• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
4  *
5  * Copyright 2016 Broadcom
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/ioport.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_irq.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/spi/spi.h>
22 #include <linux/mtd/spi-nor.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25 #include "spi-bcm-qspi.h"
26 
27 #define DRIVER_NAME "bcm_qspi"
28 
29 
30 /* BSPI register offsets */
31 #define BSPI_REVISION_ID			0x000
32 #define BSPI_SCRATCH				0x004
33 #define BSPI_MAST_N_BOOT_CTRL			0x008
34 #define BSPI_BUSY_STATUS			0x00c
35 #define BSPI_INTR_STATUS			0x010
36 #define BSPI_B0_STATUS				0x014
37 #define BSPI_B0_CTRL				0x018
38 #define BSPI_B1_STATUS				0x01c
39 #define BSPI_B1_CTRL				0x020
40 #define BSPI_STRAP_OVERRIDE_CTRL		0x024
41 #define BSPI_FLEX_MODE_ENABLE			0x028
42 #define BSPI_BITS_PER_CYCLE			0x02c
43 #define BSPI_BITS_PER_PHASE			0x030
44 #define BSPI_CMD_AND_MODE_BYTE			0x034
45 #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE	0x038
46 #define BSPI_BSPI_XOR_VALUE			0x03c
47 #define BSPI_BSPI_XOR_ENABLE			0x040
48 #define BSPI_BSPI_PIO_MODE_ENABLE		0x044
49 #define BSPI_BSPI_PIO_IODIR			0x048
50 #define BSPI_BSPI_PIO_DATA			0x04c
51 
52 /* RAF register offsets */
53 #define BSPI_RAF_START_ADDR			0x100
54 #define BSPI_RAF_NUM_WORDS			0x104
55 #define BSPI_RAF_CTRL				0x108
56 #define BSPI_RAF_FULLNESS			0x10c
57 #define BSPI_RAF_WATERMARK			0x110
58 #define BSPI_RAF_STATUS			0x114
59 #define BSPI_RAF_READ_DATA			0x118
60 #define BSPI_RAF_WORD_CNT			0x11c
61 #define BSPI_RAF_CURR_ADDR			0x120
62 
63 /* Override mode masks */
64 #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE	BIT(0)
65 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL	BIT(1)
66 #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE	BIT(2)
67 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD	BIT(3)
68 #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE	BIT(4)
69 
70 #define BSPI_ADDRLEN_3BYTES			3
71 #define BSPI_ADDRLEN_4BYTES			4
72 
73 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK	BIT(1)
74 
75 #define BSPI_RAF_CTRL_START_MASK		BIT(0)
76 #define BSPI_RAF_CTRL_CLEAR_MASK		BIT(1)
77 
78 #define BSPI_BPP_MODE_SELECT_MASK		BIT(8)
79 #define BSPI_BPP_ADDR_SELECT_MASK		BIT(16)
80 
81 #define BSPI_READ_LENGTH			256
82 
83 /* MSPI register offsets */
84 #define MSPI_SPCR0_LSB				0x000
85 #define MSPI_SPCR0_MSB				0x004
86 #define MSPI_SPCR1_LSB				0x008
87 #define MSPI_SPCR1_MSB				0x00c
88 #define MSPI_NEWQP				0x010
89 #define MSPI_ENDQP				0x014
90 #define MSPI_SPCR2				0x018
91 #define MSPI_MSPI_STATUS			0x020
92 #define MSPI_CPTQP				0x024
93 #define MSPI_SPCR3				0x028
94 #define MSPI_REV				0x02c
95 #define MSPI_TXRAM				0x040
96 #define MSPI_RXRAM				0x0c0
97 #define MSPI_CDRAM				0x140
98 #define MSPI_WRITE_LOCK			0x180
99 
100 #define MSPI_MASTER_BIT			BIT(7)
101 
102 #define MSPI_NUM_CDRAM				16
103 #define MSPI_CDRAM_CONT_BIT			BIT(7)
104 #define MSPI_CDRAM_BITSE_BIT			BIT(6)
105 #define MSPI_CDRAM_PCS				0xf
106 
107 #define MSPI_SPCR2_SPE				BIT(6)
108 #define MSPI_SPCR2_CONT_AFTER_CMD		BIT(7)
109 
110 #define MSPI_SPCR3_FASTBR			BIT(0)
111 #define MSPI_SPCR3_FASTDT			BIT(1)
112 #define MSPI_SPCR3_SYSCLKSEL_MASK		GENMASK(11, 10)
113 #define MSPI_SPCR3_SYSCLKSEL_27			(MSPI_SPCR3_SYSCLKSEL_MASK & \
114 						 ~(BIT(10) | BIT(11)))
115 #define MSPI_SPCR3_SYSCLKSEL_108		(MSPI_SPCR3_SYSCLKSEL_MASK & \
116 						 BIT(11))
117 
118 #define MSPI_MSPI_STATUS_SPIF			BIT(0)
119 
120 #define INTR_BASE_BIT_SHIFT			0x02
121 #define INTR_COUNT				0x07
122 
123 #define NUM_CHIPSELECT				4
124 #define QSPI_SPBR_MAX				255U
125 #define MSPI_BASE_FREQ				27000000UL
126 
127 #define OPCODE_DIOR				0xBB
128 #define OPCODE_QIOR				0xEB
129 #define OPCODE_DIOR_4B				0xBC
130 #define OPCODE_QIOR_4B				0xEC
131 
132 #define MAX_CMD_SIZE				6
133 
134 #define ADDR_4MB_MASK				GENMASK(22, 0)
135 
136 /* stop at end of transfer, no other reason */
137 #define TRANS_STATUS_BREAK_NONE		0
138 /* stop at end of spi_message */
139 #define TRANS_STATUS_BREAK_EOM			1
140 /* stop at end of spi_transfer if delay */
141 #define TRANS_STATUS_BREAK_DELAY		2
142 /* stop at end of spi_transfer if cs_change */
143 #define TRANS_STATUS_BREAK_CS_CHANGE		4
144 /* stop if we run out of bytes */
145 #define TRANS_STATUS_BREAK_NO_BYTES		8
146 
147 /* events that make us stop filling TX slots */
148 #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |		\
149 			       TRANS_STATUS_BREAK_DELAY |		\
150 			       TRANS_STATUS_BREAK_CS_CHANGE)
151 
152 /* events that make us deassert CS */
153 #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |		\
154 				     TRANS_STATUS_BREAK_CS_CHANGE)
155 
156 struct bcm_qspi_parms {
157 	u32 speed_hz;
158 	u8 mode;
159 	u8 bits_per_word;
160 };
161 
162 struct bcm_xfer_mode {
163 	bool flex_mode;
164 	unsigned int width;
165 	unsigned int addrlen;
166 	unsigned int hp;
167 };
168 
169 enum base_type {
170 	MSPI,
171 	BSPI,
172 	CHIP_SELECT,
173 	BASEMAX,
174 };
175 
176 enum irq_source {
177 	SINGLE_L2,
178 	MUXED_L1,
179 };
180 
181 struct bcm_qspi_irq {
182 	const char *irq_name;
183 	const irq_handler_t irq_handler;
184 	int irq_source;
185 	u32 mask;
186 };
187 
188 struct bcm_qspi_dev_id {
189 	const struct bcm_qspi_irq *irqp;
190 	void *dev;
191 };
192 
193 
194 struct qspi_trans {
195 	struct spi_transfer *trans;
196 	int byte;
197 	bool mspi_last_trans;
198 };
199 
200 struct bcm_qspi {
201 	struct platform_device *pdev;
202 	struct spi_master *master;
203 	struct clk *clk;
204 	u32 base_clk;
205 	u32 max_speed_hz;
206 	void __iomem *base[BASEMAX];
207 
208 	/* Some SoCs provide custom interrupt status register(s) */
209 	struct bcm_qspi_soc_intc	*soc_intc;
210 
211 	struct bcm_qspi_parms last_parms;
212 	struct qspi_trans  trans_pos;
213 	int curr_cs;
214 	int bspi_maj_rev;
215 	int bspi_min_rev;
216 	int bspi_enabled;
217 	const struct spi_mem_op *bspi_rf_op;
218 	u32 bspi_rf_op_idx;
219 	u32 bspi_rf_op_len;
220 	u32 bspi_rf_op_status;
221 	struct bcm_xfer_mode xfer_mode;
222 	u32 s3_strap_override_ctrl;
223 	bool bspi_mode;
224 	bool big_endian;
225 	int num_irqs;
226 	struct bcm_qspi_dev_id *dev_ids;
227 	struct completion mspi_done;
228 	struct completion bspi_done;
229 	u8 mspi_maj_rev;
230 	u8 mspi_min_rev;
231 	bool mspi_spcr3_sysclk;
232 };
233 
has_bspi(struct bcm_qspi * qspi)234 static inline bool has_bspi(struct bcm_qspi *qspi)
235 {
236 	return qspi->bspi_mode;
237 }
238 
239 /* hardware supports spcr3 and fast baud-rate  */
bcm_qspi_has_fastbr(struct bcm_qspi * qspi)240 static inline bool bcm_qspi_has_fastbr(struct bcm_qspi *qspi)
241 {
242 	if (!has_bspi(qspi) &&
243 	    ((qspi->mspi_maj_rev >= 1) &&
244 	     (qspi->mspi_min_rev >= 5)))
245 		return true;
246 
247 	return false;
248 }
249 
250 /* hardware supports sys clk 108Mhz  */
bcm_qspi_has_sysclk_108(struct bcm_qspi * qspi)251 static inline bool bcm_qspi_has_sysclk_108(struct bcm_qspi *qspi)
252 {
253 	if (!has_bspi(qspi) && (qspi->mspi_spcr3_sysclk ||
254 	    ((qspi->mspi_maj_rev >= 1) &&
255 	     (qspi->mspi_min_rev >= 6))))
256 		return true;
257 
258 	return false;
259 }
260 
bcm_qspi_spbr_min(struct bcm_qspi * qspi)261 static inline int bcm_qspi_spbr_min(struct bcm_qspi *qspi)
262 {
263 	if (bcm_qspi_has_fastbr(qspi))
264 		return 1;
265 	else
266 		return 8;
267 }
268 
269 /* Read qspi controller register*/
bcm_qspi_read(struct bcm_qspi * qspi,enum base_type type,unsigned int offset)270 static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
271 				unsigned int offset)
272 {
273 	return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
274 }
275 
276 /* Write qspi controller register*/
bcm_qspi_write(struct bcm_qspi * qspi,enum base_type type,unsigned int offset,unsigned int data)277 static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
278 				  unsigned int offset, unsigned int data)
279 {
280 	bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
281 }
282 
283 /* BSPI helpers */
bcm_qspi_bspi_busy_poll(struct bcm_qspi * qspi)284 static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
285 {
286 	int i;
287 
288 	/* this should normally finish within 10us */
289 	for (i = 0; i < 1000; i++) {
290 		if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
291 			return 0;
292 		udelay(1);
293 	}
294 	dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
295 	return -EIO;
296 }
297 
bcm_qspi_bspi_ver_three(struct bcm_qspi * qspi)298 static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
299 {
300 	if (qspi->bspi_maj_rev < 4)
301 		return true;
302 	return false;
303 }
304 
bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi * qspi)305 static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
306 {
307 	bcm_qspi_bspi_busy_poll(qspi);
308 	/* Force rising edge for the b0/b1 'flush' field */
309 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
310 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
311 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
312 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
313 }
314 
bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi * qspi)315 static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
316 {
317 	return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
318 				BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
319 }
320 
bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi * qspi)321 static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
322 {
323 	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
324 
325 	/* BSPI v3 LR is LE only, convert data to host endianness */
326 	if (bcm_qspi_bspi_ver_three(qspi))
327 		data = le32_to_cpu(data);
328 
329 	return data;
330 }
331 
bcm_qspi_bspi_lr_start(struct bcm_qspi * qspi)332 static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
333 {
334 	bcm_qspi_bspi_busy_poll(qspi);
335 	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
336 		       BSPI_RAF_CTRL_START_MASK);
337 }
338 
bcm_qspi_bspi_lr_clear(struct bcm_qspi * qspi)339 static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
340 {
341 	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
342 		       BSPI_RAF_CTRL_CLEAR_MASK);
343 	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
344 }
345 
bcm_qspi_bspi_lr_data_read(struct bcm_qspi * qspi)346 static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
347 {
348 	u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
349 	u32 data = 0;
350 
351 	dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
352 		qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
353 	while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
354 		data = bcm_qspi_bspi_lr_read_fifo(qspi);
355 		if (likely(qspi->bspi_rf_op_len >= 4) &&
356 		    IS_ALIGNED((uintptr_t)buf, 4)) {
357 			buf[qspi->bspi_rf_op_idx++] = data;
358 			qspi->bspi_rf_op_len -= 4;
359 		} else {
360 			/* Read out remaining bytes, make sure*/
361 			u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
362 
363 			data = cpu_to_le32(data);
364 			while (qspi->bspi_rf_op_len) {
365 				*cbuf++ = (u8)data;
366 				data >>= 8;
367 				qspi->bspi_rf_op_len--;
368 			}
369 		}
370 	}
371 }
372 
bcm_qspi_bspi_set_xfer_params(struct bcm_qspi * qspi,u8 cmd_byte,int bpp,int bpc,int flex_mode)373 static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
374 					  int bpp, int bpc, int flex_mode)
375 {
376 	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
377 	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
378 	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
379 	bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
380 	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
381 }
382 
bcm_qspi_bspi_set_flex_mode(struct bcm_qspi * qspi,const struct spi_mem_op * op,int hp)383 static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
384 				       const struct spi_mem_op *op, int hp)
385 {
386 	int bpc = 0, bpp = 0;
387 	u8 command = op->cmd.opcode;
388 	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
389 	int addrlen = op->addr.nbytes;
390 	int flex_mode = 1;
391 
392 	dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
393 		width, addrlen, hp);
394 
395 	if (addrlen == BSPI_ADDRLEN_4BYTES)
396 		bpp = BSPI_BPP_ADDR_SELECT_MASK;
397 
398 	if (op->dummy.nbytes)
399 		bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
400 
401 	switch (width) {
402 	case SPI_NBITS_SINGLE:
403 		if (addrlen == BSPI_ADDRLEN_3BYTES)
404 			/* default mode, does not need flex_cmd */
405 			flex_mode = 0;
406 		break;
407 	case SPI_NBITS_DUAL:
408 		bpc = 0x00000001;
409 		if (hp) {
410 			bpc |= 0x00010100; /* address and mode are 2-bit */
411 			bpp = BSPI_BPP_MODE_SELECT_MASK;
412 		}
413 		break;
414 	case SPI_NBITS_QUAD:
415 		bpc = 0x00000002;
416 		if (hp) {
417 			bpc |= 0x00020200; /* address and mode are 4-bit */
418 			bpp |= BSPI_BPP_MODE_SELECT_MASK;
419 		}
420 		break;
421 	default:
422 		return -EINVAL;
423 	}
424 
425 	bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
426 
427 	return 0;
428 }
429 
bcm_qspi_bspi_set_override(struct bcm_qspi * qspi,const struct spi_mem_op * op,int hp)430 static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
431 				      const struct spi_mem_op *op, int hp)
432 {
433 	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
434 	int addrlen = op->addr.nbytes;
435 	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
436 
437 	dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
438 		width, addrlen, hp);
439 
440 	switch (width) {
441 	case SPI_NBITS_SINGLE:
442 		/* clear quad/dual mode */
443 		data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
444 			  BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
445 		break;
446 	case SPI_NBITS_QUAD:
447 		/* clear dual mode and set quad mode */
448 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
449 		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
450 		break;
451 	case SPI_NBITS_DUAL:
452 		/* clear quad mode set dual mode */
453 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
454 		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
455 		break;
456 	default:
457 		return -EINVAL;
458 	}
459 
460 	if (addrlen == BSPI_ADDRLEN_4BYTES)
461 		/* set 4byte mode*/
462 		data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
463 	else
464 		/* clear 4 byte mode */
465 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
466 
467 	/* set the override mode */
468 	data |=	BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
469 	bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
470 	bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
471 
472 	return 0;
473 }
474 
bcm_qspi_bspi_set_mode(struct bcm_qspi * qspi,const struct spi_mem_op * op,int hp)475 static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
476 				  const struct spi_mem_op *op, int hp)
477 {
478 	int error = 0;
479 	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
480 	int addrlen = op->addr.nbytes;
481 
482 	/* default mode */
483 	qspi->xfer_mode.flex_mode = true;
484 
485 	if (!bcm_qspi_bspi_ver_three(qspi)) {
486 		u32 val, mask;
487 
488 		val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
489 		mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
490 		if (val & mask || qspi->s3_strap_override_ctrl & mask) {
491 			qspi->xfer_mode.flex_mode = false;
492 			bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
493 			error = bcm_qspi_bspi_set_override(qspi, op, hp);
494 		}
495 	}
496 
497 	if (qspi->xfer_mode.flex_mode)
498 		error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
499 
500 	if (error) {
501 		dev_warn(&qspi->pdev->dev,
502 			 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
503 			 width, addrlen, hp);
504 	} else if (qspi->xfer_mode.width != width ||
505 		   qspi->xfer_mode.addrlen != addrlen ||
506 		   qspi->xfer_mode.hp != hp) {
507 		qspi->xfer_mode.width = width;
508 		qspi->xfer_mode.addrlen = addrlen;
509 		qspi->xfer_mode.hp = hp;
510 		dev_dbg(&qspi->pdev->dev,
511 			"cs:%d %d-lane output, %d-byte address%s\n",
512 			qspi->curr_cs,
513 			qspi->xfer_mode.width,
514 			qspi->xfer_mode.addrlen,
515 			qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
516 	}
517 
518 	return error;
519 }
520 
bcm_qspi_enable_bspi(struct bcm_qspi * qspi)521 static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
522 {
523 	if (!has_bspi(qspi))
524 		return;
525 
526 	qspi->bspi_enabled = 1;
527 	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
528 		return;
529 
530 	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
531 	udelay(1);
532 	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
533 	udelay(1);
534 }
535 
bcm_qspi_disable_bspi(struct bcm_qspi * qspi)536 static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
537 {
538 	if (!has_bspi(qspi))
539 		return;
540 
541 	qspi->bspi_enabled = 0;
542 	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
543 		return;
544 
545 	bcm_qspi_bspi_busy_poll(qspi);
546 	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
547 	udelay(1);
548 }
549 
bcm_qspi_chip_select(struct bcm_qspi * qspi,int cs)550 static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
551 {
552 	u32 rd = 0;
553 	u32 wr = 0;
554 
555 	if (cs >= 0 && qspi->base[CHIP_SELECT]) {
556 		rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
557 		wr = (rd & ~0xff) | (1 << cs);
558 		if (rd == wr)
559 			return;
560 		bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
561 		usleep_range(10, 20);
562 	}
563 
564 	dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
565 	qspi->curr_cs = cs;
566 }
567 
568 /* MSPI helpers */
bcm_qspi_hw_set_parms(struct bcm_qspi * qspi,const struct bcm_qspi_parms * xp)569 static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
570 				  const struct bcm_qspi_parms *xp)
571 {
572 	u32 spcr, spbr = 0;
573 
574 	if (xp->speed_hz)
575 		spbr = qspi->base_clk / (2 * xp->speed_hz);
576 
577 	spcr = clamp_val(spbr, bcm_qspi_spbr_min(qspi), QSPI_SPBR_MAX);
578 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
579 
580 	if (!qspi->mspi_maj_rev)
581 		/* legacy controller */
582 		spcr = MSPI_MASTER_BIT;
583 	else
584 		spcr = 0;
585 
586 	/* for 16 bit the data should be zero */
587 	if (xp->bits_per_word != 16)
588 		spcr |= xp->bits_per_word << 2;
589 	spcr |= xp->mode & 3;
590 
591 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
592 
593 	if (bcm_qspi_has_fastbr(qspi)) {
594 		spcr = 0;
595 
596 		/* enable fastbr */
597 		spcr |=	MSPI_SPCR3_FASTBR;
598 
599 		if (bcm_qspi_has_sysclk_108(qspi)) {
600 			/* SYSCLK_108 */
601 			spcr |= MSPI_SPCR3_SYSCLKSEL_108;
602 			qspi->base_clk = MSPI_BASE_FREQ * 4;
603 			/* Change spbr as we changed sysclk */
604 			bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, 4);
605 		}
606 
607 		bcm_qspi_write(qspi, MSPI, MSPI_SPCR3, spcr);
608 	}
609 
610 	qspi->last_parms = *xp;
611 }
612 
bcm_qspi_update_parms(struct bcm_qspi * qspi,struct spi_device * spi,struct spi_transfer * trans)613 static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
614 				  struct spi_device *spi,
615 				  struct spi_transfer *trans)
616 {
617 	struct bcm_qspi_parms xp;
618 
619 	xp.speed_hz = trans->speed_hz;
620 	xp.bits_per_word = trans->bits_per_word;
621 	xp.mode = spi->mode;
622 
623 	bcm_qspi_hw_set_parms(qspi, &xp);
624 }
625 
bcm_qspi_setup(struct spi_device * spi)626 static int bcm_qspi_setup(struct spi_device *spi)
627 {
628 	struct bcm_qspi_parms *xp;
629 
630 	if (spi->bits_per_word > 16)
631 		return -EINVAL;
632 
633 	xp = spi_get_ctldata(spi);
634 	if (!xp) {
635 		xp = kzalloc(sizeof(*xp), GFP_KERNEL);
636 		if (!xp)
637 			return -ENOMEM;
638 		spi_set_ctldata(spi, xp);
639 	}
640 	xp->speed_hz = spi->max_speed_hz;
641 	xp->mode = spi->mode;
642 
643 	if (spi->bits_per_word)
644 		xp->bits_per_word = spi->bits_per_word;
645 	else
646 		xp->bits_per_word = 8;
647 
648 	return 0;
649 }
650 
bcm_qspi_mspi_transfer_is_last(struct bcm_qspi * qspi,struct qspi_trans * qt)651 static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
652 					   struct qspi_trans *qt)
653 {
654 	if (qt->mspi_last_trans &&
655 	    spi_transfer_is_last(qspi->master, qt->trans))
656 		return true;
657 	else
658 		return false;
659 }
660 
update_qspi_trans_byte_count(struct bcm_qspi * qspi,struct qspi_trans * qt,int flags)661 static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
662 					struct qspi_trans *qt, int flags)
663 {
664 	int ret = TRANS_STATUS_BREAK_NONE;
665 
666 	/* count the last transferred bytes */
667 	if (qt->trans->bits_per_word <= 8)
668 		qt->byte++;
669 	else
670 		qt->byte += 2;
671 
672 	if (qt->byte >= qt->trans->len) {
673 		/* we're at the end of the spi_transfer */
674 		/* in TX mode, need to pause for a delay or CS change */
675 		if (qt->trans->delay.value &&
676 		    (flags & TRANS_STATUS_BREAK_DELAY))
677 			ret |= TRANS_STATUS_BREAK_DELAY;
678 		if (qt->trans->cs_change &&
679 		    (flags & TRANS_STATUS_BREAK_CS_CHANGE))
680 			ret |= TRANS_STATUS_BREAK_CS_CHANGE;
681 
682 		if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
683 			ret |= TRANS_STATUS_BREAK_EOM;
684 		else
685 			ret |= TRANS_STATUS_BREAK_NO_BYTES;
686 
687 		qt->trans = NULL;
688 	}
689 
690 	dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
691 		qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
692 	return ret;
693 }
694 
read_rxram_slot_u8(struct bcm_qspi * qspi,int slot)695 static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
696 {
697 	u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
698 
699 	/* mask out reserved bits */
700 	return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
701 }
702 
read_rxram_slot_u16(struct bcm_qspi * qspi,int slot)703 static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
704 {
705 	u32 reg_offset = MSPI_RXRAM;
706 	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
707 	u32 msb_offset = reg_offset + (slot << 3);
708 
709 	return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
710 		((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
711 }
712 
read_from_hw(struct bcm_qspi * qspi,int slots)713 static void read_from_hw(struct bcm_qspi *qspi, int slots)
714 {
715 	struct qspi_trans tp;
716 	int slot;
717 
718 	bcm_qspi_disable_bspi(qspi);
719 
720 	if (slots > MSPI_NUM_CDRAM) {
721 		/* should never happen */
722 		dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
723 		return;
724 	}
725 
726 	tp = qspi->trans_pos;
727 
728 	for (slot = 0; slot < slots; slot++) {
729 		if (tp.trans->bits_per_word <= 8) {
730 			u8 *buf = tp.trans->rx_buf;
731 
732 			if (buf)
733 				buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
734 			dev_dbg(&qspi->pdev->dev, "RD %02x\n",
735 				buf ? buf[tp.byte] : 0x0);
736 		} else {
737 			u16 *buf = tp.trans->rx_buf;
738 
739 			if (buf)
740 				buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
741 								      slot);
742 			dev_dbg(&qspi->pdev->dev, "RD %04x\n",
743 				buf ? buf[tp.byte / 2] : 0x0);
744 		}
745 
746 		update_qspi_trans_byte_count(qspi, &tp,
747 					     TRANS_STATUS_BREAK_NONE);
748 	}
749 
750 	qspi->trans_pos = tp;
751 }
752 
write_txram_slot_u8(struct bcm_qspi * qspi,int slot,u8 val)753 static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
754 				       u8 val)
755 {
756 	u32 reg_offset = MSPI_TXRAM + (slot << 3);
757 
758 	/* mask out reserved bits */
759 	bcm_qspi_write(qspi, MSPI, reg_offset, val);
760 }
761 
write_txram_slot_u16(struct bcm_qspi * qspi,int slot,u16 val)762 static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
763 					u16 val)
764 {
765 	u32 reg_offset = MSPI_TXRAM;
766 	u32 msb_offset = reg_offset + (slot << 3);
767 	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
768 
769 	bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
770 	bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
771 }
772 
read_cdram_slot(struct bcm_qspi * qspi,int slot)773 static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
774 {
775 	return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
776 }
777 
write_cdram_slot(struct bcm_qspi * qspi,int slot,u32 val)778 static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
779 {
780 	bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
781 }
782 
783 /* Return number of slots written */
write_to_hw(struct bcm_qspi * qspi,struct spi_device * spi)784 static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
785 {
786 	struct qspi_trans tp;
787 	int slot = 0, tstatus = 0;
788 	u32 mspi_cdram = 0;
789 
790 	bcm_qspi_disable_bspi(qspi);
791 	tp = qspi->trans_pos;
792 	bcm_qspi_update_parms(qspi, spi, tp.trans);
793 
794 	/* Run until end of transfer or reached the max data */
795 	while (!tstatus && slot < MSPI_NUM_CDRAM) {
796 		if (tp.trans->bits_per_word <= 8) {
797 			const u8 *buf = tp.trans->tx_buf;
798 			u8 val = buf ? buf[tp.byte] : 0x00;
799 
800 			write_txram_slot_u8(qspi, slot, val);
801 			dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
802 		} else {
803 			const u16 *buf = tp.trans->tx_buf;
804 			u16 val = buf ? buf[tp.byte / 2] : 0x0000;
805 
806 			write_txram_slot_u16(qspi, slot, val);
807 			dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
808 		}
809 		mspi_cdram = MSPI_CDRAM_CONT_BIT;
810 
811 		if (has_bspi(qspi))
812 			mspi_cdram &= ~1;
813 		else
814 			mspi_cdram |= (~(1 << spi->chip_select) &
815 				       MSPI_CDRAM_PCS);
816 
817 		mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
818 				MSPI_CDRAM_BITSE_BIT);
819 
820 		write_cdram_slot(qspi, slot, mspi_cdram);
821 
822 		tstatus = update_qspi_trans_byte_count(qspi, &tp,
823 						       TRANS_STATUS_BREAK_TX);
824 		slot++;
825 	}
826 
827 	if (!slot) {
828 		dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
829 		goto done;
830 	}
831 
832 	dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
833 	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
834 	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
835 
836 	/*
837 	 *  case 1) EOM =1, cs_change =0: SSb inactive
838 	 *  case 2) EOM =1, cs_change =1: SSb stay active
839 	 *  case 3) EOM =0, cs_change =0: SSb stay active
840 	 *  case 4) EOM =0, cs_change =1: SSb inactive
841 	 */
842 	if (((tstatus & TRANS_STATUS_BREAK_DESELECT)
843 	     == TRANS_STATUS_BREAK_CS_CHANGE) ||
844 	    ((tstatus & TRANS_STATUS_BREAK_DESELECT)
845 	     == TRANS_STATUS_BREAK_EOM)) {
846 		mspi_cdram = read_cdram_slot(qspi, slot - 1) &
847 			~MSPI_CDRAM_CONT_BIT;
848 		write_cdram_slot(qspi, slot - 1, mspi_cdram);
849 	}
850 
851 	if (has_bspi(qspi))
852 		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
853 
854 	/* Must flush previous writes before starting MSPI operation */
855 	mb();
856 	/* Set cont | spe | spifie */
857 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
858 
859 done:
860 	return slot;
861 }
862 
bcm_qspi_bspi_exec_mem_op(struct spi_device * spi,const struct spi_mem_op * op)863 static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
864 				     const struct spi_mem_op *op)
865 {
866 	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
867 	u32 addr = 0, len, rdlen, len_words, from = 0;
868 	int ret = 0;
869 	unsigned long timeo = msecs_to_jiffies(100);
870 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
871 
872 	if (bcm_qspi_bspi_ver_three(qspi))
873 		if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
874 			return -EIO;
875 
876 	from = op->addr.val;
877 	if (!spi->cs_gpiod)
878 		bcm_qspi_chip_select(qspi, spi->chip_select);
879 	bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
880 
881 	/*
882 	 * when using flex mode we need to send
883 	 * the upper address byte to bspi
884 	 */
885 	if (!bcm_qspi_bspi_ver_three(qspi)) {
886 		addr = from & 0xff000000;
887 		bcm_qspi_write(qspi, BSPI,
888 			       BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
889 	}
890 
891 	if (!qspi->xfer_mode.flex_mode)
892 		addr = from;
893 	else
894 		addr = from & 0x00ffffff;
895 
896 	if (bcm_qspi_bspi_ver_three(qspi) == true)
897 		addr = (addr + 0xc00000) & 0xffffff;
898 
899 	/*
900 	 * read into the entire buffer by breaking the reads
901 	 * into RAF buffer read lengths
902 	 */
903 	len = op->data.nbytes;
904 	qspi->bspi_rf_op_idx = 0;
905 
906 	do {
907 		if (len > BSPI_READ_LENGTH)
908 			rdlen = BSPI_READ_LENGTH;
909 		else
910 			rdlen = len;
911 
912 		reinit_completion(&qspi->bspi_done);
913 		bcm_qspi_enable_bspi(qspi);
914 		len_words = (rdlen + 3) >> 2;
915 		qspi->bspi_rf_op = op;
916 		qspi->bspi_rf_op_status = 0;
917 		qspi->bspi_rf_op_len = rdlen;
918 		dev_dbg(&qspi->pdev->dev,
919 			"bspi xfr addr 0x%x len 0x%x", addr, rdlen);
920 		bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
921 		bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
922 		bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
923 		if (qspi->soc_intc) {
924 			/*
925 			 * clear soc MSPI and BSPI interrupts and enable
926 			 * BSPI interrupts.
927 			 */
928 			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
929 			soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
930 		}
931 
932 		/* Must flush previous writes before starting BSPI operation */
933 		mb();
934 		bcm_qspi_bspi_lr_start(qspi);
935 		if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
936 			dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
937 			ret = -ETIMEDOUT;
938 			break;
939 		}
940 
941 		/* set msg return length */
942 		addr += rdlen;
943 		len -= rdlen;
944 	} while (len);
945 
946 	return ret;
947 }
948 
bcm_qspi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * trans)949 static int bcm_qspi_transfer_one(struct spi_master *master,
950 				 struct spi_device *spi,
951 				 struct spi_transfer *trans)
952 {
953 	struct bcm_qspi *qspi = spi_master_get_devdata(master);
954 	int slots;
955 	unsigned long timeo = msecs_to_jiffies(100);
956 
957 	if (!spi->cs_gpiod)
958 		bcm_qspi_chip_select(qspi, spi->chip_select);
959 	qspi->trans_pos.trans = trans;
960 	qspi->trans_pos.byte = 0;
961 
962 	while (qspi->trans_pos.byte < trans->len) {
963 		reinit_completion(&qspi->mspi_done);
964 
965 		slots = write_to_hw(qspi, spi);
966 		if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
967 			dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
968 			return -ETIMEDOUT;
969 		}
970 
971 		read_from_hw(qspi, slots);
972 	}
973 	bcm_qspi_enable_bspi(qspi);
974 
975 	return 0;
976 }
977 
bcm_qspi_mspi_exec_mem_op(struct spi_device * spi,const struct spi_mem_op * op)978 static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
979 				     const struct spi_mem_op *op)
980 {
981 	struct spi_master *master = spi->master;
982 	struct bcm_qspi *qspi = spi_master_get_devdata(master);
983 	struct spi_transfer t[2];
984 	u8 cmd[6] = { };
985 	int ret, i;
986 
987 	memset(cmd, 0, sizeof(cmd));
988 	memset(t, 0, sizeof(t));
989 
990 	/* tx */
991 	/* opcode is in cmd[0] */
992 	cmd[0] = op->cmd.opcode;
993 	for (i = 0; i < op->addr.nbytes; i++)
994 		cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
995 
996 	t[0].tx_buf = cmd;
997 	t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
998 	t[0].bits_per_word = spi->bits_per_word;
999 	t[0].tx_nbits = op->cmd.buswidth;
1000 	/* lets mspi know that this is not last transfer */
1001 	qspi->trans_pos.mspi_last_trans = false;
1002 	ret = bcm_qspi_transfer_one(master, spi, &t[0]);
1003 
1004 	/* rx */
1005 	qspi->trans_pos.mspi_last_trans = true;
1006 	if (!ret) {
1007 		/* rx */
1008 		t[1].rx_buf = op->data.buf.in;
1009 		t[1].len = op->data.nbytes;
1010 		t[1].rx_nbits =  op->data.buswidth;
1011 		t[1].bits_per_word = spi->bits_per_word;
1012 		ret = bcm_qspi_transfer_one(master, spi, &t[1]);
1013 	}
1014 
1015 	return ret;
1016 }
1017 
bcm_qspi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1018 static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
1019 				const struct spi_mem_op *op)
1020 {
1021 	struct spi_device *spi = mem->spi;
1022 	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
1023 	int ret = 0;
1024 	bool mspi_read = false;
1025 	u32 addr = 0, len;
1026 	u_char *buf;
1027 
1028 	if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
1029 	    op->data.dir != SPI_MEM_DATA_IN)
1030 		return -ENOTSUPP;
1031 
1032 	buf = op->data.buf.in;
1033 	addr = op->addr.val;
1034 	len = op->data.nbytes;
1035 
1036 	if (has_bspi(qspi) && bcm_qspi_bspi_ver_three(qspi) == true) {
1037 		/*
1038 		 * The address coming into this function is a raw flash offset.
1039 		 * But for BSPI <= V3, we need to convert it to a remapped BSPI
1040 		 * address. If it crosses a 4MB boundary, just revert back to
1041 		 * using MSPI.
1042 		 */
1043 		addr = (addr + 0xc00000) & 0xffffff;
1044 
1045 		if ((~ADDR_4MB_MASK & addr) ^
1046 		    (~ADDR_4MB_MASK & (addr + len - 1)))
1047 			mspi_read = true;
1048 	}
1049 
1050 	/* non-aligned and very short transfers are handled by MSPI */
1051 	if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
1052 	    len < 4 || op->cmd.opcode == SPINOR_OP_RDSFDP)
1053 		mspi_read = true;
1054 
1055 	if (!has_bspi(qspi) || mspi_read)
1056 		return bcm_qspi_mspi_exec_mem_op(spi, op);
1057 
1058 	ret = bcm_qspi_bspi_set_mode(qspi, op, 0);
1059 
1060 	if (!ret)
1061 		ret = bcm_qspi_bspi_exec_mem_op(spi, op);
1062 
1063 	return ret;
1064 }
1065 
bcm_qspi_cleanup(struct spi_device * spi)1066 static void bcm_qspi_cleanup(struct spi_device *spi)
1067 {
1068 	struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
1069 
1070 	kfree(xp);
1071 }
1072 
bcm_qspi_mspi_l2_isr(int irq,void * dev_id)1073 static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1074 {
1075 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1076 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1077 	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1078 
1079 	if (status & MSPI_MSPI_STATUS_SPIF) {
1080 		struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1081 		/* clear interrupt */
1082 		status &= ~MSPI_MSPI_STATUS_SPIF;
1083 		bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1084 		if (qspi->soc_intc)
1085 			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1086 		complete(&qspi->mspi_done);
1087 		return IRQ_HANDLED;
1088 	}
1089 
1090 	return IRQ_NONE;
1091 }
1092 
bcm_qspi_bspi_lr_l2_isr(int irq,void * dev_id)1093 static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1094 {
1095 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1096 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1097 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1098 	u32 status = qspi_dev_id->irqp->mask;
1099 
1100 	if (qspi->bspi_enabled && qspi->bspi_rf_op) {
1101 		bcm_qspi_bspi_lr_data_read(qspi);
1102 		if (qspi->bspi_rf_op_len == 0) {
1103 			qspi->bspi_rf_op = NULL;
1104 			if (qspi->soc_intc) {
1105 				/* disable soc BSPI interrupt */
1106 				soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1107 							   false);
1108 				/* indicate done */
1109 				status = INTR_BSPI_LR_SESSION_DONE_MASK;
1110 			}
1111 
1112 			if (qspi->bspi_rf_op_status)
1113 				bcm_qspi_bspi_lr_clear(qspi);
1114 			else
1115 				bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1116 		}
1117 
1118 		if (qspi->soc_intc)
1119 			/* clear soc BSPI interrupt */
1120 			soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1121 	}
1122 
1123 	status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1124 	if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
1125 		complete(&qspi->bspi_done);
1126 
1127 	return IRQ_HANDLED;
1128 }
1129 
bcm_qspi_bspi_lr_err_l2_isr(int irq,void * dev_id)1130 static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1131 {
1132 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1133 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1134 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1135 
1136 	dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1137 	qspi->bspi_rf_op_status = -EIO;
1138 	if (qspi->soc_intc)
1139 		/* clear soc interrupt */
1140 		soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1141 
1142 	complete(&qspi->bspi_done);
1143 	return IRQ_HANDLED;
1144 }
1145 
bcm_qspi_l1_isr(int irq,void * dev_id)1146 static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1147 {
1148 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1149 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1150 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1151 	irqreturn_t ret = IRQ_NONE;
1152 
1153 	if (soc_intc) {
1154 		u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1155 
1156 		if (status & MSPI_DONE)
1157 			ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1158 		else if (status & BSPI_DONE)
1159 			ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1160 		else if (status & BSPI_ERR)
1161 			ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1162 	}
1163 
1164 	return ret;
1165 }
1166 
1167 static const struct bcm_qspi_irq qspi_irq_tab[] = {
1168 	{
1169 		.irq_name = "spi_lr_fullness_reached",
1170 		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1171 		.mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1172 	},
1173 	{
1174 		.irq_name = "spi_lr_session_aborted",
1175 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1176 		.mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1177 	},
1178 	{
1179 		.irq_name = "spi_lr_impatient",
1180 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1181 		.mask = INTR_BSPI_LR_IMPATIENT_MASK,
1182 	},
1183 	{
1184 		.irq_name = "spi_lr_session_done",
1185 		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1186 		.mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1187 	},
1188 #ifdef QSPI_INT_DEBUG
1189 	/* this interrupt is for debug purposes only, dont request irq */
1190 	{
1191 		.irq_name = "spi_lr_overread",
1192 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1193 		.mask = INTR_BSPI_LR_OVERREAD_MASK,
1194 	},
1195 #endif
1196 	{
1197 		.irq_name = "mspi_done",
1198 		.irq_handler = bcm_qspi_mspi_l2_isr,
1199 		.mask = INTR_MSPI_DONE_MASK,
1200 	},
1201 	{
1202 		.irq_name = "mspi_halted",
1203 		.irq_handler = bcm_qspi_mspi_l2_isr,
1204 		.mask = INTR_MSPI_HALTED_MASK,
1205 	},
1206 	{
1207 		/* single muxed L1 interrupt source */
1208 		.irq_name = "spi_l1_intr",
1209 		.irq_handler = bcm_qspi_l1_isr,
1210 		.irq_source = MUXED_L1,
1211 		.mask = QSPI_INTERRUPTS_ALL,
1212 	},
1213 };
1214 
bcm_qspi_bspi_init(struct bcm_qspi * qspi)1215 static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1216 {
1217 	u32 val = 0;
1218 
1219 	val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1220 	qspi->bspi_maj_rev = (val >> 8) & 0xff;
1221 	qspi->bspi_min_rev = val & 0xff;
1222 	if (!(bcm_qspi_bspi_ver_three(qspi))) {
1223 		/* Force mapping of BSPI address -> flash offset */
1224 		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1225 		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1226 	}
1227 	qspi->bspi_enabled = 1;
1228 	bcm_qspi_disable_bspi(qspi);
1229 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1230 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1231 }
1232 
bcm_qspi_hw_init(struct bcm_qspi * qspi)1233 static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1234 {
1235 	struct bcm_qspi_parms parms;
1236 
1237 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1238 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1239 	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1240 	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1241 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1242 
1243 	parms.mode = SPI_MODE_3;
1244 	parms.bits_per_word = 8;
1245 	parms.speed_hz = qspi->max_speed_hz;
1246 	bcm_qspi_hw_set_parms(qspi, &parms);
1247 
1248 	if (has_bspi(qspi))
1249 		bcm_qspi_bspi_init(qspi);
1250 }
1251 
bcm_qspi_hw_uninit(struct bcm_qspi * qspi)1252 static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1253 {
1254 	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1255 
1256 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1257 	if (has_bspi(qspi))
1258 		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1259 
1260 	/* clear interrupt */
1261 	bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status & ~1);
1262 }
1263 
1264 static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
1265 	.exec_op = bcm_qspi_exec_mem_op,
1266 };
1267 
1268 struct bcm_qspi_data {
1269 	bool	has_mspi_rev;
1270 	bool	has_spcr3_sysclk;
1271 };
1272 
1273 static const struct bcm_qspi_data bcm_qspi_no_rev_data = {
1274 	.has_mspi_rev	= false,
1275 	.has_spcr3_sysclk = false,
1276 };
1277 
1278 static const struct bcm_qspi_data bcm_qspi_rev_data = {
1279 	.has_mspi_rev	= true,
1280 	.has_spcr3_sysclk = false,
1281 };
1282 
1283 static const struct bcm_qspi_data bcm_qspi_spcr3_data = {
1284 	.has_mspi_rev	= true,
1285 	.has_spcr3_sysclk = true,
1286 };
1287 
1288 static const struct of_device_id bcm_qspi_of_match[] = {
1289 	{
1290 		.compatible = "brcm,spi-bcm7445-qspi",
1291 		.data = &bcm_qspi_rev_data,
1292 
1293 	},
1294 	{
1295 		.compatible = "brcm,spi-bcm-qspi",
1296 		.data = &bcm_qspi_no_rev_data,
1297 	},
1298 	{
1299 		.compatible = "brcm,spi-bcm7216-qspi",
1300 		.data = &bcm_qspi_spcr3_data,
1301 	},
1302 	{
1303 		.compatible = "brcm,spi-bcm7278-qspi",
1304 		.data = &bcm_qspi_spcr3_data,
1305 	},
1306 	{},
1307 };
1308 MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1309 
bcm_qspi_probe(struct platform_device * pdev,struct bcm_qspi_soc_intc * soc_intc)1310 int bcm_qspi_probe(struct platform_device *pdev,
1311 		   struct bcm_qspi_soc_intc *soc_intc)
1312 {
1313 	const struct of_device_id *of_id = NULL;
1314 	const struct bcm_qspi_data *data;
1315 	struct device *dev = &pdev->dev;
1316 	struct bcm_qspi *qspi;
1317 	struct spi_master *master;
1318 	struct resource *res;
1319 	int irq, ret = 0, num_ints = 0;
1320 	u32 val;
1321 	u32 rev = 0;
1322 	const char *name = NULL;
1323 	int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1324 
1325 	/* We only support device-tree instantiation */
1326 	if (!dev->of_node)
1327 		return -ENODEV;
1328 
1329 	of_id = of_match_node(bcm_qspi_of_match, dev->of_node);
1330 	if (!of_id)
1331 		return -ENODEV;
1332 
1333 	data = of_id->data;
1334 
1335 	master = devm_spi_alloc_master(dev, sizeof(struct bcm_qspi));
1336 	if (!master) {
1337 		dev_err(dev, "error allocating spi_master\n");
1338 		return -ENOMEM;
1339 	}
1340 
1341 	qspi = spi_master_get_devdata(master);
1342 
1343 	qspi->clk = devm_clk_get_optional(&pdev->dev, NULL);
1344 	if (IS_ERR(qspi->clk))
1345 		return PTR_ERR(qspi->clk);
1346 
1347 	qspi->pdev = pdev;
1348 	qspi->trans_pos.trans = NULL;
1349 	qspi->trans_pos.byte = 0;
1350 	qspi->trans_pos.mspi_last_trans = true;
1351 	qspi->master = master;
1352 
1353 	master->bus_num = -1;
1354 	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
1355 	master->setup = bcm_qspi_setup;
1356 	master->transfer_one = bcm_qspi_transfer_one;
1357 	master->mem_ops = &bcm_qspi_mem_ops;
1358 	master->cleanup = bcm_qspi_cleanup;
1359 	master->dev.of_node = dev->of_node;
1360 	master->num_chipselect = NUM_CHIPSELECT;
1361 	master->use_gpio_descriptors = true;
1362 
1363 	qspi->big_endian = of_device_is_big_endian(dev->of_node);
1364 
1365 	if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1366 		master->num_chipselect = val;
1367 
1368 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1369 	if (!res)
1370 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1371 						   "mspi");
1372 
1373 	qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1374 	if (IS_ERR(qspi->base[MSPI]))
1375 		return PTR_ERR(qspi->base[MSPI]);
1376 
1377 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1378 	if (res) {
1379 		qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1380 		if (IS_ERR(qspi->base[BSPI]))
1381 			return PTR_ERR(qspi->base[BSPI]);
1382 		qspi->bspi_mode = true;
1383 	} else {
1384 		qspi->bspi_mode = false;
1385 	}
1386 
1387 	dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1388 
1389 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1390 	if (res) {
1391 		qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1392 		if (IS_ERR(qspi->base[CHIP_SELECT]))
1393 			return PTR_ERR(qspi->base[CHIP_SELECT]);
1394 	}
1395 
1396 	qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1397 				GFP_KERNEL);
1398 	if (!qspi->dev_ids)
1399 		return -ENOMEM;
1400 
1401 	/*
1402 	 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1403 	 * in specific ways
1404 	 */
1405 	if (soc_intc) {
1406 		qspi->soc_intc = soc_intc;
1407 		soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1408 	} else {
1409 		qspi->soc_intc = NULL;
1410 	}
1411 
1412 	if (qspi->clk) {
1413 		ret = clk_prepare_enable(qspi->clk);
1414 		if (ret) {
1415 			dev_err(dev, "failed to prepare clock\n");
1416 			goto qspi_probe_err;
1417 		}
1418 		qspi->base_clk = clk_get_rate(qspi->clk);
1419 	} else {
1420 		qspi->base_clk = MSPI_BASE_FREQ;
1421 	}
1422 
1423 	if (data->has_mspi_rev) {
1424 		rev = bcm_qspi_read(qspi, MSPI, MSPI_REV);
1425 		/* some older revs do not have a MSPI_REV register */
1426 		if ((rev & 0xff) == 0xff)
1427 			rev = 0;
1428 	}
1429 
1430 	qspi->mspi_maj_rev = (rev >> 4) & 0xf;
1431 	qspi->mspi_min_rev = rev & 0xf;
1432 	qspi->mspi_spcr3_sysclk = data->has_spcr3_sysclk;
1433 
1434 	qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
1435 
1436 	/*
1437 	 * On SW resets it is possible to have the mask still enabled
1438 	 * Need to disable the mask and clear the status while we init
1439 	 */
1440 	bcm_qspi_hw_uninit(qspi);
1441 
1442 	for (val = 0; val < num_irqs; val++) {
1443 		irq = -1;
1444 		name = qspi_irq_tab[val].irq_name;
1445 		if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1446 			/* get the l2 interrupts */
1447 			irq = platform_get_irq_byname_optional(pdev, name);
1448 		} else if (!num_ints && soc_intc) {
1449 			/* all mspi, bspi intrs muxed to one L1 intr */
1450 			irq = platform_get_irq(pdev, 0);
1451 		}
1452 
1453 		if (irq  >= 0) {
1454 			ret = devm_request_irq(&pdev->dev, irq,
1455 					       qspi_irq_tab[val].irq_handler, 0,
1456 					       name,
1457 					       &qspi->dev_ids[val]);
1458 			if (ret < 0) {
1459 				dev_err(&pdev->dev, "IRQ %s not found\n", name);
1460 				goto qspi_unprepare_err;
1461 			}
1462 
1463 			qspi->dev_ids[val].dev = qspi;
1464 			qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1465 			num_ints++;
1466 			dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1467 				qspi_irq_tab[val].irq_name,
1468 				irq);
1469 		}
1470 	}
1471 
1472 	if (!num_ints) {
1473 		dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1474 		ret = -EINVAL;
1475 		goto qspi_unprepare_err;
1476 	}
1477 
1478 	bcm_qspi_hw_init(qspi);
1479 	init_completion(&qspi->mspi_done);
1480 	init_completion(&qspi->bspi_done);
1481 	qspi->curr_cs = -1;
1482 
1483 	platform_set_drvdata(pdev, qspi);
1484 
1485 	qspi->xfer_mode.width = -1;
1486 	qspi->xfer_mode.addrlen = -1;
1487 	qspi->xfer_mode.hp = -1;
1488 
1489 	ret = spi_register_master(master);
1490 	if (ret < 0) {
1491 		dev_err(dev, "can't register master\n");
1492 		goto qspi_reg_err;
1493 	}
1494 
1495 	return 0;
1496 
1497 qspi_reg_err:
1498 	bcm_qspi_hw_uninit(qspi);
1499 qspi_unprepare_err:
1500 	clk_disable_unprepare(qspi->clk);
1501 qspi_probe_err:
1502 	kfree(qspi->dev_ids);
1503 	return ret;
1504 }
1505 /* probe function to be called by SoC specific platform driver probe */
1506 EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1507 
bcm_qspi_remove(struct platform_device * pdev)1508 int bcm_qspi_remove(struct platform_device *pdev)
1509 {
1510 	struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1511 
1512 	spi_unregister_master(qspi->master);
1513 	bcm_qspi_hw_uninit(qspi);
1514 	clk_disable_unprepare(qspi->clk);
1515 	kfree(qspi->dev_ids);
1516 
1517 	return 0;
1518 }
1519 /* function to be called by SoC specific platform driver remove() */
1520 EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1521 
bcm_qspi_suspend(struct device * dev)1522 static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1523 {
1524 	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1525 
1526 	/* store the override strap value */
1527 	if (!bcm_qspi_bspi_ver_three(qspi))
1528 		qspi->s3_strap_override_ctrl =
1529 			bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1530 
1531 	spi_master_suspend(qspi->master);
1532 	clk_disable_unprepare(qspi->clk);
1533 	bcm_qspi_hw_uninit(qspi);
1534 
1535 	return 0;
1536 };
1537 
bcm_qspi_resume(struct device * dev)1538 static int __maybe_unused bcm_qspi_resume(struct device *dev)
1539 {
1540 	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1541 	int ret = 0;
1542 
1543 	bcm_qspi_hw_init(qspi);
1544 	bcm_qspi_chip_select(qspi, qspi->curr_cs);
1545 	if (qspi->soc_intc)
1546 		/* enable MSPI interrupt */
1547 		qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1548 						 true);
1549 
1550 	ret = clk_prepare_enable(qspi->clk);
1551 	if (!ret)
1552 		spi_master_resume(qspi->master);
1553 
1554 	return ret;
1555 }
1556 
1557 SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1558 
1559 /* pm_ops to be called by SoC specific platform driver */
1560 EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1561 
1562 MODULE_AUTHOR("Kamal Dasu");
1563 MODULE_DESCRIPTION("Broadcom QSPI driver");
1564 MODULE_LICENSE("GPL v2");
1565 MODULE_ALIAS("platform:" DRIVER_NAME);
1566