1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55
56 #include <scsi/scsi_cmnd.h>
57 #include "isci.h"
58 #include "task.h"
59 #include "request.h"
60 #include "scu_completion_codes.h"
61 #include "scu_event_codes.h"
62 #include "sas.h"
63
64 #undef C
65 #define C(a) (#a)
req_state_name(enum sci_base_request_states state)66 const char *req_state_name(enum sci_base_request_states state)
67 {
68 static const char * const strings[] = REQUEST_STATES;
69
70 return strings[state];
71 }
72 #undef C
73
to_sgl_element_pair(struct isci_request * ireq,int idx)74 static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
75 int idx)
76 {
77 if (idx == 0)
78 return &ireq->tc->sgl_pair_ab;
79 else if (idx == 1)
80 return &ireq->tc->sgl_pair_cd;
81 else if (idx < 0)
82 return NULL;
83 else
84 return &ireq->sg_table[idx - 2];
85 }
86
to_sgl_element_pair_dma(struct isci_host * ihost,struct isci_request * ireq,u32 idx)87 static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
88 struct isci_request *ireq, u32 idx)
89 {
90 u32 offset;
91
92 if (idx == 0) {
93 offset = (void *) &ireq->tc->sgl_pair_ab -
94 (void *) &ihost->task_context_table[0];
95 return ihost->tc_dma + offset;
96 } else if (idx == 1) {
97 offset = (void *) &ireq->tc->sgl_pair_cd -
98 (void *) &ihost->task_context_table[0];
99 return ihost->tc_dma + offset;
100 }
101
102 return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
103 }
104
init_sgl_element(struct scu_sgl_element * e,struct scatterlist * sg)105 static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
106 {
107 e->length = sg_dma_len(sg);
108 e->address_upper = upper_32_bits(sg_dma_address(sg));
109 e->address_lower = lower_32_bits(sg_dma_address(sg));
110 e->address_modifier = 0;
111 }
112
sci_request_build_sgl(struct isci_request * ireq)113 static void sci_request_build_sgl(struct isci_request *ireq)
114 {
115 struct isci_host *ihost = ireq->isci_host;
116 struct sas_task *task = isci_request_access_task(ireq);
117 struct scatterlist *sg = NULL;
118 dma_addr_t dma_addr;
119 u32 sg_idx = 0;
120 struct scu_sgl_element_pair *scu_sg = NULL;
121 struct scu_sgl_element_pair *prev_sg = NULL;
122
123 if (task->num_scatter > 0) {
124 sg = task->scatter;
125
126 while (sg) {
127 scu_sg = to_sgl_element_pair(ireq, sg_idx);
128 init_sgl_element(&scu_sg->A, sg);
129 sg = sg_next(sg);
130 if (sg) {
131 init_sgl_element(&scu_sg->B, sg);
132 sg = sg_next(sg);
133 } else
134 memset(&scu_sg->B, 0, sizeof(scu_sg->B));
135
136 if (prev_sg) {
137 dma_addr = to_sgl_element_pair_dma(ihost,
138 ireq,
139 sg_idx);
140
141 prev_sg->next_pair_upper =
142 upper_32_bits(dma_addr);
143 prev_sg->next_pair_lower =
144 lower_32_bits(dma_addr);
145 }
146
147 prev_sg = scu_sg;
148 sg_idx++;
149 }
150 } else { /* handle when no sg */
151 scu_sg = to_sgl_element_pair(ireq, sg_idx);
152
153 dma_addr = dma_map_single(&ihost->pdev->dev,
154 task->scatter,
155 task->total_xfer_len,
156 task->data_dir);
157
158 ireq->zero_scatter_daddr = dma_addr;
159
160 scu_sg->A.length = task->total_xfer_len;
161 scu_sg->A.address_upper = upper_32_bits(dma_addr);
162 scu_sg->A.address_lower = lower_32_bits(dma_addr);
163 }
164
165 if (scu_sg) {
166 scu_sg->next_pair_upper = 0;
167 scu_sg->next_pair_lower = 0;
168 }
169 }
170
sci_io_request_build_ssp_command_iu(struct isci_request * ireq)171 static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
172 {
173 struct ssp_cmd_iu *cmd_iu;
174 struct sas_task *task = isci_request_access_task(ireq);
175
176 cmd_iu = &ireq->ssp.cmd;
177
178 memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
179 cmd_iu->add_cdb_len = 0;
180 cmd_iu->_r_a = 0;
181 cmd_iu->_r_b = 0;
182 cmd_iu->en_fburst = 0; /* unsupported */
183 cmd_iu->task_prio = task->ssp_task.task_prio;
184 cmd_iu->task_attr = task->ssp_task.task_attr;
185 cmd_iu->_r_c = 0;
186
187 sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cmd->cmnd,
188 (task->ssp_task.cmd->cmd_len+3) / sizeof(u32));
189 }
190
sci_task_request_build_ssp_task_iu(struct isci_request * ireq)191 static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
192 {
193 struct ssp_task_iu *task_iu;
194 struct sas_task *task = isci_request_access_task(ireq);
195 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
196
197 task_iu = &ireq->ssp.tmf;
198
199 memset(task_iu, 0, sizeof(struct ssp_task_iu));
200
201 memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
202
203 task_iu->task_func = isci_tmf->tmf_code;
204 task_iu->task_tag =
205 (test_bit(IREQ_TMF, &ireq->flags)) ?
206 isci_tmf->io_tag :
207 SCI_CONTROLLER_INVALID_IO_TAG;
208 }
209
210 /*
211 * This method is will fill in the SCU Task Context for any type of SSP request.
212 */
scu_ssp_request_construct_task_context(struct isci_request * ireq,struct scu_task_context * task_context)213 static void scu_ssp_request_construct_task_context(
214 struct isci_request *ireq,
215 struct scu_task_context *task_context)
216 {
217 dma_addr_t dma_addr;
218 struct isci_remote_device *idev;
219 struct isci_port *iport;
220
221 idev = ireq->target_device;
222 iport = idev->owning_port;
223
224 /* Fill in the TC with its required data */
225 task_context->abort = 0;
226 task_context->priority = 0;
227 task_context->initiator_request = 1;
228 task_context->connection_rate = idev->connection_rate;
229 task_context->protocol_engine_index = ISCI_PEG;
230 task_context->logical_port_index = iport->physical_port_index;
231 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
232 task_context->valid = SCU_TASK_CONTEXT_VALID;
233 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
234
235 task_context->remote_node_index = idev->rnc.remote_node_index;
236 task_context->command_code = 0;
237
238 task_context->link_layer_control = 0;
239 task_context->do_not_dma_ssp_good_response = 1;
240 task_context->strict_ordering = 0;
241 task_context->control_frame = 0;
242 task_context->timeout_enable = 0;
243 task_context->block_guard_enable = 0;
244
245 task_context->address_modifier = 0;
246
247 /* task_context->type.ssp.tag = ireq->io_tag; */
248 task_context->task_phase = 0x01;
249
250 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
251 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
252 (iport->physical_port_index <<
253 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
254 ISCI_TAG_TCI(ireq->io_tag));
255
256 /*
257 * Copy the physical address for the command buffer to the
258 * SCU Task Context
259 */
260 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
261
262 task_context->command_iu_upper = upper_32_bits(dma_addr);
263 task_context->command_iu_lower = lower_32_bits(dma_addr);
264
265 /*
266 * Copy the physical address for the response buffer to the
267 * SCU Task Context
268 */
269 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
270
271 task_context->response_iu_upper = upper_32_bits(dma_addr);
272 task_context->response_iu_lower = lower_32_bits(dma_addr);
273 }
274
scu_bg_blk_size(struct scsi_device * sdp)275 static u8 scu_bg_blk_size(struct scsi_device *sdp)
276 {
277 switch (sdp->sector_size) {
278 case 512:
279 return 0;
280 case 1024:
281 return 1;
282 case 4096:
283 return 3;
284 default:
285 return 0xff;
286 }
287 }
288
scu_dif_bytes(u32 len,u32 sector_size)289 static u32 scu_dif_bytes(u32 len, u32 sector_size)
290 {
291 return (len >> ilog2(sector_size)) * 8;
292 }
293
scu_ssp_ireq_dif_insert(struct isci_request * ireq,u8 type,u8 op)294 static void scu_ssp_ireq_dif_insert(struct isci_request *ireq, u8 type, u8 op)
295 {
296 struct scu_task_context *tc = ireq->tc;
297 struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
298 u8 blk_sz = scu_bg_blk_size(scmd->device);
299
300 tc->block_guard_enable = 1;
301 tc->blk_prot_en = 1;
302 tc->blk_sz = blk_sz;
303 /* DIF write insert */
304 tc->blk_prot_func = 0x2;
305
306 tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
307 scmd->device->sector_size);
308
309 /* always init to 0, used by hw */
310 tc->interm_crc_val = 0;
311
312 tc->init_crc_seed = 0;
313 tc->app_tag_verify = 0;
314 tc->app_tag_gen = 0;
315 tc->ref_tag_seed_verify = 0;
316
317 /* always init to same as bg_blk_sz */
318 tc->UD_bytes_immed_val = scmd->device->sector_size;
319
320 tc->reserved_DC_0 = 0;
321
322 /* always init to 8 */
323 tc->DIF_bytes_immed_val = 8;
324
325 tc->reserved_DC_1 = 0;
326 tc->bgc_blk_sz = scmd->device->sector_size;
327 tc->reserved_E0_0 = 0;
328 tc->app_tag_gen_mask = 0;
329
330 /** setup block guard control **/
331 tc->bgctl = 0;
332
333 /* DIF write insert */
334 tc->bgctl_f.op = 0x2;
335
336 tc->app_tag_verify_mask = 0;
337
338 /* must init to 0 for hw */
339 tc->blk_guard_err = 0;
340
341 tc->reserved_E8_0 = 0;
342
343 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
344 tc->ref_tag_seed_gen = scsi_prot_ref_tag(scmd);
345 else if (type & SCSI_PROT_DIF_TYPE3)
346 tc->ref_tag_seed_gen = 0;
347 }
348
scu_ssp_ireq_dif_strip(struct isci_request * ireq,u8 type,u8 op)349 static void scu_ssp_ireq_dif_strip(struct isci_request *ireq, u8 type, u8 op)
350 {
351 struct scu_task_context *tc = ireq->tc;
352 struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
353 u8 blk_sz = scu_bg_blk_size(scmd->device);
354
355 tc->block_guard_enable = 1;
356 tc->blk_prot_en = 1;
357 tc->blk_sz = blk_sz;
358 /* DIF read strip */
359 tc->blk_prot_func = 0x1;
360
361 tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
362 scmd->device->sector_size);
363
364 /* always init to 0, used by hw */
365 tc->interm_crc_val = 0;
366
367 tc->init_crc_seed = 0;
368 tc->app_tag_verify = 0;
369 tc->app_tag_gen = 0;
370
371 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
372 tc->ref_tag_seed_verify = scsi_prot_ref_tag(scmd);
373 else if (type & SCSI_PROT_DIF_TYPE3)
374 tc->ref_tag_seed_verify = 0;
375
376 /* always init to same as bg_blk_sz */
377 tc->UD_bytes_immed_val = scmd->device->sector_size;
378
379 tc->reserved_DC_0 = 0;
380
381 /* always init to 8 */
382 tc->DIF_bytes_immed_val = 8;
383
384 tc->reserved_DC_1 = 0;
385 tc->bgc_blk_sz = scmd->device->sector_size;
386 tc->reserved_E0_0 = 0;
387 tc->app_tag_gen_mask = 0;
388
389 /** setup block guard control **/
390 tc->bgctl = 0;
391
392 /* DIF read strip */
393 tc->bgctl_f.crc_verify = 1;
394 tc->bgctl_f.op = 0x1;
395 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2)) {
396 tc->bgctl_f.ref_tag_chk = 1;
397 tc->bgctl_f.app_f_detect = 1;
398 } else if (type & SCSI_PROT_DIF_TYPE3)
399 tc->bgctl_f.app_ref_f_detect = 1;
400
401 tc->app_tag_verify_mask = 0;
402
403 /* must init to 0 for hw */
404 tc->blk_guard_err = 0;
405
406 tc->reserved_E8_0 = 0;
407 tc->ref_tag_seed_gen = 0;
408 }
409
410 /*
411 * This method is will fill in the SCU Task Context for a SSP IO request.
412 */
scu_ssp_io_request_construct_task_context(struct isci_request * ireq,enum dma_data_direction dir,u32 len)413 static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
414 enum dma_data_direction dir,
415 u32 len)
416 {
417 struct scu_task_context *task_context = ireq->tc;
418 struct sas_task *sas_task = ireq->ttype_ptr.io_task_ptr;
419 struct scsi_cmnd *scmd = sas_task->uldd_task;
420 u8 prot_type = scsi_get_prot_type(scmd);
421 u8 prot_op = scsi_get_prot_op(scmd);
422
423 scu_ssp_request_construct_task_context(ireq, task_context);
424
425 task_context->ssp_command_iu_length =
426 sizeof(struct ssp_cmd_iu) / sizeof(u32);
427 task_context->type.ssp.frame_type = SSP_COMMAND;
428
429 switch (dir) {
430 case DMA_FROM_DEVICE:
431 case DMA_NONE:
432 default:
433 task_context->task_type = SCU_TASK_TYPE_IOREAD;
434 break;
435 case DMA_TO_DEVICE:
436 task_context->task_type = SCU_TASK_TYPE_IOWRITE;
437 break;
438 }
439
440 task_context->transfer_length_bytes = len;
441
442 if (task_context->transfer_length_bytes > 0)
443 sci_request_build_sgl(ireq);
444
445 if (prot_type != SCSI_PROT_DIF_TYPE0) {
446 if (prot_op == SCSI_PROT_READ_STRIP)
447 scu_ssp_ireq_dif_strip(ireq, prot_type, prot_op);
448 else if (prot_op == SCSI_PROT_WRITE_INSERT)
449 scu_ssp_ireq_dif_insert(ireq, prot_type, prot_op);
450 }
451 }
452
453 /**
454 * scu_ssp_task_request_construct_task_context() - This method will fill in
455 * the SCU Task Context for a SSP Task request. The following important
456 * settings are utilized: -# priority == SCU_TASK_PRIORITY_HIGH. This
457 * ensures that the task request is issued ahead of other task destined
458 * for the same Remote Node. -# task_type == SCU_TASK_TYPE_IOREAD. This
459 * simply indicates that a normal request type (i.e. non-raw frame) is
460 * being utilized to perform task management. -#control_frame == 1. This
461 * ensures that the proper endianness is set so that the bytes are
462 * transmitted in the right order for a task frame.
463 * @ireq: This parameter specifies the task request object being constructed.
464 */
scu_ssp_task_request_construct_task_context(struct isci_request * ireq)465 static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
466 {
467 struct scu_task_context *task_context = ireq->tc;
468
469 scu_ssp_request_construct_task_context(ireq, task_context);
470
471 task_context->control_frame = 1;
472 task_context->priority = SCU_TASK_PRIORITY_HIGH;
473 task_context->task_type = SCU_TASK_TYPE_RAW_FRAME;
474 task_context->transfer_length_bytes = 0;
475 task_context->type.ssp.frame_type = SSP_TASK;
476 task_context->ssp_command_iu_length =
477 sizeof(struct ssp_task_iu) / sizeof(u32);
478 }
479
480 /**
481 * scu_sata_request_construct_task_context()
482 * This method is will fill in the SCU Task Context for any type of SATA
483 * request. This is called from the various SATA constructors.
484 * @ireq: The general IO request object which is to be used in
485 * constructing the SCU task context.
486 * @task_context: The buffer pointer for the SCU task context which is being
487 * constructed.
488 *
489 * The general io request construction is complete. The buffer assignment for
490 * the command buffer is complete. none Revisit task context construction to
491 * determine what is common for SSP/SMP/STP task context structures.
492 */
scu_sata_request_construct_task_context(struct isci_request * ireq,struct scu_task_context * task_context)493 static void scu_sata_request_construct_task_context(
494 struct isci_request *ireq,
495 struct scu_task_context *task_context)
496 {
497 dma_addr_t dma_addr;
498 struct isci_remote_device *idev;
499 struct isci_port *iport;
500
501 idev = ireq->target_device;
502 iport = idev->owning_port;
503
504 /* Fill in the TC with its required data */
505 task_context->abort = 0;
506 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
507 task_context->initiator_request = 1;
508 task_context->connection_rate = idev->connection_rate;
509 task_context->protocol_engine_index = ISCI_PEG;
510 task_context->logical_port_index = iport->physical_port_index;
511 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
512 task_context->valid = SCU_TASK_CONTEXT_VALID;
513 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
514
515 task_context->remote_node_index = idev->rnc.remote_node_index;
516 task_context->command_code = 0;
517
518 task_context->link_layer_control = 0;
519 task_context->do_not_dma_ssp_good_response = 1;
520 task_context->strict_ordering = 0;
521 task_context->control_frame = 0;
522 task_context->timeout_enable = 0;
523 task_context->block_guard_enable = 0;
524
525 task_context->address_modifier = 0;
526 task_context->task_phase = 0x01;
527
528 task_context->ssp_command_iu_length =
529 (sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
530
531 /* Set the first word of the H2D REG FIS */
532 task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
533
534 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
535 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
536 (iport->physical_port_index <<
537 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
538 ISCI_TAG_TCI(ireq->io_tag));
539 /*
540 * Copy the physical address for the command buffer to the SCU Task
541 * Context. We must offset the command buffer by 4 bytes because the
542 * first 4 bytes are transfered in the body of the TC.
543 */
544 dma_addr = sci_io_request_get_dma_addr(ireq,
545 ((char *) &ireq->stp.cmd) +
546 sizeof(u32));
547
548 task_context->command_iu_upper = upper_32_bits(dma_addr);
549 task_context->command_iu_lower = lower_32_bits(dma_addr);
550
551 /* SATA Requests do not have a response buffer */
552 task_context->response_iu_upper = 0;
553 task_context->response_iu_lower = 0;
554 }
555
scu_stp_raw_request_construct_task_context(struct isci_request * ireq)556 static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
557 {
558 struct scu_task_context *task_context = ireq->tc;
559
560 scu_sata_request_construct_task_context(ireq, task_context);
561
562 task_context->control_frame = 0;
563 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
564 task_context->task_type = SCU_TASK_TYPE_SATA_RAW_FRAME;
565 task_context->type.stp.fis_type = FIS_REGH2D;
566 task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
567 }
568
sci_stp_pio_request_construct(struct isci_request * ireq,bool copy_rx_frame)569 static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
570 bool copy_rx_frame)
571 {
572 struct isci_stp_request *stp_req = &ireq->stp.req;
573
574 scu_stp_raw_request_construct_task_context(ireq);
575
576 stp_req->status = 0;
577 stp_req->sgl.offset = 0;
578 stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
579
580 if (copy_rx_frame) {
581 sci_request_build_sgl(ireq);
582 stp_req->sgl.index = 0;
583 } else {
584 /* The user does not want the data copied to the SGL buffer location */
585 stp_req->sgl.index = -1;
586 }
587
588 return SCI_SUCCESS;
589 }
590
591 /*
592 * sci_stp_optimized_request_construct()
593 * @ireq: This parameter specifies the request to be constructed as an
594 * optimized request.
595 * @optimized_task_type: This parameter specifies whether the request is to be
596 * an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
597 * value of 1 indicates NCQ.
598 *
599 * This method will perform request construction common to all types of STP
600 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
601 * returns an indication as to whether the construction was successful.
602 */
sci_stp_optimized_request_construct(struct isci_request * ireq,u8 optimized_task_type,u32 len,enum dma_data_direction dir)603 static void sci_stp_optimized_request_construct(struct isci_request *ireq,
604 u8 optimized_task_type,
605 u32 len,
606 enum dma_data_direction dir)
607 {
608 struct scu_task_context *task_context = ireq->tc;
609
610 /* Build the STP task context structure */
611 scu_sata_request_construct_task_context(ireq, task_context);
612
613 /* Copy over the SGL elements */
614 sci_request_build_sgl(ireq);
615
616 /* Copy over the number of bytes to be transfered */
617 task_context->transfer_length_bytes = len;
618
619 if (dir == DMA_TO_DEVICE) {
620 /*
621 * The difference between the DMA IN and DMA OUT request task type
622 * values are consistent with the difference between FPDMA READ
623 * and FPDMA WRITE values. Add the supplied task type parameter
624 * to this difference to set the task type properly for this
625 * DATA OUT (WRITE) case. */
626 task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
627 - SCU_TASK_TYPE_DMA_IN);
628 } else {
629 /*
630 * For the DATA IN (READ) case, simply save the supplied
631 * optimized task type. */
632 task_context->task_type = optimized_task_type;
633 }
634 }
635
sci_atapi_construct(struct isci_request * ireq)636 static void sci_atapi_construct(struct isci_request *ireq)
637 {
638 struct host_to_dev_fis *h2d_fis = &ireq->stp.cmd;
639 struct sas_task *task;
640
641 /* To simplify the implementation we take advantage of the
642 * silicon's partial acceleration of atapi protocol (dma data
643 * transfers), so we promote all commands to dma protocol. This
644 * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives.
645 */
646 h2d_fis->features |= ATAPI_PKT_DMA;
647
648 scu_stp_raw_request_construct_task_context(ireq);
649
650 task = isci_request_access_task(ireq);
651 if (task->data_dir == DMA_NONE)
652 task->total_xfer_len = 0;
653
654 /* clear the response so we can detect arrivial of an
655 * unsolicited h2d fis
656 */
657 ireq->stp.rsp.fis_type = 0;
658 }
659
660 static enum sci_status
sci_io_request_construct_sata(struct isci_request * ireq,u32 len,enum dma_data_direction dir,bool copy)661 sci_io_request_construct_sata(struct isci_request *ireq,
662 u32 len,
663 enum dma_data_direction dir,
664 bool copy)
665 {
666 enum sci_status status = SCI_SUCCESS;
667 struct sas_task *task = isci_request_access_task(ireq);
668 struct domain_device *dev = ireq->target_device->domain_dev;
669
670 /* check for management protocols */
671 if (test_bit(IREQ_TMF, &ireq->flags)) {
672 struct isci_tmf *tmf = isci_request_access_tmf(ireq);
673
674 dev_err(&ireq->owning_controller->pdev->dev,
675 "%s: Request 0x%p received un-handled SAT "
676 "management protocol 0x%x.\n",
677 __func__, ireq, tmf->tmf_code);
678
679 return SCI_FAILURE;
680 }
681
682 if (!sas_protocol_ata(task->task_proto)) {
683 dev_err(&ireq->owning_controller->pdev->dev,
684 "%s: Non-ATA protocol in SATA path: 0x%x\n",
685 __func__,
686 task->task_proto);
687 return SCI_FAILURE;
688
689 }
690
691 /* ATAPI */
692 if (dev->sata_dev.class == ATA_DEV_ATAPI &&
693 task->ata_task.fis.command == ATA_CMD_PACKET) {
694 sci_atapi_construct(ireq);
695 return SCI_SUCCESS;
696 }
697
698 /* non data */
699 if (task->data_dir == DMA_NONE) {
700 scu_stp_raw_request_construct_task_context(ireq);
701 return SCI_SUCCESS;
702 }
703
704 /* NCQ */
705 if (task->ata_task.use_ncq) {
706 sci_stp_optimized_request_construct(ireq,
707 SCU_TASK_TYPE_FPDMAQ_READ,
708 len, dir);
709 return SCI_SUCCESS;
710 }
711
712 /* DMA */
713 if (task->ata_task.dma_xfer) {
714 sci_stp_optimized_request_construct(ireq,
715 SCU_TASK_TYPE_DMA_IN,
716 len, dir);
717 return SCI_SUCCESS;
718 } else /* PIO */
719 return sci_stp_pio_request_construct(ireq, copy);
720
721 return status;
722 }
723
sci_io_request_construct_basic_ssp(struct isci_request * ireq)724 static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
725 {
726 struct sas_task *task = isci_request_access_task(ireq);
727
728 ireq->protocol = SAS_PROTOCOL_SSP;
729
730 scu_ssp_io_request_construct_task_context(ireq,
731 task->data_dir,
732 task->total_xfer_len);
733
734 sci_io_request_build_ssp_command_iu(ireq);
735
736 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
737
738 return SCI_SUCCESS;
739 }
740
sci_task_request_construct_ssp(struct isci_request * ireq)741 enum sci_status sci_task_request_construct_ssp(
742 struct isci_request *ireq)
743 {
744 /* Construct the SSP Task SCU Task Context */
745 scu_ssp_task_request_construct_task_context(ireq);
746
747 /* Fill in the SSP Task IU */
748 sci_task_request_build_ssp_task_iu(ireq);
749
750 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
751
752 return SCI_SUCCESS;
753 }
754
sci_io_request_construct_basic_sata(struct isci_request * ireq)755 static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
756 {
757 enum sci_status status;
758 bool copy = false;
759 struct sas_task *task = isci_request_access_task(ireq);
760
761 ireq->protocol = SAS_PROTOCOL_STP;
762
763 copy = (task->data_dir == DMA_NONE) ? false : true;
764
765 status = sci_io_request_construct_sata(ireq,
766 task->total_xfer_len,
767 task->data_dir,
768 copy);
769
770 if (status == SCI_SUCCESS)
771 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
772
773 return status;
774 }
775
776 #define SCU_TASK_CONTEXT_SRAM 0x200000
777 /**
778 * sci_req_tx_bytes - bytes transferred when reply underruns request
779 * @ireq: request that was terminated early
780 */
sci_req_tx_bytes(struct isci_request * ireq)781 static u32 sci_req_tx_bytes(struct isci_request *ireq)
782 {
783 struct isci_host *ihost = ireq->owning_controller;
784 u32 ret_val = 0;
785
786 if (readl(&ihost->smu_registers->address_modifier) == 0) {
787 void __iomem *scu_reg_base = ihost->scu_registers;
788
789 /* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
790 * BAR1 is the scu_registers
791 * 0x20002C = 0x200000 + 0x2c
792 * = start of task context SRAM + offset of (type.ssp.data_offset)
793 * TCi is the io_tag of struct sci_request
794 */
795 ret_val = readl(scu_reg_base +
796 (SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
797 ((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
798 }
799
800 return ret_val;
801 }
802
sci_request_start(struct isci_request * ireq)803 enum sci_status sci_request_start(struct isci_request *ireq)
804 {
805 enum sci_base_request_states state;
806 struct scu_task_context *tc = ireq->tc;
807 struct isci_host *ihost = ireq->owning_controller;
808
809 state = ireq->sm.current_state_id;
810 if (state != SCI_REQ_CONSTRUCTED) {
811 dev_warn(&ihost->pdev->dev,
812 "%s: SCIC IO Request requested to start while in wrong "
813 "state %d\n", __func__, state);
814 return SCI_FAILURE_INVALID_STATE;
815 }
816
817 tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
818
819 switch (tc->protocol_type) {
820 case SCU_TASK_CONTEXT_PROTOCOL_SMP:
821 case SCU_TASK_CONTEXT_PROTOCOL_SSP:
822 /* SSP/SMP Frame */
823 tc->type.ssp.tag = ireq->io_tag;
824 tc->type.ssp.target_port_transfer_tag = 0xFFFF;
825 break;
826
827 case SCU_TASK_CONTEXT_PROTOCOL_STP:
828 /* STP/SATA Frame
829 * tc->type.stp.ncq_tag = ireq->ncq_tag;
830 */
831 break;
832
833 case SCU_TASK_CONTEXT_PROTOCOL_NONE:
834 /* / @todo When do we set no protocol type? */
835 break;
836
837 default:
838 /* This should never happen since we build the IO
839 * requests */
840 break;
841 }
842
843 /* Add to the post_context the io tag value */
844 ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
845
846 /* Everything is good go ahead and change state */
847 sci_change_state(&ireq->sm, SCI_REQ_STARTED);
848
849 return SCI_SUCCESS;
850 }
851
852 enum sci_status
sci_io_request_terminate(struct isci_request * ireq)853 sci_io_request_terminate(struct isci_request *ireq)
854 {
855 enum sci_base_request_states state;
856
857 state = ireq->sm.current_state_id;
858
859 switch (state) {
860 case SCI_REQ_CONSTRUCTED:
861 /* Set to make sure no HW terminate posting is done: */
862 set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags);
863 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
864 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
865 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
866 return SCI_SUCCESS;
867 case SCI_REQ_STARTED:
868 case SCI_REQ_TASK_WAIT_TC_COMP:
869 case SCI_REQ_SMP_WAIT_RESP:
870 case SCI_REQ_SMP_WAIT_TC_COMP:
871 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
872 case SCI_REQ_STP_UDMA_WAIT_D2H:
873 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
874 case SCI_REQ_STP_NON_DATA_WAIT_D2H:
875 case SCI_REQ_STP_PIO_WAIT_H2D:
876 case SCI_REQ_STP_PIO_WAIT_FRAME:
877 case SCI_REQ_STP_PIO_DATA_IN:
878 case SCI_REQ_STP_PIO_DATA_OUT:
879 case SCI_REQ_ATAPI_WAIT_H2D:
880 case SCI_REQ_ATAPI_WAIT_PIO_SETUP:
881 case SCI_REQ_ATAPI_WAIT_D2H:
882 case SCI_REQ_ATAPI_WAIT_TC_COMP:
883 /* Fall through and change state to ABORTING... */
884 case SCI_REQ_TASK_WAIT_TC_RESP:
885 /* The task frame was already confirmed to have been
886 * sent by the SCU HW. Since the state machine is
887 * now only waiting for the task response itself,
888 * abort the request and complete it immediately
889 * and don't wait for the task response.
890 */
891 sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
892 fallthrough; /* and handle like ABORTING */
893 case SCI_REQ_ABORTING:
894 if (!isci_remote_device_is_safe_to_abort(ireq->target_device))
895 set_bit(IREQ_PENDING_ABORT, &ireq->flags);
896 else
897 clear_bit(IREQ_PENDING_ABORT, &ireq->flags);
898 /* If the request is only waiting on the remote device
899 * suspension, return SUCCESS so the caller will wait too.
900 */
901 return SCI_SUCCESS;
902 case SCI_REQ_COMPLETED:
903 default:
904 dev_warn(&ireq->owning_controller->pdev->dev,
905 "%s: SCIC IO Request requested to abort while in wrong "
906 "state %d\n", __func__, ireq->sm.current_state_id);
907 break;
908 }
909
910 return SCI_FAILURE_INVALID_STATE;
911 }
912
sci_request_complete(struct isci_request * ireq)913 enum sci_status sci_request_complete(struct isci_request *ireq)
914 {
915 enum sci_base_request_states state;
916 struct isci_host *ihost = ireq->owning_controller;
917
918 state = ireq->sm.current_state_id;
919 if (WARN_ONCE(state != SCI_REQ_COMPLETED,
920 "isci: request completion from wrong state (%s)\n",
921 req_state_name(state)))
922 return SCI_FAILURE_INVALID_STATE;
923
924 if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
925 sci_controller_release_frame(ihost,
926 ireq->saved_rx_frame_index);
927
928 /* XXX can we just stop the machine and remove the 'final' state? */
929 sci_change_state(&ireq->sm, SCI_REQ_FINAL);
930 return SCI_SUCCESS;
931 }
932
sci_io_request_event_handler(struct isci_request * ireq,u32 event_code)933 enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
934 u32 event_code)
935 {
936 enum sci_base_request_states state;
937 struct isci_host *ihost = ireq->owning_controller;
938
939 state = ireq->sm.current_state_id;
940
941 if (state != SCI_REQ_STP_PIO_DATA_IN) {
942 dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %s\n",
943 __func__, event_code, req_state_name(state));
944
945 return SCI_FAILURE_INVALID_STATE;
946 }
947
948 switch (scu_get_event_specifier(event_code)) {
949 case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
950 /* We are waiting for data and the SCU has R_ERR the data frame.
951 * Go back to waiting for the D2H Register FIS
952 */
953 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
954 return SCI_SUCCESS;
955 default:
956 dev_err(&ihost->pdev->dev,
957 "%s: pio request unexpected event %#x\n",
958 __func__, event_code);
959
960 /* TODO Should we fail the PIO request when we get an
961 * unexpected event?
962 */
963 return SCI_FAILURE;
964 }
965 }
966
967 /*
968 * This function copies response data for requests returning response data
969 * instead of sense data.
970 * @sci_req: This parameter specifies the request object for which to copy
971 * the response data.
972 */
sci_io_request_copy_response(struct isci_request * ireq)973 static void sci_io_request_copy_response(struct isci_request *ireq)
974 {
975 void *resp_buf;
976 u32 len;
977 struct ssp_response_iu *ssp_response;
978 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
979
980 ssp_response = &ireq->ssp.rsp;
981
982 resp_buf = &isci_tmf->resp.resp_iu;
983
984 len = min_t(u32,
985 SSP_RESP_IU_MAX_SIZE,
986 be32_to_cpu(ssp_response->response_data_len));
987
988 memcpy(resp_buf, ssp_response->resp_data, len);
989 }
990
991 static enum sci_status
request_started_state_tc_event(struct isci_request * ireq,u32 completion_code)992 request_started_state_tc_event(struct isci_request *ireq,
993 u32 completion_code)
994 {
995 struct ssp_response_iu *resp_iu;
996 u8 datapres;
997
998 /* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
999 * to determine SDMA status
1000 */
1001 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1002 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1003 ireq->scu_status = SCU_TASK_DONE_GOOD;
1004 ireq->sci_status = SCI_SUCCESS;
1005 break;
1006 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
1007 /* There are times when the SCU hardware will return an early
1008 * response because the io request specified more data than is
1009 * returned by the target device (mode pages, inquiry data,
1010 * etc.). We must check the response stats to see if this is
1011 * truly a failed request or a good request that just got
1012 * completed early.
1013 */
1014 struct ssp_response_iu *resp = &ireq->ssp.rsp;
1015 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1016
1017 sci_swab32_cpy(&ireq->ssp.rsp,
1018 &ireq->ssp.rsp,
1019 word_cnt);
1020
1021 if (resp->status == 0) {
1022 ireq->scu_status = SCU_TASK_DONE_GOOD;
1023 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
1024 } else {
1025 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1026 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1027 }
1028 break;
1029 }
1030 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
1031 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1032
1033 sci_swab32_cpy(&ireq->ssp.rsp,
1034 &ireq->ssp.rsp,
1035 word_cnt);
1036
1037 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1038 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1039 break;
1040 }
1041
1042 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
1043 /* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
1044 * guaranteed to be received before this completion status is
1045 * posted?
1046 */
1047 resp_iu = &ireq->ssp.rsp;
1048 datapres = resp_iu->datapres;
1049
1050 if (datapres == 1 || datapres == 2) {
1051 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1052 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1053 } else {
1054 ireq->scu_status = SCU_TASK_DONE_GOOD;
1055 ireq->sci_status = SCI_SUCCESS;
1056 }
1057 break;
1058 /* only stp device gets suspended. */
1059 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1060 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
1061 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
1062 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
1063 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
1064 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
1065 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1066 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
1067 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
1068 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1069 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
1070 if (ireq->protocol == SAS_PROTOCOL_STP) {
1071 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1072 SCU_COMPLETION_TL_STATUS_SHIFT;
1073 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1074 } else {
1075 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1076 SCU_COMPLETION_TL_STATUS_SHIFT;
1077 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1078 }
1079 break;
1080
1081 /* both stp/ssp device gets suspended */
1082 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
1083 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
1084 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
1085 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
1086 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
1087 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
1088 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
1089 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
1090 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
1091 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
1092 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1093 SCU_COMPLETION_TL_STATUS_SHIFT;
1094 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1095 break;
1096
1097 /* neither ssp nor stp gets suspended. */
1098 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
1099 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
1100 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
1101 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
1102 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
1103 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
1104 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1105 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1106 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1107 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1108 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
1109 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
1110 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
1111 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
1112 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
1113 default:
1114 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1115 SCU_COMPLETION_TL_STATUS_SHIFT;
1116 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1117 break;
1118 }
1119
1120 /*
1121 * TODO: This is probably wrong for ACK/NAK timeout conditions
1122 */
1123
1124 /* In all cases we will treat this as the completion of the IO req. */
1125 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1126 return SCI_SUCCESS;
1127 }
1128
1129 static enum sci_status
request_aborting_state_tc_event(struct isci_request * ireq,u32 completion_code)1130 request_aborting_state_tc_event(struct isci_request *ireq,
1131 u32 completion_code)
1132 {
1133 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1134 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
1135 case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
1136 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
1137 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
1138 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1139 break;
1140
1141 default:
1142 /* Unless we get some strange error wait for the task abort to complete
1143 * TODO: Should there be a state change for this completion?
1144 */
1145 break;
1146 }
1147
1148 return SCI_SUCCESS;
1149 }
1150
ssp_task_request_await_tc_event(struct isci_request * ireq,u32 completion_code)1151 static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1152 u32 completion_code)
1153 {
1154 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1155 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1156 ireq->scu_status = SCU_TASK_DONE_GOOD;
1157 ireq->sci_status = SCI_SUCCESS;
1158 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1159 break;
1160 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1161 /* Currently, the decision is to simply allow the task request
1162 * to timeout if the task IU wasn't received successfully.
1163 * There is a potential for receiving multiple task responses if
1164 * we decide to send the task IU again.
1165 */
1166 dev_warn(&ireq->owning_controller->pdev->dev,
1167 "%s: TaskRequest:0x%p CompletionCode:%x - "
1168 "ACK/NAK timeout\n", __func__, ireq,
1169 completion_code);
1170
1171 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1172 break;
1173 default:
1174 /*
1175 * All other completion status cause the IO to be complete.
1176 * If a NAK was received, then it is up to the user to retry
1177 * the request.
1178 */
1179 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1180 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1181 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1182 break;
1183 }
1184
1185 return SCI_SUCCESS;
1186 }
1187
1188 static enum sci_status
smp_request_await_response_tc_event(struct isci_request * ireq,u32 completion_code)1189 smp_request_await_response_tc_event(struct isci_request *ireq,
1190 u32 completion_code)
1191 {
1192 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1193 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1194 /* In the AWAIT RESPONSE state, any TC completion is
1195 * unexpected. but if the TC has success status, we
1196 * complete the IO anyway.
1197 */
1198 ireq->scu_status = SCU_TASK_DONE_GOOD;
1199 ireq->sci_status = SCI_SUCCESS;
1200 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1201 break;
1202 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1203 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1204 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1205 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1206 /* These status has been seen in a specific LSI
1207 * expander, which sometimes is not able to send smp
1208 * response within 2 ms. This causes our hardware break
1209 * the connection and set TC completion with one of
1210 * these SMP_XXX_XX_ERR status. For these type of error,
1211 * we ask ihost user to retry the request.
1212 */
1213 ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1214 ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1215 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1216 break;
1217 default:
1218 /* All other completion status cause the IO to be complete. If a NAK
1219 * was received, then it is up to the user to retry the request
1220 */
1221 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1222 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1223 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1224 break;
1225 }
1226
1227 return SCI_SUCCESS;
1228 }
1229
1230 static enum sci_status
smp_request_await_tc_event(struct isci_request * ireq,u32 completion_code)1231 smp_request_await_tc_event(struct isci_request *ireq,
1232 u32 completion_code)
1233 {
1234 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1235 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1236 ireq->scu_status = SCU_TASK_DONE_GOOD;
1237 ireq->sci_status = SCI_SUCCESS;
1238 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1239 break;
1240 default:
1241 /* All other completion status cause the IO to be
1242 * complete. If a NAK was received, then it is up to
1243 * the user to retry the request.
1244 */
1245 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1246 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1247 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1248 break;
1249 }
1250
1251 return SCI_SUCCESS;
1252 }
1253
pio_sgl_next(struct isci_stp_request * stp_req)1254 static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1255 {
1256 struct scu_sgl_element *sgl;
1257 struct scu_sgl_element_pair *sgl_pair;
1258 struct isci_request *ireq = to_ireq(stp_req);
1259 struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1260
1261 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1262 if (!sgl_pair)
1263 sgl = NULL;
1264 else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1265 if (sgl_pair->B.address_lower == 0 &&
1266 sgl_pair->B.address_upper == 0) {
1267 sgl = NULL;
1268 } else {
1269 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1270 sgl = &sgl_pair->B;
1271 }
1272 } else {
1273 if (sgl_pair->next_pair_lower == 0 &&
1274 sgl_pair->next_pair_upper == 0) {
1275 sgl = NULL;
1276 } else {
1277 pio_sgl->index++;
1278 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1279 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1280 sgl = &sgl_pair->A;
1281 }
1282 }
1283
1284 return sgl;
1285 }
1286
1287 static enum sci_status
stp_request_non_data_await_h2d_tc_event(struct isci_request * ireq,u32 completion_code)1288 stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1289 u32 completion_code)
1290 {
1291 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1292 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1293 ireq->scu_status = SCU_TASK_DONE_GOOD;
1294 ireq->sci_status = SCI_SUCCESS;
1295 sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1296 break;
1297
1298 default:
1299 /* All other completion status cause the IO to be
1300 * complete. If a NAK was received, then it is up to
1301 * the user to retry the request.
1302 */
1303 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1304 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1305 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1306 break;
1307 }
1308
1309 return SCI_SUCCESS;
1310 }
1311
1312 #define SCU_MAX_FRAME_BUFFER_SIZE 0x400 /* 1K is the maximum SCU frame data payload */
1313
1314 /* transmit DATA_FIS from (current sgl + offset) for input
1315 * parameter length. current sgl and offset is alreay stored in the IO request
1316 */
sci_stp_request_pio_data_out_trasmit_data_frame(struct isci_request * ireq,u32 length)1317 static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1318 struct isci_request *ireq,
1319 u32 length)
1320 {
1321 struct isci_stp_request *stp_req = &ireq->stp.req;
1322 struct scu_task_context *task_context = ireq->tc;
1323 struct scu_sgl_element_pair *sgl_pair;
1324 struct scu_sgl_element *current_sgl;
1325
1326 /* Recycle the TC and reconstruct it for sending out DATA FIS containing
1327 * for the data from current_sgl+offset for the input length
1328 */
1329 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1330 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1331 current_sgl = &sgl_pair->A;
1332 else
1333 current_sgl = &sgl_pair->B;
1334
1335 /* update the TC */
1336 task_context->command_iu_upper = current_sgl->address_upper;
1337 task_context->command_iu_lower = current_sgl->address_lower;
1338 task_context->transfer_length_bytes = length;
1339 task_context->type.stp.fis_type = FIS_DATA;
1340
1341 /* send the new TC out. */
1342 return sci_controller_continue_io(ireq);
1343 }
1344
sci_stp_request_pio_data_out_transmit_data(struct isci_request * ireq)1345 static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1346 {
1347 struct isci_stp_request *stp_req = &ireq->stp.req;
1348 struct scu_sgl_element_pair *sgl_pair;
1349 enum sci_status status = SCI_SUCCESS;
1350 struct scu_sgl_element *sgl;
1351 u32 offset;
1352 u32 len = 0;
1353
1354 offset = stp_req->sgl.offset;
1355 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1356 if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1357 return SCI_FAILURE;
1358
1359 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1360 sgl = &sgl_pair->A;
1361 len = sgl_pair->A.length - offset;
1362 } else {
1363 sgl = &sgl_pair->B;
1364 len = sgl_pair->B.length - offset;
1365 }
1366
1367 if (stp_req->pio_len == 0)
1368 return SCI_SUCCESS;
1369
1370 if (stp_req->pio_len >= len) {
1371 status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1372 if (status != SCI_SUCCESS)
1373 return status;
1374 stp_req->pio_len -= len;
1375
1376 /* update the current sgl, offset and save for future */
1377 sgl = pio_sgl_next(stp_req);
1378 offset = 0;
1379 } else if (stp_req->pio_len < len) {
1380 sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1381
1382 /* Sgl offset will be adjusted and saved for future */
1383 offset += stp_req->pio_len;
1384 sgl->address_lower += stp_req->pio_len;
1385 stp_req->pio_len = 0;
1386 }
1387
1388 stp_req->sgl.offset = offset;
1389
1390 return status;
1391 }
1392
1393 /**
1394 * sci_stp_request_pio_data_in_copy_data_buffer()
1395 * @stp_req: The request that is used for the SGL processing.
1396 * @data_buf: The buffer of data to be copied.
1397 * @len: The length of the data transfer.
1398 *
1399 * Copy the data from the buffer for the length specified to the IO request SGL
1400 * specified data region. enum sci_status
1401 */
1402 static enum sci_status
sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request * stp_req,u8 * data_buf,u32 len)1403 sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1404 u8 *data_buf, u32 len)
1405 {
1406 struct isci_request *ireq;
1407 u8 *src_addr;
1408 int copy_len;
1409 struct sas_task *task;
1410 struct scatterlist *sg;
1411 void *kaddr;
1412 int total_len = len;
1413
1414 ireq = to_ireq(stp_req);
1415 task = isci_request_access_task(ireq);
1416 src_addr = data_buf;
1417
1418 if (task->num_scatter > 0) {
1419 sg = task->scatter;
1420
1421 while (total_len > 0) {
1422 struct page *page = sg_page(sg);
1423
1424 copy_len = min_t(int, total_len, sg_dma_len(sg));
1425 kaddr = kmap_atomic(page);
1426 memcpy(kaddr + sg->offset, src_addr, copy_len);
1427 kunmap_atomic(kaddr);
1428 total_len -= copy_len;
1429 src_addr += copy_len;
1430 sg = sg_next(sg);
1431 }
1432 } else {
1433 BUG_ON(task->total_xfer_len < total_len);
1434 memcpy(task->scatter, src_addr, total_len);
1435 }
1436
1437 return SCI_SUCCESS;
1438 }
1439
1440 /**
1441 * sci_stp_request_pio_data_in_copy_data()
1442 * @stp_req: The PIO DATA IN request that is to receive the data.
1443 * @data_buffer: The buffer to copy from.
1444 *
1445 * Copy the data buffer to the io request data region. enum sci_status
1446 */
sci_stp_request_pio_data_in_copy_data(struct isci_stp_request * stp_req,u8 * data_buffer)1447 static enum sci_status sci_stp_request_pio_data_in_copy_data(
1448 struct isci_stp_request *stp_req,
1449 u8 *data_buffer)
1450 {
1451 enum sci_status status;
1452
1453 /*
1454 * If there is less than 1K remaining in the transfer request
1455 * copy just the data for the transfer */
1456 if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1457 status = sci_stp_request_pio_data_in_copy_data_buffer(
1458 stp_req, data_buffer, stp_req->pio_len);
1459
1460 if (status == SCI_SUCCESS)
1461 stp_req->pio_len = 0;
1462 } else {
1463 /* We are transfering the whole frame so copy */
1464 status = sci_stp_request_pio_data_in_copy_data_buffer(
1465 stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1466
1467 if (status == SCI_SUCCESS)
1468 stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1469 }
1470
1471 return status;
1472 }
1473
1474 static enum sci_status
stp_request_pio_await_h2d_completion_tc_event(struct isci_request * ireq,u32 completion_code)1475 stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1476 u32 completion_code)
1477 {
1478 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1479 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1480 ireq->scu_status = SCU_TASK_DONE_GOOD;
1481 ireq->sci_status = SCI_SUCCESS;
1482 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1483 break;
1484
1485 default:
1486 /* All other completion status cause the IO to be
1487 * complete. If a NAK was received, then it is up to
1488 * the user to retry the request.
1489 */
1490 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1491 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1492 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1493 break;
1494 }
1495
1496 return SCI_SUCCESS;
1497 }
1498
1499 static enum sci_status
pio_data_out_tx_done_tc_event(struct isci_request * ireq,u32 completion_code)1500 pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1501 u32 completion_code)
1502 {
1503 enum sci_status status = SCI_SUCCESS;
1504 bool all_frames_transferred = false;
1505 struct isci_stp_request *stp_req = &ireq->stp.req;
1506
1507 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1508 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1509 /* Transmit data */
1510 if (stp_req->pio_len != 0) {
1511 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1512 if (status == SCI_SUCCESS) {
1513 if (stp_req->pio_len == 0)
1514 all_frames_transferred = true;
1515 }
1516 } else if (stp_req->pio_len == 0) {
1517 /*
1518 * this will happen if the all data is written at the
1519 * first time after the pio setup fis is received
1520 */
1521 all_frames_transferred = true;
1522 }
1523
1524 /* all data transferred. */
1525 if (all_frames_transferred) {
1526 /*
1527 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1528 * and wait for PIO_SETUP fis / or D2H REg fis. */
1529 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1530 }
1531 break;
1532
1533 default:
1534 /*
1535 * All other completion status cause the IO to be complete.
1536 * If a NAK was received, then it is up to the user to retry
1537 * the request.
1538 */
1539 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1540 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1541 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1542 break;
1543 }
1544
1545 return status;
1546 }
1547
sci_stp_request_udma_general_frame_handler(struct isci_request * ireq,u32 frame_index)1548 static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1549 u32 frame_index)
1550 {
1551 struct isci_host *ihost = ireq->owning_controller;
1552 struct dev_to_host_fis *frame_header;
1553 enum sci_status status;
1554 u32 *frame_buffer;
1555
1556 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1557 frame_index,
1558 (void **)&frame_header);
1559
1560 if ((status == SCI_SUCCESS) &&
1561 (frame_header->fis_type == FIS_REGD2H)) {
1562 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1563 frame_index,
1564 (void **)&frame_buffer);
1565
1566 sci_controller_copy_sata_response(&ireq->stp.rsp,
1567 frame_header,
1568 frame_buffer);
1569 }
1570
1571 sci_controller_release_frame(ihost, frame_index);
1572
1573 return status;
1574 }
1575
process_unsolicited_fis(struct isci_request * ireq,u32 frame_index)1576 static enum sci_status process_unsolicited_fis(struct isci_request *ireq,
1577 u32 frame_index)
1578 {
1579 struct isci_host *ihost = ireq->owning_controller;
1580 enum sci_status status;
1581 struct dev_to_host_fis *frame_header;
1582 u32 *frame_buffer;
1583
1584 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1585 frame_index,
1586 (void **)&frame_header);
1587
1588 if (status != SCI_SUCCESS)
1589 return status;
1590
1591 if (frame_header->fis_type != FIS_REGD2H) {
1592 dev_err(&ireq->isci_host->pdev->dev,
1593 "%s ERROR: invalid fis type 0x%X\n",
1594 __func__, frame_header->fis_type);
1595 return SCI_FAILURE;
1596 }
1597
1598 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1599 frame_index,
1600 (void **)&frame_buffer);
1601
1602 sci_controller_copy_sata_response(&ireq->stp.rsp,
1603 (u32 *)frame_header,
1604 frame_buffer);
1605
1606 /* Frame has been decoded return it to the controller */
1607 sci_controller_release_frame(ihost, frame_index);
1608
1609 return status;
1610 }
1611
atapi_d2h_reg_frame_handler(struct isci_request * ireq,u32 frame_index)1612 static enum sci_status atapi_d2h_reg_frame_handler(struct isci_request *ireq,
1613 u32 frame_index)
1614 {
1615 struct sas_task *task = isci_request_access_task(ireq);
1616 enum sci_status status;
1617
1618 status = process_unsolicited_fis(ireq, frame_index);
1619
1620 if (status == SCI_SUCCESS) {
1621 if (ireq->stp.rsp.status & ATA_ERR)
1622 status = SCI_FAILURE_IO_RESPONSE_VALID;
1623 } else {
1624 status = SCI_FAILURE_IO_RESPONSE_VALID;
1625 }
1626
1627 if (status != SCI_SUCCESS) {
1628 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1629 ireq->sci_status = status;
1630 } else {
1631 ireq->scu_status = SCU_TASK_DONE_GOOD;
1632 ireq->sci_status = SCI_SUCCESS;
1633 }
1634
1635 /* the d2h ufi is the end of non-data commands */
1636 if (task->data_dir == DMA_NONE)
1637 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1638
1639 return status;
1640 }
1641
scu_atapi_reconstruct_raw_frame_task_context(struct isci_request * ireq)1642 static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request *ireq)
1643 {
1644 struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1645 void *atapi_cdb = ireq->ttype_ptr.io_task_ptr->ata_task.atapi_packet;
1646 struct scu_task_context *task_context = ireq->tc;
1647
1648 /* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame
1649 * type. The TC for previous Packet fis was already there, we only need to
1650 * change the H2D fis content.
1651 */
1652 memset(&ireq->stp.cmd, 0, sizeof(struct host_to_dev_fis));
1653 memcpy(((u8 *)&ireq->stp.cmd + sizeof(u32)), atapi_cdb, ATAPI_CDB_LEN);
1654 memset(&(task_context->type.stp), 0, sizeof(struct stp_task_context));
1655 task_context->type.stp.fis_type = FIS_DATA;
1656 task_context->transfer_length_bytes = dev->cdb_len;
1657 }
1658
scu_atapi_construct_task_context(struct isci_request * ireq)1659 static void scu_atapi_construct_task_context(struct isci_request *ireq)
1660 {
1661 struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1662 struct sas_task *task = isci_request_access_task(ireq);
1663 struct scu_task_context *task_context = ireq->tc;
1664 int cdb_len = dev->cdb_len;
1665
1666 /* reference: SSTL 1.13.4.2
1667 * task_type, sata_direction
1668 */
1669 if (task->data_dir == DMA_TO_DEVICE) {
1670 task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_OUT;
1671 task_context->sata_direction = 0;
1672 } else {
1673 /* todo: for NO_DATA command, we need to send out raw frame. */
1674 task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_IN;
1675 task_context->sata_direction = 1;
1676 }
1677
1678 memset(&task_context->type.stp, 0, sizeof(task_context->type.stp));
1679 task_context->type.stp.fis_type = FIS_DATA;
1680
1681 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
1682 memcpy(&ireq->stp.cmd.lbal, task->ata_task.atapi_packet, cdb_len);
1683 task_context->ssp_command_iu_length = cdb_len / sizeof(u32);
1684
1685 /* task phase is set to TX_CMD */
1686 task_context->task_phase = 0x1;
1687
1688 /* retry counter */
1689 task_context->stp_retry_count = 0;
1690
1691 /* data transfer size. */
1692 task_context->transfer_length_bytes = task->total_xfer_len;
1693
1694 /* setup sgl */
1695 sci_request_build_sgl(ireq);
1696 }
1697
1698 enum sci_status
sci_io_request_frame_handler(struct isci_request * ireq,u32 frame_index)1699 sci_io_request_frame_handler(struct isci_request *ireq,
1700 u32 frame_index)
1701 {
1702 struct isci_host *ihost = ireq->owning_controller;
1703 struct isci_stp_request *stp_req = &ireq->stp.req;
1704 enum sci_base_request_states state;
1705 enum sci_status status;
1706 ssize_t word_cnt;
1707
1708 state = ireq->sm.current_state_id;
1709 switch (state) {
1710 case SCI_REQ_STARTED: {
1711 struct ssp_frame_hdr ssp_hdr;
1712 void *frame_header;
1713
1714 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1715 frame_index,
1716 &frame_header);
1717
1718 word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1719 sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1720
1721 if (ssp_hdr.frame_type == SSP_RESPONSE) {
1722 struct ssp_response_iu *resp_iu;
1723 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1724
1725 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1726 frame_index,
1727 (void **)&resp_iu);
1728
1729 sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1730
1731 resp_iu = &ireq->ssp.rsp;
1732
1733 if (resp_iu->datapres == 0x01 ||
1734 resp_iu->datapres == 0x02) {
1735 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1736 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1737 } else {
1738 ireq->scu_status = SCU_TASK_DONE_GOOD;
1739 ireq->sci_status = SCI_SUCCESS;
1740 }
1741 } else {
1742 /* not a response frame, why did it get forwarded? */
1743 dev_err(&ihost->pdev->dev,
1744 "%s: SCIC IO Request 0x%p received unexpected "
1745 "frame %d type 0x%02x\n", __func__, ireq,
1746 frame_index, ssp_hdr.frame_type);
1747 }
1748
1749 /*
1750 * In any case we are done with this frame buffer return it to
1751 * the controller
1752 */
1753 sci_controller_release_frame(ihost, frame_index);
1754
1755 return SCI_SUCCESS;
1756 }
1757
1758 case SCI_REQ_TASK_WAIT_TC_RESP:
1759 sci_io_request_copy_response(ireq);
1760 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1761 sci_controller_release_frame(ihost, frame_index);
1762 return SCI_SUCCESS;
1763
1764 case SCI_REQ_SMP_WAIT_RESP: {
1765 struct sas_task *task = isci_request_access_task(ireq);
1766 struct scatterlist *sg = &task->smp_task.smp_resp;
1767 void *frame_header, *kaddr;
1768 u8 *rsp;
1769
1770 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1771 frame_index,
1772 &frame_header);
1773 kaddr = kmap_atomic(sg_page(sg));
1774 rsp = kaddr + sg->offset;
1775 sci_swab32_cpy(rsp, frame_header, 1);
1776
1777 if (rsp[0] == SMP_RESPONSE) {
1778 void *smp_resp;
1779
1780 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1781 frame_index,
1782 &smp_resp);
1783
1784 word_cnt = (sg->length/4)-1;
1785 if (word_cnt > 0)
1786 word_cnt = min_t(unsigned int, word_cnt,
1787 SCU_UNSOLICITED_FRAME_BUFFER_SIZE/4);
1788 sci_swab32_cpy(rsp + 4, smp_resp, word_cnt);
1789
1790 ireq->scu_status = SCU_TASK_DONE_GOOD;
1791 ireq->sci_status = SCI_SUCCESS;
1792 sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1793 } else {
1794 /*
1795 * This was not a response frame why did it get
1796 * forwarded?
1797 */
1798 dev_err(&ihost->pdev->dev,
1799 "%s: SCIC SMP Request 0x%p received unexpected "
1800 "frame %d type 0x%02x\n",
1801 __func__,
1802 ireq,
1803 frame_index,
1804 rsp[0]);
1805
1806 ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1807 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1808 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1809 }
1810 kunmap_atomic(kaddr);
1811
1812 sci_controller_release_frame(ihost, frame_index);
1813
1814 return SCI_SUCCESS;
1815 }
1816
1817 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1818 return sci_stp_request_udma_general_frame_handler(ireq,
1819 frame_index);
1820
1821 case SCI_REQ_STP_UDMA_WAIT_D2H:
1822 /* Use the general frame handler to copy the resposne data */
1823 status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1824
1825 if (status != SCI_SUCCESS)
1826 return status;
1827
1828 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1829 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1830 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1831 return SCI_SUCCESS;
1832
1833 case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1834 struct dev_to_host_fis *frame_header;
1835 u32 *frame_buffer;
1836
1837 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1838 frame_index,
1839 (void **)&frame_header);
1840
1841 if (status != SCI_SUCCESS) {
1842 dev_err(&ihost->pdev->dev,
1843 "%s: SCIC IO Request 0x%p could not get frame "
1844 "header for frame index %d, status %x\n",
1845 __func__,
1846 stp_req,
1847 frame_index,
1848 status);
1849
1850 return status;
1851 }
1852
1853 switch (frame_header->fis_type) {
1854 case FIS_REGD2H:
1855 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1856 frame_index,
1857 (void **)&frame_buffer);
1858
1859 sci_controller_copy_sata_response(&ireq->stp.rsp,
1860 frame_header,
1861 frame_buffer);
1862
1863 /* The command has completed with error */
1864 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1865 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1866 break;
1867
1868 default:
1869 dev_warn(&ihost->pdev->dev,
1870 "%s: IO Request:0x%p Frame Id:%d protocol "
1871 "violation occurred\n", __func__, stp_req,
1872 frame_index);
1873
1874 ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1875 ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1876 break;
1877 }
1878
1879 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1880
1881 /* Frame has been decoded return it to the controller */
1882 sci_controller_release_frame(ihost, frame_index);
1883
1884 return status;
1885 }
1886
1887 case SCI_REQ_STP_PIO_WAIT_FRAME: {
1888 struct sas_task *task = isci_request_access_task(ireq);
1889 struct dev_to_host_fis *frame_header;
1890 u32 *frame_buffer;
1891
1892 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1893 frame_index,
1894 (void **)&frame_header);
1895
1896 if (status != SCI_SUCCESS) {
1897 dev_err(&ihost->pdev->dev,
1898 "%s: SCIC IO Request 0x%p could not get frame "
1899 "header for frame index %d, status %x\n",
1900 __func__, stp_req, frame_index, status);
1901 return status;
1902 }
1903
1904 switch (frame_header->fis_type) {
1905 case FIS_PIO_SETUP:
1906 /* Get from the frame buffer the PIO Setup Data */
1907 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1908 frame_index,
1909 (void **)&frame_buffer);
1910
1911 /* Get the data from the PIO Setup The SCU Hardware
1912 * returns first word in the frame_header and the rest
1913 * of the data is in the frame buffer so we need to
1914 * back up one dword
1915 */
1916
1917 /* transfer_count: first 16bits in the 4th dword */
1918 stp_req->pio_len = frame_buffer[3] & 0xffff;
1919
1920 /* status: 4th byte in the 3rd dword */
1921 stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1922
1923 sci_controller_copy_sata_response(&ireq->stp.rsp,
1924 frame_header,
1925 frame_buffer);
1926
1927 ireq->stp.rsp.status = stp_req->status;
1928
1929 /* The next state is dependent on whether the
1930 * request was PIO Data-in or Data out
1931 */
1932 if (task->data_dir == DMA_FROM_DEVICE) {
1933 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1934 } else if (task->data_dir == DMA_TO_DEVICE) {
1935 /* Transmit data */
1936 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1937 if (status != SCI_SUCCESS)
1938 break;
1939 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1940 }
1941 break;
1942
1943 case FIS_SETDEVBITS:
1944 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1945 break;
1946
1947 case FIS_REGD2H:
1948 if (frame_header->status & ATA_BUSY) {
1949 /*
1950 * Now why is the drive sending a D2H Register
1951 * FIS when it is still busy? Do nothing since
1952 * we are still in the right state.
1953 */
1954 dev_dbg(&ihost->pdev->dev,
1955 "%s: SCIC PIO Request 0x%p received "
1956 "D2H Register FIS with BSY status "
1957 "0x%x\n",
1958 __func__,
1959 stp_req,
1960 frame_header->status);
1961 break;
1962 }
1963
1964 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1965 frame_index,
1966 (void **)&frame_buffer);
1967
1968 sci_controller_copy_sata_response(&ireq->stp.rsp,
1969 frame_header,
1970 frame_buffer);
1971
1972 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1973 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1974 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1975 break;
1976
1977 default:
1978 /* FIXME: what do we do here? */
1979 break;
1980 }
1981
1982 /* Frame is decoded return it to the controller */
1983 sci_controller_release_frame(ihost, frame_index);
1984
1985 return status;
1986 }
1987
1988 case SCI_REQ_STP_PIO_DATA_IN: {
1989 struct dev_to_host_fis *frame_header;
1990 struct sata_fis_data *frame_buffer;
1991
1992 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1993 frame_index,
1994 (void **)&frame_header);
1995
1996 if (status != SCI_SUCCESS) {
1997 dev_err(&ihost->pdev->dev,
1998 "%s: SCIC IO Request 0x%p could not get frame "
1999 "header for frame index %d, status %x\n",
2000 __func__,
2001 stp_req,
2002 frame_index,
2003 status);
2004 return status;
2005 }
2006
2007 if (frame_header->fis_type != FIS_DATA) {
2008 dev_err(&ihost->pdev->dev,
2009 "%s: SCIC PIO Request 0x%p received frame %d "
2010 "with fis type 0x%02x when expecting a data "
2011 "fis.\n",
2012 __func__,
2013 stp_req,
2014 frame_index,
2015 frame_header->fis_type);
2016
2017 ireq->scu_status = SCU_TASK_DONE_GOOD;
2018 ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
2019 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2020
2021 /* Frame is decoded return it to the controller */
2022 sci_controller_release_frame(ihost, frame_index);
2023 return status;
2024 }
2025
2026 if (stp_req->sgl.index < 0) {
2027 ireq->saved_rx_frame_index = frame_index;
2028 stp_req->pio_len = 0;
2029 } else {
2030 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
2031 frame_index,
2032 (void **)&frame_buffer);
2033
2034 status = sci_stp_request_pio_data_in_copy_data(stp_req,
2035 (u8 *)frame_buffer);
2036
2037 /* Frame is decoded return it to the controller */
2038 sci_controller_release_frame(ihost, frame_index);
2039 }
2040
2041 /* Check for the end of the transfer, are there more
2042 * bytes remaining for this data transfer
2043 */
2044 if (status != SCI_SUCCESS || stp_req->pio_len != 0)
2045 return status;
2046
2047 if ((stp_req->status & ATA_BUSY) == 0) {
2048 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2049 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2050 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2051 } else {
2052 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
2053 }
2054 return status;
2055 }
2056
2057 case SCI_REQ_ATAPI_WAIT_PIO_SETUP: {
2058 struct sas_task *task = isci_request_access_task(ireq);
2059
2060 sci_controller_release_frame(ihost, frame_index);
2061 ireq->target_device->working_request = ireq;
2062 if (task->data_dir == DMA_NONE) {
2063 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_TC_COMP);
2064 scu_atapi_reconstruct_raw_frame_task_context(ireq);
2065 } else {
2066 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2067 scu_atapi_construct_task_context(ireq);
2068 }
2069
2070 sci_controller_continue_io(ireq);
2071 return SCI_SUCCESS;
2072 }
2073 case SCI_REQ_ATAPI_WAIT_D2H:
2074 return atapi_d2h_reg_frame_handler(ireq, frame_index);
2075 case SCI_REQ_ABORTING:
2076 /*
2077 * TODO: Is it even possible to get an unsolicited frame in the
2078 * aborting state?
2079 */
2080 sci_controller_release_frame(ihost, frame_index);
2081 return SCI_SUCCESS;
2082
2083 default:
2084 dev_warn(&ihost->pdev->dev,
2085 "%s: SCIC IO Request given unexpected frame %x while "
2086 "in state %d\n",
2087 __func__,
2088 frame_index,
2089 state);
2090
2091 sci_controller_release_frame(ihost, frame_index);
2092 return SCI_FAILURE_INVALID_STATE;
2093 }
2094 }
2095
stp_request_udma_await_tc_event(struct isci_request * ireq,u32 completion_code)2096 static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
2097 u32 completion_code)
2098 {
2099 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2100 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2101 ireq->scu_status = SCU_TASK_DONE_GOOD;
2102 ireq->sci_status = SCI_SUCCESS;
2103 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2104 break;
2105 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
2106 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
2107 /* We must check ther response buffer to see if the D2H
2108 * Register FIS was received before we got the TC
2109 * completion.
2110 */
2111 if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
2112 sci_remote_device_suspend(ireq->target_device,
2113 SCI_SW_SUSPEND_NORMAL);
2114
2115 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2116 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2117 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2118 } else {
2119 /* If we have an error completion status for the
2120 * TC then we can expect a D2H register FIS from
2121 * the device so we must change state to wait
2122 * for it
2123 */
2124 sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
2125 }
2126 break;
2127
2128 /* TODO Check to see if any of these completion status need to
2129 * wait for the device to host register fis.
2130 */
2131 /* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
2132 * - this comes only for B0
2133 */
2134 default:
2135 /* All other completion status cause the IO to be complete. */
2136 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2137 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2138 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2139 break;
2140 }
2141
2142 return SCI_SUCCESS;
2143 }
2144
atapi_raw_completion(struct isci_request * ireq,u32 completion_code,enum sci_base_request_states next)2145 static enum sci_status atapi_raw_completion(struct isci_request *ireq, u32 completion_code,
2146 enum sci_base_request_states next)
2147 {
2148 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2149 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2150 ireq->scu_status = SCU_TASK_DONE_GOOD;
2151 ireq->sci_status = SCI_SUCCESS;
2152 sci_change_state(&ireq->sm, next);
2153 break;
2154 default:
2155 /* All other completion status cause the IO to be complete.
2156 * If a NAK was received, then it is up to the user to retry
2157 * the request.
2158 */
2159 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2160 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2161
2162 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2163 break;
2164 }
2165
2166 return SCI_SUCCESS;
2167 }
2168
atapi_data_tc_completion_handler(struct isci_request * ireq,u32 completion_code)2169 static enum sci_status atapi_data_tc_completion_handler(struct isci_request *ireq,
2170 u32 completion_code)
2171 {
2172 struct isci_remote_device *idev = ireq->target_device;
2173 struct dev_to_host_fis *d2h = &ireq->stp.rsp;
2174 enum sci_status status = SCI_SUCCESS;
2175
2176 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2177 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
2178 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2179 break;
2180
2181 case (SCU_TASK_DONE_UNEXP_FIS << SCU_COMPLETION_TL_STATUS_SHIFT): {
2182 u16 len = sci_req_tx_bytes(ireq);
2183
2184 /* likely non-error data underrrun, workaround missing
2185 * d2h frame from the controller
2186 */
2187 if (d2h->fis_type != FIS_REGD2H) {
2188 d2h->fis_type = FIS_REGD2H;
2189 d2h->flags = (1 << 6);
2190 d2h->status = 0x50;
2191 d2h->error = 0;
2192 d2h->lbal = 0;
2193 d2h->byte_count_low = len & 0xff;
2194 d2h->byte_count_high = len >> 8;
2195 d2h->device = 0xa0;
2196 d2h->lbal_exp = 0;
2197 d2h->lbam_exp = 0;
2198 d2h->lbah_exp = 0;
2199 d2h->_r_a = 0;
2200 d2h->sector_count = 0x3;
2201 d2h->sector_count_exp = 0;
2202 d2h->_r_b = 0;
2203 d2h->_r_c = 0;
2204 d2h->_r_d = 0;
2205 }
2206
2207 ireq->scu_status = SCU_TASK_DONE_GOOD;
2208 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
2209 status = ireq->sci_status;
2210
2211 /* the hw will have suspended the rnc, so complete the
2212 * request upon pending resume
2213 */
2214 sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2215 break;
2216 }
2217 case (SCU_TASK_DONE_EXCESS_DATA << SCU_COMPLETION_TL_STATUS_SHIFT):
2218 /* In this case, there is no UF coming after.
2219 * compelte the IO now.
2220 */
2221 ireq->scu_status = SCU_TASK_DONE_GOOD;
2222 ireq->sci_status = SCI_SUCCESS;
2223 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2224 break;
2225
2226 default:
2227 if (d2h->fis_type == FIS_REGD2H) {
2228 /* UF received change the device state to ATAPI_ERROR */
2229 status = ireq->sci_status;
2230 sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2231 } else {
2232 /* If receiving any non-success TC status, no UF
2233 * received yet, then an UF for the status fis
2234 * is coming after (XXX: suspect this is
2235 * actually a protocol error or a bug like the
2236 * DONE_UNEXP_FIS case)
2237 */
2238 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2239 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2240
2241 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2242 }
2243 break;
2244 }
2245
2246 return status;
2247 }
2248
sci_request_smp_completion_status_is_tx_suspend(unsigned int completion_status)2249 static int sci_request_smp_completion_status_is_tx_suspend(
2250 unsigned int completion_status)
2251 {
2252 switch (completion_status) {
2253 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2254 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2255 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2256 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2257 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2258 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2259 return 1;
2260 }
2261 return 0;
2262 }
2263
sci_request_smp_completion_status_is_tx_rx_suspend(unsigned int completion_status)2264 static int sci_request_smp_completion_status_is_tx_rx_suspend(
2265 unsigned int completion_status)
2266 {
2267 return 0; /* There are no Tx/Rx SMP suspend conditions. */
2268 }
2269
sci_request_ssp_completion_status_is_tx_suspend(unsigned int completion_status)2270 static int sci_request_ssp_completion_status_is_tx_suspend(
2271 unsigned int completion_status)
2272 {
2273 switch (completion_status) {
2274 case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2275 case SCU_TASK_DONE_LF_ERR:
2276 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2277 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2278 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2279 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2280 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2281 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2282 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2283 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2284 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2285 return 1;
2286 }
2287 return 0;
2288 }
2289
sci_request_ssp_completion_status_is_tx_rx_suspend(unsigned int completion_status)2290 static int sci_request_ssp_completion_status_is_tx_rx_suspend(
2291 unsigned int completion_status)
2292 {
2293 return 0; /* There are no Tx/Rx SSP suspend conditions. */
2294 }
2295
sci_request_stpsata_completion_status_is_tx_suspend(unsigned int completion_status)2296 static int sci_request_stpsata_completion_status_is_tx_suspend(
2297 unsigned int completion_status)
2298 {
2299 switch (completion_status) {
2300 case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2301 case SCU_TASK_DONE_LL_R_ERR:
2302 case SCU_TASK_DONE_LL_PERR:
2303 case SCU_TASK_DONE_REG_ERR:
2304 case SCU_TASK_DONE_SDB_ERR:
2305 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2306 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2307 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2308 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2309 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2310 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2311 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2312 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2313 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2314 return 1;
2315 }
2316 return 0;
2317 }
2318
2319
sci_request_stpsata_completion_status_is_tx_rx_suspend(unsigned int completion_status)2320 static int sci_request_stpsata_completion_status_is_tx_rx_suspend(
2321 unsigned int completion_status)
2322 {
2323 switch (completion_status) {
2324 case SCU_TASK_DONE_LF_ERR:
2325 case SCU_TASK_DONE_LL_SY_TERM:
2326 case SCU_TASK_DONE_LL_LF_TERM:
2327 case SCU_TASK_DONE_BREAK_RCVD:
2328 case SCU_TASK_DONE_INV_FIS_LEN:
2329 case SCU_TASK_DONE_UNEXP_FIS:
2330 case SCU_TASK_DONE_UNEXP_SDBFIS:
2331 case SCU_TASK_DONE_MAX_PLD_ERR:
2332 return 1;
2333 }
2334 return 0;
2335 }
2336
sci_request_handle_suspending_completions(struct isci_request * ireq,u32 completion_code)2337 static void sci_request_handle_suspending_completions(
2338 struct isci_request *ireq,
2339 u32 completion_code)
2340 {
2341 int is_tx = 0;
2342 int is_tx_rx = 0;
2343
2344 switch (ireq->protocol) {
2345 case SAS_PROTOCOL_SMP:
2346 is_tx = sci_request_smp_completion_status_is_tx_suspend(
2347 completion_code);
2348 is_tx_rx = sci_request_smp_completion_status_is_tx_rx_suspend(
2349 completion_code);
2350 break;
2351 case SAS_PROTOCOL_SSP:
2352 is_tx = sci_request_ssp_completion_status_is_tx_suspend(
2353 completion_code);
2354 is_tx_rx = sci_request_ssp_completion_status_is_tx_rx_suspend(
2355 completion_code);
2356 break;
2357 case SAS_PROTOCOL_STP:
2358 is_tx = sci_request_stpsata_completion_status_is_tx_suspend(
2359 completion_code);
2360 is_tx_rx =
2361 sci_request_stpsata_completion_status_is_tx_rx_suspend(
2362 completion_code);
2363 break;
2364 default:
2365 dev_warn(&ireq->isci_host->pdev->dev,
2366 "%s: request %p has no valid protocol\n",
2367 __func__, ireq);
2368 break;
2369 }
2370 if (is_tx || is_tx_rx) {
2371 BUG_ON(is_tx && is_tx_rx);
2372
2373 sci_remote_node_context_suspend(
2374 &ireq->target_device->rnc,
2375 SCI_HW_SUSPEND,
2376 (is_tx_rx) ? SCU_EVENT_TL_RNC_SUSPEND_TX_RX
2377 : SCU_EVENT_TL_RNC_SUSPEND_TX);
2378 }
2379 }
2380
2381 enum sci_status
sci_io_request_tc_completion(struct isci_request * ireq,u32 completion_code)2382 sci_io_request_tc_completion(struct isci_request *ireq,
2383 u32 completion_code)
2384 {
2385 enum sci_base_request_states state;
2386 struct isci_host *ihost = ireq->owning_controller;
2387
2388 state = ireq->sm.current_state_id;
2389
2390 /* Decode those completions that signal upcoming suspension events. */
2391 sci_request_handle_suspending_completions(
2392 ireq, SCU_GET_COMPLETION_TL_STATUS(completion_code));
2393
2394 switch (state) {
2395 case SCI_REQ_STARTED:
2396 return request_started_state_tc_event(ireq, completion_code);
2397
2398 case SCI_REQ_TASK_WAIT_TC_COMP:
2399 return ssp_task_request_await_tc_event(ireq,
2400 completion_code);
2401
2402 case SCI_REQ_SMP_WAIT_RESP:
2403 return smp_request_await_response_tc_event(ireq,
2404 completion_code);
2405
2406 case SCI_REQ_SMP_WAIT_TC_COMP:
2407 return smp_request_await_tc_event(ireq, completion_code);
2408
2409 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
2410 return stp_request_udma_await_tc_event(ireq,
2411 completion_code);
2412
2413 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
2414 return stp_request_non_data_await_h2d_tc_event(ireq,
2415 completion_code);
2416
2417 case SCI_REQ_STP_PIO_WAIT_H2D:
2418 return stp_request_pio_await_h2d_completion_tc_event(ireq,
2419 completion_code);
2420
2421 case SCI_REQ_STP_PIO_DATA_OUT:
2422 return pio_data_out_tx_done_tc_event(ireq, completion_code);
2423
2424 case SCI_REQ_ABORTING:
2425 return request_aborting_state_tc_event(ireq,
2426 completion_code);
2427
2428 case SCI_REQ_ATAPI_WAIT_H2D:
2429 return atapi_raw_completion(ireq, completion_code,
2430 SCI_REQ_ATAPI_WAIT_PIO_SETUP);
2431
2432 case SCI_REQ_ATAPI_WAIT_TC_COMP:
2433 return atapi_raw_completion(ireq, completion_code,
2434 SCI_REQ_ATAPI_WAIT_D2H);
2435
2436 case SCI_REQ_ATAPI_WAIT_D2H:
2437 return atapi_data_tc_completion_handler(ireq, completion_code);
2438
2439 default:
2440 dev_warn(&ihost->pdev->dev, "%s: %x in wrong state %s\n",
2441 __func__, completion_code, req_state_name(state));
2442 return SCI_FAILURE_INVALID_STATE;
2443 }
2444 }
2445
2446 /**
2447 * isci_request_process_response_iu() - This function sets the status and
2448 * response iu, in the task struct, from the request object for the upper
2449 * layer driver.
2450 * @task: This parameter is the task struct from the upper layer driver.
2451 * @resp_iu: This parameter points to the response iu of the completed request.
2452 * @dev: This parameter specifies the linux device struct.
2453 *
2454 * none.
2455 */
isci_request_process_response_iu(struct sas_task * task,struct ssp_response_iu * resp_iu,struct device * dev)2456 static void isci_request_process_response_iu(
2457 struct sas_task *task,
2458 struct ssp_response_iu *resp_iu,
2459 struct device *dev)
2460 {
2461 dev_dbg(dev,
2462 "%s: resp_iu = %p "
2463 "resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2464 "resp_iu->response_data_len = %x, "
2465 "resp_iu->sense_data_len = %x\nresponse data: ",
2466 __func__,
2467 resp_iu,
2468 resp_iu->status,
2469 resp_iu->datapres,
2470 resp_iu->response_data_len,
2471 resp_iu->sense_data_len);
2472
2473 task->task_status.stat = resp_iu->status;
2474
2475 /* libsas updates the task status fields based on the response iu. */
2476 sas_ssp_task_response(dev, task, resp_iu);
2477 }
2478
2479 /**
2480 * isci_request_set_open_reject_status() - This function prepares the I/O
2481 * completion for OPEN_REJECT conditions.
2482 * @request: This parameter is the completed isci_request object.
2483 * @task: This parameter is the task struct from the upper layer driver.
2484 * @response_ptr: This parameter specifies the service response for the I/O.
2485 * @status_ptr: This parameter specifies the exec status for the I/O.
2486 * @open_rej_reason: This parameter specifies the encoded reason for the
2487 * abandon-class reject.
2488 *
2489 * none.
2490 */
isci_request_set_open_reject_status(struct isci_request * request,struct sas_task * task,enum service_response * response_ptr,enum exec_status * status_ptr,enum sas_open_rej_reason open_rej_reason)2491 static void isci_request_set_open_reject_status(
2492 struct isci_request *request,
2493 struct sas_task *task,
2494 enum service_response *response_ptr,
2495 enum exec_status *status_ptr,
2496 enum sas_open_rej_reason open_rej_reason)
2497 {
2498 /* Task in the target is done. */
2499 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2500 *response_ptr = SAS_TASK_UNDELIVERED;
2501 *status_ptr = SAS_OPEN_REJECT;
2502 task->task_status.open_rej_reason = open_rej_reason;
2503 }
2504
2505 /**
2506 * isci_request_handle_controller_specific_errors() - This function decodes
2507 * controller-specific I/O completion error conditions.
2508 * @idev: Remote device
2509 * @request: This parameter is the completed isci_request object.
2510 * @task: This parameter is the task struct from the upper layer driver.
2511 * @response_ptr: This parameter specifies the service response for the I/O.
2512 * @status_ptr: This parameter specifies the exec status for the I/O.
2513 *
2514 * none.
2515 */
isci_request_handle_controller_specific_errors(struct isci_remote_device * idev,struct isci_request * request,struct sas_task * task,enum service_response * response_ptr,enum exec_status * status_ptr)2516 static void isci_request_handle_controller_specific_errors(
2517 struct isci_remote_device *idev,
2518 struct isci_request *request,
2519 struct sas_task *task,
2520 enum service_response *response_ptr,
2521 enum exec_status *status_ptr)
2522 {
2523 unsigned int cstatus;
2524
2525 cstatus = request->scu_status;
2526
2527 dev_dbg(&request->isci_host->pdev->dev,
2528 "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2529 "- controller status = 0x%x\n",
2530 __func__, request, cstatus);
2531
2532 /* Decode the controller-specific errors; most
2533 * important is to recognize those conditions in which
2534 * the target may still have a task outstanding that
2535 * must be aborted.
2536 *
2537 * Note that there are SCU completion codes being
2538 * named in the decode below for which SCIC has already
2539 * done work to handle them in a way other than as
2540 * a controller-specific completion code; these are left
2541 * in the decode below for completeness sake.
2542 */
2543 switch (cstatus) {
2544 case SCU_TASK_DONE_DMASETUP_DIRERR:
2545 /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2546 case SCU_TASK_DONE_XFERCNT_ERR:
2547 /* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2548 if (task->task_proto == SAS_PROTOCOL_SMP) {
2549 /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2550 *response_ptr = SAS_TASK_COMPLETE;
2551
2552 /* See if the device has been/is being stopped. Note
2553 * that we ignore the quiesce state, since we are
2554 * concerned about the actual device state.
2555 */
2556 if (!idev)
2557 *status_ptr = SAS_DEVICE_UNKNOWN;
2558 else
2559 *status_ptr = SAS_ABORTED_TASK;
2560
2561 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2562 } else {
2563 /* Task in the target is not done. */
2564 *response_ptr = SAS_TASK_UNDELIVERED;
2565
2566 if (!idev)
2567 *status_ptr = SAS_DEVICE_UNKNOWN;
2568 else
2569 *status_ptr = SAS_SAM_STAT_TASK_ABORTED;
2570
2571 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2572 }
2573
2574 break;
2575
2576 case SCU_TASK_DONE_CRC_ERR:
2577 case SCU_TASK_DONE_NAK_CMD_ERR:
2578 case SCU_TASK_DONE_EXCESS_DATA:
2579 case SCU_TASK_DONE_UNEXP_FIS:
2580 /* Also SCU_TASK_DONE_UNEXP_RESP: */
2581 case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */
2582 case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */
2583 case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */
2584 /* These are conditions in which the target
2585 * has completed the task, so that no cleanup
2586 * is necessary.
2587 */
2588 *response_ptr = SAS_TASK_COMPLETE;
2589
2590 /* See if the device has been/is being stopped. Note
2591 * that we ignore the quiesce state, since we are
2592 * concerned about the actual device state.
2593 */
2594 if (!idev)
2595 *status_ptr = SAS_DEVICE_UNKNOWN;
2596 else
2597 *status_ptr = SAS_ABORTED_TASK;
2598
2599 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2600 break;
2601
2602
2603 /* Note that the only open reject completion codes seen here will be
2604 * abandon-class codes; all others are automatically retried in the SCU.
2605 */
2606 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2607
2608 isci_request_set_open_reject_status(
2609 request, task, response_ptr, status_ptr,
2610 SAS_OREJ_WRONG_DEST);
2611 break;
2612
2613 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2614
2615 /* Note - the return of AB0 will change when
2616 * libsas implements detection of zone violations.
2617 */
2618 isci_request_set_open_reject_status(
2619 request, task, response_ptr, status_ptr,
2620 SAS_OREJ_RESV_AB0);
2621 break;
2622
2623 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2624
2625 isci_request_set_open_reject_status(
2626 request, task, response_ptr, status_ptr,
2627 SAS_OREJ_RESV_AB1);
2628 break;
2629
2630 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2631
2632 isci_request_set_open_reject_status(
2633 request, task, response_ptr, status_ptr,
2634 SAS_OREJ_RESV_AB2);
2635 break;
2636
2637 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2638
2639 isci_request_set_open_reject_status(
2640 request, task, response_ptr, status_ptr,
2641 SAS_OREJ_RESV_AB3);
2642 break;
2643
2644 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2645
2646 isci_request_set_open_reject_status(
2647 request, task, response_ptr, status_ptr,
2648 SAS_OREJ_BAD_DEST);
2649 break;
2650
2651 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2652
2653 isci_request_set_open_reject_status(
2654 request, task, response_ptr, status_ptr,
2655 SAS_OREJ_STP_NORES);
2656 break;
2657
2658 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2659
2660 isci_request_set_open_reject_status(
2661 request, task, response_ptr, status_ptr,
2662 SAS_OREJ_EPROTO);
2663 break;
2664
2665 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2666
2667 isci_request_set_open_reject_status(
2668 request, task, response_ptr, status_ptr,
2669 SAS_OREJ_CONN_RATE);
2670 break;
2671
2672 case SCU_TASK_DONE_LL_R_ERR:
2673 /* Also SCU_TASK_DONE_ACK_NAK_TO: */
2674 case SCU_TASK_DONE_LL_PERR:
2675 case SCU_TASK_DONE_LL_SY_TERM:
2676 /* Also SCU_TASK_DONE_NAK_ERR:*/
2677 case SCU_TASK_DONE_LL_LF_TERM:
2678 /* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2679 case SCU_TASK_DONE_LL_ABORT_ERR:
2680 case SCU_TASK_DONE_SEQ_INV_TYPE:
2681 /* Also SCU_TASK_DONE_UNEXP_XR: */
2682 case SCU_TASK_DONE_XR_IU_LEN_ERR:
2683 case SCU_TASK_DONE_INV_FIS_LEN:
2684 /* Also SCU_TASK_DONE_XR_WD_LEN: */
2685 case SCU_TASK_DONE_SDMA_ERR:
2686 case SCU_TASK_DONE_OFFSET_ERR:
2687 case SCU_TASK_DONE_MAX_PLD_ERR:
2688 case SCU_TASK_DONE_LF_ERR:
2689 case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */
2690 case SCU_TASK_DONE_SMP_LL_RX_ERR:
2691 case SCU_TASK_DONE_UNEXP_DATA:
2692 case SCU_TASK_DONE_UNEXP_SDBFIS:
2693 case SCU_TASK_DONE_REG_ERR:
2694 case SCU_TASK_DONE_SDB_ERR:
2695 case SCU_TASK_DONE_TASK_ABORT:
2696 default:
2697 /* Task in the target is not done. */
2698 *response_ptr = SAS_TASK_UNDELIVERED;
2699 *status_ptr = SAS_SAM_STAT_TASK_ABORTED;
2700
2701 if (task->task_proto == SAS_PROTOCOL_SMP)
2702 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2703 else
2704 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2705 break;
2706 }
2707 }
2708
isci_process_stp_response(struct sas_task * task,struct dev_to_host_fis * fis)2709 static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2710 {
2711 struct task_status_struct *ts = &task->task_status;
2712 struct ata_task_resp *resp = (void *)&ts->buf[0];
2713
2714 resp->frame_len = sizeof(*fis);
2715 memcpy(resp->ending_fis, fis, sizeof(*fis));
2716 ts->buf_valid_size = sizeof(*resp);
2717
2718 /* If an error is flagged let libata decode the fis */
2719 if (ac_err_mask(fis->status))
2720 ts->stat = SAS_PROTO_RESPONSE;
2721 else
2722 ts->stat = SAS_SAM_STAT_GOOD;
2723
2724 ts->resp = SAS_TASK_COMPLETE;
2725 }
2726
isci_request_io_request_complete(struct isci_host * ihost,struct isci_request * request,enum sci_io_status completion_status)2727 static void isci_request_io_request_complete(struct isci_host *ihost,
2728 struct isci_request *request,
2729 enum sci_io_status completion_status)
2730 {
2731 struct sas_task *task = isci_request_access_task(request);
2732 struct ssp_response_iu *resp_iu;
2733 unsigned long task_flags;
2734 struct isci_remote_device *idev = request->target_device;
2735 enum service_response response = SAS_TASK_UNDELIVERED;
2736 enum exec_status status = SAS_ABORTED_TASK;
2737
2738 dev_dbg(&ihost->pdev->dev,
2739 "%s: request = %p, task = %p, "
2740 "task->data_dir = %d completion_status = 0x%x\n",
2741 __func__, request, task, task->data_dir, completion_status);
2742
2743 /* The request is done from an SCU HW perspective. */
2744
2745 /* This is an active request being completed from the core. */
2746 switch (completion_status) {
2747
2748 case SCI_IO_FAILURE_RESPONSE_VALID:
2749 dev_dbg(&ihost->pdev->dev,
2750 "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2751 __func__, request, task);
2752
2753 if (sas_protocol_ata(task->task_proto)) {
2754 isci_process_stp_response(task, &request->stp.rsp);
2755 } else if (SAS_PROTOCOL_SSP == task->task_proto) {
2756
2757 /* crack the iu response buffer. */
2758 resp_iu = &request->ssp.rsp;
2759 isci_request_process_response_iu(task, resp_iu,
2760 &ihost->pdev->dev);
2761
2762 } else if (SAS_PROTOCOL_SMP == task->task_proto) {
2763
2764 dev_err(&ihost->pdev->dev,
2765 "%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2766 "SAS_PROTOCOL_SMP protocol\n",
2767 __func__);
2768
2769 } else
2770 dev_err(&ihost->pdev->dev,
2771 "%s: unknown protocol\n", __func__);
2772
2773 /* use the task status set in the task struct by the
2774 * isci_request_process_response_iu call.
2775 */
2776 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2777 response = task->task_status.resp;
2778 status = task->task_status.stat;
2779 break;
2780
2781 case SCI_IO_SUCCESS:
2782 case SCI_IO_SUCCESS_IO_DONE_EARLY:
2783
2784 response = SAS_TASK_COMPLETE;
2785 status = SAS_SAM_STAT_GOOD;
2786 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2787
2788 if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2789
2790 /* This was an SSP / STP / SATA transfer.
2791 * There is a possibility that less data than
2792 * the maximum was transferred.
2793 */
2794 u32 transferred_length = sci_req_tx_bytes(request);
2795
2796 task->task_status.residual
2797 = task->total_xfer_len - transferred_length;
2798
2799 /* If there were residual bytes, call this an
2800 * underrun.
2801 */
2802 if (task->task_status.residual != 0)
2803 status = SAS_DATA_UNDERRUN;
2804
2805 dev_dbg(&ihost->pdev->dev,
2806 "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2807 __func__, status);
2808
2809 } else
2810 dev_dbg(&ihost->pdev->dev, "%s: SCI_IO_SUCCESS\n",
2811 __func__);
2812 break;
2813
2814 case SCI_IO_FAILURE_TERMINATED:
2815
2816 dev_dbg(&ihost->pdev->dev,
2817 "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2818 __func__, request, task);
2819
2820 /* The request was terminated explicitly. */
2821 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2822 response = SAS_TASK_UNDELIVERED;
2823
2824 /* See if the device has been/is being stopped. Note
2825 * that we ignore the quiesce state, since we are
2826 * concerned about the actual device state.
2827 */
2828 if (!idev)
2829 status = SAS_DEVICE_UNKNOWN;
2830 else
2831 status = SAS_ABORTED_TASK;
2832 break;
2833
2834 case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2835
2836 isci_request_handle_controller_specific_errors(idev, request,
2837 task, &response,
2838 &status);
2839 break;
2840
2841 case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2842 /* This is a special case, in that the I/O completion
2843 * is telling us that the device needs a reset.
2844 * In order for the device reset condition to be
2845 * noticed, the I/O has to be handled in the error
2846 * handler. Set the reset flag and cause the
2847 * SCSI error thread to be scheduled.
2848 */
2849 spin_lock_irqsave(&task->task_state_lock, task_flags);
2850 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2851 spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2852
2853 /* Fail the I/O. */
2854 response = SAS_TASK_UNDELIVERED;
2855 status = SAS_SAM_STAT_TASK_ABORTED;
2856
2857 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2858 break;
2859
2860 case SCI_FAILURE_RETRY_REQUIRED:
2861
2862 /* Fail the I/O so it can be retried. */
2863 response = SAS_TASK_UNDELIVERED;
2864 if (!idev)
2865 status = SAS_DEVICE_UNKNOWN;
2866 else
2867 status = SAS_ABORTED_TASK;
2868
2869 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2870 break;
2871
2872
2873 default:
2874 /* Catch any otherwise unhandled error codes here. */
2875 dev_dbg(&ihost->pdev->dev,
2876 "%s: invalid completion code: 0x%x - "
2877 "isci_request = %p\n",
2878 __func__, completion_status, request);
2879
2880 response = SAS_TASK_UNDELIVERED;
2881
2882 /* See if the device has been/is being stopped. Note
2883 * that we ignore the quiesce state, since we are
2884 * concerned about the actual device state.
2885 */
2886 if (!idev)
2887 status = SAS_DEVICE_UNKNOWN;
2888 else
2889 status = SAS_ABORTED_TASK;
2890
2891 if (SAS_PROTOCOL_SMP == task->task_proto)
2892 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2893 else
2894 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2895 break;
2896 }
2897
2898 switch (task->task_proto) {
2899 case SAS_PROTOCOL_SSP:
2900 if (task->data_dir == DMA_NONE)
2901 break;
2902 if (task->num_scatter == 0)
2903 /* 0 indicates a single dma address */
2904 dma_unmap_single(&ihost->pdev->dev,
2905 request->zero_scatter_daddr,
2906 task->total_xfer_len, task->data_dir);
2907 else /* unmap the sgl dma addresses */
2908 dma_unmap_sg(&ihost->pdev->dev, task->scatter,
2909 request->num_sg_entries, task->data_dir);
2910 break;
2911 case SAS_PROTOCOL_SMP: {
2912 struct scatterlist *sg = &task->smp_task.smp_req;
2913 struct smp_req *smp_req;
2914 void *kaddr;
2915
2916 dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
2917
2918 /* need to swab it back in case the command buffer is re-used */
2919 kaddr = kmap_atomic(sg_page(sg));
2920 smp_req = kaddr + sg->offset;
2921 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
2922 kunmap_atomic(kaddr);
2923 break;
2924 }
2925 default:
2926 break;
2927 }
2928
2929 spin_lock_irqsave(&task->task_state_lock, task_flags);
2930
2931 task->task_status.resp = response;
2932 task->task_status.stat = status;
2933
2934 if (test_bit(IREQ_COMPLETE_IN_TARGET, &request->flags)) {
2935 /* Normal notification (task_done) */
2936 task->task_state_flags |= SAS_TASK_STATE_DONE;
2937 task->task_state_flags &= ~(SAS_TASK_AT_INITIATOR |
2938 SAS_TASK_STATE_PENDING);
2939 }
2940 spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2941
2942 /* complete the io request to the core. */
2943 sci_controller_complete_io(ihost, request->target_device, request);
2944
2945 /* set terminated handle so it cannot be completed or
2946 * terminated again, and to cause any calls into abort
2947 * task to recognize the already completed case.
2948 */
2949 set_bit(IREQ_TERMINATED, &request->flags);
2950
2951 ireq_done(ihost, request, task);
2952 }
2953
sci_request_started_state_enter(struct sci_base_state_machine * sm)2954 static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
2955 {
2956 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2957 struct domain_device *dev = ireq->target_device->domain_dev;
2958 enum sci_base_request_states state;
2959 struct sas_task *task;
2960
2961 /* XXX as hch said always creating an internal sas_task for tmf
2962 * requests would simplify the driver
2963 */
2964 task = (test_bit(IREQ_TMF, &ireq->flags)) ? NULL : isci_request_access_task(ireq);
2965
2966 /* all unaccelerated request types (non ssp or ncq) handled with
2967 * substates
2968 */
2969 if (!task && dev->dev_type == SAS_END_DEVICE) {
2970 state = SCI_REQ_TASK_WAIT_TC_COMP;
2971 } else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
2972 state = SCI_REQ_SMP_WAIT_RESP;
2973 } else if (task && sas_protocol_ata(task->task_proto) &&
2974 !task->ata_task.use_ncq) {
2975 if (dev->sata_dev.class == ATA_DEV_ATAPI &&
2976 task->ata_task.fis.command == ATA_CMD_PACKET) {
2977 state = SCI_REQ_ATAPI_WAIT_H2D;
2978 } else if (task->data_dir == DMA_NONE) {
2979 state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
2980 } else if (task->ata_task.dma_xfer) {
2981 state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
2982 } else /* PIO */ {
2983 state = SCI_REQ_STP_PIO_WAIT_H2D;
2984 }
2985 } else {
2986 /* SSP or NCQ are fully accelerated, no substates */
2987 return;
2988 }
2989 sci_change_state(sm, state);
2990 }
2991
sci_request_completed_state_enter(struct sci_base_state_machine * sm)2992 static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
2993 {
2994 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2995 struct isci_host *ihost = ireq->owning_controller;
2996
2997 /* Tell the SCI_USER that the IO request is complete */
2998 if (!test_bit(IREQ_TMF, &ireq->flags))
2999 isci_request_io_request_complete(ihost, ireq,
3000 ireq->sci_status);
3001 else
3002 isci_task_request_complete(ihost, ireq, ireq->sci_status);
3003 }
3004
sci_request_aborting_state_enter(struct sci_base_state_machine * sm)3005 static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
3006 {
3007 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3008
3009 /* Setting the abort bit in the Task Context is required by the silicon. */
3010 ireq->tc->abort = 1;
3011 }
3012
sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine * sm)3013 static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3014 {
3015 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3016
3017 ireq->target_device->working_request = ireq;
3018 }
3019
sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine * sm)3020 static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3021 {
3022 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3023
3024 ireq->target_device->working_request = ireq;
3025 }
3026
3027 static const struct sci_base_state sci_request_state_table[] = {
3028 [SCI_REQ_INIT] = { },
3029 [SCI_REQ_CONSTRUCTED] = { },
3030 [SCI_REQ_STARTED] = {
3031 .enter_state = sci_request_started_state_enter,
3032 },
3033 [SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
3034 .enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
3035 },
3036 [SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
3037 [SCI_REQ_STP_PIO_WAIT_H2D] = {
3038 .enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
3039 },
3040 [SCI_REQ_STP_PIO_WAIT_FRAME] = { },
3041 [SCI_REQ_STP_PIO_DATA_IN] = { },
3042 [SCI_REQ_STP_PIO_DATA_OUT] = { },
3043 [SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
3044 [SCI_REQ_STP_UDMA_WAIT_D2H] = { },
3045 [SCI_REQ_TASK_WAIT_TC_COMP] = { },
3046 [SCI_REQ_TASK_WAIT_TC_RESP] = { },
3047 [SCI_REQ_SMP_WAIT_RESP] = { },
3048 [SCI_REQ_SMP_WAIT_TC_COMP] = { },
3049 [SCI_REQ_ATAPI_WAIT_H2D] = { },
3050 [SCI_REQ_ATAPI_WAIT_PIO_SETUP] = { },
3051 [SCI_REQ_ATAPI_WAIT_D2H] = { },
3052 [SCI_REQ_ATAPI_WAIT_TC_COMP] = { },
3053 [SCI_REQ_COMPLETED] = {
3054 .enter_state = sci_request_completed_state_enter,
3055 },
3056 [SCI_REQ_ABORTING] = {
3057 .enter_state = sci_request_aborting_state_enter,
3058 },
3059 [SCI_REQ_FINAL] = { },
3060 };
3061
3062 static void
sci_general_request_construct(struct isci_host * ihost,struct isci_remote_device * idev,struct isci_request * ireq)3063 sci_general_request_construct(struct isci_host *ihost,
3064 struct isci_remote_device *idev,
3065 struct isci_request *ireq)
3066 {
3067 sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
3068
3069 ireq->target_device = idev;
3070 ireq->protocol = SAS_PROTOCOL_NONE;
3071 ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
3072
3073 ireq->sci_status = SCI_SUCCESS;
3074 ireq->scu_status = 0;
3075 ireq->post_context = 0xFFFFFFFF;
3076 }
3077
3078 static enum sci_status
sci_io_request_construct(struct isci_host * ihost,struct isci_remote_device * idev,struct isci_request * ireq)3079 sci_io_request_construct(struct isci_host *ihost,
3080 struct isci_remote_device *idev,
3081 struct isci_request *ireq)
3082 {
3083 struct domain_device *dev = idev->domain_dev;
3084 enum sci_status status = SCI_SUCCESS;
3085
3086 /* Build the common part of the request */
3087 sci_general_request_construct(ihost, idev, ireq);
3088
3089 if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
3090 return SCI_FAILURE_INVALID_REMOTE_DEVICE;
3091
3092 if (dev->dev_type == SAS_END_DEVICE)
3093 /* pass */;
3094 else if (dev_is_sata(dev))
3095 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
3096 else if (dev_is_expander(dev->dev_type))
3097 /* pass */;
3098 else
3099 return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3100
3101 memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
3102
3103 return status;
3104 }
3105
sci_task_request_construct(struct isci_host * ihost,struct isci_remote_device * idev,u16 io_tag,struct isci_request * ireq)3106 enum sci_status sci_task_request_construct(struct isci_host *ihost,
3107 struct isci_remote_device *idev,
3108 u16 io_tag, struct isci_request *ireq)
3109 {
3110 struct domain_device *dev = idev->domain_dev;
3111 enum sci_status status = SCI_SUCCESS;
3112
3113 /* Build the common part of the request */
3114 sci_general_request_construct(ihost, idev, ireq);
3115
3116 if (dev->dev_type == SAS_END_DEVICE || dev_is_sata(dev)) {
3117 set_bit(IREQ_TMF, &ireq->flags);
3118 memset(ireq->tc, 0, sizeof(struct scu_task_context));
3119
3120 /* Set the protocol indicator. */
3121 if (dev_is_sata(dev))
3122 ireq->protocol = SAS_PROTOCOL_STP;
3123 else
3124 ireq->protocol = SAS_PROTOCOL_SSP;
3125 } else
3126 status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3127
3128 return status;
3129 }
3130
isci_request_ssp_request_construct(struct isci_request * request)3131 static enum sci_status isci_request_ssp_request_construct(
3132 struct isci_request *request)
3133 {
3134 enum sci_status status;
3135
3136 dev_dbg(&request->isci_host->pdev->dev,
3137 "%s: request = %p\n",
3138 __func__,
3139 request);
3140 status = sci_io_request_construct_basic_ssp(request);
3141 return status;
3142 }
3143
isci_request_stp_request_construct(struct isci_request * ireq)3144 static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3145 {
3146 struct sas_task *task = isci_request_access_task(ireq);
3147 struct host_to_dev_fis *fis = &ireq->stp.cmd;
3148 struct ata_queued_cmd *qc = task->uldd_task;
3149 enum sci_status status;
3150
3151 dev_dbg(&ireq->isci_host->pdev->dev,
3152 "%s: ireq = %p\n",
3153 __func__,
3154 ireq);
3155
3156 memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3157 if (!task->ata_task.device_control_reg_update)
3158 fis->flags |= 0x80;
3159 fis->flags &= 0xF0;
3160
3161 status = sci_io_request_construct_basic_sata(ireq);
3162
3163 if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3164 qc->tf.command == ATA_CMD_FPDMA_READ ||
3165 qc->tf.command == ATA_CMD_FPDMA_RECV ||
3166 qc->tf.command == ATA_CMD_FPDMA_SEND ||
3167 qc->tf.command == ATA_CMD_NCQ_NON_DATA)) {
3168 fis->sector_count = qc->tag << 3;
3169 ireq->tc->type.stp.ncq_tag = qc->tag;
3170 }
3171
3172 return status;
3173 }
3174
3175 static enum sci_status
sci_io_request_construct_smp(struct device * dev,struct isci_request * ireq,struct sas_task * task)3176 sci_io_request_construct_smp(struct device *dev,
3177 struct isci_request *ireq,
3178 struct sas_task *task)
3179 {
3180 struct scatterlist *sg = &task->smp_task.smp_req;
3181 struct isci_remote_device *idev;
3182 struct scu_task_context *task_context;
3183 struct isci_port *iport;
3184 struct smp_req *smp_req;
3185 void *kaddr;
3186 u8 req_len;
3187 u32 cmd;
3188
3189 kaddr = kmap_atomic(sg_page(sg));
3190 smp_req = kaddr + sg->offset;
3191 /*
3192 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3193 * functions under SAS 2.0, a zero request length really indicates
3194 * a non-zero default length.
3195 */
3196 if (smp_req->req_len == 0) {
3197 switch (smp_req->func) {
3198 case SMP_DISCOVER:
3199 case SMP_REPORT_PHY_ERR_LOG:
3200 case SMP_REPORT_PHY_SATA:
3201 case SMP_REPORT_ROUTE_INFO:
3202 smp_req->req_len = 2;
3203 break;
3204 case SMP_CONF_ROUTE_INFO:
3205 case SMP_PHY_CONTROL:
3206 case SMP_PHY_TEST_FUNCTION:
3207 smp_req->req_len = 9;
3208 break;
3209 /* Default - zero is a valid default for 2.0. */
3210 }
3211 }
3212 req_len = smp_req->req_len;
3213 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3214 cmd = *(u32 *) smp_req;
3215 kunmap_atomic(kaddr);
3216
3217 if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3218 return SCI_FAILURE;
3219
3220 ireq->protocol = SAS_PROTOCOL_SMP;
3221
3222 /* byte swap the smp request. */
3223
3224 task_context = ireq->tc;
3225
3226 idev = ireq->target_device;
3227 iport = idev->owning_port;
3228
3229 /*
3230 * Fill in the TC with its required data
3231 * 00h
3232 */
3233 task_context->priority = 0;
3234 task_context->initiator_request = 1;
3235 task_context->connection_rate = idev->connection_rate;
3236 task_context->protocol_engine_index = ISCI_PEG;
3237 task_context->logical_port_index = iport->physical_port_index;
3238 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3239 task_context->abort = 0;
3240 task_context->valid = SCU_TASK_CONTEXT_VALID;
3241 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3242
3243 /* 04h */
3244 task_context->remote_node_index = idev->rnc.remote_node_index;
3245 task_context->command_code = 0;
3246 task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3247
3248 /* 08h */
3249 task_context->link_layer_control = 0;
3250 task_context->do_not_dma_ssp_good_response = 1;
3251 task_context->strict_ordering = 0;
3252 task_context->control_frame = 1;
3253 task_context->timeout_enable = 0;
3254 task_context->block_guard_enable = 0;
3255
3256 /* 0ch */
3257 task_context->address_modifier = 0;
3258
3259 /* 10h */
3260 task_context->ssp_command_iu_length = req_len;
3261
3262 /* 14h */
3263 task_context->transfer_length_bytes = 0;
3264
3265 /*
3266 * 18h ~ 30h, protocol specific
3267 * since commandIU has been build by framework at this point, we just
3268 * copy the frist DWord from command IU to this location. */
3269 memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3270
3271 /*
3272 * 40h
3273 * "For SMP you could program it to zero. We would prefer that way
3274 * so that done code will be consistent." - Venki
3275 */
3276 task_context->task_phase = 0;
3277
3278 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3279 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3280 (iport->physical_port_index <<
3281 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3282 ISCI_TAG_TCI(ireq->io_tag));
3283 /*
3284 * Copy the physical address for the command buffer to the SCU Task
3285 * Context command buffer should not contain command header.
3286 */
3287 task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3288 task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3289
3290 /* SMP response comes as UF, so no need to set response IU address. */
3291 task_context->response_iu_upper = 0;
3292 task_context->response_iu_lower = 0;
3293
3294 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3295
3296 return SCI_SUCCESS;
3297 }
3298
3299 /*
3300 * isci_smp_request_build() - This function builds the smp request.
3301 * @ireq: This parameter points to the isci_request allocated in the
3302 * request construct function.
3303 *
3304 * SCI_SUCCESS on successfull completion, or specific failure code.
3305 */
isci_smp_request_build(struct isci_request * ireq)3306 static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3307 {
3308 struct sas_task *task = isci_request_access_task(ireq);
3309 struct device *dev = &ireq->isci_host->pdev->dev;
3310 enum sci_status status = SCI_FAILURE;
3311
3312 status = sci_io_request_construct_smp(dev, ireq, task);
3313 if (status != SCI_SUCCESS)
3314 dev_dbg(&ireq->isci_host->pdev->dev,
3315 "%s: failed with status = %d\n",
3316 __func__,
3317 status);
3318
3319 return status;
3320 }
3321
3322 /**
3323 * isci_io_request_build() - This function builds the io request object.
3324 * @ihost: This parameter specifies the ISCI host object
3325 * @request: This parameter points to the isci_request object allocated in the
3326 * request construct function.
3327 * @idev: This parameter is the handle for the sci core's remote device
3328 * object that is the destination for this request.
3329 *
3330 * SCI_SUCCESS on successfull completion, or specific failure code.
3331 */
isci_io_request_build(struct isci_host * ihost,struct isci_request * request,struct isci_remote_device * idev)3332 static enum sci_status isci_io_request_build(struct isci_host *ihost,
3333 struct isci_request *request,
3334 struct isci_remote_device *idev)
3335 {
3336 enum sci_status status = SCI_SUCCESS;
3337 struct sas_task *task = isci_request_access_task(request);
3338
3339 dev_dbg(&ihost->pdev->dev,
3340 "%s: idev = 0x%p; request = %p, "
3341 "num_scatter = %d\n",
3342 __func__,
3343 idev,
3344 request,
3345 task->num_scatter);
3346
3347 /* map the sgl addresses, if present.
3348 * libata does the mapping for sata devices
3349 * before we get the request.
3350 */
3351 if (task->num_scatter &&
3352 !sas_protocol_ata(task->task_proto) &&
3353 !(SAS_PROTOCOL_SMP & task->task_proto)) {
3354
3355 request->num_sg_entries = dma_map_sg(
3356 &ihost->pdev->dev,
3357 task->scatter,
3358 task->num_scatter,
3359 task->data_dir
3360 );
3361
3362 if (request->num_sg_entries == 0)
3363 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3364 }
3365
3366 status = sci_io_request_construct(ihost, idev, request);
3367
3368 if (status != SCI_SUCCESS) {
3369 dev_dbg(&ihost->pdev->dev,
3370 "%s: failed request construct\n",
3371 __func__);
3372 return SCI_FAILURE;
3373 }
3374
3375 switch (task->task_proto) {
3376 case SAS_PROTOCOL_SMP:
3377 status = isci_smp_request_build(request);
3378 break;
3379 case SAS_PROTOCOL_SSP:
3380 status = isci_request_ssp_request_construct(request);
3381 break;
3382 case SAS_PROTOCOL_SATA:
3383 case SAS_PROTOCOL_STP:
3384 case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3385 status = isci_request_stp_request_construct(request);
3386 break;
3387 default:
3388 dev_dbg(&ihost->pdev->dev,
3389 "%s: unknown protocol\n", __func__);
3390 return SCI_FAILURE;
3391 }
3392
3393 return status;
3394 }
3395
isci_request_from_tag(struct isci_host * ihost,u16 tag)3396 static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3397 {
3398 struct isci_request *ireq;
3399
3400 ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3401 ireq->io_tag = tag;
3402 ireq->io_request_completion = NULL;
3403 ireq->flags = 0;
3404 ireq->num_sg_entries = 0;
3405
3406 return ireq;
3407 }
3408
isci_io_request_from_tag(struct isci_host * ihost,struct sas_task * task,u16 tag)3409 static struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3410 struct sas_task *task,
3411 u16 tag)
3412 {
3413 struct isci_request *ireq;
3414
3415 ireq = isci_request_from_tag(ihost, tag);
3416 ireq->ttype_ptr.io_task_ptr = task;
3417 clear_bit(IREQ_TMF, &ireq->flags);
3418 task->lldd_task = ireq;
3419
3420 return ireq;
3421 }
3422
isci_tmf_request_from_tag(struct isci_host * ihost,struct isci_tmf * isci_tmf,u16 tag)3423 struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3424 struct isci_tmf *isci_tmf,
3425 u16 tag)
3426 {
3427 struct isci_request *ireq;
3428
3429 ireq = isci_request_from_tag(ihost, tag);
3430 ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3431 set_bit(IREQ_TMF, &ireq->flags);
3432
3433 return ireq;
3434 }
3435
isci_request_execute(struct isci_host * ihost,struct isci_remote_device * idev,struct sas_task * task,u16 tag)3436 int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3437 struct sas_task *task, u16 tag)
3438 {
3439 enum sci_status status;
3440 struct isci_request *ireq;
3441 unsigned long flags;
3442 int ret = 0;
3443
3444 /* do common allocation and init of request object. */
3445 ireq = isci_io_request_from_tag(ihost, task, tag);
3446
3447 status = isci_io_request_build(ihost, ireq, idev);
3448 if (status != SCI_SUCCESS) {
3449 dev_dbg(&ihost->pdev->dev,
3450 "%s: request_construct failed - status = 0x%x\n",
3451 __func__,
3452 status);
3453 return status;
3454 }
3455
3456 spin_lock_irqsave(&ihost->scic_lock, flags);
3457
3458 if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3459
3460 if (isci_task_is_ncq_recovery(task)) {
3461
3462 /* The device is in an NCQ recovery state. Issue the
3463 * request on the task side. Note that it will
3464 * complete on the I/O request side because the
3465 * request was built that way (ie.
3466 * ireq->is_task_management_request is false).
3467 */
3468 status = sci_controller_start_task(ihost,
3469 idev,
3470 ireq);
3471 } else {
3472 status = SCI_FAILURE;
3473 }
3474 } else {
3475 /* send the request, let the core assign the IO TAG. */
3476 status = sci_controller_start_io(ihost, idev,
3477 ireq);
3478 }
3479
3480 if (status != SCI_SUCCESS &&
3481 status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3482 dev_dbg(&ihost->pdev->dev,
3483 "%s: failed request start (0x%x)\n",
3484 __func__, status);
3485 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3486 return status;
3487 }
3488 /* Either I/O started OK, or the core has signaled that
3489 * the device needs a target reset.
3490 */
3491 if (status != SCI_SUCCESS) {
3492 /* The request did not really start in the
3493 * hardware, so clear the request handle
3494 * here so no terminations will be done.
3495 */
3496 set_bit(IREQ_TERMINATED, &ireq->flags);
3497 }
3498 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3499
3500 if (status ==
3501 SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3502 /* Signal libsas that we need the SCSI error
3503 * handler thread to work on this I/O and that
3504 * we want a device reset.
3505 */
3506 spin_lock_irqsave(&task->task_state_lock, flags);
3507 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3508 spin_unlock_irqrestore(&task->task_state_lock, flags);
3509
3510 /* Cause this task to be scheduled in the SCSI error
3511 * handler thread.
3512 */
3513 sas_task_abort(task);
3514
3515 /* Change the status, since we are holding
3516 * the I/O until it is managed by the SCSI
3517 * error handler.
3518 */
3519 status = SCI_SUCCESS;
3520 }
3521
3522 return ret;
3523 }
3524