• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <pannan@allwinnertech.com>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <maxime.ripard@free-electrons.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 #include <linux/dmaengine.h>
22 
23 #include <linux/spi/spi.h>
24 
25 #define SUN6I_AUTOSUSPEND_TIMEOUT	2000
26 
27 #define SUN6I_FIFO_DEPTH		128
28 #define SUN8I_FIFO_DEPTH		64
29 
30 #define SUN6I_GBL_CTL_REG		0x04
31 #define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
32 #define SUN6I_GBL_CTL_MASTER			BIT(1)
33 #define SUN6I_GBL_CTL_TP			BIT(7)
34 #define SUN6I_GBL_CTL_RST			BIT(31)
35 
36 #define SUN6I_TFR_CTL_REG		0x08
37 #define SUN6I_TFR_CTL_CPHA			BIT(0)
38 #define SUN6I_TFR_CTL_CPOL			BIT(1)
39 #define SUN6I_TFR_CTL_SPOL			BIT(2)
40 #define SUN6I_TFR_CTL_CS_MASK			0x30
41 #define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
42 #define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
43 #define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
44 #define SUN6I_TFR_CTL_DHB			BIT(8)
45 #define SUN6I_TFR_CTL_FBS			BIT(12)
46 #define SUN6I_TFR_CTL_XCH			BIT(31)
47 
48 #define SUN6I_INT_CTL_REG		0x10
49 #define SUN6I_INT_CTL_RF_RDY			BIT(0)
50 #define SUN6I_INT_CTL_TF_ERQ			BIT(4)
51 #define SUN6I_INT_CTL_RF_OVF			BIT(8)
52 #define SUN6I_INT_CTL_TC			BIT(12)
53 
54 #define SUN6I_INT_STA_REG		0x14
55 
56 #define SUN6I_FIFO_CTL_REG		0x18
57 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
58 #define SUN6I_FIFO_CTL_RF_DRQ_EN		BIT(8)
59 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
60 #define SUN6I_FIFO_CTL_RF_RST			BIT(15)
61 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
62 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
63 #define SUN6I_FIFO_CTL_TF_DRQ_EN		BIT(24)
64 #define SUN6I_FIFO_CTL_TF_RST			BIT(31)
65 
66 #define SUN6I_FIFO_STA_REG		0x1c
67 #define SUN6I_FIFO_STA_RF_CNT_MASK		GENMASK(7, 0)
68 #define SUN6I_FIFO_STA_TF_CNT_MASK		GENMASK(23, 16)
69 
70 #define SUN6I_CLK_CTL_REG		0x24
71 #define SUN6I_CLK_CTL_CDR2_MASK			0xff
72 #define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
73 #define SUN6I_CLK_CTL_CDR1_MASK			0xf
74 #define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
75 #define SUN6I_CLK_CTL_DRS			BIT(12)
76 
77 #define SUN6I_MAX_XFER_SIZE		0xffffff
78 
79 #define SUN6I_BURST_CNT_REG		0x30
80 
81 #define SUN6I_XMIT_CNT_REG		0x34
82 
83 #define SUN6I_BURST_CTL_CNT_REG		0x38
84 
85 #define SUN6I_TXDATA_REG		0x200
86 #define SUN6I_RXDATA_REG		0x300
87 
88 struct sun6i_spi {
89 	struct spi_master	*master;
90 	void __iomem		*base_addr;
91 	dma_addr_t		dma_addr_rx;
92 	dma_addr_t		dma_addr_tx;
93 	struct clk		*hclk;
94 	struct clk		*mclk;
95 	struct reset_control	*rstc;
96 
97 	struct completion	done;
98 	struct completion	dma_rx_done;
99 
100 	const u8		*tx_buf;
101 	u8			*rx_buf;
102 	int			len;
103 	unsigned long		fifo_depth;
104 };
105 
sun6i_spi_read(struct sun6i_spi * sspi,u32 reg)106 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
107 {
108 	return readl(sspi->base_addr + reg);
109 }
110 
sun6i_spi_write(struct sun6i_spi * sspi,u32 reg,u32 value)111 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
112 {
113 	writel(value, sspi->base_addr + reg);
114 }
115 
sun6i_spi_get_rx_fifo_count(struct sun6i_spi * sspi)116 static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
117 {
118 	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
119 
120 	return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
121 }
122 
sun6i_spi_get_tx_fifo_count(struct sun6i_spi * sspi)123 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
124 {
125 	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
126 
127 	return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
128 }
129 
sun6i_spi_disable_interrupt(struct sun6i_spi * sspi,u32 mask)130 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
131 {
132 	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
133 
134 	reg &= ~mask;
135 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
136 }
137 
sun6i_spi_drain_fifo(struct sun6i_spi * sspi)138 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
139 {
140 	u32 len;
141 	u8 byte;
142 
143 	/* See how much data is available */
144 	len = sun6i_spi_get_rx_fifo_count(sspi);
145 
146 	while (len--) {
147 		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
148 		if (sspi->rx_buf)
149 			*sspi->rx_buf++ = byte;
150 	}
151 }
152 
sun6i_spi_fill_fifo(struct sun6i_spi * sspi)153 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
154 {
155 	u32 cnt;
156 	int len;
157 	u8 byte;
158 
159 	/* See how much data we can fit */
160 	cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
161 
162 	len = min((int)cnt, sspi->len);
163 
164 	while (len--) {
165 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
166 		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
167 		sspi->len--;
168 	}
169 }
170 
sun6i_spi_set_cs(struct spi_device * spi,bool enable)171 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
172 {
173 	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
174 	u32 reg;
175 
176 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
177 	reg &= ~SUN6I_TFR_CTL_CS_MASK;
178 	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
179 
180 	if (enable)
181 		reg |= SUN6I_TFR_CTL_CS_LEVEL;
182 	else
183 		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
184 
185 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
186 }
187 
sun6i_spi_max_transfer_size(struct spi_device * spi)188 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
189 {
190 	return SUN6I_MAX_XFER_SIZE - 1;
191 }
192 
sun6i_spi_dma_rx_cb(void * param)193 static void sun6i_spi_dma_rx_cb(void *param)
194 {
195 	struct sun6i_spi *sspi = param;
196 
197 	complete(&sspi->dma_rx_done);
198 }
199 
sun6i_spi_prepare_dma(struct sun6i_spi * sspi,struct spi_transfer * tfr)200 static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi,
201 				 struct spi_transfer *tfr)
202 {
203 	struct dma_async_tx_descriptor *rxdesc, *txdesc;
204 	struct spi_master *master = sspi->master;
205 
206 	rxdesc = NULL;
207 	if (tfr->rx_buf) {
208 		struct dma_slave_config rxconf = {
209 			.direction = DMA_DEV_TO_MEM,
210 			.src_addr = sspi->dma_addr_rx,
211 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
212 			.src_maxburst = 8,
213 		};
214 
215 		dmaengine_slave_config(master->dma_rx, &rxconf);
216 
217 		rxdesc = dmaengine_prep_slave_sg(master->dma_rx,
218 						 tfr->rx_sg.sgl,
219 						 tfr->rx_sg.nents,
220 						 DMA_DEV_TO_MEM,
221 						 DMA_PREP_INTERRUPT);
222 		if (!rxdesc)
223 			return -EINVAL;
224 		rxdesc->callback_param = sspi;
225 		rxdesc->callback = sun6i_spi_dma_rx_cb;
226 	}
227 
228 	txdesc = NULL;
229 	if (tfr->tx_buf) {
230 		struct dma_slave_config txconf = {
231 			.direction = DMA_MEM_TO_DEV,
232 			.dst_addr = sspi->dma_addr_tx,
233 			.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
234 			.dst_maxburst = 8,
235 		};
236 
237 		dmaengine_slave_config(master->dma_tx, &txconf);
238 
239 		txdesc = dmaengine_prep_slave_sg(master->dma_tx,
240 						 tfr->tx_sg.sgl,
241 						 tfr->tx_sg.nents,
242 						 DMA_MEM_TO_DEV,
243 						 DMA_PREP_INTERRUPT);
244 		if (!txdesc) {
245 			if (rxdesc)
246 				dmaengine_terminate_sync(master->dma_rx);
247 			return -EINVAL;
248 		}
249 	}
250 
251 	if (tfr->rx_buf) {
252 		dmaengine_submit(rxdesc);
253 		dma_async_issue_pending(master->dma_rx);
254 	}
255 
256 	if (tfr->tx_buf) {
257 		dmaengine_submit(txdesc);
258 		dma_async_issue_pending(master->dma_tx);
259 	}
260 
261 	return 0;
262 }
263 
sun6i_spi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * tfr)264 static int sun6i_spi_transfer_one(struct spi_master *master,
265 				  struct spi_device *spi,
266 				  struct spi_transfer *tfr)
267 {
268 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
269 	unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
270 	unsigned int start, end, tx_time;
271 	unsigned int trig_level;
272 	unsigned int tx_len = 0, rx_len = 0;
273 	bool use_dma;
274 	int ret = 0;
275 	u32 reg;
276 
277 	if (tfr->len > SUN6I_MAX_XFER_SIZE)
278 		return -EINVAL;
279 
280 	reinit_completion(&sspi->done);
281 	reinit_completion(&sspi->dma_rx_done);
282 	sspi->tx_buf = tfr->tx_buf;
283 	sspi->rx_buf = tfr->rx_buf;
284 	sspi->len = tfr->len;
285 	use_dma = master->can_dma ? master->can_dma(master, spi, tfr) : false;
286 
287 	/* Clear pending interrupts */
288 	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
289 
290 	/* Reset FIFO */
291 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
292 			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
293 
294 	reg = 0;
295 
296 	if (!use_dma) {
297 		/*
298 		 * Setup FIFO interrupt trigger level
299 		 * Here we choose 3/4 of the full fifo depth, as it's
300 		 * the hardcoded value used in old generation of Allwinner
301 		 * SPI controller. (See spi-sun4i.c)
302 		 */
303 		trig_level = sspi->fifo_depth / 4 * 3;
304 	} else {
305 		/*
306 		 * Setup FIFO DMA request trigger level
307 		 * We choose 1/2 of the full fifo depth, that value will
308 		 * be used as DMA burst length.
309 		 */
310 		trig_level = sspi->fifo_depth / 2;
311 
312 		if (tfr->tx_buf)
313 			reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
314 		if (tfr->rx_buf)
315 			reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
316 	}
317 
318 	reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
319 	       (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);
320 
321 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);
322 
323 	/*
324 	 * Setup the transfer control register: Chip Select,
325 	 * polarities, etc.
326 	 */
327 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
328 
329 	if (spi->mode & SPI_CPOL)
330 		reg |= SUN6I_TFR_CTL_CPOL;
331 	else
332 		reg &= ~SUN6I_TFR_CTL_CPOL;
333 
334 	if (spi->mode & SPI_CPHA)
335 		reg |= SUN6I_TFR_CTL_CPHA;
336 	else
337 		reg &= ~SUN6I_TFR_CTL_CPHA;
338 
339 	if (spi->mode & SPI_LSB_FIRST)
340 		reg |= SUN6I_TFR_CTL_FBS;
341 	else
342 		reg &= ~SUN6I_TFR_CTL_FBS;
343 
344 	/*
345 	 * If it's a TX only transfer, we don't want to fill the RX
346 	 * FIFO with bogus data
347 	 */
348 	if (sspi->rx_buf) {
349 		reg &= ~SUN6I_TFR_CTL_DHB;
350 		rx_len = tfr->len;
351 	} else {
352 		reg |= SUN6I_TFR_CTL_DHB;
353 	}
354 
355 	/* We want to control the chip select manually */
356 	reg |= SUN6I_TFR_CTL_CS_MANUAL;
357 
358 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
359 
360 	/* Ensure that we have a parent clock fast enough */
361 	mclk_rate = clk_get_rate(sspi->mclk);
362 	if (mclk_rate < (2 * tfr->speed_hz)) {
363 		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
364 		mclk_rate = clk_get_rate(sspi->mclk);
365 	}
366 
367 	/*
368 	 * Setup clock divider.
369 	 *
370 	 * We have two choices there. Either we can use the clock
371 	 * divide rate 1, which is calculated thanks to this formula:
372 	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
373 	 * Or we can use CDR2, which is calculated with the formula:
374 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
375 	 * Wether we use the former or the latter is set through the
376 	 * DRS bit.
377 	 *
378 	 * First try CDR2, and if we can't reach the expected
379 	 * frequency, fall back to CDR1.
380 	 */
381 	div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
382 	div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
383 	if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
384 		reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
385 		tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
386 	} else {
387 		div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
388 		reg = SUN6I_CLK_CTL_CDR1(div);
389 		tfr->effective_speed_hz = mclk_rate / (1 << div);
390 	}
391 
392 	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
393 	/* Finally enable the bus - doing so before might raise SCK to HIGH */
394 	reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
395 	reg |= SUN6I_GBL_CTL_BUS_ENABLE;
396 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);
397 
398 	/* Setup the transfer now... */
399 	if (sspi->tx_buf)
400 		tx_len = tfr->len;
401 
402 	/* Setup the counters */
403 	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
404 	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
405 	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);
406 
407 	if (!use_dma) {
408 		/* Fill the TX FIFO */
409 		sun6i_spi_fill_fifo(sspi);
410 	} else {
411 		ret = sun6i_spi_prepare_dma(sspi, tfr);
412 		if (ret) {
413 			dev_warn(&master->dev,
414 				 "%s: prepare DMA failed, ret=%d",
415 				 dev_name(&spi->dev), ret);
416 			return ret;
417 		}
418 	}
419 
420 	/* Enable the interrupts */
421 	reg = SUN6I_INT_CTL_TC;
422 
423 	if (!use_dma) {
424 		if (rx_len > sspi->fifo_depth)
425 			reg |= SUN6I_INT_CTL_RF_RDY;
426 		if (tx_len > sspi->fifo_depth)
427 			reg |= SUN6I_INT_CTL_TF_ERQ;
428 	}
429 
430 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
431 
432 	/* Start the transfer */
433 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
434 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
435 
436 	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
437 	start = jiffies;
438 	timeout = wait_for_completion_timeout(&sspi->done,
439 					      msecs_to_jiffies(tx_time));
440 
441 	if (!use_dma) {
442 		sun6i_spi_drain_fifo(sspi);
443 	} else {
444 		if (timeout && rx_len) {
445 			/*
446 			 * Even though RX on the peripheral side has finished
447 			 * RX DMA might still be in flight
448 			 */
449 			timeout = wait_for_completion_timeout(&sspi->dma_rx_done,
450 							      timeout);
451 			if (!timeout)
452 				dev_warn(&master->dev, "RX DMA timeout\n");
453 		}
454 	}
455 
456 	end = jiffies;
457 	if (!timeout) {
458 		dev_warn(&master->dev,
459 			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
460 			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
461 			 jiffies_to_msecs(end - start), tx_time);
462 		ret = -ETIMEDOUT;
463 	}
464 
465 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
466 
467 	if (ret && use_dma) {
468 		dmaengine_terminate_sync(master->dma_rx);
469 		dmaengine_terminate_sync(master->dma_tx);
470 	}
471 
472 	return ret;
473 }
474 
sun6i_spi_handler(int irq,void * dev_id)475 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
476 {
477 	struct sun6i_spi *sspi = dev_id;
478 	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
479 
480 	/* Transfer complete */
481 	if (status & SUN6I_INT_CTL_TC) {
482 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
483 		complete(&sspi->done);
484 		return IRQ_HANDLED;
485 	}
486 
487 	/* Receive FIFO 3/4 full */
488 	if (status & SUN6I_INT_CTL_RF_RDY) {
489 		sun6i_spi_drain_fifo(sspi);
490 		/* Only clear the interrupt _after_ draining the FIFO */
491 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
492 		return IRQ_HANDLED;
493 	}
494 
495 	/* Transmit FIFO 3/4 empty */
496 	if (status & SUN6I_INT_CTL_TF_ERQ) {
497 		sun6i_spi_fill_fifo(sspi);
498 
499 		if (!sspi->len)
500 			/* nothing left to transmit */
501 			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
502 
503 		/* Only clear the interrupt _after_ re-seeding the FIFO */
504 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
505 
506 		return IRQ_HANDLED;
507 	}
508 
509 	return IRQ_NONE;
510 }
511 
sun6i_spi_runtime_resume(struct device * dev)512 static int sun6i_spi_runtime_resume(struct device *dev)
513 {
514 	struct spi_master *master = dev_get_drvdata(dev);
515 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
516 	int ret;
517 
518 	ret = clk_prepare_enable(sspi->hclk);
519 	if (ret) {
520 		dev_err(dev, "Couldn't enable AHB clock\n");
521 		goto out;
522 	}
523 
524 	ret = clk_prepare_enable(sspi->mclk);
525 	if (ret) {
526 		dev_err(dev, "Couldn't enable module clock\n");
527 		goto err;
528 	}
529 
530 	ret = reset_control_deassert(sspi->rstc);
531 	if (ret) {
532 		dev_err(dev, "Couldn't deassert the device from reset\n");
533 		goto err2;
534 	}
535 
536 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
537 			SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
538 
539 	return 0;
540 
541 err2:
542 	clk_disable_unprepare(sspi->mclk);
543 err:
544 	clk_disable_unprepare(sspi->hclk);
545 out:
546 	return ret;
547 }
548 
sun6i_spi_runtime_suspend(struct device * dev)549 static int sun6i_spi_runtime_suspend(struct device *dev)
550 {
551 	struct spi_master *master = dev_get_drvdata(dev);
552 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
553 
554 	reset_control_assert(sspi->rstc);
555 	clk_disable_unprepare(sspi->mclk);
556 	clk_disable_unprepare(sspi->hclk);
557 
558 	return 0;
559 }
560 
sun6i_spi_can_dma(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)561 static bool sun6i_spi_can_dma(struct spi_master *master,
562 			      struct spi_device *spi,
563 			      struct spi_transfer *xfer)
564 {
565 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
566 
567 	/*
568 	 * If the number of spi words to transfer is less or equal than
569 	 * the fifo length we can just fill the fifo and wait for a single
570 	 * irq, so don't bother setting up dma
571 	 */
572 	return xfer->len > sspi->fifo_depth;
573 }
574 
sun6i_spi_probe(struct platform_device * pdev)575 static int sun6i_spi_probe(struct platform_device *pdev)
576 {
577 	struct spi_master *master;
578 	struct sun6i_spi *sspi;
579 	struct resource *mem;
580 	int ret = 0, irq;
581 
582 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
583 	if (!master) {
584 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
585 		return -ENOMEM;
586 	}
587 
588 	platform_set_drvdata(pdev, master);
589 	sspi = spi_master_get_devdata(master);
590 
591 	sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
592 	if (IS_ERR(sspi->base_addr)) {
593 		ret = PTR_ERR(sspi->base_addr);
594 		goto err_free_master;
595 	}
596 
597 	irq = platform_get_irq(pdev, 0);
598 	if (irq < 0) {
599 		ret = -ENXIO;
600 		goto err_free_master;
601 	}
602 
603 	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
604 			       0, "sun6i-spi", sspi);
605 	if (ret) {
606 		dev_err(&pdev->dev, "Cannot request IRQ\n");
607 		goto err_free_master;
608 	}
609 
610 	sspi->master = master;
611 	sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
612 
613 	master->max_speed_hz = 100 * 1000 * 1000;
614 	master->min_speed_hz = 3 * 1000;
615 	master->use_gpio_descriptors = true;
616 	master->set_cs = sun6i_spi_set_cs;
617 	master->transfer_one = sun6i_spi_transfer_one;
618 	master->num_chipselect = 4;
619 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
620 	master->bits_per_word_mask = SPI_BPW_MASK(8);
621 	master->dev.of_node = pdev->dev.of_node;
622 	master->auto_runtime_pm = true;
623 	master->max_transfer_size = sun6i_spi_max_transfer_size;
624 
625 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
626 	if (IS_ERR(sspi->hclk)) {
627 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
628 		ret = PTR_ERR(sspi->hclk);
629 		goto err_free_master;
630 	}
631 
632 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
633 	if (IS_ERR(sspi->mclk)) {
634 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
635 		ret = PTR_ERR(sspi->mclk);
636 		goto err_free_master;
637 	}
638 
639 	init_completion(&sspi->done);
640 	init_completion(&sspi->dma_rx_done);
641 
642 	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
643 	if (IS_ERR(sspi->rstc)) {
644 		dev_err(&pdev->dev, "Couldn't get reset controller\n");
645 		ret = PTR_ERR(sspi->rstc);
646 		goto err_free_master;
647 	}
648 
649 	master->dma_tx = dma_request_chan(&pdev->dev, "tx");
650 	if (IS_ERR(master->dma_tx)) {
651 		/* Check tx to see if we need defer probing driver */
652 		if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) {
653 			ret = -EPROBE_DEFER;
654 			goto err_free_master;
655 		}
656 		dev_warn(&pdev->dev, "Failed to request TX DMA channel\n");
657 		master->dma_tx = NULL;
658 	}
659 
660 	master->dma_rx = dma_request_chan(&pdev->dev, "rx");
661 	if (IS_ERR(master->dma_rx)) {
662 		if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) {
663 			ret = -EPROBE_DEFER;
664 			goto err_free_dma_tx;
665 		}
666 		dev_warn(&pdev->dev, "Failed to request RX DMA channel\n");
667 		master->dma_rx = NULL;
668 	}
669 
670 	if (master->dma_tx && master->dma_rx) {
671 		sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG;
672 		sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG;
673 		master->can_dma = sun6i_spi_can_dma;
674 	}
675 
676 	/*
677 	 * This wake-up/shutdown pattern is to be able to have the
678 	 * device woken up, even if runtime_pm is disabled
679 	 */
680 	ret = sun6i_spi_runtime_resume(&pdev->dev);
681 	if (ret) {
682 		dev_err(&pdev->dev, "Couldn't resume the device\n");
683 		goto err_free_dma_rx;
684 	}
685 
686 	pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT);
687 	pm_runtime_use_autosuspend(&pdev->dev);
688 	pm_runtime_set_active(&pdev->dev);
689 	pm_runtime_enable(&pdev->dev);
690 
691 	ret = devm_spi_register_master(&pdev->dev, master);
692 	if (ret) {
693 		dev_err(&pdev->dev, "cannot register SPI master\n");
694 		goto err_pm_disable;
695 	}
696 
697 	return 0;
698 
699 err_pm_disable:
700 	pm_runtime_disable(&pdev->dev);
701 	sun6i_spi_runtime_suspend(&pdev->dev);
702 err_free_dma_rx:
703 	if (master->dma_rx)
704 		dma_release_channel(master->dma_rx);
705 err_free_dma_tx:
706 	if (master->dma_tx)
707 		dma_release_channel(master->dma_tx);
708 err_free_master:
709 	spi_master_put(master);
710 	return ret;
711 }
712 
sun6i_spi_remove(struct platform_device * pdev)713 static int sun6i_spi_remove(struct platform_device *pdev)
714 {
715 	struct spi_master *master = platform_get_drvdata(pdev);
716 
717 	pm_runtime_force_suspend(&pdev->dev);
718 
719 	if (master->dma_tx)
720 		dma_release_channel(master->dma_tx);
721 	if (master->dma_rx)
722 		dma_release_channel(master->dma_rx);
723 	return 0;
724 }
725 
726 static const struct of_device_id sun6i_spi_match[] = {
727 	{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
728 	{ .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
729 	{}
730 };
731 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
732 
733 static const struct dev_pm_ops sun6i_spi_pm_ops = {
734 	.runtime_resume		= sun6i_spi_runtime_resume,
735 	.runtime_suspend	= sun6i_spi_runtime_suspend,
736 };
737 
738 static struct platform_driver sun6i_spi_driver = {
739 	.probe	= sun6i_spi_probe,
740 	.remove	= sun6i_spi_remove,
741 	.driver	= {
742 		.name		= "sun6i-spi",
743 		.of_match_table	= sun6i_spi_match,
744 		.pm		= &sun6i_spi_pm_ops,
745 	},
746 };
747 module_platform_driver(sun6i_spi_driver);
748 
749 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
750 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
751 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
752 MODULE_LICENSE("GPL");
753