• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/inet.h>
15 #include <linux/llist.h>
16 #include <crypto/hash.h>
17 
18 #include "nvmet.h"
19 
20 #define NVMET_TCP_DEF_INLINE_DATA_SIZE	(4 * PAGE_SIZE)
21 #define NVMET_TCP_MAXH2CDATA		0x400000 /* 16M arbitrary limit */
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority");
32 
33 /* Define a time period (in usecs) that io_work() shall sample an activated
34  * queue before determining it to be idle.  This optional module behavior
35  * can enable NIC solutions that support socket optimized packet processing
36  * using advanced interrupt moderation techniques.
37  */
38 static int idle_poll_period_usecs;
39 module_param(idle_poll_period_usecs, int, 0644);
40 MODULE_PARM_DESC(idle_poll_period_usecs,
41 		"nvmet tcp io_work poll till idle time period in usecs");
42 
43 #define NVMET_TCP_RECV_BUDGET		8
44 #define NVMET_TCP_SEND_BUDGET		8
45 #define NVMET_TCP_IO_WORK_BUDGET	64
46 
47 enum nvmet_tcp_send_state {
48 	NVMET_TCP_SEND_DATA_PDU,
49 	NVMET_TCP_SEND_DATA,
50 	NVMET_TCP_SEND_R2T,
51 	NVMET_TCP_SEND_DDGST,
52 	NVMET_TCP_SEND_RESPONSE
53 };
54 
55 enum nvmet_tcp_recv_state {
56 	NVMET_TCP_RECV_PDU,
57 	NVMET_TCP_RECV_DATA,
58 	NVMET_TCP_RECV_DDGST,
59 	NVMET_TCP_RECV_ERR,
60 };
61 
62 enum {
63 	NVMET_TCP_F_INIT_FAILED = (1 << 0),
64 };
65 
66 struct nvmet_tcp_cmd {
67 	struct nvmet_tcp_queue		*queue;
68 	struct nvmet_req		req;
69 
70 	struct nvme_tcp_cmd_pdu		*cmd_pdu;
71 	struct nvme_tcp_rsp_pdu		*rsp_pdu;
72 	struct nvme_tcp_data_pdu	*data_pdu;
73 	struct nvme_tcp_r2t_pdu		*r2t_pdu;
74 
75 	u32				rbytes_done;
76 	u32				wbytes_done;
77 
78 	u32				pdu_len;
79 	u32				pdu_recv;
80 	int				sg_idx;
81 	int				nr_mapped;
82 	struct msghdr			recv_msg;
83 	struct kvec			*iov;
84 	u32				flags;
85 
86 	struct list_head		entry;
87 	struct llist_node		lentry;
88 
89 	/* send state */
90 	u32				offset;
91 	struct scatterlist		*cur_sg;
92 	enum nvmet_tcp_send_state	state;
93 
94 	__le32				exp_ddgst;
95 	__le32				recv_ddgst;
96 };
97 
98 enum nvmet_tcp_queue_state {
99 	NVMET_TCP_Q_CONNECTING,
100 	NVMET_TCP_Q_LIVE,
101 	NVMET_TCP_Q_DISCONNECTING,
102 };
103 
104 struct nvmet_tcp_queue {
105 	struct socket		*sock;
106 	struct nvmet_tcp_port	*port;
107 	struct work_struct	io_work;
108 	struct nvmet_cq		nvme_cq;
109 	struct nvmet_sq		nvme_sq;
110 
111 	/* send state */
112 	struct nvmet_tcp_cmd	*cmds;
113 	unsigned int		nr_cmds;
114 	struct list_head	free_list;
115 	struct llist_head	resp_list;
116 	struct list_head	resp_send_list;
117 	int			send_list_len;
118 	struct nvmet_tcp_cmd	*snd_cmd;
119 
120 	/* recv state */
121 	int			offset;
122 	int			left;
123 	enum nvmet_tcp_recv_state rcv_state;
124 	struct nvmet_tcp_cmd	*cmd;
125 	union nvme_tcp_pdu	pdu;
126 
127 	/* digest state */
128 	bool			hdr_digest;
129 	bool			data_digest;
130 	struct ahash_request	*snd_hash;
131 	struct ahash_request	*rcv_hash;
132 
133 	unsigned long           poll_end;
134 
135 	spinlock_t		state_lock;
136 	enum nvmet_tcp_queue_state state;
137 
138 	struct sockaddr_storage	sockaddr;
139 	struct sockaddr_storage	sockaddr_peer;
140 	struct work_struct	release_work;
141 
142 	int			idx;
143 	struct list_head	queue_list;
144 
145 	struct nvmet_tcp_cmd	connect;
146 
147 	struct page_frag_cache	pf_cache;
148 
149 	void (*data_ready)(struct sock *);
150 	void (*state_change)(struct sock *);
151 	void (*write_space)(struct sock *);
152 };
153 
154 struct nvmet_tcp_port {
155 	struct socket		*sock;
156 	struct work_struct	accept_work;
157 	struct nvmet_port	*nport;
158 	struct sockaddr_storage addr;
159 	void (*data_ready)(struct sock *);
160 };
161 
162 static DEFINE_IDA(nvmet_tcp_queue_ida);
163 static LIST_HEAD(nvmet_tcp_queue_list);
164 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
165 
166 static struct workqueue_struct *nvmet_tcp_wq;
167 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
168 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
169 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd);
170 
nvmet_tcp_cmd_tag(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd)171 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
172 		struct nvmet_tcp_cmd *cmd)
173 {
174 	if (unlikely(!queue->nr_cmds)) {
175 		/* We didn't allocate cmds yet, send 0xffff */
176 		return USHRT_MAX;
177 	}
178 
179 	return cmd - queue->cmds;
180 }
181 
nvmet_tcp_has_data_in(struct nvmet_tcp_cmd * cmd)182 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
183 {
184 	return nvme_is_write(cmd->req.cmd) &&
185 		cmd->rbytes_done < cmd->req.transfer_len;
186 }
187 
nvmet_tcp_need_data_in(struct nvmet_tcp_cmd * cmd)188 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
189 {
190 	return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
191 }
192 
nvmet_tcp_need_data_out(struct nvmet_tcp_cmd * cmd)193 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
194 {
195 	return !nvme_is_write(cmd->req.cmd) &&
196 		cmd->req.transfer_len > 0 &&
197 		!cmd->req.cqe->status;
198 }
199 
nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd * cmd)200 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
201 {
202 	return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
203 		!cmd->rbytes_done;
204 }
205 
206 static inline struct nvmet_tcp_cmd *
nvmet_tcp_get_cmd(struct nvmet_tcp_queue * queue)207 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
208 {
209 	struct nvmet_tcp_cmd *cmd;
210 
211 	cmd = list_first_entry_or_null(&queue->free_list,
212 				struct nvmet_tcp_cmd, entry);
213 	if (!cmd)
214 		return NULL;
215 	list_del_init(&cmd->entry);
216 
217 	cmd->rbytes_done = cmd->wbytes_done = 0;
218 	cmd->pdu_len = 0;
219 	cmd->pdu_recv = 0;
220 	cmd->iov = NULL;
221 	cmd->flags = 0;
222 	return cmd;
223 }
224 
nvmet_tcp_put_cmd(struct nvmet_tcp_cmd * cmd)225 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
226 {
227 	if (unlikely(cmd == &cmd->queue->connect))
228 		return;
229 
230 	list_add_tail(&cmd->entry, &cmd->queue->free_list);
231 }
232 
queue_cpu(struct nvmet_tcp_queue * queue)233 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
234 {
235 	return queue->sock->sk->sk_incoming_cpu;
236 }
237 
nvmet_tcp_hdgst_len(struct nvmet_tcp_queue * queue)238 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
239 {
240 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
241 }
242 
nvmet_tcp_ddgst_len(struct nvmet_tcp_queue * queue)243 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
244 {
245 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
246 }
247 
nvmet_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)248 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
249 		void *pdu, size_t len)
250 {
251 	struct scatterlist sg;
252 
253 	sg_init_one(&sg, pdu, len);
254 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
255 	crypto_ahash_digest(hash);
256 }
257 
nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue * queue,void * pdu,size_t len)258 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
259 	void *pdu, size_t len)
260 {
261 	struct nvme_tcp_hdr *hdr = pdu;
262 	__le32 recv_digest;
263 	__le32 exp_digest;
264 
265 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
266 		pr_err("queue %d: header digest enabled but no header digest\n",
267 			queue->idx);
268 		return -EPROTO;
269 	}
270 
271 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
272 	nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
273 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
274 	if (recv_digest != exp_digest) {
275 		pr_err("queue %d: header digest error: recv %#x expected %#x\n",
276 			queue->idx, le32_to_cpu(recv_digest),
277 			le32_to_cpu(exp_digest));
278 		return -EPROTO;
279 	}
280 
281 	return 0;
282 }
283 
nvmet_tcp_check_ddgst(struct nvmet_tcp_queue * queue,void * pdu)284 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
285 {
286 	struct nvme_tcp_hdr *hdr = pdu;
287 	u8 digest_len = nvmet_tcp_hdgst_len(queue);
288 	u32 len;
289 
290 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
291 		(hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
292 
293 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
294 		pr_err("queue %d: data digest flag is cleared\n", queue->idx);
295 		return -EPROTO;
296 	}
297 
298 	return 0;
299 }
300 
nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd * cmd)301 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd)
302 {
303 	struct scatterlist *sg;
304 	int i;
305 
306 	sg = &cmd->req.sg[cmd->sg_idx];
307 
308 	for (i = 0; i < cmd->nr_mapped; i++)
309 		kunmap(sg_page(&sg[i]));
310 }
311 
nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd * cmd)312 static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd)
313 {
314 	struct kvec *iov = cmd->iov;
315 	struct scatterlist *sg;
316 	u32 length, offset, sg_offset;
317 
318 	length = cmd->pdu_len;
319 	cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE);
320 	offset = cmd->rbytes_done;
321 	cmd->sg_idx = offset / PAGE_SIZE;
322 	sg_offset = offset % PAGE_SIZE;
323 	sg = &cmd->req.sg[cmd->sg_idx];
324 
325 	while (length) {
326 		u32 iov_len = min_t(u32, length, sg->length - sg_offset);
327 
328 		iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset;
329 		iov->iov_len = iov_len;
330 
331 		length -= iov_len;
332 		sg = sg_next(sg);
333 		iov++;
334 		sg_offset = 0;
335 	}
336 
337 	iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov,
338 		cmd->nr_mapped, cmd->pdu_len);
339 }
340 
nvmet_tcp_fatal_error(struct nvmet_tcp_queue * queue)341 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
342 {
343 	queue->rcv_state = NVMET_TCP_RECV_ERR;
344 	if (queue->nvme_sq.ctrl)
345 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
346 	else
347 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
348 }
349 
nvmet_tcp_socket_error(struct nvmet_tcp_queue * queue,int status)350 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
351 {
352 	queue->rcv_state = NVMET_TCP_RECV_ERR;
353 	if (status == -EPIPE || status == -ECONNRESET)
354 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
355 	else
356 		nvmet_tcp_fatal_error(queue);
357 }
358 
nvmet_tcp_map_data(struct nvmet_tcp_cmd * cmd)359 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
360 {
361 	struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
362 	u32 len = le32_to_cpu(sgl->length);
363 
364 	if (!len)
365 		return 0;
366 
367 	if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
368 			  NVME_SGL_FMT_OFFSET)) {
369 		if (!nvme_is_write(cmd->req.cmd))
370 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
371 
372 		if (len > cmd->req.port->inline_data_size)
373 			return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
374 		cmd->pdu_len = len;
375 	}
376 	cmd->req.transfer_len += len;
377 
378 	cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
379 	if (!cmd->req.sg)
380 		return NVME_SC_INTERNAL;
381 	cmd->cur_sg = cmd->req.sg;
382 
383 	if (nvmet_tcp_has_data_in(cmd)) {
384 		cmd->iov = kmalloc_array(cmd->req.sg_cnt,
385 				sizeof(*cmd->iov), GFP_KERNEL);
386 		if (!cmd->iov)
387 			goto err;
388 	}
389 
390 	return 0;
391 err:
392 	sgl_free(cmd->req.sg);
393 	return NVME_SC_INTERNAL;
394 }
395 
nvmet_tcp_send_ddgst(struct ahash_request * hash,struct nvmet_tcp_cmd * cmd)396 static void nvmet_tcp_send_ddgst(struct ahash_request *hash,
397 		struct nvmet_tcp_cmd *cmd)
398 {
399 	ahash_request_set_crypt(hash, cmd->req.sg,
400 		(void *)&cmd->exp_ddgst, cmd->req.transfer_len);
401 	crypto_ahash_digest(hash);
402 }
403 
nvmet_tcp_recv_ddgst(struct ahash_request * hash,struct nvmet_tcp_cmd * cmd)404 static void nvmet_tcp_recv_ddgst(struct ahash_request *hash,
405 		struct nvmet_tcp_cmd *cmd)
406 {
407 	struct scatterlist sg;
408 	struct kvec *iov;
409 	int i;
410 
411 	crypto_ahash_init(hash);
412 	for (i = 0, iov = cmd->iov; i < cmd->nr_mapped; i++, iov++) {
413 		sg_init_one(&sg, iov->iov_base, iov->iov_len);
414 		ahash_request_set_crypt(hash, &sg, NULL, iov->iov_len);
415 		crypto_ahash_update(hash);
416 	}
417 	ahash_request_set_crypt(hash, NULL, (void *)&cmd->exp_ddgst, 0);
418 	crypto_ahash_final(hash);
419 }
420 
nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd * cmd)421 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
422 {
423 	struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
424 	struct nvmet_tcp_queue *queue = cmd->queue;
425 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
426 	u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
427 
428 	cmd->offset = 0;
429 	cmd->state = NVMET_TCP_SEND_DATA_PDU;
430 
431 	pdu->hdr.type = nvme_tcp_c2h_data;
432 	pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
433 						NVME_TCP_F_DATA_SUCCESS : 0);
434 	pdu->hdr.hlen = sizeof(*pdu);
435 	pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
436 	pdu->hdr.plen =
437 		cpu_to_le32(pdu->hdr.hlen + hdgst +
438 				cmd->req.transfer_len + ddgst);
439 	pdu->command_id = cmd->req.cqe->command_id;
440 	pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
441 	pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
442 
443 	if (queue->data_digest) {
444 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
445 		nvmet_tcp_send_ddgst(queue->snd_hash, cmd);
446 	}
447 
448 	if (cmd->queue->hdr_digest) {
449 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
450 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
451 	}
452 }
453 
nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd * cmd)454 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
455 {
456 	struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
457 	struct nvmet_tcp_queue *queue = cmd->queue;
458 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
459 
460 	cmd->offset = 0;
461 	cmd->state = NVMET_TCP_SEND_R2T;
462 
463 	pdu->hdr.type = nvme_tcp_r2t;
464 	pdu->hdr.flags = 0;
465 	pdu->hdr.hlen = sizeof(*pdu);
466 	pdu->hdr.pdo = 0;
467 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
468 
469 	pdu->command_id = cmd->req.cmd->common.command_id;
470 	pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
471 	pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
472 	pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
473 	if (cmd->queue->hdr_digest) {
474 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
475 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
476 	}
477 }
478 
nvmet_setup_response_pdu(struct nvmet_tcp_cmd * cmd)479 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
480 {
481 	struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
482 	struct nvmet_tcp_queue *queue = cmd->queue;
483 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
484 
485 	cmd->offset = 0;
486 	cmd->state = NVMET_TCP_SEND_RESPONSE;
487 
488 	pdu->hdr.type = nvme_tcp_rsp;
489 	pdu->hdr.flags = 0;
490 	pdu->hdr.hlen = sizeof(*pdu);
491 	pdu->hdr.pdo = 0;
492 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
493 	if (cmd->queue->hdr_digest) {
494 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
495 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
496 	}
497 }
498 
nvmet_tcp_process_resp_list(struct nvmet_tcp_queue * queue)499 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
500 {
501 	struct llist_node *node;
502 	struct nvmet_tcp_cmd *cmd;
503 
504 	for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
505 		cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
506 		list_add(&cmd->entry, &queue->resp_send_list);
507 		queue->send_list_len++;
508 	}
509 }
510 
nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue * queue)511 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
512 {
513 	queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
514 				struct nvmet_tcp_cmd, entry);
515 	if (!queue->snd_cmd) {
516 		nvmet_tcp_process_resp_list(queue);
517 		queue->snd_cmd =
518 			list_first_entry_or_null(&queue->resp_send_list,
519 					struct nvmet_tcp_cmd, entry);
520 		if (unlikely(!queue->snd_cmd))
521 			return NULL;
522 	}
523 
524 	list_del_init(&queue->snd_cmd->entry);
525 	queue->send_list_len--;
526 
527 	if (nvmet_tcp_need_data_out(queue->snd_cmd))
528 		nvmet_setup_c2h_data_pdu(queue->snd_cmd);
529 	else if (nvmet_tcp_need_data_in(queue->snd_cmd))
530 		nvmet_setup_r2t_pdu(queue->snd_cmd);
531 	else
532 		nvmet_setup_response_pdu(queue->snd_cmd);
533 
534 	return queue->snd_cmd;
535 }
536 
nvmet_tcp_queue_response(struct nvmet_req * req)537 static void nvmet_tcp_queue_response(struct nvmet_req *req)
538 {
539 	struct nvmet_tcp_cmd *cmd =
540 		container_of(req, struct nvmet_tcp_cmd, req);
541 	struct nvmet_tcp_queue	*queue = cmd->queue;
542 	struct nvme_sgl_desc *sgl;
543 	u32 len;
544 
545 	if (unlikely(cmd == queue->cmd)) {
546 		sgl = &cmd->req.cmd->common.dptr.sgl;
547 		len = le32_to_cpu(sgl->length);
548 
549 		/*
550 		 * Wait for inline data before processing the response.
551 		 * Avoid using helpers, this might happen before
552 		 * nvmet_req_init is completed.
553 		 */
554 		if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
555 		    len && len <= cmd->req.port->inline_data_size &&
556 		    nvme_is_write(cmd->req.cmd))
557 			return;
558 	}
559 
560 	llist_add(&cmd->lentry, &queue->resp_list);
561 	queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
562 }
563 
nvmet_tcp_execute_request(struct nvmet_tcp_cmd * cmd)564 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
565 {
566 	if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
567 		nvmet_tcp_queue_response(&cmd->req);
568 	else
569 		cmd->req.execute(&cmd->req);
570 }
571 
nvmet_try_send_data_pdu(struct nvmet_tcp_cmd * cmd)572 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
573 {
574 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
575 	int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
576 	int ret;
577 
578 	ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu),
579 			offset_in_page(cmd->data_pdu) + cmd->offset,
580 			left, MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
581 	if (ret <= 0)
582 		return ret;
583 
584 	cmd->offset += ret;
585 	left -= ret;
586 
587 	if (left)
588 		return -EAGAIN;
589 
590 	cmd->state = NVMET_TCP_SEND_DATA;
591 	cmd->offset  = 0;
592 	return 1;
593 }
594 
nvmet_try_send_data(struct nvmet_tcp_cmd * cmd,bool last_in_batch)595 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
596 {
597 	struct nvmet_tcp_queue *queue = cmd->queue;
598 	int ret;
599 
600 	while (cmd->cur_sg) {
601 		struct page *page = sg_page(cmd->cur_sg);
602 		u32 left = cmd->cur_sg->length - cmd->offset;
603 		int flags = MSG_DONTWAIT;
604 
605 		if ((!last_in_batch && cmd->queue->send_list_len) ||
606 		    cmd->wbytes_done + left < cmd->req.transfer_len ||
607 		    queue->data_digest || !queue->nvme_sq.sqhd_disabled)
608 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
609 
610 		ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset,
611 					left, flags);
612 		if (ret <= 0)
613 			return ret;
614 
615 		cmd->offset += ret;
616 		cmd->wbytes_done += ret;
617 
618 		/* Done with sg?*/
619 		if (cmd->offset == cmd->cur_sg->length) {
620 			cmd->cur_sg = sg_next(cmd->cur_sg);
621 			cmd->offset = 0;
622 		}
623 	}
624 
625 	if (queue->data_digest) {
626 		cmd->state = NVMET_TCP_SEND_DDGST;
627 		cmd->offset = 0;
628 	} else {
629 		if (queue->nvme_sq.sqhd_disabled) {
630 			cmd->queue->snd_cmd = NULL;
631 			nvmet_tcp_put_cmd(cmd);
632 		} else {
633 			nvmet_setup_response_pdu(cmd);
634 		}
635 	}
636 
637 	if (queue->nvme_sq.sqhd_disabled) {
638 		kfree(cmd->iov);
639 		sgl_free(cmd->req.sg);
640 	}
641 
642 	return 1;
643 
644 }
645 
nvmet_try_send_response(struct nvmet_tcp_cmd * cmd,bool last_in_batch)646 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
647 		bool last_in_batch)
648 {
649 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
650 	int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
651 	int flags = MSG_DONTWAIT;
652 	int ret;
653 
654 	if (!last_in_batch && cmd->queue->send_list_len)
655 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
656 	else
657 		flags |= MSG_EOR;
658 
659 	ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu),
660 		offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags);
661 	if (ret <= 0)
662 		return ret;
663 	cmd->offset += ret;
664 	left -= ret;
665 
666 	if (left)
667 		return -EAGAIN;
668 
669 	kfree(cmd->iov);
670 	sgl_free(cmd->req.sg);
671 	cmd->queue->snd_cmd = NULL;
672 	nvmet_tcp_put_cmd(cmd);
673 	return 1;
674 }
675 
nvmet_try_send_r2t(struct nvmet_tcp_cmd * cmd,bool last_in_batch)676 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
677 {
678 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
679 	int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
680 	int flags = MSG_DONTWAIT;
681 	int ret;
682 
683 	if (!last_in_batch && cmd->queue->send_list_len)
684 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
685 	else
686 		flags |= MSG_EOR;
687 
688 	ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu),
689 		offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags);
690 	if (ret <= 0)
691 		return ret;
692 	cmd->offset += ret;
693 	left -= ret;
694 
695 	if (left)
696 		return -EAGAIN;
697 
698 	cmd->queue->snd_cmd = NULL;
699 	return 1;
700 }
701 
nvmet_try_send_ddgst(struct nvmet_tcp_cmd * cmd,bool last_in_batch)702 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
703 {
704 	struct nvmet_tcp_queue *queue = cmd->queue;
705 	int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
706 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
707 	struct kvec iov = {
708 		.iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
709 		.iov_len = left
710 	};
711 	int ret;
712 
713 	if (!last_in_batch && cmd->queue->send_list_len)
714 		msg.msg_flags |= MSG_MORE;
715 	else
716 		msg.msg_flags |= MSG_EOR;
717 
718 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
719 	if (unlikely(ret <= 0))
720 		return ret;
721 
722 	cmd->offset += ret;
723 	left -= ret;
724 
725 	if (left)
726 		return -EAGAIN;
727 
728 	if (queue->nvme_sq.sqhd_disabled) {
729 		cmd->queue->snd_cmd = NULL;
730 		nvmet_tcp_put_cmd(cmd);
731 	} else {
732 		nvmet_setup_response_pdu(cmd);
733 	}
734 	return 1;
735 }
736 
nvmet_tcp_try_send_one(struct nvmet_tcp_queue * queue,bool last_in_batch)737 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
738 		bool last_in_batch)
739 {
740 	struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
741 	int ret = 0;
742 
743 	if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
744 		cmd = nvmet_tcp_fetch_cmd(queue);
745 		if (unlikely(!cmd))
746 			return 0;
747 	}
748 
749 	if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
750 		ret = nvmet_try_send_data_pdu(cmd);
751 		if (ret <= 0)
752 			goto done_send;
753 	}
754 
755 	if (cmd->state == NVMET_TCP_SEND_DATA) {
756 		ret = nvmet_try_send_data(cmd, last_in_batch);
757 		if (ret <= 0)
758 			goto done_send;
759 	}
760 
761 	if (cmd->state == NVMET_TCP_SEND_DDGST) {
762 		ret = nvmet_try_send_ddgst(cmd, last_in_batch);
763 		if (ret <= 0)
764 			goto done_send;
765 	}
766 
767 	if (cmd->state == NVMET_TCP_SEND_R2T) {
768 		ret = nvmet_try_send_r2t(cmd, last_in_batch);
769 		if (ret <= 0)
770 			goto done_send;
771 	}
772 
773 	if (cmd->state == NVMET_TCP_SEND_RESPONSE)
774 		ret = nvmet_try_send_response(cmd, last_in_batch);
775 
776 done_send:
777 	if (ret < 0) {
778 		if (ret == -EAGAIN)
779 			return 0;
780 		return ret;
781 	}
782 
783 	return 1;
784 }
785 
nvmet_tcp_try_send(struct nvmet_tcp_queue * queue,int budget,int * sends)786 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
787 		int budget, int *sends)
788 {
789 	int i, ret = 0;
790 
791 	for (i = 0; i < budget; i++) {
792 		ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
793 		if (unlikely(ret < 0)) {
794 			nvmet_tcp_socket_error(queue, ret);
795 			goto done;
796 		} else if (ret == 0) {
797 			break;
798 		}
799 		(*sends)++;
800 	}
801 done:
802 	return ret;
803 }
804 
nvmet_prepare_receive_pdu(struct nvmet_tcp_queue * queue)805 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
806 {
807 	queue->offset = 0;
808 	queue->left = sizeof(struct nvme_tcp_hdr);
809 	queue->cmd = NULL;
810 	queue->rcv_state = NVMET_TCP_RECV_PDU;
811 }
812 
nvmet_tcp_free_crypto(struct nvmet_tcp_queue * queue)813 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
814 {
815 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
816 
817 	ahash_request_free(queue->rcv_hash);
818 	ahash_request_free(queue->snd_hash);
819 	crypto_free_ahash(tfm);
820 }
821 
nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue * queue)822 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
823 {
824 	struct crypto_ahash *tfm;
825 
826 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
827 	if (IS_ERR(tfm))
828 		return PTR_ERR(tfm);
829 
830 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
831 	if (!queue->snd_hash)
832 		goto free_tfm;
833 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
834 
835 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
836 	if (!queue->rcv_hash)
837 		goto free_snd_hash;
838 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
839 
840 	return 0;
841 free_snd_hash:
842 	ahash_request_free(queue->snd_hash);
843 free_tfm:
844 	crypto_free_ahash(tfm);
845 	return -ENOMEM;
846 }
847 
848 
nvmet_tcp_handle_icreq(struct nvmet_tcp_queue * queue)849 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
850 {
851 	struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
852 	struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
853 	struct msghdr msg = {};
854 	struct kvec iov;
855 	int ret;
856 
857 	if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
858 		pr_err("bad nvme-tcp pdu length (%d)\n",
859 			le32_to_cpu(icreq->hdr.plen));
860 		nvmet_tcp_fatal_error(queue);
861 	}
862 
863 	if (icreq->pfv != NVME_TCP_PFV_1_0) {
864 		pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
865 		return -EPROTO;
866 	}
867 
868 	if (icreq->hpda != 0) {
869 		pr_err("queue %d: unsupported hpda %d\n", queue->idx,
870 			icreq->hpda);
871 		return -EPROTO;
872 	}
873 
874 	queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
875 	queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
876 	if (queue->hdr_digest || queue->data_digest) {
877 		ret = nvmet_tcp_alloc_crypto(queue);
878 		if (ret)
879 			return ret;
880 	}
881 
882 	memset(icresp, 0, sizeof(*icresp));
883 	icresp->hdr.type = nvme_tcp_icresp;
884 	icresp->hdr.hlen = sizeof(*icresp);
885 	icresp->hdr.pdo = 0;
886 	icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
887 	icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
888 	icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA);
889 	icresp->cpda = 0;
890 	if (queue->hdr_digest)
891 		icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
892 	if (queue->data_digest)
893 		icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
894 
895 	iov.iov_base = icresp;
896 	iov.iov_len = sizeof(*icresp);
897 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
898 	if (ret < 0)
899 		return ret; /* queue removal will cleanup */
900 
901 	queue->state = NVMET_TCP_Q_LIVE;
902 	nvmet_prepare_receive_pdu(queue);
903 	return 0;
904 }
905 
nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd,struct nvmet_req * req)906 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
907 		struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
908 {
909 	size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
910 	int ret;
911 
912 	if (!nvme_is_write(cmd->req.cmd) ||
913 	    data_len > cmd->req.port->inline_data_size) {
914 		nvmet_prepare_receive_pdu(queue);
915 		return;
916 	}
917 
918 	ret = nvmet_tcp_map_data(cmd);
919 	if (unlikely(ret)) {
920 		pr_err("queue %d: failed to map data\n", queue->idx);
921 		nvmet_tcp_fatal_error(queue);
922 		return;
923 	}
924 
925 	queue->rcv_state = NVMET_TCP_RECV_DATA;
926 	nvmet_tcp_map_pdu_iovec(cmd);
927 	cmd->flags |= NVMET_TCP_F_INIT_FAILED;
928 }
929 
nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue * queue)930 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
931 {
932 	struct nvme_tcp_data_pdu *data = &queue->pdu.data;
933 	struct nvmet_tcp_cmd *cmd;
934 	unsigned int exp_data_len;
935 
936 	if (likely(queue->nr_cmds)) {
937 		if (unlikely(data->ttag >= queue->nr_cmds)) {
938 			pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
939 				queue->idx, data->ttag, queue->nr_cmds);
940 			nvmet_tcp_fatal_error(queue);
941 			return -EPROTO;
942 		}
943 		cmd = &queue->cmds[data->ttag];
944 	} else {
945 		cmd = &queue->connect;
946 	}
947 
948 	if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
949 		pr_err("ttag %u unexpected data offset %u (expected %u)\n",
950 			data->ttag, le32_to_cpu(data->data_offset),
951 			cmd->rbytes_done);
952 		/* FIXME: use path and transport errors */
953 		nvmet_tcp_fatal_error(queue);
954 		return -EPROTO;
955 	}
956 
957 	exp_data_len = le32_to_cpu(data->hdr.plen) -
958 			nvmet_tcp_hdgst_len(queue) -
959 			nvmet_tcp_ddgst_len(queue) -
960 			sizeof(*data);
961 
962 	cmd->pdu_len = le32_to_cpu(data->data_length);
963 	if (unlikely(cmd->pdu_len != exp_data_len ||
964 		     cmd->pdu_len == 0 ||
965 		     cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) {
966 		pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len);
967 		/* FIXME: use proper transport errors */
968 		nvmet_tcp_fatal_error(queue);
969 		return -EPROTO;
970 	}
971 	cmd->pdu_recv = 0;
972 	nvmet_tcp_map_pdu_iovec(cmd);
973 	queue->cmd = cmd;
974 	queue->rcv_state = NVMET_TCP_RECV_DATA;
975 
976 	return 0;
977 }
978 
nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue * queue)979 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
980 {
981 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
982 	struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
983 	struct nvmet_req *req;
984 	int ret;
985 
986 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
987 		if (hdr->type != nvme_tcp_icreq) {
988 			pr_err("unexpected pdu type (%d) before icreq\n",
989 				hdr->type);
990 			nvmet_tcp_fatal_error(queue);
991 			return -EPROTO;
992 		}
993 		return nvmet_tcp_handle_icreq(queue);
994 	}
995 
996 	if (hdr->type == nvme_tcp_h2c_data) {
997 		ret = nvmet_tcp_handle_h2c_data_pdu(queue);
998 		if (unlikely(ret))
999 			return ret;
1000 		return 0;
1001 	}
1002 
1003 	queue->cmd = nvmet_tcp_get_cmd(queue);
1004 	if (unlikely(!queue->cmd)) {
1005 		/* This should never happen */
1006 		pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
1007 			queue->idx, queue->nr_cmds, queue->send_list_len,
1008 			nvme_cmd->common.opcode);
1009 		nvmet_tcp_fatal_error(queue);
1010 		return -ENOMEM;
1011 	}
1012 
1013 	req = &queue->cmd->req;
1014 	memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1015 
1016 	if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1017 			&queue->nvme_sq, &nvmet_tcp_ops))) {
1018 		pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1019 			req->cmd, req->cmd->common.command_id,
1020 			req->cmd->common.opcode,
1021 			le32_to_cpu(req->cmd->common.dptr.sgl.length));
1022 
1023 		nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1024 		return 0;
1025 	}
1026 
1027 	ret = nvmet_tcp_map_data(queue->cmd);
1028 	if (unlikely(ret)) {
1029 		pr_err("queue %d: failed to map data\n", queue->idx);
1030 		if (nvmet_tcp_has_inline_data(queue->cmd))
1031 			nvmet_tcp_fatal_error(queue);
1032 		else
1033 			nvmet_req_complete(req, ret);
1034 		ret = -EAGAIN;
1035 		goto out;
1036 	}
1037 
1038 	if (nvmet_tcp_need_data_in(queue->cmd)) {
1039 		if (nvmet_tcp_has_inline_data(queue->cmd)) {
1040 			queue->rcv_state = NVMET_TCP_RECV_DATA;
1041 			nvmet_tcp_map_pdu_iovec(queue->cmd);
1042 			return 0;
1043 		}
1044 		/* send back R2T */
1045 		nvmet_tcp_queue_response(&queue->cmd->req);
1046 		goto out;
1047 	}
1048 
1049 	queue->cmd->req.execute(&queue->cmd->req);
1050 out:
1051 	nvmet_prepare_receive_pdu(queue);
1052 	return ret;
1053 }
1054 
1055 static const u8 nvme_tcp_pdu_sizes[] = {
1056 	[nvme_tcp_icreq]	= sizeof(struct nvme_tcp_icreq_pdu),
1057 	[nvme_tcp_cmd]		= sizeof(struct nvme_tcp_cmd_pdu),
1058 	[nvme_tcp_h2c_data]	= sizeof(struct nvme_tcp_data_pdu),
1059 };
1060 
nvmet_tcp_pdu_size(u8 type)1061 static inline u8 nvmet_tcp_pdu_size(u8 type)
1062 {
1063 	size_t idx = type;
1064 
1065 	return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1066 		nvme_tcp_pdu_sizes[idx]) ?
1067 			nvme_tcp_pdu_sizes[idx] : 0;
1068 }
1069 
nvmet_tcp_pdu_valid(u8 type)1070 static inline bool nvmet_tcp_pdu_valid(u8 type)
1071 {
1072 	switch (type) {
1073 	case nvme_tcp_icreq:
1074 	case nvme_tcp_cmd:
1075 	case nvme_tcp_h2c_data:
1076 		/* fallthru */
1077 		return true;
1078 	}
1079 
1080 	return false;
1081 }
1082 
nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue * queue)1083 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1084 {
1085 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1086 	int len;
1087 	struct kvec iov;
1088 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1089 
1090 recv:
1091 	iov.iov_base = (void *)&queue->pdu + queue->offset;
1092 	iov.iov_len = queue->left;
1093 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1094 			iov.iov_len, msg.msg_flags);
1095 	if (unlikely(len < 0))
1096 		return len;
1097 
1098 	queue->offset += len;
1099 	queue->left -= len;
1100 	if (queue->left)
1101 		return -EAGAIN;
1102 
1103 	if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1104 		u8 hdgst = nvmet_tcp_hdgst_len(queue);
1105 
1106 		if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1107 			pr_err("unexpected pdu type %d\n", hdr->type);
1108 			nvmet_tcp_fatal_error(queue);
1109 			return -EIO;
1110 		}
1111 
1112 		if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1113 			pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1114 			return -EIO;
1115 		}
1116 
1117 		queue->left = hdr->hlen - queue->offset + hdgst;
1118 		goto recv;
1119 	}
1120 
1121 	if (queue->hdr_digest &&
1122 	    nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1123 		nvmet_tcp_fatal_error(queue); /* fatal */
1124 		return -EPROTO;
1125 	}
1126 
1127 	if (queue->data_digest &&
1128 	    nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1129 		nvmet_tcp_fatal_error(queue); /* fatal */
1130 		return -EPROTO;
1131 	}
1132 
1133 	return nvmet_tcp_done_recv_pdu(queue);
1134 }
1135 
nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd * cmd)1136 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1137 {
1138 	struct nvmet_tcp_queue *queue = cmd->queue;
1139 
1140 	nvmet_tcp_recv_ddgst(queue->rcv_hash, cmd);
1141 	queue->offset = 0;
1142 	queue->left = NVME_TCP_DIGEST_LENGTH;
1143 	queue->rcv_state = NVMET_TCP_RECV_DDGST;
1144 }
1145 
nvmet_tcp_try_recv_data(struct nvmet_tcp_queue * queue)1146 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1147 {
1148 	struct nvmet_tcp_cmd  *cmd = queue->cmd;
1149 	int ret;
1150 
1151 	while (msg_data_left(&cmd->recv_msg)) {
1152 		ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1153 			cmd->recv_msg.msg_flags);
1154 		if (ret <= 0)
1155 			return ret;
1156 
1157 		cmd->pdu_recv += ret;
1158 		cmd->rbytes_done += ret;
1159 	}
1160 
1161 	nvmet_tcp_unmap_pdu_iovec(cmd);
1162 	if (queue->data_digest) {
1163 		nvmet_tcp_prep_recv_ddgst(cmd);
1164 		return 0;
1165 	}
1166 
1167 	if (cmd->rbytes_done == cmd->req.transfer_len)
1168 		nvmet_tcp_execute_request(cmd);
1169 
1170 	nvmet_prepare_receive_pdu(queue);
1171 	return 0;
1172 }
1173 
nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue * queue)1174 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1175 {
1176 	struct nvmet_tcp_cmd *cmd = queue->cmd;
1177 	int ret;
1178 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1179 	struct kvec iov = {
1180 		.iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1181 		.iov_len = queue->left
1182 	};
1183 
1184 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1185 			iov.iov_len, msg.msg_flags);
1186 	if (unlikely(ret < 0))
1187 		return ret;
1188 
1189 	queue->offset += ret;
1190 	queue->left -= ret;
1191 	if (queue->left)
1192 		return -EAGAIN;
1193 
1194 	if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1195 		pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1196 			queue->idx, cmd->req.cmd->common.command_id,
1197 			queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1198 			le32_to_cpu(cmd->exp_ddgst));
1199 		nvmet_tcp_finish_cmd(cmd);
1200 		nvmet_tcp_fatal_error(queue);
1201 		ret = -EPROTO;
1202 		goto out;
1203 	}
1204 
1205 	if (cmd->rbytes_done == cmd->req.transfer_len)
1206 		nvmet_tcp_execute_request(cmd);
1207 
1208 	ret = 0;
1209 out:
1210 	nvmet_prepare_receive_pdu(queue);
1211 	return ret;
1212 }
1213 
nvmet_tcp_try_recv_one(struct nvmet_tcp_queue * queue)1214 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1215 {
1216 	int result = 0;
1217 
1218 	if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1219 		return 0;
1220 
1221 	if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1222 		result = nvmet_tcp_try_recv_pdu(queue);
1223 		if (result != 0)
1224 			goto done_recv;
1225 	}
1226 
1227 	if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1228 		result = nvmet_tcp_try_recv_data(queue);
1229 		if (result != 0)
1230 			goto done_recv;
1231 	}
1232 
1233 	if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1234 		result = nvmet_tcp_try_recv_ddgst(queue);
1235 		if (result != 0)
1236 			goto done_recv;
1237 	}
1238 
1239 done_recv:
1240 	if (result < 0) {
1241 		if (result == -EAGAIN)
1242 			return 0;
1243 		return result;
1244 	}
1245 	return 1;
1246 }
1247 
nvmet_tcp_try_recv(struct nvmet_tcp_queue * queue,int budget,int * recvs)1248 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1249 		int budget, int *recvs)
1250 {
1251 	int i, ret = 0;
1252 
1253 	for (i = 0; i < budget; i++) {
1254 		ret = nvmet_tcp_try_recv_one(queue);
1255 		if (unlikely(ret < 0)) {
1256 			nvmet_tcp_socket_error(queue, ret);
1257 			goto done;
1258 		} else if (ret == 0) {
1259 			break;
1260 		}
1261 		(*recvs)++;
1262 	}
1263 done:
1264 	return ret;
1265 }
1266 
nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue * queue)1267 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1268 {
1269 	spin_lock(&queue->state_lock);
1270 	if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1271 		queue->state = NVMET_TCP_Q_DISCONNECTING;
1272 		queue_work(nvmet_wq, &queue->release_work);
1273 	}
1274 	spin_unlock(&queue->state_lock);
1275 }
1276 
nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue * queue)1277 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1278 {
1279 	queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1280 }
1281 
nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue * queue,int ops)1282 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1283 		int ops)
1284 {
1285 	if (!idle_poll_period_usecs)
1286 		return false;
1287 
1288 	if (ops)
1289 		nvmet_tcp_arm_queue_deadline(queue);
1290 
1291 	return !time_after(jiffies, queue->poll_end);
1292 }
1293 
nvmet_tcp_io_work(struct work_struct * w)1294 static void nvmet_tcp_io_work(struct work_struct *w)
1295 {
1296 	struct nvmet_tcp_queue *queue =
1297 		container_of(w, struct nvmet_tcp_queue, io_work);
1298 	bool pending;
1299 	int ret, ops = 0;
1300 
1301 	do {
1302 		pending = false;
1303 
1304 		ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1305 		if (ret > 0)
1306 			pending = true;
1307 		else if (ret < 0)
1308 			return;
1309 
1310 		ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1311 		if (ret > 0)
1312 			pending = true;
1313 		else if (ret < 0)
1314 			return;
1315 
1316 	} while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1317 
1318 	/*
1319 	 * Requeue the worker if idle deadline period is in progress or any
1320 	 * ops activity was recorded during the do-while loop above.
1321 	 */
1322 	if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1323 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1324 }
1325 
nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * c)1326 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1327 		struct nvmet_tcp_cmd *c)
1328 {
1329 	u8 hdgst = nvmet_tcp_hdgst_len(queue);
1330 
1331 	c->queue = queue;
1332 	c->req.port = queue->port->nport;
1333 
1334 	c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1335 			sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1336 	if (!c->cmd_pdu)
1337 		return -ENOMEM;
1338 	c->req.cmd = &c->cmd_pdu->cmd;
1339 
1340 	c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1341 			sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1342 	if (!c->rsp_pdu)
1343 		goto out_free_cmd;
1344 	c->req.cqe = &c->rsp_pdu->cqe;
1345 
1346 	c->data_pdu = page_frag_alloc(&queue->pf_cache,
1347 			sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1348 	if (!c->data_pdu)
1349 		goto out_free_rsp;
1350 
1351 	c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1352 			sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1353 	if (!c->r2t_pdu)
1354 		goto out_free_data;
1355 
1356 	c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1357 
1358 	list_add_tail(&c->entry, &queue->free_list);
1359 
1360 	return 0;
1361 out_free_data:
1362 	page_frag_free(c->data_pdu);
1363 out_free_rsp:
1364 	page_frag_free(c->rsp_pdu);
1365 out_free_cmd:
1366 	page_frag_free(c->cmd_pdu);
1367 	return -ENOMEM;
1368 }
1369 
nvmet_tcp_free_cmd(struct nvmet_tcp_cmd * c)1370 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1371 {
1372 	page_frag_free(c->r2t_pdu);
1373 	page_frag_free(c->data_pdu);
1374 	page_frag_free(c->rsp_pdu);
1375 	page_frag_free(c->cmd_pdu);
1376 }
1377 
nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue * queue)1378 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1379 {
1380 	struct nvmet_tcp_cmd *cmds;
1381 	int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1382 
1383 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1384 	if (!cmds)
1385 		goto out;
1386 
1387 	for (i = 0; i < nr_cmds; i++) {
1388 		ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1389 		if (ret)
1390 			goto out_free;
1391 	}
1392 
1393 	queue->cmds = cmds;
1394 
1395 	return 0;
1396 out_free:
1397 	while (--i >= 0)
1398 		nvmet_tcp_free_cmd(cmds + i);
1399 	kfree(cmds);
1400 out:
1401 	return ret;
1402 }
1403 
nvmet_tcp_free_cmds(struct nvmet_tcp_queue * queue)1404 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1405 {
1406 	struct nvmet_tcp_cmd *cmds = queue->cmds;
1407 	int i;
1408 
1409 	for (i = 0; i < queue->nr_cmds; i++)
1410 		nvmet_tcp_free_cmd(cmds + i);
1411 
1412 	nvmet_tcp_free_cmd(&queue->connect);
1413 	kfree(cmds);
1414 }
1415 
nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue * queue)1416 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1417 {
1418 	struct socket *sock = queue->sock;
1419 
1420 	write_lock_bh(&sock->sk->sk_callback_lock);
1421 	sock->sk->sk_data_ready =  queue->data_ready;
1422 	sock->sk->sk_state_change = queue->state_change;
1423 	sock->sk->sk_write_space = queue->write_space;
1424 	sock->sk->sk_user_data = NULL;
1425 	write_unlock_bh(&sock->sk->sk_callback_lock);
1426 }
1427 
nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd * cmd)1428 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd)
1429 {
1430 	nvmet_req_uninit(&cmd->req);
1431 	nvmet_tcp_unmap_pdu_iovec(cmd);
1432 	kfree(cmd->iov);
1433 	sgl_free(cmd->req.sg);
1434 }
1435 
nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue * queue)1436 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1437 {
1438 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1439 	int i;
1440 
1441 	for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1442 		if (nvmet_tcp_need_data_in(cmd))
1443 			nvmet_tcp_finish_cmd(cmd);
1444 	}
1445 
1446 	if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1447 		/* failed in connect */
1448 		nvmet_tcp_finish_cmd(&queue->connect);
1449 	}
1450 }
1451 
nvmet_tcp_release_queue_work(struct work_struct * w)1452 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1453 {
1454 	struct page *page;
1455 	struct nvmet_tcp_queue *queue =
1456 		container_of(w, struct nvmet_tcp_queue, release_work);
1457 
1458 	mutex_lock(&nvmet_tcp_queue_mutex);
1459 	list_del_init(&queue->queue_list);
1460 	mutex_unlock(&nvmet_tcp_queue_mutex);
1461 
1462 	nvmet_tcp_restore_socket_callbacks(queue);
1463 	flush_work(&queue->io_work);
1464 
1465 	nvmet_tcp_uninit_data_in_cmds(queue);
1466 	nvmet_sq_destroy(&queue->nvme_sq);
1467 	cancel_work_sync(&queue->io_work);
1468 	sock_release(queue->sock);
1469 	nvmet_tcp_free_cmds(queue);
1470 	if (queue->hdr_digest || queue->data_digest)
1471 		nvmet_tcp_free_crypto(queue);
1472 	ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1473 
1474 	page = virt_to_head_page(queue->pf_cache.va);
1475 	__page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1476 	kfree(queue);
1477 }
1478 
nvmet_tcp_data_ready(struct sock * sk)1479 static void nvmet_tcp_data_ready(struct sock *sk)
1480 {
1481 	struct nvmet_tcp_queue *queue;
1482 
1483 	read_lock_bh(&sk->sk_callback_lock);
1484 	queue = sk->sk_user_data;
1485 	if (likely(queue))
1486 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1487 	read_unlock_bh(&sk->sk_callback_lock);
1488 }
1489 
nvmet_tcp_write_space(struct sock * sk)1490 static void nvmet_tcp_write_space(struct sock *sk)
1491 {
1492 	struct nvmet_tcp_queue *queue;
1493 
1494 	read_lock_bh(&sk->sk_callback_lock);
1495 	queue = sk->sk_user_data;
1496 	if (unlikely(!queue))
1497 		goto out;
1498 
1499 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1500 		queue->write_space(sk);
1501 		goto out;
1502 	}
1503 
1504 	if (sk_stream_is_writeable(sk)) {
1505 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1506 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1507 	}
1508 out:
1509 	read_unlock_bh(&sk->sk_callback_lock);
1510 }
1511 
nvmet_tcp_state_change(struct sock * sk)1512 static void nvmet_tcp_state_change(struct sock *sk)
1513 {
1514 	struct nvmet_tcp_queue *queue;
1515 
1516 	read_lock_bh(&sk->sk_callback_lock);
1517 	queue = sk->sk_user_data;
1518 	if (!queue)
1519 		goto done;
1520 
1521 	switch (sk->sk_state) {
1522 	case TCP_FIN_WAIT2:
1523 	case TCP_LAST_ACK:
1524 		break;
1525 	case TCP_FIN_WAIT1:
1526 	case TCP_CLOSE_WAIT:
1527 	case TCP_CLOSE:
1528 		/* FALLTHRU */
1529 		nvmet_tcp_schedule_release_queue(queue);
1530 		break;
1531 	default:
1532 		pr_warn("queue %d unhandled state %d\n",
1533 			queue->idx, sk->sk_state);
1534 	}
1535 done:
1536 	read_unlock_bh(&sk->sk_callback_lock);
1537 }
1538 
nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue * queue)1539 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1540 {
1541 	struct socket *sock = queue->sock;
1542 	struct inet_sock *inet = inet_sk(sock->sk);
1543 	int ret;
1544 
1545 	ret = kernel_getsockname(sock,
1546 		(struct sockaddr *)&queue->sockaddr);
1547 	if (ret < 0)
1548 		return ret;
1549 
1550 	ret = kernel_getpeername(sock,
1551 		(struct sockaddr *)&queue->sockaddr_peer);
1552 	if (ret < 0)
1553 		return ret;
1554 
1555 	/*
1556 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1557 	 * close. This is done to prevent stale data from being sent should
1558 	 * the network connection be restored before TCP times out.
1559 	 */
1560 	sock_no_linger(sock->sk);
1561 
1562 	if (so_priority > 0)
1563 		sock_set_priority(sock->sk, so_priority);
1564 
1565 	/* Set socket type of service */
1566 	if (inet->rcv_tos > 0)
1567 		ip_sock_set_tos(sock->sk, inet->rcv_tos);
1568 
1569 	ret = 0;
1570 	write_lock_bh(&sock->sk->sk_callback_lock);
1571 	if (sock->sk->sk_state != TCP_ESTABLISHED) {
1572 		/*
1573 		 * If the socket is already closing, don't even start
1574 		 * consuming it
1575 		 */
1576 		ret = -ENOTCONN;
1577 	} else {
1578 		sock->sk->sk_user_data = queue;
1579 		queue->data_ready = sock->sk->sk_data_ready;
1580 		sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1581 		queue->state_change = sock->sk->sk_state_change;
1582 		sock->sk->sk_state_change = nvmet_tcp_state_change;
1583 		queue->write_space = sock->sk->sk_write_space;
1584 		sock->sk->sk_write_space = nvmet_tcp_write_space;
1585 		if (idle_poll_period_usecs)
1586 			nvmet_tcp_arm_queue_deadline(queue);
1587 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1588 	}
1589 	write_unlock_bh(&sock->sk->sk_callback_lock);
1590 
1591 	return ret;
1592 }
1593 
nvmet_tcp_alloc_queue(struct nvmet_tcp_port * port,struct socket * newsock)1594 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1595 		struct socket *newsock)
1596 {
1597 	struct nvmet_tcp_queue *queue;
1598 	int ret;
1599 
1600 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1601 	if (!queue)
1602 		return -ENOMEM;
1603 
1604 	INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1605 	INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1606 	queue->sock = newsock;
1607 	queue->port = port;
1608 	queue->nr_cmds = 0;
1609 	spin_lock_init(&queue->state_lock);
1610 	queue->state = NVMET_TCP_Q_CONNECTING;
1611 	INIT_LIST_HEAD(&queue->free_list);
1612 	init_llist_head(&queue->resp_list);
1613 	INIT_LIST_HEAD(&queue->resp_send_list);
1614 
1615 	queue->idx = ida_simple_get(&nvmet_tcp_queue_ida, 0, 0, GFP_KERNEL);
1616 	if (queue->idx < 0) {
1617 		ret = queue->idx;
1618 		goto out_free_queue;
1619 	}
1620 
1621 	ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1622 	if (ret)
1623 		goto out_ida_remove;
1624 
1625 	ret = nvmet_sq_init(&queue->nvme_sq);
1626 	if (ret)
1627 		goto out_free_connect;
1628 
1629 	nvmet_prepare_receive_pdu(queue);
1630 
1631 	mutex_lock(&nvmet_tcp_queue_mutex);
1632 	list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1633 	mutex_unlock(&nvmet_tcp_queue_mutex);
1634 
1635 	ret = nvmet_tcp_set_queue_sock(queue);
1636 	if (ret)
1637 		goto out_destroy_sq;
1638 
1639 	return 0;
1640 out_destroy_sq:
1641 	mutex_lock(&nvmet_tcp_queue_mutex);
1642 	list_del_init(&queue->queue_list);
1643 	mutex_unlock(&nvmet_tcp_queue_mutex);
1644 	nvmet_sq_destroy(&queue->nvme_sq);
1645 out_free_connect:
1646 	nvmet_tcp_free_cmd(&queue->connect);
1647 out_ida_remove:
1648 	ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1649 out_free_queue:
1650 	kfree(queue);
1651 	return ret;
1652 }
1653 
nvmet_tcp_accept_work(struct work_struct * w)1654 static void nvmet_tcp_accept_work(struct work_struct *w)
1655 {
1656 	struct nvmet_tcp_port *port =
1657 		container_of(w, struct nvmet_tcp_port, accept_work);
1658 	struct socket *newsock;
1659 	int ret;
1660 
1661 	while (true) {
1662 		ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1663 		if (ret < 0) {
1664 			if (ret != -EAGAIN)
1665 				pr_warn("failed to accept err=%d\n", ret);
1666 			return;
1667 		}
1668 		ret = nvmet_tcp_alloc_queue(port, newsock);
1669 		if (ret) {
1670 			pr_err("failed to allocate queue\n");
1671 			sock_release(newsock);
1672 		}
1673 	}
1674 }
1675 
nvmet_tcp_listen_data_ready(struct sock * sk)1676 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1677 {
1678 	struct nvmet_tcp_port *port;
1679 
1680 	read_lock_bh(&sk->sk_callback_lock);
1681 	port = sk->sk_user_data;
1682 	if (!port)
1683 		goto out;
1684 
1685 	if (sk->sk_state == TCP_LISTEN)
1686 		queue_work(nvmet_wq, &port->accept_work);
1687 out:
1688 	read_unlock_bh(&sk->sk_callback_lock);
1689 }
1690 
nvmet_tcp_add_port(struct nvmet_port * nport)1691 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1692 {
1693 	struct nvmet_tcp_port *port;
1694 	__kernel_sa_family_t af;
1695 	int ret;
1696 
1697 	port = kzalloc(sizeof(*port), GFP_KERNEL);
1698 	if (!port)
1699 		return -ENOMEM;
1700 
1701 	switch (nport->disc_addr.adrfam) {
1702 	case NVMF_ADDR_FAMILY_IP4:
1703 		af = AF_INET;
1704 		break;
1705 	case NVMF_ADDR_FAMILY_IP6:
1706 		af = AF_INET6;
1707 		break;
1708 	default:
1709 		pr_err("address family %d not supported\n",
1710 				nport->disc_addr.adrfam);
1711 		ret = -EINVAL;
1712 		goto err_port;
1713 	}
1714 
1715 	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1716 			nport->disc_addr.trsvcid, &port->addr);
1717 	if (ret) {
1718 		pr_err("malformed ip/port passed: %s:%s\n",
1719 			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1720 		goto err_port;
1721 	}
1722 
1723 	port->nport = nport;
1724 	INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1725 	if (port->nport->inline_data_size < 0)
1726 		port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1727 
1728 	ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1729 				IPPROTO_TCP, &port->sock);
1730 	if (ret) {
1731 		pr_err("failed to create a socket\n");
1732 		goto err_port;
1733 	}
1734 
1735 	port->sock->sk->sk_user_data = port;
1736 	port->data_ready = port->sock->sk->sk_data_ready;
1737 	port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1738 	sock_set_reuseaddr(port->sock->sk);
1739 	tcp_sock_set_nodelay(port->sock->sk);
1740 	if (so_priority > 0)
1741 		sock_set_priority(port->sock->sk, so_priority);
1742 
1743 	ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1744 			sizeof(port->addr));
1745 	if (ret) {
1746 		pr_err("failed to bind port socket %d\n", ret);
1747 		goto err_sock;
1748 	}
1749 
1750 	ret = kernel_listen(port->sock, 128);
1751 	if (ret) {
1752 		pr_err("failed to listen %d on port sock\n", ret);
1753 		goto err_sock;
1754 	}
1755 
1756 	nport->priv = port;
1757 	pr_info("enabling port %d (%pISpc)\n",
1758 		le16_to_cpu(nport->disc_addr.portid), &port->addr);
1759 
1760 	return 0;
1761 
1762 err_sock:
1763 	sock_release(port->sock);
1764 err_port:
1765 	kfree(port);
1766 	return ret;
1767 }
1768 
nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port * port)1769 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
1770 {
1771 	struct nvmet_tcp_queue *queue;
1772 
1773 	mutex_lock(&nvmet_tcp_queue_mutex);
1774 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1775 		if (queue->port == port)
1776 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1777 	mutex_unlock(&nvmet_tcp_queue_mutex);
1778 }
1779 
nvmet_tcp_remove_port(struct nvmet_port * nport)1780 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1781 {
1782 	struct nvmet_tcp_port *port = nport->priv;
1783 
1784 	write_lock_bh(&port->sock->sk->sk_callback_lock);
1785 	port->sock->sk->sk_data_ready = port->data_ready;
1786 	port->sock->sk->sk_user_data = NULL;
1787 	write_unlock_bh(&port->sock->sk->sk_callback_lock);
1788 	cancel_work_sync(&port->accept_work);
1789 	/*
1790 	 * Destroy the remaining queues, which are not belong to any
1791 	 * controller yet.
1792 	 */
1793 	nvmet_tcp_destroy_port_queues(port);
1794 
1795 	sock_release(port->sock);
1796 	kfree(port);
1797 }
1798 
nvmet_tcp_delete_ctrl(struct nvmet_ctrl * ctrl)1799 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1800 {
1801 	struct nvmet_tcp_queue *queue;
1802 
1803 	mutex_lock(&nvmet_tcp_queue_mutex);
1804 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1805 		if (queue->nvme_sq.ctrl == ctrl)
1806 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1807 	mutex_unlock(&nvmet_tcp_queue_mutex);
1808 }
1809 
nvmet_tcp_install_queue(struct nvmet_sq * sq)1810 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1811 {
1812 	struct nvmet_tcp_queue *queue =
1813 		container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1814 
1815 	if (sq->qid == 0) {
1816 		/* Let inflight controller teardown complete */
1817 		flush_workqueue(nvmet_wq);
1818 	}
1819 
1820 	queue->nr_cmds = sq->size * 2;
1821 	if (nvmet_tcp_alloc_cmds(queue))
1822 		return NVME_SC_INTERNAL;
1823 	return 0;
1824 }
1825 
nvmet_tcp_disc_port_addr(struct nvmet_req * req,struct nvmet_port * nport,char * traddr)1826 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1827 		struct nvmet_port *nport, char *traddr)
1828 {
1829 	struct nvmet_tcp_port *port = nport->priv;
1830 
1831 	if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1832 		struct nvmet_tcp_cmd *cmd =
1833 			container_of(req, struct nvmet_tcp_cmd, req);
1834 		struct nvmet_tcp_queue *queue = cmd->queue;
1835 
1836 		sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1837 	} else {
1838 		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1839 	}
1840 }
1841 
1842 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
1843 	.owner			= THIS_MODULE,
1844 	.type			= NVMF_TRTYPE_TCP,
1845 	.msdbd			= 1,
1846 	.add_port		= nvmet_tcp_add_port,
1847 	.remove_port		= nvmet_tcp_remove_port,
1848 	.queue_response		= nvmet_tcp_queue_response,
1849 	.delete_ctrl		= nvmet_tcp_delete_ctrl,
1850 	.install_queue		= nvmet_tcp_install_queue,
1851 	.disc_traddr		= nvmet_tcp_disc_port_addr,
1852 };
1853 
nvmet_tcp_init(void)1854 static int __init nvmet_tcp_init(void)
1855 {
1856 	int ret;
1857 
1858 	nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
1859 				WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1860 	if (!nvmet_tcp_wq)
1861 		return -ENOMEM;
1862 
1863 	ret = nvmet_register_transport(&nvmet_tcp_ops);
1864 	if (ret)
1865 		goto err;
1866 
1867 	return 0;
1868 err:
1869 	destroy_workqueue(nvmet_tcp_wq);
1870 	return ret;
1871 }
1872 
nvmet_tcp_exit(void)1873 static void __exit nvmet_tcp_exit(void)
1874 {
1875 	struct nvmet_tcp_queue *queue;
1876 
1877 	nvmet_unregister_transport(&nvmet_tcp_ops);
1878 
1879 	flush_workqueue(nvmet_wq);
1880 	mutex_lock(&nvmet_tcp_queue_mutex);
1881 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1882 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1883 	mutex_unlock(&nvmet_tcp_queue_mutex);
1884 	flush_workqueue(nvmet_wq);
1885 
1886 	destroy_workqueue(nvmet_tcp_wq);
1887 	ida_destroy(&nvmet_tcp_queue_ida);
1888 }
1889 
1890 module_init(nvmet_tcp_init);
1891 module_exit(nvmet_tcp_exit);
1892 
1893 MODULE_LICENSE("GPL v2");
1894 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
1895