1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for Broadcom BCM2835 SPI Controllers
4 *
5 * Copyright (C) 2012 Chris Boot
6 * Copyright (C) 2013 Stephen Warren
7 * Copyright (C) 2015 Martin Sperl
8 *
9 * This driver is inspired by:
10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
12 */
13
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/debugfs.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_device.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/gpio/machine.h> /* FIXME: using chip internals */
30 #include <linux/gpio/driver.h> /* FIXME: using chip internals */
31 #include <linux/of_irq.h>
32 #include <linux/spi/spi.h>
33
34 /* SPI register offsets */
35 #define BCM2835_SPI_CS 0x00
36 #define BCM2835_SPI_FIFO 0x04
37 #define BCM2835_SPI_CLK 0x08
38 #define BCM2835_SPI_DLEN 0x0c
39 #define BCM2835_SPI_LTOH 0x10
40 #define BCM2835_SPI_DC 0x14
41
42 /* Bitfields in CS */
43 #define BCM2835_SPI_CS_LEN_LONG 0x02000000
44 #define BCM2835_SPI_CS_DMA_LEN 0x01000000
45 #define BCM2835_SPI_CS_CSPOL2 0x00800000
46 #define BCM2835_SPI_CS_CSPOL1 0x00400000
47 #define BCM2835_SPI_CS_CSPOL0 0x00200000
48 #define BCM2835_SPI_CS_RXF 0x00100000
49 #define BCM2835_SPI_CS_RXR 0x00080000
50 #define BCM2835_SPI_CS_TXD 0x00040000
51 #define BCM2835_SPI_CS_RXD 0x00020000
52 #define BCM2835_SPI_CS_DONE 0x00010000
53 #define BCM2835_SPI_CS_LEN 0x00002000
54 #define BCM2835_SPI_CS_REN 0x00001000
55 #define BCM2835_SPI_CS_ADCS 0x00000800
56 #define BCM2835_SPI_CS_INTR 0x00000400
57 #define BCM2835_SPI_CS_INTD 0x00000200
58 #define BCM2835_SPI_CS_DMAEN 0x00000100
59 #define BCM2835_SPI_CS_TA 0x00000080
60 #define BCM2835_SPI_CS_CSPOL 0x00000040
61 #define BCM2835_SPI_CS_CLEAR_RX 0x00000020
62 #define BCM2835_SPI_CS_CLEAR_TX 0x00000010
63 #define BCM2835_SPI_CS_CPOL 0x00000008
64 #define BCM2835_SPI_CS_CPHA 0x00000004
65 #define BCM2835_SPI_CS_CS_10 0x00000002
66 #define BCM2835_SPI_CS_CS_01 0x00000001
67
68 #define BCM2835_SPI_FIFO_SIZE 64
69 #define BCM2835_SPI_FIFO_SIZE_3_4 48
70 #define BCM2835_SPI_DMA_MIN_LENGTH 96
71 #define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
72 | SPI_NO_CS | SPI_3WIRE)
73
74 #define DRV_NAME "spi-bcm2835"
75
76 /* define polling limits */
77 static unsigned int polling_limit_us = 30;
78 module_param(polling_limit_us, uint, 0664);
79 MODULE_PARM_DESC(polling_limit_us,
80 "time in us to run a transfer in polling mode\n");
81
82 /**
83 * struct bcm2835_spi - BCM2835 SPI controller
84 * @regs: base address of register map
85 * @clk: core clock, divided to calculate serial clock
86 * @clk_hz: core clock cached speed
87 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
88 * @tfr: SPI transfer currently processed
89 * @ctlr: SPI controller reverse lookup
90 * @tx_buf: pointer whence next transmitted byte is read
91 * @rx_buf: pointer where next received byte is written
92 * @tx_len: remaining bytes to transmit
93 * @rx_len: remaining bytes to receive
94 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
95 * length is not a multiple of 4 (to overcome hardware limitation)
96 * @rx_prologue: bytes received without DMA if first RX sglist entry's
97 * length is not a multiple of 4 (to overcome hardware limitation)
98 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
99 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
100 * unloading the module
101 * @count_transfer_polling: count of how often polling mode is used
102 * @count_transfer_irq: count of how often interrupt mode is used
103 * @count_transfer_irq_after_polling: count of how often we fall back to
104 * interrupt mode after starting in polling mode.
105 * These are counted as well in @count_transfer_polling and
106 * @count_transfer_irq
107 * @count_transfer_dma: count how often dma mode is used
108 * @slv: SPI slave currently selected
109 * (used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
110 * @tx_dma_active: whether a TX DMA descriptor is in progress
111 * @rx_dma_active: whether a RX DMA descriptor is in progress
112 * (used by bcm2835_spi_dma_tx_done() to handle a race)
113 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
114 * (cyclically copies from zero page to TX FIFO)
115 * @fill_tx_addr: bus address of zero page
116 */
117 struct bcm2835_spi {
118 void __iomem *regs;
119 struct clk *clk;
120 unsigned long clk_hz;
121 int irq;
122 struct spi_transfer *tfr;
123 struct spi_controller *ctlr;
124 const u8 *tx_buf;
125 u8 *rx_buf;
126 int tx_len;
127 int rx_len;
128 int tx_prologue;
129 int rx_prologue;
130 unsigned int tx_spillover;
131
132 struct dentry *debugfs_dir;
133 u64 count_transfer_polling;
134 u64 count_transfer_irq;
135 u64 count_transfer_irq_after_polling;
136 u64 count_transfer_dma;
137
138 struct bcm2835_spidev *slv;
139 unsigned int tx_dma_active;
140 unsigned int rx_dma_active;
141 struct dma_async_tx_descriptor *fill_tx_desc;
142 dma_addr_t fill_tx_addr;
143 };
144
145 /**
146 * struct bcm2835_spidev - BCM2835 SPI slave
147 * @prepare_cs: precalculated CS register value for ->prepare_message()
148 * (uses slave-specific clock polarity and phase settings)
149 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
150 * (cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
151 * @clear_rx_addr: bus address of @clear_rx_cs
152 * @clear_rx_cs: precalculated CS register value to clear RX FIFO
153 * (uses slave-specific clock polarity and phase settings)
154 */
155 struct bcm2835_spidev {
156 u32 prepare_cs;
157 struct dma_async_tx_descriptor *clear_rx_desc;
158 dma_addr_t clear_rx_addr;
159 u32 clear_rx_cs ____cacheline_aligned;
160 };
161
162 #if defined(CONFIG_DEBUG_FS)
bcm2835_debugfs_create(struct bcm2835_spi * bs,const char * dname)163 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
164 const char *dname)
165 {
166 char name[64];
167 struct dentry *dir;
168
169 /* get full name */
170 snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
171
172 /* the base directory */
173 dir = debugfs_create_dir(name, NULL);
174 bs->debugfs_dir = dir;
175
176 /* the counters */
177 debugfs_create_u64("count_transfer_polling", 0444, dir,
178 &bs->count_transfer_polling);
179 debugfs_create_u64("count_transfer_irq", 0444, dir,
180 &bs->count_transfer_irq);
181 debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
182 &bs->count_transfer_irq_after_polling);
183 debugfs_create_u64("count_transfer_dma", 0444, dir,
184 &bs->count_transfer_dma);
185 }
186
bcm2835_debugfs_remove(struct bcm2835_spi * bs)187 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
188 {
189 debugfs_remove_recursive(bs->debugfs_dir);
190 bs->debugfs_dir = NULL;
191 }
192 #else
bcm2835_debugfs_create(struct bcm2835_spi * bs,const char * dname)193 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
194 const char *dname)
195 {
196 }
197
bcm2835_debugfs_remove(struct bcm2835_spi * bs)198 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
199 {
200 }
201 #endif /* CONFIG_DEBUG_FS */
202
bcm2835_rd(struct bcm2835_spi * bs,unsigned int reg)203 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
204 {
205 return readl(bs->regs + reg);
206 }
207
bcm2835_wr(struct bcm2835_spi * bs,unsigned int reg,u32 val)208 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
209 {
210 writel(val, bs->regs + reg);
211 }
212
bcm2835_rd_fifo(struct bcm2835_spi * bs)213 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
214 {
215 u8 byte;
216
217 while ((bs->rx_len) &&
218 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
219 byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
220 if (bs->rx_buf)
221 *bs->rx_buf++ = byte;
222 bs->rx_len--;
223 }
224 }
225
bcm2835_wr_fifo(struct bcm2835_spi * bs)226 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
227 {
228 u8 byte;
229
230 while ((bs->tx_len) &&
231 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
232 byte = bs->tx_buf ? *bs->tx_buf++ : 0;
233 bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
234 bs->tx_len--;
235 }
236 }
237
238 /**
239 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
240 * @bs: BCM2835 SPI controller
241 * @count: bytes to read from RX FIFO
242 *
243 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
244 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
245 * in the CS register is set (such that a read from the FIFO register receives
246 * 32-bit instead of just 8-bit). Moreover @bs->rx_buf must not be %NULL.
247 */
bcm2835_rd_fifo_count(struct bcm2835_spi * bs,int count)248 static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
249 {
250 u32 val;
251 int len;
252
253 bs->rx_len -= count;
254
255 do {
256 val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
257 len = min(count, 4);
258 memcpy(bs->rx_buf, &val, len);
259 bs->rx_buf += len;
260 count -= 4;
261 } while (count > 0);
262 }
263
264 /**
265 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
266 * @bs: BCM2835 SPI controller
267 * @count: bytes to write to TX FIFO
268 *
269 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
270 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
271 * in the CS register is set (such that a write to the FIFO register transmits
272 * 32-bit instead of just 8-bit).
273 */
bcm2835_wr_fifo_count(struct bcm2835_spi * bs,int count)274 static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
275 {
276 u32 val;
277 int len;
278
279 bs->tx_len -= count;
280
281 do {
282 if (bs->tx_buf) {
283 len = min(count, 4);
284 memcpy(&val, bs->tx_buf, len);
285 bs->tx_buf += len;
286 } else {
287 val = 0;
288 }
289 bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
290 count -= 4;
291 } while (count > 0);
292 }
293
294 /**
295 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
296 * @bs: BCM2835 SPI controller
297 *
298 * The caller must ensure that the RX FIFO can accommodate as many bytes
299 * as have been written to the TX FIFO: Transmission is halted once the
300 * RX FIFO is full, causing this function to spin forever.
301 */
bcm2835_wait_tx_fifo_empty(struct bcm2835_spi * bs)302 static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
303 {
304 while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
305 cpu_relax();
306 }
307
308 /**
309 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
310 * @bs: BCM2835 SPI controller
311 * @count: bytes available for reading in RX FIFO
312 */
bcm2835_rd_fifo_blind(struct bcm2835_spi * bs,int count)313 static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
314 {
315 u8 val;
316
317 count = min(count, bs->rx_len);
318 bs->rx_len -= count;
319
320 do {
321 val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
322 if (bs->rx_buf)
323 *bs->rx_buf++ = val;
324 } while (--count);
325 }
326
327 /**
328 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
329 * @bs: BCM2835 SPI controller
330 * @count: bytes available for writing in TX FIFO
331 */
bcm2835_wr_fifo_blind(struct bcm2835_spi * bs,int count)332 static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
333 {
334 u8 val;
335
336 count = min(count, bs->tx_len);
337 bs->tx_len -= count;
338
339 do {
340 val = bs->tx_buf ? *bs->tx_buf++ : 0;
341 bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
342 } while (--count);
343 }
344
bcm2835_spi_reset_hw(struct bcm2835_spi * bs)345 static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
346 {
347 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
348
349 /* Disable SPI interrupts and transfer */
350 cs &= ~(BCM2835_SPI_CS_INTR |
351 BCM2835_SPI_CS_INTD |
352 BCM2835_SPI_CS_DMAEN |
353 BCM2835_SPI_CS_TA);
354 /*
355 * Transmission sometimes breaks unless the DONE bit is written at the
356 * end of every transfer. The spec says it's a RO bit. Either the
357 * spec is wrong and the bit is actually of type RW1C, or it's a
358 * hardware erratum.
359 */
360 cs |= BCM2835_SPI_CS_DONE;
361 /* and reset RX/TX FIFOS */
362 cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
363
364 /* and reset the SPI_HW */
365 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
366 /* as well as DLEN */
367 bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
368 }
369
bcm2835_spi_interrupt(int irq,void * dev_id)370 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
371 {
372 struct bcm2835_spi *bs = dev_id;
373 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
374
375 /*
376 * An interrupt is signaled either if DONE is set (TX FIFO empty)
377 * or if RXR is set (RX FIFO >= ¾ full).
378 */
379 if (cs & BCM2835_SPI_CS_RXF)
380 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
381 else if (cs & BCM2835_SPI_CS_RXR)
382 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
383
384 if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
385 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
386
387 /* Read as many bytes as possible from FIFO */
388 bcm2835_rd_fifo(bs);
389 /* Write as many bytes as possible to FIFO */
390 bcm2835_wr_fifo(bs);
391
392 if (!bs->rx_len) {
393 /* Transfer complete - reset SPI HW */
394 bcm2835_spi_reset_hw(bs);
395 /* wake up the framework */
396 spi_finalize_current_transfer(bs->ctlr);
397 }
398
399 return IRQ_HANDLED;
400 }
401
bcm2835_spi_transfer_one_irq(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * tfr,u32 cs,bool fifo_empty)402 static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
403 struct spi_device *spi,
404 struct spi_transfer *tfr,
405 u32 cs, bool fifo_empty)
406 {
407 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
408
409 /* update usage statistics */
410 bs->count_transfer_irq++;
411
412 /*
413 * Enable HW block, but with interrupts still disabled.
414 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
415 */
416 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
417
418 /* fill TX FIFO as much as possible */
419 if (fifo_empty)
420 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
421 bcm2835_wr_fifo(bs);
422
423 /* enable interrupts */
424 cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
425 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
426
427 /* signal that we need to wait for completion */
428 return 1;
429 }
430
431 /**
432 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
433 * @ctlr: SPI master controller
434 * @tfr: SPI transfer
435 * @bs: BCM2835 SPI controller
436 * @cs: CS register
437 *
438 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
439 * Only the final write access is permitted to transmit less than 4 bytes, the
440 * SPI controller deduces its intended size from the DLEN register.
441 *
442 * If a TX or RX sglist contains multiple entries, one per page, and the first
443 * entry starts in the middle of a page, that first entry's length may not be
444 * a multiple of 4. Subsequent entries are fine because they span an entire
445 * page, hence do have a length that's a multiple of 4.
446 *
447 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
448 * because they are contiguous in physical memory and therefore not split on
449 * page boundaries by spi_map_buf(). But it *can* happen with vmalloc'ed
450 * buffers.
451 *
452 * The DMA engine is incapable of combining sglist entries into a continuous
453 * stream of 4 byte chunks, it treats every entry separately: A TX entry is
454 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
455 * entry is rounded up by throwing away received bytes.
456 *
457 * Overcome this limitation by transferring the first few bytes without DMA:
458 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
459 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
460 * The residue of 1 byte in the RX FIFO is picked up by DMA. Together with
461 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
462 *
463 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
464 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
465 * Caution, the additional 4 bytes spill over to the second TX sglist entry
466 * if the length of the first is *exactly* 1.
467 *
468 * At most 6 bytes are written and at most 3 bytes read. Do we know the
469 * transfer has this many bytes? Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
470 *
471 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
472 * by the DMA engine. Toggling the DMA Enable flag in the CS register switches
473 * the width but also garbles the FIFO's contents. The prologue must therefore
474 * be transmitted in 32-bit width to ensure that the following DMA transfer can
475 * pick up the residue in the RX FIFO in ungarbled form.
476 */
bcm2835_spi_transfer_prologue(struct spi_controller * ctlr,struct spi_transfer * tfr,struct bcm2835_spi * bs,u32 cs)477 static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
478 struct spi_transfer *tfr,
479 struct bcm2835_spi *bs,
480 u32 cs)
481 {
482 int tx_remaining;
483
484 bs->tfr = tfr;
485 bs->tx_prologue = 0;
486 bs->rx_prologue = 0;
487 bs->tx_spillover = false;
488
489 if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
490 bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
491
492 if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
493 bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
494
495 if (bs->rx_prologue > bs->tx_prologue) {
496 if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
497 bs->tx_prologue = bs->rx_prologue;
498 } else {
499 bs->tx_prologue += 4;
500 bs->tx_spillover =
501 !(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
502 }
503 }
504 }
505
506 /* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
507 if (!bs->tx_prologue)
508 return;
509
510 /* Write and read RX prologue. Adjust first entry in RX sglist. */
511 if (bs->rx_prologue) {
512 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
513 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
514 | BCM2835_SPI_CS_DMAEN);
515 bcm2835_wr_fifo_count(bs, bs->rx_prologue);
516 bcm2835_wait_tx_fifo_empty(bs);
517 bcm2835_rd_fifo_count(bs, bs->rx_prologue);
518 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
519 | BCM2835_SPI_CS_CLEAR_TX
520 | BCM2835_SPI_CS_DONE);
521
522 dma_sync_single_for_device(ctlr->dma_rx->device->dev,
523 sg_dma_address(&tfr->rx_sg.sgl[0]),
524 bs->rx_prologue, DMA_FROM_DEVICE);
525
526 sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
527 sg_dma_len(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
528 }
529
530 if (!bs->tx_buf)
531 return;
532
533 /*
534 * Write remaining TX prologue. Adjust first entry in TX sglist.
535 * Also adjust second entry if prologue spills over to it.
536 */
537 tx_remaining = bs->tx_prologue - bs->rx_prologue;
538 if (tx_remaining) {
539 bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
540 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
541 | BCM2835_SPI_CS_DMAEN);
542 bcm2835_wr_fifo_count(bs, tx_remaining);
543 bcm2835_wait_tx_fifo_empty(bs);
544 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
545 | BCM2835_SPI_CS_DONE);
546 }
547
548 if (likely(!bs->tx_spillover)) {
549 sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
550 sg_dma_len(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
551 } else {
552 sg_dma_len(&tfr->tx_sg.sgl[0]) = 0;
553 sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
554 sg_dma_len(&tfr->tx_sg.sgl[1]) -= 4;
555 }
556 }
557
558 /**
559 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
560 * @bs: BCM2835 SPI controller
561 *
562 * Undo changes which were made to an SPI transfer's sglist when transmitting
563 * the prologue. This is necessary to ensure the same memory ranges are
564 * unmapped that were originally mapped.
565 */
bcm2835_spi_undo_prologue(struct bcm2835_spi * bs)566 static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
567 {
568 struct spi_transfer *tfr = bs->tfr;
569
570 if (!bs->tx_prologue)
571 return;
572
573 if (bs->rx_prologue) {
574 sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
575 sg_dma_len(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
576 }
577
578 if (!bs->tx_buf)
579 goto out;
580
581 if (likely(!bs->tx_spillover)) {
582 sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
583 sg_dma_len(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
584 } else {
585 sg_dma_len(&tfr->tx_sg.sgl[0]) = bs->tx_prologue - 4;
586 sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
587 sg_dma_len(&tfr->tx_sg.sgl[1]) += 4;
588 }
589 out:
590 bs->tx_prologue = 0;
591 }
592
593 /**
594 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
595 * @data: SPI master controller
596 *
597 * Used for bidirectional and RX-only transfers.
598 */
bcm2835_spi_dma_rx_done(void * data)599 static void bcm2835_spi_dma_rx_done(void *data)
600 {
601 struct spi_controller *ctlr = data;
602 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
603
604 /* terminate tx-dma as we do not have an irq for it
605 * because when the rx dma will terminate and this callback
606 * is called the tx-dma must have finished - can't get to this
607 * situation otherwise...
608 */
609 dmaengine_terminate_async(ctlr->dma_tx);
610 bs->tx_dma_active = false;
611 bs->rx_dma_active = false;
612 bcm2835_spi_undo_prologue(bs);
613
614 /* reset fifo and HW */
615 bcm2835_spi_reset_hw(bs);
616
617 /* and mark as completed */;
618 spi_finalize_current_transfer(ctlr);
619 }
620
621 /**
622 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
623 * @data: SPI master controller
624 *
625 * Used for TX-only transfers.
626 */
bcm2835_spi_dma_tx_done(void * data)627 static void bcm2835_spi_dma_tx_done(void *data)
628 {
629 struct spi_controller *ctlr = data;
630 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
631
632 /* busy-wait for TX FIFO to empty */
633 while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
634 bcm2835_wr(bs, BCM2835_SPI_CS, bs->slv->clear_rx_cs);
635
636 bs->tx_dma_active = false;
637 smp_wmb();
638
639 /*
640 * In case of a very short transfer, RX DMA may not have been
641 * issued yet. The onus is then on bcm2835_spi_transfer_one_dma()
642 * to terminate it immediately after issuing.
643 */
644 if (cmpxchg(&bs->rx_dma_active, true, false))
645 dmaengine_terminate_async(ctlr->dma_rx);
646
647 bcm2835_spi_undo_prologue(bs);
648 bcm2835_spi_reset_hw(bs);
649 spi_finalize_current_transfer(ctlr);
650 }
651
652 /**
653 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
654 * @ctlr: SPI master controller
655 * @tfr: SPI transfer
656 * @bs: BCM2835 SPI controller
657 * @slv: BCM2835 SPI slave
658 * @is_tx: whether to submit DMA descriptor for TX or RX sglist
659 *
660 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
661 * Return 0 on success or a negative error number.
662 */
bcm2835_spi_prepare_sg(struct spi_controller * ctlr,struct spi_transfer * tfr,struct bcm2835_spi * bs,struct bcm2835_spidev * slv,bool is_tx)663 static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
664 struct spi_transfer *tfr,
665 struct bcm2835_spi *bs,
666 struct bcm2835_spidev *slv,
667 bool is_tx)
668 {
669 struct dma_chan *chan;
670 struct scatterlist *sgl;
671 unsigned int nents;
672 enum dma_transfer_direction dir;
673 unsigned long flags;
674
675 struct dma_async_tx_descriptor *desc;
676 dma_cookie_t cookie;
677
678 if (is_tx) {
679 dir = DMA_MEM_TO_DEV;
680 chan = ctlr->dma_tx;
681 nents = tfr->tx_sg.nents;
682 sgl = tfr->tx_sg.sgl;
683 flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
684 } else {
685 dir = DMA_DEV_TO_MEM;
686 chan = ctlr->dma_rx;
687 nents = tfr->rx_sg.nents;
688 sgl = tfr->rx_sg.sgl;
689 flags = DMA_PREP_INTERRUPT;
690 }
691 /* prepare the channel */
692 desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
693 if (!desc)
694 return -EINVAL;
695
696 /*
697 * Completion is signaled by the RX channel for bidirectional and
698 * RX-only transfers; else by the TX channel for TX-only transfers.
699 */
700 if (!is_tx) {
701 desc->callback = bcm2835_spi_dma_rx_done;
702 desc->callback_param = ctlr;
703 } else if (!tfr->rx_buf) {
704 desc->callback = bcm2835_spi_dma_tx_done;
705 desc->callback_param = ctlr;
706 bs->slv = slv;
707 }
708
709 /* submit it to DMA-engine */
710 cookie = dmaengine_submit(desc);
711
712 return dma_submit_error(cookie);
713 }
714
715 /**
716 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
717 * @ctlr: SPI master controller
718 * @tfr: SPI transfer
719 * @slv: BCM2835 SPI slave
720 * @cs: CS register
721 *
722 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
723 * the TX and RX DMA channel to copy between memory and FIFO register.
724 *
725 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
726 * memory is pointless. However not reading the RX FIFO isn't an option either
727 * because transmission is halted once it's full. As a workaround, cyclically
728 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
729 *
730 * The CS register value is precalculated in bcm2835_spi_setup(). Normally
731 * this is called only once, on slave registration. A DMA descriptor to write
732 * this value is preallocated in bcm2835_dma_init(). All that's left to do
733 * when performing a TX-only transfer is to submit this descriptor to the RX
734 * DMA channel. Latency is thereby minimized. The descriptor does not
735 * generate any interrupts while running. It must be terminated once the
736 * TX DMA channel is done.
737 *
738 * Clearing the RX FIFO is paced by the DREQ signal. The signal is asserted
739 * when the RX FIFO becomes half full, i.e. 32 bytes. (Tuneable with the DC
740 * register.) Reading 32 bytes from the RX FIFO would normally require 8 bus
741 * accesses, whereas clearing it requires only 1 bus access. So an 8-fold
742 * reduction in bus traffic and thus energy consumption is achieved.
743 *
744 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
745 * copying from the zero page. The DMA descriptor to do this is preallocated
746 * in bcm2835_dma_init(). It must be terminated once the RX DMA channel is
747 * done and can then be reused.
748 *
749 * The BCM2835 DMA driver autodetects when a transaction copies from the zero
750 * page and utilizes the DMA controller's ability to synthesize zeroes instead
751 * of copying them from memory. This reduces traffic on the memory bus. The
752 * feature is not available on so-called "lite" channels, but normally TX DMA
753 * is backed by a full-featured channel.
754 *
755 * Zero-filling the TX FIFO is paced by the DREQ signal. Unfortunately the
756 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
757 * has been counted down to zero (hardware erratum). Thus, when the transfer
758 * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
759 * (Tuneable with the DC register.) So up to 9 gratuitous bus accesses are
760 * performed at the end of an RX-only transfer.
761 */
bcm2835_spi_transfer_one_dma(struct spi_controller * ctlr,struct spi_transfer * tfr,struct bcm2835_spidev * slv,u32 cs)762 static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
763 struct spi_transfer *tfr,
764 struct bcm2835_spidev *slv,
765 u32 cs)
766 {
767 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
768 dma_cookie_t cookie;
769 int ret;
770
771 /* update usage statistics */
772 bs->count_transfer_dma++;
773
774 /*
775 * Transfer first few bytes without DMA if length of first TX or RX
776 * sglist entry is not a multiple of 4 bytes (hardware limitation).
777 */
778 bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
779
780 /* setup tx-DMA */
781 if (bs->tx_buf) {
782 ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, slv, true);
783 } else {
784 cookie = dmaengine_submit(bs->fill_tx_desc);
785 ret = dma_submit_error(cookie);
786 }
787 if (ret)
788 goto err_reset_hw;
789
790 /* set the DMA length */
791 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
792
793 /* start the HW */
794 bcm2835_wr(bs, BCM2835_SPI_CS,
795 cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
796
797 bs->tx_dma_active = true;
798 smp_wmb();
799
800 /* start TX early */
801 dma_async_issue_pending(ctlr->dma_tx);
802
803 /* setup rx-DMA late - to run transfers while
804 * mapping of the rx buffers still takes place
805 * this saves 10us or more.
806 */
807 if (bs->rx_buf) {
808 ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, slv, false);
809 } else {
810 cookie = dmaengine_submit(slv->clear_rx_desc);
811 ret = dma_submit_error(cookie);
812 }
813 if (ret) {
814 /* need to reset on errors */
815 dmaengine_terminate_sync(ctlr->dma_tx);
816 bs->tx_dma_active = false;
817 goto err_reset_hw;
818 }
819
820 /* start rx dma late */
821 dma_async_issue_pending(ctlr->dma_rx);
822 bs->rx_dma_active = true;
823 smp_mb();
824
825 /*
826 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
827 * may run before RX DMA is issued. Terminate RX DMA if so.
828 */
829 if (!bs->rx_buf && !bs->tx_dma_active &&
830 cmpxchg(&bs->rx_dma_active, true, false)) {
831 dmaengine_terminate_async(ctlr->dma_rx);
832 bcm2835_spi_reset_hw(bs);
833 }
834
835 /* wait for wakeup in framework */
836 return 1;
837
838 err_reset_hw:
839 bcm2835_spi_reset_hw(bs);
840 bcm2835_spi_undo_prologue(bs);
841 return ret;
842 }
843
bcm2835_spi_can_dma(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * tfr)844 static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
845 struct spi_device *spi,
846 struct spi_transfer *tfr)
847 {
848 /* we start DMA efforts only on bigger transfers */
849 if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
850 return false;
851
852 /* return OK */
853 return true;
854 }
855
bcm2835_dma_release(struct spi_controller * ctlr,struct bcm2835_spi * bs)856 static void bcm2835_dma_release(struct spi_controller *ctlr,
857 struct bcm2835_spi *bs)
858 {
859 if (ctlr->dma_tx) {
860 dmaengine_terminate_sync(ctlr->dma_tx);
861
862 if (bs->fill_tx_desc)
863 dmaengine_desc_free(bs->fill_tx_desc);
864
865 if (bs->fill_tx_addr)
866 dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
867 bs->fill_tx_addr, sizeof(u32),
868 DMA_TO_DEVICE,
869 DMA_ATTR_SKIP_CPU_SYNC);
870
871 dma_release_channel(ctlr->dma_tx);
872 ctlr->dma_tx = NULL;
873 }
874
875 if (ctlr->dma_rx) {
876 dmaengine_terminate_sync(ctlr->dma_rx);
877 dma_release_channel(ctlr->dma_rx);
878 ctlr->dma_rx = NULL;
879 }
880 }
881
bcm2835_dma_init(struct spi_controller * ctlr,struct device * dev,struct bcm2835_spi * bs)882 static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
883 struct bcm2835_spi *bs)
884 {
885 struct dma_slave_config slave_config;
886 const __be32 *addr;
887 dma_addr_t dma_reg_base;
888 int ret;
889
890 /* base address in dma-space */
891 addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
892 if (!addr) {
893 dev_err(dev, "could not get DMA-register address - not using dma mode\n");
894 /* Fall back to interrupt mode */
895 return 0;
896 }
897 dma_reg_base = be32_to_cpup(addr);
898
899 /* get tx/rx dma */
900 ctlr->dma_tx = dma_request_chan(dev, "tx");
901 if (IS_ERR(ctlr->dma_tx)) {
902 dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
903 ret = PTR_ERR(ctlr->dma_tx);
904 ctlr->dma_tx = NULL;
905 goto err;
906 }
907 ctlr->dma_rx = dma_request_chan(dev, "rx");
908 if (IS_ERR(ctlr->dma_rx)) {
909 dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
910 ret = PTR_ERR(ctlr->dma_rx);
911 ctlr->dma_rx = NULL;
912 goto err_release;
913 }
914
915 /*
916 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
917 * or, in case of an RX-only transfer, cyclically copies from the zero
918 * page to the FIFO using a preallocated, reusable descriptor.
919 */
920 slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
921 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
922
923 ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
924 if (ret)
925 goto err_config;
926
927 bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
928 ZERO_PAGE(0), 0, sizeof(u32),
929 DMA_TO_DEVICE,
930 DMA_ATTR_SKIP_CPU_SYNC);
931 if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
932 dev_err(dev, "cannot map zero page - not using DMA mode\n");
933 bs->fill_tx_addr = 0;
934 ret = -ENOMEM;
935 goto err_release;
936 }
937
938 bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
939 bs->fill_tx_addr,
940 sizeof(u32), 0,
941 DMA_MEM_TO_DEV, 0);
942 if (!bs->fill_tx_desc) {
943 dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
944 ret = -ENOMEM;
945 goto err_release;
946 }
947
948 ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
949 if (ret) {
950 dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
951 goto err_release;
952 }
953
954 /*
955 * The RX DMA channel is used bidirectionally: It either reads the
956 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
957 * precalculated value to the CS register to clear the RX FIFO.
958 */
959 slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
960 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
961 slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
962 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
963
964 ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
965 if (ret)
966 goto err_config;
967
968 /* all went well, so set can_dma */
969 ctlr->can_dma = bcm2835_spi_can_dma;
970
971 return 0;
972
973 err_config:
974 dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
975 ret);
976 err_release:
977 bcm2835_dma_release(ctlr, bs);
978 err:
979 /*
980 * Only report error for deferred probing, otherwise fall back to
981 * interrupt mode
982 */
983 if (ret != -EPROBE_DEFER)
984 ret = 0;
985
986 return ret;
987 }
988
bcm2835_spi_transfer_one_poll(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * tfr,u32 cs)989 static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
990 struct spi_device *spi,
991 struct spi_transfer *tfr,
992 u32 cs)
993 {
994 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
995 unsigned long timeout;
996
997 /* update usage statistics */
998 bs->count_transfer_polling++;
999
1000 /* enable HW block without interrupts */
1001 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1002
1003 /* fill in the fifo before timeout calculations
1004 * if we are interrupted here, then the data is
1005 * getting transferred by the HW while we are interrupted
1006 */
1007 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
1008
1009 /* set the timeout to at least 2 jiffies */
1010 timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
1011
1012 /* loop until finished the transfer */
1013 while (bs->rx_len) {
1014 /* fill in tx fifo with remaining data */
1015 bcm2835_wr_fifo(bs);
1016
1017 /* read from fifo as much as possible */
1018 bcm2835_rd_fifo(bs);
1019
1020 /* if there is still data pending to read
1021 * then check the timeout
1022 */
1023 if (bs->rx_len && time_after(jiffies, timeout)) {
1024 dev_dbg_ratelimited(&spi->dev,
1025 "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1026 jiffies - timeout,
1027 bs->tx_len, bs->rx_len);
1028 /* fall back to interrupt mode */
1029
1030 /* update usage statistics */
1031 bs->count_transfer_irq_after_polling++;
1032
1033 return bcm2835_spi_transfer_one_irq(ctlr, spi,
1034 tfr, cs, false);
1035 }
1036 }
1037
1038 /* Transfer complete - reset SPI HW */
1039 bcm2835_spi_reset_hw(bs);
1040 /* and return without waiting for completion */
1041 return 0;
1042 }
1043
bcm2835_spi_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * tfr)1044 static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
1045 struct spi_device *spi,
1046 struct spi_transfer *tfr)
1047 {
1048 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1049 struct bcm2835_spidev *slv = spi_get_ctldata(spi);
1050 unsigned long spi_hz, cdiv;
1051 unsigned long hz_per_byte, byte_limit;
1052 u32 cs = slv->prepare_cs;
1053
1054 /* set clock */
1055 spi_hz = tfr->speed_hz;
1056
1057 if (spi_hz >= bs->clk_hz / 2) {
1058 cdiv = 2; /* clk_hz/2 is the fastest we can go */
1059 } else if (spi_hz) {
1060 /* CDIV must be a multiple of two */
1061 cdiv = DIV_ROUND_UP(bs->clk_hz, spi_hz);
1062 cdiv += (cdiv % 2);
1063
1064 if (cdiv >= 65536)
1065 cdiv = 0; /* 0 is the slowest we can go */
1066 } else {
1067 cdiv = 0; /* 0 is the slowest we can go */
1068 }
1069 tfr->effective_speed_hz = cdiv ? (bs->clk_hz / cdiv) : (bs->clk_hz / 65536);
1070 bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
1071
1072 /* handle all the 3-wire mode */
1073 if (spi->mode & SPI_3WIRE && tfr->rx_buf)
1074 cs |= BCM2835_SPI_CS_REN;
1075
1076 /* set transmit buffers and length */
1077 bs->tx_buf = tfr->tx_buf;
1078 bs->rx_buf = tfr->rx_buf;
1079 bs->tx_len = tfr->len;
1080 bs->rx_len = tfr->len;
1081
1082 /* Calculate the estimated time in us the transfer runs. Note that
1083 * there is 1 idle clocks cycles after each byte getting transferred
1084 * so we have 9 cycles/byte. This is used to find the number of Hz
1085 * per byte per polling limit. E.g., we can transfer 1 byte in 30 us
1086 * per 300,000 Hz of bus clock.
1087 */
1088 hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1089 byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
1090
1091 /* run in polling mode for short transfers */
1092 if (tfr->len < byte_limit)
1093 return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
1094
1095 /* run in dma mode if conditions are right
1096 * Note that unlike poll or interrupt mode DMA mode does not have
1097 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1098 */
1099 if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1100 return bcm2835_spi_transfer_one_dma(ctlr, tfr, slv, cs);
1101
1102 /* run in interrupt-mode */
1103 return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
1104 }
1105
bcm2835_spi_prepare_message(struct spi_controller * ctlr,struct spi_message * msg)1106 static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
1107 struct spi_message *msg)
1108 {
1109 struct spi_device *spi = msg->spi;
1110 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1111 struct bcm2835_spidev *slv = spi_get_ctldata(spi);
1112 int ret;
1113
1114 if (ctlr->can_dma) {
1115 /*
1116 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1117 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1118 * aligned) if the limit is exceeded.
1119 */
1120 ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
1121 GFP_KERNEL | GFP_DMA);
1122 if (ret)
1123 return ret;
1124 }
1125
1126 /*
1127 * Set up clock polarity before spi_transfer_one_message() asserts
1128 * chip select to avoid a gratuitous clock signal edge.
1129 */
1130 bcm2835_wr(bs, BCM2835_SPI_CS, slv->prepare_cs);
1131
1132 return 0;
1133 }
1134
bcm2835_spi_handle_err(struct spi_controller * ctlr,struct spi_message * msg)1135 static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
1136 struct spi_message *msg)
1137 {
1138 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1139
1140 /* if an error occurred and we have an active dma, then terminate */
1141 if (ctlr->dma_tx) {
1142 dmaengine_terminate_sync(ctlr->dma_tx);
1143 bs->tx_dma_active = false;
1144 }
1145 if (ctlr->dma_rx) {
1146 dmaengine_terminate_sync(ctlr->dma_rx);
1147 bs->rx_dma_active = false;
1148 }
1149 bcm2835_spi_undo_prologue(bs);
1150
1151 /* and reset */
1152 bcm2835_spi_reset_hw(bs);
1153 }
1154
chip_match_name(struct gpio_chip * chip,void * data)1155 static int chip_match_name(struct gpio_chip *chip, void *data)
1156 {
1157 return !strcmp(chip->label, data);
1158 }
1159
bcm2835_spi_cleanup(struct spi_device * spi)1160 static void bcm2835_spi_cleanup(struct spi_device *spi)
1161 {
1162 struct bcm2835_spidev *slv = spi_get_ctldata(spi);
1163 struct spi_controller *ctlr = spi->controller;
1164
1165 if (slv->clear_rx_desc)
1166 dmaengine_desc_free(slv->clear_rx_desc);
1167
1168 if (slv->clear_rx_addr)
1169 dma_unmap_single(ctlr->dma_rx->device->dev,
1170 slv->clear_rx_addr,
1171 sizeof(u32),
1172 DMA_TO_DEVICE);
1173
1174 kfree(slv);
1175 }
1176
bcm2835_spi_setup_dma(struct spi_controller * ctlr,struct spi_device * spi,struct bcm2835_spi * bs,struct bcm2835_spidev * slv)1177 static int bcm2835_spi_setup_dma(struct spi_controller *ctlr,
1178 struct spi_device *spi,
1179 struct bcm2835_spi *bs,
1180 struct bcm2835_spidev *slv)
1181 {
1182 int ret;
1183
1184 if (!ctlr->dma_rx)
1185 return 0;
1186
1187 slv->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
1188 &slv->clear_rx_cs,
1189 sizeof(u32),
1190 DMA_TO_DEVICE);
1191 if (dma_mapping_error(ctlr->dma_rx->device->dev, slv->clear_rx_addr)) {
1192 dev_err(&spi->dev, "cannot map clear_rx_cs\n");
1193 slv->clear_rx_addr = 0;
1194 return -ENOMEM;
1195 }
1196
1197 slv->clear_rx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
1198 slv->clear_rx_addr,
1199 sizeof(u32), 0,
1200 DMA_MEM_TO_DEV, 0);
1201 if (!slv->clear_rx_desc) {
1202 dev_err(&spi->dev, "cannot prepare clear_rx_desc\n");
1203 return -ENOMEM;
1204 }
1205
1206 ret = dmaengine_desc_set_reuse(slv->clear_rx_desc);
1207 if (ret) {
1208 dev_err(&spi->dev, "cannot reuse clear_rx_desc\n");
1209 return ret;
1210 }
1211
1212 return 0;
1213 }
1214
bcm2835_spi_setup(struct spi_device * spi)1215 static int bcm2835_spi_setup(struct spi_device *spi)
1216 {
1217 struct spi_controller *ctlr = spi->controller;
1218 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1219 struct bcm2835_spidev *slv = spi_get_ctldata(spi);
1220 struct gpio_chip *chip;
1221 int ret;
1222 u32 cs;
1223
1224 if (!slv) {
1225 slv = kzalloc(ALIGN(sizeof(*slv), dma_get_cache_alignment()),
1226 GFP_KERNEL);
1227 if (!slv)
1228 return -ENOMEM;
1229
1230 spi_set_ctldata(spi, slv);
1231
1232 ret = bcm2835_spi_setup_dma(ctlr, spi, bs, slv);
1233 if (ret)
1234 goto err_cleanup;
1235 }
1236
1237 /*
1238 * Precalculate SPI slave's CS register value for ->prepare_message():
1239 * The driver always uses software-controlled GPIO chip select, hence
1240 * set the hardware-controlled native chip select to an invalid value
1241 * to prevent it from interfering.
1242 */
1243 cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1244 if (spi->mode & SPI_CPOL)
1245 cs |= BCM2835_SPI_CS_CPOL;
1246 if (spi->mode & SPI_CPHA)
1247 cs |= BCM2835_SPI_CS_CPHA;
1248 slv->prepare_cs = cs;
1249
1250 /*
1251 * Precalculate SPI slave's CS register value to clear RX FIFO
1252 * in case of a TX-only DMA transfer.
1253 */
1254 if (ctlr->dma_rx) {
1255 slv->clear_rx_cs = cs | BCM2835_SPI_CS_TA |
1256 BCM2835_SPI_CS_DMAEN |
1257 BCM2835_SPI_CS_CLEAR_RX;
1258 dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1259 slv->clear_rx_addr,
1260 sizeof(u32),
1261 DMA_TO_DEVICE);
1262 }
1263
1264 /*
1265 * sanity checking the native-chipselects
1266 */
1267 if (spi->mode & SPI_NO_CS)
1268 return 0;
1269 /*
1270 * The SPI core has successfully requested the CS GPIO line from the
1271 * device tree, so we are done.
1272 */
1273 if (spi->cs_gpiod)
1274 return 0;
1275 if (spi->chip_select > 1) {
1276 /* error in the case of native CS requested with CS > 1
1277 * officially there is a CS2, but it is not documented
1278 * which GPIO is connected with that...
1279 */
1280 dev_err(&spi->dev,
1281 "setup: only two native chip-selects are supported\n");
1282 ret = -EINVAL;
1283 goto err_cleanup;
1284 }
1285
1286 /*
1287 * Translate native CS to GPIO
1288 *
1289 * FIXME: poking around in the gpiolib internals like this is
1290 * not very good practice. Find a way to locate the real problem
1291 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
1292 * sometimes not assigned correctly? Erroneous device trees?
1293 */
1294
1295 /* get the gpio chip for the base */
1296 chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
1297 if (!chip)
1298 return 0;
1299
1300 spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select,
1301 DRV_NAME,
1302 GPIO_LOOKUP_FLAGS_DEFAULT,
1303 GPIOD_OUT_LOW);
1304 if (IS_ERR(spi->cs_gpiod)) {
1305 ret = PTR_ERR(spi->cs_gpiod);
1306 goto err_cleanup;
1307 }
1308
1309 /* and set up the "mode" and level */
1310 dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1311 spi->chip_select);
1312
1313 return 0;
1314
1315 err_cleanup:
1316 bcm2835_spi_cleanup(spi);
1317 return ret;
1318 }
1319
bcm2835_spi_probe(struct platform_device * pdev)1320 static int bcm2835_spi_probe(struct platform_device *pdev)
1321 {
1322 struct spi_controller *ctlr;
1323 struct bcm2835_spi *bs;
1324 int err;
1325
1326 ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*bs));
1327 if (!ctlr)
1328 return -ENOMEM;
1329
1330 platform_set_drvdata(pdev, ctlr);
1331
1332 ctlr->use_gpio_descriptors = true;
1333 ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1334 ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1335 ctlr->num_chipselect = 3;
1336 ctlr->setup = bcm2835_spi_setup;
1337 ctlr->cleanup = bcm2835_spi_cleanup;
1338 ctlr->transfer_one = bcm2835_spi_transfer_one;
1339 ctlr->handle_err = bcm2835_spi_handle_err;
1340 ctlr->prepare_message = bcm2835_spi_prepare_message;
1341 ctlr->dev.of_node = pdev->dev.of_node;
1342
1343 bs = spi_controller_get_devdata(ctlr);
1344 bs->ctlr = ctlr;
1345
1346 bs->regs = devm_platform_ioremap_resource(pdev, 0);
1347 if (IS_ERR(bs->regs))
1348 return PTR_ERR(bs->regs);
1349
1350 bs->clk = devm_clk_get(&pdev->dev, NULL);
1351 if (IS_ERR(bs->clk))
1352 return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk),
1353 "could not get clk\n");
1354
1355 ctlr->max_speed_hz = clk_get_rate(bs->clk) / 2;
1356
1357 bs->irq = platform_get_irq(pdev, 0);
1358 if (bs->irq <= 0)
1359 return bs->irq ? bs->irq : -ENODEV;
1360
1361 clk_prepare_enable(bs->clk);
1362 bs->clk_hz = clk_get_rate(bs->clk);
1363
1364 err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
1365 if (err)
1366 goto out_clk_disable;
1367
1368 /* initialise the hardware with the default polarities */
1369 bcm2835_wr(bs, BCM2835_SPI_CS,
1370 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1371
1372 err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
1373 dev_name(&pdev->dev), bs);
1374 if (err) {
1375 dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1376 goto out_dma_release;
1377 }
1378
1379 err = spi_register_controller(ctlr);
1380 if (err) {
1381 dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1382 err);
1383 goto out_dma_release;
1384 }
1385
1386 bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1387
1388 return 0;
1389
1390 out_dma_release:
1391 bcm2835_dma_release(ctlr, bs);
1392 out_clk_disable:
1393 clk_disable_unprepare(bs->clk);
1394 return err;
1395 }
1396
bcm2835_spi_remove(struct platform_device * pdev)1397 static int bcm2835_spi_remove(struct platform_device *pdev)
1398 {
1399 struct spi_controller *ctlr = platform_get_drvdata(pdev);
1400 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1401
1402 bcm2835_debugfs_remove(bs);
1403
1404 spi_unregister_controller(ctlr);
1405
1406 bcm2835_dma_release(ctlr, bs);
1407
1408 /* Clear FIFOs, and disable the HW block */
1409 bcm2835_wr(bs, BCM2835_SPI_CS,
1410 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1411
1412 clk_disable_unprepare(bs->clk);
1413
1414 return 0;
1415 }
1416
bcm2835_spi_shutdown(struct platform_device * pdev)1417 static void bcm2835_spi_shutdown(struct platform_device *pdev)
1418 {
1419 int ret;
1420
1421 ret = bcm2835_spi_remove(pdev);
1422 if (ret)
1423 dev_err(&pdev->dev, "failed to shutdown\n");
1424 }
1425
1426 static const struct of_device_id bcm2835_spi_match[] = {
1427 { .compatible = "brcm,bcm2835-spi", },
1428 {}
1429 };
1430 MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1431
1432 static struct platform_driver bcm2835_spi_driver = {
1433 .driver = {
1434 .name = DRV_NAME,
1435 .of_match_table = bcm2835_spi_match,
1436 },
1437 .probe = bcm2835_spi_probe,
1438 .remove = bcm2835_spi_remove,
1439 .shutdown = bcm2835_spi_shutdown,
1440 };
1441 module_platform_driver(bcm2835_spi_driver);
1442
1443 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1444 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1445 MODULE_LICENSE("GPL");
1446