• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RTC subsystem, base class
4  *
5  * Copyright (C) 2005 Tower Technologies
6  * Author: Alessandro Zummo <a.zummo@towertech.it>
7  *
8  * class skeleton from drivers/hwmon/hwmon.c
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/rtc.h>
16 #include <linux/kdev_t.h>
17 #include <linux/idr.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 
21 #include "rtc-core.h"
22 
23 static DEFINE_IDA(rtc_ida);
24 struct class *rtc_class;
25 
rtc_device_release(struct device * dev)26 static void rtc_device_release(struct device *dev)
27 {
28 	struct rtc_device *rtc = to_rtc_device(dev);
29 	struct timerqueue_head *head = &rtc->timerqueue;
30 	struct timerqueue_node *node;
31 
32 	mutex_lock(&rtc->ops_lock);
33 	while ((node = timerqueue_getnext(head)))
34 		timerqueue_del(head, node);
35 	mutex_unlock(&rtc->ops_lock);
36 
37 	cancel_work_sync(&rtc->irqwork);
38 
39 	ida_simple_remove(&rtc_ida, rtc->id);
40 	mutex_destroy(&rtc->ops_lock);
41 	kfree(rtc);
42 }
43 
44 #ifdef CONFIG_RTC_HCTOSYS_DEVICE
45 /* Result of the last RTC to system clock attempt. */
46 int rtc_hctosys_ret = -ENODEV;
47 
48 /* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
49  * whether it stores the most close value or the value with partial
50  * seconds truncated. However, it is important that we use it to store
51  * the truncated value. This is because otherwise it is necessary,
52  * in an rtc sync function, to read both xtime.tv_sec and
53  * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
54  * of >32bits is not possible. So storing the most close value would
55  * slow down the sync API. So here we have the truncated value and
56  * the best guess is to add 0.5s.
57  */
58 
rtc_hctosys(struct rtc_device * rtc)59 static void rtc_hctosys(struct rtc_device *rtc)
60 {
61 	int err;
62 	struct rtc_time tm;
63 	struct timespec64 tv64 = {
64 		.tv_nsec = NSEC_PER_SEC >> 1,
65 	};
66 
67 	err = rtc_read_time(rtc, &tm);
68 	if (err) {
69 		dev_err(rtc->dev.parent,
70 			"hctosys: unable to read the hardware clock\n");
71 		goto err_read;
72 	}
73 
74 	tv64.tv_sec = rtc_tm_to_time64(&tm);
75 
76 #if BITS_PER_LONG == 32
77 	if (tv64.tv_sec > INT_MAX) {
78 		err = -ERANGE;
79 		goto err_read;
80 	}
81 #endif
82 
83 	err = do_settimeofday64(&tv64);
84 
85 	dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
86 		 &tm, (long long)tv64.tv_sec);
87 
88 err_read:
89 	rtc_hctosys_ret = err;
90 }
91 #endif
92 
93 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
94 /*
95  * On suspend(), measure the delta between one RTC and the
96  * system's wall clock; restore it on resume().
97  */
98 
99 static struct timespec64 old_rtc, old_system, old_delta;
100 
rtc_suspend(struct device * dev)101 static int rtc_suspend(struct device *dev)
102 {
103 	struct rtc_device	*rtc = to_rtc_device(dev);
104 	struct rtc_time		tm;
105 	struct timespec64	delta, delta_delta;
106 	int err;
107 
108 	if (timekeeping_rtc_skipsuspend())
109 		return 0;
110 
111 	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
112 		return 0;
113 
114 	/* snapshot the current RTC and system time at suspend*/
115 	err = rtc_read_time(rtc, &tm);
116 	if (err < 0) {
117 		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
118 		return 0;
119 	}
120 
121 	ktime_get_real_ts64(&old_system);
122 	old_rtc.tv_sec = rtc_tm_to_time64(&tm);
123 
124 	/*
125 	 * To avoid drift caused by repeated suspend/resumes,
126 	 * which each can add ~1 second drift error,
127 	 * try to compensate so the difference in system time
128 	 * and rtc time stays close to constant.
129 	 */
130 	delta = timespec64_sub(old_system, old_rtc);
131 	delta_delta = timespec64_sub(delta, old_delta);
132 	if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
133 		/*
134 		 * if delta_delta is too large, assume time correction
135 		 * has occurred and set old_delta to the current delta.
136 		 */
137 		old_delta = delta;
138 	} else {
139 		/* Otherwise try to adjust old_system to compensate */
140 		old_system = timespec64_sub(old_system, delta_delta);
141 	}
142 
143 	return 0;
144 }
145 
rtc_resume(struct device * dev)146 static int rtc_resume(struct device *dev)
147 {
148 	struct rtc_device	*rtc = to_rtc_device(dev);
149 	struct rtc_time		tm;
150 	struct timespec64	new_system, new_rtc;
151 	struct timespec64	sleep_time;
152 	int err;
153 
154 	if (timekeeping_rtc_skipresume())
155 		return 0;
156 
157 	rtc_hctosys_ret = -ENODEV;
158 	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
159 		return 0;
160 
161 	/* snapshot the current rtc and system time at resume */
162 	ktime_get_real_ts64(&new_system);
163 	err = rtc_read_time(rtc, &tm);
164 	if (err < 0) {
165 		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
166 		return 0;
167 	}
168 
169 	new_rtc.tv_sec = rtc_tm_to_time64(&tm);
170 	new_rtc.tv_nsec = 0;
171 
172 	if (new_rtc.tv_sec < old_rtc.tv_sec) {
173 		pr_debug("%s:  time travel!\n", dev_name(&rtc->dev));
174 		return 0;
175 	}
176 
177 	/* calculate the RTC time delta (sleep time)*/
178 	sleep_time = timespec64_sub(new_rtc, old_rtc);
179 
180 	/*
181 	 * Since these RTC suspend/resume handlers are not called
182 	 * at the very end of suspend or the start of resume,
183 	 * some run-time may pass on either sides of the sleep time
184 	 * so subtract kernel run-time between rtc_suspend to rtc_resume
185 	 * to keep things accurate.
186 	 */
187 	sleep_time = timespec64_sub(sleep_time,
188 				    timespec64_sub(new_system, old_system));
189 
190 	if (sleep_time.tv_sec >= 0)
191 		timekeeping_inject_sleeptime64(&sleep_time);
192 	rtc_hctosys_ret = 0;
193 	return 0;
194 }
195 
196 static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
197 #define RTC_CLASS_DEV_PM_OPS	(&rtc_class_dev_pm_ops)
198 #else
199 #define RTC_CLASS_DEV_PM_OPS	NULL
200 #endif
201 
202 /* Ensure the caller will set the id before releasing the device */
rtc_allocate_device(void)203 static struct rtc_device *rtc_allocate_device(void)
204 {
205 	struct rtc_device *rtc;
206 
207 	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
208 	if (!rtc)
209 		return NULL;
210 
211 	device_initialize(&rtc->dev);
212 
213 	/*
214 	 * Drivers can revise this default after allocating the device.
215 	 * The default is what most RTCs do: Increment seconds exactly one
216 	 * second after the write happened. This adds a default transport
217 	 * time of 5ms which is at least halfways close to reality.
218 	 */
219 	rtc->set_offset_nsec = NSEC_PER_SEC + 5 * NSEC_PER_MSEC;
220 
221 	rtc->irq_freq = 1;
222 	rtc->max_user_freq = 64;
223 	rtc->dev.class = rtc_class;
224 	rtc->dev.groups = rtc_get_dev_attribute_groups();
225 	rtc->dev.release = rtc_device_release;
226 
227 	mutex_init(&rtc->ops_lock);
228 	spin_lock_init(&rtc->irq_lock);
229 	init_waitqueue_head(&rtc->irq_queue);
230 
231 	/* Init timerqueue */
232 	timerqueue_init_head(&rtc->timerqueue);
233 	INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
234 	/* Init aie timer */
235 	rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
236 	/* Init uie timer */
237 	rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
238 	/* Init pie timer */
239 	hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
240 	rtc->pie_timer.function = rtc_pie_update_irq;
241 	rtc->pie_enabled = 0;
242 
243 	set_bit(RTC_FEATURE_ALARM, rtc->features);
244 
245 	return rtc;
246 }
247 
rtc_device_get_id(struct device * dev)248 static int rtc_device_get_id(struct device *dev)
249 {
250 	int of_id = -1, id = -1;
251 
252 	if (dev->of_node)
253 		of_id = of_alias_get_id(dev->of_node, "rtc");
254 	else if (dev->parent && dev->parent->of_node)
255 		of_id = of_alias_get_id(dev->parent->of_node, "rtc");
256 
257 	if (of_id >= 0) {
258 		id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
259 		if (id < 0)
260 			dev_warn(dev, "/aliases ID %d not available\n", of_id);
261 	}
262 
263 	if (id < 0)
264 		id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
265 
266 	return id;
267 }
268 
rtc_device_get_offset(struct rtc_device * rtc)269 static void rtc_device_get_offset(struct rtc_device *rtc)
270 {
271 	time64_t range_secs;
272 	u32 start_year;
273 	int ret;
274 
275 	/*
276 	 * If RTC driver did not implement the range of RTC hardware device,
277 	 * then we can not expand the RTC range by adding or subtracting one
278 	 * offset.
279 	 */
280 	if (rtc->range_min == rtc->range_max)
281 		return;
282 
283 	ret = device_property_read_u32(rtc->dev.parent, "start-year",
284 				       &start_year);
285 	if (!ret) {
286 		rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
287 		rtc->set_start_time = true;
288 	}
289 
290 	/*
291 	 * If user did not implement the start time for RTC driver, then no
292 	 * need to expand the RTC range.
293 	 */
294 	if (!rtc->set_start_time)
295 		return;
296 
297 	range_secs = rtc->range_max - rtc->range_min + 1;
298 
299 	/*
300 	 * If the start_secs is larger than the maximum seconds (rtc->range_max)
301 	 * supported by RTC hardware or the maximum seconds of new expanded
302 	 * range (start_secs + rtc->range_max - rtc->range_min) is less than
303 	 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
304 	 * RTC hardware will be mapped to start_secs by adding one offset, so
305 	 * the offset seconds calculation formula should be:
306 	 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
307 	 *
308 	 * If the start_secs is larger than the minimum seconds (rtc->range_min)
309 	 * supported by RTC hardware, then there is one region is overlapped
310 	 * between the original RTC hardware range and the new expanded range,
311 	 * and this overlapped region do not need to be mapped into the new
312 	 * expanded range due to it is valid for RTC device. So the minimum
313 	 * seconds of RTC hardware (rtc->range_min) should be mapped to
314 	 * rtc->range_max + 1, then the offset seconds formula should be:
315 	 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
316 	 *
317 	 * If the start_secs is less than the minimum seconds (rtc->range_min),
318 	 * which is similar to case 2. So the start_secs should be mapped to
319 	 * start_secs + rtc->range_max - rtc->range_min + 1, then the
320 	 * offset seconds formula should be:
321 	 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
322 	 *
323 	 * Otherwise the offset seconds should be 0.
324 	 */
325 	if (rtc->start_secs > rtc->range_max ||
326 	    rtc->start_secs + range_secs - 1 < rtc->range_min)
327 		rtc->offset_secs = rtc->start_secs - rtc->range_min;
328 	else if (rtc->start_secs > rtc->range_min)
329 		rtc->offset_secs = range_secs;
330 	else if (rtc->start_secs < rtc->range_min)
331 		rtc->offset_secs = -range_secs;
332 	else
333 		rtc->offset_secs = 0;
334 }
335 
devm_rtc_unregister_device(void * data)336 static void devm_rtc_unregister_device(void *data)
337 {
338 	struct rtc_device *rtc = data;
339 
340 	mutex_lock(&rtc->ops_lock);
341 	/*
342 	 * Remove innards of this RTC, then disable it, before
343 	 * letting any rtc_class_open() users access it again
344 	 */
345 	rtc_proc_del_device(rtc);
346 	cdev_device_del(&rtc->char_dev, &rtc->dev);
347 	rtc->ops = NULL;
348 	mutex_unlock(&rtc->ops_lock);
349 }
350 
devm_rtc_release_device(void * res)351 static void devm_rtc_release_device(void *res)
352 {
353 	struct rtc_device *rtc = res;
354 
355 	put_device(&rtc->dev);
356 }
357 
devm_rtc_allocate_device(struct device * dev)358 struct rtc_device *devm_rtc_allocate_device(struct device *dev)
359 {
360 	struct rtc_device *rtc;
361 	int id, err;
362 
363 	id = rtc_device_get_id(dev);
364 	if (id < 0)
365 		return ERR_PTR(id);
366 
367 	rtc = rtc_allocate_device();
368 	if (!rtc) {
369 		ida_simple_remove(&rtc_ida, id);
370 		return ERR_PTR(-ENOMEM);
371 	}
372 
373 	rtc->id = id;
374 	rtc->dev.parent = dev;
375 	dev_set_name(&rtc->dev, "rtc%d", id);
376 
377 	err = devm_add_action_or_reset(dev, devm_rtc_release_device, rtc);
378 	if (err)
379 		return ERR_PTR(err);
380 
381 	return rtc;
382 }
383 EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
384 
__devm_rtc_register_device(struct module * owner,struct rtc_device * rtc)385 int __devm_rtc_register_device(struct module *owner, struct rtc_device *rtc)
386 {
387 	struct rtc_wkalrm alrm;
388 	int err;
389 
390 	if (!rtc->ops) {
391 		dev_dbg(&rtc->dev, "no ops set\n");
392 		return -EINVAL;
393 	}
394 
395 	if (!rtc->ops->set_alarm)
396 		clear_bit(RTC_FEATURE_ALARM, rtc->features);
397 
398 	rtc->owner = owner;
399 	rtc_device_get_offset(rtc);
400 
401 	/* Check to see if there is an ALARM already set in hw */
402 	err = __rtc_read_alarm(rtc, &alrm);
403 	if (!err && !rtc_valid_tm(&alrm.time))
404 		rtc_initialize_alarm(rtc, &alrm);
405 
406 	rtc_dev_prepare(rtc);
407 
408 	err = cdev_device_add(&rtc->char_dev, &rtc->dev);
409 	if (err)
410 		dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
411 			 MAJOR(rtc->dev.devt), rtc->id);
412 	else
413 		dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
414 			MAJOR(rtc->dev.devt), rtc->id);
415 
416 	rtc_proc_add_device(rtc);
417 
418 	dev_info(rtc->dev.parent, "registered as %s\n",
419 		 dev_name(&rtc->dev));
420 
421 #ifdef CONFIG_RTC_HCTOSYS_DEVICE
422 	if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
423 		rtc_hctosys(rtc);
424 #endif
425 
426 	return devm_add_action_or_reset(rtc->dev.parent,
427 					devm_rtc_unregister_device, rtc);
428 }
429 EXPORT_SYMBOL_GPL(__devm_rtc_register_device);
430 
431 /**
432  * devm_rtc_device_register - resource managed rtc_device_register()
433  * @dev: the device to register
434  * @name: the name of the device (unused)
435  * @ops: the rtc operations structure
436  * @owner: the module owner
437  *
438  * @return a struct rtc on success, or an ERR_PTR on error
439  *
440  * Managed rtc_device_register(). The rtc_device returned from this function
441  * are automatically freed on driver detach.
442  * This function is deprecated, use devm_rtc_allocate_device and
443  * rtc_register_device instead
444  */
devm_rtc_device_register(struct device * dev,const char * name,const struct rtc_class_ops * ops,struct module * owner)445 struct rtc_device *devm_rtc_device_register(struct device *dev,
446 					    const char *name,
447 					    const struct rtc_class_ops *ops,
448 					    struct module *owner)
449 {
450 	struct rtc_device *rtc;
451 	int err;
452 
453 	rtc = devm_rtc_allocate_device(dev);
454 	if (IS_ERR(rtc))
455 		return rtc;
456 
457 	rtc->ops = ops;
458 
459 	err = __devm_rtc_register_device(owner, rtc);
460 	if (err)
461 		return ERR_PTR(err);
462 
463 	return rtc;
464 }
465 EXPORT_SYMBOL_GPL(devm_rtc_device_register);
466 
rtc_init(void)467 static int __init rtc_init(void)
468 {
469 	rtc_class = class_create(THIS_MODULE, "rtc");
470 	if (IS_ERR(rtc_class)) {
471 		pr_err("couldn't create class\n");
472 		return PTR_ERR(rtc_class);
473 	}
474 	rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
475 	rtc_dev_init();
476 	return 0;
477 }
478 subsys_initcall(rtc_init);
479