1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PPP async serial channel driver for Linux.
4 *
5 * Copyright 1999 Paul Mackerras.
6 *
7 * This driver provides the encapsulation and framing for sending
8 * and receiving PPP frames over async serial lines. It relies on
9 * the generic PPP layer to give it frames to send and to process
10 * received frames. It implements the PPP line discipline.
11 *
12 * Part of the code in this driver was inspired by the old async-only
13 * PPP driver, written by Michael Callahan and Al Longyear, and
14 * subsequently hacked by Paul Mackerras.
15 */
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/skbuff.h>
20 #include <linux/tty.h>
21 #include <linux/netdevice.h>
22 #include <linux/poll.h>
23 #include <linux/crc-ccitt.h>
24 #include <linux/ppp_defs.h>
25 #include <linux/ppp-ioctl.h>
26 #include <linux/ppp_channel.h>
27 #include <linux/spinlock.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/jiffies.h>
31 #include <linux/slab.h>
32 #include <asm/unaligned.h>
33 #include <linux/uaccess.h>
34 #include <asm/string.h>
35
36 #define PPP_VERSION "2.4.2"
37
38 #define OBUFSIZE 4096
39
40 /* Structure for storing local state. */
41 struct asyncppp {
42 struct tty_struct *tty;
43 unsigned int flags;
44 unsigned int state;
45 unsigned int rbits;
46 int mru;
47 spinlock_t xmit_lock;
48 spinlock_t recv_lock;
49 unsigned long xmit_flags;
50 u32 xaccm[8];
51 u32 raccm;
52 unsigned int bytes_sent;
53 unsigned int bytes_rcvd;
54
55 struct sk_buff *tpkt;
56 int tpkt_pos;
57 u16 tfcs;
58 unsigned char *optr;
59 unsigned char *olim;
60 unsigned long last_xmit;
61
62 struct sk_buff *rpkt;
63 int lcp_fcs;
64 struct sk_buff_head rqueue;
65
66 struct tasklet_struct tsk;
67
68 refcount_t refcnt;
69 struct completion dead;
70 struct ppp_channel chan; /* interface to generic ppp layer */
71 unsigned char obuf[OBUFSIZE];
72 };
73
74 /* Bit numbers in xmit_flags */
75 #define XMIT_WAKEUP 0
76 #define XMIT_FULL 1
77 #define XMIT_BUSY 2
78
79 /* State bits */
80 #define SC_TOSS 1
81 #define SC_ESCAPE 2
82 #define SC_PREV_ERROR 4
83
84 /* Bits in rbits */
85 #define SC_RCV_BITS (SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP)
86
87 static int flag_time = HZ;
88 module_param(flag_time, int, 0);
89 MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)");
90 MODULE_LICENSE("GPL");
91 MODULE_ALIAS_LDISC(N_PPP);
92
93 /*
94 * Prototypes.
95 */
96 static int ppp_async_encode(struct asyncppp *ap);
97 static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb);
98 static int ppp_async_push(struct asyncppp *ap);
99 static void ppp_async_flush_output(struct asyncppp *ap);
100 static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
101 const char *flags, int count);
102 static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd,
103 unsigned long arg);
104 static void ppp_async_process(struct tasklet_struct *t);
105
106 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
107 int len, int inbound);
108
109 static const struct ppp_channel_ops async_ops = {
110 .start_xmit = ppp_async_send,
111 .ioctl = ppp_async_ioctl,
112 };
113
114 /*
115 * Routines implementing the PPP line discipline.
116 */
117
118 /*
119 * We have a potential race on dereferencing tty->disc_data,
120 * because the tty layer provides no locking at all - thus one
121 * cpu could be running ppp_asynctty_receive while another
122 * calls ppp_asynctty_close, which zeroes tty->disc_data and
123 * frees the memory that ppp_asynctty_receive is using. The best
124 * way to fix this is to use a rwlock in the tty struct, but for now
125 * we use a single global rwlock for all ttys in ppp line discipline.
126 *
127 * FIXME: this is no longer true. The _close path for the ldisc is
128 * now guaranteed to be sane.
129 */
130 static DEFINE_RWLOCK(disc_data_lock);
131
ap_get(struct tty_struct * tty)132 static struct asyncppp *ap_get(struct tty_struct *tty)
133 {
134 struct asyncppp *ap;
135
136 read_lock(&disc_data_lock);
137 ap = tty->disc_data;
138 if (ap != NULL)
139 refcount_inc(&ap->refcnt);
140 read_unlock(&disc_data_lock);
141 return ap;
142 }
143
ap_put(struct asyncppp * ap)144 static void ap_put(struct asyncppp *ap)
145 {
146 if (refcount_dec_and_test(&ap->refcnt))
147 complete(&ap->dead);
148 }
149
150 /*
151 * Called when a tty is put into PPP line discipline. Called in process
152 * context.
153 */
154 static int
ppp_asynctty_open(struct tty_struct * tty)155 ppp_asynctty_open(struct tty_struct *tty)
156 {
157 struct asyncppp *ap;
158 int err;
159 int speed;
160
161 if (tty->ops->write == NULL)
162 return -EOPNOTSUPP;
163
164 err = -ENOMEM;
165 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
166 if (!ap)
167 goto out;
168
169 /* initialize the asyncppp structure */
170 ap->tty = tty;
171 ap->mru = PPP_MRU;
172 spin_lock_init(&ap->xmit_lock);
173 spin_lock_init(&ap->recv_lock);
174 ap->xaccm[0] = ~0U;
175 ap->xaccm[3] = 0x60000000U;
176 ap->raccm = ~0U;
177 ap->optr = ap->obuf;
178 ap->olim = ap->obuf;
179 ap->lcp_fcs = -1;
180
181 skb_queue_head_init(&ap->rqueue);
182 tasklet_setup(&ap->tsk, ppp_async_process);
183
184 refcount_set(&ap->refcnt, 1);
185 init_completion(&ap->dead);
186
187 ap->chan.private = ap;
188 ap->chan.ops = &async_ops;
189 ap->chan.mtu = PPP_MRU;
190 speed = tty_get_baud_rate(tty);
191 ap->chan.speed = speed;
192 err = ppp_register_channel(&ap->chan);
193 if (err)
194 goto out_free;
195
196 tty->disc_data = ap;
197 tty->receive_room = 65536;
198 return 0;
199
200 out_free:
201 kfree(ap);
202 out:
203 return err;
204 }
205
206 /*
207 * Called when the tty is put into another line discipline
208 * or it hangs up. We have to wait for any cpu currently
209 * executing in any of the other ppp_asynctty_* routines to
210 * finish before we can call ppp_unregister_channel and free
211 * the asyncppp struct. This routine must be called from
212 * process context, not interrupt or softirq context.
213 */
214 static void
ppp_asynctty_close(struct tty_struct * tty)215 ppp_asynctty_close(struct tty_struct *tty)
216 {
217 struct asyncppp *ap;
218
219 write_lock_irq(&disc_data_lock);
220 ap = tty->disc_data;
221 tty->disc_data = NULL;
222 write_unlock_irq(&disc_data_lock);
223 if (!ap)
224 return;
225
226 /*
227 * We have now ensured that nobody can start using ap from now
228 * on, but we have to wait for all existing users to finish.
229 * Note that ppp_unregister_channel ensures that no calls to
230 * our channel ops (i.e. ppp_async_send/ioctl) are in progress
231 * by the time it returns.
232 */
233 if (!refcount_dec_and_test(&ap->refcnt))
234 wait_for_completion(&ap->dead);
235 tasklet_kill(&ap->tsk);
236
237 ppp_unregister_channel(&ap->chan);
238 kfree_skb(ap->rpkt);
239 skb_queue_purge(&ap->rqueue);
240 kfree_skb(ap->tpkt);
241 kfree(ap);
242 }
243
244 /*
245 * Called on tty hangup in process context.
246 *
247 * Wait for I/O to driver to complete and unregister PPP channel.
248 * This is already done by the close routine, so just call that.
249 */
ppp_asynctty_hangup(struct tty_struct * tty)250 static int ppp_asynctty_hangup(struct tty_struct *tty)
251 {
252 ppp_asynctty_close(tty);
253 return 0;
254 }
255
256 /*
257 * Read does nothing - no data is ever available this way.
258 * Pppd reads and writes packets via /dev/ppp instead.
259 */
260 static ssize_t
ppp_asynctty_read(struct tty_struct * tty,struct file * file,unsigned char * buf,size_t count,void ** cookie,unsigned long offset)261 ppp_asynctty_read(struct tty_struct *tty, struct file *file,
262 unsigned char *buf, size_t count,
263 void **cookie, unsigned long offset)
264 {
265 return -EAGAIN;
266 }
267
268 /*
269 * Write on the tty does nothing, the packets all come in
270 * from the ppp generic stuff.
271 */
272 static ssize_t
ppp_asynctty_write(struct tty_struct * tty,struct file * file,const unsigned char * buf,size_t count)273 ppp_asynctty_write(struct tty_struct *tty, struct file *file,
274 const unsigned char *buf, size_t count)
275 {
276 return -EAGAIN;
277 }
278
279 /*
280 * Called in process context only. May be re-entered by multiple
281 * ioctl calling threads.
282 */
283
284 static int
ppp_asynctty_ioctl(struct tty_struct * tty,struct file * file,unsigned int cmd,unsigned long arg)285 ppp_asynctty_ioctl(struct tty_struct *tty, struct file *file,
286 unsigned int cmd, unsigned long arg)
287 {
288 struct asyncppp *ap = ap_get(tty);
289 int err, val;
290 int __user *p = (int __user *)arg;
291
292 if (!ap)
293 return -ENXIO;
294 err = -EFAULT;
295 switch (cmd) {
296 case PPPIOCGCHAN:
297 err = -EFAULT;
298 if (put_user(ppp_channel_index(&ap->chan), p))
299 break;
300 err = 0;
301 break;
302
303 case PPPIOCGUNIT:
304 err = -EFAULT;
305 if (put_user(ppp_unit_number(&ap->chan), p))
306 break;
307 err = 0;
308 break;
309
310 case TCFLSH:
311 /* flush our buffers and the serial port's buffer */
312 if (arg == TCIOFLUSH || arg == TCOFLUSH)
313 ppp_async_flush_output(ap);
314 err = n_tty_ioctl_helper(tty, file, cmd, arg);
315 break;
316
317 case FIONREAD:
318 val = 0;
319 if (put_user(val, p))
320 break;
321 err = 0;
322 break;
323
324 default:
325 /* Try the various mode ioctls */
326 err = tty_mode_ioctl(tty, file, cmd, arg);
327 }
328
329 ap_put(ap);
330 return err;
331 }
332
333 /* No kernel lock - fine */
334 static __poll_t
ppp_asynctty_poll(struct tty_struct * tty,struct file * file,poll_table * wait)335 ppp_asynctty_poll(struct tty_struct *tty, struct file *file, poll_table *wait)
336 {
337 return 0;
338 }
339
340 /* May sleep, don't call from interrupt level or with interrupts disabled */
341 static void
ppp_asynctty_receive(struct tty_struct * tty,const unsigned char * buf,const char * cflags,int count)342 ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf,
343 const char *cflags, int count)
344 {
345 struct asyncppp *ap = ap_get(tty);
346 unsigned long flags;
347
348 if (!ap)
349 return;
350 spin_lock_irqsave(&ap->recv_lock, flags);
351 ppp_async_input(ap, buf, cflags, count);
352 spin_unlock_irqrestore(&ap->recv_lock, flags);
353 if (!skb_queue_empty(&ap->rqueue))
354 tasklet_schedule(&ap->tsk);
355 ap_put(ap);
356 tty_unthrottle(tty);
357 }
358
359 static void
ppp_asynctty_wakeup(struct tty_struct * tty)360 ppp_asynctty_wakeup(struct tty_struct *tty)
361 {
362 struct asyncppp *ap = ap_get(tty);
363
364 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
365 if (!ap)
366 return;
367 set_bit(XMIT_WAKEUP, &ap->xmit_flags);
368 tasklet_schedule(&ap->tsk);
369 ap_put(ap);
370 }
371
372
373 static struct tty_ldisc_ops ppp_ldisc = {
374 .owner = THIS_MODULE,
375 .num = N_PPP,
376 .name = "ppp",
377 .open = ppp_asynctty_open,
378 .close = ppp_asynctty_close,
379 .hangup = ppp_asynctty_hangup,
380 .read = ppp_asynctty_read,
381 .write = ppp_asynctty_write,
382 .ioctl = ppp_asynctty_ioctl,
383 .poll = ppp_asynctty_poll,
384 .receive_buf = ppp_asynctty_receive,
385 .write_wakeup = ppp_asynctty_wakeup,
386 };
387
388 static int __init
ppp_async_init(void)389 ppp_async_init(void)
390 {
391 int err;
392
393 err = tty_register_ldisc(&ppp_ldisc);
394 if (err != 0)
395 printk(KERN_ERR "PPP_async: error %d registering line disc.\n",
396 err);
397 return err;
398 }
399
400 /*
401 * The following routines provide the PPP channel interface.
402 */
403 static int
ppp_async_ioctl(struct ppp_channel * chan,unsigned int cmd,unsigned long arg)404 ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg)
405 {
406 struct asyncppp *ap = chan->private;
407 void __user *argp = (void __user *)arg;
408 int __user *p = argp;
409 int err, val;
410 u32 accm[8];
411
412 err = -EFAULT;
413 switch (cmd) {
414 case PPPIOCGFLAGS:
415 val = ap->flags | ap->rbits;
416 if (put_user(val, p))
417 break;
418 err = 0;
419 break;
420 case PPPIOCSFLAGS:
421 if (get_user(val, p))
422 break;
423 ap->flags = val & ~SC_RCV_BITS;
424 spin_lock_irq(&ap->recv_lock);
425 ap->rbits = val & SC_RCV_BITS;
426 spin_unlock_irq(&ap->recv_lock);
427 err = 0;
428 break;
429
430 case PPPIOCGASYNCMAP:
431 if (put_user(ap->xaccm[0], (u32 __user *)argp))
432 break;
433 err = 0;
434 break;
435 case PPPIOCSASYNCMAP:
436 if (get_user(ap->xaccm[0], (u32 __user *)argp))
437 break;
438 err = 0;
439 break;
440
441 case PPPIOCGRASYNCMAP:
442 if (put_user(ap->raccm, (u32 __user *)argp))
443 break;
444 err = 0;
445 break;
446 case PPPIOCSRASYNCMAP:
447 if (get_user(ap->raccm, (u32 __user *)argp))
448 break;
449 err = 0;
450 break;
451
452 case PPPIOCGXASYNCMAP:
453 if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm)))
454 break;
455 err = 0;
456 break;
457 case PPPIOCSXASYNCMAP:
458 if (copy_from_user(accm, argp, sizeof(accm)))
459 break;
460 accm[2] &= ~0x40000000U; /* can't escape 0x5e */
461 accm[3] |= 0x60000000U; /* must escape 0x7d, 0x7e */
462 memcpy(ap->xaccm, accm, sizeof(ap->xaccm));
463 err = 0;
464 break;
465
466 case PPPIOCGMRU:
467 if (put_user(ap->mru, p))
468 break;
469 err = 0;
470 break;
471 case PPPIOCSMRU:
472 if (get_user(val, p))
473 break;
474 if (val > U16_MAX) {
475 err = -EINVAL;
476 break;
477 }
478 if (val < PPP_MRU)
479 val = PPP_MRU;
480 ap->mru = val;
481 err = 0;
482 break;
483
484 default:
485 err = -ENOTTY;
486 }
487
488 return err;
489 }
490
491 /*
492 * This is called at softirq level to deliver received packets
493 * to the ppp_generic code, and to tell the ppp_generic code
494 * if we can accept more output now.
495 */
ppp_async_process(struct tasklet_struct * t)496 static void ppp_async_process(struct tasklet_struct *t)
497 {
498 struct asyncppp *ap = from_tasklet(ap, t, tsk);
499 struct sk_buff *skb;
500
501 /* process received packets */
502 while ((skb = skb_dequeue(&ap->rqueue)) != NULL) {
503 if (skb->cb[0])
504 ppp_input_error(&ap->chan, 0);
505 ppp_input(&ap->chan, skb);
506 }
507
508 /* try to push more stuff out */
509 if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap))
510 ppp_output_wakeup(&ap->chan);
511 }
512
513 /*
514 * Procedures for encapsulation and framing.
515 */
516
517 /*
518 * Procedure to encode the data for async serial transmission.
519 * Does octet stuffing (escaping), puts the address/control bytes
520 * on if A/C compression is disabled, and does protocol compression.
521 * Assumes ap->tpkt != 0 on entry.
522 * Returns 1 if we finished the current frame, 0 otherwise.
523 */
524
525 #define PUT_BYTE(ap, buf, c, islcp) do { \
526 if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\
527 *buf++ = PPP_ESCAPE; \
528 *buf++ = c ^ PPP_TRANS; \
529 } else \
530 *buf++ = c; \
531 } while (0)
532
533 static int
ppp_async_encode(struct asyncppp * ap)534 ppp_async_encode(struct asyncppp *ap)
535 {
536 int fcs, i, count, c, proto;
537 unsigned char *buf, *buflim;
538 unsigned char *data;
539 int islcp;
540
541 buf = ap->obuf;
542 ap->olim = buf;
543 ap->optr = buf;
544 i = ap->tpkt_pos;
545 data = ap->tpkt->data;
546 count = ap->tpkt->len;
547 fcs = ap->tfcs;
548 proto = get_unaligned_be16(data);
549
550 /*
551 * LCP packets with code values between 1 (configure-reqest)
552 * and 7 (code-reject) must be sent as though no options
553 * had been negotiated.
554 */
555 islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7;
556
557 if (i == 0) {
558 if (islcp)
559 async_lcp_peek(ap, data, count, 0);
560
561 /*
562 * Start of a new packet - insert the leading FLAG
563 * character if necessary.
564 */
565 if (islcp || flag_time == 0 ||
566 time_after_eq(jiffies, ap->last_xmit + flag_time))
567 *buf++ = PPP_FLAG;
568 ap->last_xmit = jiffies;
569 fcs = PPP_INITFCS;
570
571 /*
572 * Put in the address/control bytes if necessary
573 */
574 if ((ap->flags & SC_COMP_AC) == 0 || islcp) {
575 PUT_BYTE(ap, buf, 0xff, islcp);
576 fcs = PPP_FCS(fcs, 0xff);
577 PUT_BYTE(ap, buf, 0x03, islcp);
578 fcs = PPP_FCS(fcs, 0x03);
579 }
580 }
581
582 /*
583 * Once we put in the last byte, we need to put in the FCS
584 * and closing flag, so make sure there is at least 7 bytes
585 * of free space in the output buffer.
586 */
587 buflim = ap->obuf + OBUFSIZE - 6;
588 while (i < count && buf < buflim) {
589 c = data[i++];
590 if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT))
591 continue; /* compress protocol field */
592 fcs = PPP_FCS(fcs, c);
593 PUT_BYTE(ap, buf, c, islcp);
594 }
595
596 if (i < count) {
597 /*
598 * Remember where we are up to in this packet.
599 */
600 ap->olim = buf;
601 ap->tpkt_pos = i;
602 ap->tfcs = fcs;
603 return 0;
604 }
605
606 /*
607 * We have finished the packet. Add the FCS and flag.
608 */
609 fcs = ~fcs;
610 c = fcs & 0xff;
611 PUT_BYTE(ap, buf, c, islcp);
612 c = (fcs >> 8) & 0xff;
613 PUT_BYTE(ap, buf, c, islcp);
614 *buf++ = PPP_FLAG;
615 ap->olim = buf;
616
617 consume_skb(ap->tpkt);
618 ap->tpkt = NULL;
619 return 1;
620 }
621
622 /*
623 * Transmit-side routines.
624 */
625
626 /*
627 * Send a packet to the peer over an async tty line.
628 * Returns 1 iff the packet was accepted.
629 * If the packet was not accepted, we will call ppp_output_wakeup
630 * at some later time.
631 */
632 static int
ppp_async_send(struct ppp_channel * chan,struct sk_buff * skb)633 ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb)
634 {
635 struct asyncppp *ap = chan->private;
636
637 ppp_async_push(ap);
638
639 if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags))
640 return 0; /* already full */
641 ap->tpkt = skb;
642 ap->tpkt_pos = 0;
643
644 ppp_async_push(ap);
645 return 1;
646 }
647
648 /*
649 * Push as much data as possible out to the tty.
650 */
651 static int
ppp_async_push(struct asyncppp * ap)652 ppp_async_push(struct asyncppp *ap)
653 {
654 int avail, sent, done = 0;
655 struct tty_struct *tty = ap->tty;
656 int tty_stuffed = 0;
657
658 /*
659 * We can get called recursively here if the tty write
660 * function calls our wakeup function. This can happen
661 * for example on a pty with both the master and slave
662 * set to PPP line discipline.
663 * We use the XMIT_BUSY bit to detect this and get out,
664 * leaving the XMIT_WAKEUP bit set to tell the other
665 * instance that it may now be able to write more now.
666 */
667 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
668 return 0;
669 spin_lock_bh(&ap->xmit_lock);
670 for (;;) {
671 if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags))
672 tty_stuffed = 0;
673 if (!tty_stuffed && ap->optr < ap->olim) {
674 avail = ap->olim - ap->optr;
675 set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
676 sent = tty->ops->write(tty, ap->optr, avail);
677 if (sent < 0)
678 goto flush; /* error, e.g. loss of CD */
679 ap->optr += sent;
680 if (sent < avail)
681 tty_stuffed = 1;
682 continue;
683 }
684 if (ap->optr >= ap->olim && ap->tpkt) {
685 if (ppp_async_encode(ap)) {
686 /* finished processing ap->tpkt */
687 clear_bit(XMIT_FULL, &ap->xmit_flags);
688 done = 1;
689 }
690 continue;
691 }
692 /*
693 * We haven't made any progress this time around.
694 * Clear XMIT_BUSY to let other callers in, but
695 * after doing so we have to check if anyone set
696 * XMIT_WAKEUP since we last checked it. If they
697 * did, we should try again to set XMIT_BUSY and go
698 * around again in case XMIT_BUSY was still set when
699 * the other caller tried.
700 */
701 clear_bit(XMIT_BUSY, &ap->xmit_flags);
702 /* any more work to do? if not, exit the loop */
703 if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) ||
704 (!tty_stuffed && ap->tpkt)))
705 break;
706 /* more work to do, see if we can do it now */
707 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
708 break;
709 }
710 spin_unlock_bh(&ap->xmit_lock);
711 return done;
712
713 flush:
714 clear_bit(XMIT_BUSY, &ap->xmit_flags);
715 if (ap->tpkt) {
716 kfree_skb(ap->tpkt);
717 ap->tpkt = NULL;
718 clear_bit(XMIT_FULL, &ap->xmit_flags);
719 done = 1;
720 }
721 ap->optr = ap->olim;
722 spin_unlock_bh(&ap->xmit_lock);
723 return done;
724 }
725
726 /*
727 * Flush output from our internal buffers.
728 * Called for the TCFLSH ioctl. Can be entered in parallel
729 * but this is covered by the xmit_lock.
730 */
731 static void
ppp_async_flush_output(struct asyncppp * ap)732 ppp_async_flush_output(struct asyncppp *ap)
733 {
734 int done = 0;
735
736 spin_lock_bh(&ap->xmit_lock);
737 ap->optr = ap->olim;
738 if (ap->tpkt != NULL) {
739 kfree_skb(ap->tpkt);
740 ap->tpkt = NULL;
741 clear_bit(XMIT_FULL, &ap->xmit_flags);
742 done = 1;
743 }
744 spin_unlock_bh(&ap->xmit_lock);
745 if (done)
746 ppp_output_wakeup(&ap->chan);
747 }
748
749 /*
750 * Receive-side routines.
751 */
752
753 /* see how many ordinary chars there are at the start of buf */
754 static inline int
scan_ordinary(struct asyncppp * ap,const unsigned char * buf,int count)755 scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count)
756 {
757 int i, c;
758
759 for (i = 0; i < count; ++i) {
760 c = buf[i];
761 if (c == PPP_ESCAPE || c == PPP_FLAG ||
762 (c < 0x20 && (ap->raccm & (1 << c)) != 0))
763 break;
764 }
765 return i;
766 }
767
768 /* called when a flag is seen - do end-of-packet processing */
769 static void
process_input_packet(struct asyncppp * ap)770 process_input_packet(struct asyncppp *ap)
771 {
772 struct sk_buff *skb;
773 unsigned char *p;
774 unsigned int len, fcs;
775
776 skb = ap->rpkt;
777 if (ap->state & (SC_TOSS | SC_ESCAPE))
778 goto err;
779
780 if (skb == NULL)
781 return; /* 0-length packet */
782
783 /* check the FCS */
784 p = skb->data;
785 len = skb->len;
786 if (len < 3)
787 goto err; /* too short */
788 fcs = PPP_INITFCS;
789 for (; len > 0; --len)
790 fcs = PPP_FCS(fcs, *p++);
791 if (fcs != PPP_GOODFCS)
792 goto err; /* bad FCS */
793 skb_trim(skb, skb->len - 2);
794
795 /* check for address/control and protocol compression */
796 p = skb->data;
797 if (p[0] == PPP_ALLSTATIONS) {
798 /* chop off address/control */
799 if (p[1] != PPP_UI || skb->len < 3)
800 goto err;
801 p = skb_pull(skb, 2);
802 }
803
804 /* If protocol field is not compressed, it can be LCP packet */
805 if (!(p[0] & 0x01)) {
806 unsigned int proto;
807
808 if (skb->len < 2)
809 goto err;
810 proto = (p[0] << 8) + p[1];
811 if (proto == PPP_LCP)
812 async_lcp_peek(ap, p, skb->len, 1);
813 }
814
815 /* queue the frame to be processed */
816 skb->cb[0] = ap->state;
817 skb_queue_tail(&ap->rqueue, skb);
818 ap->rpkt = NULL;
819 ap->state = 0;
820 return;
821
822 err:
823 /* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */
824 ap->state = SC_PREV_ERROR;
825 if (skb) {
826 /* make skb appear as freshly allocated */
827 skb_trim(skb, 0);
828 skb_reserve(skb, - skb_headroom(skb));
829 }
830 }
831
832 /* Called when the tty driver has data for us. Runs parallel with the
833 other ldisc functions but will not be re-entered */
834
835 static void
ppp_async_input(struct asyncppp * ap,const unsigned char * buf,const char * flags,int count)836 ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
837 const char *flags, int count)
838 {
839 struct sk_buff *skb;
840 int c, i, j, n, s, f;
841 unsigned char *sp;
842
843 /* update bits used for 8-bit cleanness detection */
844 if (~ap->rbits & SC_RCV_BITS) {
845 s = 0;
846 for (i = 0; i < count; ++i) {
847 c = buf[i];
848 if (flags && flags[i] != 0)
849 continue;
850 s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0;
851 c = ((c >> 4) ^ c) & 0xf;
852 s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP;
853 }
854 ap->rbits |= s;
855 }
856
857 while (count > 0) {
858 /* scan through and see how many chars we can do in bulk */
859 if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE)
860 n = 1;
861 else
862 n = scan_ordinary(ap, buf, count);
863
864 f = 0;
865 if (flags && (ap->state & SC_TOSS) == 0) {
866 /* check the flags to see if any char had an error */
867 for (j = 0; j < n; ++j)
868 if ((f = flags[j]) != 0)
869 break;
870 }
871 if (f != 0) {
872 /* start tossing */
873 ap->state |= SC_TOSS;
874
875 } else if (n > 0 && (ap->state & SC_TOSS) == 0) {
876 /* stuff the chars in the skb */
877 skb = ap->rpkt;
878 if (!skb) {
879 skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2);
880 if (!skb)
881 goto nomem;
882 ap->rpkt = skb;
883 }
884 if (skb->len == 0) {
885 /* Try to get the payload 4-byte aligned.
886 * This should match the
887 * PPP_ALLSTATIONS/PPP_UI/compressed tests in
888 * process_input_packet, but we do not have
889 * enough chars here to test buf[1] and buf[2].
890 */
891 if (buf[0] != PPP_ALLSTATIONS)
892 skb_reserve(skb, 2 + (buf[0] & 1));
893 }
894 if (n > skb_tailroom(skb)) {
895 /* packet overflowed MRU */
896 ap->state |= SC_TOSS;
897 } else {
898 sp = skb_put_data(skb, buf, n);
899 if (ap->state & SC_ESCAPE) {
900 sp[0] ^= PPP_TRANS;
901 ap->state &= ~SC_ESCAPE;
902 }
903 }
904 }
905
906 if (n >= count)
907 break;
908
909 c = buf[n];
910 if (flags != NULL && flags[n] != 0) {
911 ap->state |= SC_TOSS;
912 } else if (c == PPP_FLAG) {
913 process_input_packet(ap);
914 } else if (c == PPP_ESCAPE) {
915 ap->state |= SC_ESCAPE;
916 } else if (I_IXON(ap->tty)) {
917 if (c == START_CHAR(ap->tty))
918 start_tty(ap->tty);
919 else if (c == STOP_CHAR(ap->tty))
920 stop_tty(ap->tty);
921 }
922 /* otherwise it's a char in the recv ACCM */
923 ++n;
924
925 buf += n;
926 if (flags)
927 flags += n;
928 count -= n;
929 }
930 return;
931
932 nomem:
933 printk(KERN_ERR "PPPasync: no memory (input pkt)\n");
934 ap->state |= SC_TOSS;
935 }
936
937 /*
938 * We look at LCP frames going past so that we can notice
939 * and react to the LCP configure-ack from the peer.
940 * In the situation where the peer has been sent a configure-ack
941 * already, LCP is up once it has sent its configure-ack
942 * so the immediately following packet can be sent with the
943 * configured LCP options. This allows us to process the following
944 * packet correctly without pppd needing to respond quickly.
945 *
946 * We only respond to the received configure-ack if we have just
947 * sent a configure-request, and the configure-ack contains the
948 * same data (this is checked using a 16-bit crc of the data).
949 */
950 #define CONFREQ 1 /* LCP code field values */
951 #define CONFACK 2
952 #define LCP_MRU 1 /* LCP option numbers */
953 #define LCP_ASYNCMAP 2
954
async_lcp_peek(struct asyncppp * ap,unsigned char * data,int len,int inbound)955 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
956 int len, int inbound)
957 {
958 int dlen, fcs, i, code;
959 u32 val;
960
961 data += 2; /* skip protocol bytes */
962 len -= 2;
963 if (len < 4) /* 4 = code, ID, length */
964 return;
965 code = data[0];
966 if (code != CONFACK && code != CONFREQ)
967 return;
968 dlen = get_unaligned_be16(data + 2);
969 if (len < dlen)
970 return; /* packet got truncated or length is bogus */
971
972 if (code == (inbound? CONFACK: CONFREQ)) {
973 /*
974 * sent confreq or received confack:
975 * calculate the crc of the data from the ID field on.
976 */
977 fcs = PPP_INITFCS;
978 for (i = 1; i < dlen; ++i)
979 fcs = PPP_FCS(fcs, data[i]);
980
981 if (!inbound) {
982 /* outbound confreq - remember the crc for later */
983 ap->lcp_fcs = fcs;
984 return;
985 }
986
987 /* received confack, check the crc */
988 fcs ^= ap->lcp_fcs;
989 ap->lcp_fcs = -1;
990 if (fcs != 0)
991 return;
992 } else if (inbound)
993 return; /* not interested in received confreq */
994
995 /* process the options in the confack */
996 data += 4;
997 dlen -= 4;
998 /* data[0] is code, data[1] is length */
999 while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) {
1000 switch (data[0]) {
1001 case LCP_MRU:
1002 val = get_unaligned_be16(data + 2);
1003 if (inbound)
1004 ap->mru = val;
1005 else
1006 ap->chan.mtu = val;
1007 break;
1008 case LCP_ASYNCMAP:
1009 val = get_unaligned_be32(data + 2);
1010 if (inbound)
1011 ap->raccm = val;
1012 else
1013 ap->xaccm[0] = val;
1014 break;
1015 }
1016 dlen -= data[1];
1017 data += data[1];
1018 }
1019 }
1020
ppp_async_cleanup(void)1021 static void __exit ppp_async_cleanup(void)
1022 {
1023 tty_unregister_ldisc(&ppp_ldisc);
1024 }
1025
1026 module_init(ppp_async_init);
1027 module_exit(ppp_async_cleanup);
1028