• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
4  *
5  *  Copyright (C) 2002 - 2011  Paul Mundt
6  *  Copyright (C) 2015 Glider bvba
7  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8  *
9  * based off of the old drivers/char/sh-sci.c by:
10  *
11  *   Copyright (C) 1999, 2000  Niibe Yutaka
12  *   Copyright (C) 2000  Sugioka Toshinobu
13  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
14  *   Modified to support SecureEdge. David McCullough (2002)
15  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16  *   Removed SH7300 support (Jul 2007).
17  */
18 #undef DEBUG
19 
20 #include <linux/clk.h>
21 #include <linux/console.h>
22 #include <linux/ctype.h>
23 #include <linux/cpufreq.h>
24 #include <linux/delay.h>
25 #include <linux/dmaengine.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/err.h>
28 #include <linux/errno.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/ioport.h>
32 #include <linux/ktime.h>
33 #include <linux/major.h>
34 #include <linux/minmax.h>
35 #include <linux/module.h>
36 #include <linux/mm.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/platform_device.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/scatterlist.h>
42 #include <linux/serial.h>
43 #include <linux/serial_sci.h>
44 #include <linux/sh_dma.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/sysrq.h>
48 #include <linux/timer.h>
49 #include <linux/tty.h>
50 #include <linux/tty_flip.h>
51 
52 #ifdef CONFIG_SUPERH
53 #include <asm/sh_bios.h>
54 #include <asm/platform_early.h>
55 #endif
56 
57 #include "serial_mctrl_gpio.h"
58 #include "sh-sci.h"
59 
60 /* Offsets into the sci_port->irqs array */
61 enum {
62 	SCIx_ERI_IRQ,
63 	SCIx_RXI_IRQ,
64 	SCIx_TXI_IRQ,
65 	SCIx_BRI_IRQ,
66 	SCIx_DRI_IRQ,
67 	SCIx_TEI_IRQ,
68 	SCIx_NR_IRQS,
69 
70 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
71 };
72 
73 #define SCIx_IRQ_IS_MUXED(port)			\
74 	((port)->irqs[SCIx_ERI_IRQ] ==	\
75 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
76 	((port)->irqs[SCIx_ERI_IRQ] &&	\
77 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
78 
79 enum SCI_CLKS {
80 	SCI_FCK,		/* Functional Clock */
81 	SCI_SCK,		/* Optional External Clock */
82 	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
83 	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
84 	SCI_NUM_CLKS
85 };
86 
87 /* Bit x set means sampling rate x + 1 is supported */
88 #define SCI_SR(x)		BIT((x) - 1)
89 #define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
90 
91 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
92 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
93 				SCI_SR(19) | SCI_SR(27)
94 
95 #define min_sr(_port)		ffs((_port)->sampling_rate_mask)
96 #define max_sr(_port)		fls((_port)->sampling_rate_mask)
97 
98 /* Iterate over all supported sampling rates, from high to low */
99 #define for_each_sr(_sr, _port)						\
100 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
101 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
102 
103 struct plat_sci_reg {
104 	u8 offset, size;
105 };
106 
107 struct sci_port_params {
108 	const struct plat_sci_reg regs[SCIx_NR_REGS];
109 	unsigned int fifosize;
110 	unsigned int overrun_reg;
111 	unsigned int overrun_mask;
112 	unsigned int sampling_rate_mask;
113 	unsigned int error_mask;
114 	unsigned int error_clear;
115 };
116 
117 struct sci_port {
118 	struct uart_port	port;
119 
120 	/* Platform configuration */
121 	const struct sci_port_params *params;
122 	const struct plat_sci_port *cfg;
123 	unsigned int		sampling_rate_mask;
124 	resource_size_t		reg_size;
125 	struct mctrl_gpios	*gpios;
126 
127 	/* Clocks */
128 	struct clk		*clks[SCI_NUM_CLKS];
129 	unsigned long		clk_rates[SCI_NUM_CLKS];
130 
131 	int			irqs[SCIx_NR_IRQS];
132 	char			*irqstr[SCIx_NR_IRQS];
133 
134 	struct dma_chan			*chan_tx;
135 	struct dma_chan			*chan_rx;
136 
137 #ifdef CONFIG_SERIAL_SH_SCI_DMA
138 	struct dma_chan			*chan_tx_saved;
139 	struct dma_chan			*chan_rx_saved;
140 	dma_cookie_t			cookie_tx;
141 	dma_cookie_t			cookie_rx[2];
142 	dma_cookie_t			active_rx;
143 	dma_addr_t			tx_dma_addr;
144 	unsigned int			tx_dma_len;
145 	struct scatterlist		sg_rx[2];
146 	void				*rx_buf[2];
147 	size_t				buf_len_rx;
148 	struct work_struct		work_tx;
149 	struct hrtimer			rx_timer;
150 	unsigned int			rx_timeout;	/* microseconds */
151 #endif
152 	unsigned int			rx_frame;
153 	int				rx_trigger;
154 	struct timer_list		rx_fifo_timer;
155 	int				rx_fifo_timeout;
156 	u16				hscif_tot;
157 
158 	bool has_rtscts;
159 	bool autorts;
160 };
161 
162 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
163 
164 static struct sci_port sci_ports[SCI_NPORTS];
165 static unsigned long sci_ports_in_use;
166 static struct uart_driver sci_uart_driver;
167 
168 static inline struct sci_port *
to_sci_port(struct uart_port * uart)169 to_sci_port(struct uart_port *uart)
170 {
171 	return container_of(uart, struct sci_port, port);
172 }
173 
174 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
175 	/*
176 	 * Common SCI definitions, dependent on the port's regshift
177 	 * value.
178 	 */
179 	[SCIx_SCI_REGTYPE] = {
180 		.regs = {
181 			[SCSMR]		= { 0x00,  8 },
182 			[SCBRR]		= { 0x01,  8 },
183 			[SCSCR]		= { 0x02,  8 },
184 			[SCxTDR]	= { 0x03,  8 },
185 			[SCxSR]		= { 0x04,  8 },
186 			[SCxRDR]	= { 0x05,  8 },
187 		},
188 		.fifosize = 1,
189 		.overrun_reg = SCxSR,
190 		.overrun_mask = SCI_ORER,
191 		.sampling_rate_mask = SCI_SR(32),
192 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
193 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
194 	},
195 
196 	/*
197 	 * Common definitions for legacy IrDA ports.
198 	 */
199 	[SCIx_IRDA_REGTYPE] = {
200 		.regs = {
201 			[SCSMR]		= { 0x00,  8 },
202 			[SCBRR]		= { 0x02,  8 },
203 			[SCSCR]		= { 0x04,  8 },
204 			[SCxTDR]	= { 0x06,  8 },
205 			[SCxSR]		= { 0x08, 16 },
206 			[SCxRDR]	= { 0x0a,  8 },
207 			[SCFCR]		= { 0x0c,  8 },
208 			[SCFDR]		= { 0x0e, 16 },
209 		},
210 		.fifosize = 1,
211 		.overrun_reg = SCxSR,
212 		.overrun_mask = SCI_ORER,
213 		.sampling_rate_mask = SCI_SR(32),
214 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
215 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
216 	},
217 
218 	/*
219 	 * Common SCIFA definitions.
220 	 */
221 	[SCIx_SCIFA_REGTYPE] = {
222 		.regs = {
223 			[SCSMR]		= { 0x00, 16 },
224 			[SCBRR]		= { 0x04,  8 },
225 			[SCSCR]		= { 0x08, 16 },
226 			[SCxTDR]	= { 0x20,  8 },
227 			[SCxSR]		= { 0x14, 16 },
228 			[SCxRDR]	= { 0x24,  8 },
229 			[SCFCR]		= { 0x18, 16 },
230 			[SCFDR]		= { 0x1c, 16 },
231 			[SCPCR]		= { 0x30, 16 },
232 			[SCPDR]		= { 0x34, 16 },
233 		},
234 		.fifosize = 64,
235 		.overrun_reg = SCxSR,
236 		.overrun_mask = SCIFA_ORER,
237 		.sampling_rate_mask = SCI_SR_SCIFAB,
238 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
239 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
240 	},
241 
242 	/*
243 	 * Common SCIFB definitions.
244 	 */
245 	[SCIx_SCIFB_REGTYPE] = {
246 		.regs = {
247 			[SCSMR]		= { 0x00, 16 },
248 			[SCBRR]		= { 0x04,  8 },
249 			[SCSCR]		= { 0x08, 16 },
250 			[SCxTDR]	= { 0x40,  8 },
251 			[SCxSR]		= { 0x14, 16 },
252 			[SCxRDR]	= { 0x60,  8 },
253 			[SCFCR]		= { 0x18, 16 },
254 			[SCTFDR]	= { 0x38, 16 },
255 			[SCRFDR]	= { 0x3c, 16 },
256 			[SCPCR]		= { 0x30, 16 },
257 			[SCPDR]		= { 0x34, 16 },
258 		},
259 		.fifosize = 256,
260 		.overrun_reg = SCxSR,
261 		.overrun_mask = SCIFA_ORER,
262 		.sampling_rate_mask = SCI_SR_SCIFAB,
263 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
264 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
265 	},
266 
267 	/*
268 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
269 	 * count registers.
270 	 */
271 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
272 		.regs = {
273 			[SCSMR]		= { 0x00, 16 },
274 			[SCBRR]		= { 0x04,  8 },
275 			[SCSCR]		= { 0x08, 16 },
276 			[SCxTDR]	= { 0x0c,  8 },
277 			[SCxSR]		= { 0x10, 16 },
278 			[SCxRDR]	= { 0x14,  8 },
279 			[SCFCR]		= { 0x18, 16 },
280 			[SCFDR]		= { 0x1c, 16 },
281 			[SCSPTR]	= { 0x20, 16 },
282 			[SCLSR]		= { 0x24, 16 },
283 		},
284 		.fifosize = 16,
285 		.overrun_reg = SCLSR,
286 		.overrun_mask = SCLSR_ORER,
287 		.sampling_rate_mask = SCI_SR(32),
288 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
289 		.error_clear = SCIF_ERROR_CLEAR,
290 	},
291 
292 	/*
293 	 * The "SCIFA" that is in RZ/A2, RZ/G2L and RZ/T.
294 	 * It looks like a normal SCIF with FIFO data, but with a
295 	 * compressed address space. Also, the break out of interrupts
296 	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
297 	 */
298 	[SCIx_RZ_SCIFA_REGTYPE] = {
299 		.regs = {
300 			[SCSMR]		= { 0x00, 16 },
301 			[SCBRR]		= { 0x02,  8 },
302 			[SCSCR]		= { 0x04, 16 },
303 			[SCxTDR]	= { 0x06,  8 },
304 			[SCxSR]		= { 0x08, 16 },
305 			[SCxRDR]	= { 0x0A,  8 },
306 			[SCFCR]		= { 0x0C, 16 },
307 			[SCFDR]		= { 0x0E, 16 },
308 			[SCSPTR]	= { 0x10, 16 },
309 			[SCLSR]		= { 0x12, 16 },
310 			[SEMR]		= { 0x14, 8 },
311 		},
312 		.fifosize = 16,
313 		.overrun_reg = SCLSR,
314 		.overrun_mask = SCLSR_ORER,
315 		.sampling_rate_mask = SCI_SR(32),
316 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
317 		.error_clear = SCIF_ERROR_CLEAR,
318 	},
319 
320 	/*
321 	 * Common SH-3 SCIF definitions.
322 	 */
323 	[SCIx_SH3_SCIF_REGTYPE] = {
324 		.regs = {
325 			[SCSMR]		= { 0x00,  8 },
326 			[SCBRR]		= { 0x02,  8 },
327 			[SCSCR]		= { 0x04,  8 },
328 			[SCxTDR]	= { 0x06,  8 },
329 			[SCxSR]		= { 0x08, 16 },
330 			[SCxRDR]	= { 0x0a,  8 },
331 			[SCFCR]		= { 0x0c,  8 },
332 			[SCFDR]		= { 0x0e, 16 },
333 		},
334 		.fifosize = 16,
335 		.overrun_reg = SCLSR,
336 		.overrun_mask = SCLSR_ORER,
337 		.sampling_rate_mask = SCI_SR(32),
338 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
339 		.error_clear = SCIF_ERROR_CLEAR,
340 	},
341 
342 	/*
343 	 * Common SH-4(A) SCIF(B) definitions.
344 	 */
345 	[SCIx_SH4_SCIF_REGTYPE] = {
346 		.regs = {
347 			[SCSMR]		= { 0x00, 16 },
348 			[SCBRR]		= { 0x04,  8 },
349 			[SCSCR]		= { 0x08, 16 },
350 			[SCxTDR]	= { 0x0c,  8 },
351 			[SCxSR]		= { 0x10, 16 },
352 			[SCxRDR]	= { 0x14,  8 },
353 			[SCFCR]		= { 0x18, 16 },
354 			[SCFDR]		= { 0x1c, 16 },
355 			[SCSPTR]	= { 0x20, 16 },
356 			[SCLSR]		= { 0x24, 16 },
357 		},
358 		.fifosize = 16,
359 		.overrun_reg = SCLSR,
360 		.overrun_mask = SCLSR_ORER,
361 		.sampling_rate_mask = SCI_SR(32),
362 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
363 		.error_clear = SCIF_ERROR_CLEAR,
364 	},
365 
366 	/*
367 	 * Common SCIF definitions for ports with a Baud Rate Generator for
368 	 * External Clock (BRG).
369 	 */
370 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
371 		.regs = {
372 			[SCSMR]		= { 0x00, 16 },
373 			[SCBRR]		= { 0x04,  8 },
374 			[SCSCR]		= { 0x08, 16 },
375 			[SCxTDR]	= { 0x0c,  8 },
376 			[SCxSR]		= { 0x10, 16 },
377 			[SCxRDR]	= { 0x14,  8 },
378 			[SCFCR]		= { 0x18, 16 },
379 			[SCFDR]		= { 0x1c, 16 },
380 			[SCSPTR]	= { 0x20, 16 },
381 			[SCLSR]		= { 0x24, 16 },
382 			[SCDL]		= { 0x30, 16 },
383 			[SCCKS]		= { 0x34, 16 },
384 		},
385 		.fifosize = 16,
386 		.overrun_reg = SCLSR,
387 		.overrun_mask = SCLSR_ORER,
388 		.sampling_rate_mask = SCI_SR(32),
389 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
390 		.error_clear = SCIF_ERROR_CLEAR,
391 	},
392 
393 	/*
394 	 * Common HSCIF definitions.
395 	 */
396 	[SCIx_HSCIF_REGTYPE] = {
397 		.regs = {
398 			[SCSMR]		= { 0x00, 16 },
399 			[SCBRR]		= { 0x04,  8 },
400 			[SCSCR]		= { 0x08, 16 },
401 			[SCxTDR]	= { 0x0c,  8 },
402 			[SCxSR]		= { 0x10, 16 },
403 			[SCxRDR]	= { 0x14,  8 },
404 			[SCFCR]		= { 0x18, 16 },
405 			[SCFDR]		= { 0x1c, 16 },
406 			[SCSPTR]	= { 0x20, 16 },
407 			[SCLSR]		= { 0x24, 16 },
408 			[HSSRR]		= { 0x40, 16 },
409 			[SCDL]		= { 0x30, 16 },
410 			[SCCKS]		= { 0x34, 16 },
411 			[HSRTRGR]	= { 0x54, 16 },
412 			[HSTTRGR]	= { 0x58, 16 },
413 		},
414 		.fifosize = 128,
415 		.overrun_reg = SCLSR,
416 		.overrun_mask = SCLSR_ORER,
417 		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
418 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
419 		.error_clear = SCIF_ERROR_CLEAR,
420 	},
421 
422 	/*
423 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
424 	 * register.
425 	 */
426 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
427 		.regs = {
428 			[SCSMR]		= { 0x00, 16 },
429 			[SCBRR]		= { 0x04,  8 },
430 			[SCSCR]		= { 0x08, 16 },
431 			[SCxTDR]	= { 0x0c,  8 },
432 			[SCxSR]		= { 0x10, 16 },
433 			[SCxRDR]	= { 0x14,  8 },
434 			[SCFCR]		= { 0x18, 16 },
435 			[SCFDR]		= { 0x1c, 16 },
436 			[SCLSR]		= { 0x24, 16 },
437 		},
438 		.fifosize = 16,
439 		.overrun_reg = SCLSR,
440 		.overrun_mask = SCLSR_ORER,
441 		.sampling_rate_mask = SCI_SR(32),
442 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
443 		.error_clear = SCIF_ERROR_CLEAR,
444 	},
445 
446 	/*
447 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
448 	 * count registers.
449 	 */
450 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
451 		.regs = {
452 			[SCSMR]		= { 0x00, 16 },
453 			[SCBRR]		= { 0x04,  8 },
454 			[SCSCR]		= { 0x08, 16 },
455 			[SCxTDR]	= { 0x0c,  8 },
456 			[SCxSR]		= { 0x10, 16 },
457 			[SCxRDR]	= { 0x14,  8 },
458 			[SCFCR]		= { 0x18, 16 },
459 			[SCFDR]		= { 0x1c, 16 },
460 			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
461 			[SCRFDR]	= { 0x20, 16 },
462 			[SCSPTR]	= { 0x24, 16 },
463 			[SCLSR]		= { 0x28, 16 },
464 		},
465 		.fifosize = 16,
466 		.overrun_reg = SCLSR,
467 		.overrun_mask = SCLSR_ORER,
468 		.sampling_rate_mask = SCI_SR(32),
469 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
470 		.error_clear = SCIF_ERROR_CLEAR,
471 	},
472 
473 	/*
474 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
475 	 * registers.
476 	 */
477 	[SCIx_SH7705_SCIF_REGTYPE] = {
478 		.regs = {
479 			[SCSMR]		= { 0x00, 16 },
480 			[SCBRR]		= { 0x04,  8 },
481 			[SCSCR]		= { 0x08, 16 },
482 			[SCxTDR]	= { 0x20,  8 },
483 			[SCxSR]		= { 0x14, 16 },
484 			[SCxRDR]	= { 0x24,  8 },
485 			[SCFCR]		= { 0x18, 16 },
486 			[SCFDR]		= { 0x1c, 16 },
487 		},
488 		.fifosize = 64,
489 		.overrun_reg = SCxSR,
490 		.overrun_mask = SCIFA_ORER,
491 		.sampling_rate_mask = SCI_SR(16),
492 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
493 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
494 	},
495 };
496 
497 #define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
498 
499 /*
500  * The "offset" here is rather misleading, in that it refers to an enum
501  * value relative to the port mapping rather than the fixed offset
502  * itself, which needs to be manually retrieved from the platform's
503  * register map for the given port.
504  */
sci_serial_in(struct uart_port * p,int offset)505 static unsigned int sci_serial_in(struct uart_port *p, int offset)
506 {
507 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
508 
509 	if (reg->size == 8)
510 		return ioread8(p->membase + (reg->offset << p->regshift));
511 	else if (reg->size == 16)
512 		return ioread16(p->membase + (reg->offset << p->regshift));
513 	else
514 		WARN(1, "Invalid register access\n");
515 
516 	return 0;
517 }
518 
sci_serial_out(struct uart_port * p,int offset,int value)519 static void sci_serial_out(struct uart_port *p, int offset, int value)
520 {
521 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
522 
523 	if (reg->size == 8)
524 		iowrite8(value, p->membase + (reg->offset << p->regshift));
525 	else if (reg->size == 16)
526 		iowrite16(value, p->membase + (reg->offset << p->regshift));
527 	else
528 		WARN(1, "Invalid register access\n");
529 }
530 
sci_port_enable(struct sci_port * sci_port)531 static void sci_port_enable(struct sci_port *sci_port)
532 {
533 	unsigned int i;
534 
535 	if (!sci_port->port.dev)
536 		return;
537 
538 	pm_runtime_get_sync(sci_port->port.dev);
539 
540 	for (i = 0; i < SCI_NUM_CLKS; i++) {
541 		clk_prepare_enable(sci_port->clks[i]);
542 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
543 	}
544 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
545 }
546 
sci_port_disable(struct sci_port * sci_port)547 static void sci_port_disable(struct sci_port *sci_port)
548 {
549 	unsigned int i;
550 
551 	if (!sci_port->port.dev)
552 		return;
553 
554 	for (i = SCI_NUM_CLKS; i-- > 0; )
555 		clk_disable_unprepare(sci_port->clks[i]);
556 
557 	pm_runtime_put_sync(sci_port->port.dev);
558 }
559 
port_rx_irq_mask(struct uart_port * port)560 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
561 {
562 	/*
563 	 * Not all ports (such as SCIFA) will support REIE. Rather than
564 	 * special-casing the port type, we check the port initialization
565 	 * IRQ enable mask to see whether the IRQ is desired at all. If
566 	 * it's unset, it's logically inferred that there's no point in
567 	 * testing for it.
568 	 */
569 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
570 }
571 
sci_start_tx(struct uart_port * port)572 static void sci_start_tx(struct uart_port *port)
573 {
574 	struct sci_port *s = to_sci_port(port);
575 	unsigned short ctrl;
576 
577 #ifdef CONFIG_SERIAL_SH_SCI_DMA
578 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
579 		u16 new, scr = serial_port_in(port, SCSCR);
580 		if (s->chan_tx)
581 			new = scr | SCSCR_TDRQE;
582 		else
583 			new = scr & ~SCSCR_TDRQE;
584 		if (new != scr)
585 			serial_port_out(port, SCSCR, new);
586 	}
587 
588 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
589 	    dma_submit_error(s->cookie_tx)) {
590 		s->cookie_tx = 0;
591 		schedule_work(&s->work_tx);
592 	}
593 #endif
594 
595 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
596 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
597 		ctrl = serial_port_in(port, SCSCR);
598 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
599 	}
600 }
601 
sci_stop_tx(struct uart_port * port)602 static void sci_stop_tx(struct uart_port *port)
603 {
604 	unsigned short ctrl;
605 
606 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
607 	ctrl = serial_port_in(port, SCSCR);
608 
609 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
610 		ctrl &= ~SCSCR_TDRQE;
611 
612 	ctrl &= ~SCSCR_TIE;
613 
614 	serial_port_out(port, SCSCR, ctrl);
615 
616 #ifdef CONFIG_SERIAL_SH_SCI_DMA
617 	if (to_sci_port(port)->chan_tx &&
618 	    !dma_submit_error(to_sci_port(port)->cookie_tx)) {
619 		dmaengine_terminate_async(to_sci_port(port)->chan_tx);
620 		to_sci_port(port)->cookie_tx = -EINVAL;
621 	}
622 #endif
623 }
624 
sci_start_rx(struct uart_port * port)625 static void sci_start_rx(struct uart_port *port)
626 {
627 	unsigned short ctrl;
628 
629 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
630 
631 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
632 		ctrl &= ~SCSCR_RDRQE;
633 
634 	serial_port_out(port, SCSCR, ctrl);
635 }
636 
sci_stop_rx(struct uart_port * port)637 static void sci_stop_rx(struct uart_port *port)
638 {
639 	unsigned short ctrl;
640 
641 	ctrl = serial_port_in(port, SCSCR);
642 
643 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
644 		ctrl &= ~SCSCR_RDRQE;
645 
646 	ctrl &= ~port_rx_irq_mask(port);
647 
648 	serial_port_out(port, SCSCR, ctrl);
649 }
650 
sci_clear_SCxSR(struct uart_port * port,unsigned int mask)651 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
652 {
653 	if (port->type == PORT_SCI) {
654 		/* Just store the mask */
655 		serial_port_out(port, SCxSR, mask);
656 	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
657 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
658 		/* Only clear the status bits we want to clear */
659 		serial_port_out(port, SCxSR,
660 				serial_port_in(port, SCxSR) & mask);
661 	} else {
662 		/* Store the mask, clear parity/framing errors */
663 		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
664 	}
665 }
666 
667 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
668     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
669 
670 #ifdef CONFIG_CONSOLE_POLL
sci_poll_get_char(struct uart_port * port)671 static int sci_poll_get_char(struct uart_port *port)
672 {
673 	unsigned short status;
674 	int c;
675 
676 	do {
677 		status = serial_port_in(port, SCxSR);
678 		if (status & SCxSR_ERRORS(port)) {
679 			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
680 			continue;
681 		}
682 		break;
683 	} while (1);
684 
685 	if (!(status & SCxSR_RDxF(port)))
686 		return NO_POLL_CHAR;
687 
688 	c = serial_port_in(port, SCxRDR);
689 
690 	/* Dummy read */
691 	serial_port_in(port, SCxSR);
692 	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
693 
694 	return c;
695 }
696 #endif
697 
sci_poll_put_char(struct uart_port * port,unsigned char c)698 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
699 {
700 	unsigned short status;
701 
702 	do {
703 		status = serial_port_in(port, SCxSR);
704 	} while (!(status & SCxSR_TDxE(port)));
705 
706 	serial_port_out(port, SCxTDR, c);
707 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
708 }
709 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
710 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
711 
sci_init_pins(struct uart_port * port,unsigned int cflag)712 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
713 {
714 	struct sci_port *s = to_sci_port(port);
715 
716 	/*
717 	 * Use port-specific handler if provided.
718 	 */
719 	if (s->cfg->ops && s->cfg->ops->init_pins) {
720 		s->cfg->ops->init_pins(port, cflag);
721 		return;
722 	}
723 
724 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
725 		u16 data = serial_port_in(port, SCPDR);
726 		u16 ctrl = serial_port_in(port, SCPCR);
727 
728 		/* Enable RXD and TXD pin functions */
729 		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
730 		if (to_sci_port(port)->has_rtscts) {
731 			/* RTS# is output, active low, unless autorts */
732 			if (!(port->mctrl & TIOCM_RTS)) {
733 				ctrl |= SCPCR_RTSC;
734 				data |= SCPDR_RTSD;
735 			} else if (!s->autorts) {
736 				ctrl |= SCPCR_RTSC;
737 				data &= ~SCPDR_RTSD;
738 			} else {
739 				/* Enable RTS# pin function */
740 				ctrl &= ~SCPCR_RTSC;
741 			}
742 			/* Enable CTS# pin function */
743 			ctrl &= ~SCPCR_CTSC;
744 		}
745 		serial_port_out(port, SCPDR, data);
746 		serial_port_out(port, SCPCR, ctrl);
747 	} else if (sci_getreg(port, SCSPTR)->size) {
748 		u16 status = serial_port_in(port, SCSPTR);
749 
750 		/* RTS# is always output; and active low, unless autorts */
751 		status |= SCSPTR_RTSIO;
752 		if (!(port->mctrl & TIOCM_RTS))
753 			status |= SCSPTR_RTSDT;
754 		else if (!s->autorts)
755 			status &= ~SCSPTR_RTSDT;
756 		/* CTS# and SCK are inputs */
757 		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
758 		serial_port_out(port, SCSPTR, status);
759 	}
760 }
761 
sci_txfill(struct uart_port * port)762 static int sci_txfill(struct uart_port *port)
763 {
764 	struct sci_port *s = to_sci_port(port);
765 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
766 	const struct plat_sci_reg *reg;
767 
768 	reg = sci_getreg(port, SCTFDR);
769 	if (reg->size)
770 		return serial_port_in(port, SCTFDR) & fifo_mask;
771 
772 	reg = sci_getreg(port, SCFDR);
773 	if (reg->size)
774 		return serial_port_in(port, SCFDR) >> 8;
775 
776 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
777 }
778 
sci_txroom(struct uart_port * port)779 static int sci_txroom(struct uart_port *port)
780 {
781 	return port->fifosize - sci_txfill(port);
782 }
783 
sci_rxfill(struct uart_port * port)784 static int sci_rxfill(struct uart_port *port)
785 {
786 	struct sci_port *s = to_sci_port(port);
787 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
788 	const struct plat_sci_reg *reg;
789 
790 	reg = sci_getreg(port, SCRFDR);
791 	if (reg->size)
792 		return serial_port_in(port, SCRFDR) & fifo_mask;
793 
794 	reg = sci_getreg(port, SCFDR);
795 	if (reg->size)
796 		return serial_port_in(port, SCFDR) & fifo_mask;
797 
798 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
799 }
800 
801 /* ********************************************************************** *
802  *                   the interrupt related routines                       *
803  * ********************************************************************** */
804 
sci_transmit_chars(struct uart_port * port)805 static void sci_transmit_chars(struct uart_port *port)
806 {
807 	struct circ_buf *xmit = &port->state->xmit;
808 	unsigned int stopped = uart_tx_stopped(port);
809 	unsigned short status;
810 	unsigned short ctrl;
811 	int count;
812 
813 	status = serial_port_in(port, SCxSR);
814 	if (!(status & SCxSR_TDxE(port))) {
815 		ctrl = serial_port_in(port, SCSCR);
816 		if (uart_circ_empty(xmit))
817 			ctrl &= ~SCSCR_TIE;
818 		else
819 			ctrl |= SCSCR_TIE;
820 		serial_port_out(port, SCSCR, ctrl);
821 		return;
822 	}
823 
824 	count = sci_txroom(port);
825 
826 	do {
827 		unsigned char c;
828 
829 		if (port->x_char) {
830 			c = port->x_char;
831 			port->x_char = 0;
832 		} else if (!uart_circ_empty(xmit) && !stopped) {
833 			c = xmit->buf[xmit->tail];
834 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
835 		} else {
836 			break;
837 		}
838 
839 		serial_port_out(port, SCxTDR, c);
840 
841 		port->icount.tx++;
842 	} while (--count > 0);
843 
844 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
845 
846 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
847 		uart_write_wakeup(port);
848 	if (uart_circ_empty(xmit))
849 		sci_stop_tx(port);
850 
851 }
852 
sci_receive_chars(struct uart_port * port)853 static void sci_receive_chars(struct uart_port *port)
854 {
855 	struct tty_port *tport = &port->state->port;
856 	int i, count, copied = 0;
857 	unsigned short status;
858 	unsigned char flag;
859 
860 	status = serial_port_in(port, SCxSR);
861 	if (!(status & SCxSR_RDxF(port)))
862 		return;
863 
864 	while (1) {
865 		/* Don't copy more bytes than there is room for in the buffer */
866 		count = tty_buffer_request_room(tport, sci_rxfill(port));
867 
868 		/* If for any reason we can't copy more data, we're done! */
869 		if (count == 0)
870 			break;
871 
872 		if (port->type == PORT_SCI) {
873 			char c = serial_port_in(port, SCxRDR);
874 			if (uart_handle_sysrq_char(port, c))
875 				count = 0;
876 			else
877 				tty_insert_flip_char(tport, c, TTY_NORMAL);
878 		} else {
879 			for (i = 0; i < count; i++) {
880 				char c;
881 
882 				if (port->type == PORT_SCIF ||
883 				    port->type == PORT_HSCIF) {
884 					status = serial_port_in(port, SCxSR);
885 					c = serial_port_in(port, SCxRDR);
886 				} else {
887 					c = serial_port_in(port, SCxRDR);
888 					status = serial_port_in(port, SCxSR);
889 				}
890 				if (uart_handle_sysrq_char(port, c)) {
891 					count--; i--;
892 					continue;
893 				}
894 
895 				/* Store data and status */
896 				if (status & SCxSR_FER(port)) {
897 					flag = TTY_FRAME;
898 					port->icount.frame++;
899 					dev_notice(port->dev, "frame error\n");
900 				} else if (status & SCxSR_PER(port)) {
901 					flag = TTY_PARITY;
902 					port->icount.parity++;
903 					dev_notice(port->dev, "parity error\n");
904 				} else
905 					flag = TTY_NORMAL;
906 
907 				tty_insert_flip_char(tport, c, flag);
908 			}
909 		}
910 
911 		serial_port_in(port, SCxSR); /* dummy read */
912 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
913 
914 		copied += count;
915 		port->icount.rx += count;
916 	}
917 
918 	if (copied) {
919 		/* Tell the rest of the system the news. New characters! */
920 		tty_flip_buffer_push(tport);
921 	} else {
922 		/* TTY buffers full; read from RX reg to prevent lockup */
923 		serial_port_in(port, SCxRDR);
924 		serial_port_in(port, SCxSR); /* dummy read */
925 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
926 	}
927 }
928 
sci_handle_errors(struct uart_port * port)929 static int sci_handle_errors(struct uart_port *port)
930 {
931 	int copied = 0;
932 	unsigned short status = serial_port_in(port, SCxSR);
933 	struct tty_port *tport = &port->state->port;
934 	struct sci_port *s = to_sci_port(port);
935 
936 	/* Handle overruns */
937 	if (status & s->params->overrun_mask) {
938 		port->icount.overrun++;
939 
940 		/* overrun error */
941 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
942 			copied++;
943 
944 		dev_notice(port->dev, "overrun error\n");
945 	}
946 
947 	if (status & SCxSR_FER(port)) {
948 		/* frame error */
949 		port->icount.frame++;
950 
951 		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
952 			copied++;
953 
954 		dev_notice(port->dev, "frame error\n");
955 	}
956 
957 	if (status & SCxSR_PER(port)) {
958 		/* parity error */
959 		port->icount.parity++;
960 
961 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
962 			copied++;
963 
964 		dev_notice(port->dev, "parity error\n");
965 	}
966 
967 	if (copied)
968 		tty_flip_buffer_push(tport);
969 
970 	return copied;
971 }
972 
sci_handle_fifo_overrun(struct uart_port * port)973 static int sci_handle_fifo_overrun(struct uart_port *port)
974 {
975 	struct tty_port *tport = &port->state->port;
976 	struct sci_port *s = to_sci_port(port);
977 	const struct plat_sci_reg *reg;
978 	int copied = 0;
979 	u16 status;
980 
981 	reg = sci_getreg(port, s->params->overrun_reg);
982 	if (!reg->size)
983 		return 0;
984 
985 	status = serial_port_in(port, s->params->overrun_reg);
986 	if (status & s->params->overrun_mask) {
987 		status &= ~s->params->overrun_mask;
988 		serial_port_out(port, s->params->overrun_reg, status);
989 
990 		port->icount.overrun++;
991 
992 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
993 		tty_flip_buffer_push(tport);
994 
995 		dev_dbg(port->dev, "overrun error\n");
996 		copied++;
997 	}
998 
999 	return copied;
1000 }
1001 
sci_handle_breaks(struct uart_port * port)1002 static int sci_handle_breaks(struct uart_port *port)
1003 {
1004 	int copied = 0;
1005 	unsigned short status = serial_port_in(port, SCxSR);
1006 	struct tty_port *tport = &port->state->port;
1007 
1008 	if (uart_handle_break(port))
1009 		return 0;
1010 
1011 	if (status & SCxSR_BRK(port)) {
1012 		port->icount.brk++;
1013 
1014 		/* Notify of BREAK */
1015 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1016 			copied++;
1017 
1018 		dev_dbg(port->dev, "BREAK detected\n");
1019 	}
1020 
1021 	if (copied)
1022 		tty_flip_buffer_push(tport);
1023 
1024 	copied += sci_handle_fifo_overrun(port);
1025 
1026 	return copied;
1027 }
1028 
scif_set_rtrg(struct uart_port * port,int rx_trig)1029 static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1030 {
1031 	unsigned int bits;
1032 
1033 	if (rx_trig >= port->fifosize)
1034 		rx_trig = port->fifosize - 1;
1035 	if (rx_trig < 1)
1036 		rx_trig = 1;
1037 
1038 	/* HSCIF can be set to an arbitrary level. */
1039 	if (sci_getreg(port, HSRTRGR)->size) {
1040 		serial_port_out(port, HSRTRGR, rx_trig);
1041 		return rx_trig;
1042 	}
1043 
1044 	switch (port->type) {
1045 	case PORT_SCIF:
1046 		if (rx_trig < 4) {
1047 			bits = 0;
1048 			rx_trig = 1;
1049 		} else if (rx_trig < 8) {
1050 			bits = SCFCR_RTRG0;
1051 			rx_trig = 4;
1052 		} else if (rx_trig < 14) {
1053 			bits = SCFCR_RTRG1;
1054 			rx_trig = 8;
1055 		} else {
1056 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1057 			rx_trig = 14;
1058 		}
1059 		break;
1060 	case PORT_SCIFA:
1061 	case PORT_SCIFB:
1062 		if (rx_trig < 16) {
1063 			bits = 0;
1064 			rx_trig = 1;
1065 		} else if (rx_trig < 32) {
1066 			bits = SCFCR_RTRG0;
1067 			rx_trig = 16;
1068 		} else if (rx_trig < 48) {
1069 			bits = SCFCR_RTRG1;
1070 			rx_trig = 32;
1071 		} else {
1072 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1073 			rx_trig = 48;
1074 		}
1075 		break;
1076 	default:
1077 		WARN(1, "unknown FIFO configuration");
1078 		return 1;
1079 	}
1080 
1081 	serial_port_out(port, SCFCR,
1082 		(serial_port_in(port, SCFCR) &
1083 		~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1084 
1085 	return rx_trig;
1086 }
1087 
scif_rtrg_enabled(struct uart_port * port)1088 static int scif_rtrg_enabled(struct uart_port *port)
1089 {
1090 	if (sci_getreg(port, HSRTRGR)->size)
1091 		return serial_port_in(port, HSRTRGR) != 0;
1092 	else
1093 		return (serial_port_in(port, SCFCR) &
1094 			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1095 }
1096 
rx_fifo_timer_fn(struct timer_list * t)1097 static void rx_fifo_timer_fn(struct timer_list *t)
1098 {
1099 	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1100 	struct uart_port *port = &s->port;
1101 
1102 	dev_dbg(port->dev, "Rx timed out\n");
1103 	scif_set_rtrg(port, 1);
1104 }
1105 
rx_fifo_trigger_show(struct device * dev,struct device_attribute * attr,char * buf)1106 static ssize_t rx_fifo_trigger_show(struct device *dev,
1107 				    struct device_attribute *attr, char *buf)
1108 {
1109 	struct uart_port *port = dev_get_drvdata(dev);
1110 	struct sci_port *sci = to_sci_port(port);
1111 
1112 	return sprintf(buf, "%d\n", sci->rx_trigger);
1113 }
1114 
rx_fifo_trigger_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1115 static ssize_t rx_fifo_trigger_store(struct device *dev,
1116 				     struct device_attribute *attr,
1117 				     const char *buf, size_t count)
1118 {
1119 	struct uart_port *port = dev_get_drvdata(dev);
1120 	struct sci_port *sci = to_sci_port(port);
1121 	int ret;
1122 	long r;
1123 
1124 	ret = kstrtol(buf, 0, &r);
1125 	if (ret)
1126 		return ret;
1127 
1128 	sci->rx_trigger = scif_set_rtrg(port, r);
1129 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1130 		scif_set_rtrg(port, 1);
1131 
1132 	return count;
1133 }
1134 
1135 static DEVICE_ATTR_RW(rx_fifo_trigger);
1136 
rx_fifo_timeout_show(struct device * dev,struct device_attribute * attr,char * buf)1137 static ssize_t rx_fifo_timeout_show(struct device *dev,
1138 			       struct device_attribute *attr,
1139 			       char *buf)
1140 {
1141 	struct uart_port *port = dev_get_drvdata(dev);
1142 	struct sci_port *sci = to_sci_port(port);
1143 	int v;
1144 
1145 	if (port->type == PORT_HSCIF)
1146 		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1147 	else
1148 		v = sci->rx_fifo_timeout;
1149 
1150 	return sprintf(buf, "%d\n", v);
1151 }
1152 
rx_fifo_timeout_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1153 static ssize_t rx_fifo_timeout_store(struct device *dev,
1154 				struct device_attribute *attr,
1155 				const char *buf,
1156 				size_t count)
1157 {
1158 	struct uart_port *port = dev_get_drvdata(dev);
1159 	struct sci_port *sci = to_sci_port(port);
1160 	int ret;
1161 	long r;
1162 
1163 	ret = kstrtol(buf, 0, &r);
1164 	if (ret)
1165 		return ret;
1166 
1167 	if (port->type == PORT_HSCIF) {
1168 		if (r < 0 || r > 3)
1169 			return -EINVAL;
1170 		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1171 	} else {
1172 		sci->rx_fifo_timeout = r;
1173 		scif_set_rtrg(port, 1);
1174 		if (r > 0)
1175 			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1176 	}
1177 
1178 	return count;
1179 }
1180 
1181 static DEVICE_ATTR_RW(rx_fifo_timeout);
1182 
1183 
1184 #ifdef CONFIG_SERIAL_SH_SCI_DMA
sci_dma_tx_complete(void * arg)1185 static void sci_dma_tx_complete(void *arg)
1186 {
1187 	struct sci_port *s = arg;
1188 	struct uart_port *port = &s->port;
1189 	struct circ_buf *xmit = &port->state->xmit;
1190 	unsigned long flags;
1191 
1192 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1193 
1194 	spin_lock_irqsave(&port->lock, flags);
1195 
1196 	xmit->tail += s->tx_dma_len;
1197 	xmit->tail &= UART_XMIT_SIZE - 1;
1198 
1199 	port->icount.tx += s->tx_dma_len;
1200 
1201 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1202 		uart_write_wakeup(port);
1203 
1204 	if (!uart_circ_empty(xmit)) {
1205 		s->cookie_tx = 0;
1206 		schedule_work(&s->work_tx);
1207 	} else {
1208 		s->cookie_tx = -EINVAL;
1209 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1210 			u16 ctrl = serial_port_in(port, SCSCR);
1211 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1212 		}
1213 	}
1214 
1215 	spin_unlock_irqrestore(&port->lock, flags);
1216 }
1217 
1218 /* Locking: called with port lock held */
sci_dma_rx_push(struct sci_port * s,void * buf,size_t count)1219 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1220 {
1221 	struct uart_port *port = &s->port;
1222 	struct tty_port *tport = &port->state->port;
1223 	int copied;
1224 
1225 	copied = tty_insert_flip_string(tport, buf, count);
1226 	if (copied < count)
1227 		port->icount.buf_overrun++;
1228 
1229 	port->icount.rx += copied;
1230 
1231 	return copied;
1232 }
1233 
sci_dma_rx_find_active(struct sci_port * s)1234 static int sci_dma_rx_find_active(struct sci_port *s)
1235 {
1236 	unsigned int i;
1237 
1238 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1239 		if (s->active_rx == s->cookie_rx[i])
1240 			return i;
1241 
1242 	return -1;
1243 }
1244 
sci_dma_rx_chan_invalidate(struct sci_port * s)1245 static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1246 {
1247 	unsigned int i;
1248 
1249 	s->chan_rx = NULL;
1250 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1251 		s->cookie_rx[i] = -EINVAL;
1252 	s->active_rx = 0;
1253 }
1254 
sci_dma_rx_release(struct sci_port * s)1255 static void sci_dma_rx_release(struct sci_port *s)
1256 {
1257 	struct dma_chan *chan = s->chan_rx_saved;
1258 
1259 	s->chan_rx_saved = NULL;
1260 	sci_dma_rx_chan_invalidate(s);
1261 	dmaengine_terminate_sync(chan);
1262 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1263 			  sg_dma_address(&s->sg_rx[0]));
1264 	dma_release_channel(chan);
1265 }
1266 
start_hrtimer_us(struct hrtimer * hrt,unsigned long usec)1267 static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1268 {
1269 	long sec = usec / 1000000;
1270 	long nsec = (usec % 1000000) * 1000;
1271 	ktime_t t = ktime_set(sec, nsec);
1272 
1273 	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1274 }
1275 
sci_dma_rx_reenable_irq(struct sci_port * s)1276 static void sci_dma_rx_reenable_irq(struct sci_port *s)
1277 {
1278 	struct uart_port *port = &s->port;
1279 	u16 scr;
1280 
1281 	/* Direct new serial port interrupts back to CPU */
1282 	scr = serial_port_in(port, SCSCR);
1283 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1284 		scr &= ~SCSCR_RDRQE;
1285 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1286 	}
1287 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1288 }
1289 
sci_dma_rx_complete(void * arg)1290 static void sci_dma_rx_complete(void *arg)
1291 {
1292 	struct sci_port *s = arg;
1293 	struct dma_chan *chan = s->chan_rx;
1294 	struct uart_port *port = &s->port;
1295 	struct dma_async_tx_descriptor *desc;
1296 	unsigned long flags;
1297 	int active, count = 0;
1298 
1299 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1300 		s->active_rx);
1301 
1302 	spin_lock_irqsave(&port->lock, flags);
1303 
1304 	active = sci_dma_rx_find_active(s);
1305 	if (active >= 0)
1306 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1307 
1308 	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1309 
1310 	if (count)
1311 		tty_flip_buffer_push(&port->state->port);
1312 
1313 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1314 				       DMA_DEV_TO_MEM,
1315 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1316 	if (!desc)
1317 		goto fail;
1318 
1319 	desc->callback = sci_dma_rx_complete;
1320 	desc->callback_param = s;
1321 	s->cookie_rx[active] = dmaengine_submit(desc);
1322 	if (dma_submit_error(s->cookie_rx[active]))
1323 		goto fail;
1324 
1325 	s->active_rx = s->cookie_rx[!active];
1326 
1327 	dma_async_issue_pending(chan);
1328 
1329 	spin_unlock_irqrestore(&port->lock, flags);
1330 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1331 		__func__, s->cookie_rx[active], active, s->active_rx);
1332 	return;
1333 
1334 fail:
1335 	spin_unlock_irqrestore(&port->lock, flags);
1336 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1337 	/* Switch to PIO */
1338 	spin_lock_irqsave(&port->lock, flags);
1339 	dmaengine_terminate_async(chan);
1340 	sci_dma_rx_chan_invalidate(s);
1341 	sci_dma_rx_reenable_irq(s);
1342 	spin_unlock_irqrestore(&port->lock, flags);
1343 }
1344 
sci_dma_tx_release(struct sci_port * s)1345 static void sci_dma_tx_release(struct sci_port *s)
1346 {
1347 	struct dma_chan *chan = s->chan_tx_saved;
1348 
1349 	cancel_work_sync(&s->work_tx);
1350 	s->chan_tx_saved = s->chan_tx = NULL;
1351 	s->cookie_tx = -EINVAL;
1352 	dmaengine_terminate_sync(chan);
1353 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1354 			 DMA_TO_DEVICE);
1355 	dma_release_channel(chan);
1356 }
1357 
sci_dma_rx_submit(struct sci_port * s,bool port_lock_held)1358 static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1359 {
1360 	struct dma_chan *chan = s->chan_rx;
1361 	struct uart_port *port = &s->port;
1362 	unsigned long flags;
1363 	int i;
1364 
1365 	for (i = 0; i < 2; i++) {
1366 		struct scatterlist *sg = &s->sg_rx[i];
1367 		struct dma_async_tx_descriptor *desc;
1368 
1369 		desc = dmaengine_prep_slave_sg(chan,
1370 			sg, 1, DMA_DEV_TO_MEM,
1371 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1372 		if (!desc)
1373 			goto fail;
1374 
1375 		desc->callback = sci_dma_rx_complete;
1376 		desc->callback_param = s;
1377 		s->cookie_rx[i] = dmaengine_submit(desc);
1378 		if (dma_submit_error(s->cookie_rx[i]))
1379 			goto fail;
1380 
1381 	}
1382 
1383 	s->active_rx = s->cookie_rx[0];
1384 
1385 	dma_async_issue_pending(chan);
1386 	return 0;
1387 
1388 fail:
1389 	/* Switch to PIO */
1390 	if (!port_lock_held)
1391 		spin_lock_irqsave(&port->lock, flags);
1392 	if (i)
1393 		dmaengine_terminate_async(chan);
1394 	sci_dma_rx_chan_invalidate(s);
1395 	sci_start_rx(port);
1396 	if (!port_lock_held)
1397 		spin_unlock_irqrestore(&port->lock, flags);
1398 	return -EAGAIN;
1399 }
1400 
sci_dma_tx_work_fn(struct work_struct * work)1401 static void sci_dma_tx_work_fn(struct work_struct *work)
1402 {
1403 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1404 	struct dma_async_tx_descriptor *desc;
1405 	struct dma_chan *chan = s->chan_tx;
1406 	struct uart_port *port = &s->port;
1407 	struct circ_buf *xmit = &port->state->xmit;
1408 	unsigned long flags;
1409 	dma_addr_t buf;
1410 	int head, tail;
1411 
1412 	/*
1413 	 * DMA is idle now.
1414 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1415 	 * offsets and lengths. Since it is a circular buffer, we have to
1416 	 * transmit till the end, and then the rest. Take the port lock to get a
1417 	 * consistent xmit buffer state.
1418 	 */
1419 	spin_lock_irq(&port->lock);
1420 	head = xmit->head;
1421 	tail = xmit->tail;
1422 	buf = s->tx_dma_addr + (tail & (UART_XMIT_SIZE - 1));
1423 	s->tx_dma_len = min_t(unsigned int,
1424 		CIRC_CNT(head, tail, UART_XMIT_SIZE),
1425 		CIRC_CNT_TO_END(head, tail, UART_XMIT_SIZE));
1426 	if (!s->tx_dma_len) {
1427 		/* Transmit buffer has been flushed */
1428 		spin_unlock_irq(&port->lock);
1429 		return;
1430 	}
1431 
1432 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1433 					   DMA_MEM_TO_DEV,
1434 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1435 	if (!desc) {
1436 		spin_unlock_irq(&port->lock);
1437 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1438 		goto switch_to_pio;
1439 	}
1440 
1441 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1442 				   DMA_TO_DEVICE);
1443 
1444 	desc->callback = sci_dma_tx_complete;
1445 	desc->callback_param = s;
1446 	s->cookie_tx = dmaengine_submit(desc);
1447 	if (dma_submit_error(s->cookie_tx)) {
1448 		spin_unlock_irq(&port->lock);
1449 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1450 		goto switch_to_pio;
1451 	}
1452 
1453 	spin_unlock_irq(&port->lock);
1454 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1455 		__func__, xmit->buf, tail, head, s->cookie_tx);
1456 
1457 	dma_async_issue_pending(chan);
1458 	return;
1459 
1460 switch_to_pio:
1461 	spin_lock_irqsave(&port->lock, flags);
1462 	s->chan_tx = NULL;
1463 	sci_start_tx(port);
1464 	spin_unlock_irqrestore(&port->lock, flags);
1465 	return;
1466 }
1467 
sci_dma_rx_timer_fn(struct hrtimer * t)1468 static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1469 {
1470 	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1471 	struct dma_chan *chan = s->chan_rx;
1472 	struct uart_port *port = &s->port;
1473 	struct dma_tx_state state;
1474 	enum dma_status status;
1475 	unsigned long flags;
1476 	unsigned int read;
1477 	int active, count;
1478 
1479 	dev_dbg(port->dev, "DMA Rx timed out\n");
1480 
1481 	spin_lock_irqsave(&port->lock, flags);
1482 
1483 	active = sci_dma_rx_find_active(s);
1484 	if (active < 0) {
1485 		spin_unlock_irqrestore(&port->lock, flags);
1486 		return HRTIMER_NORESTART;
1487 	}
1488 
1489 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1490 	if (status == DMA_COMPLETE) {
1491 		spin_unlock_irqrestore(&port->lock, flags);
1492 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1493 			s->active_rx, active);
1494 
1495 		/* Let packet complete handler take care of the packet */
1496 		return HRTIMER_NORESTART;
1497 	}
1498 
1499 	dmaengine_pause(chan);
1500 
1501 	/*
1502 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1503 	 * data keeps on coming until transaction is complete so check
1504 	 * for DMA_COMPLETE again
1505 	 * Let packet complete handler take care of the packet
1506 	 */
1507 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1508 	if (status == DMA_COMPLETE) {
1509 		spin_unlock_irqrestore(&port->lock, flags);
1510 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1511 		return HRTIMER_NORESTART;
1512 	}
1513 
1514 	/* Handle incomplete DMA receive */
1515 	dmaengine_terminate_async(s->chan_rx);
1516 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1517 
1518 	if (read) {
1519 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1520 		if (count)
1521 			tty_flip_buffer_push(&port->state->port);
1522 	}
1523 
1524 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1525 		sci_dma_rx_submit(s, true);
1526 
1527 	sci_dma_rx_reenable_irq(s);
1528 
1529 	spin_unlock_irqrestore(&port->lock, flags);
1530 
1531 	return HRTIMER_NORESTART;
1532 }
1533 
sci_request_dma_chan(struct uart_port * port,enum dma_transfer_direction dir)1534 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1535 					     enum dma_transfer_direction dir)
1536 {
1537 	struct dma_chan *chan;
1538 	struct dma_slave_config cfg;
1539 	int ret;
1540 
1541 	chan = dma_request_slave_channel(port->dev,
1542 					 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1543 	if (!chan) {
1544 		dev_dbg(port->dev, "dma_request_slave_channel failed\n");
1545 		return NULL;
1546 	}
1547 
1548 	memset(&cfg, 0, sizeof(cfg));
1549 	cfg.direction = dir;
1550 	if (dir == DMA_MEM_TO_DEV) {
1551 		cfg.dst_addr = port->mapbase +
1552 			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1553 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1554 	} else {
1555 		cfg.src_addr = port->mapbase +
1556 			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1557 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1558 	}
1559 
1560 	ret = dmaengine_slave_config(chan, &cfg);
1561 	if (ret) {
1562 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1563 		dma_release_channel(chan);
1564 		return NULL;
1565 	}
1566 
1567 	return chan;
1568 }
1569 
sci_request_dma(struct uart_port * port)1570 static void sci_request_dma(struct uart_port *port)
1571 {
1572 	struct sci_port *s = to_sci_port(port);
1573 	struct dma_chan *chan;
1574 
1575 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1576 
1577 	/*
1578 	 * DMA on console may interfere with Kernel log messages which use
1579 	 * plain putchar(). So, simply don't use it with a console.
1580 	 */
1581 	if (uart_console(port))
1582 		return;
1583 
1584 	if (!port->dev->of_node)
1585 		return;
1586 
1587 	s->cookie_tx = -EINVAL;
1588 
1589 	/*
1590 	 * Don't request a dma channel if no channel was specified
1591 	 * in the device tree.
1592 	 */
1593 	if (!of_find_property(port->dev->of_node, "dmas", NULL))
1594 		return;
1595 
1596 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1597 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1598 	if (chan) {
1599 		/* UART circular tx buffer is an aligned page. */
1600 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1601 						port->state->xmit.buf,
1602 						UART_XMIT_SIZE,
1603 						DMA_TO_DEVICE);
1604 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1605 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1606 			dma_release_channel(chan);
1607 		} else {
1608 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1609 				__func__, UART_XMIT_SIZE,
1610 				port->state->xmit.buf, &s->tx_dma_addr);
1611 
1612 			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1613 			s->chan_tx_saved = s->chan_tx = chan;
1614 		}
1615 	}
1616 
1617 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1618 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1619 	if (chan) {
1620 		unsigned int i;
1621 		dma_addr_t dma;
1622 		void *buf;
1623 
1624 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1625 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1626 					 &dma, GFP_KERNEL);
1627 		if (!buf) {
1628 			dev_warn(port->dev,
1629 				 "Failed to allocate Rx dma buffer, using PIO\n");
1630 			dma_release_channel(chan);
1631 			return;
1632 		}
1633 
1634 		for (i = 0; i < 2; i++) {
1635 			struct scatterlist *sg = &s->sg_rx[i];
1636 
1637 			sg_init_table(sg, 1);
1638 			s->rx_buf[i] = buf;
1639 			sg_dma_address(sg) = dma;
1640 			sg_dma_len(sg) = s->buf_len_rx;
1641 
1642 			buf += s->buf_len_rx;
1643 			dma += s->buf_len_rx;
1644 		}
1645 
1646 		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1647 		s->rx_timer.function = sci_dma_rx_timer_fn;
1648 
1649 		s->chan_rx_saved = s->chan_rx = chan;
1650 
1651 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1652 			sci_dma_rx_submit(s, false);
1653 	}
1654 }
1655 
sci_free_dma(struct uart_port * port)1656 static void sci_free_dma(struct uart_port *port)
1657 {
1658 	struct sci_port *s = to_sci_port(port);
1659 
1660 	if (s->chan_tx_saved)
1661 		sci_dma_tx_release(s);
1662 	if (s->chan_rx_saved)
1663 		sci_dma_rx_release(s);
1664 }
1665 
sci_flush_buffer(struct uart_port * port)1666 static void sci_flush_buffer(struct uart_port *port)
1667 {
1668 	struct sci_port *s = to_sci_port(port);
1669 
1670 	/*
1671 	 * In uart_flush_buffer(), the xmit circular buffer has just been
1672 	 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1673 	 * pending transfers
1674 	 */
1675 	s->tx_dma_len = 0;
1676 	if (s->chan_tx) {
1677 		dmaengine_terminate_async(s->chan_tx);
1678 		s->cookie_tx = -EINVAL;
1679 	}
1680 }
1681 #else /* !CONFIG_SERIAL_SH_SCI_DMA */
sci_request_dma(struct uart_port * port)1682 static inline void sci_request_dma(struct uart_port *port)
1683 {
1684 }
1685 
sci_free_dma(struct uart_port * port)1686 static inline void sci_free_dma(struct uart_port *port)
1687 {
1688 }
1689 
1690 #define sci_flush_buffer	NULL
1691 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1692 
sci_rx_interrupt(int irq,void * ptr)1693 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1694 {
1695 	struct uart_port *port = ptr;
1696 	struct sci_port *s = to_sci_port(port);
1697 
1698 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1699 	if (s->chan_rx) {
1700 		u16 scr = serial_port_in(port, SCSCR);
1701 		u16 ssr = serial_port_in(port, SCxSR);
1702 
1703 		/* Disable future Rx interrupts */
1704 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1705 			disable_irq_nosync(irq);
1706 			scr |= SCSCR_RDRQE;
1707 		} else {
1708 			if (sci_dma_rx_submit(s, false) < 0)
1709 				goto handle_pio;
1710 
1711 			scr &= ~SCSCR_RIE;
1712 		}
1713 		serial_port_out(port, SCSCR, scr);
1714 		/* Clear current interrupt */
1715 		serial_port_out(port, SCxSR,
1716 				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1717 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1718 			jiffies, s->rx_timeout);
1719 		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1720 
1721 		return IRQ_HANDLED;
1722 	}
1723 
1724 handle_pio:
1725 #endif
1726 
1727 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1728 		if (!scif_rtrg_enabled(port))
1729 			scif_set_rtrg(port, s->rx_trigger);
1730 
1731 		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1732 			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1733 	}
1734 
1735 	/* I think sci_receive_chars has to be called irrespective
1736 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1737 	 * to be disabled?
1738 	 */
1739 	sci_receive_chars(port);
1740 
1741 	return IRQ_HANDLED;
1742 }
1743 
sci_tx_interrupt(int irq,void * ptr)1744 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1745 {
1746 	struct uart_port *port = ptr;
1747 	unsigned long flags;
1748 
1749 	spin_lock_irqsave(&port->lock, flags);
1750 	sci_transmit_chars(port);
1751 	spin_unlock_irqrestore(&port->lock, flags);
1752 
1753 	return IRQ_HANDLED;
1754 }
1755 
sci_br_interrupt(int irq,void * ptr)1756 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1757 {
1758 	struct uart_port *port = ptr;
1759 
1760 	/* Handle BREAKs */
1761 	sci_handle_breaks(port);
1762 
1763 	/* drop invalid character received before break was detected */
1764 	serial_port_in(port, SCxRDR);
1765 
1766 	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1767 
1768 	return IRQ_HANDLED;
1769 }
1770 
sci_er_interrupt(int irq,void * ptr)1771 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1772 {
1773 	struct uart_port *port = ptr;
1774 	struct sci_port *s = to_sci_port(port);
1775 
1776 	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1777 		/* Break and Error interrupts are muxed */
1778 		unsigned short ssr_status = serial_port_in(port, SCxSR);
1779 
1780 		/* Break Interrupt */
1781 		if (ssr_status & SCxSR_BRK(port))
1782 			sci_br_interrupt(irq, ptr);
1783 
1784 		/* Break only? */
1785 		if (!(ssr_status & SCxSR_ERRORS(port)))
1786 			return IRQ_HANDLED;
1787 	}
1788 
1789 	/* Handle errors */
1790 	if (port->type == PORT_SCI) {
1791 		if (sci_handle_errors(port)) {
1792 			/* discard character in rx buffer */
1793 			serial_port_in(port, SCxSR);
1794 			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1795 		}
1796 	} else {
1797 		sci_handle_fifo_overrun(port);
1798 		if (!s->chan_rx)
1799 			sci_receive_chars(port);
1800 	}
1801 
1802 	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1803 
1804 	/* Kick the transmission */
1805 	if (!s->chan_tx)
1806 		sci_tx_interrupt(irq, ptr);
1807 
1808 	return IRQ_HANDLED;
1809 }
1810 
sci_mpxed_interrupt(int irq,void * ptr)1811 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1812 {
1813 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1814 	struct uart_port *port = ptr;
1815 	struct sci_port *s = to_sci_port(port);
1816 	irqreturn_t ret = IRQ_NONE;
1817 
1818 	ssr_status = serial_port_in(port, SCxSR);
1819 	scr_status = serial_port_in(port, SCSCR);
1820 	if (s->params->overrun_reg == SCxSR)
1821 		orer_status = ssr_status;
1822 	else if (sci_getreg(port, s->params->overrun_reg)->size)
1823 		orer_status = serial_port_in(port, s->params->overrun_reg);
1824 
1825 	err_enabled = scr_status & port_rx_irq_mask(port);
1826 
1827 	/* Tx Interrupt */
1828 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1829 	    !s->chan_tx)
1830 		ret = sci_tx_interrupt(irq, ptr);
1831 
1832 	/*
1833 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1834 	 * DR flags
1835 	 */
1836 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1837 	    (scr_status & SCSCR_RIE))
1838 		ret = sci_rx_interrupt(irq, ptr);
1839 
1840 	/* Error Interrupt */
1841 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1842 		ret = sci_er_interrupt(irq, ptr);
1843 
1844 	/* Break Interrupt */
1845 	if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1846 	    (ssr_status & SCxSR_BRK(port)) && err_enabled)
1847 		ret = sci_br_interrupt(irq, ptr);
1848 
1849 	/* Overrun Interrupt */
1850 	if (orer_status & s->params->overrun_mask) {
1851 		sci_handle_fifo_overrun(port);
1852 		ret = IRQ_HANDLED;
1853 	}
1854 
1855 	return ret;
1856 }
1857 
1858 static const struct sci_irq_desc {
1859 	const char	*desc;
1860 	irq_handler_t	handler;
1861 } sci_irq_desc[] = {
1862 	/*
1863 	 * Split out handlers, the default case.
1864 	 */
1865 	[SCIx_ERI_IRQ] = {
1866 		.desc = "rx err",
1867 		.handler = sci_er_interrupt,
1868 	},
1869 
1870 	[SCIx_RXI_IRQ] = {
1871 		.desc = "rx full",
1872 		.handler = sci_rx_interrupt,
1873 	},
1874 
1875 	[SCIx_TXI_IRQ] = {
1876 		.desc = "tx empty",
1877 		.handler = sci_tx_interrupt,
1878 	},
1879 
1880 	[SCIx_BRI_IRQ] = {
1881 		.desc = "break",
1882 		.handler = sci_br_interrupt,
1883 	},
1884 
1885 	[SCIx_DRI_IRQ] = {
1886 		.desc = "rx ready",
1887 		.handler = sci_rx_interrupt,
1888 	},
1889 
1890 	[SCIx_TEI_IRQ] = {
1891 		.desc = "tx end",
1892 		.handler = sci_tx_interrupt,
1893 	},
1894 
1895 	/*
1896 	 * Special muxed handler.
1897 	 */
1898 	[SCIx_MUX_IRQ] = {
1899 		.desc = "mux",
1900 		.handler = sci_mpxed_interrupt,
1901 	},
1902 };
1903 
sci_request_irq(struct sci_port * port)1904 static int sci_request_irq(struct sci_port *port)
1905 {
1906 	struct uart_port *up = &port->port;
1907 	int i, j, w, ret = 0;
1908 
1909 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1910 		const struct sci_irq_desc *desc;
1911 		int irq;
1912 
1913 		/* Check if already registered (muxed) */
1914 		for (w = 0; w < i; w++)
1915 			if (port->irqs[w] == port->irqs[i])
1916 				w = i + 1;
1917 		if (w > i)
1918 			continue;
1919 
1920 		if (SCIx_IRQ_IS_MUXED(port)) {
1921 			i = SCIx_MUX_IRQ;
1922 			irq = up->irq;
1923 		} else {
1924 			irq = port->irqs[i];
1925 
1926 			/*
1927 			 * Certain port types won't support all of the
1928 			 * available interrupt sources.
1929 			 */
1930 			if (unlikely(irq < 0))
1931 				continue;
1932 		}
1933 
1934 		desc = sci_irq_desc + i;
1935 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1936 					    dev_name(up->dev), desc->desc);
1937 		if (!port->irqstr[j]) {
1938 			ret = -ENOMEM;
1939 			goto out_nomem;
1940 		}
1941 
1942 		ret = request_irq(irq, desc->handler, up->irqflags,
1943 				  port->irqstr[j], port);
1944 		if (unlikely(ret)) {
1945 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1946 			goto out_noirq;
1947 		}
1948 	}
1949 
1950 	return 0;
1951 
1952 out_noirq:
1953 	while (--i >= 0)
1954 		free_irq(port->irqs[i], port);
1955 
1956 out_nomem:
1957 	while (--j >= 0)
1958 		kfree(port->irqstr[j]);
1959 
1960 	return ret;
1961 }
1962 
sci_free_irq(struct sci_port * port)1963 static void sci_free_irq(struct sci_port *port)
1964 {
1965 	int i, j;
1966 
1967 	/*
1968 	 * Intentionally in reverse order so we iterate over the muxed
1969 	 * IRQ first.
1970 	 */
1971 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1972 		int irq = port->irqs[i];
1973 
1974 		/*
1975 		 * Certain port types won't support all of the available
1976 		 * interrupt sources.
1977 		 */
1978 		if (unlikely(irq < 0))
1979 			continue;
1980 
1981 		/* Check if already freed (irq was muxed) */
1982 		for (j = 0; j < i; j++)
1983 			if (port->irqs[j] == irq)
1984 				j = i + 1;
1985 		if (j > i)
1986 			continue;
1987 
1988 		free_irq(port->irqs[i], port);
1989 		kfree(port->irqstr[i]);
1990 
1991 		if (SCIx_IRQ_IS_MUXED(port)) {
1992 			/* If there's only one IRQ, we're done. */
1993 			return;
1994 		}
1995 	}
1996 }
1997 
sci_tx_empty(struct uart_port * port)1998 static unsigned int sci_tx_empty(struct uart_port *port)
1999 {
2000 	unsigned short status = serial_port_in(port, SCxSR);
2001 	unsigned short in_tx_fifo = sci_txfill(port);
2002 
2003 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2004 }
2005 
sci_set_rts(struct uart_port * port,bool state)2006 static void sci_set_rts(struct uart_port *port, bool state)
2007 {
2008 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2009 		u16 data = serial_port_in(port, SCPDR);
2010 
2011 		/* Active low */
2012 		if (state)
2013 			data &= ~SCPDR_RTSD;
2014 		else
2015 			data |= SCPDR_RTSD;
2016 		serial_port_out(port, SCPDR, data);
2017 
2018 		/* RTS# is output */
2019 		serial_port_out(port, SCPCR,
2020 				serial_port_in(port, SCPCR) | SCPCR_RTSC);
2021 	} else if (sci_getreg(port, SCSPTR)->size) {
2022 		u16 ctrl = serial_port_in(port, SCSPTR);
2023 
2024 		/* Active low */
2025 		if (state)
2026 			ctrl &= ~SCSPTR_RTSDT;
2027 		else
2028 			ctrl |= SCSPTR_RTSDT;
2029 		serial_port_out(port, SCSPTR, ctrl);
2030 	}
2031 }
2032 
sci_get_cts(struct uart_port * port)2033 static bool sci_get_cts(struct uart_port *port)
2034 {
2035 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2036 		/* Active low */
2037 		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
2038 	} else if (sci_getreg(port, SCSPTR)->size) {
2039 		/* Active low */
2040 		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
2041 	}
2042 
2043 	return true;
2044 }
2045 
2046 /*
2047  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2048  * CTS/RTS is supported in hardware by at least one port and controlled
2049  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2050  * handled via the ->init_pins() op, which is a bit of a one-way street,
2051  * lacking any ability to defer pin control -- this will later be
2052  * converted over to the GPIO framework).
2053  *
2054  * Other modes (such as loopback) are supported generically on certain
2055  * port types, but not others. For these it's sufficient to test for the
2056  * existence of the support register and simply ignore the port type.
2057  */
sci_set_mctrl(struct uart_port * port,unsigned int mctrl)2058 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2059 {
2060 	struct sci_port *s = to_sci_port(port);
2061 
2062 	if (mctrl & TIOCM_LOOP) {
2063 		const struct plat_sci_reg *reg;
2064 
2065 		/*
2066 		 * Standard loopback mode for SCFCR ports.
2067 		 */
2068 		reg = sci_getreg(port, SCFCR);
2069 		if (reg->size)
2070 			serial_port_out(port, SCFCR,
2071 					serial_port_in(port, SCFCR) |
2072 					SCFCR_LOOP);
2073 	}
2074 
2075 	mctrl_gpio_set(s->gpios, mctrl);
2076 
2077 	if (!s->has_rtscts)
2078 		return;
2079 
2080 	if (!(mctrl & TIOCM_RTS)) {
2081 		/* Disable Auto RTS */
2082 		serial_port_out(port, SCFCR,
2083 				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
2084 
2085 		/* Clear RTS */
2086 		sci_set_rts(port, 0);
2087 	} else if (s->autorts) {
2088 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2089 			/* Enable RTS# pin function */
2090 			serial_port_out(port, SCPCR,
2091 				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
2092 		}
2093 
2094 		/* Enable Auto RTS */
2095 		serial_port_out(port, SCFCR,
2096 				serial_port_in(port, SCFCR) | SCFCR_MCE);
2097 	} else {
2098 		/* Set RTS */
2099 		sci_set_rts(port, 1);
2100 	}
2101 }
2102 
sci_get_mctrl(struct uart_port * port)2103 static unsigned int sci_get_mctrl(struct uart_port *port)
2104 {
2105 	struct sci_port *s = to_sci_port(port);
2106 	struct mctrl_gpios *gpios = s->gpios;
2107 	unsigned int mctrl = 0;
2108 
2109 	mctrl_gpio_get(gpios, &mctrl);
2110 
2111 	/*
2112 	 * CTS/RTS is handled in hardware when supported, while nothing
2113 	 * else is wired up.
2114 	 */
2115 	if (s->autorts) {
2116 		if (sci_get_cts(port))
2117 			mctrl |= TIOCM_CTS;
2118 	} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2119 		mctrl |= TIOCM_CTS;
2120 	}
2121 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2122 		mctrl |= TIOCM_DSR;
2123 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2124 		mctrl |= TIOCM_CAR;
2125 
2126 	return mctrl;
2127 }
2128 
sci_enable_ms(struct uart_port * port)2129 static void sci_enable_ms(struct uart_port *port)
2130 {
2131 	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2132 }
2133 
sci_break_ctl(struct uart_port * port,int break_state)2134 static void sci_break_ctl(struct uart_port *port, int break_state)
2135 {
2136 	unsigned short scscr, scsptr;
2137 	unsigned long flags;
2138 
2139 	/* check whether the port has SCSPTR */
2140 	if (!sci_getreg(port, SCSPTR)->size) {
2141 		/*
2142 		 * Not supported by hardware. Most parts couple break and rx
2143 		 * interrupts together, with break detection always enabled.
2144 		 */
2145 		return;
2146 	}
2147 
2148 	spin_lock_irqsave(&port->lock, flags);
2149 	scsptr = serial_port_in(port, SCSPTR);
2150 	scscr = serial_port_in(port, SCSCR);
2151 
2152 	if (break_state == -1) {
2153 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2154 		scscr &= ~SCSCR_TE;
2155 	} else {
2156 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2157 		scscr |= SCSCR_TE;
2158 	}
2159 
2160 	serial_port_out(port, SCSPTR, scsptr);
2161 	serial_port_out(port, SCSCR, scscr);
2162 	spin_unlock_irqrestore(&port->lock, flags);
2163 }
2164 
sci_startup(struct uart_port * port)2165 static int sci_startup(struct uart_port *port)
2166 {
2167 	struct sci_port *s = to_sci_port(port);
2168 	int ret;
2169 
2170 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2171 
2172 	sci_request_dma(port);
2173 
2174 	ret = sci_request_irq(s);
2175 	if (unlikely(ret < 0)) {
2176 		sci_free_dma(port);
2177 		return ret;
2178 	}
2179 
2180 	return 0;
2181 }
2182 
sci_shutdown(struct uart_port * port)2183 static void sci_shutdown(struct uart_port *port)
2184 {
2185 	struct sci_port *s = to_sci_port(port);
2186 	unsigned long flags;
2187 	u16 scr;
2188 
2189 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2190 
2191 	s->autorts = false;
2192 	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2193 
2194 	spin_lock_irqsave(&port->lock, flags);
2195 	sci_stop_rx(port);
2196 	sci_stop_tx(port);
2197 	/*
2198 	 * Stop RX and TX, disable related interrupts, keep clock source
2199 	 * and HSCIF TOT bits
2200 	 */
2201 	scr = serial_port_in(port, SCSCR);
2202 	serial_port_out(port, SCSCR, scr &
2203 			(SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2204 	spin_unlock_irqrestore(&port->lock, flags);
2205 
2206 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2207 	if (s->chan_rx_saved) {
2208 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2209 			port->line);
2210 		hrtimer_cancel(&s->rx_timer);
2211 	}
2212 #endif
2213 
2214 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2215 		del_timer_sync(&s->rx_fifo_timer);
2216 	sci_free_irq(s);
2217 	sci_free_dma(port);
2218 }
2219 
sci_sck_calc(struct sci_port * s,unsigned int bps,unsigned int * srr)2220 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2221 			unsigned int *srr)
2222 {
2223 	unsigned long freq = s->clk_rates[SCI_SCK];
2224 	int err, min_err = INT_MAX;
2225 	unsigned int sr;
2226 
2227 	if (s->port.type != PORT_HSCIF)
2228 		freq *= 2;
2229 
2230 	for_each_sr(sr, s) {
2231 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2232 		if (abs(err) >= abs(min_err))
2233 			continue;
2234 
2235 		min_err = err;
2236 		*srr = sr - 1;
2237 
2238 		if (!err)
2239 			break;
2240 	}
2241 
2242 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2243 		*srr + 1);
2244 	return min_err;
2245 }
2246 
sci_brg_calc(struct sci_port * s,unsigned int bps,unsigned long freq,unsigned int * dlr,unsigned int * srr)2247 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2248 			unsigned long freq, unsigned int *dlr,
2249 			unsigned int *srr)
2250 {
2251 	int err, min_err = INT_MAX;
2252 	unsigned int sr, dl;
2253 
2254 	if (s->port.type != PORT_HSCIF)
2255 		freq *= 2;
2256 
2257 	for_each_sr(sr, s) {
2258 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2259 		dl = clamp(dl, 1U, 65535U);
2260 
2261 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2262 		if (abs(err) >= abs(min_err))
2263 			continue;
2264 
2265 		min_err = err;
2266 		*dlr = dl;
2267 		*srr = sr - 1;
2268 
2269 		if (!err)
2270 			break;
2271 	}
2272 
2273 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2274 		min_err, *dlr, *srr + 1);
2275 	return min_err;
2276 }
2277 
2278 /* calculate sample rate, BRR, and clock select */
sci_scbrr_calc(struct sci_port * s,unsigned int bps,unsigned int * brr,unsigned int * srr,unsigned int * cks)2279 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2280 			  unsigned int *brr, unsigned int *srr,
2281 			  unsigned int *cks)
2282 {
2283 	unsigned long freq = s->clk_rates[SCI_FCK];
2284 	unsigned int sr, br, prediv, scrate, c;
2285 	int err, min_err = INT_MAX;
2286 
2287 	if (s->port.type != PORT_HSCIF)
2288 		freq *= 2;
2289 
2290 	/*
2291 	 * Find the combination of sample rate and clock select with the
2292 	 * smallest deviation from the desired baud rate.
2293 	 * Prefer high sample rates to maximise the receive margin.
2294 	 *
2295 	 * M: Receive margin (%)
2296 	 * N: Ratio of bit rate to clock (N = sampling rate)
2297 	 * D: Clock duty (D = 0 to 1.0)
2298 	 * L: Frame length (L = 9 to 12)
2299 	 * F: Absolute value of clock frequency deviation
2300 	 *
2301 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2302 	 *      (|D - 0.5| / N * (1 + F))|
2303 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2304 	 */
2305 	for_each_sr(sr, s) {
2306 		for (c = 0; c <= 3; c++) {
2307 			/* integerized formulas from HSCIF documentation */
2308 			prediv = sr * (1 << (2 * c + 1));
2309 
2310 			/*
2311 			 * We need to calculate:
2312 			 *
2313 			 *     br = freq / (prediv * bps) clamped to [1..256]
2314 			 *     err = freq / (br * prediv) - bps
2315 			 *
2316 			 * Watch out for overflow when calculating the desired
2317 			 * sampling clock rate!
2318 			 */
2319 			if (bps > UINT_MAX / prediv)
2320 				break;
2321 
2322 			scrate = prediv * bps;
2323 			br = DIV_ROUND_CLOSEST(freq, scrate);
2324 			br = clamp(br, 1U, 256U);
2325 
2326 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2327 			if (abs(err) >= abs(min_err))
2328 				continue;
2329 
2330 			min_err = err;
2331 			*brr = br - 1;
2332 			*srr = sr - 1;
2333 			*cks = c;
2334 
2335 			if (!err)
2336 				goto found;
2337 		}
2338 	}
2339 
2340 found:
2341 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2342 		min_err, *brr, *srr + 1, *cks);
2343 	return min_err;
2344 }
2345 
sci_reset(struct uart_port * port)2346 static void sci_reset(struct uart_port *port)
2347 {
2348 	const struct plat_sci_reg *reg;
2349 	unsigned int status;
2350 	struct sci_port *s = to_sci_port(port);
2351 
2352 	serial_port_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2353 
2354 	reg = sci_getreg(port, SCFCR);
2355 	if (reg->size)
2356 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2357 
2358 	sci_clear_SCxSR(port,
2359 			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2360 			SCxSR_BREAK_CLEAR(port));
2361 	if (sci_getreg(port, SCLSR)->size) {
2362 		status = serial_port_in(port, SCLSR);
2363 		status &= ~(SCLSR_TO | SCLSR_ORER);
2364 		serial_port_out(port, SCLSR, status);
2365 	}
2366 
2367 	if (s->rx_trigger > 1) {
2368 		if (s->rx_fifo_timeout) {
2369 			scif_set_rtrg(port, 1);
2370 			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2371 		} else {
2372 			if (port->type == PORT_SCIFA ||
2373 			    port->type == PORT_SCIFB)
2374 				scif_set_rtrg(port, 1);
2375 			else
2376 				scif_set_rtrg(port, s->rx_trigger);
2377 		}
2378 	}
2379 }
2380 
sci_set_termios(struct uart_port * port,struct ktermios * termios,struct ktermios * old)2381 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2382 			    struct ktermios *old)
2383 {
2384 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2385 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2386 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2387 	struct sci_port *s = to_sci_port(port);
2388 	const struct plat_sci_reg *reg;
2389 	int min_err = INT_MAX, err;
2390 	unsigned long max_freq = 0;
2391 	int best_clk = -1;
2392 	unsigned long flags;
2393 
2394 	if ((termios->c_cflag & CSIZE) == CS7) {
2395 		smr_val |= SCSMR_CHR;
2396 	} else {
2397 		termios->c_cflag &= ~CSIZE;
2398 		termios->c_cflag |= CS8;
2399 	}
2400 	if (termios->c_cflag & PARENB)
2401 		smr_val |= SCSMR_PE;
2402 	if (termios->c_cflag & PARODD)
2403 		smr_val |= SCSMR_PE | SCSMR_ODD;
2404 	if (termios->c_cflag & CSTOPB)
2405 		smr_val |= SCSMR_STOP;
2406 
2407 	/*
2408 	 * earlyprintk comes here early on with port->uartclk set to zero.
2409 	 * the clock framework is not up and running at this point so here
2410 	 * we assume that 115200 is the maximum baud rate. please note that
2411 	 * the baud rate is not programmed during earlyprintk - it is assumed
2412 	 * that the previous boot loader has enabled required clocks and
2413 	 * setup the baud rate generator hardware for us already.
2414 	 */
2415 	if (!port->uartclk) {
2416 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2417 		goto done;
2418 	}
2419 
2420 	for (i = 0; i < SCI_NUM_CLKS; i++)
2421 		max_freq = max(max_freq, s->clk_rates[i]);
2422 
2423 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2424 	if (!baud)
2425 		goto done;
2426 
2427 	/*
2428 	 * There can be multiple sources for the sampling clock.  Find the one
2429 	 * that gives us the smallest deviation from the desired baud rate.
2430 	 */
2431 
2432 	/* Optional Undivided External Clock */
2433 	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2434 	    port->type != PORT_SCIFB) {
2435 		err = sci_sck_calc(s, baud, &srr1);
2436 		if (abs(err) < abs(min_err)) {
2437 			best_clk = SCI_SCK;
2438 			scr_val = SCSCR_CKE1;
2439 			sccks = SCCKS_CKS;
2440 			min_err = err;
2441 			srr = srr1;
2442 			if (!err)
2443 				goto done;
2444 		}
2445 	}
2446 
2447 	/* Optional BRG Frequency Divided External Clock */
2448 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2449 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2450 				   &srr1);
2451 		if (abs(err) < abs(min_err)) {
2452 			best_clk = SCI_SCIF_CLK;
2453 			scr_val = SCSCR_CKE1;
2454 			sccks = 0;
2455 			min_err = err;
2456 			dl = dl1;
2457 			srr = srr1;
2458 			if (!err)
2459 				goto done;
2460 		}
2461 	}
2462 
2463 	/* Optional BRG Frequency Divided Internal Clock */
2464 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2465 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2466 				   &srr1);
2467 		if (abs(err) < abs(min_err)) {
2468 			best_clk = SCI_BRG_INT;
2469 			scr_val = SCSCR_CKE1;
2470 			sccks = SCCKS_XIN;
2471 			min_err = err;
2472 			dl = dl1;
2473 			srr = srr1;
2474 			if (!min_err)
2475 				goto done;
2476 		}
2477 	}
2478 
2479 	/* Divided Functional Clock using standard Bit Rate Register */
2480 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2481 	if (abs(err) < abs(min_err)) {
2482 		best_clk = SCI_FCK;
2483 		scr_val = 0;
2484 		min_err = err;
2485 		brr = brr1;
2486 		srr = srr1;
2487 		cks = cks1;
2488 	}
2489 
2490 done:
2491 	if (best_clk >= 0)
2492 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2493 			s->clks[best_clk], baud, min_err);
2494 
2495 	sci_port_enable(s);
2496 
2497 	/*
2498 	 * Program the optional External Baud Rate Generator (BRG) first.
2499 	 * It controls the mux to select (H)SCK or frequency divided clock.
2500 	 */
2501 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2502 		serial_port_out(port, SCDL, dl);
2503 		serial_port_out(port, SCCKS, sccks);
2504 	}
2505 
2506 	spin_lock_irqsave(&port->lock, flags);
2507 
2508 	sci_reset(port);
2509 
2510 	uart_update_timeout(port, termios->c_cflag, baud);
2511 
2512 	/* byte size and parity */
2513 	bits = tty_get_frame_size(termios->c_cflag);
2514 
2515 	if (sci_getreg(port, SEMR)->size)
2516 		serial_port_out(port, SEMR, 0);
2517 
2518 	if (best_clk >= 0) {
2519 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2520 			switch (srr + 1) {
2521 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2522 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2523 			case 11: smr_val |= SCSMR_SRC_11; break;
2524 			case 13: smr_val |= SCSMR_SRC_13; break;
2525 			case 16: smr_val |= SCSMR_SRC_16; break;
2526 			case 17: smr_val |= SCSMR_SRC_17; break;
2527 			case 19: smr_val |= SCSMR_SRC_19; break;
2528 			case 27: smr_val |= SCSMR_SRC_27; break;
2529 			}
2530 		smr_val |= cks;
2531 		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2532 		serial_port_out(port, SCSMR, smr_val);
2533 		serial_port_out(port, SCBRR, brr);
2534 		if (sci_getreg(port, HSSRR)->size) {
2535 			unsigned int hssrr = srr | HSCIF_SRE;
2536 			/* Calculate deviation from intended rate at the
2537 			 * center of the last stop bit in sampling clocks.
2538 			 */
2539 			int last_stop = bits * 2 - 1;
2540 			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2541 							  (int)(srr + 1),
2542 							  2 * (int)baud);
2543 
2544 			if (abs(deviation) >= 2) {
2545 				/* At least two sampling clocks off at the
2546 				 * last stop bit; we can increase the error
2547 				 * margin by shifting the sampling point.
2548 				 */
2549 				int shift = clamp(deviation / 2, -8, 7);
2550 
2551 				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2552 					 HSCIF_SRHP_MASK;
2553 				hssrr |= HSCIF_SRDE;
2554 			}
2555 			serial_port_out(port, HSSRR, hssrr);
2556 		}
2557 
2558 		/* Wait one bit interval */
2559 		udelay((1000000 + (baud - 1)) / baud);
2560 	} else {
2561 		/* Don't touch the bit rate configuration */
2562 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2563 		smr_val |= serial_port_in(port, SCSMR) &
2564 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2565 		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2566 		serial_port_out(port, SCSMR, smr_val);
2567 	}
2568 
2569 	sci_init_pins(port, termios->c_cflag);
2570 
2571 	port->status &= ~UPSTAT_AUTOCTS;
2572 	s->autorts = false;
2573 	reg = sci_getreg(port, SCFCR);
2574 	if (reg->size) {
2575 		unsigned short ctrl = serial_port_in(port, SCFCR);
2576 
2577 		if ((port->flags & UPF_HARD_FLOW) &&
2578 		    (termios->c_cflag & CRTSCTS)) {
2579 			/* There is no CTS interrupt to restart the hardware */
2580 			port->status |= UPSTAT_AUTOCTS;
2581 			/* MCE is enabled when RTS is raised */
2582 			s->autorts = true;
2583 		}
2584 
2585 		/*
2586 		 * As we've done a sci_reset() above, ensure we don't
2587 		 * interfere with the FIFOs while toggling MCE. As the
2588 		 * reset values could still be set, simply mask them out.
2589 		 */
2590 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2591 
2592 		serial_port_out(port, SCFCR, ctrl);
2593 	}
2594 	if (port->flags & UPF_HARD_FLOW) {
2595 		/* Refresh (Auto) RTS */
2596 		sci_set_mctrl(port, port->mctrl);
2597 	}
2598 
2599 	scr_val |= SCSCR_RE | SCSCR_TE |
2600 		   (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2601 	serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2602 	if ((srr + 1 == 5) &&
2603 	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2604 		/*
2605 		 * In asynchronous mode, when the sampling rate is 1/5, first
2606 		 * received data may become invalid on some SCIFA and SCIFB.
2607 		 * To avoid this problem wait more than 1 serial data time (1
2608 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2609 		 */
2610 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2611 	}
2612 
2613 	/* Calculate delay for 2 DMA buffers (4 FIFO). */
2614 	s->rx_frame = (10000 * bits) / (baud / 100);
2615 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2616 	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2617 #endif
2618 
2619 	if ((termios->c_cflag & CREAD) != 0)
2620 		sci_start_rx(port);
2621 
2622 	spin_unlock_irqrestore(&port->lock, flags);
2623 
2624 	sci_port_disable(s);
2625 
2626 	if (UART_ENABLE_MS(port, termios->c_cflag))
2627 		sci_enable_ms(port);
2628 }
2629 
sci_pm(struct uart_port * port,unsigned int state,unsigned int oldstate)2630 static void sci_pm(struct uart_port *port, unsigned int state,
2631 		   unsigned int oldstate)
2632 {
2633 	struct sci_port *sci_port = to_sci_port(port);
2634 
2635 	switch (state) {
2636 	case UART_PM_STATE_OFF:
2637 		sci_port_disable(sci_port);
2638 		break;
2639 	default:
2640 		sci_port_enable(sci_port);
2641 		break;
2642 	}
2643 }
2644 
sci_type(struct uart_port * port)2645 static const char *sci_type(struct uart_port *port)
2646 {
2647 	switch (port->type) {
2648 	case PORT_IRDA:
2649 		return "irda";
2650 	case PORT_SCI:
2651 		return "sci";
2652 	case PORT_SCIF:
2653 		return "scif";
2654 	case PORT_SCIFA:
2655 		return "scifa";
2656 	case PORT_SCIFB:
2657 		return "scifb";
2658 	case PORT_HSCIF:
2659 		return "hscif";
2660 	}
2661 
2662 	return NULL;
2663 }
2664 
sci_remap_port(struct uart_port * port)2665 static int sci_remap_port(struct uart_port *port)
2666 {
2667 	struct sci_port *sport = to_sci_port(port);
2668 
2669 	/*
2670 	 * Nothing to do if there's already an established membase.
2671 	 */
2672 	if (port->membase)
2673 		return 0;
2674 
2675 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2676 		port->membase = ioremap(port->mapbase, sport->reg_size);
2677 		if (unlikely(!port->membase)) {
2678 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2679 			return -ENXIO;
2680 		}
2681 	} else {
2682 		/*
2683 		 * For the simple (and majority of) cases where we don't
2684 		 * need to do any remapping, just cast the cookie
2685 		 * directly.
2686 		 */
2687 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2688 	}
2689 
2690 	return 0;
2691 }
2692 
sci_release_port(struct uart_port * port)2693 static void sci_release_port(struct uart_port *port)
2694 {
2695 	struct sci_port *sport = to_sci_port(port);
2696 
2697 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2698 		iounmap(port->membase);
2699 		port->membase = NULL;
2700 	}
2701 
2702 	release_mem_region(port->mapbase, sport->reg_size);
2703 }
2704 
sci_request_port(struct uart_port * port)2705 static int sci_request_port(struct uart_port *port)
2706 {
2707 	struct resource *res;
2708 	struct sci_port *sport = to_sci_port(port);
2709 	int ret;
2710 
2711 	res = request_mem_region(port->mapbase, sport->reg_size,
2712 				 dev_name(port->dev));
2713 	if (unlikely(res == NULL)) {
2714 		dev_err(port->dev, "request_mem_region failed.");
2715 		return -EBUSY;
2716 	}
2717 
2718 	ret = sci_remap_port(port);
2719 	if (unlikely(ret != 0)) {
2720 		release_resource(res);
2721 		return ret;
2722 	}
2723 
2724 	return 0;
2725 }
2726 
sci_config_port(struct uart_port * port,int flags)2727 static void sci_config_port(struct uart_port *port, int flags)
2728 {
2729 	if (flags & UART_CONFIG_TYPE) {
2730 		struct sci_port *sport = to_sci_port(port);
2731 
2732 		port->type = sport->cfg->type;
2733 		sci_request_port(port);
2734 	}
2735 }
2736 
sci_verify_port(struct uart_port * port,struct serial_struct * ser)2737 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2738 {
2739 	if (ser->baud_base < 2400)
2740 		/* No paper tape reader for Mitch.. */
2741 		return -EINVAL;
2742 
2743 	return 0;
2744 }
2745 
2746 static const struct uart_ops sci_uart_ops = {
2747 	.tx_empty	= sci_tx_empty,
2748 	.set_mctrl	= sci_set_mctrl,
2749 	.get_mctrl	= sci_get_mctrl,
2750 	.start_tx	= sci_start_tx,
2751 	.stop_tx	= sci_stop_tx,
2752 	.stop_rx	= sci_stop_rx,
2753 	.enable_ms	= sci_enable_ms,
2754 	.break_ctl	= sci_break_ctl,
2755 	.startup	= sci_startup,
2756 	.shutdown	= sci_shutdown,
2757 	.flush_buffer	= sci_flush_buffer,
2758 	.set_termios	= sci_set_termios,
2759 	.pm		= sci_pm,
2760 	.type		= sci_type,
2761 	.release_port	= sci_release_port,
2762 	.request_port	= sci_request_port,
2763 	.config_port	= sci_config_port,
2764 	.verify_port	= sci_verify_port,
2765 #ifdef CONFIG_CONSOLE_POLL
2766 	.poll_get_char	= sci_poll_get_char,
2767 	.poll_put_char	= sci_poll_put_char,
2768 #endif
2769 };
2770 
sci_init_clocks(struct sci_port * sci_port,struct device * dev)2771 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2772 {
2773 	const char *clk_names[] = {
2774 		[SCI_FCK] = "fck",
2775 		[SCI_SCK] = "sck",
2776 		[SCI_BRG_INT] = "brg_int",
2777 		[SCI_SCIF_CLK] = "scif_clk",
2778 	};
2779 	struct clk *clk;
2780 	unsigned int i;
2781 
2782 	if (sci_port->cfg->type == PORT_HSCIF)
2783 		clk_names[SCI_SCK] = "hsck";
2784 
2785 	for (i = 0; i < SCI_NUM_CLKS; i++) {
2786 		clk = devm_clk_get(dev, clk_names[i]);
2787 		if (PTR_ERR(clk) == -EPROBE_DEFER)
2788 			return -EPROBE_DEFER;
2789 
2790 		if (IS_ERR(clk) && i == SCI_FCK) {
2791 			/*
2792 			 * "fck" used to be called "sci_ick", and we need to
2793 			 * maintain DT backward compatibility.
2794 			 */
2795 			clk = devm_clk_get(dev, "sci_ick");
2796 			if (PTR_ERR(clk) == -EPROBE_DEFER)
2797 				return -EPROBE_DEFER;
2798 
2799 			if (!IS_ERR(clk))
2800 				goto found;
2801 
2802 			/*
2803 			 * Not all SH platforms declare a clock lookup entry
2804 			 * for SCI devices, in which case we need to get the
2805 			 * global "peripheral_clk" clock.
2806 			 */
2807 			clk = devm_clk_get(dev, "peripheral_clk");
2808 			if (!IS_ERR(clk))
2809 				goto found;
2810 
2811 			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2812 				PTR_ERR(clk));
2813 			return PTR_ERR(clk);
2814 		}
2815 
2816 found:
2817 		if (IS_ERR(clk))
2818 			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2819 				PTR_ERR(clk));
2820 		else
2821 			dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2822 				clk, clk_get_rate(clk));
2823 		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2824 	}
2825 	return 0;
2826 }
2827 
2828 static const struct sci_port_params *
sci_probe_regmap(const struct plat_sci_port * cfg)2829 sci_probe_regmap(const struct plat_sci_port *cfg)
2830 {
2831 	unsigned int regtype;
2832 
2833 	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2834 		return &sci_port_params[cfg->regtype];
2835 
2836 	switch (cfg->type) {
2837 	case PORT_SCI:
2838 		regtype = SCIx_SCI_REGTYPE;
2839 		break;
2840 	case PORT_IRDA:
2841 		regtype = SCIx_IRDA_REGTYPE;
2842 		break;
2843 	case PORT_SCIFA:
2844 		regtype = SCIx_SCIFA_REGTYPE;
2845 		break;
2846 	case PORT_SCIFB:
2847 		regtype = SCIx_SCIFB_REGTYPE;
2848 		break;
2849 	case PORT_SCIF:
2850 		/*
2851 		 * The SH-4 is a bit of a misnomer here, although that's
2852 		 * where this particular port layout originated. This
2853 		 * configuration (or some slight variation thereof)
2854 		 * remains the dominant model for all SCIFs.
2855 		 */
2856 		regtype = SCIx_SH4_SCIF_REGTYPE;
2857 		break;
2858 	case PORT_HSCIF:
2859 		regtype = SCIx_HSCIF_REGTYPE;
2860 		break;
2861 	default:
2862 		pr_err("Can't probe register map for given port\n");
2863 		return NULL;
2864 	}
2865 
2866 	return &sci_port_params[regtype];
2867 }
2868 
sci_init_single(struct platform_device * dev,struct sci_port * sci_port,unsigned int index,const struct plat_sci_port * p,bool early)2869 static int sci_init_single(struct platform_device *dev,
2870 			   struct sci_port *sci_port, unsigned int index,
2871 			   const struct plat_sci_port *p, bool early)
2872 {
2873 	struct uart_port *port = &sci_port->port;
2874 	const struct resource *res;
2875 	unsigned int i;
2876 	int ret;
2877 
2878 	sci_port->cfg	= p;
2879 
2880 	port->ops	= &sci_uart_ops;
2881 	port->iotype	= UPIO_MEM;
2882 	port->line	= index;
2883 	port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
2884 
2885 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2886 	if (res == NULL)
2887 		return -ENOMEM;
2888 
2889 	port->mapbase = res->start;
2890 	sci_port->reg_size = resource_size(res);
2891 
2892 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2893 		if (i)
2894 			sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2895 		else
2896 			sci_port->irqs[i] = platform_get_irq(dev, i);
2897 	}
2898 
2899 	/*
2900 	 * The fourth interrupt on SCI port is transmit end interrupt, so
2901 	 * shuffle the interrupts.
2902 	 */
2903 	if (p->type == PORT_SCI)
2904 		swap(sci_port->irqs[SCIx_BRI_IRQ], sci_port->irqs[SCIx_TEI_IRQ]);
2905 
2906 	/* The SCI generates several interrupts. They can be muxed together or
2907 	 * connected to different interrupt lines. In the muxed case only one
2908 	 * interrupt resource is specified as there is only one interrupt ID.
2909 	 * In the non-muxed case, up to 6 interrupt signals might be generated
2910 	 * from the SCI, however those signals might have their own individual
2911 	 * interrupt ID numbers, or muxed together with another interrupt.
2912 	 */
2913 	if (sci_port->irqs[0] < 0)
2914 		return -ENXIO;
2915 
2916 	if (sci_port->irqs[1] < 0)
2917 		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
2918 			sci_port->irqs[i] = sci_port->irqs[0];
2919 
2920 	sci_port->params = sci_probe_regmap(p);
2921 	if (unlikely(sci_port->params == NULL))
2922 		return -EINVAL;
2923 
2924 	switch (p->type) {
2925 	case PORT_SCIFB:
2926 		sci_port->rx_trigger = 48;
2927 		break;
2928 	case PORT_HSCIF:
2929 		sci_port->rx_trigger = 64;
2930 		break;
2931 	case PORT_SCIFA:
2932 		sci_port->rx_trigger = 32;
2933 		break;
2934 	case PORT_SCIF:
2935 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2936 			/* RX triggering not implemented for this IP */
2937 			sci_port->rx_trigger = 1;
2938 		else
2939 			sci_port->rx_trigger = 8;
2940 		break;
2941 	default:
2942 		sci_port->rx_trigger = 1;
2943 		break;
2944 	}
2945 
2946 	sci_port->rx_fifo_timeout = 0;
2947 	sci_port->hscif_tot = 0;
2948 
2949 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2950 	 * match the SoC datasheet, this should be investigated. Let platform
2951 	 * data override the sampling rate for now.
2952 	 */
2953 	sci_port->sampling_rate_mask = p->sampling_rate
2954 				     ? SCI_SR(p->sampling_rate)
2955 				     : sci_port->params->sampling_rate_mask;
2956 
2957 	if (!early) {
2958 		ret = sci_init_clocks(sci_port, &dev->dev);
2959 		if (ret < 0)
2960 			return ret;
2961 
2962 		port->dev = &dev->dev;
2963 
2964 		pm_runtime_enable(&dev->dev);
2965 	}
2966 
2967 	port->type		= p->type;
2968 	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2969 	port->fifosize		= sci_port->params->fifosize;
2970 
2971 	if (port->type == PORT_SCI && !dev->dev.of_node) {
2972 		if (sci_port->reg_size >= 0x20)
2973 			port->regshift = 2;
2974 		else
2975 			port->regshift = 1;
2976 	}
2977 
2978 	/*
2979 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2980 	 * for the multi-IRQ ports, which is where we are primarily
2981 	 * concerned with the shutdown path synchronization.
2982 	 *
2983 	 * For the muxed case there's nothing more to do.
2984 	 */
2985 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2986 	port->irqflags		= 0;
2987 
2988 	port->serial_in		= sci_serial_in;
2989 	port->serial_out	= sci_serial_out;
2990 
2991 	return 0;
2992 }
2993 
sci_cleanup_single(struct sci_port * port)2994 static void sci_cleanup_single(struct sci_port *port)
2995 {
2996 	pm_runtime_disable(port->port.dev);
2997 }
2998 
2999 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
3000     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
serial_console_putchar(struct uart_port * port,int ch)3001 static void serial_console_putchar(struct uart_port *port, int ch)
3002 {
3003 	sci_poll_put_char(port, ch);
3004 }
3005 
3006 /*
3007  *	Print a string to the serial port trying not to disturb
3008  *	any possible real use of the port...
3009  */
serial_console_write(struct console * co,const char * s,unsigned count)3010 static void serial_console_write(struct console *co, const char *s,
3011 				 unsigned count)
3012 {
3013 	struct sci_port *sci_port = &sci_ports[co->index];
3014 	struct uart_port *port = &sci_port->port;
3015 	unsigned short bits, ctrl, ctrl_temp;
3016 	unsigned long flags;
3017 	int locked = 1;
3018 
3019 	if (port->sysrq)
3020 		locked = 0;
3021 	else if (oops_in_progress)
3022 		locked = spin_trylock_irqsave(&port->lock, flags);
3023 	else
3024 		spin_lock_irqsave(&port->lock, flags);
3025 
3026 	/* first save SCSCR then disable interrupts, keep clock source */
3027 	ctrl = serial_port_in(port, SCSCR);
3028 	ctrl_temp = SCSCR_RE | SCSCR_TE |
3029 		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3030 		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3031 	serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3032 
3033 	uart_console_write(port, s, count, serial_console_putchar);
3034 
3035 	/* wait until fifo is empty and last bit has been transmitted */
3036 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3037 	while ((serial_port_in(port, SCxSR) & bits) != bits)
3038 		cpu_relax();
3039 
3040 	/* restore the SCSCR */
3041 	serial_port_out(port, SCSCR, ctrl);
3042 
3043 	if (locked)
3044 		spin_unlock_irqrestore(&port->lock, flags);
3045 }
3046 
serial_console_setup(struct console * co,char * options)3047 static int serial_console_setup(struct console *co, char *options)
3048 {
3049 	struct sci_port *sci_port;
3050 	struct uart_port *port;
3051 	int baud = 115200;
3052 	int bits = 8;
3053 	int parity = 'n';
3054 	int flow = 'n';
3055 	int ret;
3056 
3057 	/*
3058 	 * Refuse to handle any bogus ports.
3059 	 */
3060 	if (co->index < 0 || co->index >= SCI_NPORTS)
3061 		return -ENODEV;
3062 
3063 	sci_port = &sci_ports[co->index];
3064 	port = &sci_port->port;
3065 
3066 	/*
3067 	 * Refuse to handle uninitialized ports.
3068 	 */
3069 	if (!port->ops)
3070 		return -ENODEV;
3071 
3072 	ret = sci_remap_port(port);
3073 	if (unlikely(ret != 0))
3074 		return ret;
3075 
3076 	if (options)
3077 		uart_parse_options(options, &baud, &parity, &bits, &flow);
3078 
3079 	return uart_set_options(port, co, baud, parity, bits, flow);
3080 }
3081 
3082 static struct console serial_console = {
3083 	.name		= "ttySC",
3084 	.device		= uart_console_device,
3085 	.write		= serial_console_write,
3086 	.setup		= serial_console_setup,
3087 	.flags		= CON_PRINTBUFFER,
3088 	.index		= -1,
3089 	.data		= &sci_uart_driver,
3090 };
3091 
3092 #ifdef CONFIG_SUPERH
3093 static struct console early_serial_console = {
3094 	.name           = "early_ttySC",
3095 	.write          = serial_console_write,
3096 	.flags          = CON_PRINTBUFFER,
3097 	.index		= -1,
3098 };
3099 
3100 static char early_serial_buf[32];
3101 
sci_probe_earlyprintk(struct platform_device * pdev)3102 static int sci_probe_earlyprintk(struct platform_device *pdev)
3103 {
3104 	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3105 
3106 	if (early_serial_console.data)
3107 		return -EEXIST;
3108 
3109 	early_serial_console.index = pdev->id;
3110 
3111 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3112 
3113 	serial_console_setup(&early_serial_console, early_serial_buf);
3114 
3115 	if (!strstr(early_serial_buf, "keep"))
3116 		early_serial_console.flags |= CON_BOOT;
3117 
3118 	register_console(&early_serial_console);
3119 	return 0;
3120 }
3121 #endif
3122 
3123 #define SCI_CONSOLE	(&serial_console)
3124 
3125 #else
sci_probe_earlyprintk(struct platform_device * pdev)3126 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3127 {
3128 	return -EINVAL;
3129 }
3130 
3131 #define SCI_CONSOLE	NULL
3132 
3133 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3134 
3135 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3136 
3137 static DEFINE_MUTEX(sci_uart_registration_lock);
3138 static struct uart_driver sci_uart_driver = {
3139 	.owner		= THIS_MODULE,
3140 	.driver_name	= "sci",
3141 	.dev_name	= "ttySC",
3142 	.major		= SCI_MAJOR,
3143 	.minor		= SCI_MINOR_START,
3144 	.nr		= SCI_NPORTS,
3145 	.cons		= SCI_CONSOLE,
3146 };
3147 
sci_remove(struct platform_device * dev)3148 static int sci_remove(struct platform_device *dev)
3149 {
3150 	struct sci_port *port = platform_get_drvdata(dev);
3151 	unsigned int type = port->port.type;	/* uart_remove_... clears it */
3152 
3153 	sci_ports_in_use &= ~BIT(port->port.line);
3154 	uart_remove_one_port(&sci_uart_driver, &port->port);
3155 
3156 	sci_cleanup_single(port);
3157 
3158 	if (port->port.fifosize > 1)
3159 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3160 	if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3161 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3162 
3163 	return 0;
3164 }
3165 
3166 
3167 #define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3168 #define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3169 #define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3170 
3171 static const struct of_device_id of_sci_match[] = {
3172 	/* SoC-specific types */
3173 	{
3174 		.compatible = "renesas,scif-r7s72100",
3175 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3176 	},
3177 	{
3178 		.compatible = "renesas,scif-r7s9210",
3179 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3180 	},
3181 	{
3182 		.compatible = "renesas,scif-r9a07g044",
3183 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3184 	},
3185 	/* Family-specific types */
3186 	{
3187 		.compatible = "renesas,rcar-gen1-scif",
3188 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3189 	}, {
3190 		.compatible = "renesas,rcar-gen2-scif",
3191 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3192 	}, {
3193 		.compatible = "renesas,rcar-gen3-scif",
3194 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3195 	},
3196 	/* Generic types */
3197 	{
3198 		.compatible = "renesas,scif",
3199 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3200 	}, {
3201 		.compatible = "renesas,scifa",
3202 		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3203 	}, {
3204 		.compatible = "renesas,scifb",
3205 		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3206 	}, {
3207 		.compatible = "renesas,hscif",
3208 		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3209 	}, {
3210 		.compatible = "renesas,sci",
3211 		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3212 	}, {
3213 		/* Terminator */
3214 	},
3215 };
3216 MODULE_DEVICE_TABLE(of, of_sci_match);
3217 
sci_parse_dt(struct platform_device * pdev,unsigned int * dev_id)3218 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3219 					  unsigned int *dev_id)
3220 {
3221 	struct device_node *np = pdev->dev.of_node;
3222 	struct plat_sci_port *p;
3223 	struct sci_port *sp;
3224 	const void *data;
3225 	int id;
3226 
3227 	if (!IS_ENABLED(CONFIG_OF) || !np)
3228 		return NULL;
3229 
3230 	data = of_device_get_match_data(&pdev->dev);
3231 
3232 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3233 	if (!p)
3234 		return NULL;
3235 
3236 	/* Get the line number from the aliases node. */
3237 	id = of_alias_get_id(np, "serial");
3238 	if (id < 0 && ~sci_ports_in_use)
3239 		id = ffz(sci_ports_in_use);
3240 	if (id < 0) {
3241 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3242 		return NULL;
3243 	}
3244 	if (id >= ARRAY_SIZE(sci_ports)) {
3245 		dev_err(&pdev->dev, "serial%d out of range\n", id);
3246 		return NULL;
3247 	}
3248 
3249 	sp = &sci_ports[id];
3250 	*dev_id = id;
3251 
3252 	p->type = SCI_OF_TYPE(data);
3253 	p->regtype = SCI_OF_REGTYPE(data);
3254 
3255 	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3256 
3257 	return p;
3258 }
3259 
sci_probe_single(struct platform_device * dev,unsigned int index,struct plat_sci_port * p,struct sci_port * sciport)3260 static int sci_probe_single(struct platform_device *dev,
3261 				      unsigned int index,
3262 				      struct plat_sci_port *p,
3263 				      struct sci_port *sciport)
3264 {
3265 	int ret;
3266 
3267 	/* Sanity check */
3268 	if (unlikely(index >= SCI_NPORTS)) {
3269 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3270 			   index+1, SCI_NPORTS);
3271 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3272 		return -EINVAL;
3273 	}
3274 	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3275 	if (sci_ports_in_use & BIT(index))
3276 		return -EBUSY;
3277 
3278 	mutex_lock(&sci_uart_registration_lock);
3279 	if (!sci_uart_driver.state) {
3280 		ret = uart_register_driver(&sci_uart_driver);
3281 		if (ret) {
3282 			mutex_unlock(&sci_uart_registration_lock);
3283 			return ret;
3284 		}
3285 	}
3286 	mutex_unlock(&sci_uart_registration_lock);
3287 
3288 	ret = sci_init_single(dev, sciport, index, p, false);
3289 	if (ret)
3290 		return ret;
3291 
3292 	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3293 	if (IS_ERR(sciport->gpios))
3294 		return PTR_ERR(sciport->gpios);
3295 
3296 	if (sciport->has_rtscts) {
3297 		if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3298 		    mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3299 			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3300 			return -EINVAL;
3301 		}
3302 		sciport->port.flags |= UPF_HARD_FLOW;
3303 	}
3304 
3305 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3306 	if (ret) {
3307 		sci_cleanup_single(sciport);
3308 		return ret;
3309 	}
3310 
3311 	return 0;
3312 }
3313 
sci_probe(struct platform_device * dev)3314 static int sci_probe(struct platform_device *dev)
3315 {
3316 	struct plat_sci_port *p;
3317 	struct sci_port *sp;
3318 	unsigned int dev_id;
3319 	int ret;
3320 
3321 	/*
3322 	 * If we've come here via earlyprintk initialization, head off to
3323 	 * the special early probe. We don't have sufficient device state
3324 	 * to make it beyond this yet.
3325 	 */
3326 #ifdef CONFIG_SUPERH
3327 	if (is_sh_early_platform_device(dev))
3328 		return sci_probe_earlyprintk(dev);
3329 #endif
3330 
3331 	if (dev->dev.of_node) {
3332 		p = sci_parse_dt(dev, &dev_id);
3333 		if (p == NULL)
3334 			return -EINVAL;
3335 	} else {
3336 		p = dev->dev.platform_data;
3337 		if (p == NULL) {
3338 			dev_err(&dev->dev, "no platform data supplied\n");
3339 			return -EINVAL;
3340 		}
3341 
3342 		dev_id = dev->id;
3343 	}
3344 
3345 	sp = &sci_ports[dev_id];
3346 	platform_set_drvdata(dev, sp);
3347 
3348 	ret = sci_probe_single(dev, dev_id, p, sp);
3349 	if (ret)
3350 		return ret;
3351 
3352 	if (sp->port.fifosize > 1) {
3353 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3354 		if (ret)
3355 			return ret;
3356 	}
3357 	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3358 	    sp->port.type == PORT_HSCIF) {
3359 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3360 		if (ret) {
3361 			if (sp->port.fifosize > 1) {
3362 				device_remove_file(&dev->dev,
3363 						   &dev_attr_rx_fifo_trigger);
3364 			}
3365 			return ret;
3366 		}
3367 	}
3368 
3369 #ifdef CONFIG_SH_STANDARD_BIOS
3370 	sh_bios_gdb_detach();
3371 #endif
3372 
3373 	sci_ports_in_use |= BIT(dev_id);
3374 	return 0;
3375 }
3376 
sci_suspend(struct device * dev)3377 static __maybe_unused int sci_suspend(struct device *dev)
3378 {
3379 	struct sci_port *sport = dev_get_drvdata(dev);
3380 
3381 	if (sport)
3382 		uart_suspend_port(&sci_uart_driver, &sport->port);
3383 
3384 	return 0;
3385 }
3386 
sci_resume(struct device * dev)3387 static __maybe_unused int sci_resume(struct device *dev)
3388 {
3389 	struct sci_port *sport = dev_get_drvdata(dev);
3390 
3391 	if (sport)
3392 		uart_resume_port(&sci_uart_driver, &sport->port);
3393 
3394 	return 0;
3395 }
3396 
3397 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3398 
3399 static struct platform_driver sci_driver = {
3400 	.probe		= sci_probe,
3401 	.remove		= sci_remove,
3402 	.driver		= {
3403 		.name	= "sh-sci",
3404 		.pm	= &sci_dev_pm_ops,
3405 		.of_match_table = of_match_ptr(of_sci_match),
3406 	},
3407 };
3408 
sci_init(void)3409 static int __init sci_init(void)
3410 {
3411 	pr_info("%s\n", banner);
3412 
3413 	return platform_driver_register(&sci_driver);
3414 }
3415 
sci_exit(void)3416 static void __exit sci_exit(void)
3417 {
3418 	platform_driver_unregister(&sci_driver);
3419 
3420 	if (sci_uart_driver.state)
3421 		uart_unregister_driver(&sci_uart_driver);
3422 }
3423 
3424 #if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
3425 sh_early_platform_init_buffer("earlyprintk", &sci_driver,
3426 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3427 #endif
3428 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3429 static struct plat_sci_port port_cfg __initdata;
3430 
early_console_setup(struct earlycon_device * device,int type)3431 static int __init early_console_setup(struct earlycon_device *device,
3432 				      int type)
3433 {
3434 	if (!device->port.membase)
3435 		return -ENODEV;
3436 
3437 	device->port.serial_in = sci_serial_in;
3438 	device->port.serial_out	= sci_serial_out;
3439 	device->port.type = type;
3440 	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3441 	port_cfg.type = type;
3442 	sci_ports[0].cfg = &port_cfg;
3443 	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3444 	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3445 	sci_serial_out(&sci_ports[0].port, SCSCR,
3446 		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3447 
3448 	device->con->write = serial_console_write;
3449 	return 0;
3450 }
sci_early_console_setup(struct earlycon_device * device,const char * opt)3451 static int __init sci_early_console_setup(struct earlycon_device *device,
3452 					  const char *opt)
3453 {
3454 	return early_console_setup(device, PORT_SCI);
3455 }
scif_early_console_setup(struct earlycon_device * device,const char * opt)3456 static int __init scif_early_console_setup(struct earlycon_device *device,
3457 					  const char *opt)
3458 {
3459 	return early_console_setup(device, PORT_SCIF);
3460 }
rzscifa_early_console_setup(struct earlycon_device * device,const char * opt)3461 static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3462 					  const char *opt)
3463 {
3464 	port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3465 	return early_console_setup(device, PORT_SCIF);
3466 }
3467 
scifa_early_console_setup(struct earlycon_device * device,const char * opt)3468 static int __init scifa_early_console_setup(struct earlycon_device *device,
3469 					  const char *opt)
3470 {
3471 	return early_console_setup(device, PORT_SCIFA);
3472 }
scifb_early_console_setup(struct earlycon_device * device,const char * opt)3473 static int __init scifb_early_console_setup(struct earlycon_device *device,
3474 					  const char *opt)
3475 {
3476 	return early_console_setup(device, PORT_SCIFB);
3477 }
hscif_early_console_setup(struct earlycon_device * device,const char * opt)3478 static int __init hscif_early_console_setup(struct earlycon_device *device,
3479 					  const char *opt)
3480 {
3481 	return early_console_setup(device, PORT_HSCIF);
3482 }
3483 
3484 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3485 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3486 OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3487 OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a07g044", rzscifa_early_console_setup);
3488 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3489 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3490 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3491 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3492 
3493 module_init(sci_init);
3494 module_exit(sci_exit);
3495 
3496 MODULE_LICENSE("GPL");
3497 MODULE_ALIAS("platform:sh-sci");
3498 MODULE_AUTHOR("Paul Mundt");
3499 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3500