• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Driver for NEC VR4100 series Real Time Clock unit.
4  *
5  *  Copyright (C) 2003-2008  Yoichi Yuasa <yuasa@linux-mips.org>
6  */
7 #include <linux/compat.h>
8 #include <linux/err.h>
9 #include <linux/fs.h>
10 #include <linux/init.h>
11 #include <linux/io.h>
12 #include <linux/ioport.h>
13 #include <linux/interrupt.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/rtc.h>
17 #include <linux/spinlock.h>
18 #include <linux/types.h>
19 #include <linux/uaccess.h>
20 #include <linux/log2.h>
21 
22 #include <asm/div64.h>
23 
24 MODULE_AUTHOR("Yoichi Yuasa <yuasa@linux-mips.org>");
25 MODULE_DESCRIPTION("NEC VR4100 series RTC driver");
26 MODULE_LICENSE("GPL v2");
27 
28 /* RTC 1 registers */
29 #define ETIMELREG		0x00
30 #define ETIMEMREG		0x02
31 #define ETIMEHREG		0x04
32 /* RFU */
33 #define ECMPLREG		0x08
34 #define ECMPMREG		0x0a
35 #define ECMPHREG		0x0c
36 /* RFU */
37 #define RTCL1LREG		0x10
38 #define RTCL1HREG		0x12
39 #define RTCL1CNTLREG		0x14
40 #define RTCL1CNTHREG		0x16
41 #define RTCL2LREG		0x18
42 #define RTCL2HREG		0x1a
43 #define RTCL2CNTLREG		0x1c
44 #define RTCL2CNTHREG		0x1e
45 
46 /* RTC 2 registers */
47 #define TCLKLREG		0x00
48 #define TCLKHREG		0x02
49 #define TCLKCNTLREG		0x04
50 #define TCLKCNTHREG		0x06
51 /* RFU */
52 #define RTCINTREG		0x1e
53  #define TCLOCK_INT		0x08
54  #define RTCLONG2_INT		0x04
55  #define RTCLONG1_INT		0x02
56  #define ELAPSEDTIME_INT	0x01
57 
58 #define RTC_FREQUENCY		32768
59 #define MAX_PERIODIC_RATE	6553
60 
61 static void __iomem *rtc1_base;
62 static void __iomem *rtc2_base;
63 
64 #define rtc1_read(offset)		readw(rtc1_base + (offset))
65 #define rtc1_write(offset, value)	writew((value), rtc1_base + (offset))
66 
67 #define rtc2_read(offset)		readw(rtc2_base + (offset))
68 #define rtc2_write(offset, value)	writew((value), rtc2_base + (offset))
69 
70 /* 32-bit compat for ioctls that nobody else uses */
71 #define RTC_EPOCH_READ32	_IOR('p', 0x0d, __u32)
72 
73 static unsigned long epoch = 1970;	/* Jan 1 1970 00:00:00 */
74 
75 static DEFINE_SPINLOCK(rtc_lock);
76 static char rtc_name[] = "RTC";
77 static unsigned long periodic_count;
78 static unsigned int alarm_enabled;
79 static int aie_irq;
80 static int pie_irq;
81 
read_elapsed_second(void)82 static inline time64_t read_elapsed_second(void)
83 {
84 
85 	unsigned long first_low, first_mid, first_high;
86 
87 	unsigned long second_low, second_mid, second_high;
88 
89 	do {
90 		first_low = rtc1_read(ETIMELREG);
91 		first_mid = rtc1_read(ETIMEMREG);
92 		first_high = rtc1_read(ETIMEHREG);
93 		second_low = rtc1_read(ETIMELREG);
94 		second_mid = rtc1_read(ETIMEMREG);
95 		second_high = rtc1_read(ETIMEHREG);
96 	} while (first_low != second_low || first_mid != second_mid ||
97 		 first_high != second_high);
98 
99 	return ((u64)first_high << 17) | (first_mid << 1) | (first_low >> 15);
100 }
101 
write_elapsed_second(time64_t sec)102 static inline void write_elapsed_second(time64_t sec)
103 {
104 	spin_lock_irq(&rtc_lock);
105 
106 	rtc1_write(ETIMELREG, (uint16_t)(sec << 15));
107 	rtc1_write(ETIMEMREG, (uint16_t)(sec >> 1));
108 	rtc1_write(ETIMEHREG, (uint16_t)(sec >> 17));
109 
110 	spin_unlock_irq(&rtc_lock);
111 }
112 
vr41xx_rtc_read_time(struct device * dev,struct rtc_time * time)113 static int vr41xx_rtc_read_time(struct device *dev, struct rtc_time *time)
114 {
115 	time64_t epoch_sec, elapsed_sec;
116 
117 	epoch_sec = mktime64(epoch, 1, 1, 0, 0, 0);
118 	elapsed_sec = read_elapsed_second();
119 
120 	rtc_time64_to_tm(epoch_sec + elapsed_sec, time);
121 
122 	return 0;
123 }
124 
vr41xx_rtc_set_time(struct device * dev,struct rtc_time * time)125 static int vr41xx_rtc_set_time(struct device *dev, struct rtc_time *time)
126 {
127 	time64_t epoch_sec, current_sec;
128 
129 	epoch_sec = mktime64(epoch, 1, 1, 0, 0, 0);
130 	current_sec = rtc_tm_to_time64(time);
131 
132 	write_elapsed_second(current_sec - epoch_sec);
133 
134 	return 0;
135 }
136 
vr41xx_rtc_read_alarm(struct device * dev,struct rtc_wkalrm * wkalrm)137 static int vr41xx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
138 {
139 	unsigned long low, mid, high;
140 	struct rtc_time *time = &wkalrm->time;
141 
142 	spin_lock_irq(&rtc_lock);
143 
144 	low = rtc1_read(ECMPLREG);
145 	mid = rtc1_read(ECMPMREG);
146 	high = rtc1_read(ECMPHREG);
147 	wkalrm->enabled = alarm_enabled;
148 
149 	spin_unlock_irq(&rtc_lock);
150 
151 	rtc_time64_to_tm((high << 17) | (mid << 1) | (low >> 15), time);
152 
153 	return 0;
154 }
155 
vr41xx_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * wkalrm)156 static int vr41xx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
157 {
158 	time64_t alarm_sec;
159 
160 	alarm_sec = rtc_tm_to_time64(&wkalrm->time);
161 
162 	spin_lock_irq(&rtc_lock);
163 
164 	if (alarm_enabled)
165 		disable_irq(aie_irq);
166 
167 	rtc1_write(ECMPLREG, (uint16_t)(alarm_sec << 15));
168 	rtc1_write(ECMPMREG, (uint16_t)(alarm_sec >> 1));
169 	rtc1_write(ECMPHREG, (uint16_t)(alarm_sec >> 17));
170 
171 	if (wkalrm->enabled)
172 		enable_irq(aie_irq);
173 
174 	alarm_enabled = wkalrm->enabled;
175 
176 	spin_unlock_irq(&rtc_lock);
177 
178 	return 0;
179 }
180 
vr41xx_rtc_ioctl(struct device * dev,unsigned int cmd,unsigned long arg)181 static int vr41xx_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
182 {
183 	switch (cmd) {
184 	case RTC_EPOCH_READ:
185 		return put_user(epoch, (unsigned long __user *)arg);
186 #ifdef CONFIG_64BIT
187 	case RTC_EPOCH_READ32:
188 		return put_user(epoch, (unsigned int __user *)arg);
189 #endif
190 	case RTC_EPOCH_SET:
191 		/* Doesn't support before 1900 */
192 		if (arg < 1900)
193 			return -EINVAL;
194 		epoch = arg;
195 		break;
196 	default:
197 		return -ENOIOCTLCMD;
198 	}
199 
200 	return 0;
201 }
202 
vr41xx_rtc_alarm_irq_enable(struct device * dev,unsigned int enabled)203 static int vr41xx_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
204 {
205 	spin_lock_irq(&rtc_lock);
206 	if (enabled) {
207 		if (!alarm_enabled) {
208 			enable_irq(aie_irq);
209 			alarm_enabled = 1;
210 		}
211 	} else {
212 		if (alarm_enabled) {
213 			disable_irq(aie_irq);
214 			alarm_enabled = 0;
215 		}
216 	}
217 	spin_unlock_irq(&rtc_lock);
218 	return 0;
219 }
220 
elapsedtime_interrupt(int irq,void * dev_id)221 static irqreturn_t elapsedtime_interrupt(int irq, void *dev_id)
222 {
223 	struct platform_device *pdev = (struct platform_device *)dev_id;
224 	struct rtc_device *rtc = platform_get_drvdata(pdev);
225 
226 	rtc2_write(RTCINTREG, ELAPSEDTIME_INT);
227 
228 	rtc_update_irq(rtc, 1, RTC_AF);
229 
230 	return IRQ_HANDLED;
231 }
232 
rtclong1_interrupt(int irq,void * dev_id)233 static irqreturn_t rtclong1_interrupt(int irq, void *dev_id)
234 {
235 	struct platform_device *pdev = (struct platform_device *)dev_id;
236 	struct rtc_device *rtc = platform_get_drvdata(pdev);
237 	unsigned long count = periodic_count;
238 
239 	rtc2_write(RTCINTREG, RTCLONG1_INT);
240 
241 	rtc1_write(RTCL1LREG, count);
242 	rtc1_write(RTCL1HREG, count >> 16);
243 
244 	rtc_update_irq(rtc, 1, RTC_PF);
245 
246 	return IRQ_HANDLED;
247 }
248 
249 static const struct rtc_class_ops vr41xx_rtc_ops = {
250 	.ioctl			= vr41xx_rtc_ioctl,
251 	.read_time		= vr41xx_rtc_read_time,
252 	.set_time		= vr41xx_rtc_set_time,
253 	.read_alarm		= vr41xx_rtc_read_alarm,
254 	.set_alarm		= vr41xx_rtc_set_alarm,
255 	.alarm_irq_enable	= vr41xx_rtc_alarm_irq_enable,
256 };
257 
rtc_probe(struct platform_device * pdev)258 static int rtc_probe(struct platform_device *pdev)
259 {
260 	struct resource *res;
261 	struct rtc_device *rtc;
262 	int retval;
263 
264 	if (pdev->num_resources != 4)
265 		return -EBUSY;
266 
267 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
268 	if (!res)
269 		return -EBUSY;
270 
271 	rtc1_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
272 	if (!rtc1_base)
273 		return -EBUSY;
274 
275 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
276 	if (!res) {
277 		retval = -EBUSY;
278 		goto err_rtc1_iounmap;
279 	}
280 
281 	rtc2_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
282 	if (!rtc2_base) {
283 		retval = -EBUSY;
284 		goto err_rtc1_iounmap;
285 	}
286 
287 	rtc = devm_rtc_allocate_device(&pdev->dev);
288 	if (IS_ERR(rtc)) {
289 		retval = PTR_ERR(rtc);
290 		goto err_iounmap_all;
291 	}
292 
293 	rtc->ops = &vr41xx_rtc_ops;
294 
295 	/* 48-bit counter at 32.768 kHz */
296 	rtc->range_max = (1ULL << 33) - 1;
297 	rtc->max_user_freq = MAX_PERIODIC_RATE;
298 
299 	spin_lock_irq(&rtc_lock);
300 
301 	rtc1_write(ECMPLREG, 0);
302 	rtc1_write(ECMPMREG, 0);
303 	rtc1_write(ECMPHREG, 0);
304 	rtc1_write(RTCL1LREG, 0);
305 	rtc1_write(RTCL1HREG, 0);
306 
307 	spin_unlock_irq(&rtc_lock);
308 
309 	aie_irq = platform_get_irq(pdev, 0);
310 	if (aie_irq <= 0) {
311 		retval = -EBUSY;
312 		goto err_iounmap_all;
313 	}
314 
315 	retval = devm_request_irq(&pdev->dev, aie_irq, elapsedtime_interrupt, 0,
316 				"elapsed_time", pdev);
317 	if (retval < 0)
318 		goto err_iounmap_all;
319 
320 	pie_irq = platform_get_irq(pdev, 1);
321 	if (pie_irq <= 0) {
322 		retval = -EBUSY;
323 		goto err_iounmap_all;
324 	}
325 
326 	retval = devm_request_irq(&pdev->dev, pie_irq, rtclong1_interrupt, 0,
327 				"rtclong1", pdev);
328 	if (retval < 0)
329 		goto err_iounmap_all;
330 
331 	platform_set_drvdata(pdev, rtc);
332 
333 	disable_irq(aie_irq);
334 	disable_irq(pie_irq);
335 
336 	dev_info(&pdev->dev, "Real Time Clock of NEC VR4100 series\n");
337 
338 	retval = devm_rtc_register_device(rtc);
339 	if (retval)
340 		goto err_iounmap_all;
341 
342 	return 0;
343 
344 err_iounmap_all:
345 	rtc2_base = NULL;
346 
347 err_rtc1_iounmap:
348 	rtc1_base = NULL;
349 
350 	return retval;
351 }
352 
353 /* work with hotplug and coldplug */
354 MODULE_ALIAS("platform:RTC");
355 
356 static struct platform_driver rtc_platform_driver = {
357 	.probe		= rtc_probe,
358 	.driver		= {
359 		.name	= rtc_name,
360 	},
361 };
362 
363 module_platform_driver(rtc_platform_driver);
364