1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
29
30 #include "trace.h"
31 #include "nvme.h"
32
33 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
35
36 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37
38 /*
39 * These can be higher, but we need to ensure that any command doesn't
40 * require an sg allocation that needs more than a page of data.
41 */
42 #define NVME_MAX_KB_SZ 4096
43 #define NVME_MAX_SEGS 127
44
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
47
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
51
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60 "Use SGLs when average request segment size is larger or equal to "
61 "this size. Use 0 to disable SGLs.");
62
63 #define NVME_PCI_MIN_QUEUE_SIZE 2
64 #define NVME_PCI_MAX_QUEUE_SIZE 4095
65 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
66 static const struct kernel_param_ops io_queue_depth_ops = {
67 .set = io_queue_depth_set,
68 .get = param_get_uint,
69 };
70
71 static unsigned int io_queue_depth = 1024;
72 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
73 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
74
io_queue_count_set(const char * val,const struct kernel_param * kp)75 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
76 {
77 unsigned int n;
78 int ret;
79
80 ret = kstrtouint(val, 10, &n);
81 if (ret != 0 || n > num_possible_cpus())
82 return -EINVAL;
83 return param_set_uint(val, kp);
84 }
85
86 static const struct kernel_param_ops io_queue_count_ops = {
87 .set = io_queue_count_set,
88 .get = param_get_uint,
89 };
90
91 static unsigned int write_queues;
92 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
93 MODULE_PARM_DESC(write_queues,
94 "Number of queues to use for writes. If not set, reads and writes "
95 "will share a queue set.");
96
97 static unsigned int poll_queues;
98 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
99 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
100
101 static bool noacpi;
102 module_param(noacpi, bool, 0444);
103 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
104
105 struct nvme_dev;
106 struct nvme_queue;
107
108 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
109 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
110
111 /*
112 * Represents an NVM Express device. Each nvme_dev is a PCI function.
113 */
114 struct nvme_dev {
115 struct nvme_queue *queues;
116 struct blk_mq_tag_set tagset;
117 struct blk_mq_tag_set admin_tagset;
118 u32 __iomem *dbs;
119 struct device *dev;
120 struct dma_pool *prp_page_pool;
121 struct dma_pool *prp_small_pool;
122 unsigned online_queues;
123 unsigned max_qid;
124 unsigned io_queues[HCTX_MAX_TYPES];
125 unsigned int num_vecs;
126 u32 q_depth;
127 int io_sqes;
128 u32 db_stride;
129 void __iomem *bar;
130 unsigned long bar_mapped_size;
131 struct work_struct remove_work;
132 struct mutex shutdown_lock;
133 bool subsystem;
134 u64 cmb_size;
135 bool cmb_use_sqes;
136 u32 cmbsz;
137 u32 cmbloc;
138 struct nvme_ctrl ctrl;
139 u32 last_ps;
140 bool hmb;
141
142 mempool_t *iod_mempool;
143
144 /* shadow doorbell buffer support: */
145 __le32 *dbbuf_dbs;
146 dma_addr_t dbbuf_dbs_dma_addr;
147 __le32 *dbbuf_eis;
148 dma_addr_t dbbuf_eis_dma_addr;
149
150 /* host memory buffer support: */
151 u64 host_mem_size;
152 u32 nr_host_mem_descs;
153 dma_addr_t host_mem_descs_dma;
154 struct nvme_host_mem_buf_desc *host_mem_descs;
155 void **host_mem_desc_bufs;
156 unsigned int nr_allocated_queues;
157 unsigned int nr_write_queues;
158 unsigned int nr_poll_queues;
159
160 bool attrs_added;
161 };
162
io_queue_depth_set(const char * val,const struct kernel_param * kp)163 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
164 {
165 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
166 NVME_PCI_MAX_QUEUE_SIZE);
167 }
168
sq_idx(unsigned int qid,u32 stride)169 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
170 {
171 return qid * 2 * stride;
172 }
173
cq_idx(unsigned int qid,u32 stride)174 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
175 {
176 return (qid * 2 + 1) * stride;
177 }
178
to_nvme_dev(struct nvme_ctrl * ctrl)179 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
180 {
181 return container_of(ctrl, struct nvme_dev, ctrl);
182 }
183
184 /*
185 * An NVM Express queue. Each device has at least two (one for admin
186 * commands and one for I/O commands).
187 */
188 struct nvme_queue {
189 struct nvme_dev *dev;
190 spinlock_t sq_lock;
191 void *sq_cmds;
192 /* only used for poll queues: */
193 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
194 struct nvme_completion *cqes;
195 dma_addr_t sq_dma_addr;
196 dma_addr_t cq_dma_addr;
197 u32 __iomem *q_db;
198 u32 q_depth;
199 u16 cq_vector;
200 u16 sq_tail;
201 u16 last_sq_tail;
202 u16 cq_head;
203 u16 qid;
204 u8 cq_phase;
205 u8 sqes;
206 unsigned long flags;
207 #define NVMEQ_ENABLED 0
208 #define NVMEQ_SQ_CMB 1
209 #define NVMEQ_DELETE_ERROR 2
210 #define NVMEQ_POLLED 3
211 __le32 *dbbuf_sq_db;
212 __le32 *dbbuf_cq_db;
213 __le32 *dbbuf_sq_ei;
214 __le32 *dbbuf_cq_ei;
215 struct completion delete_done;
216 };
217
218 /*
219 * The nvme_iod describes the data in an I/O.
220 *
221 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
222 * to the actual struct scatterlist.
223 */
224 struct nvme_iod {
225 struct nvme_request req;
226 struct nvme_command cmd;
227 bool use_sgl;
228 int aborted;
229 int npages; /* In the PRP list. 0 means small pool in use */
230 int nents; /* Used in scatterlist */
231 dma_addr_t first_dma;
232 unsigned int dma_len; /* length of single DMA segment mapping */
233 dma_addr_t meta_dma;
234 struct scatterlist *sg;
235 };
236
nvme_dbbuf_size(struct nvme_dev * dev)237 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
238 {
239 return dev->nr_allocated_queues * 8 * dev->db_stride;
240 }
241
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)242 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
243 {
244 unsigned int mem_size = nvme_dbbuf_size(dev);
245
246 if (dev->dbbuf_dbs)
247 return 0;
248
249 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
250 &dev->dbbuf_dbs_dma_addr,
251 GFP_KERNEL);
252 if (!dev->dbbuf_dbs)
253 return -ENOMEM;
254 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
255 &dev->dbbuf_eis_dma_addr,
256 GFP_KERNEL);
257 if (!dev->dbbuf_eis) {
258 dma_free_coherent(dev->dev, mem_size,
259 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
260 dev->dbbuf_dbs = NULL;
261 return -ENOMEM;
262 }
263
264 return 0;
265 }
266
nvme_dbbuf_dma_free(struct nvme_dev * dev)267 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
268 {
269 unsigned int mem_size = nvme_dbbuf_size(dev);
270
271 if (dev->dbbuf_dbs) {
272 dma_free_coherent(dev->dev, mem_size,
273 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
274 dev->dbbuf_dbs = NULL;
275 }
276 if (dev->dbbuf_eis) {
277 dma_free_coherent(dev->dev, mem_size,
278 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
279 dev->dbbuf_eis = NULL;
280 }
281 }
282
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)283 static void nvme_dbbuf_init(struct nvme_dev *dev,
284 struct nvme_queue *nvmeq, int qid)
285 {
286 if (!dev->dbbuf_dbs || !qid)
287 return;
288
289 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
290 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
291 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
292 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
293 }
294
nvme_dbbuf_free(struct nvme_queue * nvmeq)295 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
296 {
297 if (!nvmeq->qid)
298 return;
299
300 nvmeq->dbbuf_sq_db = NULL;
301 nvmeq->dbbuf_cq_db = NULL;
302 nvmeq->dbbuf_sq_ei = NULL;
303 nvmeq->dbbuf_cq_ei = NULL;
304 }
305
nvme_dbbuf_set(struct nvme_dev * dev)306 static void nvme_dbbuf_set(struct nvme_dev *dev)
307 {
308 struct nvme_command c = { };
309 unsigned int i;
310
311 if (!dev->dbbuf_dbs)
312 return;
313
314 c.dbbuf.opcode = nvme_admin_dbbuf;
315 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
316 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
317
318 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
319 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
320 /* Free memory and continue on */
321 nvme_dbbuf_dma_free(dev);
322
323 for (i = 1; i <= dev->online_queues; i++)
324 nvme_dbbuf_free(&dev->queues[i]);
325 }
326 }
327
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)328 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
329 {
330 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
331 }
332
333 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)334 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
335 volatile __le32 *dbbuf_ei)
336 {
337 if (dbbuf_db) {
338 u16 old_value, event_idx;
339
340 /*
341 * Ensure that the queue is written before updating
342 * the doorbell in memory
343 */
344 wmb();
345
346 old_value = le32_to_cpu(*dbbuf_db);
347 *dbbuf_db = cpu_to_le32(value);
348
349 /*
350 * Ensure that the doorbell is updated before reading the event
351 * index from memory. The controller needs to provide similar
352 * ordering to ensure the envent index is updated before reading
353 * the doorbell.
354 */
355 mb();
356
357 event_idx = le32_to_cpu(*dbbuf_ei);
358 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
359 return false;
360 }
361
362 return true;
363 }
364
365 /*
366 * Will slightly overestimate the number of pages needed. This is OK
367 * as it only leads to a small amount of wasted memory for the lifetime of
368 * the I/O.
369 */
nvme_pci_npages_prp(void)370 static int nvme_pci_npages_prp(void)
371 {
372 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
373 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
374 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
375 }
376
377 /*
378 * Calculates the number of pages needed for the SGL segments. For example a 4k
379 * page can accommodate 256 SGL descriptors.
380 */
nvme_pci_npages_sgl(void)381 static int nvme_pci_npages_sgl(void)
382 {
383 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
384 NVME_CTRL_PAGE_SIZE);
385 }
386
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)387 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
388 unsigned int hctx_idx)
389 {
390 struct nvme_dev *dev = data;
391 struct nvme_queue *nvmeq = &dev->queues[0];
392
393 WARN_ON(hctx_idx != 0);
394 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
395
396 hctx->driver_data = nvmeq;
397 return 0;
398 }
399
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)400 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
401 unsigned int hctx_idx)
402 {
403 struct nvme_dev *dev = data;
404 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
405
406 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
407 hctx->driver_data = nvmeq;
408 return 0;
409 }
410
nvme_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)411 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
412 unsigned int hctx_idx, unsigned int numa_node)
413 {
414 struct nvme_dev *dev = set->driver_data;
415 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
416
417 nvme_req(req)->ctrl = &dev->ctrl;
418 nvme_req(req)->cmd = &iod->cmd;
419 return 0;
420 }
421
queue_irq_offset(struct nvme_dev * dev)422 static int queue_irq_offset(struct nvme_dev *dev)
423 {
424 /* if we have more than 1 vec, admin queue offsets us by 1 */
425 if (dev->num_vecs > 1)
426 return 1;
427
428 return 0;
429 }
430
nvme_pci_map_queues(struct blk_mq_tag_set * set)431 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
432 {
433 struct nvme_dev *dev = set->driver_data;
434 int i, qoff, offset;
435
436 offset = queue_irq_offset(dev);
437 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
438 struct blk_mq_queue_map *map = &set->map[i];
439
440 map->nr_queues = dev->io_queues[i];
441 if (!map->nr_queues) {
442 BUG_ON(i == HCTX_TYPE_DEFAULT);
443 continue;
444 }
445
446 /*
447 * The poll queue(s) doesn't have an IRQ (and hence IRQ
448 * affinity), so use the regular blk-mq cpu mapping
449 */
450 map->queue_offset = qoff;
451 if (i != HCTX_TYPE_POLL && offset)
452 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
453 else
454 blk_mq_map_queues(map);
455 qoff += map->nr_queues;
456 offset += map->nr_queues;
457 }
458
459 return 0;
460 }
461
462 /*
463 * Write sq tail if we are asked to, or if the next command would wrap.
464 */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)465 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
466 {
467 if (!write_sq) {
468 u16 next_tail = nvmeq->sq_tail + 1;
469
470 if (next_tail == nvmeq->q_depth)
471 next_tail = 0;
472 if (next_tail != nvmeq->last_sq_tail)
473 return;
474 }
475
476 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
477 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
478 writel(nvmeq->sq_tail, nvmeq->q_db);
479 nvmeq->last_sq_tail = nvmeq->sq_tail;
480 }
481
482 /**
483 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
484 * @nvmeq: The queue to use
485 * @cmd: The command to send
486 * @write_sq: whether to write to the SQ doorbell
487 */
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd,bool write_sq)488 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
489 bool write_sq)
490 {
491 spin_lock(&nvmeq->sq_lock);
492 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
493 cmd, sizeof(*cmd));
494 if (++nvmeq->sq_tail == nvmeq->q_depth)
495 nvmeq->sq_tail = 0;
496 nvme_write_sq_db(nvmeq, write_sq);
497 spin_unlock(&nvmeq->sq_lock);
498 }
499
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)500 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
501 {
502 struct nvme_queue *nvmeq = hctx->driver_data;
503
504 spin_lock(&nvmeq->sq_lock);
505 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
506 nvme_write_sq_db(nvmeq, true);
507 spin_unlock(&nvmeq->sq_lock);
508 }
509
nvme_pci_iod_list(struct request * req)510 static void **nvme_pci_iod_list(struct request *req)
511 {
512 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
513 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
514 }
515
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)516 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
517 {
518 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
519 int nseg = blk_rq_nr_phys_segments(req);
520 unsigned int avg_seg_size;
521
522 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
523
524 if (!nvme_ctrl_sgl_supported(&dev->ctrl))
525 return false;
526 if (!nvmeq->qid)
527 return false;
528 if (!sgl_threshold || avg_seg_size < sgl_threshold)
529 return false;
530 return true;
531 }
532
nvme_free_prps(struct nvme_dev * dev,struct request * req)533 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
534 {
535 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
536 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
537 dma_addr_t dma_addr = iod->first_dma;
538 int i;
539
540 for (i = 0; i < iod->npages; i++) {
541 __le64 *prp_list = nvme_pci_iod_list(req)[i];
542 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
543
544 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
545 dma_addr = next_dma_addr;
546 }
547 }
548
nvme_free_sgls(struct nvme_dev * dev,struct request * req)549 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
550 {
551 const int last_sg = SGES_PER_PAGE - 1;
552 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
553 dma_addr_t dma_addr = iod->first_dma;
554 int i;
555
556 for (i = 0; i < iod->npages; i++) {
557 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
558 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
559
560 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
561 dma_addr = next_dma_addr;
562 }
563 }
564
nvme_unmap_sg(struct nvme_dev * dev,struct request * req)565 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
566 {
567 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
568
569 if (is_pci_p2pdma_page(sg_page(iod->sg)))
570 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
571 rq_dma_dir(req));
572 else
573 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
574 }
575
nvme_unmap_data(struct nvme_dev * dev,struct request * req)576 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
577 {
578 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
579
580 if (iod->dma_len) {
581 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
582 rq_dma_dir(req));
583 return;
584 }
585
586 WARN_ON_ONCE(!iod->nents);
587
588 nvme_unmap_sg(dev, req);
589 if (iod->npages == 0)
590 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
591 iod->first_dma);
592 else if (iod->use_sgl)
593 nvme_free_sgls(dev, req);
594 else
595 nvme_free_prps(dev, req);
596 mempool_free(iod->sg, dev->iod_mempool);
597 }
598
nvme_print_sgl(struct scatterlist * sgl,int nents)599 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
600 {
601 int i;
602 struct scatterlist *sg;
603
604 for_each_sg(sgl, sg, nents, i) {
605 dma_addr_t phys = sg_phys(sg);
606 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
607 "dma_address:%pad dma_length:%d\n",
608 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
609 sg_dma_len(sg));
610 }
611 }
612
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)613 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
614 struct request *req, struct nvme_rw_command *cmnd)
615 {
616 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
617 struct dma_pool *pool;
618 int length = blk_rq_payload_bytes(req);
619 struct scatterlist *sg = iod->sg;
620 int dma_len = sg_dma_len(sg);
621 u64 dma_addr = sg_dma_address(sg);
622 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
623 __le64 *prp_list;
624 void **list = nvme_pci_iod_list(req);
625 dma_addr_t prp_dma;
626 int nprps, i;
627
628 length -= (NVME_CTRL_PAGE_SIZE - offset);
629 if (length <= 0) {
630 iod->first_dma = 0;
631 goto done;
632 }
633
634 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
635 if (dma_len) {
636 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
637 } else {
638 sg = sg_next(sg);
639 dma_addr = sg_dma_address(sg);
640 dma_len = sg_dma_len(sg);
641 }
642
643 if (length <= NVME_CTRL_PAGE_SIZE) {
644 iod->first_dma = dma_addr;
645 goto done;
646 }
647
648 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
649 if (nprps <= (256 / 8)) {
650 pool = dev->prp_small_pool;
651 iod->npages = 0;
652 } else {
653 pool = dev->prp_page_pool;
654 iod->npages = 1;
655 }
656
657 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
658 if (!prp_list) {
659 iod->first_dma = dma_addr;
660 iod->npages = -1;
661 return BLK_STS_RESOURCE;
662 }
663 list[0] = prp_list;
664 iod->first_dma = prp_dma;
665 i = 0;
666 for (;;) {
667 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
668 __le64 *old_prp_list = prp_list;
669 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
670 if (!prp_list)
671 goto free_prps;
672 list[iod->npages++] = prp_list;
673 prp_list[0] = old_prp_list[i - 1];
674 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
675 i = 1;
676 }
677 prp_list[i++] = cpu_to_le64(dma_addr);
678 dma_len -= NVME_CTRL_PAGE_SIZE;
679 dma_addr += NVME_CTRL_PAGE_SIZE;
680 length -= NVME_CTRL_PAGE_SIZE;
681 if (length <= 0)
682 break;
683 if (dma_len > 0)
684 continue;
685 if (unlikely(dma_len < 0))
686 goto bad_sgl;
687 sg = sg_next(sg);
688 dma_addr = sg_dma_address(sg);
689 dma_len = sg_dma_len(sg);
690 }
691 done:
692 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
693 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
694 return BLK_STS_OK;
695 free_prps:
696 nvme_free_prps(dev, req);
697 return BLK_STS_RESOURCE;
698 bad_sgl:
699 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
700 "Invalid SGL for payload:%d nents:%d\n",
701 blk_rq_payload_bytes(req), iod->nents);
702 return BLK_STS_IOERR;
703 }
704
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)705 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
706 struct scatterlist *sg)
707 {
708 sge->addr = cpu_to_le64(sg_dma_address(sg));
709 sge->length = cpu_to_le32(sg_dma_len(sg));
710 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
711 }
712
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)713 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
714 dma_addr_t dma_addr, int entries)
715 {
716 sge->addr = cpu_to_le64(dma_addr);
717 if (entries < SGES_PER_PAGE) {
718 sge->length = cpu_to_le32(entries * sizeof(*sge));
719 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
720 } else {
721 sge->length = cpu_to_le32(NVME_CTRL_PAGE_SIZE);
722 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
723 }
724 }
725
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd,int entries)726 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
727 struct request *req, struct nvme_rw_command *cmd, int entries)
728 {
729 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
730 struct dma_pool *pool;
731 struct nvme_sgl_desc *sg_list;
732 struct scatterlist *sg = iod->sg;
733 dma_addr_t sgl_dma;
734 int i = 0;
735
736 /* setting the transfer type as SGL */
737 cmd->flags = NVME_CMD_SGL_METABUF;
738
739 if (entries == 1) {
740 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
741 return BLK_STS_OK;
742 }
743
744 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
745 pool = dev->prp_small_pool;
746 iod->npages = 0;
747 } else {
748 pool = dev->prp_page_pool;
749 iod->npages = 1;
750 }
751
752 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
753 if (!sg_list) {
754 iod->npages = -1;
755 return BLK_STS_RESOURCE;
756 }
757
758 nvme_pci_iod_list(req)[0] = sg_list;
759 iod->first_dma = sgl_dma;
760
761 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
762
763 do {
764 if (i == SGES_PER_PAGE) {
765 struct nvme_sgl_desc *old_sg_desc = sg_list;
766 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
767
768 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
769 if (!sg_list)
770 goto free_sgls;
771
772 i = 0;
773 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
774 sg_list[i++] = *link;
775 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
776 }
777
778 nvme_pci_sgl_set_data(&sg_list[i++], sg);
779 sg = sg_next(sg);
780 } while (--entries > 0);
781
782 return BLK_STS_OK;
783 free_sgls:
784 nvme_free_sgls(dev, req);
785 return BLK_STS_RESOURCE;
786 }
787
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)788 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
789 struct request *req, struct nvme_rw_command *cmnd,
790 struct bio_vec *bv)
791 {
792 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
793 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
794 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
795
796 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
797 if (dma_mapping_error(dev->dev, iod->first_dma))
798 return BLK_STS_RESOURCE;
799 iod->dma_len = bv->bv_len;
800
801 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
802 if (bv->bv_len > first_prp_len)
803 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
804 else
805 cmnd->dptr.prp2 = 0;
806 return BLK_STS_OK;
807 }
808
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)809 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
810 struct request *req, struct nvme_rw_command *cmnd,
811 struct bio_vec *bv)
812 {
813 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
814
815 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
816 if (dma_mapping_error(dev->dev, iod->first_dma))
817 return BLK_STS_RESOURCE;
818 iod->dma_len = bv->bv_len;
819
820 cmnd->flags = NVME_CMD_SGL_METABUF;
821 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
822 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
823 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
824 return BLK_STS_OK;
825 }
826
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)827 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
828 struct nvme_command *cmnd)
829 {
830 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
831 blk_status_t ret = BLK_STS_RESOURCE;
832 int nr_mapped;
833
834 if (blk_rq_nr_phys_segments(req) == 1) {
835 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
836 struct bio_vec bv = req_bvec(req);
837
838 if (!is_pci_p2pdma_page(bv.bv_page)) {
839 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
840 return nvme_setup_prp_simple(dev, req,
841 &cmnd->rw, &bv);
842
843 if (nvmeq->qid && sgl_threshold &&
844 nvme_ctrl_sgl_supported(&dev->ctrl))
845 return nvme_setup_sgl_simple(dev, req,
846 &cmnd->rw, &bv);
847 }
848 }
849
850 iod->dma_len = 0;
851 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
852 if (!iod->sg)
853 return BLK_STS_RESOURCE;
854 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
855 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
856 if (!iod->nents)
857 goto out_free_sg;
858
859 if (is_pci_p2pdma_page(sg_page(iod->sg)))
860 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
861 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
862 else
863 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
864 rq_dma_dir(req), DMA_ATTR_NO_WARN);
865 if (!nr_mapped)
866 goto out_free_sg;
867
868 iod->use_sgl = nvme_pci_use_sgls(dev, req);
869 if (iod->use_sgl)
870 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
871 else
872 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
873 if (ret != BLK_STS_OK)
874 goto out_unmap_sg;
875 return BLK_STS_OK;
876
877 out_unmap_sg:
878 nvme_unmap_sg(dev, req);
879 out_free_sg:
880 mempool_free(iod->sg, dev->iod_mempool);
881 return ret;
882 }
883
nvme_map_metadata(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)884 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
885 struct nvme_command *cmnd)
886 {
887 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
888
889 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
890 rq_dma_dir(req), 0);
891 if (dma_mapping_error(dev->dev, iod->meta_dma))
892 return BLK_STS_IOERR;
893 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
894 return BLK_STS_OK;
895 }
896
897 /*
898 * NOTE: ns is NULL when called on the admin queue.
899 */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)900 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
901 const struct blk_mq_queue_data *bd)
902 {
903 struct nvme_ns *ns = hctx->queue->queuedata;
904 struct nvme_queue *nvmeq = hctx->driver_data;
905 struct nvme_dev *dev = nvmeq->dev;
906 struct request *req = bd->rq;
907 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
908 struct nvme_command *cmnd = &iod->cmd;
909 blk_status_t ret;
910
911 iod->aborted = 0;
912 iod->npages = -1;
913 iod->nents = 0;
914
915 /*
916 * We should not need to do this, but we're still using this to
917 * ensure we can drain requests on a dying queue.
918 */
919 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
920 return BLK_STS_IOERR;
921
922 if (!nvme_check_ready(&dev->ctrl, req, true))
923 return nvme_fail_nonready_command(&dev->ctrl, req);
924
925 ret = nvme_setup_cmd(ns, req);
926 if (ret)
927 return ret;
928
929 if (blk_rq_nr_phys_segments(req)) {
930 ret = nvme_map_data(dev, req, cmnd);
931 if (ret)
932 goto out_free_cmd;
933 }
934
935 if (blk_integrity_rq(req)) {
936 ret = nvme_map_metadata(dev, req, cmnd);
937 if (ret)
938 goto out_unmap_data;
939 }
940
941 blk_mq_start_request(req);
942 nvme_submit_cmd(nvmeq, cmnd, bd->last);
943 return BLK_STS_OK;
944 out_unmap_data:
945 nvme_unmap_data(dev, req);
946 out_free_cmd:
947 nvme_cleanup_cmd(req);
948 return ret;
949 }
950
nvme_pci_complete_rq(struct request * req)951 static void nvme_pci_complete_rq(struct request *req)
952 {
953 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
954 struct nvme_dev *dev = nvmeq->dev;
955
956 if (blk_integrity_rq(req)) {
957 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
958
959 dma_unmap_page(dev->dev, iod->meta_dma,
960 rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
961 }
962
963 if (blk_rq_nr_phys_segments(req))
964 nvme_unmap_data(dev, req);
965 nvme_complete_rq(req);
966 }
967
968 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)969 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
970 {
971 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
972
973 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
974 }
975
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)976 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
977 {
978 u16 head = nvmeq->cq_head;
979
980 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
981 nvmeq->dbbuf_cq_ei))
982 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
983 }
984
nvme_queue_tagset(struct nvme_queue * nvmeq)985 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
986 {
987 if (!nvmeq->qid)
988 return nvmeq->dev->admin_tagset.tags[0];
989 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
990 }
991
nvme_handle_cqe(struct nvme_queue * nvmeq,u16 idx)992 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
993 {
994 struct nvme_completion *cqe = &nvmeq->cqes[idx];
995 __u16 command_id = READ_ONCE(cqe->command_id);
996 struct request *req;
997
998 /*
999 * AEN requests are special as they don't time out and can
1000 * survive any kind of queue freeze and often don't respond to
1001 * aborts. We don't even bother to allocate a struct request
1002 * for them but rather special case them here.
1003 */
1004 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1005 nvme_complete_async_event(&nvmeq->dev->ctrl,
1006 cqe->status, &cqe->result);
1007 return;
1008 }
1009
1010 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1011 if (unlikely(!req)) {
1012 dev_warn(nvmeq->dev->ctrl.device,
1013 "invalid id %d completed on queue %d\n",
1014 command_id, le16_to_cpu(cqe->sq_id));
1015 return;
1016 }
1017
1018 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1019 if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1020 nvme_pci_complete_rq(req);
1021 }
1022
nvme_update_cq_head(struct nvme_queue * nvmeq)1023 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1024 {
1025 u32 tmp = nvmeq->cq_head + 1;
1026
1027 if (tmp == nvmeq->q_depth) {
1028 nvmeq->cq_head = 0;
1029 nvmeq->cq_phase ^= 1;
1030 } else {
1031 nvmeq->cq_head = tmp;
1032 }
1033 }
1034
nvme_process_cq(struct nvme_queue * nvmeq)1035 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1036 {
1037 int found = 0;
1038
1039 while (nvme_cqe_pending(nvmeq)) {
1040 found++;
1041 /*
1042 * load-load control dependency between phase and the rest of
1043 * the cqe requires a full read memory barrier
1044 */
1045 dma_rmb();
1046 nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1047 nvme_update_cq_head(nvmeq);
1048 }
1049
1050 if (found)
1051 nvme_ring_cq_doorbell(nvmeq);
1052 return found;
1053 }
1054
nvme_irq(int irq,void * data)1055 static irqreturn_t nvme_irq(int irq, void *data)
1056 {
1057 struct nvme_queue *nvmeq = data;
1058
1059 if (nvme_process_cq(nvmeq))
1060 return IRQ_HANDLED;
1061 return IRQ_NONE;
1062 }
1063
nvme_irq_check(int irq,void * data)1064 static irqreturn_t nvme_irq_check(int irq, void *data)
1065 {
1066 struct nvme_queue *nvmeq = data;
1067
1068 if (nvme_cqe_pending(nvmeq))
1069 return IRQ_WAKE_THREAD;
1070 return IRQ_NONE;
1071 }
1072
1073 /*
1074 * Poll for completions for any interrupt driven queue
1075 * Can be called from any context.
1076 */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1077 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1078 {
1079 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1080
1081 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1082
1083 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1084 nvme_process_cq(nvmeq);
1085 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1086 }
1087
nvme_poll(struct blk_mq_hw_ctx * hctx)1088 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1089 {
1090 struct nvme_queue *nvmeq = hctx->driver_data;
1091 bool found;
1092
1093 if (!nvme_cqe_pending(nvmeq))
1094 return 0;
1095
1096 spin_lock(&nvmeq->cq_poll_lock);
1097 found = nvme_process_cq(nvmeq);
1098 spin_unlock(&nvmeq->cq_poll_lock);
1099
1100 return found;
1101 }
1102
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1103 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1104 {
1105 struct nvme_dev *dev = to_nvme_dev(ctrl);
1106 struct nvme_queue *nvmeq = &dev->queues[0];
1107 struct nvme_command c = { };
1108
1109 c.common.opcode = nvme_admin_async_event;
1110 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1111 nvme_submit_cmd(nvmeq, &c, true);
1112 }
1113
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1114 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1115 {
1116 struct nvme_command c = { };
1117
1118 c.delete_queue.opcode = opcode;
1119 c.delete_queue.qid = cpu_to_le16(id);
1120
1121 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1122 }
1123
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1124 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1125 struct nvme_queue *nvmeq, s16 vector)
1126 {
1127 struct nvme_command c = { };
1128 int flags = NVME_QUEUE_PHYS_CONTIG;
1129
1130 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1131 flags |= NVME_CQ_IRQ_ENABLED;
1132
1133 /*
1134 * Note: we (ab)use the fact that the prp fields survive if no data
1135 * is attached to the request.
1136 */
1137 c.create_cq.opcode = nvme_admin_create_cq;
1138 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1139 c.create_cq.cqid = cpu_to_le16(qid);
1140 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1141 c.create_cq.cq_flags = cpu_to_le16(flags);
1142 c.create_cq.irq_vector = cpu_to_le16(vector);
1143
1144 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1145 }
1146
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1147 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1148 struct nvme_queue *nvmeq)
1149 {
1150 struct nvme_ctrl *ctrl = &dev->ctrl;
1151 struct nvme_command c = { };
1152 int flags = NVME_QUEUE_PHYS_CONTIG;
1153
1154 /*
1155 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1156 * set. Since URGENT priority is zeroes, it makes all queues
1157 * URGENT.
1158 */
1159 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1160 flags |= NVME_SQ_PRIO_MEDIUM;
1161
1162 /*
1163 * Note: we (ab)use the fact that the prp fields survive if no data
1164 * is attached to the request.
1165 */
1166 c.create_sq.opcode = nvme_admin_create_sq;
1167 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1168 c.create_sq.sqid = cpu_to_le16(qid);
1169 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1170 c.create_sq.sq_flags = cpu_to_le16(flags);
1171 c.create_sq.cqid = cpu_to_le16(qid);
1172
1173 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1174 }
1175
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1176 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1177 {
1178 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1179 }
1180
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1181 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1182 {
1183 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1184 }
1185
abort_endio(struct request * req,blk_status_t error)1186 static void abort_endio(struct request *req, blk_status_t error)
1187 {
1188 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1189
1190 dev_warn(nvmeq->dev->ctrl.device,
1191 "Abort status: 0x%x", nvme_req(req)->status);
1192 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1193 blk_mq_free_request(req);
1194 }
1195
nvme_should_reset(struct nvme_dev * dev,u32 csts)1196 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1197 {
1198 /* If true, indicates loss of adapter communication, possibly by a
1199 * NVMe Subsystem reset.
1200 */
1201 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1202
1203 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1204 switch (dev->ctrl.state) {
1205 case NVME_CTRL_RESETTING:
1206 case NVME_CTRL_CONNECTING:
1207 return false;
1208 default:
1209 break;
1210 }
1211
1212 /* We shouldn't reset unless the controller is on fatal error state
1213 * _or_ if we lost the communication with it.
1214 */
1215 if (!(csts & NVME_CSTS_CFS) && !nssro)
1216 return false;
1217
1218 return true;
1219 }
1220
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1221 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1222 {
1223 /* Read a config register to help see what died. */
1224 u16 pci_status;
1225 int result;
1226
1227 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1228 &pci_status);
1229 if (result == PCIBIOS_SUCCESSFUL)
1230 dev_warn(dev->ctrl.device,
1231 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1232 csts, pci_status);
1233 else
1234 dev_warn(dev->ctrl.device,
1235 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1236 csts, result);
1237 }
1238
nvme_timeout(struct request * req,bool reserved)1239 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1240 {
1241 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1242 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1243 struct nvme_dev *dev = nvmeq->dev;
1244 struct request *abort_req;
1245 struct nvme_command cmd = { };
1246 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1247
1248 /* If PCI error recovery process is happening, we cannot reset or
1249 * the recovery mechanism will surely fail.
1250 */
1251 mb();
1252 if (pci_channel_offline(to_pci_dev(dev->dev)))
1253 return BLK_EH_RESET_TIMER;
1254
1255 /*
1256 * Reset immediately if the controller is failed
1257 */
1258 if (nvme_should_reset(dev, csts)) {
1259 nvme_warn_reset(dev, csts);
1260 nvme_dev_disable(dev, false);
1261 nvme_reset_ctrl(&dev->ctrl);
1262 return BLK_EH_DONE;
1263 }
1264
1265 /*
1266 * Did we miss an interrupt?
1267 */
1268 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1269 nvme_poll(req->mq_hctx);
1270 else
1271 nvme_poll_irqdisable(nvmeq);
1272
1273 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1274 dev_warn(dev->ctrl.device,
1275 "I/O %d QID %d timeout, completion polled\n",
1276 req->tag, nvmeq->qid);
1277 return BLK_EH_DONE;
1278 }
1279
1280 /*
1281 * Shutdown immediately if controller times out while starting. The
1282 * reset work will see the pci device disabled when it gets the forced
1283 * cancellation error. All outstanding requests are completed on
1284 * shutdown, so we return BLK_EH_DONE.
1285 */
1286 switch (dev->ctrl.state) {
1287 case NVME_CTRL_CONNECTING:
1288 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1289 fallthrough;
1290 case NVME_CTRL_DELETING:
1291 dev_warn_ratelimited(dev->ctrl.device,
1292 "I/O %d QID %d timeout, disable controller\n",
1293 req->tag, nvmeq->qid);
1294 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1295 nvme_dev_disable(dev, true);
1296 return BLK_EH_DONE;
1297 case NVME_CTRL_RESETTING:
1298 return BLK_EH_RESET_TIMER;
1299 default:
1300 break;
1301 }
1302
1303 /*
1304 * Shutdown the controller immediately and schedule a reset if the
1305 * command was already aborted once before and still hasn't been
1306 * returned to the driver, or if this is the admin queue.
1307 */
1308 if (!nvmeq->qid || iod->aborted) {
1309 dev_warn(dev->ctrl.device,
1310 "I/O %d QID %d timeout, reset controller\n",
1311 req->tag, nvmeq->qid);
1312 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1313 nvme_dev_disable(dev, false);
1314 nvme_reset_ctrl(&dev->ctrl);
1315
1316 return BLK_EH_DONE;
1317 }
1318
1319 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1320 atomic_inc(&dev->ctrl.abort_limit);
1321 return BLK_EH_RESET_TIMER;
1322 }
1323 iod->aborted = 1;
1324
1325 cmd.abort.opcode = nvme_admin_abort_cmd;
1326 cmd.abort.cid = nvme_cid(req);
1327 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1328
1329 dev_warn(nvmeq->dev->ctrl.device,
1330 "I/O %d QID %d timeout, aborting\n",
1331 req->tag, nvmeq->qid);
1332
1333 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1334 BLK_MQ_REQ_NOWAIT);
1335 if (IS_ERR(abort_req)) {
1336 atomic_inc(&dev->ctrl.abort_limit);
1337 return BLK_EH_RESET_TIMER;
1338 }
1339
1340 abort_req->end_io_data = NULL;
1341 blk_execute_rq_nowait(NULL, abort_req, 0, abort_endio);
1342
1343 /*
1344 * The aborted req will be completed on receiving the abort req.
1345 * We enable the timer again. If hit twice, it'll cause a device reset,
1346 * as the device then is in a faulty state.
1347 */
1348 return BLK_EH_RESET_TIMER;
1349 }
1350
nvme_free_queue(struct nvme_queue * nvmeq)1351 static void nvme_free_queue(struct nvme_queue *nvmeq)
1352 {
1353 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1354 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1355 if (!nvmeq->sq_cmds)
1356 return;
1357
1358 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1359 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1360 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1361 } else {
1362 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1363 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1364 }
1365 }
1366
nvme_free_queues(struct nvme_dev * dev,int lowest)1367 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1368 {
1369 int i;
1370
1371 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1372 dev->ctrl.queue_count--;
1373 nvme_free_queue(&dev->queues[i]);
1374 }
1375 }
1376
1377 /**
1378 * nvme_suspend_queue - put queue into suspended state
1379 * @nvmeq: queue to suspend
1380 */
nvme_suspend_queue(struct nvme_queue * nvmeq)1381 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1382 {
1383 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1384 return 1;
1385
1386 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1387 mb();
1388
1389 nvmeq->dev->online_queues--;
1390 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1391 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1392 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1393 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1394 return 0;
1395 }
1396
nvme_suspend_io_queues(struct nvme_dev * dev)1397 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1398 {
1399 int i;
1400
1401 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1402 nvme_suspend_queue(&dev->queues[i]);
1403 }
1404
nvme_disable_admin_queue(struct nvme_dev * dev,bool shutdown)1405 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1406 {
1407 struct nvme_queue *nvmeq = &dev->queues[0];
1408
1409 if (shutdown)
1410 nvme_shutdown_ctrl(&dev->ctrl);
1411 else
1412 nvme_disable_ctrl(&dev->ctrl);
1413
1414 nvme_poll_irqdisable(nvmeq);
1415 }
1416
1417 /*
1418 * Called only on a device that has been disabled and after all other threads
1419 * that can check this device's completion queues have synced, except
1420 * nvme_poll(). This is the last chance for the driver to see a natural
1421 * completion before nvme_cancel_request() terminates all incomplete requests.
1422 */
nvme_reap_pending_cqes(struct nvme_dev * dev)1423 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1424 {
1425 int i;
1426
1427 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1428 spin_lock(&dev->queues[i].cq_poll_lock);
1429 nvme_process_cq(&dev->queues[i]);
1430 spin_unlock(&dev->queues[i].cq_poll_lock);
1431 }
1432 }
1433
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1434 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1435 int entry_size)
1436 {
1437 int q_depth = dev->q_depth;
1438 unsigned q_size_aligned = roundup(q_depth * entry_size,
1439 NVME_CTRL_PAGE_SIZE);
1440
1441 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1442 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1443
1444 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1445 q_depth = div_u64(mem_per_q, entry_size);
1446
1447 /*
1448 * Ensure the reduced q_depth is above some threshold where it
1449 * would be better to map queues in system memory with the
1450 * original depth
1451 */
1452 if (q_depth < 64)
1453 return -ENOMEM;
1454 }
1455
1456 return q_depth;
1457 }
1458
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1459 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1460 int qid)
1461 {
1462 struct pci_dev *pdev = to_pci_dev(dev->dev);
1463
1464 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1465 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1466 if (nvmeq->sq_cmds) {
1467 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1468 nvmeq->sq_cmds);
1469 if (nvmeq->sq_dma_addr) {
1470 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1471 return 0;
1472 }
1473
1474 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1475 }
1476 }
1477
1478 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1479 &nvmeq->sq_dma_addr, GFP_KERNEL);
1480 if (!nvmeq->sq_cmds)
1481 return -ENOMEM;
1482 return 0;
1483 }
1484
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1485 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1486 {
1487 struct nvme_queue *nvmeq = &dev->queues[qid];
1488
1489 if (dev->ctrl.queue_count > qid)
1490 return 0;
1491
1492 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1493 nvmeq->q_depth = depth;
1494 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1495 &nvmeq->cq_dma_addr, GFP_KERNEL);
1496 if (!nvmeq->cqes)
1497 goto free_nvmeq;
1498
1499 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1500 goto free_cqdma;
1501
1502 nvmeq->dev = dev;
1503 spin_lock_init(&nvmeq->sq_lock);
1504 spin_lock_init(&nvmeq->cq_poll_lock);
1505 nvmeq->cq_head = 0;
1506 nvmeq->cq_phase = 1;
1507 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1508 nvmeq->qid = qid;
1509 dev->ctrl.queue_count++;
1510
1511 return 0;
1512
1513 free_cqdma:
1514 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1515 nvmeq->cq_dma_addr);
1516 free_nvmeq:
1517 return -ENOMEM;
1518 }
1519
queue_request_irq(struct nvme_queue * nvmeq)1520 static int queue_request_irq(struct nvme_queue *nvmeq)
1521 {
1522 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1523 int nr = nvmeq->dev->ctrl.instance;
1524
1525 if (use_threaded_interrupts) {
1526 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1527 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1528 } else {
1529 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1530 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1531 }
1532 }
1533
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1534 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1535 {
1536 struct nvme_dev *dev = nvmeq->dev;
1537
1538 nvmeq->sq_tail = 0;
1539 nvmeq->last_sq_tail = 0;
1540 nvmeq->cq_head = 0;
1541 nvmeq->cq_phase = 1;
1542 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1543 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1544 nvme_dbbuf_init(dev, nvmeq, qid);
1545 dev->online_queues++;
1546 wmb(); /* ensure the first interrupt sees the initialization */
1547 }
1548
1549 /*
1550 * Try getting shutdown_lock while setting up IO queues.
1551 */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)1552 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1553 {
1554 /*
1555 * Give up if the lock is being held by nvme_dev_disable.
1556 */
1557 if (!mutex_trylock(&dev->shutdown_lock))
1558 return -ENODEV;
1559
1560 /*
1561 * Controller is in wrong state, fail early.
1562 */
1563 if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1564 mutex_unlock(&dev->shutdown_lock);
1565 return -ENODEV;
1566 }
1567
1568 return 0;
1569 }
1570
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1571 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1572 {
1573 struct nvme_dev *dev = nvmeq->dev;
1574 int result;
1575 u16 vector = 0;
1576
1577 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1578
1579 /*
1580 * A queue's vector matches the queue identifier unless the controller
1581 * has only one vector available.
1582 */
1583 if (!polled)
1584 vector = dev->num_vecs == 1 ? 0 : qid;
1585 else
1586 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1587
1588 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1589 if (result)
1590 return result;
1591
1592 result = adapter_alloc_sq(dev, qid, nvmeq);
1593 if (result < 0)
1594 return result;
1595 if (result)
1596 goto release_cq;
1597
1598 nvmeq->cq_vector = vector;
1599
1600 result = nvme_setup_io_queues_trylock(dev);
1601 if (result)
1602 return result;
1603 nvme_init_queue(nvmeq, qid);
1604 if (!polled) {
1605 result = queue_request_irq(nvmeq);
1606 if (result < 0)
1607 goto release_sq;
1608 }
1609
1610 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1611 mutex_unlock(&dev->shutdown_lock);
1612 return result;
1613
1614 release_sq:
1615 dev->online_queues--;
1616 mutex_unlock(&dev->shutdown_lock);
1617 adapter_delete_sq(dev, qid);
1618 release_cq:
1619 adapter_delete_cq(dev, qid);
1620 return result;
1621 }
1622
1623 static const struct blk_mq_ops nvme_mq_admin_ops = {
1624 .queue_rq = nvme_queue_rq,
1625 .complete = nvme_pci_complete_rq,
1626 .init_hctx = nvme_admin_init_hctx,
1627 .init_request = nvme_init_request,
1628 .timeout = nvme_timeout,
1629 };
1630
1631 static const struct blk_mq_ops nvme_mq_ops = {
1632 .queue_rq = nvme_queue_rq,
1633 .complete = nvme_pci_complete_rq,
1634 .commit_rqs = nvme_commit_rqs,
1635 .init_hctx = nvme_init_hctx,
1636 .init_request = nvme_init_request,
1637 .map_queues = nvme_pci_map_queues,
1638 .timeout = nvme_timeout,
1639 .poll = nvme_poll,
1640 };
1641
nvme_dev_remove_admin(struct nvme_dev * dev)1642 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1643 {
1644 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1645 /*
1646 * If the controller was reset during removal, it's possible
1647 * user requests may be waiting on a stopped queue. Start the
1648 * queue to flush these to completion.
1649 */
1650 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1651 blk_cleanup_queue(dev->ctrl.admin_q);
1652 blk_mq_free_tag_set(&dev->admin_tagset);
1653 }
1654 }
1655
nvme_alloc_admin_tags(struct nvme_dev * dev)1656 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1657 {
1658 if (!dev->ctrl.admin_q) {
1659 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1660 dev->admin_tagset.nr_hw_queues = 1;
1661
1662 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1663 dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
1664 dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1665 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1666 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1667 dev->admin_tagset.driver_data = dev;
1668
1669 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1670 return -ENOMEM;
1671 dev->ctrl.admin_tagset = &dev->admin_tagset;
1672
1673 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1674 if (IS_ERR(dev->ctrl.admin_q)) {
1675 blk_mq_free_tag_set(&dev->admin_tagset);
1676 dev->ctrl.admin_q = NULL;
1677 return -ENOMEM;
1678 }
1679 if (!blk_get_queue(dev->ctrl.admin_q)) {
1680 nvme_dev_remove_admin(dev);
1681 dev->ctrl.admin_q = NULL;
1682 return -ENODEV;
1683 }
1684 } else
1685 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1686
1687 return 0;
1688 }
1689
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1690 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1691 {
1692 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1693 }
1694
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1695 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1696 {
1697 struct pci_dev *pdev = to_pci_dev(dev->dev);
1698
1699 if (size <= dev->bar_mapped_size)
1700 return 0;
1701 if (size > pci_resource_len(pdev, 0))
1702 return -ENOMEM;
1703 if (dev->bar)
1704 iounmap(dev->bar);
1705 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1706 if (!dev->bar) {
1707 dev->bar_mapped_size = 0;
1708 return -ENOMEM;
1709 }
1710 dev->bar_mapped_size = size;
1711 dev->dbs = dev->bar + NVME_REG_DBS;
1712
1713 return 0;
1714 }
1715
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1716 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1717 {
1718 int result;
1719 u32 aqa;
1720 struct nvme_queue *nvmeq;
1721
1722 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1723 if (result < 0)
1724 return result;
1725
1726 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1727 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1728
1729 if (dev->subsystem &&
1730 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1731 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1732
1733 result = nvme_disable_ctrl(&dev->ctrl);
1734 if (result < 0)
1735 return result;
1736
1737 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1738 if (result)
1739 return result;
1740
1741 dev->ctrl.numa_node = dev_to_node(dev->dev);
1742
1743 nvmeq = &dev->queues[0];
1744 aqa = nvmeq->q_depth - 1;
1745 aqa |= aqa << 16;
1746
1747 writel(aqa, dev->bar + NVME_REG_AQA);
1748 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1749 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1750
1751 result = nvme_enable_ctrl(&dev->ctrl);
1752 if (result)
1753 return result;
1754
1755 nvmeq->cq_vector = 0;
1756 nvme_init_queue(nvmeq, 0);
1757 result = queue_request_irq(nvmeq);
1758 if (result) {
1759 dev->online_queues--;
1760 return result;
1761 }
1762
1763 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1764 return result;
1765 }
1766
nvme_create_io_queues(struct nvme_dev * dev)1767 static int nvme_create_io_queues(struct nvme_dev *dev)
1768 {
1769 unsigned i, max, rw_queues;
1770 int ret = 0;
1771
1772 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1773 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1774 ret = -ENOMEM;
1775 break;
1776 }
1777 }
1778
1779 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1780 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1781 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1782 dev->io_queues[HCTX_TYPE_READ];
1783 } else {
1784 rw_queues = max;
1785 }
1786
1787 for (i = dev->online_queues; i <= max; i++) {
1788 bool polled = i > rw_queues;
1789
1790 ret = nvme_create_queue(&dev->queues[i], i, polled);
1791 if (ret)
1792 break;
1793 }
1794
1795 /*
1796 * Ignore failing Create SQ/CQ commands, we can continue with less
1797 * than the desired amount of queues, and even a controller without
1798 * I/O queues can still be used to issue admin commands. This might
1799 * be useful to upgrade a buggy firmware for example.
1800 */
1801 return ret >= 0 ? 0 : ret;
1802 }
1803
nvme_cmb_size_unit(struct nvme_dev * dev)1804 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1805 {
1806 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1807
1808 return 1ULL << (12 + 4 * szu);
1809 }
1810
nvme_cmb_size(struct nvme_dev * dev)1811 static u32 nvme_cmb_size(struct nvme_dev *dev)
1812 {
1813 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1814 }
1815
nvme_map_cmb(struct nvme_dev * dev)1816 static void nvme_map_cmb(struct nvme_dev *dev)
1817 {
1818 u64 size, offset;
1819 resource_size_t bar_size;
1820 struct pci_dev *pdev = to_pci_dev(dev->dev);
1821 int bar;
1822
1823 if (dev->cmb_size)
1824 return;
1825
1826 if (NVME_CAP_CMBS(dev->ctrl.cap))
1827 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1828
1829 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1830 if (!dev->cmbsz)
1831 return;
1832 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1833
1834 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1835 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1836 bar = NVME_CMB_BIR(dev->cmbloc);
1837 bar_size = pci_resource_len(pdev, bar);
1838
1839 if (offset > bar_size)
1840 return;
1841
1842 /*
1843 * Tell the controller about the host side address mapping the CMB,
1844 * and enable CMB decoding for the NVMe 1.4+ scheme:
1845 */
1846 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1847 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1848 (pci_bus_address(pdev, bar) + offset),
1849 dev->bar + NVME_REG_CMBMSC);
1850 }
1851
1852 /*
1853 * Controllers may support a CMB size larger than their BAR,
1854 * for example, due to being behind a bridge. Reduce the CMB to
1855 * the reported size of the BAR
1856 */
1857 if (size > bar_size - offset)
1858 size = bar_size - offset;
1859
1860 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1861 dev_warn(dev->ctrl.device,
1862 "failed to register the CMB\n");
1863 return;
1864 }
1865
1866 dev->cmb_size = size;
1867 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1868
1869 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1870 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1871 pci_p2pmem_publish(pdev, true);
1872 }
1873
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)1874 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1875 {
1876 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1877 u64 dma_addr = dev->host_mem_descs_dma;
1878 struct nvme_command c = { };
1879 int ret;
1880
1881 c.features.opcode = nvme_admin_set_features;
1882 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1883 c.features.dword11 = cpu_to_le32(bits);
1884 c.features.dword12 = cpu_to_le32(host_mem_size);
1885 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1886 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1887 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1888
1889 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1890 if (ret) {
1891 dev_warn(dev->ctrl.device,
1892 "failed to set host mem (err %d, flags %#x).\n",
1893 ret, bits);
1894 } else
1895 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1896
1897 return ret;
1898 }
1899
nvme_free_host_mem(struct nvme_dev * dev)1900 static void nvme_free_host_mem(struct nvme_dev *dev)
1901 {
1902 int i;
1903
1904 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1905 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1906 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1907
1908 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1909 le64_to_cpu(desc->addr),
1910 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1911 }
1912
1913 kfree(dev->host_mem_desc_bufs);
1914 dev->host_mem_desc_bufs = NULL;
1915 dma_free_coherent(dev->dev,
1916 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1917 dev->host_mem_descs, dev->host_mem_descs_dma);
1918 dev->host_mem_descs = NULL;
1919 dev->nr_host_mem_descs = 0;
1920 }
1921
__nvme_alloc_host_mem(struct nvme_dev * dev,u64 preferred,u32 chunk_size)1922 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1923 u32 chunk_size)
1924 {
1925 struct nvme_host_mem_buf_desc *descs;
1926 u32 max_entries, len;
1927 dma_addr_t descs_dma;
1928 int i = 0;
1929 void **bufs;
1930 u64 size, tmp;
1931
1932 tmp = (preferred + chunk_size - 1);
1933 do_div(tmp, chunk_size);
1934 max_entries = tmp;
1935
1936 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1937 max_entries = dev->ctrl.hmmaxd;
1938
1939 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1940 &descs_dma, GFP_KERNEL);
1941 if (!descs)
1942 goto out;
1943
1944 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1945 if (!bufs)
1946 goto out_free_descs;
1947
1948 for (size = 0; size < preferred && i < max_entries; size += len) {
1949 dma_addr_t dma_addr;
1950
1951 len = min_t(u64, chunk_size, preferred - size);
1952 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1953 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1954 if (!bufs[i])
1955 break;
1956
1957 descs[i].addr = cpu_to_le64(dma_addr);
1958 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1959 i++;
1960 }
1961
1962 if (!size)
1963 goto out_free_bufs;
1964
1965 dev->nr_host_mem_descs = i;
1966 dev->host_mem_size = size;
1967 dev->host_mem_descs = descs;
1968 dev->host_mem_descs_dma = descs_dma;
1969 dev->host_mem_desc_bufs = bufs;
1970 return 0;
1971
1972 out_free_bufs:
1973 while (--i >= 0) {
1974 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1975
1976 dma_free_attrs(dev->dev, size, bufs[i],
1977 le64_to_cpu(descs[i].addr),
1978 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1979 }
1980
1981 kfree(bufs);
1982 out_free_descs:
1983 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1984 descs_dma);
1985 out:
1986 dev->host_mem_descs = NULL;
1987 return -ENOMEM;
1988 }
1989
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)1990 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1991 {
1992 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1993 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1994 u64 chunk_size;
1995
1996 /* start big and work our way down */
1997 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
1998 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1999 if (!min || dev->host_mem_size >= min)
2000 return 0;
2001 nvme_free_host_mem(dev);
2002 }
2003 }
2004
2005 return -ENOMEM;
2006 }
2007
nvme_setup_host_mem(struct nvme_dev * dev)2008 static int nvme_setup_host_mem(struct nvme_dev *dev)
2009 {
2010 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2011 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2012 u64 min = (u64)dev->ctrl.hmmin * 4096;
2013 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2014 int ret;
2015
2016 preferred = min(preferred, max);
2017 if (min > max) {
2018 dev_warn(dev->ctrl.device,
2019 "min host memory (%lld MiB) above limit (%d MiB).\n",
2020 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2021 nvme_free_host_mem(dev);
2022 return 0;
2023 }
2024
2025 /*
2026 * If we already have a buffer allocated check if we can reuse it.
2027 */
2028 if (dev->host_mem_descs) {
2029 if (dev->host_mem_size >= min)
2030 enable_bits |= NVME_HOST_MEM_RETURN;
2031 else
2032 nvme_free_host_mem(dev);
2033 }
2034
2035 if (!dev->host_mem_descs) {
2036 if (nvme_alloc_host_mem(dev, min, preferred)) {
2037 dev_warn(dev->ctrl.device,
2038 "failed to allocate host memory buffer.\n");
2039 return 0; /* controller must work without HMB */
2040 }
2041
2042 dev_info(dev->ctrl.device,
2043 "allocated %lld MiB host memory buffer.\n",
2044 dev->host_mem_size >> ilog2(SZ_1M));
2045 }
2046
2047 ret = nvme_set_host_mem(dev, enable_bits);
2048 if (ret)
2049 nvme_free_host_mem(dev);
2050 return ret;
2051 }
2052
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2053 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2054 char *buf)
2055 {
2056 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2057
2058 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
2059 ndev->cmbloc, ndev->cmbsz);
2060 }
2061 static DEVICE_ATTR_RO(cmb);
2062
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2063 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2064 char *buf)
2065 {
2066 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2067
2068 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2069 }
2070 static DEVICE_ATTR_RO(cmbloc);
2071
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2072 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2073 char *buf)
2074 {
2075 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2076
2077 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2078 }
2079 static DEVICE_ATTR_RO(cmbsz);
2080
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2081 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2082 char *buf)
2083 {
2084 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2085
2086 return sysfs_emit(buf, "%d\n", ndev->hmb);
2087 }
2088
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2089 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2090 const char *buf, size_t count)
2091 {
2092 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2093 bool new;
2094 int ret;
2095
2096 if (strtobool(buf, &new) < 0)
2097 return -EINVAL;
2098
2099 if (new == ndev->hmb)
2100 return count;
2101
2102 if (new) {
2103 ret = nvme_setup_host_mem(ndev);
2104 } else {
2105 ret = nvme_set_host_mem(ndev, 0);
2106 if (!ret)
2107 nvme_free_host_mem(ndev);
2108 }
2109
2110 if (ret < 0)
2111 return ret;
2112
2113 return count;
2114 }
2115 static DEVICE_ATTR_RW(hmb);
2116
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2117 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2118 struct attribute *a, int n)
2119 {
2120 struct nvme_ctrl *ctrl =
2121 dev_get_drvdata(container_of(kobj, struct device, kobj));
2122 struct nvme_dev *dev = to_nvme_dev(ctrl);
2123
2124 if (a == &dev_attr_cmb.attr ||
2125 a == &dev_attr_cmbloc.attr ||
2126 a == &dev_attr_cmbsz.attr) {
2127 if (!dev->cmbsz)
2128 return 0;
2129 }
2130 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2131 return 0;
2132
2133 return a->mode;
2134 }
2135
2136 static struct attribute *nvme_pci_attrs[] = {
2137 &dev_attr_cmb.attr,
2138 &dev_attr_cmbloc.attr,
2139 &dev_attr_cmbsz.attr,
2140 &dev_attr_hmb.attr,
2141 NULL,
2142 };
2143
2144 static const struct attribute_group nvme_pci_attr_group = {
2145 .attrs = nvme_pci_attrs,
2146 .is_visible = nvme_pci_attrs_are_visible,
2147 };
2148
2149 /*
2150 * nirqs is the number of interrupts available for write and read
2151 * queues. The core already reserved an interrupt for the admin queue.
2152 */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2153 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2154 {
2155 struct nvme_dev *dev = affd->priv;
2156 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2157
2158 /*
2159 * If there is no interrupt available for queues, ensure that
2160 * the default queue is set to 1. The affinity set size is
2161 * also set to one, but the irq core ignores it for this case.
2162 *
2163 * If only one interrupt is available or 'write_queue' == 0, combine
2164 * write and read queues.
2165 *
2166 * If 'write_queues' > 0, ensure it leaves room for at least one read
2167 * queue.
2168 */
2169 if (!nrirqs) {
2170 nrirqs = 1;
2171 nr_read_queues = 0;
2172 } else if (nrirqs == 1 || !nr_write_queues) {
2173 nr_read_queues = 0;
2174 } else if (nr_write_queues >= nrirqs) {
2175 nr_read_queues = 1;
2176 } else {
2177 nr_read_queues = nrirqs - nr_write_queues;
2178 }
2179
2180 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2181 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2182 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2183 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2184 affd->nr_sets = nr_read_queues ? 2 : 1;
2185 }
2186
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2187 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2188 {
2189 struct pci_dev *pdev = to_pci_dev(dev->dev);
2190 struct irq_affinity affd = {
2191 .pre_vectors = 1,
2192 .calc_sets = nvme_calc_irq_sets,
2193 .priv = dev,
2194 };
2195 unsigned int irq_queues, poll_queues;
2196
2197 /*
2198 * Poll queues don't need interrupts, but we need at least one I/O queue
2199 * left over for non-polled I/O.
2200 */
2201 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2202 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2203
2204 /*
2205 * Initialize for the single interrupt case, will be updated in
2206 * nvme_calc_irq_sets().
2207 */
2208 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2209 dev->io_queues[HCTX_TYPE_READ] = 0;
2210
2211 /*
2212 * We need interrupts for the admin queue and each non-polled I/O queue,
2213 * but some Apple controllers require all queues to use the first
2214 * vector.
2215 */
2216 irq_queues = 1;
2217 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2218 irq_queues += (nr_io_queues - poll_queues);
2219 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2220 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2221 }
2222
nvme_disable_io_queues(struct nvme_dev * dev)2223 static void nvme_disable_io_queues(struct nvme_dev *dev)
2224 {
2225 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2226 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2227 }
2228
nvme_max_io_queues(struct nvme_dev * dev)2229 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2230 {
2231 /*
2232 * If tags are shared with admin queue (Apple bug), then
2233 * make sure we only use one IO queue.
2234 */
2235 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2236 return 1;
2237 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2238 }
2239
nvme_setup_io_queues(struct nvme_dev * dev)2240 static int nvme_setup_io_queues(struct nvme_dev *dev)
2241 {
2242 struct nvme_queue *adminq = &dev->queues[0];
2243 struct pci_dev *pdev = to_pci_dev(dev->dev);
2244 unsigned int nr_io_queues;
2245 unsigned long size;
2246 int result;
2247
2248 /*
2249 * Sample the module parameters once at reset time so that we have
2250 * stable values to work with.
2251 */
2252 dev->nr_write_queues = write_queues;
2253 dev->nr_poll_queues = poll_queues;
2254
2255 nr_io_queues = dev->nr_allocated_queues - 1;
2256 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2257 if (result < 0)
2258 return result;
2259
2260 if (nr_io_queues == 0)
2261 return 0;
2262
2263 /*
2264 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2265 * from set to unset. If there is a window to it is truely freed,
2266 * pci_free_irq_vectors() jumping into this window will crash.
2267 * And take lock to avoid racing with pci_free_irq_vectors() in
2268 * nvme_dev_disable() path.
2269 */
2270 result = nvme_setup_io_queues_trylock(dev);
2271 if (result)
2272 return result;
2273 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2274 pci_free_irq(pdev, 0, adminq);
2275
2276 if (dev->cmb_use_sqes) {
2277 result = nvme_cmb_qdepth(dev, nr_io_queues,
2278 sizeof(struct nvme_command));
2279 if (result > 0)
2280 dev->q_depth = result;
2281 else
2282 dev->cmb_use_sqes = false;
2283 }
2284
2285 do {
2286 size = db_bar_size(dev, nr_io_queues);
2287 result = nvme_remap_bar(dev, size);
2288 if (!result)
2289 break;
2290 if (!--nr_io_queues) {
2291 result = -ENOMEM;
2292 goto out_unlock;
2293 }
2294 } while (1);
2295 adminq->q_db = dev->dbs;
2296
2297 retry:
2298 /* Deregister the admin queue's interrupt */
2299 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2300 pci_free_irq(pdev, 0, adminq);
2301
2302 /*
2303 * If we enable msix early due to not intx, disable it again before
2304 * setting up the full range we need.
2305 */
2306 pci_free_irq_vectors(pdev);
2307
2308 result = nvme_setup_irqs(dev, nr_io_queues);
2309 if (result <= 0) {
2310 result = -EIO;
2311 goto out_unlock;
2312 }
2313
2314 dev->num_vecs = result;
2315 result = max(result - 1, 1);
2316 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2317
2318 /*
2319 * Should investigate if there's a performance win from allocating
2320 * more queues than interrupt vectors; it might allow the submission
2321 * path to scale better, even if the receive path is limited by the
2322 * number of interrupts.
2323 */
2324 result = queue_request_irq(adminq);
2325 if (result)
2326 goto out_unlock;
2327 set_bit(NVMEQ_ENABLED, &adminq->flags);
2328 mutex_unlock(&dev->shutdown_lock);
2329
2330 result = nvme_create_io_queues(dev);
2331 if (result || dev->online_queues < 2)
2332 return result;
2333
2334 if (dev->online_queues - 1 < dev->max_qid) {
2335 nr_io_queues = dev->online_queues - 1;
2336 nvme_disable_io_queues(dev);
2337 result = nvme_setup_io_queues_trylock(dev);
2338 if (result)
2339 return result;
2340 nvme_suspend_io_queues(dev);
2341 goto retry;
2342 }
2343 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2344 dev->io_queues[HCTX_TYPE_DEFAULT],
2345 dev->io_queues[HCTX_TYPE_READ],
2346 dev->io_queues[HCTX_TYPE_POLL]);
2347 return 0;
2348 out_unlock:
2349 mutex_unlock(&dev->shutdown_lock);
2350 return result;
2351 }
2352
nvme_del_queue_end(struct request * req,blk_status_t error)2353 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2354 {
2355 struct nvme_queue *nvmeq = req->end_io_data;
2356
2357 blk_mq_free_request(req);
2358 complete(&nvmeq->delete_done);
2359 }
2360
nvme_del_cq_end(struct request * req,blk_status_t error)2361 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2362 {
2363 struct nvme_queue *nvmeq = req->end_io_data;
2364
2365 if (error)
2366 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2367
2368 nvme_del_queue_end(req, error);
2369 }
2370
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2371 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2372 {
2373 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2374 struct request *req;
2375 struct nvme_command cmd = { };
2376
2377 cmd.delete_queue.opcode = opcode;
2378 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2379
2380 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2381 if (IS_ERR(req))
2382 return PTR_ERR(req);
2383
2384 req->end_io_data = nvmeq;
2385
2386 init_completion(&nvmeq->delete_done);
2387 blk_execute_rq_nowait(NULL, req, false,
2388 opcode == nvme_admin_delete_cq ?
2389 nvme_del_cq_end : nvme_del_queue_end);
2390 return 0;
2391 }
2392
__nvme_disable_io_queues(struct nvme_dev * dev,u8 opcode)2393 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2394 {
2395 int nr_queues = dev->online_queues - 1, sent = 0;
2396 unsigned long timeout;
2397
2398 retry:
2399 timeout = NVME_ADMIN_TIMEOUT;
2400 while (nr_queues > 0) {
2401 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2402 break;
2403 nr_queues--;
2404 sent++;
2405 }
2406 while (sent) {
2407 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2408
2409 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2410 timeout);
2411 if (timeout == 0)
2412 return false;
2413
2414 sent--;
2415 if (nr_queues)
2416 goto retry;
2417 }
2418 return true;
2419 }
2420
nvme_dev_add(struct nvme_dev * dev)2421 static void nvme_dev_add(struct nvme_dev *dev)
2422 {
2423 int ret;
2424
2425 if (!dev->ctrl.tagset) {
2426 dev->tagset.ops = &nvme_mq_ops;
2427 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2428 dev->tagset.nr_maps = 2; /* default + read */
2429 if (dev->io_queues[HCTX_TYPE_POLL])
2430 dev->tagset.nr_maps++;
2431 dev->tagset.timeout = NVME_IO_TIMEOUT;
2432 dev->tagset.numa_node = dev->ctrl.numa_node;
2433 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2434 BLK_MQ_MAX_DEPTH) - 1;
2435 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2436 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2437 dev->tagset.driver_data = dev;
2438
2439 /*
2440 * Some Apple controllers requires tags to be unique
2441 * across admin and IO queue, so reserve the first 32
2442 * tags of the IO queue.
2443 */
2444 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2445 dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2446
2447 ret = blk_mq_alloc_tag_set(&dev->tagset);
2448 if (ret) {
2449 dev_warn(dev->ctrl.device,
2450 "IO queues tagset allocation failed %d\n", ret);
2451 return;
2452 }
2453 dev->ctrl.tagset = &dev->tagset;
2454 } else {
2455 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2456
2457 /* Free previously allocated queues that are no longer usable */
2458 nvme_free_queues(dev, dev->online_queues);
2459 }
2460
2461 nvme_dbbuf_set(dev);
2462 }
2463
nvme_pci_enable(struct nvme_dev * dev)2464 static int nvme_pci_enable(struct nvme_dev *dev)
2465 {
2466 int result = -ENOMEM;
2467 struct pci_dev *pdev = to_pci_dev(dev->dev);
2468 int dma_address_bits = 64;
2469
2470 if (pci_enable_device_mem(pdev))
2471 return result;
2472
2473 pci_set_master(pdev);
2474
2475 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2476 dma_address_bits = 48;
2477 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2478 goto disable;
2479
2480 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2481 result = -ENODEV;
2482 goto disable;
2483 }
2484
2485 /*
2486 * Some devices and/or platforms don't advertise or work with INTx
2487 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2488 * adjust this later.
2489 */
2490 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2491 if (result < 0)
2492 return result;
2493
2494 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2495
2496 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2497 io_queue_depth);
2498 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2499 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2500 dev->dbs = dev->bar + 4096;
2501
2502 /*
2503 * Some Apple controllers require a non-standard SQE size.
2504 * Interestingly they also seem to ignore the CC:IOSQES register
2505 * so we don't bother updating it here.
2506 */
2507 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2508 dev->io_sqes = 7;
2509 else
2510 dev->io_sqes = NVME_NVM_IOSQES;
2511
2512 /*
2513 * Temporary fix for the Apple controller found in the MacBook8,1 and
2514 * some MacBook7,1 to avoid controller resets and data loss.
2515 */
2516 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2517 dev->q_depth = 2;
2518 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2519 "set queue depth=%u to work around controller resets\n",
2520 dev->q_depth);
2521 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2522 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2523 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2524 dev->q_depth = 64;
2525 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2526 "set queue depth=%u\n", dev->q_depth);
2527 }
2528
2529 /*
2530 * Controllers with the shared tags quirk need the IO queue to be
2531 * big enough so that we get 32 tags for the admin queue
2532 */
2533 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2534 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2535 dev->q_depth = NVME_AQ_DEPTH + 2;
2536 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2537 dev->q_depth);
2538 }
2539
2540
2541 nvme_map_cmb(dev);
2542
2543 pci_enable_pcie_error_reporting(pdev);
2544 pci_save_state(pdev);
2545 return 0;
2546
2547 disable:
2548 pci_disable_device(pdev);
2549 return result;
2550 }
2551
nvme_dev_unmap(struct nvme_dev * dev)2552 static void nvme_dev_unmap(struct nvme_dev *dev)
2553 {
2554 if (dev->bar)
2555 iounmap(dev->bar);
2556 pci_release_mem_regions(to_pci_dev(dev->dev));
2557 }
2558
nvme_pci_disable(struct nvme_dev * dev)2559 static void nvme_pci_disable(struct nvme_dev *dev)
2560 {
2561 struct pci_dev *pdev = to_pci_dev(dev->dev);
2562
2563 pci_free_irq_vectors(pdev);
2564
2565 if (pci_is_enabled(pdev)) {
2566 pci_disable_pcie_error_reporting(pdev);
2567 pci_disable_device(pdev);
2568 }
2569 }
2570
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2571 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2572 {
2573 bool dead = true, freeze = false;
2574 struct pci_dev *pdev = to_pci_dev(dev->dev);
2575
2576 mutex_lock(&dev->shutdown_lock);
2577 if (pci_is_enabled(pdev)) {
2578 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2579
2580 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2581 dev->ctrl.state == NVME_CTRL_RESETTING) {
2582 freeze = true;
2583 nvme_start_freeze(&dev->ctrl);
2584 }
2585 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2586 pdev->error_state != pci_channel_io_normal);
2587 }
2588
2589 /*
2590 * Give the controller a chance to complete all entered requests if
2591 * doing a safe shutdown.
2592 */
2593 if (!dead && shutdown && freeze)
2594 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2595
2596 nvme_stop_queues(&dev->ctrl);
2597
2598 if (!dead && dev->ctrl.queue_count > 0) {
2599 nvme_disable_io_queues(dev);
2600 nvme_disable_admin_queue(dev, shutdown);
2601 }
2602 nvme_suspend_io_queues(dev);
2603 nvme_suspend_queue(&dev->queues[0]);
2604 nvme_pci_disable(dev);
2605 nvme_reap_pending_cqes(dev);
2606
2607 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2608 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2609 blk_mq_tagset_wait_completed_request(&dev->tagset);
2610 blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2611
2612 /*
2613 * The driver will not be starting up queues again if shutting down so
2614 * must flush all entered requests to their failed completion to avoid
2615 * deadlocking blk-mq hot-cpu notifier.
2616 */
2617 if (shutdown) {
2618 nvme_start_queues(&dev->ctrl);
2619 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2620 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2621 }
2622 mutex_unlock(&dev->shutdown_lock);
2623 }
2624
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2625 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2626 {
2627 if (!nvme_wait_reset(&dev->ctrl))
2628 return -EBUSY;
2629 nvme_dev_disable(dev, shutdown);
2630 return 0;
2631 }
2632
nvme_setup_prp_pools(struct nvme_dev * dev)2633 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2634 {
2635 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2636 NVME_CTRL_PAGE_SIZE,
2637 NVME_CTRL_PAGE_SIZE, 0);
2638 if (!dev->prp_page_pool)
2639 return -ENOMEM;
2640
2641 /* Optimisation for I/Os between 4k and 128k */
2642 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2643 256, 256, 0);
2644 if (!dev->prp_small_pool) {
2645 dma_pool_destroy(dev->prp_page_pool);
2646 return -ENOMEM;
2647 }
2648 return 0;
2649 }
2650
nvme_release_prp_pools(struct nvme_dev * dev)2651 static void nvme_release_prp_pools(struct nvme_dev *dev)
2652 {
2653 dma_pool_destroy(dev->prp_page_pool);
2654 dma_pool_destroy(dev->prp_small_pool);
2655 }
2656
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)2657 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2658 {
2659 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
2660 size_t alloc_size = sizeof(__le64 *) * npages +
2661 sizeof(struct scatterlist) * NVME_MAX_SEGS;
2662
2663 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2664 dev->iod_mempool = mempool_create_node(1,
2665 mempool_kmalloc, mempool_kfree,
2666 (void *)alloc_size, GFP_KERNEL,
2667 dev_to_node(dev->dev));
2668 if (!dev->iod_mempool)
2669 return -ENOMEM;
2670 return 0;
2671 }
2672
nvme_free_tagset(struct nvme_dev * dev)2673 static void nvme_free_tagset(struct nvme_dev *dev)
2674 {
2675 if (dev->tagset.tags)
2676 blk_mq_free_tag_set(&dev->tagset);
2677 dev->ctrl.tagset = NULL;
2678 }
2679
2680 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2681 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2682 {
2683 struct nvme_dev *dev = to_nvme_dev(ctrl);
2684
2685 nvme_dbbuf_dma_free(dev);
2686 nvme_free_tagset(dev);
2687 if (dev->ctrl.admin_q)
2688 blk_put_queue(dev->ctrl.admin_q);
2689 free_opal_dev(dev->ctrl.opal_dev);
2690 mempool_destroy(dev->iod_mempool);
2691 put_device(dev->dev);
2692 kfree(dev->queues);
2693 kfree(dev);
2694 }
2695
nvme_remove_dead_ctrl(struct nvme_dev * dev)2696 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2697 {
2698 /*
2699 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2700 * may be holding this pci_dev's device lock.
2701 */
2702 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2703 nvme_get_ctrl(&dev->ctrl);
2704 nvme_dev_disable(dev, false);
2705 nvme_kill_queues(&dev->ctrl);
2706 if (!queue_work(nvme_wq, &dev->remove_work))
2707 nvme_put_ctrl(&dev->ctrl);
2708 }
2709
nvme_reset_work(struct work_struct * work)2710 static void nvme_reset_work(struct work_struct *work)
2711 {
2712 struct nvme_dev *dev =
2713 container_of(work, struct nvme_dev, ctrl.reset_work);
2714 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2715 int result;
2716
2717 if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2718 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2719 dev->ctrl.state);
2720 result = -ENODEV;
2721 goto out;
2722 }
2723
2724 /*
2725 * If we're called to reset a live controller first shut it down before
2726 * moving on.
2727 */
2728 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2729 nvme_dev_disable(dev, false);
2730 nvme_sync_queues(&dev->ctrl);
2731
2732 mutex_lock(&dev->shutdown_lock);
2733 result = nvme_pci_enable(dev);
2734 if (result)
2735 goto out_unlock;
2736
2737 result = nvme_pci_configure_admin_queue(dev);
2738 if (result)
2739 goto out_unlock;
2740
2741 result = nvme_alloc_admin_tags(dev);
2742 if (result)
2743 goto out_unlock;
2744
2745 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2746
2747 /*
2748 * Limit the max command size to prevent iod->sg allocations going
2749 * over a single page.
2750 */
2751 dev->ctrl.max_hw_sectors = min_t(u32,
2752 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2753 dev->ctrl.max_segments = NVME_MAX_SEGS;
2754
2755 /*
2756 * Don't limit the IOMMU merged segment size.
2757 */
2758 dma_set_max_seg_size(dev->dev, 0xffffffff);
2759
2760 mutex_unlock(&dev->shutdown_lock);
2761
2762 /*
2763 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2764 * initializing procedure here.
2765 */
2766 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2767 dev_warn(dev->ctrl.device,
2768 "failed to mark controller CONNECTING\n");
2769 result = -EBUSY;
2770 goto out;
2771 }
2772
2773 /*
2774 * We do not support an SGL for metadata (yet), so we are limited to a
2775 * single integrity segment for the separate metadata pointer.
2776 */
2777 dev->ctrl.max_integrity_segments = 1;
2778
2779 result = nvme_init_ctrl_finish(&dev->ctrl);
2780 if (result)
2781 goto out;
2782
2783 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2784 if (!dev->ctrl.opal_dev)
2785 dev->ctrl.opal_dev =
2786 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2787 else if (was_suspend)
2788 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2789 } else {
2790 free_opal_dev(dev->ctrl.opal_dev);
2791 dev->ctrl.opal_dev = NULL;
2792 }
2793
2794 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2795 result = nvme_dbbuf_dma_alloc(dev);
2796 if (result)
2797 dev_warn(dev->dev,
2798 "unable to allocate dma for dbbuf\n");
2799 }
2800
2801 if (dev->ctrl.hmpre) {
2802 result = nvme_setup_host_mem(dev);
2803 if (result < 0)
2804 goto out;
2805 }
2806
2807 result = nvme_setup_io_queues(dev);
2808 if (result)
2809 goto out;
2810
2811 /*
2812 * Keep the controller around but remove all namespaces if we don't have
2813 * any working I/O queue.
2814 */
2815 if (dev->online_queues < 2) {
2816 dev_warn(dev->ctrl.device, "IO queues not created\n");
2817 nvme_kill_queues(&dev->ctrl);
2818 nvme_remove_namespaces(&dev->ctrl);
2819 nvme_free_tagset(dev);
2820 } else {
2821 nvme_start_queues(&dev->ctrl);
2822 nvme_wait_freeze(&dev->ctrl);
2823 nvme_dev_add(dev);
2824 nvme_unfreeze(&dev->ctrl);
2825 }
2826
2827 /*
2828 * If only admin queue live, keep it to do further investigation or
2829 * recovery.
2830 */
2831 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2832 dev_warn(dev->ctrl.device,
2833 "failed to mark controller live state\n");
2834 result = -ENODEV;
2835 goto out;
2836 }
2837
2838 if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2839 &nvme_pci_attr_group))
2840 dev->attrs_added = true;
2841
2842 nvme_start_ctrl(&dev->ctrl);
2843 return;
2844
2845 out_unlock:
2846 mutex_unlock(&dev->shutdown_lock);
2847 out:
2848 if (result)
2849 dev_warn(dev->ctrl.device,
2850 "Removing after probe failure status: %d\n", result);
2851 nvme_remove_dead_ctrl(dev);
2852 }
2853
nvme_remove_dead_ctrl_work(struct work_struct * work)2854 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2855 {
2856 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2857 struct pci_dev *pdev = to_pci_dev(dev->dev);
2858
2859 if (pci_get_drvdata(pdev))
2860 device_release_driver(&pdev->dev);
2861 nvme_put_ctrl(&dev->ctrl);
2862 }
2863
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)2864 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2865 {
2866 *val = readl(to_nvme_dev(ctrl)->bar + off);
2867 return 0;
2868 }
2869
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)2870 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2871 {
2872 writel(val, to_nvme_dev(ctrl)->bar + off);
2873 return 0;
2874 }
2875
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)2876 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2877 {
2878 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2879 return 0;
2880 }
2881
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2882 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2883 {
2884 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2885
2886 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2887 }
2888
2889 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2890 .name = "pcie",
2891 .module = THIS_MODULE,
2892 .flags = NVME_F_METADATA_SUPPORTED |
2893 NVME_F_PCI_P2PDMA,
2894 .reg_read32 = nvme_pci_reg_read32,
2895 .reg_write32 = nvme_pci_reg_write32,
2896 .reg_read64 = nvme_pci_reg_read64,
2897 .free_ctrl = nvme_pci_free_ctrl,
2898 .submit_async_event = nvme_pci_submit_async_event,
2899 .get_address = nvme_pci_get_address,
2900 };
2901
nvme_dev_map(struct nvme_dev * dev)2902 static int nvme_dev_map(struct nvme_dev *dev)
2903 {
2904 struct pci_dev *pdev = to_pci_dev(dev->dev);
2905
2906 if (pci_request_mem_regions(pdev, "nvme"))
2907 return -ENODEV;
2908
2909 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2910 goto release;
2911
2912 return 0;
2913 release:
2914 pci_release_mem_regions(pdev);
2915 return -ENODEV;
2916 }
2917
check_vendor_combination_bug(struct pci_dev * pdev)2918 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2919 {
2920 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2921 /*
2922 * Several Samsung devices seem to drop off the PCIe bus
2923 * randomly when APST is on and uses the deepest sleep state.
2924 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2925 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2926 * 950 PRO 256GB", but it seems to be restricted to two Dell
2927 * laptops.
2928 */
2929 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2930 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2931 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2932 return NVME_QUIRK_NO_DEEPEST_PS;
2933 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2934 /*
2935 * Samsung SSD 960 EVO drops off the PCIe bus after system
2936 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2937 * within few minutes after bootup on a Coffee Lake board -
2938 * ASUS PRIME Z370-A
2939 */
2940 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2941 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2942 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2943 return NVME_QUIRK_NO_APST;
2944 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2945 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2946 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2947 /*
2948 * Forcing to use host managed nvme power settings for
2949 * lowest idle power with quick resume latency on
2950 * Samsung and Toshiba SSDs based on suspend behavior
2951 * on Coffee Lake board for LENOVO C640
2952 */
2953 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2954 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2955 return NVME_QUIRK_SIMPLE_SUSPEND;
2956 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
2957 pdev->device == 0x500f)) {
2958 /*
2959 * Exclude some Kingston NV1 and A2000 devices from
2960 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
2961 * lot fo energy with s2idle sleep on some TUXEDO platforms.
2962 */
2963 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
2964 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
2965 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
2966 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
2967 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2968 }
2969
2970 return 0;
2971 }
2972
nvme_async_probe(void * data,async_cookie_t cookie)2973 static void nvme_async_probe(void *data, async_cookie_t cookie)
2974 {
2975 struct nvme_dev *dev = data;
2976
2977 flush_work(&dev->ctrl.reset_work);
2978 flush_work(&dev->ctrl.scan_work);
2979 nvme_put_ctrl(&dev->ctrl);
2980 }
2981
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)2982 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2983 const struct pci_device_id *id)
2984 {
2985 unsigned long quirks = id->driver_data;
2986 int node = dev_to_node(&pdev->dev);
2987 struct nvme_dev *dev;
2988 int ret = -ENOMEM;
2989
2990 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2991 if (!dev)
2992 return ERR_PTR(-ENOMEM);
2993 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2994 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2995 mutex_init(&dev->shutdown_lock);
2996
2997 dev->nr_write_queues = write_queues;
2998 dev->nr_poll_queues = poll_queues;
2999 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3000 dev->queues = kcalloc_node(dev->nr_allocated_queues,
3001 sizeof(struct nvme_queue), GFP_KERNEL, node);
3002 if (!dev->queues)
3003 goto out_free_dev;
3004
3005 dev->dev = get_device(&pdev->dev);
3006
3007 quirks |= check_vendor_combination_bug(pdev);
3008 if (!noacpi &&
3009 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3010 acpi_storage_d3(&pdev->dev)) {
3011 /*
3012 * Some systems use a bios work around to ask for D3 on
3013 * platforms that support kernel managed suspend.
3014 */
3015 dev_info(&pdev->dev,
3016 "platform quirk: setting simple suspend\n");
3017 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3018 }
3019 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3020 quirks);
3021 if (ret)
3022 goto out_put_device;
3023 return dev;
3024
3025 out_put_device:
3026 put_device(dev->dev);
3027 kfree(dev->queues);
3028 out_free_dev:
3029 kfree(dev);
3030 return ERR_PTR(ret);
3031 }
3032
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3033 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3034 {
3035 struct nvme_dev *dev;
3036 int result = -ENOMEM;
3037
3038 dev = nvme_pci_alloc_dev(pdev, id);
3039 if (IS_ERR(dev))
3040 return PTR_ERR(dev);
3041
3042 result = nvme_dev_map(dev);
3043 if (result)
3044 goto out_uninit_ctrl;
3045
3046 result = nvme_setup_prp_pools(dev);
3047 if (result)
3048 goto out_dev_unmap;
3049
3050 result = nvme_pci_alloc_iod_mempool(dev);
3051 if (result)
3052 goto out_release_prp_pools;
3053
3054 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3055 pci_set_drvdata(pdev, dev);
3056
3057 nvme_reset_ctrl(&dev->ctrl);
3058 async_schedule(nvme_async_probe, dev);
3059 return 0;
3060
3061 out_release_prp_pools:
3062 nvme_release_prp_pools(dev);
3063 out_dev_unmap:
3064 nvme_dev_unmap(dev);
3065 out_uninit_ctrl:
3066 nvme_uninit_ctrl(&dev->ctrl);
3067 return result;
3068 }
3069
nvme_reset_prepare(struct pci_dev * pdev)3070 static void nvme_reset_prepare(struct pci_dev *pdev)
3071 {
3072 struct nvme_dev *dev = pci_get_drvdata(pdev);
3073
3074 /*
3075 * We don't need to check the return value from waiting for the reset
3076 * state as pci_dev device lock is held, making it impossible to race
3077 * with ->remove().
3078 */
3079 nvme_disable_prepare_reset(dev, false);
3080 nvme_sync_queues(&dev->ctrl);
3081 }
3082
nvme_reset_done(struct pci_dev * pdev)3083 static void nvme_reset_done(struct pci_dev *pdev)
3084 {
3085 struct nvme_dev *dev = pci_get_drvdata(pdev);
3086
3087 if (!nvme_try_sched_reset(&dev->ctrl))
3088 flush_work(&dev->ctrl.reset_work);
3089 }
3090
nvme_shutdown(struct pci_dev * pdev)3091 static void nvme_shutdown(struct pci_dev *pdev)
3092 {
3093 struct nvme_dev *dev = pci_get_drvdata(pdev);
3094
3095 nvme_disable_prepare_reset(dev, true);
3096 }
3097
nvme_remove_attrs(struct nvme_dev * dev)3098 static void nvme_remove_attrs(struct nvme_dev *dev)
3099 {
3100 if (dev->attrs_added)
3101 sysfs_remove_group(&dev->ctrl.device->kobj,
3102 &nvme_pci_attr_group);
3103 }
3104
3105 /*
3106 * The driver's remove may be called on a device in a partially initialized
3107 * state. This function must not have any dependencies on the device state in
3108 * order to proceed.
3109 */
nvme_remove(struct pci_dev * pdev)3110 static void nvme_remove(struct pci_dev *pdev)
3111 {
3112 struct nvme_dev *dev = pci_get_drvdata(pdev);
3113
3114 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3115 pci_set_drvdata(pdev, NULL);
3116
3117 if (!pci_device_is_present(pdev)) {
3118 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3119 nvme_dev_disable(dev, true);
3120 }
3121
3122 flush_work(&dev->ctrl.reset_work);
3123 nvme_stop_ctrl(&dev->ctrl);
3124 nvme_remove_namespaces(&dev->ctrl);
3125 nvme_dev_disable(dev, true);
3126 nvme_remove_attrs(dev);
3127 nvme_free_host_mem(dev);
3128 nvme_dev_remove_admin(dev);
3129 nvme_free_queues(dev, 0);
3130 nvme_release_prp_pools(dev);
3131 nvme_dev_unmap(dev);
3132 nvme_uninit_ctrl(&dev->ctrl);
3133 }
3134
3135 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3136 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3137 {
3138 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3139 }
3140
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3141 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3142 {
3143 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3144 }
3145
nvme_resume(struct device * dev)3146 static int nvme_resume(struct device *dev)
3147 {
3148 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3149 struct nvme_ctrl *ctrl = &ndev->ctrl;
3150
3151 if (ndev->last_ps == U32_MAX ||
3152 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3153 goto reset;
3154 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3155 goto reset;
3156
3157 return 0;
3158 reset:
3159 return nvme_try_sched_reset(ctrl);
3160 }
3161
nvme_suspend(struct device * dev)3162 static int nvme_suspend(struct device *dev)
3163 {
3164 struct pci_dev *pdev = to_pci_dev(dev);
3165 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3166 struct nvme_ctrl *ctrl = &ndev->ctrl;
3167 int ret = -EBUSY;
3168
3169 ndev->last_ps = U32_MAX;
3170
3171 /*
3172 * The platform does not remove power for a kernel managed suspend so
3173 * use host managed nvme power settings for lowest idle power if
3174 * possible. This should have quicker resume latency than a full device
3175 * shutdown. But if the firmware is involved after the suspend or the
3176 * device does not support any non-default power states, shut down the
3177 * device fully.
3178 *
3179 * If ASPM is not enabled for the device, shut down the device and allow
3180 * the PCI bus layer to put it into D3 in order to take the PCIe link
3181 * down, so as to allow the platform to achieve its minimum low-power
3182 * state (which may not be possible if the link is up).
3183 */
3184 if (pm_suspend_via_firmware() || !ctrl->npss ||
3185 !pcie_aspm_enabled(pdev) ||
3186 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3187 return nvme_disable_prepare_reset(ndev, true);
3188
3189 nvme_start_freeze(ctrl);
3190 nvme_wait_freeze(ctrl);
3191 nvme_sync_queues(ctrl);
3192
3193 if (ctrl->state != NVME_CTRL_LIVE)
3194 goto unfreeze;
3195
3196 /*
3197 * Host memory access may not be successful in a system suspend state,
3198 * but the specification allows the controller to access memory in a
3199 * non-operational power state.
3200 */
3201 if (ndev->hmb) {
3202 ret = nvme_set_host_mem(ndev, 0);
3203 if (ret < 0)
3204 goto unfreeze;
3205 }
3206
3207 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3208 if (ret < 0)
3209 goto unfreeze;
3210
3211 /*
3212 * A saved state prevents pci pm from generically controlling the
3213 * device's power. If we're using protocol specific settings, we don't
3214 * want pci interfering.
3215 */
3216 pci_save_state(pdev);
3217
3218 ret = nvme_set_power_state(ctrl, ctrl->npss);
3219 if (ret < 0)
3220 goto unfreeze;
3221
3222 if (ret) {
3223 /* discard the saved state */
3224 pci_load_saved_state(pdev, NULL);
3225
3226 /*
3227 * Clearing npss forces a controller reset on resume. The
3228 * correct value will be rediscovered then.
3229 */
3230 ret = nvme_disable_prepare_reset(ndev, true);
3231 ctrl->npss = 0;
3232 }
3233 unfreeze:
3234 nvme_unfreeze(ctrl);
3235 return ret;
3236 }
3237
nvme_simple_suspend(struct device * dev)3238 static int nvme_simple_suspend(struct device *dev)
3239 {
3240 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3241
3242 return nvme_disable_prepare_reset(ndev, true);
3243 }
3244
nvme_simple_resume(struct device * dev)3245 static int nvme_simple_resume(struct device *dev)
3246 {
3247 struct pci_dev *pdev = to_pci_dev(dev);
3248 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3249
3250 return nvme_try_sched_reset(&ndev->ctrl);
3251 }
3252
3253 static const struct dev_pm_ops nvme_dev_pm_ops = {
3254 .suspend = nvme_suspend,
3255 .resume = nvme_resume,
3256 .freeze = nvme_simple_suspend,
3257 .thaw = nvme_simple_resume,
3258 .poweroff = nvme_simple_suspend,
3259 .restore = nvme_simple_resume,
3260 };
3261 #endif /* CONFIG_PM_SLEEP */
3262
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3263 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3264 pci_channel_state_t state)
3265 {
3266 struct nvme_dev *dev = pci_get_drvdata(pdev);
3267
3268 /*
3269 * A frozen channel requires a reset. When detected, this method will
3270 * shutdown the controller to quiesce. The controller will be restarted
3271 * after the slot reset through driver's slot_reset callback.
3272 */
3273 switch (state) {
3274 case pci_channel_io_normal:
3275 return PCI_ERS_RESULT_CAN_RECOVER;
3276 case pci_channel_io_frozen:
3277 dev_warn(dev->ctrl.device,
3278 "frozen state error detected, reset controller\n");
3279 nvme_dev_disable(dev, false);
3280 return PCI_ERS_RESULT_NEED_RESET;
3281 case pci_channel_io_perm_failure:
3282 dev_warn(dev->ctrl.device,
3283 "failure state error detected, request disconnect\n");
3284 return PCI_ERS_RESULT_DISCONNECT;
3285 }
3286 return PCI_ERS_RESULT_NEED_RESET;
3287 }
3288
nvme_slot_reset(struct pci_dev * pdev)3289 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3290 {
3291 struct nvme_dev *dev = pci_get_drvdata(pdev);
3292
3293 dev_info(dev->ctrl.device, "restart after slot reset\n");
3294 pci_restore_state(pdev);
3295 nvme_reset_ctrl(&dev->ctrl);
3296 return PCI_ERS_RESULT_RECOVERED;
3297 }
3298
nvme_error_resume(struct pci_dev * pdev)3299 static void nvme_error_resume(struct pci_dev *pdev)
3300 {
3301 struct nvme_dev *dev = pci_get_drvdata(pdev);
3302
3303 flush_work(&dev->ctrl.reset_work);
3304 }
3305
3306 static const struct pci_error_handlers nvme_err_handler = {
3307 .error_detected = nvme_error_detected,
3308 .slot_reset = nvme_slot_reset,
3309 .resume = nvme_error_resume,
3310 .reset_prepare = nvme_reset_prepare,
3311 .reset_done = nvme_reset_done,
3312 };
3313
3314 static const struct pci_device_id nvme_id_table[] = {
3315 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3316 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3317 NVME_QUIRK_DEALLOCATE_ZEROES, },
3318 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3319 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3320 NVME_QUIRK_DEALLOCATE_ZEROES, },
3321 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3322 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3323 NVME_QUIRK_DEALLOCATE_ZEROES |
3324 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3325 NVME_QUIRK_BOGUS_NID, },
3326 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3327 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3328 NVME_QUIRK_DEALLOCATE_ZEROES, },
3329 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3330 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3331 NVME_QUIRK_MEDIUM_PRIO_SQ |
3332 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3333 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3334 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3335 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3336 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3337 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3338 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3339 NVME_QUIRK_BOGUS_NID, },
3340 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3341 .driver_data = NVME_QUIRK_BOGUS_NID, },
3342 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3343 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3344 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3345 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3346 NVME_QUIRK_NO_NS_DESC_LIST, },
3347 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3348 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3349 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3350 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3351 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3352 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3353 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3354 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3355 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3356 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3357 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3358 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3359 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3360 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3361 NVME_QUIRK_BOGUS_NID, },
3362 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3363 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3364 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3365 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3366 .driver_data = NVME_QUIRK_BOGUS_NID, },
3367 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3368 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3369 NVME_QUIRK_BOGUS_NID, },
3370 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3371 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3372 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3373 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3374 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3375 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3376 .driver_data = NVME_QUIRK_BOGUS_NID, },
3377 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3378 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3379 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3380 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3381 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3382 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3383 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3384 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3385 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3386 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3387 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
3388 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3389 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3390 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3391 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3392 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3393 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3394 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3395 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3396 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3397 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3398 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3399 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
3400 .driver_data = NVME_QUIRK_BOGUS_NID, },
3401 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
3402 .driver_data = NVME_QUIRK_BOGUS_NID, },
3403 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3404 .driver_data = NVME_QUIRK_BOGUS_NID, },
3405 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3406 .driver_data = NVME_QUIRK_BOGUS_NID, },
3407 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3408 .driver_data = NVME_QUIRK_BOGUS_NID, },
3409 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
3410 .driver_data = NVME_QUIRK_BOGUS_NID, },
3411 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3412 .driver_data = NVME_QUIRK_BOGUS_NID, },
3413 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3414 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3415 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3416 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3417 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3418 .driver_data = NVME_QUIRK_BOGUS_NID, },
3419 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3420 .driver_data = NVME_QUIRK_BOGUS_NID, },
3421 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3422 .driver_data = NVME_QUIRK_BOGUS_NID |
3423 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3424 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3425 .driver_data = NVME_QUIRK_BOGUS_NID, },
3426 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
3427 .driver_data = NVME_QUIRK_BOGUS_NID, },
3428 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3429 .driver_data = NVME_QUIRK_BOGUS_NID, },
3430 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3431 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3432 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3433 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3434 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3435 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3436 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3437 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3438 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3439 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3440 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3441 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3442 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3443 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3444 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3445 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3446 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3447 NVME_QUIRK_128_BYTES_SQES |
3448 NVME_QUIRK_SHARED_TAGS |
3449 NVME_QUIRK_SKIP_CID_GEN },
3450 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3451 { 0, }
3452 };
3453 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3454
3455 static struct pci_driver nvme_driver = {
3456 .name = "nvme",
3457 .id_table = nvme_id_table,
3458 .probe = nvme_probe,
3459 .remove = nvme_remove,
3460 .shutdown = nvme_shutdown,
3461 #ifdef CONFIG_PM_SLEEP
3462 .driver = {
3463 .pm = &nvme_dev_pm_ops,
3464 },
3465 #endif
3466 .sriov_configure = pci_sriov_configure_simple,
3467 .err_handler = &nvme_err_handler,
3468 };
3469
nvme_init(void)3470 static int __init nvme_init(void)
3471 {
3472 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3473 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3474 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3475 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3476
3477 return pci_register_driver(&nvme_driver);
3478 }
3479
nvme_exit(void)3480 static void __exit nvme_exit(void)
3481 {
3482 pci_unregister_driver(&nvme_driver);
3483 flush_workqueue(nvme_wq);
3484 }
3485
3486 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3487 MODULE_LICENSE("GPL");
3488 MODULE_VERSION("1.0");
3489 module_init(nvme_init);
3490 module_exit(nvme_exit);
3491