• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
29 
30 #include "trace.h"
31 #include "nvme.h"
32 
33 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
35 
36 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37 
38 /*
39  * These can be higher, but we need to ensure that any command doesn't
40  * require an sg allocation that needs more than a page of data.
41  */
42 #define NVME_MAX_KB_SZ	4096
43 #define NVME_MAX_SEGS	127
44 
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
47 
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
51 
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56 
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60 		"Use SGLs when average request segment size is larger or equal to "
61 		"this size. Use 0 to disable SGLs.");
62 
63 #define NVME_PCI_MIN_QUEUE_SIZE 2
64 #define NVME_PCI_MAX_QUEUE_SIZE 4095
65 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
66 static const struct kernel_param_ops io_queue_depth_ops = {
67 	.set = io_queue_depth_set,
68 	.get = param_get_uint,
69 };
70 
71 static unsigned int io_queue_depth = 1024;
72 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
73 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
74 
io_queue_count_set(const char * val,const struct kernel_param * kp)75 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
76 {
77 	unsigned int n;
78 	int ret;
79 
80 	ret = kstrtouint(val, 10, &n);
81 	if (ret != 0 || n > num_possible_cpus())
82 		return -EINVAL;
83 	return param_set_uint(val, kp);
84 }
85 
86 static const struct kernel_param_ops io_queue_count_ops = {
87 	.set = io_queue_count_set,
88 	.get = param_get_uint,
89 };
90 
91 static unsigned int write_queues;
92 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
93 MODULE_PARM_DESC(write_queues,
94 	"Number of queues to use for writes. If not set, reads and writes "
95 	"will share a queue set.");
96 
97 static unsigned int poll_queues;
98 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
99 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
100 
101 static bool noacpi;
102 module_param(noacpi, bool, 0444);
103 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
104 
105 struct nvme_dev;
106 struct nvme_queue;
107 
108 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
109 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
110 
111 /*
112  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
113  */
114 struct nvme_dev {
115 	struct nvme_queue *queues;
116 	struct blk_mq_tag_set tagset;
117 	struct blk_mq_tag_set admin_tagset;
118 	u32 __iomem *dbs;
119 	struct device *dev;
120 	struct dma_pool *prp_page_pool;
121 	struct dma_pool *prp_small_pool;
122 	unsigned online_queues;
123 	unsigned max_qid;
124 	unsigned io_queues[HCTX_MAX_TYPES];
125 	unsigned int num_vecs;
126 	u32 q_depth;
127 	int io_sqes;
128 	u32 db_stride;
129 	void __iomem *bar;
130 	unsigned long bar_mapped_size;
131 	struct work_struct remove_work;
132 	struct mutex shutdown_lock;
133 	bool subsystem;
134 	u64 cmb_size;
135 	bool cmb_use_sqes;
136 	u32 cmbsz;
137 	u32 cmbloc;
138 	struct nvme_ctrl ctrl;
139 	u32 last_ps;
140 	bool hmb;
141 
142 	mempool_t *iod_mempool;
143 
144 	/* shadow doorbell buffer support: */
145 	__le32 *dbbuf_dbs;
146 	dma_addr_t dbbuf_dbs_dma_addr;
147 	__le32 *dbbuf_eis;
148 	dma_addr_t dbbuf_eis_dma_addr;
149 
150 	/* host memory buffer support: */
151 	u64 host_mem_size;
152 	u32 nr_host_mem_descs;
153 	dma_addr_t host_mem_descs_dma;
154 	struct nvme_host_mem_buf_desc *host_mem_descs;
155 	void **host_mem_desc_bufs;
156 	unsigned int nr_allocated_queues;
157 	unsigned int nr_write_queues;
158 	unsigned int nr_poll_queues;
159 
160 	bool attrs_added;
161 };
162 
io_queue_depth_set(const char * val,const struct kernel_param * kp)163 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
164 {
165 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
166 			NVME_PCI_MAX_QUEUE_SIZE);
167 }
168 
sq_idx(unsigned int qid,u32 stride)169 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
170 {
171 	return qid * 2 * stride;
172 }
173 
cq_idx(unsigned int qid,u32 stride)174 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
175 {
176 	return (qid * 2 + 1) * stride;
177 }
178 
to_nvme_dev(struct nvme_ctrl * ctrl)179 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
180 {
181 	return container_of(ctrl, struct nvme_dev, ctrl);
182 }
183 
184 /*
185  * An NVM Express queue.  Each device has at least two (one for admin
186  * commands and one for I/O commands).
187  */
188 struct nvme_queue {
189 	struct nvme_dev *dev;
190 	spinlock_t sq_lock;
191 	void *sq_cmds;
192 	 /* only used for poll queues: */
193 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
194 	struct nvme_completion *cqes;
195 	dma_addr_t sq_dma_addr;
196 	dma_addr_t cq_dma_addr;
197 	u32 __iomem *q_db;
198 	u32 q_depth;
199 	u16 cq_vector;
200 	u16 sq_tail;
201 	u16 last_sq_tail;
202 	u16 cq_head;
203 	u16 qid;
204 	u8 cq_phase;
205 	u8 sqes;
206 	unsigned long flags;
207 #define NVMEQ_ENABLED		0
208 #define NVMEQ_SQ_CMB		1
209 #define NVMEQ_DELETE_ERROR	2
210 #define NVMEQ_POLLED		3
211 	__le32 *dbbuf_sq_db;
212 	__le32 *dbbuf_cq_db;
213 	__le32 *dbbuf_sq_ei;
214 	__le32 *dbbuf_cq_ei;
215 	struct completion delete_done;
216 };
217 
218 /*
219  * The nvme_iod describes the data in an I/O.
220  *
221  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
222  * to the actual struct scatterlist.
223  */
224 struct nvme_iod {
225 	struct nvme_request req;
226 	struct nvme_command cmd;
227 	bool use_sgl;
228 	int aborted;
229 	int npages;		/* In the PRP list. 0 means small pool in use */
230 	int nents;		/* Used in scatterlist */
231 	dma_addr_t first_dma;
232 	unsigned int dma_len;	/* length of single DMA segment mapping */
233 	dma_addr_t meta_dma;
234 	struct scatterlist *sg;
235 };
236 
nvme_dbbuf_size(struct nvme_dev * dev)237 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
238 {
239 	return dev->nr_allocated_queues * 8 * dev->db_stride;
240 }
241 
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)242 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
243 {
244 	unsigned int mem_size = nvme_dbbuf_size(dev);
245 
246 	if (dev->dbbuf_dbs)
247 		return 0;
248 
249 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
250 					    &dev->dbbuf_dbs_dma_addr,
251 					    GFP_KERNEL);
252 	if (!dev->dbbuf_dbs)
253 		return -ENOMEM;
254 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
255 					    &dev->dbbuf_eis_dma_addr,
256 					    GFP_KERNEL);
257 	if (!dev->dbbuf_eis) {
258 		dma_free_coherent(dev->dev, mem_size,
259 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
260 		dev->dbbuf_dbs = NULL;
261 		return -ENOMEM;
262 	}
263 
264 	return 0;
265 }
266 
nvme_dbbuf_dma_free(struct nvme_dev * dev)267 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
268 {
269 	unsigned int mem_size = nvme_dbbuf_size(dev);
270 
271 	if (dev->dbbuf_dbs) {
272 		dma_free_coherent(dev->dev, mem_size,
273 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
274 		dev->dbbuf_dbs = NULL;
275 	}
276 	if (dev->dbbuf_eis) {
277 		dma_free_coherent(dev->dev, mem_size,
278 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
279 		dev->dbbuf_eis = NULL;
280 	}
281 }
282 
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)283 static void nvme_dbbuf_init(struct nvme_dev *dev,
284 			    struct nvme_queue *nvmeq, int qid)
285 {
286 	if (!dev->dbbuf_dbs || !qid)
287 		return;
288 
289 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
290 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
291 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
292 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
293 }
294 
nvme_dbbuf_free(struct nvme_queue * nvmeq)295 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
296 {
297 	if (!nvmeq->qid)
298 		return;
299 
300 	nvmeq->dbbuf_sq_db = NULL;
301 	nvmeq->dbbuf_cq_db = NULL;
302 	nvmeq->dbbuf_sq_ei = NULL;
303 	nvmeq->dbbuf_cq_ei = NULL;
304 }
305 
nvme_dbbuf_set(struct nvme_dev * dev)306 static void nvme_dbbuf_set(struct nvme_dev *dev)
307 {
308 	struct nvme_command c = { };
309 	unsigned int i;
310 
311 	if (!dev->dbbuf_dbs)
312 		return;
313 
314 	c.dbbuf.opcode = nvme_admin_dbbuf;
315 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
316 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
317 
318 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
319 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
320 		/* Free memory and continue on */
321 		nvme_dbbuf_dma_free(dev);
322 
323 		for (i = 1; i <= dev->online_queues; i++)
324 			nvme_dbbuf_free(&dev->queues[i]);
325 	}
326 }
327 
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)328 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
329 {
330 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
331 }
332 
333 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)334 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
335 					      volatile __le32 *dbbuf_ei)
336 {
337 	if (dbbuf_db) {
338 		u16 old_value, event_idx;
339 
340 		/*
341 		 * Ensure that the queue is written before updating
342 		 * the doorbell in memory
343 		 */
344 		wmb();
345 
346 		old_value = le32_to_cpu(*dbbuf_db);
347 		*dbbuf_db = cpu_to_le32(value);
348 
349 		/*
350 		 * Ensure that the doorbell is updated before reading the event
351 		 * index from memory.  The controller needs to provide similar
352 		 * ordering to ensure the envent index is updated before reading
353 		 * the doorbell.
354 		 */
355 		mb();
356 
357 		event_idx = le32_to_cpu(*dbbuf_ei);
358 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
359 			return false;
360 	}
361 
362 	return true;
363 }
364 
365 /*
366  * Will slightly overestimate the number of pages needed.  This is OK
367  * as it only leads to a small amount of wasted memory for the lifetime of
368  * the I/O.
369  */
nvme_pci_npages_prp(void)370 static int nvme_pci_npages_prp(void)
371 {
372 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
373 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
374 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
375 }
376 
377 /*
378  * Calculates the number of pages needed for the SGL segments. For example a 4k
379  * page can accommodate 256 SGL descriptors.
380  */
nvme_pci_npages_sgl(void)381 static int nvme_pci_npages_sgl(void)
382 {
383 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
384 			NVME_CTRL_PAGE_SIZE);
385 }
386 
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)387 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
388 				unsigned int hctx_idx)
389 {
390 	struct nvme_dev *dev = data;
391 	struct nvme_queue *nvmeq = &dev->queues[0];
392 
393 	WARN_ON(hctx_idx != 0);
394 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
395 
396 	hctx->driver_data = nvmeq;
397 	return 0;
398 }
399 
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)400 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
401 			  unsigned int hctx_idx)
402 {
403 	struct nvme_dev *dev = data;
404 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
405 
406 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
407 	hctx->driver_data = nvmeq;
408 	return 0;
409 }
410 
nvme_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)411 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
412 		unsigned int hctx_idx, unsigned int numa_node)
413 {
414 	struct nvme_dev *dev = set->driver_data;
415 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
416 
417 	nvme_req(req)->ctrl = &dev->ctrl;
418 	nvme_req(req)->cmd = &iod->cmd;
419 	return 0;
420 }
421 
queue_irq_offset(struct nvme_dev * dev)422 static int queue_irq_offset(struct nvme_dev *dev)
423 {
424 	/* if we have more than 1 vec, admin queue offsets us by 1 */
425 	if (dev->num_vecs > 1)
426 		return 1;
427 
428 	return 0;
429 }
430 
nvme_pci_map_queues(struct blk_mq_tag_set * set)431 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
432 {
433 	struct nvme_dev *dev = set->driver_data;
434 	int i, qoff, offset;
435 
436 	offset = queue_irq_offset(dev);
437 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
438 		struct blk_mq_queue_map *map = &set->map[i];
439 
440 		map->nr_queues = dev->io_queues[i];
441 		if (!map->nr_queues) {
442 			BUG_ON(i == HCTX_TYPE_DEFAULT);
443 			continue;
444 		}
445 
446 		/*
447 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
448 		 * affinity), so use the regular blk-mq cpu mapping
449 		 */
450 		map->queue_offset = qoff;
451 		if (i != HCTX_TYPE_POLL && offset)
452 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
453 		else
454 			blk_mq_map_queues(map);
455 		qoff += map->nr_queues;
456 		offset += map->nr_queues;
457 	}
458 
459 	return 0;
460 }
461 
462 /*
463  * Write sq tail if we are asked to, or if the next command would wrap.
464  */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)465 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
466 {
467 	if (!write_sq) {
468 		u16 next_tail = nvmeq->sq_tail + 1;
469 
470 		if (next_tail == nvmeq->q_depth)
471 			next_tail = 0;
472 		if (next_tail != nvmeq->last_sq_tail)
473 			return;
474 	}
475 
476 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
477 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
478 		writel(nvmeq->sq_tail, nvmeq->q_db);
479 	nvmeq->last_sq_tail = nvmeq->sq_tail;
480 }
481 
482 /**
483  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
484  * @nvmeq: The queue to use
485  * @cmd: The command to send
486  * @write_sq: whether to write to the SQ doorbell
487  */
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd,bool write_sq)488 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
489 			    bool write_sq)
490 {
491 	spin_lock(&nvmeq->sq_lock);
492 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
493 	       cmd, sizeof(*cmd));
494 	if (++nvmeq->sq_tail == nvmeq->q_depth)
495 		nvmeq->sq_tail = 0;
496 	nvme_write_sq_db(nvmeq, write_sq);
497 	spin_unlock(&nvmeq->sq_lock);
498 }
499 
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)500 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
501 {
502 	struct nvme_queue *nvmeq = hctx->driver_data;
503 
504 	spin_lock(&nvmeq->sq_lock);
505 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
506 		nvme_write_sq_db(nvmeq, true);
507 	spin_unlock(&nvmeq->sq_lock);
508 }
509 
nvme_pci_iod_list(struct request * req)510 static void **nvme_pci_iod_list(struct request *req)
511 {
512 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
513 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
514 }
515 
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)516 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
517 {
518 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
519 	int nseg = blk_rq_nr_phys_segments(req);
520 	unsigned int avg_seg_size;
521 
522 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
523 
524 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
525 		return false;
526 	if (!nvmeq->qid)
527 		return false;
528 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
529 		return false;
530 	return true;
531 }
532 
nvme_free_prps(struct nvme_dev * dev,struct request * req)533 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
534 {
535 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
536 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
537 	dma_addr_t dma_addr = iod->first_dma;
538 	int i;
539 
540 	for (i = 0; i < iod->npages; i++) {
541 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
542 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
543 
544 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
545 		dma_addr = next_dma_addr;
546 	}
547 }
548 
nvme_free_sgls(struct nvme_dev * dev,struct request * req)549 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
550 {
551 	const int last_sg = SGES_PER_PAGE - 1;
552 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
553 	dma_addr_t dma_addr = iod->first_dma;
554 	int i;
555 
556 	for (i = 0; i < iod->npages; i++) {
557 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
558 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
559 
560 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
561 		dma_addr = next_dma_addr;
562 	}
563 }
564 
nvme_unmap_sg(struct nvme_dev * dev,struct request * req)565 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
566 {
567 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
568 
569 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
570 		pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
571 				    rq_dma_dir(req));
572 	else
573 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
574 }
575 
nvme_unmap_data(struct nvme_dev * dev,struct request * req)576 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
577 {
578 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
579 
580 	if (iod->dma_len) {
581 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
582 			       rq_dma_dir(req));
583 		return;
584 	}
585 
586 	WARN_ON_ONCE(!iod->nents);
587 
588 	nvme_unmap_sg(dev, req);
589 	if (iod->npages == 0)
590 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
591 			      iod->first_dma);
592 	else if (iod->use_sgl)
593 		nvme_free_sgls(dev, req);
594 	else
595 		nvme_free_prps(dev, req);
596 	mempool_free(iod->sg, dev->iod_mempool);
597 }
598 
nvme_print_sgl(struct scatterlist * sgl,int nents)599 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
600 {
601 	int i;
602 	struct scatterlist *sg;
603 
604 	for_each_sg(sgl, sg, nents, i) {
605 		dma_addr_t phys = sg_phys(sg);
606 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
607 			"dma_address:%pad dma_length:%d\n",
608 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
609 			sg_dma_len(sg));
610 	}
611 }
612 
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)613 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
614 		struct request *req, struct nvme_rw_command *cmnd)
615 {
616 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
617 	struct dma_pool *pool;
618 	int length = blk_rq_payload_bytes(req);
619 	struct scatterlist *sg = iod->sg;
620 	int dma_len = sg_dma_len(sg);
621 	u64 dma_addr = sg_dma_address(sg);
622 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
623 	__le64 *prp_list;
624 	void **list = nvme_pci_iod_list(req);
625 	dma_addr_t prp_dma;
626 	int nprps, i;
627 
628 	length -= (NVME_CTRL_PAGE_SIZE - offset);
629 	if (length <= 0) {
630 		iod->first_dma = 0;
631 		goto done;
632 	}
633 
634 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
635 	if (dma_len) {
636 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
637 	} else {
638 		sg = sg_next(sg);
639 		dma_addr = sg_dma_address(sg);
640 		dma_len = sg_dma_len(sg);
641 	}
642 
643 	if (length <= NVME_CTRL_PAGE_SIZE) {
644 		iod->first_dma = dma_addr;
645 		goto done;
646 	}
647 
648 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
649 	if (nprps <= (256 / 8)) {
650 		pool = dev->prp_small_pool;
651 		iod->npages = 0;
652 	} else {
653 		pool = dev->prp_page_pool;
654 		iod->npages = 1;
655 	}
656 
657 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
658 	if (!prp_list) {
659 		iod->first_dma = dma_addr;
660 		iod->npages = -1;
661 		return BLK_STS_RESOURCE;
662 	}
663 	list[0] = prp_list;
664 	iod->first_dma = prp_dma;
665 	i = 0;
666 	for (;;) {
667 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
668 			__le64 *old_prp_list = prp_list;
669 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
670 			if (!prp_list)
671 				goto free_prps;
672 			list[iod->npages++] = prp_list;
673 			prp_list[0] = old_prp_list[i - 1];
674 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
675 			i = 1;
676 		}
677 		prp_list[i++] = cpu_to_le64(dma_addr);
678 		dma_len -= NVME_CTRL_PAGE_SIZE;
679 		dma_addr += NVME_CTRL_PAGE_SIZE;
680 		length -= NVME_CTRL_PAGE_SIZE;
681 		if (length <= 0)
682 			break;
683 		if (dma_len > 0)
684 			continue;
685 		if (unlikely(dma_len < 0))
686 			goto bad_sgl;
687 		sg = sg_next(sg);
688 		dma_addr = sg_dma_address(sg);
689 		dma_len = sg_dma_len(sg);
690 	}
691 done:
692 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
693 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
694 	return BLK_STS_OK;
695 free_prps:
696 	nvme_free_prps(dev, req);
697 	return BLK_STS_RESOURCE;
698 bad_sgl:
699 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
700 			"Invalid SGL for payload:%d nents:%d\n",
701 			blk_rq_payload_bytes(req), iod->nents);
702 	return BLK_STS_IOERR;
703 }
704 
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)705 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
706 		struct scatterlist *sg)
707 {
708 	sge->addr = cpu_to_le64(sg_dma_address(sg));
709 	sge->length = cpu_to_le32(sg_dma_len(sg));
710 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
711 }
712 
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)713 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
714 		dma_addr_t dma_addr, int entries)
715 {
716 	sge->addr = cpu_to_le64(dma_addr);
717 	if (entries < SGES_PER_PAGE) {
718 		sge->length = cpu_to_le32(entries * sizeof(*sge));
719 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
720 	} else {
721 		sge->length = cpu_to_le32(NVME_CTRL_PAGE_SIZE);
722 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
723 	}
724 }
725 
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd,int entries)726 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
727 		struct request *req, struct nvme_rw_command *cmd, int entries)
728 {
729 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
730 	struct dma_pool *pool;
731 	struct nvme_sgl_desc *sg_list;
732 	struct scatterlist *sg = iod->sg;
733 	dma_addr_t sgl_dma;
734 	int i = 0;
735 
736 	/* setting the transfer type as SGL */
737 	cmd->flags = NVME_CMD_SGL_METABUF;
738 
739 	if (entries == 1) {
740 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
741 		return BLK_STS_OK;
742 	}
743 
744 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
745 		pool = dev->prp_small_pool;
746 		iod->npages = 0;
747 	} else {
748 		pool = dev->prp_page_pool;
749 		iod->npages = 1;
750 	}
751 
752 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
753 	if (!sg_list) {
754 		iod->npages = -1;
755 		return BLK_STS_RESOURCE;
756 	}
757 
758 	nvme_pci_iod_list(req)[0] = sg_list;
759 	iod->first_dma = sgl_dma;
760 
761 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
762 
763 	do {
764 		if (i == SGES_PER_PAGE) {
765 			struct nvme_sgl_desc *old_sg_desc = sg_list;
766 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
767 
768 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
769 			if (!sg_list)
770 				goto free_sgls;
771 
772 			i = 0;
773 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
774 			sg_list[i++] = *link;
775 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
776 		}
777 
778 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
779 		sg = sg_next(sg);
780 	} while (--entries > 0);
781 
782 	return BLK_STS_OK;
783 free_sgls:
784 	nvme_free_sgls(dev, req);
785 	return BLK_STS_RESOURCE;
786 }
787 
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)788 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
789 		struct request *req, struct nvme_rw_command *cmnd,
790 		struct bio_vec *bv)
791 {
792 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
793 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
794 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
795 
796 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
797 	if (dma_mapping_error(dev->dev, iod->first_dma))
798 		return BLK_STS_RESOURCE;
799 	iod->dma_len = bv->bv_len;
800 
801 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
802 	if (bv->bv_len > first_prp_len)
803 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
804 	else
805 		cmnd->dptr.prp2 = 0;
806 	return BLK_STS_OK;
807 }
808 
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)809 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
810 		struct request *req, struct nvme_rw_command *cmnd,
811 		struct bio_vec *bv)
812 {
813 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
814 
815 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
816 	if (dma_mapping_error(dev->dev, iod->first_dma))
817 		return BLK_STS_RESOURCE;
818 	iod->dma_len = bv->bv_len;
819 
820 	cmnd->flags = NVME_CMD_SGL_METABUF;
821 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
822 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
823 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
824 	return BLK_STS_OK;
825 }
826 
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)827 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
828 		struct nvme_command *cmnd)
829 {
830 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
831 	blk_status_t ret = BLK_STS_RESOURCE;
832 	int nr_mapped;
833 
834 	if (blk_rq_nr_phys_segments(req) == 1) {
835 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
836 		struct bio_vec bv = req_bvec(req);
837 
838 		if (!is_pci_p2pdma_page(bv.bv_page)) {
839 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
840 				return nvme_setup_prp_simple(dev, req,
841 							     &cmnd->rw, &bv);
842 
843 			if (nvmeq->qid && sgl_threshold &&
844 			    nvme_ctrl_sgl_supported(&dev->ctrl))
845 				return nvme_setup_sgl_simple(dev, req,
846 							     &cmnd->rw, &bv);
847 		}
848 	}
849 
850 	iod->dma_len = 0;
851 	iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
852 	if (!iod->sg)
853 		return BLK_STS_RESOURCE;
854 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
855 	iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
856 	if (!iod->nents)
857 		goto out_free_sg;
858 
859 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
860 		nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
861 				iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
862 	else
863 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
864 					     rq_dma_dir(req), DMA_ATTR_NO_WARN);
865 	if (!nr_mapped)
866 		goto out_free_sg;
867 
868 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
869 	if (iod->use_sgl)
870 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
871 	else
872 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
873 	if (ret != BLK_STS_OK)
874 		goto out_unmap_sg;
875 	return BLK_STS_OK;
876 
877 out_unmap_sg:
878 	nvme_unmap_sg(dev, req);
879 out_free_sg:
880 	mempool_free(iod->sg, dev->iod_mempool);
881 	return ret;
882 }
883 
nvme_map_metadata(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)884 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
885 		struct nvme_command *cmnd)
886 {
887 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
888 
889 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
890 			rq_dma_dir(req), 0);
891 	if (dma_mapping_error(dev->dev, iod->meta_dma))
892 		return BLK_STS_IOERR;
893 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
894 	return BLK_STS_OK;
895 }
896 
897 /*
898  * NOTE: ns is NULL when called on the admin queue.
899  */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)900 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
901 			 const struct blk_mq_queue_data *bd)
902 {
903 	struct nvme_ns *ns = hctx->queue->queuedata;
904 	struct nvme_queue *nvmeq = hctx->driver_data;
905 	struct nvme_dev *dev = nvmeq->dev;
906 	struct request *req = bd->rq;
907 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
908 	struct nvme_command *cmnd = &iod->cmd;
909 	blk_status_t ret;
910 
911 	iod->aborted = 0;
912 	iod->npages = -1;
913 	iod->nents = 0;
914 
915 	/*
916 	 * We should not need to do this, but we're still using this to
917 	 * ensure we can drain requests on a dying queue.
918 	 */
919 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
920 		return BLK_STS_IOERR;
921 
922 	if (!nvme_check_ready(&dev->ctrl, req, true))
923 		return nvme_fail_nonready_command(&dev->ctrl, req);
924 
925 	ret = nvme_setup_cmd(ns, req);
926 	if (ret)
927 		return ret;
928 
929 	if (blk_rq_nr_phys_segments(req)) {
930 		ret = nvme_map_data(dev, req, cmnd);
931 		if (ret)
932 			goto out_free_cmd;
933 	}
934 
935 	if (blk_integrity_rq(req)) {
936 		ret = nvme_map_metadata(dev, req, cmnd);
937 		if (ret)
938 			goto out_unmap_data;
939 	}
940 
941 	blk_mq_start_request(req);
942 	nvme_submit_cmd(nvmeq, cmnd, bd->last);
943 	return BLK_STS_OK;
944 out_unmap_data:
945 	nvme_unmap_data(dev, req);
946 out_free_cmd:
947 	nvme_cleanup_cmd(req);
948 	return ret;
949 }
950 
nvme_pci_complete_rq(struct request * req)951 static void nvme_pci_complete_rq(struct request *req)
952 {
953 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
954 	struct nvme_dev *dev = nvmeq->dev;
955 
956 	if (blk_integrity_rq(req)) {
957 	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
958 
959 		dma_unmap_page(dev->dev, iod->meta_dma,
960 			       rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
961 	}
962 
963 	if (blk_rq_nr_phys_segments(req))
964 		nvme_unmap_data(dev, req);
965 	nvme_complete_rq(req);
966 }
967 
968 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)969 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
970 {
971 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
972 
973 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
974 }
975 
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)976 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
977 {
978 	u16 head = nvmeq->cq_head;
979 
980 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
981 					      nvmeq->dbbuf_cq_ei))
982 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
983 }
984 
nvme_queue_tagset(struct nvme_queue * nvmeq)985 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
986 {
987 	if (!nvmeq->qid)
988 		return nvmeq->dev->admin_tagset.tags[0];
989 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
990 }
991 
nvme_handle_cqe(struct nvme_queue * nvmeq,u16 idx)992 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
993 {
994 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
995 	__u16 command_id = READ_ONCE(cqe->command_id);
996 	struct request *req;
997 
998 	/*
999 	 * AEN requests are special as they don't time out and can
1000 	 * survive any kind of queue freeze and often don't respond to
1001 	 * aborts.  We don't even bother to allocate a struct request
1002 	 * for them but rather special case them here.
1003 	 */
1004 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1005 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1006 				cqe->status, &cqe->result);
1007 		return;
1008 	}
1009 
1010 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1011 	if (unlikely(!req)) {
1012 		dev_warn(nvmeq->dev->ctrl.device,
1013 			"invalid id %d completed on queue %d\n",
1014 			command_id, le16_to_cpu(cqe->sq_id));
1015 		return;
1016 	}
1017 
1018 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1019 	if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1020 		nvme_pci_complete_rq(req);
1021 }
1022 
nvme_update_cq_head(struct nvme_queue * nvmeq)1023 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1024 {
1025 	u32 tmp = nvmeq->cq_head + 1;
1026 
1027 	if (tmp == nvmeq->q_depth) {
1028 		nvmeq->cq_head = 0;
1029 		nvmeq->cq_phase ^= 1;
1030 	} else {
1031 		nvmeq->cq_head = tmp;
1032 	}
1033 }
1034 
nvme_process_cq(struct nvme_queue * nvmeq)1035 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1036 {
1037 	int found = 0;
1038 
1039 	while (nvme_cqe_pending(nvmeq)) {
1040 		found++;
1041 		/*
1042 		 * load-load control dependency between phase and the rest of
1043 		 * the cqe requires a full read memory barrier
1044 		 */
1045 		dma_rmb();
1046 		nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1047 		nvme_update_cq_head(nvmeq);
1048 	}
1049 
1050 	if (found)
1051 		nvme_ring_cq_doorbell(nvmeq);
1052 	return found;
1053 }
1054 
nvme_irq(int irq,void * data)1055 static irqreturn_t nvme_irq(int irq, void *data)
1056 {
1057 	struct nvme_queue *nvmeq = data;
1058 
1059 	if (nvme_process_cq(nvmeq))
1060 		return IRQ_HANDLED;
1061 	return IRQ_NONE;
1062 }
1063 
nvme_irq_check(int irq,void * data)1064 static irqreturn_t nvme_irq_check(int irq, void *data)
1065 {
1066 	struct nvme_queue *nvmeq = data;
1067 
1068 	if (nvme_cqe_pending(nvmeq))
1069 		return IRQ_WAKE_THREAD;
1070 	return IRQ_NONE;
1071 }
1072 
1073 /*
1074  * Poll for completions for any interrupt driven queue
1075  * Can be called from any context.
1076  */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1077 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1078 {
1079 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1080 
1081 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1082 
1083 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1084 	nvme_process_cq(nvmeq);
1085 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1086 }
1087 
nvme_poll(struct blk_mq_hw_ctx * hctx)1088 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1089 {
1090 	struct nvme_queue *nvmeq = hctx->driver_data;
1091 	bool found;
1092 
1093 	if (!nvme_cqe_pending(nvmeq))
1094 		return 0;
1095 
1096 	spin_lock(&nvmeq->cq_poll_lock);
1097 	found = nvme_process_cq(nvmeq);
1098 	spin_unlock(&nvmeq->cq_poll_lock);
1099 
1100 	return found;
1101 }
1102 
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1103 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1104 {
1105 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1106 	struct nvme_queue *nvmeq = &dev->queues[0];
1107 	struct nvme_command c = { };
1108 
1109 	c.common.opcode = nvme_admin_async_event;
1110 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1111 	nvme_submit_cmd(nvmeq, &c, true);
1112 }
1113 
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1114 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1115 {
1116 	struct nvme_command c = { };
1117 
1118 	c.delete_queue.opcode = opcode;
1119 	c.delete_queue.qid = cpu_to_le16(id);
1120 
1121 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1122 }
1123 
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1124 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1125 		struct nvme_queue *nvmeq, s16 vector)
1126 {
1127 	struct nvme_command c = { };
1128 	int flags = NVME_QUEUE_PHYS_CONTIG;
1129 
1130 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1131 		flags |= NVME_CQ_IRQ_ENABLED;
1132 
1133 	/*
1134 	 * Note: we (ab)use the fact that the prp fields survive if no data
1135 	 * is attached to the request.
1136 	 */
1137 	c.create_cq.opcode = nvme_admin_create_cq;
1138 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1139 	c.create_cq.cqid = cpu_to_le16(qid);
1140 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1141 	c.create_cq.cq_flags = cpu_to_le16(flags);
1142 	c.create_cq.irq_vector = cpu_to_le16(vector);
1143 
1144 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1145 }
1146 
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1147 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1148 						struct nvme_queue *nvmeq)
1149 {
1150 	struct nvme_ctrl *ctrl = &dev->ctrl;
1151 	struct nvme_command c = { };
1152 	int flags = NVME_QUEUE_PHYS_CONTIG;
1153 
1154 	/*
1155 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1156 	 * set. Since URGENT priority is zeroes, it makes all queues
1157 	 * URGENT.
1158 	 */
1159 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1160 		flags |= NVME_SQ_PRIO_MEDIUM;
1161 
1162 	/*
1163 	 * Note: we (ab)use the fact that the prp fields survive if no data
1164 	 * is attached to the request.
1165 	 */
1166 	c.create_sq.opcode = nvme_admin_create_sq;
1167 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1168 	c.create_sq.sqid = cpu_to_le16(qid);
1169 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1170 	c.create_sq.sq_flags = cpu_to_le16(flags);
1171 	c.create_sq.cqid = cpu_to_le16(qid);
1172 
1173 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1174 }
1175 
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1176 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1177 {
1178 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1179 }
1180 
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1181 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1182 {
1183 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1184 }
1185 
abort_endio(struct request * req,blk_status_t error)1186 static void abort_endio(struct request *req, blk_status_t error)
1187 {
1188 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1189 
1190 	dev_warn(nvmeq->dev->ctrl.device,
1191 		 "Abort status: 0x%x", nvme_req(req)->status);
1192 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1193 	blk_mq_free_request(req);
1194 }
1195 
nvme_should_reset(struct nvme_dev * dev,u32 csts)1196 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1197 {
1198 	/* If true, indicates loss of adapter communication, possibly by a
1199 	 * NVMe Subsystem reset.
1200 	 */
1201 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1202 
1203 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1204 	switch (dev->ctrl.state) {
1205 	case NVME_CTRL_RESETTING:
1206 	case NVME_CTRL_CONNECTING:
1207 		return false;
1208 	default:
1209 		break;
1210 	}
1211 
1212 	/* We shouldn't reset unless the controller is on fatal error state
1213 	 * _or_ if we lost the communication with it.
1214 	 */
1215 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1216 		return false;
1217 
1218 	return true;
1219 }
1220 
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1221 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1222 {
1223 	/* Read a config register to help see what died. */
1224 	u16 pci_status;
1225 	int result;
1226 
1227 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1228 				      &pci_status);
1229 	if (result == PCIBIOS_SUCCESSFUL)
1230 		dev_warn(dev->ctrl.device,
1231 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1232 			 csts, pci_status);
1233 	else
1234 		dev_warn(dev->ctrl.device,
1235 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1236 			 csts, result);
1237 }
1238 
nvme_timeout(struct request * req,bool reserved)1239 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1240 {
1241 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1242 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1243 	struct nvme_dev *dev = nvmeq->dev;
1244 	struct request *abort_req;
1245 	struct nvme_command cmd = { };
1246 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1247 
1248 	/* If PCI error recovery process is happening, we cannot reset or
1249 	 * the recovery mechanism will surely fail.
1250 	 */
1251 	mb();
1252 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1253 		return BLK_EH_RESET_TIMER;
1254 
1255 	/*
1256 	 * Reset immediately if the controller is failed
1257 	 */
1258 	if (nvme_should_reset(dev, csts)) {
1259 		nvme_warn_reset(dev, csts);
1260 		nvme_dev_disable(dev, false);
1261 		nvme_reset_ctrl(&dev->ctrl);
1262 		return BLK_EH_DONE;
1263 	}
1264 
1265 	/*
1266 	 * Did we miss an interrupt?
1267 	 */
1268 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1269 		nvme_poll(req->mq_hctx);
1270 	else
1271 		nvme_poll_irqdisable(nvmeq);
1272 
1273 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1274 		dev_warn(dev->ctrl.device,
1275 			 "I/O %d QID %d timeout, completion polled\n",
1276 			 req->tag, nvmeq->qid);
1277 		return BLK_EH_DONE;
1278 	}
1279 
1280 	/*
1281 	 * Shutdown immediately if controller times out while starting. The
1282 	 * reset work will see the pci device disabled when it gets the forced
1283 	 * cancellation error. All outstanding requests are completed on
1284 	 * shutdown, so we return BLK_EH_DONE.
1285 	 */
1286 	switch (dev->ctrl.state) {
1287 	case NVME_CTRL_CONNECTING:
1288 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1289 		fallthrough;
1290 	case NVME_CTRL_DELETING:
1291 		dev_warn_ratelimited(dev->ctrl.device,
1292 			 "I/O %d QID %d timeout, disable controller\n",
1293 			 req->tag, nvmeq->qid);
1294 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1295 		nvme_dev_disable(dev, true);
1296 		return BLK_EH_DONE;
1297 	case NVME_CTRL_RESETTING:
1298 		return BLK_EH_RESET_TIMER;
1299 	default:
1300 		break;
1301 	}
1302 
1303 	/*
1304 	 * Shutdown the controller immediately and schedule a reset if the
1305 	 * command was already aborted once before and still hasn't been
1306 	 * returned to the driver, or if this is the admin queue.
1307 	 */
1308 	if (!nvmeq->qid || iod->aborted) {
1309 		dev_warn(dev->ctrl.device,
1310 			 "I/O %d QID %d timeout, reset controller\n",
1311 			 req->tag, nvmeq->qid);
1312 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1313 		nvme_dev_disable(dev, false);
1314 		nvme_reset_ctrl(&dev->ctrl);
1315 
1316 		return BLK_EH_DONE;
1317 	}
1318 
1319 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1320 		atomic_inc(&dev->ctrl.abort_limit);
1321 		return BLK_EH_RESET_TIMER;
1322 	}
1323 	iod->aborted = 1;
1324 
1325 	cmd.abort.opcode = nvme_admin_abort_cmd;
1326 	cmd.abort.cid = nvme_cid(req);
1327 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1328 
1329 	dev_warn(nvmeq->dev->ctrl.device,
1330 		"I/O %d QID %d timeout, aborting\n",
1331 		 req->tag, nvmeq->qid);
1332 
1333 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1334 			BLK_MQ_REQ_NOWAIT);
1335 	if (IS_ERR(abort_req)) {
1336 		atomic_inc(&dev->ctrl.abort_limit);
1337 		return BLK_EH_RESET_TIMER;
1338 	}
1339 
1340 	abort_req->end_io_data = NULL;
1341 	blk_execute_rq_nowait(NULL, abort_req, 0, abort_endio);
1342 
1343 	/*
1344 	 * The aborted req will be completed on receiving the abort req.
1345 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1346 	 * as the device then is in a faulty state.
1347 	 */
1348 	return BLK_EH_RESET_TIMER;
1349 }
1350 
nvme_free_queue(struct nvme_queue * nvmeq)1351 static void nvme_free_queue(struct nvme_queue *nvmeq)
1352 {
1353 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1354 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1355 	if (!nvmeq->sq_cmds)
1356 		return;
1357 
1358 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1359 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1360 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1361 	} else {
1362 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1363 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1364 	}
1365 }
1366 
nvme_free_queues(struct nvme_dev * dev,int lowest)1367 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1368 {
1369 	int i;
1370 
1371 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1372 		dev->ctrl.queue_count--;
1373 		nvme_free_queue(&dev->queues[i]);
1374 	}
1375 }
1376 
1377 /**
1378  * nvme_suspend_queue - put queue into suspended state
1379  * @nvmeq: queue to suspend
1380  */
nvme_suspend_queue(struct nvme_queue * nvmeq)1381 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1382 {
1383 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1384 		return 1;
1385 
1386 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1387 	mb();
1388 
1389 	nvmeq->dev->online_queues--;
1390 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1391 		blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1392 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1393 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1394 	return 0;
1395 }
1396 
nvme_suspend_io_queues(struct nvme_dev * dev)1397 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1398 {
1399 	int i;
1400 
1401 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1402 		nvme_suspend_queue(&dev->queues[i]);
1403 }
1404 
nvme_disable_admin_queue(struct nvme_dev * dev,bool shutdown)1405 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1406 {
1407 	struct nvme_queue *nvmeq = &dev->queues[0];
1408 
1409 	if (shutdown)
1410 		nvme_shutdown_ctrl(&dev->ctrl);
1411 	else
1412 		nvme_disable_ctrl(&dev->ctrl);
1413 
1414 	nvme_poll_irqdisable(nvmeq);
1415 }
1416 
1417 /*
1418  * Called only on a device that has been disabled and after all other threads
1419  * that can check this device's completion queues have synced, except
1420  * nvme_poll(). This is the last chance for the driver to see a natural
1421  * completion before nvme_cancel_request() terminates all incomplete requests.
1422  */
nvme_reap_pending_cqes(struct nvme_dev * dev)1423 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1424 {
1425 	int i;
1426 
1427 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1428 		spin_lock(&dev->queues[i].cq_poll_lock);
1429 		nvme_process_cq(&dev->queues[i]);
1430 		spin_unlock(&dev->queues[i].cq_poll_lock);
1431 	}
1432 }
1433 
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1434 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1435 				int entry_size)
1436 {
1437 	int q_depth = dev->q_depth;
1438 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1439 					  NVME_CTRL_PAGE_SIZE);
1440 
1441 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1442 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1443 
1444 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1445 		q_depth = div_u64(mem_per_q, entry_size);
1446 
1447 		/*
1448 		 * Ensure the reduced q_depth is above some threshold where it
1449 		 * would be better to map queues in system memory with the
1450 		 * original depth
1451 		 */
1452 		if (q_depth < 64)
1453 			return -ENOMEM;
1454 	}
1455 
1456 	return q_depth;
1457 }
1458 
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1459 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1460 				int qid)
1461 {
1462 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1463 
1464 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1465 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1466 		if (nvmeq->sq_cmds) {
1467 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1468 							nvmeq->sq_cmds);
1469 			if (nvmeq->sq_dma_addr) {
1470 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1471 				return 0;
1472 			}
1473 
1474 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1475 		}
1476 	}
1477 
1478 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1479 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1480 	if (!nvmeq->sq_cmds)
1481 		return -ENOMEM;
1482 	return 0;
1483 }
1484 
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1485 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1486 {
1487 	struct nvme_queue *nvmeq = &dev->queues[qid];
1488 
1489 	if (dev->ctrl.queue_count > qid)
1490 		return 0;
1491 
1492 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1493 	nvmeq->q_depth = depth;
1494 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1495 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1496 	if (!nvmeq->cqes)
1497 		goto free_nvmeq;
1498 
1499 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1500 		goto free_cqdma;
1501 
1502 	nvmeq->dev = dev;
1503 	spin_lock_init(&nvmeq->sq_lock);
1504 	spin_lock_init(&nvmeq->cq_poll_lock);
1505 	nvmeq->cq_head = 0;
1506 	nvmeq->cq_phase = 1;
1507 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1508 	nvmeq->qid = qid;
1509 	dev->ctrl.queue_count++;
1510 
1511 	return 0;
1512 
1513  free_cqdma:
1514 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1515 			  nvmeq->cq_dma_addr);
1516  free_nvmeq:
1517 	return -ENOMEM;
1518 }
1519 
queue_request_irq(struct nvme_queue * nvmeq)1520 static int queue_request_irq(struct nvme_queue *nvmeq)
1521 {
1522 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1523 	int nr = nvmeq->dev->ctrl.instance;
1524 
1525 	if (use_threaded_interrupts) {
1526 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1527 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1528 	} else {
1529 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1530 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1531 	}
1532 }
1533 
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1534 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1535 {
1536 	struct nvme_dev *dev = nvmeq->dev;
1537 
1538 	nvmeq->sq_tail = 0;
1539 	nvmeq->last_sq_tail = 0;
1540 	nvmeq->cq_head = 0;
1541 	nvmeq->cq_phase = 1;
1542 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1543 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1544 	nvme_dbbuf_init(dev, nvmeq, qid);
1545 	dev->online_queues++;
1546 	wmb(); /* ensure the first interrupt sees the initialization */
1547 }
1548 
1549 /*
1550  * Try getting shutdown_lock while setting up IO queues.
1551  */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)1552 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1553 {
1554 	/*
1555 	 * Give up if the lock is being held by nvme_dev_disable.
1556 	 */
1557 	if (!mutex_trylock(&dev->shutdown_lock))
1558 		return -ENODEV;
1559 
1560 	/*
1561 	 * Controller is in wrong state, fail early.
1562 	 */
1563 	if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1564 		mutex_unlock(&dev->shutdown_lock);
1565 		return -ENODEV;
1566 	}
1567 
1568 	return 0;
1569 }
1570 
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1571 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1572 {
1573 	struct nvme_dev *dev = nvmeq->dev;
1574 	int result;
1575 	u16 vector = 0;
1576 
1577 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1578 
1579 	/*
1580 	 * A queue's vector matches the queue identifier unless the controller
1581 	 * has only one vector available.
1582 	 */
1583 	if (!polled)
1584 		vector = dev->num_vecs == 1 ? 0 : qid;
1585 	else
1586 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1587 
1588 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1589 	if (result)
1590 		return result;
1591 
1592 	result = adapter_alloc_sq(dev, qid, nvmeq);
1593 	if (result < 0)
1594 		return result;
1595 	if (result)
1596 		goto release_cq;
1597 
1598 	nvmeq->cq_vector = vector;
1599 
1600 	result = nvme_setup_io_queues_trylock(dev);
1601 	if (result)
1602 		return result;
1603 	nvme_init_queue(nvmeq, qid);
1604 	if (!polled) {
1605 		result = queue_request_irq(nvmeq);
1606 		if (result < 0)
1607 			goto release_sq;
1608 	}
1609 
1610 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1611 	mutex_unlock(&dev->shutdown_lock);
1612 	return result;
1613 
1614 release_sq:
1615 	dev->online_queues--;
1616 	mutex_unlock(&dev->shutdown_lock);
1617 	adapter_delete_sq(dev, qid);
1618 release_cq:
1619 	adapter_delete_cq(dev, qid);
1620 	return result;
1621 }
1622 
1623 static const struct blk_mq_ops nvme_mq_admin_ops = {
1624 	.queue_rq	= nvme_queue_rq,
1625 	.complete	= nvme_pci_complete_rq,
1626 	.init_hctx	= nvme_admin_init_hctx,
1627 	.init_request	= nvme_init_request,
1628 	.timeout	= nvme_timeout,
1629 };
1630 
1631 static const struct blk_mq_ops nvme_mq_ops = {
1632 	.queue_rq	= nvme_queue_rq,
1633 	.complete	= nvme_pci_complete_rq,
1634 	.commit_rqs	= nvme_commit_rqs,
1635 	.init_hctx	= nvme_init_hctx,
1636 	.init_request	= nvme_init_request,
1637 	.map_queues	= nvme_pci_map_queues,
1638 	.timeout	= nvme_timeout,
1639 	.poll		= nvme_poll,
1640 };
1641 
nvme_dev_remove_admin(struct nvme_dev * dev)1642 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1643 {
1644 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1645 		/*
1646 		 * If the controller was reset during removal, it's possible
1647 		 * user requests may be waiting on a stopped queue. Start the
1648 		 * queue to flush these to completion.
1649 		 */
1650 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1651 		blk_cleanup_queue(dev->ctrl.admin_q);
1652 		blk_mq_free_tag_set(&dev->admin_tagset);
1653 	}
1654 }
1655 
nvme_alloc_admin_tags(struct nvme_dev * dev)1656 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1657 {
1658 	if (!dev->ctrl.admin_q) {
1659 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1660 		dev->admin_tagset.nr_hw_queues = 1;
1661 
1662 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1663 		dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
1664 		dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1665 		dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1666 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1667 		dev->admin_tagset.driver_data = dev;
1668 
1669 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1670 			return -ENOMEM;
1671 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1672 
1673 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1674 		if (IS_ERR(dev->ctrl.admin_q)) {
1675 			blk_mq_free_tag_set(&dev->admin_tagset);
1676 			dev->ctrl.admin_q = NULL;
1677 			return -ENOMEM;
1678 		}
1679 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1680 			nvme_dev_remove_admin(dev);
1681 			dev->ctrl.admin_q = NULL;
1682 			return -ENODEV;
1683 		}
1684 	} else
1685 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1686 
1687 	return 0;
1688 }
1689 
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1690 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1691 {
1692 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1693 }
1694 
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1695 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1696 {
1697 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1698 
1699 	if (size <= dev->bar_mapped_size)
1700 		return 0;
1701 	if (size > pci_resource_len(pdev, 0))
1702 		return -ENOMEM;
1703 	if (dev->bar)
1704 		iounmap(dev->bar);
1705 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1706 	if (!dev->bar) {
1707 		dev->bar_mapped_size = 0;
1708 		return -ENOMEM;
1709 	}
1710 	dev->bar_mapped_size = size;
1711 	dev->dbs = dev->bar + NVME_REG_DBS;
1712 
1713 	return 0;
1714 }
1715 
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1716 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1717 {
1718 	int result;
1719 	u32 aqa;
1720 	struct nvme_queue *nvmeq;
1721 
1722 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1723 	if (result < 0)
1724 		return result;
1725 
1726 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1727 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1728 
1729 	if (dev->subsystem &&
1730 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1731 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1732 
1733 	result = nvme_disable_ctrl(&dev->ctrl);
1734 	if (result < 0)
1735 		return result;
1736 
1737 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1738 	if (result)
1739 		return result;
1740 
1741 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1742 
1743 	nvmeq = &dev->queues[0];
1744 	aqa = nvmeq->q_depth - 1;
1745 	aqa |= aqa << 16;
1746 
1747 	writel(aqa, dev->bar + NVME_REG_AQA);
1748 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1749 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1750 
1751 	result = nvme_enable_ctrl(&dev->ctrl);
1752 	if (result)
1753 		return result;
1754 
1755 	nvmeq->cq_vector = 0;
1756 	nvme_init_queue(nvmeq, 0);
1757 	result = queue_request_irq(nvmeq);
1758 	if (result) {
1759 		dev->online_queues--;
1760 		return result;
1761 	}
1762 
1763 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1764 	return result;
1765 }
1766 
nvme_create_io_queues(struct nvme_dev * dev)1767 static int nvme_create_io_queues(struct nvme_dev *dev)
1768 {
1769 	unsigned i, max, rw_queues;
1770 	int ret = 0;
1771 
1772 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1773 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1774 			ret = -ENOMEM;
1775 			break;
1776 		}
1777 	}
1778 
1779 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1780 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1781 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1782 				dev->io_queues[HCTX_TYPE_READ];
1783 	} else {
1784 		rw_queues = max;
1785 	}
1786 
1787 	for (i = dev->online_queues; i <= max; i++) {
1788 		bool polled = i > rw_queues;
1789 
1790 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1791 		if (ret)
1792 			break;
1793 	}
1794 
1795 	/*
1796 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1797 	 * than the desired amount of queues, and even a controller without
1798 	 * I/O queues can still be used to issue admin commands.  This might
1799 	 * be useful to upgrade a buggy firmware for example.
1800 	 */
1801 	return ret >= 0 ? 0 : ret;
1802 }
1803 
nvme_cmb_size_unit(struct nvme_dev * dev)1804 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1805 {
1806 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1807 
1808 	return 1ULL << (12 + 4 * szu);
1809 }
1810 
nvme_cmb_size(struct nvme_dev * dev)1811 static u32 nvme_cmb_size(struct nvme_dev *dev)
1812 {
1813 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1814 }
1815 
nvme_map_cmb(struct nvme_dev * dev)1816 static void nvme_map_cmb(struct nvme_dev *dev)
1817 {
1818 	u64 size, offset;
1819 	resource_size_t bar_size;
1820 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1821 	int bar;
1822 
1823 	if (dev->cmb_size)
1824 		return;
1825 
1826 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1827 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1828 
1829 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1830 	if (!dev->cmbsz)
1831 		return;
1832 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1833 
1834 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1835 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1836 	bar = NVME_CMB_BIR(dev->cmbloc);
1837 	bar_size = pci_resource_len(pdev, bar);
1838 
1839 	if (offset > bar_size)
1840 		return;
1841 
1842 	/*
1843 	 * Tell the controller about the host side address mapping the CMB,
1844 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1845 	 */
1846 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1847 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1848 			     (pci_bus_address(pdev, bar) + offset),
1849 			     dev->bar + NVME_REG_CMBMSC);
1850 	}
1851 
1852 	/*
1853 	 * Controllers may support a CMB size larger than their BAR,
1854 	 * for example, due to being behind a bridge. Reduce the CMB to
1855 	 * the reported size of the BAR
1856 	 */
1857 	if (size > bar_size - offset)
1858 		size = bar_size - offset;
1859 
1860 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1861 		dev_warn(dev->ctrl.device,
1862 			 "failed to register the CMB\n");
1863 		return;
1864 	}
1865 
1866 	dev->cmb_size = size;
1867 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1868 
1869 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1870 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1871 		pci_p2pmem_publish(pdev, true);
1872 }
1873 
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)1874 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1875 {
1876 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1877 	u64 dma_addr = dev->host_mem_descs_dma;
1878 	struct nvme_command c = { };
1879 	int ret;
1880 
1881 	c.features.opcode	= nvme_admin_set_features;
1882 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1883 	c.features.dword11	= cpu_to_le32(bits);
1884 	c.features.dword12	= cpu_to_le32(host_mem_size);
1885 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1886 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1887 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1888 
1889 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1890 	if (ret) {
1891 		dev_warn(dev->ctrl.device,
1892 			 "failed to set host mem (err %d, flags %#x).\n",
1893 			 ret, bits);
1894 	} else
1895 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1896 
1897 	return ret;
1898 }
1899 
nvme_free_host_mem(struct nvme_dev * dev)1900 static void nvme_free_host_mem(struct nvme_dev *dev)
1901 {
1902 	int i;
1903 
1904 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1905 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1906 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1907 
1908 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1909 			       le64_to_cpu(desc->addr),
1910 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1911 	}
1912 
1913 	kfree(dev->host_mem_desc_bufs);
1914 	dev->host_mem_desc_bufs = NULL;
1915 	dma_free_coherent(dev->dev,
1916 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1917 			dev->host_mem_descs, dev->host_mem_descs_dma);
1918 	dev->host_mem_descs = NULL;
1919 	dev->nr_host_mem_descs = 0;
1920 }
1921 
__nvme_alloc_host_mem(struct nvme_dev * dev,u64 preferred,u32 chunk_size)1922 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1923 		u32 chunk_size)
1924 {
1925 	struct nvme_host_mem_buf_desc *descs;
1926 	u32 max_entries, len;
1927 	dma_addr_t descs_dma;
1928 	int i = 0;
1929 	void **bufs;
1930 	u64 size, tmp;
1931 
1932 	tmp = (preferred + chunk_size - 1);
1933 	do_div(tmp, chunk_size);
1934 	max_entries = tmp;
1935 
1936 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1937 		max_entries = dev->ctrl.hmmaxd;
1938 
1939 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1940 				   &descs_dma, GFP_KERNEL);
1941 	if (!descs)
1942 		goto out;
1943 
1944 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1945 	if (!bufs)
1946 		goto out_free_descs;
1947 
1948 	for (size = 0; size < preferred && i < max_entries; size += len) {
1949 		dma_addr_t dma_addr;
1950 
1951 		len = min_t(u64, chunk_size, preferred - size);
1952 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1953 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1954 		if (!bufs[i])
1955 			break;
1956 
1957 		descs[i].addr = cpu_to_le64(dma_addr);
1958 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1959 		i++;
1960 	}
1961 
1962 	if (!size)
1963 		goto out_free_bufs;
1964 
1965 	dev->nr_host_mem_descs = i;
1966 	dev->host_mem_size = size;
1967 	dev->host_mem_descs = descs;
1968 	dev->host_mem_descs_dma = descs_dma;
1969 	dev->host_mem_desc_bufs = bufs;
1970 	return 0;
1971 
1972 out_free_bufs:
1973 	while (--i >= 0) {
1974 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1975 
1976 		dma_free_attrs(dev->dev, size, bufs[i],
1977 			       le64_to_cpu(descs[i].addr),
1978 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1979 	}
1980 
1981 	kfree(bufs);
1982 out_free_descs:
1983 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1984 			descs_dma);
1985 out:
1986 	dev->host_mem_descs = NULL;
1987 	return -ENOMEM;
1988 }
1989 
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)1990 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1991 {
1992 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1993 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1994 	u64 chunk_size;
1995 
1996 	/* start big and work our way down */
1997 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
1998 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1999 			if (!min || dev->host_mem_size >= min)
2000 				return 0;
2001 			nvme_free_host_mem(dev);
2002 		}
2003 	}
2004 
2005 	return -ENOMEM;
2006 }
2007 
nvme_setup_host_mem(struct nvme_dev * dev)2008 static int nvme_setup_host_mem(struct nvme_dev *dev)
2009 {
2010 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2011 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2012 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2013 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2014 	int ret;
2015 
2016 	preferred = min(preferred, max);
2017 	if (min > max) {
2018 		dev_warn(dev->ctrl.device,
2019 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2020 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2021 		nvme_free_host_mem(dev);
2022 		return 0;
2023 	}
2024 
2025 	/*
2026 	 * If we already have a buffer allocated check if we can reuse it.
2027 	 */
2028 	if (dev->host_mem_descs) {
2029 		if (dev->host_mem_size >= min)
2030 			enable_bits |= NVME_HOST_MEM_RETURN;
2031 		else
2032 			nvme_free_host_mem(dev);
2033 	}
2034 
2035 	if (!dev->host_mem_descs) {
2036 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2037 			dev_warn(dev->ctrl.device,
2038 				"failed to allocate host memory buffer.\n");
2039 			return 0; /* controller must work without HMB */
2040 		}
2041 
2042 		dev_info(dev->ctrl.device,
2043 			"allocated %lld MiB host memory buffer.\n",
2044 			dev->host_mem_size >> ilog2(SZ_1M));
2045 	}
2046 
2047 	ret = nvme_set_host_mem(dev, enable_bits);
2048 	if (ret)
2049 		nvme_free_host_mem(dev);
2050 	return ret;
2051 }
2052 
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2053 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2054 		char *buf)
2055 {
2056 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2057 
2058 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2059 		       ndev->cmbloc, ndev->cmbsz);
2060 }
2061 static DEVICE_ATTR_RO(cmb);
2062 
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2063 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2064 		char *buf)
2065 {
2066 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2067 
2068 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2069 }
2070 static DEVICE_ATTR_RO(cmbloc);
2071 
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2072 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2073 		char *buf)
2074 {
2075 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2076 
2077 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2078 }
2079 static DEVICE_ATTR_RO(cmbsz);
2080 
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2081 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2082 			char *buf)
2083 {
2084 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2085 
2086 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2087 }
2088 
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2089 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2090 			 const char *buf, size_t count)
2091 {
2092 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2093 	bool new;
2094 	int ret;
2095 
2096 	if (strtobool(buf, &new) < 0)
2097 		return -EINVAL;
2098 
2099 	if (new == ndev->hmb)
2100 		return count;
2101 
2102 	if (new) {
2103 		ret = nvme_setup_host_mem(ndev);
2104 	} else {
2105 		ret = nvme_set_host_mem(ndev, 0);
2106 		if (!ret)
2107 			nvme_free_host_mem(ndev);
2108 	}
2109 
2110 	if (ret < 0)
2111 		return ret;
2112 
2113 	return count;
2114 }
2115 static DEVICE_ATTR_RW(hmb);
2116 
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2117 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2118 		struct attribute *a, int n)
2119 {
2120 	struct nvme_ctrl *ctrl =
2121 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2122 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2123 
2124 	if (a == &dev_attr_cmb.attr ||
2125 	    a == &dev_attr_cmbloc.attr ||
2126 	    a == &dev_attr_cmbsz.attr) {
2127 	    	if (!dev->cmbsz)
2128 			return 0;
2129 	}
2130 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2131 		return 0;
2132 
2133 	return a->mode;
2134 }
2135 
2136 static struct attribute *nvme_pci_attrs[] = {
2137 	&dev_attr_cmb.attr,
2138 	&dev_attr_cmbloc.attr,
2139 	&dev_attr_cmbsz.attr,
2140 	&dev_attr_hmb.attr,
2141 	NULL,
2142 };
2143 
2144 static const struct attribute_group nvme_pci_attr_group = {
2145 	.attrs		= nvme_pci_attrs,
2146 	.is_visible	= nvme_pci_attrs_are_visible,
2147 };
2148 
2149 /*
2150  * nirqs is the number of interrupts available for write and read
2151  * queues. The core already reserved an interrupt for the admin queue.
2152  */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2153 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2154 {
2155 	struct nvme_dev *dev = affd->priv;
2156 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2157 
2158 	/*
2159 	 * If there is no interrupt available for queues, ensure that
2160 	 * the default queue is set to 1. The affinity set size is
2161 	 * also set to one, but the irq core ignores it for this case.
2162 	 *
2163 	 * If only one interrupt is available or 'write_queue' == 0, combine
2164 	 * write and read queues.
2165 	 *
2166 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2167 	 * queue.
2168 	 */
2169 	if (!nrirqs) {
2170 		nrirqs = 1;
2171 		nr_read_queues = 0;
2172 	} else if (nrirqs == 1 || !nr_write_queues) {
2173 		nr_read_queues = 0;
2174 	} else if (nr_write_queues >= nrirqs) {
2175 		nr_read_queues = 1;
2176 	} else {
2177 		nr_read_queues = nrirqs - nr_write_queues;
2178 	}
2179 
2180 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2181 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2182 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2183 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2184 	affd->nr_sets = nr_read_queues ? 2 : 1;
2185 }
2186 
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2187 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2188 {
2189 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2190 	struct irq_affinity affd = {
2191 		.pre_vectors	= 1,
2192 		.calc_sets	= nvme_calc_irq_sets,
2193 		.priv		= dev,
2194 	};
2195 	unsigned int irq_queues, poll_queues;
2196 
2197 	/*
2198 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2199 	 * left over for non-polled I/O.
2200 	 */
2201 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2202 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2203 
2204 	/*
2205 	 * Initialize for the single interrupt case, will be updated in
2206 	 * nvme_calc_irq_sets().
2207 	 */
2208 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2209 	dev->io_queues[HCTX_TYPE_READ] = 0;
2210 
2211 	/*
2212 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2213 	 * but some Apple controllers require all queues to use the first
2214 	 * vector.
2215 	 */
2216 	irq_queues = 1;
2217 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2218 		irq_queues += (nr_io_queues - poll_queues);
2219 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2220 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2221 }
2222 
nvme_disable_io_queues(struct nvme_dev * dev)2223 static void nvme_disable_io_queues(struct nvme_dev *dev)
2224 {
2225 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2226 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2227 }
2228 
nvme_max_io_queues(struct nvme_dev * dev)2229 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2230 {
2231 	/*
2232 	 * If tags are shared with admin queue (Apple bug), then
2233 	 * make sure we only use one IO queue.
2234 	 */
2235 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2236 		return 1;
2237 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2238 }
2239 
nvme_setup_io_queues(struct nvme_dev * dev)2240 static int nvme_setup_io_queues(struct nvme_dev *dev)
2241 {
2242 	struct nvme_queue *adminq = &dev->queues[0];
2243 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2244 	unsigned int nr_io_queues;
2245 	unsigned long size;
2246 	int result;
2247 
2248 	/*
2249 	 * Sample the module parameters once at reset time so that we have
2250 	 * stable values to work with.
2251 	 */
2252 	dev->nr_write_queues = write_queues;
2253 	dev->nr_poll_queues = poll_queues;
2254 
2255 	nr_io_queues = dev->nr_allocated_queues - 1;
2256 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2257 	if (result < 0)
2258 		return result;
2259 
2260 	if (nr_io_queues == 0)
2261 		return 0;
2262 
2263 	/*
2264 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2265 	 * from set to unset. If there is a window to it is truely freed,
2266 	 * pci_free_irq_vectors() jumping into this window will crash.
2267 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2268 	 * nvme_dev_disable() path.
2269 	 */
2270 	result = nvme_setup_io_queues_trylock(dev);
2271 	if (result)
2272 		return result;
2273 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2274 		pci_free_irq(pdev, 0, adminq);
2275 
2276 	if (dev->cmb_use_sqes) {
2277 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2278 				sizeof(struct nvme_command));
2279 		if (result > 0)
2280 			dev->q_depth = result;
2281 		else
2282 			dev->cmb_use_sqes = false;
2283 	}
2284 
2285 	do {
2286 		size = db_bar_size(dev, nr_io_queues);
2287 		result = nvme_remap_bar(dev, size);
2288 		if (!result)
2289 			break;
2290 		if (!--nr_io_queues) {
2291 			result = -ENOMEM;
2292 			goto out_unlock;
2293 		}
2294 	} while (1);
2295 	adminq->q_db = dev->dbs;
2296 
2297  retry:
2298 	/* Deregister the admin queue's interrupt */
2299 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2300 		pci_free_irq(pdev, 0, adminq);
2301 
2302 	/*
2303 	 * If we enable msix early due to not intx, disable it again before
2304 	 * setting up the full range we need.
2305 	 */
2306 	pci_free_irq_vectors(pdev);
2307 
2308 	result = nvme_setup_irqs(dev, nr_io_queues);
2309 	if (result <= 0) {
2310 		result = -EIO;
2311 		goto out_unlock;
2312 	}
2313 
2314 	dev->num_vecs = result;
2315 	result = max(result - 1, 1);
2316 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2317 
2318 	/*
2319 	 * Should investigate if there's a performance win from allocating
2320 	 * more queues than interrupt vectors; it might allow the submission
2321 	 * path to scale better, even if the receive path is limited by the
2322 	 * number of interrupts.
2323 	 */
2324 	result = queue_request_irq(adminq);
2325 	if (result)
2326 		goto out_unlock;
2327 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2328 	mutex_unlock(&dev->shutdown_lock);
2329 
2330 	result = nvme_create_io_queues(dev);
2331 	if (result || dev->online_queues < 2)
2332 		return result;
2333 
2334 	if (dev->online_queues - 1 < dev->max_qid) {
2335 		nr_io_queues = dev->online_queues - 1;
2336 		nvme_disable_io_queues(dev);
2337 		result = nvme_setup_io_queues_trylock(dev);
2338 		if (result)
2339 			return result;
2340 		nvme_suspend_io_queues(dev);
2341 		goto retry;
2342 	}
2343 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2344 					dev->io_queues[HCTX_TYPE_DEFAULT],
2345 					dev->io_queues[HCTX_TYPE_READ],
2346 					dev->io_queues[HCTX_TYPE_POLL]);
2347 	return 0;
2348 out_unlock:
2349 	mutex_unlock(&dev->shutdown_lock);
2350 	return result;
2351 }
2352 
nvme_del_queue_end(struct request * req,blk_status_t error)2353 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2354 {
2355 	struct nvme_queue *nvmeq = req->end_io_data;
2356 
2357 	blk_mq_free_request(req);
2358 	complete(&nvmeq->delete_done);
2359 }
2360 
nvme_del_cq_end(struct request * req,blk_status_t error)2361 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2362 {
2363 	struct nvme_queue *nvmeq = req->end_io_data;
2364 
2365 	if (error)
2366 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2367 
2368 	nvme_del_queue_end(req, error);
2369 }
2370 
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2371 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2372 {
2373 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2374 	struct request *req;
2375 	struct nvme_command cmd = { };
2376 
2377 	cmd.delete_queue.opcode = opcode;
2378 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2379 
2380 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2381 	if (IS_ERR(req))
2382 		return PTR_ERR(req);
2383 
2384 	req->end_io_data = nvmeq;
2385 
2386 	init_completion(&nvmeq->delete_done);
2387 	blk_execute_rq_nowait(NULL, req, false,
2388 			opcode == nvme_admin_delete_cq ?
2389 				nvme_del_cq_end : nvme_del_queue_end);
2390 	return 0;
2391 }
2392 
__nvme_disable_io_queues(struct nvme_dev * dev,u8 opcode)2393 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2394 {
2395 	int nr_queues = dev->online_queues - 1, sent = 0;
2396 	unsigned long timeout;
2397 
2398  retry:
2399 	timeout = NVME_ADMIN_TIMEOUT;
2400 	while (nr_queues > 0) {
2401 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2402 			break;
2403 		nr_queues--;
2404 		sent++;
2405 	}
2406 	while (sent) {
2407 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2408 
2409 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2410 				timeout);
2411 		if (timeout == 0)
2412 			return false;
2413 
2414 		sent--;
2415 		if (nr_queues)
2416 			goto retry;
2417 	}
2418 	return true;
2419 }
2420 
nvme_dev_add(struct nvme_dev * dev)2421 static void nvme_dev_add(struct nvme_dev *dev)
2422 {
2423 	int ret;
2424 
2425 	if (!dev->ctrl.tagset) {
2426 		dev->tagset.ops = &nvme_mq_ops;
2427 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2428 		dev->tagset.nr_maps = 2; /* default + read */
2429 		if (dev->io_queues[HCTX_TYPE_POLL])
2430 			dev->tagset.nr_maps++;
2431 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2432 		dev->tagset.numa_node = dev->ctrl.numa_node;
2433 		dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2434 						BLK_MQ_MAX_DEPTH) - 1;
2435 		dev->tagset.cmd_size = sizeof(struct nvme_iod);
2436 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2437 		dev->tagset.driver_data = dev;
2438 
2439 		/*
2440 		 * Some Apple controllers requires tags to be unique
2441 		 * across admin and IO queue, so reserve the first 32
2442 		 * tags of the IO queue.
2443 		 */
2444 		if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2445 			dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2446 
2447 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2448 		if (ret) {
2449 			dev_warn(dev->ctrl.device,
2450 				"IO queues tagset allocation failed %d\n", ret);
2451 			return;
2452 		}
2453 		dev->ctrl.tagset = &dev->tagset;
2454 	} else {
2455 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2456 
2457 		/* Free previously allocated queues that are no longer usable */
2458 		nvme_free_queues(dev, dev->online_queues);
2459 	}
2460 
2461 	nvme_dbbuf_set(dev);
2462 }
2463 
nvme_pci_enable(struct nvme_dev * dev)2464 static int nvme_pci_enable(struct nvme_dev *dev)
2465 {
2466 	int result = -ENOMEM;
2467 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2468 	int dma_address_bits = 64;
2469 
2470 	if (pci_enable_device_mem(pdev))
2471 		return result;
2472 
2473 	pci_set_master(pdev);
2474 
2475 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2476 		dma_address_bits = 48;
2477 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2478 		goto disable;
2479 
2480 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2481 		result = -ENODEV;
2482 		goto disable;
2483 	}
2484 
2485 	/*
2486 	 * Some devices and/or platforms don't advertise or work with INTx
2487 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2488 	 * adjust this later.
2489 	 */
2490 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2491 	if (result < 0)
2492 		return result;
2493 
2494 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2495 
2496 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2497 				io_queue_depth);
2498 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2499 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2500 	dev->dbs = dev->bar + 4096;
2501 
2502 	/*
2503 	 * Some Apple controllers require a non-standard SQE size.
2504 	 * Interestingly they also seem to ignore the CC:IOSQES register
2505 	 * so we don't bother updating it here.
2506 	 */
2507 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2508 		dev->io_sqes = 7;
2509 	else
2510 		dev->io_sqes = NVME_NVM_IOSQES;
2511 
2512 	/*
2513 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2514 	 * some MacBook7,1 to avoid controller resets and data loss.
2515 	 */
2516 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2517 		dev->q_depth = 2;
2518 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2519 			"set queue depth=%u to work around controller resets\n",
2520 			dev->q_depth);
2521 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2522 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2523 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2524 		dev->q_depth = 64;
2525 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2526                         "set queue depth=%u\n", dev->q_depth);
2527 	}
2528 
2529 	/*
2530 	 * Controllers with the shared tags quirk need the IO queue to be
2531 	 * big enough so that we get 32 tags for the admin queue
2532 	 */
2533 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2534 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2535 		dev->q_depth = NVME_AQ_DEPTH + 2;
2536 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2537 			 dev->q_depth);
2538 	}
2539 
2540 
2541 	nvme_map_cmb(dev);
2542 
2543 	pci_enable_pcie_error_reporting(pdev);
2544 	pci_save_state(pdev);
2545 	return 0;
2546 
2547  disable:
2548 	pci_disable_device(pdev);
2549 	return result;
2550 }
2551 
nvme_dev_unmap(struct nvme_dev * dev)2552 static void nvme_dev_unmap(struct nvme_dev *dev)
2553 {
2554 	if (dev->bar)
2555 		iounmap(dev->bar);
2556 	pci_release_mem_regions(to_pci_dev(dev->dev));
2557 }
2558 
nvme_pci_disable(struct nvme_dev * dev)2559 static void nvme_pci_disable(struct nvme_dev *dev)
2560 {
2561 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2562 
2563 	pci_free_irq_vectors(pdev);
2564 
2565 	if (pci_is_enabled(pdev)) {
2566 		pci_disable_pcie_error_reporting(pdev);
2567 		pci_disable_device(pdev);
2568 	}
2569 }
2570 
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2571 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2572 {
2573 	bool dead = true, freeze = false;
2574 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2575 
2576 	mutex_lock(&dev->shutdown_lock);
2577 	if (pci_is_enabled(pdev)) {
2578 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2579 
2580 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2581 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2582 			freeze = true;
2583 			nvme_start_freeze(&dev->ctrl);
2584 		}
2585 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2586 			pdev->error_state  != pci_channel_io_normal);
2587 	}
2588 
2589 	/*
2590 	 * Give the controller a chance to complete all entered requests if
2591 	 * doing a safe shutdown.
2592 	 */
2593 	if (!dead && shutdown && freeze)
2594 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2595 
2596 	nvme_stop_queues(&dev->ctrl);
2597 
2598 	if (!dead && dev->ctrl.queue_count > 0) {
2599 		nvme_disable_io_queues(dev);
2600 		nvme_disable_admin_queue(dev, shutdown);
2601 	}
2602 	nvme_suspend_io_queues(dev);
2603 	nvme_suspend_queue(&dev->queues[0]);
2604 	nvme_pci_disable(dev);
2605 	nvme_reap_pending_cqes(dev);
2606 
2607 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2608 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2609 	blk_mq_tagset_wait_completed_request(&dev->tagset);
2610 	blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2611 
2612 	/*
2613 	 * The driver will not be starting up queues again if shutting down so
2614 	 * must flush all entered requests to their failed completion to avoid
2615 	 * deadlocking blk-mq hot-cpu notifier.
2616 	 */
2617 	if (shutdown) {
2618 		nvme_start_queues(&dev->ctrl);
2619 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2620 			blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2621 	}
2622 	mutex_unlock(&dev->shutdown_lock);
2623 }
2624 
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2625 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2626 {
2627 	if (!nvme_wait_reset(&dev->ctrl))
2628 		return -EBUSY;
2629 	nvme_dev_disable(dev, shutdown);
2630 	return 0;
2631 }
2632 
nvme_setup_prp_pools(struct nvme_dev * dev)2633 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2634 {
2635 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2636 						NVME_CTRL_PAGE_SIZE,
2637 						NVME_CTRL_PAGE_SIZE, 0);
2638 	if (!dev->prp_page_pool)
2639 		return -ENOMEM;
2640 
2641 	/* Optimisation for I/Os between 4k and 128k */
2642 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2643 						256, 256, 0);
2644 	if (!dev->prp_small_pool) {
2645 		dma_pool_destroy(dev->prp_page_pool);
2646 		return -ENOMEM;
2647 	}
2648 	return 0;
2649 }
2650 
nvme_release_prp_pools(struct nvme_dev * dev)2651 static void nvme_release_prp_pools(struct nvme_dev *dev)
2652 {
2653 	dma_pool_destroy(dev->prp_page_pool);
2654 	dma_pool_destroy(dev->prp_small_pool);
2655 }
2656 
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)2657 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2658 {
2659 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
2660 	size_t alloc_size = sizeof(__le64 *) * npages +
2661 			    sizeof(struct scatterlist) * NVME_MAX_SEGS;
2662 
2663 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2664 	dev->iod_mempool = mempool_create_node(1,
2665 			mempool_kmalloc, mempool_kfree,
2666 			(void *)alloc_size, GFP_KERNEL,
2667 			dev_to_node(dev->dev));
2668 	if (!dev->iod_mempool)
2669 		return -ENOMEM;
2670 	return 0;
2671 }
2672 
nvme_free_tagset(struct nvme_dev * dev)2673 static void nvme_free_tagset(struct nvme_dev *dev)
2674 {
2675 	if (dev->tagset.tags)
2676 		blk_mq_free_tag_set(&dev->tagset);
2677 	dev->ctrl.tagset = NULL;
2678 }
2679 
2680 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2681 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2682 {
2683 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2684 
2685 	nvme_dbbuf_dma_free(dev);
2686 	nvme_free_tagset(dev);
2687 	if (dev->ctrl.admin_q)
2688 		blk_put_queue(dev->ctrl.admin_q);
2689 	free_opal_dev(dev->ctrl.opal_dev);
2690 	mempool_destroy(dev->iod_mempool);
2691 	put_device(dev->dev);
2692 	kfree(dev->queues);
2693 	kfree(dev);
2694 }
2695 
nvme_remove_dead_ctrl(struct nvme_dev * dev)2696 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2697 {
2698 	/*
2699 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2700 	 * may be holding this pci_dev's device lock.
2701 	 */
2702 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2703 	nvme_get_ctrl(&dev->ctrl);
2704 	nvme_dev_disable(dev, false);
2705 	nvme_kill_queues(&dev->ctrl);
2706 	if (!queue_work(nvme_wq, &dev->remove_work))
2707 		nvme_put_ctrl(&dev->ctrl);
2708 }
2709 
nvme_reset_work(struct work_struct * work)2710 static void nvme_reset_work(struct work_struct *work)
2711 {
2712 	struct nvme_dev *dev =
2713 		container_of(work, struct nvme_dev, ctrl.reset_work);
2714 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2715 	int result;
2716 
2717 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2718 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2719 			 dev->ctrl.state);
2720 		result = -ENODEV;
2721 		goto out;
2722 	}
2723 
2724 	/*
2725 	 * If we're called to reset a live controller first shut it down before
2726 	 * moving on.
2727 	 */
2728 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2729 		nvme_dev_disable(dev, false);
2730 	nvme_sync_queues(&dev->ctrl);
2731 
2732 	mutex_lock(&dev->shutdown_lock);
2733 	result = nvme_pci_enable(dev);
2734 	if (result)
2735 		goto out_unlock;
2736 
2737 	result = nvme_pci_configure_admin_queue(dev);
2738 	if (result)
2739 		goto out_unlock;
2740 
2741 	result = nvme_alloc_admin_tags(dev);
2742 	if (result)
2743 		goto out_unlock;
2744 
2745 	dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2746 
2747 	/*
2748 	 * Limit the max command size to prevent iod->sg allocations going
2749 	 * over a single page.
2750 	 */
2751 	dev->ctrl.max_hw_sectors = min_t(u32,
2752 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2753 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2754 
2755 	/*
2756 	 * Don't limit the IOMMU merged segment size.
2757 	 */
2758 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2759 
2760 	mutex_unlock(&dev->shutdown_lock);
2761 
2762 	/*
2763 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2764 	 * initializing procedure here.
2765 	 */
2766 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2767 		dev_warn(dev->ctrl.device,
2768 			"failed to mark controller CONNECTING\n");
2769 		result = -EBUSY;
2770 		goto out;
2771 	}
2772 
2773 	/*
2774 	 * We do not support an SGL for metadata (yet), so we are limited to a
2775 	 * single integrity segment for the separate metadata pointer.
2776 	 */
2777 	dev->ctrl.max_integrity_segments = 1;
2778 
2779 	result = nvme_init_ctrl_finish(&dev->ctrl);
2780 	if (result)
2781 		goto out;
2782 
2783 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2784 		if (!dev->ctrl.opal_dev)
2785 			dev->ctrl.opal_dev =
2786 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2787 		else if (was_suspend)
2788 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2789 	} else {
2790 		free_opal_dev(dev->ctrl.opal_dev);
2791 		dev->ctrl.opal_dev = NULL;
2792 	}
2793 
2794 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2795 		result = nvme_dbbuf_dma_alloc(dev);
2796 		if (result)
2797 			dev_warn(dev->dev,
2798 				 "unable to allocate dma for dbbuf\n");
2799 	}
2800 
2801 	if (dev->ctrl.hmpre) {
2802 		result = nvme_setup_host_mem(dev);
2803 		if (result < 0)
2804 			goto out;
2805 	}
2806 
2807 	result = nvme_setup_io_queues(dev);
2808 	if (result)
2809 		goto out;
2810 
2811 	/*
2812 	 * Keep the controller around but remove all namespaces if we don't have
2813 	 * any working I/O queue.
2814 	 */
2815 	if (dev->online_queues < 2) {
2816 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2817 		nvme_kill_queues(&dev->ctrl);
2818 		nvme_remove_namespaces(&dev->ctrl);
2819 		nvme_free_tagset(dev);
2820 	} else {
2821 		nvme_start_queues(&dev->ctrl);
2822 		nvme_wait_freeze(&dev->ctrl);
2823 		nvme_dev_add(dev);
2824 		nvme_unfreeze(&dev->ctrl);
2825 	}
2826 
2827 	/*
2828 	 * If only admin queue live, keep it to do further investigation or
2829 	 * recovery.
2830 	 */
2831 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2832 		dev_warn(dev->ctrl.device,
2833 			"failed to mark controller live state\n");
2834 		result = -ENODEV;
2835 		goto out;
2836 	}
2837 
2838 	if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2839 			&nvme_pci_attr_group))
2840 		dev->attrs_added = true;
2841 
2842 	nvme_start_ctrl(&dev->ctrl);
2843 	return;
2844 
2845  out_unlock:
2846 	mutex_unlock(&dev->shutdown_lock);
2847  out:
2848 	if (result)
2849 		dev_warn(dev->ctrl.device,
2850 			 "Removing after probe failure status: %d\n", result);
2851 	nvme_remove_dead_ctrl(dev);
2852 }
2853 
nvme_remove_dead_ctrl_work(struct work_struct * work)2854 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2855 {
2856 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2857 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2858 
2859 	if (pci_get_drvdata(pdev))
2860 		device_release_driver(&pdev->dev);
2861 	nvme_put_ctrl(&dev->ctrl);
2862 }
2863 
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)2864 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2865 {
2866 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2867 	return 0;
2868 }
2869 
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)2870 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2871 {
2872 	writel(val, to_nvme_dev(ctrl)->bar + off);
2873 	return 0;
2874 }
2875 
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)2876 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2877 {
2878 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2879 	return 0;
2880 }
2881 
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2882 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2883 {
2884 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2885 
2886 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2887 }
2888 
2889 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2890 	.name			= "pcie",
2891 	.module			= THIS_MODULE,
2892 	.flags			= NVME_F_METADATA_SUPPORTED |
2893 				  NVME_F_PCI_P2PDMA,
2894 	.reg_read32		= nvme_pci_reg_read32,
2895 	.reg_write32		= nvme_pci_reg_write32,
2896 	.reg_read64		= nvme_pci_reg_read64,
2897 	.free_ctrl		= nvme_pci_free_ctrl,
2898 	.submit_async_event	= nvme_pci_submit_async_event,
2899 	.get_address		= nvme_pci_get_address,
2900 };
2901 
nvme_dev_map(struct nvme_dev * dev)2902 static int nvme_dev_map(struct nvme_dev *dev)
2903 {
2904 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2905 
2906 	if (pci_request_mem_regions(pdev, "nvme"))
2907 		return -ENODEV;
2908 
2909 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2910 		goto release;
2911 
2912 	return 0;
2913   release:
2914 	pci_release_mem_regions(pdev);
2915 	return -ENODEV;
2916 }
2917 
check_vendor_combination_bug(struct pci_dev * pdev)2918 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2919 {
2920 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2921 		/*
2922 		 * Several Samsung devices seem to drop off the PCIe bus
2923 		 * randomly when APST is on and uses the deepest sleep state.
2924 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2925 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2926 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2927 		 * laptops.
2928 		 */
2929 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2930 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2931 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2932 			return NVME_QUIRK_NO_DEEPEST_PS;
2933 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2934 		/*
2935 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2936 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2937 		 * within few minutes after bootup on a Coffee Lake board -
2938 		 * ASUS PRIME Z370-A
2939 		 */
2940 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2941 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2942 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2943 			return NVME_QUIRK_NO_APST;
2944 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2945 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2946 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2947 		/*
2948 		 * Forcing to use host managed nvme power settings for
2949 		 * lowest idle power with quick resume latency on
2950 		 * Samsung and Toshiba SSDs based on suspend behavior
2951 		 * on Coffee Lake board for LENOVO C640
2952 		 */
2953 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2954 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2955 			return NVME_QUIRK_SIMPLE_SUSPEND;
2956 	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
2957 		   pdev->device == 0x500f)) {
2958 		/*
2959 		 * Exclude some Kingston NV1 and A2000 devices from
2960 		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
2961 		 * lot fo energy with s2idle sleep on some TUXEDO platforms.
2962 		 */
2963 		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
2964 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
2965 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
2966 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
2967 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2968 	}
2969 
2970 	return 0;
2971 }
2972 
nvme_async_probe(void * data,async_cookie_t cookie)2973 static void nvme_async_probe(void *data, async_cookie_t cookie)
2974 {
2975 	struct nvme_dev *dev = data;
2976 
2977 	flush_work(&dev->ctrl.reset_work);
2978 	flush_work(&dev->ctrl.scan_work);
2979 	nvme_put_ctrl(&dev->ctrl);
2980 }
2981 
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)2982 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2983 		const struct pci_device_id *id)
2984 {
2985 	unsigned long quirks = id->driver_data;
2986 	int node = dev_to_node(&pdev->dev);
2987 	struct nvme_dev *dev;
2988 	int ret = -ENOMEM;
2989 
2990 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2991 	if (!dev)
2992 		return ERR_PTR(-ENOMEM);
2993 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2994 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2995 	mutex_init(&dev->shutdown_lock);
2996 
2997 	dev->nr_write_queues = write_queues;
2998 	dev->nr_poll_queues = poll_queues;
2999 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3000 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3001 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3002 	if (!dev->queues)
3003 		goto out_free_dev;
3004 
3005 	dev->dev = get_device(&pdev->dev);
3006 
3007 	quirks |= check_vendor_combination_bug(pdev);
3008 	if (!noacpi &&
3009 	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3010 	    acpi_storage_d3(&pdev->dev)) {
3011 		/*
3012 		 * Some systems use a bios work around to ask for D3 on
3013 		 * platforms that support kernel managed suspend.
3014 		 */
3015 		dev_info(&pdev->dev,
3016 			 "platform quirk: setting simple suspend\n");
3017 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3018 	}
3019 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3020 			     quirks);
3021 	if (ret)
3022 		goto out_put_device;
3023 	return dev;
3024 
3025 out_put_device:
3026 	put_device(dev->dev);
3027 	kfree(dev->queues);
3028 out_free_dev:
3029 	kfree(dev);
3030 	return ERR_PTR(ret);
3031 }
3032 
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3033 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3034 {
3035 	struct nvme_dev *dev;
3036 	int result = -ENOMEM;
3037 
3038 	dev = nvme_pci_alloc_dev(pdev, id);
3039 	if (IS_ERR(dev))
3040 		return PTR_ERR(dev);
3041 
3042 	result = nvme_dev_map(dev);
3043 	if (result)
3044 		goto out_uninit_ctrl;
3045 
3046 	result = nvme_setup_prp_pools(dev);
3047 	if (result)
3048 		goto out_dev_unmap;
3049 
3050 	result = nvme_pci_alloc_iod_mempool(dev);
3051 	if (result)
3052 		goto out_release_prp_pools;
3053 
3054 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3055 	pci_set_drvdata(pdev, dev);
3056 
3057 	nvme_reset_ctrl(&dev->ctrl);
3058 	async_schedule(nvme_async_probe, dev);
3059 	return 0;
3060 
3061 out_release_prp_pools:
3062 	nvme_release_prp_pools(dev);
3063 out_dev_unmap:
3064 	nvme_dev_unmap(dev);
3065 out_uninit_ctrl:
3066 	nvme_uninit_ctrl(&dev->ctrl);
3067 	return result;
3068 }
3069 
nvme_reset_prepare(struct pci_dev * pdev)3070 static void nvme_reset_prepare(struct pci_dev *pdev)
3071 {
3072 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3073 
3074 	/*
3075 	 * We don't need to check the return value from waiting for the reset
3076 	 * state as pci_dev device lock is held, making it impossible to race
3077 	 * with ->remove().
3078 	 */
3079 	nvme_disable_prepare_reset(dev, false);
3080 	nvme_sync_queues(&dev->ctrl);
3081 }
3082 
nvme_reset_done(struct pci_dev * pdev)3083 static void nvme_reset_done(struct pci_dev *pdev)
3084 {
3085 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3086 
3087 	if (!nvme_try_sched_reset(&dev->ctrl))
3088 		flush_work(&dev->ctrl.reset_work);
3089 }
3090 
nvme_shutdown(struct pci_dev * pdev)3091 static void nvme_shutdown(struct pci_dev *pdev)
3092 {
3093 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3094 
3095 	nvme_disable_prepare_reset(dev, true);
3096 }
3097 
nvme_remove_attrs(struct nvme_dev * dev)3098 static void nvme_remove_attrs(struct nvme_dev *dev)
3099 {
3100 	if (dev->attrs_added)
3101 		sysfs_remove_group(&dev->ctrl.device->kobj,
3102 				   &nvme_pci_attr_group);
3103 }
3104 
3105 /*
3106  * The driver's remove may be called on a device in a partially initialized
3107  * state. This function must not have any dependencies on the device state in
3108  * order to proceed.
3109  */
nvme_remove(struct pci_dev * pdev)3110 static void nvme_remove(struct pci_dev *pdev)
3111 {
3112 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3113 
3114 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3115 	pci_set_drvdata(pdev, NULL);
3116 
3117 	if (!pci_device_is_present(pdev)) {
3118 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3119 		nvme_dev_disable(dev, true);
3120 	}
3121 
3122 	flush_work(&dev->ctrl.reset_work);
3123 	nvme_stop_ctrl(&dev->ctrl);
3124 	nvme_remove_namespaces(&dev->ctrl);
3125 	nvme_dev_disable(dev, true);
3126 	nvme_remove_attrs(dev);
3127 	nvme_free_host_mem(dev);
3128 	nvme_dev_remove_admin(dev);
3129 	nvme_free_queues(dev, 0);
3130 	nvme_release_prp_pools(dev);
3131 	nvme_dev_unmap(dev);
3132 	nvme_uninit_ctrl(&dev->ctrl);
3133 }
3134 
3135 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3136 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3137 {
3138 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3139 }
3140 
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3141 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3142 {
3143 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3144 }
3145 
nvme_resume(struct device * dev)3146 static int nvme_resume(struct device *dev)
3147 {
3148 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3149 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3150 
3151 	if (ndev->last_ps == U32_MAX ||
3152 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3153 		goto reset;
3154 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3155 		goto reset;
3156 
3157 	return 0;
3158 reset:
3159 	return nvme_try_sched_reset(ctrl);
3160 }
3161 
nvme_suspend(struct device * dev)3162 static int nvme_suspend(struct device *dev)
3163 {
3164 	struct pci_dev *pdev = to_pci_dev(dev);
3165 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3166 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3167 	int ret = -EBUSY;
3168 
3169 	ndev->last_ps = U32_MAX;
3170 
3171 	/*
3172 	 * The platform does not remove power for a kernel managed suspend so
3173 	 * use host managed nvme power settings for lowest idle power if
3174 	 * possible. This should have quicker resume latency than a full device
3175 	 * shutdown.  But if the firmware is involved after the suspend or the
3176 	 * device does not support any non-default power states, shut down the
3177 	 * device fully.
3178 	 *
3179 	 * If ASPM is not enabled for the device, shut down the device and allow
3180 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3181 	 * down, so as to allow the platform to achieve its minimum low-power
3182 	 * state (which may not be possible if the link is up).
3183 	 */
3184 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3185 	    !pcie_aspm_enabled(pdev) ||
3186 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3187 		return nvme_disable_prepare_reset(ndev, true);
3188 
3189 	nvme_start_freeze(ctrl);
3190 	nvme_wait_freeze(ctrl);
3191 	nvme_sync_queues(ctrl);
3192 
3193 	if (ctrl->state != NVME_CTRL_LIVE)
3194 		goto unfreeze;
3195 
3196 	/*
3197 	 * Host memory access may not be successful in a system suspend state,
3198 	 * but the specification allows the controller to access memory in a
3199 	 * non-operational power state.
3200 	 */
3201 	if (ndev->hmb) {
3202 		ret = nvme_set_host_mem(ndev, 0);
3203 		if (ret < 0)
3204 			goto unfreeze;
3205 	}
3206 
3207 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3208 	if (ret < 0)
3209 		goto unfreeze;
3210 
3211 	/*
3212 	 * A saved state prevents pci pm from generically controlling the
3213 	 * device's power. If we're using protocol specific settings, we don't
3214 	 * want pci interfering.
3215 	 */
3216 	pci_save_state(pdev);
3217 
3218 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3219 	if (ret < 0)
3220 		goto unfreeze;
3221 
3222 	if (ret) {
3223 		/* discard the saved state */
3224 		pci_load_saved_state(pdev, NULL);
3225 
3226 		/*
3227 		 * Clearing npss forces a controller reset on resume. The
3228 		 * correct value will be rediscovered then.
3229 		 */
3230 		ret = nvme_disable_prepare_reset(ndev, true);
3231 		ctrl->npss = 0;
3232 	}
3233 unfreeze:
3234 	nvme_unfreeze(ctrl);
3235 	return ret;
3236 }
3237 
nvme_simple_suspend(struct device * dev)3238 static int nvme_simple_suspend(struct device *dev)
3239 {
3240 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3241 
3242 	return nvme_disable_prepare_reset(ndev, true);
3243 }
3244 
nvme_simple_resume(struct device * dev)3245 static int nvme_simple_resume(struct device *dev)
3246 {
3247 	struct pci_dev *pdev = to_pci_dev(dev);
3248 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3249 
3250 	return nvme_try_sched_reset(&ndev->ctrl);
3251 }
3252 
3253 static const struct dev_pm_ops nvme_dev_pm_ops = {
3254 	.suspend	= nvme_suspend,
3255 	.resume		= nvme_resume,
3256 	.freeze		= nvme_simple_suspend,
3257 	.thaw		= nvme_simple_resume,
3258 	.poweroff	= nvme_simple_suspend,
3259 	.restore	= nvme_simple_resume,
3260 };
3261 #endif /* CONFIG_PM_SLEEP */
3262 
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3263 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3264 						pci_channel_state_t state)
3265 {
3266 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3267 
3268 	/*
3269 	 * A frozen channel requires a reset. When detected, this method will
3270 	 * shutdown the controller to quiesce. The controller will be restarted
3271 	 * after the slot reset through driver's slot_reset callback.
3272 	 */
3273 	switch (state) {
3274 	case pci_channel_io_normal:
3275 		return PCI_ERS_RESULT_CAN_RECOVER;
3276 	case pci_channel_io_frozen:
3277 		dev_warn(dev->ctrl.device,
3278 			"frozen state error detected, reset controller\n");
3279 		nvme_dev_disable(dev, false);
3280 		return PCI_ERS_RESULT_NEED_RESET;
3281 	case pci_channel_io_perm_failure:
3282 		dev_warn(dev->ctrl.device,
3283 			"failure state error detected, request disconnect\n");
3284 		return PCI_ERS_RESULT_DISCONNECT;
3285 	}
3286 	return PCI_ERS_RESULT_NEED_RESET;
3287 }
3288 
nvme_slot_reset(struct pci_dev * pdev)3289 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3290 {
3291 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3292 
3293 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3294 	pci_restore_state(pdev);
3295 	nvme_reset_ctrl(&dev->ctrl);
3296 	return PCI_ERS_RESULT_RECOVERED;
3297 }
3298 
nvme_error_resume(struct pci_dev * pdev)3299 static void nvme_error_resume(struct pci_dev *pdev)
3300 {
3301 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3302 
3303 	flush_work(&dev->ctrl.reset_work);
3304 }
3305 
3306 static const struct pci_error_handlers nvme_err_handler = {
3307 	.error_detected	= nvme_error_detected,
3308 	.slot_reset	= nvme_slot_reset,
3309 	.resume		= nvme_error_resume,
3310 	.reset_prepare	= nvme_reset_prepare,
3311 	.reset_done	= nvme_reset_done,
3312 };
3313 
3314 static const struct pci_device_id nvme_id_table[] = {
3315 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3316 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3317 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3318 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3319 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3320 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3321 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3322 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3323 				NVME_QUIRK_DEALLOCATE_ZEROES |
3324 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3325 				NVME_QUIRK_BOGUS_NID, },
3326 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3327 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3328 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3329 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3330 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3331 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3332 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3333 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3334 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3335 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3336 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3337 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3338 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3339 				NVME_QUIRK_BOGUS_NID, },
3340 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3341 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3342 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3343 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3344 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3345 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3346 				NVME_QUIRK_NO_NS_DESC_LIST, },
3347 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3348 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3349 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3350 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3351 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3352 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3353 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3354 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3355 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3356 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3357 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3358 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3359 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3360 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3361 				NVME_QUIRK_BOGUS_NID, },
3362 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3363 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3364 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3365 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3366 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3367 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3368 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3369 				NVME_QUIRK_BOGUS_NID, },
3370 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3371 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3372 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3373 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3374 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3375 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3376 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3377 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3378 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3379 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3380 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3381 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3382 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3383 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3384 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3385 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3386 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3387 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3388 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3389 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3390 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3391 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3392 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3393 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3394 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3395 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3396 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3397 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3398 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3399 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3400 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3401 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3402 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3403 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3404 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3405 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3406 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3407 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3408 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3409 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3410 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3411 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3412 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3413 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3414 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3415 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3416 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3417 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3418 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3419 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3420 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3421 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3422 		.driver_data = NVME_QUIRK_BOGUS_NID |
3423 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3424 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3425 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3426 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3427 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3428 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3429 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3430 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3431 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3432 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3433 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3434 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3435 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3436 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3437 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3438 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3439 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3440 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3441 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3442 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3443 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3444 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3445 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3446 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3447 				NVME_QUIRK_128_BYTES_SQES |
3448 				NVME_QUIRK_SHARED_TAGS |
3449 				NVME_QUIRK_SKIP_CID_GEN },
3450 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3451 	{ 0, }
3452 };
3453 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3454 
3455 static struct pci_driver nvme_driver = {
3456 	.name		= "nvme",
3457 	.id_table	= nvme_id_table,
3458 	.probe		= nvme_probe,
3459 	.remove		= nvme_remove,
3460 	.shutdown	= nvme_shutdown,
3461 #ifdef CONFIG_PM_SLEEP
3462 	.driver		= {
3463 		.pm	= &nvme_dev_pm_ops,
3464 	},
3465 #endif
3466 	.sriov_configure = pci_sriov_configure_simple,
3467 	.err_handler	= &nvme_err_handler,
3468 };
3469 
nvme_init(void)3470 static int __init nvme_init(void)
3471 {
3472 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3473 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3474 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3475 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3476 
3477 	return pci_register_driver(&nvme_driver);
3478 }
3479 
nvme_exit(void)3480 static void __exit nvme_exit(void)
3481 {
3482 	pci_unregister_driver(&nvme_driver);
3483 	flush_workqueue(nvme_wq);
3484 }
3485 
3486 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3487 MODULE_LICENSE("GPL");
3488 MODULE_VERSION("1.0");
3489 module_init(nvme_init);
3490 module_exit(nvme_exit);
3491