;
4063 
4064 	if (!hw)
4065 		return 0;
4066 
4067 	for (i = 0; i < hw->ports; i++) {
4068 		struct net_device *dev = hw->dev[i];
4069 		struct skge_port *skge = netdev_priv(dev);
4070 
4071 		if (netif_running(dev))
4072 			skge_down(dev);
4073 
4074 		if (skge->wol)
4075 			skge_wol_init(skge);
4076 	}
4077 
4078 	skge_write32(hw, B0_IMSK, 0);
4079 
4080 	return 0;
4081 }
4082 
skge_resume(struct device * dev)4083 static int skge_resume(struct device *dev)
4084 {
4085 	struct skge_hw *hw  = dev_get_drvdata(dev);
4086 	int i, err;
4087 
4088 	if (!hw)
4089 		return 0;
4090 
4091 	err = skge_reset(hw);
4092 	if (err)
4093 		goto out;
4094 
4095 	for (i = 0; i < hw->ports; i++) {
4096 		struct net_device *dev = hw->dev[i];
4097 
4098 		if (netif_running(dev)) {
4099 			err = skge_up(dev);
4100 
4101 			if (err) {
4102 				netdev_err(dev, "could not up: %d\n", err);
4103 				dev_close(dev);
4104 				goto out;
4105 			}
4106 		}
4107 	}
4108 out:
4109 	return err;
4110 }
4111 
4112 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4113 #define SKGE_PM_OPS (&skge_pm_ops)
4114 
4115 #else
4116 
4117 #define SKGE_PM_OPS NULL
4118 #endif /* CONFIG_PM_SLEEP */
4119 
skge_shutdown(struct pci_dev * pdev)4120 static void skge_shutdown(struct pci_dev *pdev)
4121 {
4122 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4123 	int i;
4124 
4125 	if (!hw)
4126 		return;
4127 
4128 	for (i = 0; i < hw->ports; i++) {
4129 		struct net_device *dev = hw->dev[i];
4130 		struct skge_port *skge = netdev_priv(dev);
4131 
4132 		if (skge->wol)
4133 			skge_wol_init(skge);
4134 	}
4135 
4136 	pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4137 	pci_set_power_state(pdev, PCI_D3hot);
4138 }
4139 
4140 static struct pci_driver skge_driver = {
4141 	.name =         DRV_NAME,
4142 	.id_table =     skge_id_table,
4143 	.probe =        skge_probe,
4144 	.remove =       skge_remove,
4145 	.shutdown =	skge_shutdown,
4146 	.driver.pm =	SKGE_PM_OPS,
4147 };
4148 
4149 static const struct dmi_system_id skge_32bit_dma_boards[] = {
4150 	{
4151 		.ident = "Gigabyte nForce boards",
4152 		.matches = {
4153 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4154 			DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4155 		},
4156 	},
4157 	{
4158 		.ident = "ASUS P5NSLI",
4159 		.matches = {
4160 			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4161 			DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4162 		},
4163 	},
4164 	{
4165 		.ident = "FUJITSU SIEMENS A8NE-FM",
4166 		.matches = {
4167 			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4168 			DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4169 		},
4170 	},
4171 	{}
4172 };
4173 
skge_init_module(void)4174 static int __init skge_init_module(void)
4175 {
4176 	if (dmi_check_system(skge_32bit_dma_boards))
4177 		only_32bit_dma = 1;
4178 	skge_debug_init();
4179 	return pci_register_driver(&skge_driver);
4180 }
4181 
skge_cleanup_module(void)4182 static void __exit skge_cleanup_module(void)
4183 {
4184 	pci_unregister_driver(&skge_driver);
4185 	skge_debug_cleanup();
4186 }
4187 
4188 module_init(skge_init_module);
4189 module_exit(skge_cleanup_module);
4190