1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * hcd.c - DesignWare HS OTG Controller host-mode routines
4 *
5 * Copyright (C) 2004-2013 Synopsys, Inc.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 * to endorse or promote products derived from this software without
18 * specific prior written permission.
19 *
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
23 * later version.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * This file contains the core HCD code, and implements the Linux hc_driver
40 * API
41 */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55
56 #include "core.h"
57 #include "hcd.h"
58
59 /*
60 * =========================================================================
61 * Host Core Layer Functions
62 * =========================================================================
63 */
64
65 /**
66 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
67 * used in both device and host modes
68 *
69 * @hsotg: Programming view of the DWC_otg controller
70 */
dwc2_enable_common_interrupts(struct dwc2_hsotg * hsotg)71 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
72 {
73 u32 intmsk;
74
75 /* Clear any pending OTG Interrupts */
76 dwc2_writel(hsotg, 0xffffffff, GOTGINT);
77
78 /* Clear any pending interrupts */
79 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
80
81 /* Enable the interrupts in the GINTMSK */
82 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
83
84 if (!hsotg->params.host_dma)
85 intmsk |= GINTSTS_RXFLVL;
86 if (!hsotg->params.external_id_pin_ctl)
87 intmsk |= GINTSTS_CONIDSTSCHNG;
88
89 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
90 GINTSTS_SESSREQINT;
91
92 if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
93 intmsk |= GINTSTS_LPMTRANRCVD;
94
95 dwc2_writel(hsotg, intmsk, GINTMSK);
96 }
97
dwc2_gahbcfg_init(struct dwc2_hsotg * hsotg)98 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
99 {
100 u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
101
102 switch (hsotg->hw_params.arch) {
103 case GHWCFG2_EXT_DMA_ARCH:
104 dev_err(hsotg->dev, "External DMA Mode not supported\n");
105 return -EINVAL;
106
107 case GHWCFG2_INT_DMA_ARCH:
108 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
109 if (hsotg->params.ahbcfg != -1) {
110 ahbcfg &= GAHBCFG_CTRL_MASK;
111 ahbcfg |= hsotg->params.ahbcfg &
112 ~GAHBCFG_CTRL_MASK;
113 }
114 break;
115
116 case GHWCFG2_SLAVE_ONLY_ARCH:
117 default:
118 dev_dbg(hsotg->dev, "Slave Only Mode\n");
119 break;
120 }
121
122 if (hsotg->params.host_dma)
123 ahbcfg |= GAHBCFG_DMA_EN;
124 else
125 hsotg->params.dma_desc_enable = false;
126
127 dwc2_writel(hsotg, ahbcfg, GAHBCFG);
128
129 return 0;
130 }
131
dwc2_gusbcfg_init(struct dwc2_hsotg * hsotg)132 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
133 {
134 u32 usbcfg;
135
136 usbcfg = dwc2_readl(hsotg, GUSBCFG);
137 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
138
139 switch (hsotg->hw_params.op_mode) {
140 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
141 if (hsotg->params.otg_cap ==
142 DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
143 usbcfg |= GUSBCFG_HNPCAP;
144 if (hsotg->params.otg_cap !=
145 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
146 usbcfg |= GUSBCFG_SRPCAP;
147 break;
148
149 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
150 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
151 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
152 if (hsotg->params.otg_cap !=
153 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
154 usbcfg |= GUSBCFG_SRPCAP;
155 break;
156
157 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
158 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
159 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
160 default:
161 break;
162 }
163
164 dwc2_writel(hsotg, usbcfg, GUSBCFG);
165 }
166
dwc2_vbus_supply_init(struct dwc2_hsotg * hsotg)167 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
168 {
169 if (hsotg->vbus_supply)
170 return regulator_enable(hsotg->vbus_supply);
171
172 return 0;
173 }
174
dwc2_vbus_supply_exit(struct dwc2_hsotg * hsotg)175 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
176 {
177 if (hsotg->vbus_supply)
178 return regulator_disable(hsotg->vbus_supply);
179
180 return 0;
181 }
182
183 /**
184 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
185 *
186 * @hsotg: Programming view of DWC_otg controller
187 */
dwc2_enable_host_interrupts(struct dwc2_hsotg * hsotg)188 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
189 {
190 u32 intmsk;
191
192 dev_dbg(hsotg->dev, "%s()\n", __func__);
193
194 /* Disable all interrupts */
195 dwc2_writel(hsotg, 0, GINTMSK);
196 dwc2_writel(hsotg, 0, HAINTMSK);
197
198 /* Enable the common interrupts */
199 dwc2_enable_common_interrupts(hsotg);
200
201 /* Enable host mode interrupts without disturbing common interrupts */
202 intmsk = dwc2_readl(hsotg, GINTMSK);
203 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
204 dwc2_writel(hsotg, intmsk, GINTMSK);
205 }
206
207 /**
208 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
209 *
210 * @hsotg: Programming view of DWC_otg controller
211 */
dwc2_disable_host_interrupts(struct dwc2_hsotg * hsotg)212 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
213 {
214 u32 intmsk = dwc2_readl(hsotg, GINTMSK);
215
216 /* Disable host mode interrupts without disturbing common interrupts */
217 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
218 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
219 dwc2_writel(hsotg, intmsk, GINTMSK);
220 }
221
222 /*
223 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
224 * For system that have a total fifo depth that is smaller than the default
225 * RX + TX fifo size.
226 *
227 * @hsotg: Programming view of DWC_otg controller
228 */
dwc2_calculate_dynamic_fifo(struct dwc2_hsotg * hsotg)229 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
230 {
231 struct dwc2_core_params *params = &hsotg->params;
232 struct dwc2_hw_params *hw = &hsotg->hw_params;
233 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
234
235 total_fifo_size = hw->total_fifo_size;
236 rxfsiz = params->host_rx_fifo_size;
237 nptxfsiz = params->host_nperio_tx_fifo_size;
238 ptxfsiz = params->host_perio_tx_fifo_size;
239
240 /*
241 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
242 * allocation with support for high bandwidth endpoints. Synopsys
243 * defines MPS(Max Packet size) for a periodic EP=1024, and for
244 * non-periodic as 512.
245 */
246 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
247 /*
248 * For Buffer DMA mode/Scatter Gather DMA mode
249 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
250 * with n = number of host channel.
251 * 2 * ((1024/4) + 2) = 516
252 */
253 rxfsiz = 516 + hw->host_channels;
254
255 /*
256 * min non-periodic tx fifo depth
257 * 2 * (largest non-periodic USB packet used / 4)
258 * 2 * (512/4) = 256
259 */
260 nptxfsiz = 256;
261
262 /*
263 * min periodic tx fifo depth
264 * (largest packet size*MC)/4
265 * (1024 * 3)/4 = 768
266 */
267 ptxfsiz = 768;
268
269 params->host_rx_fifo_size = rxfsiz;
270 params->host_nperio_tx_fifo_size = nptxfsiz;
271 params->host_perio_tx_fifo_size = ptxfsiz;
272 }
273
274 /*
275 * If the summation of RX, NPTX and PTX fifo sizes is still
276 * bigger than the total_fifo_size, then we have a problem.
277 *
278 * We won't be able to allocate as many endpoints. Right now,
279 * we're just printing an error message, but ideally this FIFO
280 * allocation algorithm would be improved in the future.
281 *
282 * FIXME improve this FIFO allocation algorithm.
283 */
284 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
285 dev_err(hsotg->dev, "invalid fifo sizes\n");
286 }
287
dwc2_config_fifos(struct dwc2_hsotg * hsotg)288 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
289 {
290 struct dwc2_core_params *params = &hsotg->params;
291 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
292
293 if (!params->enable_dynamic_fifo)
294 return;
295
296 dwc2_calculate_dynamic_fifo(hsotg);
297
298 /* Rx FIFO */
299 grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
300 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
301 grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
302 grxfsiz |= params->host_rx_fifo_size <<
303 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
304 dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
305 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
306 dwc2_readl(hsotg, GRXFSIZ));
307
308 /* Non-periodic Tx FIFO */
309 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
310 dwc2_readl(hsotg, GNPTXFSIZ));
311 nptxfsiz = params->host_nperio_tx_fifo_size <<
312 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
313 nptxfsiz |= params->host_rx_fifo_size <<
314 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
315 dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
316 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
317 dwc2_readl(hsotg, GNPTXFSIZ));
318
319 /* Periodic Tx FIFO */
320 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
321 dwc2_readl(hsotg, HPTXFSIZ));
322 hptxfsiz = params->host_perio_tx_fifo_size <<
323 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
324 hptxfsiz |= (params->host_rx_fifo_size +
325 params->host_nperio_tx_fifo_size) <<
326 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
327 dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
328 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
329 dwc2_readl(hsotg, HPTXFSIZ));
330
331 if (hsotg->params.en_multiple_tx_fifo &&
332 hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
333 /*
334 * This feature was implemented in 2.91a version
335 * Global DFIFOCFG calculation for Host mode -
336 * include RxFIFO, NPTXFIFO and HPTXFIFO
337 */
338 dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
339 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
340 dfifocfg |= (params->host_rx_fifo_size +
341 params->host_nperio_tx_fifo_size +
342 params->host_perio_tx_fifo_size) <<
343 GDFIFOCFG_EPINFOBASE_SHIFT &
344 GDFIFOCFG_EPINFOBASE_MASK;
345 dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
346 }
347 }
348
349 /**
350 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
351 * the HFIR register according to PHY type and speed
352 *
353 * @hsotg: Programming view of DWC_otg controller
354 *
355 * NOTE: The caller can modify the value of the HFIR register only after the
356 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
357 * has been set
358 */
dwc2_calc_frame_interval(struct dwc2_hsotg * hsotg)359 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
360 {
361 u32 usbcfg;
362 u32 hprt0;
363 int clock = 60; /* default value */
364
365 usbcfg = dwc2_readl(hsotg, GUSBCFG);
366 hprt0 = dwc2_readl(hsotg, HPRT0);
367
368 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
369 !(usbcfg & GUSBCFG_PHYIF16))
370 clock = 60;
371 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
372 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
373 clock = 48;
374 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
375 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
376 clock = 30;
377 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
378 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
379 clock = 60;
380 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
381 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
382 clock = 48;
383 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
384 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
385 clock = 48;
386 if ((usbcfg & GUSBCFG_PHYSEL) &&
387 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
388 clock = 48;
389
390 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
391 /* High speed case */
392 return 125 * clock - 1;
393
394 /* FS/LS case */
395 return 1000 * clock - 1;
396 }
397
398 /**
399 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
400 * buffer
401 *
402 * @hsotg: Programming view of DWC_otg controller
403 * @dest: Destination buffer for the packet
404 * @bytes: Number of bytes to copy to the destination
405 */
dwc2_read_packet(struct dwc2_hsotg * hsotg,u8 * dest,u16 bytes)406 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
407 {
408 u32 *data_buf = (u32 *)dest;
409 int word_count = (bytes + 3) / 4;
410 int i;
411
412 /*
413 * Todo: Account for the case where dest is not dword aligned. This
414 * requires reading data from the FIFO into a u32 temp buffer, then
415 * moving it into the data buffer.
416 */
417
418 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
419
420 for (i = 0; i < word_count; i++, data_buf++)
421 *data_buf = dwc2_readl(hsotg, HCFIFO(0));
422 }
423
424 /**
425 * dwc2_dump_channel_info() - Prints the state of a host channel
426 *
427 * @hsotg: Programming view of DWC_otg controller
428 * @chan: Pointer to the channel to dump
429 *
430 * Must be called with interrupt disabled and spinlock held
431 *
432 * NOTE: This function will be removed once the peripheral controller code
433 * is integrated and the driver is stable
434 */
dwc2_dump_channel_info(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)435 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
436 struct dwc2_host_chan *chan)
437 {
438 #ifdef VERBOSE_DEBUG
439 int num_channels = hsotg->params.host_channels;
440 struct dwc2_qh *qh;
441 u32 hcchar;
442 u32 hcsplt;
443 u32 hctsiz;
444 u32 hc_dma;
445 int i;
446
447 if (!chan)
448 return;
449
450 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
451 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
452 hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
453 hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
454
455 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan);
456 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n",
457 hcchar, hcsplt);
458 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n",
459 hctsiz, hc_dma);
460 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
461 chan->dev_addr, chan->ep_num, chan->ep_is_in);
462 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
463 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
464 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start);
465 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started);
466 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
467 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
468 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
469 (unsigned long)chan->xfer_dma);
470 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
471 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
472 dev_dbg(hsotg->dev, " NP inactive sched:\n");
473 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
474 qh_list_entry)
475 dev_dbg(hsotg->dev, " %p\n", qh);
476 dev_dbg(hsotg->dev, " NP waiting sched:\n");
477 list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
478 qh_list_entry)
479 dev_dbg(hsotg->dev, " %p\n", qh);
480 dev_dbg(hsotg->dev, " NP active sched:\n");
481 list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
482 qh_list_entry)
483 dev_dbg(hsotg->dev, " %p\n", qh);
484 dev_dbg(hsotg->dev, " Channels:\n");
485 for (i = 0; i < num_channels; i++) {
486 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
487
488 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan);
489 }
490 #endif /* VERBOSE_DEBUG */
491 }
492
493 static int _dwc2_hcd_start(struct usb_hcd *hcd);
494
dwc2_host_start(struct dwc2_hsotg * hsotg)495 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
496 {
497 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
498
499 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
500 _dwc2_hcd_start(hcd);
501 }
502
dwc2_host_disconnect(struct dwc2_hsotg * hsotg)503 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
504 {
505 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
506
507 hcd->self.is_b_host = 0;
508 }
509
dwc2_host_hub_info(struct dwc2_hsotg * hsotg,void * context,int * hub_addr,int * hub_port)510 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
511 int *hub_addr, int *hub_port)
512 {
513 struct urb *urb = context;
514
515 if (urb->dev->tt)
516 *hub_addr = urb->dev->tt->hub->devnum;
517 else
518 *hub_addr = 0;
519 *hub_port = urb->dev->ttport;
520 }
521
522 /*
523 * =========================================================================
524 * Low Level Host Channel Access Functions
525 * =========================================================================
526 */
527
dwc2_hc_enable_slave_ints(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)528 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
529 struct dwc2_host_chan *chan)
530 {
531 u32 hcintmsk = HCINTMSK_CHHLTD;
532
533 switch (chan->ep_type) {
534 case USB_ENDPOINT_XFER_CONTROL:
535 case USB_ENDPOINT_XFER_BULK:
536 dev_vdbg(hsotg->dev, "control/bulk\n");
537 hcintmsk |= HCINTMSK_XFERCOMPL;
538 hcintmsk |= HCINTMSK_STALL;
539 hcintmsk |= HCINTMSK_XACTERR;
540 hcintmsk |= HCINTMSK_DATATGLERR;
541 if (chan->ep_is_in) {
542 hcintmsk |= HCINTMSK_BBLERR;
543 } else {
544 hcintmsk |= HCINTMSK_NAK;
545 hcintmsk |= HCINTMSK_NYET;
546 if (chan->do_ping)
547 hcintmsk |= HCINTMSK_ACK;
548 }
549
550 if (chan->do_split) {
551 hcintmsk |= HCINTMSK_NAK;
552 if (chan->complete_split)
553 hcintmsk |= HCINTMSK_NYET;
554 else
555 hcintmsk |= HCINTMSK_ACK;
556 }
557
558 if (chan->error_state)
559 hcintmsk |= HCINTMSK_ACK;
560 break;
561
562 case USB_ENDPOINT_XFER_INT:
563 if (dbg_perio())
564 dev_vdbg(hsotg->dev, "intr\n");
565 hcintmsk |= HCINTMSK_XFERCOMPL;
566 hcintmsk |= HCINTMSK_NAK;
567 hcintmsk |= HCINTMSK_STALL;
568 hcintmsk |= HCINTMSK_XACTERR;
569 hcintmsk |= HCINTMSK_DATATGLERR;
570 hcintmsk |= HCINTMSK_FRMOVRUN;
571
572 if (chan->ep_is_in)
573 hcintmsk |= HCINTMSK_BBLERR;
574 if (chan->error_state)
575 hcintmsk |= HCINTMSK_ACK;
576 if (chan->do_split) {
577 if (chan->complete_split)
578 hcintmsk |= HCINTMSK_NYET;
579 else
580 hcintmsk |= HCINTMSK_ACK;
581 }
582 break;
583
584 case USB_ENDPOINT_XFER_ISOC:
585 if (dbg_perio())
586 dev_vdbg(hsotg->dev, "isoc\n");
587 hcintmsk |= HCINTMSK_XFERCOMPL;
588 hcintmsk |= HCINTMSK_FRMOVRUN;
589 hcintmsk |= HCINTMSK_ACK;
590
591 if (chan->ep_is_in) {
592 hcintmsk |= HCINTMSK_XACTERR;
593 hcintmsk |= HCINTMSK_BBLERR;
594 }
595 break;
596 default:
597 dev_err(hsotg->dev, "## Unknown EP type ##\n");
598 break;
599 }
600
601 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
602 if (dbg_hc(chan))
603 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
604 }
605
dwc2_hc_enable_dma_ints(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)606 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
607 struct dwc2_host_chan *chan)
608 {
609 u32 hcintmsk = HCINTMSK_CHHLTD;
610
611 /*
612 * For Descriptor DMA mode core halts the channel on AHB error.
613 * Interrupt is not required.
614 */
615 if (!hsotg->params.dma_desc_enable) {
616 if (dbg_hc(chan))
617 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
618 hcintmsk |= HCINTMSK_AHBERR;
619 } else {
620 if (dbg_hc(chan))
621 dev_vdbg(hsotg->dev, "desc DMA enabled\n");
622 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
623 hcintmsk |= HCINTMSK_XFERCOMPL;
624 }
625
626 if (chan->error_state && !chan->do_split &&
627 chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
628 if (dbg_hc(chan))
629 dev_vdbg(hsotg->dev, "setting ACK\n");
630 hcintmsk |= HCINTMSK_ACK;
631 if (chan->ep_is_in) {
632 hcintmsk |= HCINTMSK_DATATGLERR;
633 if (chan->ep_type != USB_ENDPOINT_XFER_INT)
634 hcintmsk |= HCINTMSK_NAK;
635 }
636 }
637
638 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
639 if (dbg_hc(chan))
640 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
641 }
642
dwc2_hc_enable_ints(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)643 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
644 struct dwc2_host_chan *chan)
645 {
646 u32 intmsk;
647
648 if (hsotg->params.host_dma) {
649 if (dbg_hc(chan))
650 dev_vdbg(hsotg->dev, "DMA enabled\n");
651 dwc2_hc_enable_dma_ints(hsotg, chan);
652 } else {
653 if (dbg_hc(chan))
654 dev_vdbg(hsotg->dev, "DMA disabled\n");
655 dwc2_hc_enable_slave_ints(hsotg, chan);
656 }
657
658 /* Enable the top level host channel interrupt */
659 intmsk = dwc2_readl(hsotg, HAINTMSK);
660 intmsk |= 1 << chan->hc_num;
661 dwc2_writel(hsotg, intmsk, HAINTMSK);
662 if (dbg_hc(chan))
663 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
664
665 /* Make sure host channel interrupts are enabled */
666 intmsk = dwc2_readl(hsotg, GINTMSK);
667 intmsk |= GINTSTS_HCHINT;
668 dwc2_writel(hsotg, intmsk, GINTMSK);
669 if (dbg_hc(chan))
670 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
671 }
672
673 /**
674 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
675 * a specific endpoint
676 *
677 * @hsotg: Programming view of DWC_otg controller
678 * @chan: Information needed to initialize the host channel
679 *
680 * The HCCHARn register is set up with the characteristics specified in chan.
681 * Host channel interrupts that may need to be serviced while this transfer is
682 * in progress are enabled.
683 */
dwc2_hc_init(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)684 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
685 {
686 u8 hc_num = chan->hc_num;
687 u32 hcintmsk;
688 u32 hcchar;
689 u32 hcsplt = 0;
690
691 if (dbg_hc(chan))
692 dev_vdbg(hsotg->dev, "%s()\n", __func__);
693
694 /* Clear old interrupt conditions for this host channel */
695 hcintmsk = 0xffffffff;
696 hcintmsk &= ~HCINTMSK_RESERVED14_31;
697 dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
698
699 /* Enable channel interrupts required for this transfer */
700 dwc2_hc_enable_ints(hsotg, chan);
701
702 /*
703 * Program the HCCHARn register with the endpoint characteristics for
704 * the current transfer
705 */
706 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
707 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
708 if (chan->ep_is_in)
709 hcchar |= HCCHAR_EPDIR;
710 if (chan->speed == USB_SPEED_LOW)
711 hcchar |= HCCHAR_LSPDDEV;
712 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
713 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
714 dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
715 if (dbg_hc(chan)) {
716 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
717 hc_num, hcchar);
718
719 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
720 __func__, hc_num);
721 dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
722 chan->dev_addr);
723 dev_vdbg(hsotg->dev, " Ep Num: %d\n",
724 chan->ep_num);
725 dev_vdbg(hsotg->dev, " Is In: %d\n",
726 chan->ep_is_in);
727 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
728 chan->speed == USB_SPEED_LOW);
729 dev_vdbg(hsotg->dev, " Ep Type: %d\n",
730 chan->ep_type);
731 dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
732 chan->max_packet);
733 }
734
735 /* Program the HCSPLT register for SPLITs */
736 if (chan->do_split) {
737 if (dbg_hc(chan))
738 dev_vdbg(hsotg->dev,
739 "Programming HC %d with split --> %s\n",
740 hc_num,
741 chan->complete_split ? "CSPLIT" : "SSPLIT");
742 if (chan->complete_split)
743 hcsplt |= HCSPLT_COMPSPLT;
744 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
745 HCSPLT_XACTPOS_MASK;
746 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
747 HCSPLT_HUBADDR_MASK;
748 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
749 HCSPLT_PRTADDR_MASK;
750 if (dbg_hc(chan)) {
751 dev_vdbg(hsotg->dev, " comp split %d\n",
752 chan->complete_split);
753 dev_vdbg(hsotg->dev, " xact pos %d\n",
754 chan->xact_pos);
755 dev_vdbg(hsotg->dev, " hub addr %d\n",
756 chan->hub_addr);
757 dev_vdbg(hsotg->dev, " hub port %d\n",
758 chan->hub_port);
759 dev_vdbg(hsotg->dev, " is_in %d\n",
760 chan->ep_is_in);
761 dev_vdbg(hsotg->dev, " Max Pkt %d\n",
762 chan->max_packet);
763 dev_vdbg(hsotg->dev, " xferlen %d\n",
764 chan->xfer_len);
765 }
766 }
767
768 dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
769 }
770
771 /**
772 * dwc2_hc_halt() - Attempts to halt a host channel
773 *
774 * @hsotg: Controller register interface
775 * @chan: Host channel to halt
776 * @halt_status: Reason for halting the channel
777 *
778 * This function should only be called in Slave mode or to abort a transfer in
779 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
780 * controller halts the channel when the transfer is complete or a condition
781 * occurs that requires application intervention.
782 *
783 * In slave mode, checks for a free request queue entry, then sets the Channel
784 * Enable and Channel Disable bits of the Host Channel Characteristics
785 * register of the specified channel to intiate the halt. If there is no free
786 * request queue entry, sets only the Channel Disable bit of the HCCHARn
787 * register to flush requests for this channel. In the latter case, sets a
788 * flag to indicate that the host channel needs to be halted when a request
789 * queue slot is open.
790 *
791 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
792 * HCCHARn register. The controller ensures there is space in the request
793 * queue before submitting the halt request.
794 *
795 * Some time may elapse before the core flushes any posted requests for this
796 * host channel and halts. The Channel Halted interrupt handler completes the
797 * deactivation of the host channel.
798 */
dwc2_hc_halt(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,enum dwc2_halt_status halt_status)799 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
800 enum dwc2_halt_status halt_status)
801 {
802 u32 nptxsts, hptxsts, hcchar;
803
804 if (dbg_hc(chan))
805 dev_vdbg(hsotg->dev, "%s()\n", __func__);
806
807 /*
808 * In buffer DMA or external DMA mode channel can't be halted
809 * for non-split periodic channels. At the end of the next
810 * uframe/frame (in the worst case), the core generates a channel
811 * halted and disables the channel automatically.
812 */
813 if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
814 hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
815 if (!chan->do_split &&
816 (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
817 chan->ep_type == USB_ENDPOINT_XFER_INT)) {
818 dev_err(hsotg->dev, "%s() Channel can't be halted\n",
819 __func__);
820 return;
821 }
822 }
823
824 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
825 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
826
827 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
828 halt_status == DWC2_HC_XFER_AHB_ERR) {
829 /*
830 * Disable all channel interrupts except Ch Halted. The QTD
831 * and QH state associated with this transfer has been cleared
832 * (in the case of URB_DEQUEUE), so the channel needs to be
833 * shut down carefully to prevent crashes.
834 */
835 u32 hcintmsk = HCINTMSK_CHHLTD;
836
837 dev_vdbg(hsotg->dev, "dequeue/error\n");
838 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
839
840 /*
841 * Make sure no other interrupts besides halt are currently
842 * pending. Handling another interrupt could cause a crash due
843 * to the QTD and QH state.
844 */
845 dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
846
847 /*
848 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
849 * even if the channel was already halted for some other
850 * reason
851 */
852 chan->halt_status = halt_status;
853
854 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
855 if (!(hcchar & HCCHAR_CHENA)) {
856 /*
857 * The channel is either already halted or it hasn't
858 * started yet. In DMA mode, the transfer may halt if
859 * it finishes normally or a condition occurs that
860 * requires driver intervention. Don't want to halt
861 * the channel again. In either Slave or DMA mode,
862 * it's possible that the transfer has been assigned
863 * to a channel, but not started yet when an URB is
864 * dequeued. Don't want to halt a channel that hasn't
865 * started yet.
866 */
867 return;
868 }
869 }
870 if (chan->halt_pending) {
871 /*
872 * A halt has already been issued for this channel. This might
873 * happen when a transfer is aborted by a higher level in
874 * the stack.
875 */
876 dev_vdbg(hsotg->dev,
877 "*** %s: Channel %d, chan->halt_pending already set ***\n",
878 __func__, chan->hc_num);
879 return;
880 }
881
882 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
883
884 /* No need to set the bit in DDMA for disabling the channel */
885 /* TODO check it everywhere channel is disabled */
886 if (!hsotg->params.dma_desc_enable) {
887 if (dbg_hc(chan))
888 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
889 hcchar |= HCCHAR_CHENA;
890 } else {
891 if (dbg_hc(chan))
892 dev_dbg(hsotg->dev, "desc DMA enabled\n");
893 }
894 hcchar |= HCCHAR_CHDIS;
895
896 if (!hsotg->params.host_dma) {
897 if (dbg_hc(chan))
898 dev_vdbg(hsotg->dev, "DMA not enabled\n");
899 hcchar |= HCCHAR_CHENA;
900
901 /* Check for space in the request queue to issue the halt */
902 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
903 chan->ep_type == USB_ENDPOINT_XFER_BULK) {
904 dev_vdbg(hsotg->dev, "control/bulk\n");
905 nptxsts = dwc2_readl(hsotg, GNPTXSTS);
906 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
907 dev_vdbg(hsotg->dev, "Disabling channel\n");
908 hcchar &= ~HCCHAR_CHENA;
909 }
910 } else {
911 if (dbg_perio())
912 dev_vdbg(hsotg->dev, "isoc/intr\n");
913 hptxsts = dwc2_readl(hsotg, HPTXSTS);
914 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
915 hsotg->queuing_high_bandwidth) {
916 if (dbg_perio())
917 dev_vdbg(hsotg->dev, "Disabling channel\n");
918 hcchar &= ~HCCHAR_CHENA;
919 }
920 }
921 } else {
922 if (dbg_hc(chan))
923 dev_vdbg(hsotg->dev, "DMA enabled\n");
924 }
925
926 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
927 chan->halt_status = halt_status;
928
929 if (hcchar & HCCHAR_CHENA) {
930 if (dbg_hc(chan))
931 dev_vdbg(hsotg->dev, "Channel enabled\n");
932 chan->halt_pending = 1;
933 chan->halt_on_queue = 0;
934 } else {
935 if (dbg_hc(chan))
936 dev_vdbg(hsotg->dev, "Channel disabled\n");
937 chan->halt_on_queue = 1;
938 }
939
940 if (dbg_hc(chan)) {
941 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
942 chan->hc_num);
943 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
944 hcchar);
945 dev_vdbg(hsotg->dev, " halt_pending: %d\n",
946 chan->halt_pending);
947 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
948 chan->halt_on_queue);
949 dev_vdbg(hsotg->dev, " halt_status: %d\n",
950 chan->halt_status);
951 }
952 }
953
954 /**
955 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
956 *
957 * @hsotg: Programming view of DWC_otg controller
958 * @chan: Identifies the host channel to clean up
959 *
960 * This function is normally called after a transfer is done and the host
961 * channel is being released
962 */
dwc2_hc_cleanup(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)963 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
964 {
965 u32 hcintmsk;
966
967 chan->xfer_started = 0;
968
969 list_del_init(&chan->split_order_list_entry);
970
971 /*
972 * Clear channel interrupt enables and any unhandled channel interrupt
973 * conditions
974 */
975 dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
976 hcintmsk = 0xffffffff;
977 hcintmsk &= ~HCINTMSK_RESERVED14_31;
978 dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
979 }
980
981 /**
982 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
983 * which frame a periodic transfer should occur
984 *
985 * @hsotg: Programming view of DWC_otg controller
986 * @chan: Identifies the host channel to set up and its properties
987 * @hcchar: Current value of the HCCHAR register for the specified host channel
988 *
989 * This function has no effect on non-periodic transfers
990 */
dwc2_hc_set_even_odd_frame(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,u32 * hcchar)991 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
992 struct dwc2_host_chan *chan, u32 *hcchar)
993 {
994 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
995 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
996 int host_speed;
997 int xfer_ns;
998 int xfer_us;
999 int bytes_in_fifo;
1000 u16 fifo_space;
1001 u16 frame_number;
1002 u16 wire_frame;
1003
1004 /*
1005 * Try to figure out if we're an even or odd frame. If we set
1006 * even and the current frame number is even the the transfer
1007 * will happen immediately. Similar if both are odd. If one is
1008 * even and the other is odd then the transfer will happen when
1009 * the frame number ticks.
1010 *
1011 * There's a bit of a balancing act to get this right.
1012 * Sometimes we may want to send data in the current frame (AK
1013 * right away). We might want to do this if the frame number
1014 * _just_ ticked, but we might also want to do this in order
1015 * to continue a split transaction that happened late in a
1016 * microframe (so we didn't know to queue the next transfer
1017 * until the frame number had ticked). The problem is that we
1018 * need a lot of knowledge to know if there's actually still
1019 * time to send things or if it would be better to wait until
1020 * the next frame.
1021 *
1022 * We can look at how much time is left in the current frame
1023 * and make a guess about whether we'll have time to transfer.
1024 * We'll do that.
1025 */
1026
1027 /* Get speed host is running at */
1028 host_speed = (chan->speed != USB_SPEED_HIGH &&
1029 !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1030
1031 /* See how many bytes are in the periodic FIFO right now */
1032 fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1033 TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1034 bytes_in_fifo = sizeof(u32) *
1035 (hsotg->params.host_perio_tx_fifo_size -
1036 fifo_space);
1037
1038 /*
1039 * Roughly estimate bus time for everything in the periodic
1040 * queue + our new transfer. This is "rough" because we're
1041 * using a function that makes takes into account IN/OUT
1042 * and INT/ISO and we're just slamming in one value for all
1043 * transfers. This should be an over-estimate and that should
1044 * be OK, but we can probably tighten it.
1045 */
1046 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1047 chan->xfer_len + bytes_in_fifo);
1048 xfer_us = NS_TO_US(xfer_ns);
1049
1050 /* See what frame number we'll be at by the time we finish */
1051 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1052
1053 /* This is when we were scheduled to be on the wire */
1054 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1055
1056 /*
1057 * If we'd finish _after_ the frame we're scheduled in then
1058 * it's hopeless. Just schedule right away and hope for the
1059 * best. Note that it _might_ be wise to call back into the
1060 * scheduler to pick a better frame, but this is better than
1061 * nothing.
1062 */
1063 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1064 dwc2_sch_vdbg(hsotg,
1065 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1066 chan->qh, wire_frame, frame_number,
1067 dwc2_frame_num_dec(frame_number,
1068 wire_frame));
1069 wire_frame = frame_number;
1070
1071 /*
1072 * We picked a different frame number; communicate this
1073 * back to the scheduler so it doesn't try to schedule
1074 * another in the same frame.
1075 *
1076 * Remember that next_active_frame is 1 before the wire
1077 * frame.
1078 */
1079 chan->qh->next_active_frame =
1080 dwc2_frame_num_dec(frame_number, 1);
1081 }
1082
1083 if (wire_frame & 1)
1084 *hcchar |= HCCHAR_ODDFRM;
1085 else
1086 *hcchar &= ~HCCHAR_ODDFRM;
1087 }
1088 }
1089
dwc2_set_pid_isoc(struct dwc2_host_chan * chan)1090 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1091 {
1092 /* Set up the initial PID for the transfer */
1093 if (chan->speed == USB_SPEED_HIGH) {
1094 if (chan->ep_is_in) {
1095 if (chan->multi_count == 1)
1096 chan->data_pid_start = DWC2_HC_PID_DATA0;
1097 else if (chan->multi_count == 2)
1098 chan->data_pid_start = DWC2_HC_PID_DATA1;
1099 else
1100 chan->data_pid_start = DWC2_HC_PID_DATA2;
1101 } else {
1102 if (chan->multi_count == 1)
1103 chan->data_pid_start = DWC2_HC_PID_DATA0;
1104 else
1105 chan->data_pid_start = DWC2_HC_PID_MDATA;
1106 }
1107 } else {
1108 chan->data_pid_start = DWC2_HC_PID_DATA0;
1109 }
1110 }
1111
1112 /**
1113 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1114 * the Host Channel
1115 *
1116 * @hsotg: Programming view of DWC_otg controller
1117 * @chan: Information needed to initialize the host channel
1118 *
1119 * This function should only be called in Slave mode. For a channel associated
1120 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1121 * associated with a periodic EP, the periodic Tx FIFO is written.
1122 *
1123 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1124 * the number of bytes written to the Tx FIFO.
1125 */
dwc2_hc_write_packet(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1126 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1127 struct dwc2_host_chan *chan)
1128 {
1129 u32 i;
1130 u32 remaining_count;
1131 u32 byte_count;
1132 u32 dword_count;
1133 u32 *data_buf = (u32 *)chan->xfer_buf;
1134
1135 if (dbg_hc(chan))
1136 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1137
1138 remaining_count = chan->xfer_len - chan->xfer_count;
1139 if (remaining_count > chan->max_packet)
1140 byte_count = chan->max_packet;
1141 else
1142 byte_count = remaining_count;
1143
1144 dword_count = (byte_count + 3) / 4;
1145
1146 if (((unsigned long)data_buf & 0x3) == 0) {
1147 /* xfer_buf is DWORD aligned */
1148 for (i = 0; i < dword_count; i++, data_buf++)
1149 dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1150 } else {
1151 /* xfer_buf is not DWORD aligned */
1152 for (i = 0; i < dword_count; i++, data_buf++) {
1153 u32 data = data_buf[0] | data_buf[1] << 8 |
1154 data_buf[2] << 16 | data_buf[3] << 24;
1155 dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1156 }
1157 }
1158
1159 chan->xfer_count += byte_count;
1160 chan->xfer_buf += byte_count;
1161 }
1162
1163 /**
1164 * dwc2_hc_do_ping() - Starts a PING transfer
1165 *
1166 * @hsotg: Programming view of DWC_otg controller
1167 * @chan: Information needed to initialize the host channel
1168 *
1169 * This function should only be called in Slave mode. The Do Ping bit is set in
1170 * the HCTSIZ register, then the channel is enabled.
1171 */
dwc2_hc_do_ping(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1172 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1173 struct dwc2_host_chan *chan)
1174 {
1175 u32 hcchar;
1176 u32 hctsiz;
1177
1178 if (dbg_hc(chan))
1179 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1180 chan->hc_num);
1181
1182 hctsiz = TSIZ_DOPNG;
1183 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1184 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1185
1186 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1187 hcchar |= HCCHAR_CHENA;
1188 hcchar &= ~HCCHAR_CHDIS;
1189 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1190 }
1191
1192 /**
1193 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1194 * channel and starts the transfer
1195 *
1196 * @hsotg: Programming view of DWC_otg controller
1197 * @chan: Information needed to initialize the host channel. The xfer_len value
1198 * may be reduced to accommodate the max widths of the XferSize and
1199 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1200 * changed to reflect the final xfer_len value.
1201 *
1202 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1203 * the caller must ensure that there is sufficient space in the request queue
1204 * and Tx Data FIFO.
1205 *
1206 * For an OUT transfer in Slave mode, it loads a data packet into the
1207 * appropriate FIFO. If necessary, additional data packets are loaded in the
1208 * Host ISR.
1209 *
1210 * For an IN transfer in Slave mode, a data packet is requested. The data
1211 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1212 * additional data packets are requested in the Host ISR.
1213 *
1214 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1215 * register along with a packet count of 1 and the channel is enabled. This
1216 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1217 * simply set to 0 since no data transfer occurs in this case.
1218 *
1219 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1220 * all the information required to perform the subsequent data transfer. In
1221 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1222 * controller performs the entire PING protocol, then starts the data
1223 * transfer.
1224 */
dwc2_hc_start_transfer(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1225 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1226 struct dwc2_host_chan *chan)
1227 {
1228 u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1229 u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1230 u32 hcchar;
1231 u32 hctsiz = 0;
1232 u16 num_packets;
1233 u32 ec_mc;
1234
1235 if (dbg_hc(chan))
1236 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1237
1238 if (chan->do_ping) {
1239 if (!hsotg->params.host_dma) {
1240 if (dbg_hc(chan))
1241 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1242 dwc2_hc_do_ping(hsotg, chan);
1243 chan->xfer_started = 1;
1244 return;
1245 }
1246
1247 if (dbg_hc(chan))
1248 dev_vdbg(hsotg->dev, "ping, DMA\n");
1249
1250 hctsiz |= TSIZ_DOPNG;
1251 }
1252
1253 if (chan->do_split) {
1254 if (dbg_hc(chan))
1255 dev_vdbg(hsotg->dev, "split\n");
1256 num_packets = 1;
1257
1258 if (chan->complete_split && !chan->ep_is_in)
1259 /*
1260 * For CSPLIT OUT Transfer, set the size to 0 so the
1261 * core doesn't expect any data written to the FIFO
1262 */
1263 chan->xfer_len = 0;
1264 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1265 chan->xfer_len = chan->max_packet;
1266 else if (!chan->ep_is_in && chan->xfer_len > 188)
1267 chan->xfer_len = 188;
1268
1269 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1270 TSIZ_XFERSIZE_MASK;
1271
1272 /* For split set ec_mc for immediate retries */
1273 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1274 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1275 ec_mc = 3;
1276 else
1277 ec_mc = 1;
1278 } else {
1279 if (dbg_hc(chan))
1280 dev_vdbg(hsotg->dev, "no split\n");
1281 /*
1282 * Ensure that the transfer length and packet count will fit
1283 * in the widths allocated for them in the HCTSIZn register
1284 */
1285 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1286 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1287 /*
1288 * Make sure the transfer size is no larger than one
1289 * (micro)frame's worth of data. (A check was done
1290 * when the periodic transfer was accepted to ensure
1291 * that a (micro)frame's worth of data can be
1292 * programmed into a channel.)
1293 */
1294 u32 max_periodic_len =
1295 chan->multi_count * chan->max_packet;
1296
1297 if (chan->xfer_len > max_periodic_len)
1298 chan->xfer_len = max_periodic_len;
1299 } else if (chan->xfer_len > max_hc_xfer_size) {
1300 /*
1301 * Make sure that xfer_len is a multiple of max packet
1302 * size
1303 */
1304 chan->xfer_len =
1305 max_hc_xfer_size - chan->max_packet + 1;
1306 }
1307
1308 if (chan->xfer_len > 0) {
1309 num_packets = (chan->xfer_len + chan->max_packet - 1) /
1310 chan->max_packet;
1311 if (num_packets > max_hc_pkt_count) {
1312 num_packets = max_hc_pkt_count;
1313 chan->xfer_len = num_packets * chan->max_packet;
1314 } else if (chan->ep_is_in) {
1315 /*
1316 * Always program an integral # of max packets
1317 * for IN transfers.
1318 * Note: This assumes that the input buffer is
1319 * aligned and sized accordingly.
1320 */
1321 chan->xfer_len = num_packets * chan->max_packet;
1322 }
1323 } else {
1324 /* Need 1 packet for transfer length of 0 */
1325 num_packets = 1;
1326 }
1327
1328 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1329 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1330 /*
1331 * Make sure that the multi_count field matches the
1332 * actual transfer length
1333 */
1334 chan->multi_count = num_packets;
1335
1336 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1337 dwc2_set_pid_isoc(chan);
1338
1339 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1340 TSIZ_XFERSIZE_MASK;
1341
1342 /* The ec_mc gets the multi_count for non-split */
1343 ec_mc = chan->multi_count;
1344 }
1345
1346 chan->start_pkt_count = num_packets;
1347 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1348 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1349 TSIZ_SC_MC_PID_MASK;
1350 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1351 if (dbg_hc(chan)) {
1352 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1353 hctsiz, chan->hc_num);
1354
1355 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1356 chan->hc_num);
1357 dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
1358 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1359 TSIZ_XFERSIZE_SHIFT);
1360 dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
1361 (hctsiz & TSIZ_PKTCNT_MASK) >>
1362 TSIZ_PKTCNT_SHIFT);
1363 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1364 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1365 TSIZ_SC_MC_PID_SHIFT);
1366 }
1367
1368 if (hsotg->params.host_dma) {
1369 dma_addr_t dma_addr;
1370
1371 if (chan->align_buf) {
1372 if (dbg_hc(chan))
1373 dev_vdbg(hsotg->dev, "align_buf\n");
1374 dma_addr = chan->align_buf;
1375 } else {
1376 dma_addr = chan->xfer_dma;
1377 }
1378 dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1379
1380 if (dbg_hc(chan))
1381 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1382 (unsigned long)dma_addr, chan->hc_num);
1383 }
1384
1385 /* Start the split */
1386 if (chan->do_split) {
1387 u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1388
1389 hcsplt |= HCSPLT_SPLTENA;
1390 dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1391 }
1392
1393 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1394 hcchar &= ~HCCHAR_MULTICNT_MASK;
1395 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1396 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1397
1398 if (hcchar & HCCHAR_CHDIS)
1399 dev_warn(hsotg->dev,
1400 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1401 __func__, chan->hc_num, hcchar);
1402
1403 /* Set host channel enable after all other setup is complete */
1404 hcchar |= HCCHAR_CHENA;
1405 hcchar &= ~HCCHAR_CHDIS;
1406
1407 if (dbg_hc(chan))
1408 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1409 (hcchar & HCCHAR_MULTICNT_MASK) >>
1410 HCCHAR_MULTICNT_SHIFT);
1411
1412 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1413 if (dbg_hc(chan))
1414 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1415 chan->hc_num);
1416
1417 chan->xfer_started = 1;
1418 chan->requests++;
1419
1420 if (!hsotg->params.host_dma &&
1421 !chan->ep_is_in && chan->xfer_len > 0)
1422 /* Load OUT packet into the appropriate Tx FIFO */
1423 dwc2_hc_write_packet(hsotg, chan);
1424 }
1425
1426 /**
1427 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1428 * host channel and starts the transfer in Descriptor DMA mode
1429 *
1430 * @hsotg: Programming view of DWC_otg controller
1431 * @chan: Information needed to initialize the host channel
1432 *
1433 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1434 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1435 * with micro-frame bitmap.
1436 *
1437 * Initializes HCDMA register with descriptor list address and CTD value then
1438 * starts the transfer via enabling the channel.
1439 */
dwc2_hc_start_transfer_ddma(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1440 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1441 struct dwc2_host_chan *chan)
1442 {
1443 u32 hcchar;
1444 u32 hctsiz = 0;
1445
1446 if (chan->do_ping)
1447 hctsiz |= TSIZ_DOPNG;
1448
1449 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1450 dwc2_set_pid_isoc(chan);
1451
1452 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1453 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1454 TSIZ_SC_MC_PID_MASK;
1455
1456 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1457 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1458
1459 /* Non-zero only for high-speed interrupt endpoints */
1460 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1461
1462 if (dbg_hc(chan)) {
1463 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1464 chan->hc_num);
1465 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1466 chan->data_pid_start);
1467 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
1468 }
1469
1470 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1471
1472 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1473 chan->desc_list_sz, DMA_TO_DEVICE);
1474
1475 dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1476
1477 if (dbg_hc(chan))
1478 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1479 &chan->desc_list_addr, chan->hc_num);
1480
1481 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1482 hcchar &= ~HCCHAR_MULTICNT_MASK;
1483 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1484 HCCHAR_MULTICNT_MASK;
1485
1486 if (hcchar & HCCHAR_CHDIS)
1487 dev_warn(hsotg->dev,
1488 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1489 __func__, chan->hc_num, hcchar);
1490
1491 /* Set host channel enable after all other setup is complete */
1492 hcchar |= HCCHAR_CHENA;
1493 hcchar &= ~HCCHAR_CHDIS;
1494
1495 if (dbg_hc(chan))
1496 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1497 (hcchar & HCCHAR_MULTICNT_MASK) >>
1498 HCCHAR_MULTICNT_SHIFT);
1499
1500 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1501 if (dbg_hc(chan))
1502 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1503 chan->hc_num);
1504
1505 chan->xfer_started = 1;
1506 chan->requests++;
1507 }
1508
1509 /**
1510 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1511 * a previous call to dwc2_hc_start_transfer()
1512 *
1513 * @hsotg: Programming view of DWC_otg controller
1514 * @chan: Information needed to initialize the host channel
1515 *
1516 * The caller must ensure there is sufficient space in the request queue and Tx
1517 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1518 * the controller acts autonomously to complete transfers programmed to a host
1519 * channel.
1520 *
1521 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1522 * if there is any data remaining to be queued. For an IN transfer, another
1523 * data packet is always requested. For the SETUP phase of a control transfer,
1524 * this function does nothing.
1525 *
1526 * Return: 1 if a new request is queued, 0 if no more requests are required
1527 * for this transfer
1528 */
dwc2_hc_continue_transfer(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1529 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1530 struct dwc2_host_chan *chan)
1531 {
1532 if (dbg_hc(chan))
1533 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1534 chan->hc_num);
1535
1536 if (chan->do_split)
1537 /* SPLITs always queue just once per channel */
1538 return 0;
1539
1540 if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1541 /* SETUPs are queued only once since they can't be NAK'd */
1542 return 0;
1543
1544 if (chan->ep_is_in) {
1545 /*
1546 * Always queue another request for other IN transfers. If
1547 * back-to-back INs are issued and NAKs are received for both,
1548 * the driver may still be processing the first NAK when the
1549 * second NAK is received. When the interrupt handler clears
1550 * the NAK interrupt for the first NAK, the second NAK will
1551 * not be seen. So we can't depend on the NAK interrupt
1552 * handler to requeue a NAK'd request. Instead, IN requests
1553 * are issued each time this function is called. When the
1554 * transfer completes, the extra requests for the channel will
1555 * be flushed.
1556 */
1557 u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1558
1559 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1560 hcchar |= HCCHAR_CHENA;
1561 hcchar &= ~HCCHAR_CHDIS;
1562 if (dbg_hc(chan))
1563 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
1564 hcchar);
1565 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1566 chan->requests++;
1567 return 1;
1568 }
1569
1570 /* OUT transfers */
1571
1572 if (chan->xfer_count < chan->xfer_len) {
1573 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1574 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1575 u32 hcchar = dwc2_readl(hsotg,
1576 HCCHAR(chan->hc_num));
1577
1578 dwc2_hc_set_even_odd_frame(hsotg, chan,
1579 &hcchar);
1580 }
1581
1582 /* Load OUT packet into the appropriate Tx FIFO */
1583 dwc2_hc_write_packet(hsotg, chan);
1584 chan->requests++;
1585 return 1;
1586 }
1587
1588 return 0;
1589 }
1590
1591 /*
1592 * =========================================================================
1593 * HCD
1594 * =========================================================================
1595 */
1596
1597 /*
1598 * Processes all the URBs in a single list of QHs. Completes them with
1599 * -ETIMEDOUT and frees the QTD.
1600 *
1601 * Must be called with interrupt disabled and spinlock held
1602 */
dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg * hsotg,struct list_head * qh_list)1603 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1604 struct list_head *qh_list)
1605 {
1606 struct dwc2_qh *qh, *qh_tmp;
1607 struct dwc2_qtd *qtd, *qtd_tmp;
1608
1609 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1610 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1611 qtd_list_entry) {
1612 dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1613 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1614 }
1615 }
1616 }
1617
dwc2_qh_list_free(struct dwc2_hsotg * hsotg,struct list_head * qh_list)1618 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1619 struct list_head *qh_list)
1620 {
1621 struct dwc2_qtd *qtd, *qtd_tmp;
1622 struct dwc2_qh *qh, *qh_tmp;
1623 unsigned long flags;
1624
1625 if (!qh_list->next)
1626 /* The list hasn't been initialized yet */
1627 return;
1628
1629 spin_lock_irqsave(&hsotg->lock, flags);
1630
1631 /* Ensure there are no QTDs or URBs left */
1632 dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1633
1634 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1635 dwc2_hcd_qh_unlink(hsotg, qh);
1636
1637 /* Free each QTD in the QH's QTD list */
1638 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1639 qtd_list_entry)
1640 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1641
1642 if (qh->channel && qh->channel->qh == qh)
1643 qh->channel->qh = NULL;
1644
1645 spin_unlock_irqrestore(&hsotg->lock, flags);
1646 dwc2_hcd_qh_free(hsotg, qh);
1647 spin_lock_irqsave(&hsotg->lock, flags);
1648 }
1649
1650 spin_unlock_irqrestore(&hsotg->lock, flags);
1651 }
1652
1653 /*
1654 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1655 * and periodic schedules. The QTD associated with each URB is removed from
1656 * the schedule and freed. This function may be called when a disconnect is
1657 * detected or when the HCD is being stopped.
1658 *
1659 * Must be called with interrupt disabled and spinlock held
1660 */
dwc2_kill_all_urbs(struct dwc2_hsotg * hsotg)1661 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1662 {
1663 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1664 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1665 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1666 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1667 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1668 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1669 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1670 }
1671
1672 /**
1673 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1674 *
1675 * @hsotg: Pointer to struct dwc2_hsotg
1676 */
dwc2_hcd_start(struct dwc2_hsotg * hsotg)1677 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1678 {
1679 u32 hprt0;
1680
1681 if (hsotg->op_state == OTG_STATE_B_HOST) {
1682 /*
1683 * Reset the port. During a HNP mode switch the reset
1684 * needs to occur within 1ms and have a duration of at
1685 * least 50ms.
1686 */
1687 hprt0 = dwc2_read_hprt0(hsotg);
1688 hprt0 |= HPRT0_RST;
1689 dwc2_writel(hsotg, hprt0, HPRT0);
1690 }
1691
1692 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1693 msecs_to_jiffies(50));
1694 }
1695
1696 /* Must be called with interrupt disabled and spinlock held */
dwc2_hcd_cleanup_channels(struct dwc2_hsotg * hsotg)1697 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1698 {
1699 int num_channels = hsotg->params.host_channels;
1700 struct dwc2_host_chan *channel;
1701 u32 hcchar;
1702 int i;
1703
1704 if (!hsotg->params.host_dma) {
1705 /* Flush out any channel requests in slave mode */
1706 for (i = 0; i < num_channels; i++) {
1707 channel = hsotg->hc_ptr_array[i];
1708 if (!list_empty(&channel->hc_list_entry))
1709 continue;
1710 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1711 if (hcchar & HCCHAR_CHENA) {
1712 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1713 hcchar |= HCCHAR_CHDIS;
1714 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1715 }
1716 }
1717 }
1718
1719 for (i = 0; i < num_channels; i++) {
1720 channel = hsotg->hc_ptr_array[i];
1721 if (!list_empty(&channel->hc_list_entry))
1722 continue;
1723 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1724 if (hcchar & HCCHAR_CHENA) {
1725 /* Halt the channel */
1726 hcchar |= HCCHAR_CHDIS;
1727 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1728 }
1729
1730 dwc2_hc_cleanup(hsotg, channel);
1731 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1732 /*
1733 * Added for Descriptor DMA to prevent channel double cleanup in
1734 * release_channel_ddma(), which is called from ep_disable when
1735 * device disconnects
1736 */
1737 channel->qh = NULL;
1738 }
1739 /* All channels have been freed, mark them available */
1740 if (hsotg->params.uframe_sched) {
1741 hsotg->available_host_channels =
1742 hsotg->params.host_channels;
1743 } else {
1744 hsotg->non_periodic_channels = 0;
1745 hsotg->periodic_channels = 0;
1746 }
1747 }
1748
1749 /**
1750 * dwc2_hcd_connect() - Handles connect of the HCD
1751 *
1752 * @hsotg: Pointer to struct dwc2_hsotg
1753 *
1754 * Must be called with interrupt disabled and spinlock held
1755 */
dwc2_hcd_connect(struct dwc2_hsotg * hsotg)1756 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1757 {
1758 if (hsotg->lx_state != DWC2_L0)
1759 usb_hcd_resume_root_hub(hsotg->priv);
1760
1761 hsotg->flags.b.port_connect_status_change = 1;
1762 hsotg->flags.b.port_connect_status = 1;
1763 }
1764
1765 /**
1766 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1767 *
1768 * @hsotg: Pointer to struct dwc2_hsotg
1769 * @force: If true, we won't try to reconnect even if we see device connected.
1770 *
1771 * Must be called with interrupt disabled and spinlock held
1772 */
dwc2_hcd_disconnect(struct dwc2_hsotg * hsotg,bool force)1773 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1774 {
1775 u32 intr;
1776 u32 hprt0;
1777
1778 /* Set status flags for the hub driver */
1779 hsotg->flags.b.port_connect_status_change = 1;
1780 hsotg->flags.b.port_connect_status = 0;
1781
1782 /*
1783 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1784 * interrupt mask and status bits and disabling subsequent host
1785 * channel interrupts.
1786 */
1787 intr = dwc2_readl(hsotg, GINTMSK);
1788 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1789 dwc2_writel(hsotg, intr, GINTMSK);
1790 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1791 dwc2_writel(hsotg, intr, GINTSTS);
1792
1793 /*
1794 * Turn off the vbus power only if the core has transitioned to device
1795 * mode. If still in host mode, need to keep power on to detect a
1796 * reconnection.
1797 */
1798 if (dwc2_is_device_mode(hsotg)) {
1799 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1800 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1801 dwc2_writel(hsotg, 0, HPRT0);
1802 }
1803
1804 dwc2_disable_host_interrupts(hsotg);
1805 }
1806
1807 /* Respond with an error status to all URBs in the schedule */
1808 dwc2_kill_all_urbs(hsotg);
1809
1810 if (dwc2_is_host_mode(hsotg))
1811 /* Clean up any host channels that were in use */
1812 dwc2_hcd_cleanup_channels(hsotg);
1813
1814 dwc2_host_disconnect(hsotg);
1815
1816 /*
1817 * Add an extra check here to see if we're actually connected but
1818 * we don't have a detection interrupt pending. This can happen if:
1819 * 1. hardware sees connect
1820 * 2. hardware sees disconnect
1821 * 3. hardware sees connect
1822 * 4. dwc2_port_intr() - clears connect interrupt
1823 * 5. dwc2_handle_common_intr() - calls here
1824 *
1825 * Without the extra check here we will end calling disconnect
1826 * and won't get any future interrupts to handle the connect.
1827 */
1828 if (!force) {
1829 hprt0 = dwc2_readl(hsotg, HPRT0);
1830 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1831 dwc2_hcd_connect(hsotg);
1832 }
1833 }
1834
1835 /**
1836 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1837 *
1838 * @hsotg: Pointer to struct dwc2_hsotg
1839 */
dwc2_hcd_rem_wakeup(struct dwc2_hsotg * hsotg)1840 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1841 {
1842 if (hsotg->bus_suspended) {
1843 hsotg->flags.b.port_suspend_change = 1;
1844 usb_hcd_resume_root_hub(hsotg->priv);
1845 }
1846
1847 if (hsotg->lx_state == DWC2_L1)
1848 hsotg->flags.b.port_l1_change = 1;
1849 }
1850
1851 /**
1852 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1853 *
1854 * @hsotg: Pointer to struct dwc2_hsotg
1855 *
1856 * Must be called with interrupt disabled and spinlock held
1857 */
dwc2_hcd_stop(struct dwc2_hsotg * hsotg)1858 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1859 {
1860 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1861
1862 /*
1863 * The root hub should be disconnected before this function is called.
1864 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1865 * and the QH lists (via ..._hcd_endpoint_disable).
1866 */
1867
1868 /* Turn off all host-specific interrupts */
1869 dwc2_disable_host_interrupts(hsotg);
1870
1871 /* Turn off the vbus power */
1872 dev_dbg(hsotg->dev, "PortPower off\n");
1873 dwc2_writel(hsotg, 0, HPRT0);
1874 }
1875
1876 /* Caller must hold driver lock */
dwc2_hcd_urb_enqueue(struct dwc2_hsotg * hsotg,struct dwc2_hcd_urb * urb,struct dwc2_qh * qh,struct dwc2_qtd * qtd)1877 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1878 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1879 struct dwc2_qtd *qtd)
1880 {
1881 u32 intr_mask;
1882 int retval;
1883 int dev_speed;
1884
1885 if (!hsotg->flags.b.port_connect_status) {
1886 /* No longer connected */
1887 dev_err(hsotg->dev, "Not connected\n");
1888 return -ENODEV;
1889 }
1890
1891 dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1892
1893 /* Some configurations cannot support LS traffic on a FS root port */
1894 if ((dev_speed == USB_SPEED_LOW) &&
1895 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1896 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1897 u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1898 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1899
1900 if (prtspd == HPRT0_SPD_FULL_SPEED)
1901 return -ENODEV;
1902 }
1903
1904 if (!qtd)
1905 return -EINVAL;
1906
1907 dwc2_hcd_qtd_init(qtd, urb);
1908 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1909 if (retval) {
1910 dev_err(hsotg->dev,
1911 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1912 retval);
1913 return retval;
1914 }
1915
1916 intr_mask = dwc2_readl(hsotg, GINTMSK);
1917 if (!(intr_mask & GINTSTS_SOF)) {
1918 enum dwc2_transaction_type tr_type;
1919
1920 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1921 !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1922 /*
1923 * Do not schedule SG transactions until qtd has
1924 * URB_GIVEBACK_ASAP set
1925 */
1926 return 0;
1927
1928 tr_type = dwc2_hcd_select_transactions(hsotg);
1929 if (tr_type != DWC2_TRANSACTION_NONE)
1930 dwc2_hcd_queue_transactions(hsotg, tr_type);
1931 }
1932
1933 return 0;
1934 }
1935
1936 /* Must be called with interrupt disabled and spinlock held */
dwc2_hcd_urb_dequeue(struct dwc2_hsotg * hsotg,struct dwc2_hcd_urb * urb)1937 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1938 struct dwc2_hcd_urb *urb)
1939 {
1940 struct dwc2_qh *qh;
1941 struct dwc2_qtd *urb_qtd;
1942
1943 urb_qtd = urb->qtd;
1944 if (!urb_qtd) {
1945 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1946 return -EINVAL;
1947 }
1948
1949 qh = urb_qtd->qh;
1950 if (!qh) {
1951 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1952 return -EINVAL;
1953 }
1954
1955 urb->priv = NULL;
1956
1957 if (urb_qtd->in_process && qh->channel) {
1958 dwc2_dump_channel_info(hsotg, qh->channel);
1959
1960 /* The QTD is in process (it has been assigned to a channel) */
1961 if (hsotg->flags.b.port_connect_status)
1962 /*
1963 * If still connected (i.e. in host mode), halt the
1964 * channel so it can be used for other transfers. If
1965 * no longer connected, the host registers can't be
1966 * written to halt the channel since the core is in
1967 * device mode.
1968 */
1969 dwc2_hc_halt(hsotg, qh->channel,
1970 DWC2_HC_XFER_URB_DEQUEUE);
1971 }
1972
1973 /*
1974 * Free the QTD and clean up the associated QH. Leave the QH in the
1975 * schedule if it has any remaining QTDs.
1976 */
1977 if (!hsotg->params.dma_desc_enable) {
1978 u8 in_process = urb_qtd->in_process;
1979
1980 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1981 if (in_process) {
1982 dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1983 qh->channel = NULL;
1984 } else if (list_empty(&qh->qtd_list)) {
1985 dwc2_hcd_qh_unlink(hsotg, qh);
1986 }
1987 } else {
1988 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1989 }
1990
1991 return 0;
1992 }
1993
1994 /* Must NOT be called with interrupt disabled or spinlock held */
dwc2_hcd_endpoint_disable(struct dwc2_hsotg * hsotg,struct usb_host_endpoint * ep,int retry)1995 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1996 struct usb_host_endpoint *ep, int retry)
1997 {
1998 struct dwc2_qtd *qtd, *qtd_tmp;
1999 struct dwc2_qh *qh;
2000 unsigned long flags;
2001 int rc;
2002
2003 spin_lock_irqsave(&hsotg->lock, flags);
2004
2005 qh = ep->hcpriv;
2006 if (!qh) {
2007 rc = -EINVAL;
2008 goto err;
2009 }
2010
2011 while (!list_empty(&qh->qtd_list) && retry--) {
2012 if (retry == 0) {
2013 dev_err(hsotg->dev,
2014 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2015 rc = -EBUSY;
2016 goto err;
2017 }
2018
2019 spin_unlock_irqrestore(&hsotg->lock, flags);
2020 msleep(20);
2021 spin_lock_irqsave(&hsotg->lock, flags);
2022 qh = ep->hcpriv;
2023 if (!qh) {
2024 rc = -EINVAL;
2025 goto err;
2026 }
2027 }
2028
2029 dwc2_hcd_qh_unlink(hsotg, qh);
2030
2031 /* Free each QTD in the QH's QTD list */
2032 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2033 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2034
2035 ep->hcpriv = NULL;
2036
2037 if (qh->channel && qh->channel->qh == qh)
2038 qh->channel->qh = NULL;
2039
2040 spin_unlock_irqrestore(&hsotg->lock, flags);
2041
2042 dwc2_hcd_qh_free(hsotg, qh);
2043
2044 return 0;
2045
2046 err:
2047 ep->hcpriv = NULL;
2048 spin_unlock_irqrestore(&hsotg->lock, flags);
2049
2050 return rc;
2051 }
2052
2053 /* Must be called with interrupt disabled and spinlock held */
dwc2_hcd_endpoint_reset(struct dwc2_hsotg * hsotg,struct usb_host_endpoint * ep)2054 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2055 struct usb_host_endpoint *ep)
2056 {
2057 struct dwc2_qh *qh = ep->hcpriv;
2058
2059 if (!qh)
2060 return -EINVAL;
2061
2062 qh->data_toggle = DWC2_HC_PID_DATA0;
2063
2064 return 0;
2065 }
2066
2067 /**
2068 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2069 * prepares the core for device mode or host mode operation
2070 *
2071 * @hsotg: Programming view of the DWC_otg controller
2072 * @initial_setup: If true then this is the first init for this instance.
2073 */
dwc2_core_init(struct dwc2_hsotg * hsotg,bool initial_setup)2074 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2075 {
2076 u32 usbcfg, otgctl;
2077 int retval;
2078
2079 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2080
2081 usbcfg = dwc2_readl(hsotg, GUSBCFG);
2082
2083 /* Set ULPI External VBUS bit if needed */
2084 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2085 if (hsotg->params.phy_ulpi_ext_vbus)
2086 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2087
2088 /* Set external TS Dline pulsing bit if needed */
2089 usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2090 if (hsotg->params.ts_dline)
2091 usbcfg |= GUSBCFG_TERMSELDLPULSE;
2092
2093 dwc2_writel(hsotg, usbcfg, GUSBCFG);
2094
2095 /*
2096 * Reset the Controller
2097 *
2098 * We only need to reset the controller if this is a re-init.
2099 * For the first init we know for sure that earlier code reset us (it
2100 * needed to in order to properly detect various parameters).
2101 */
2102 if (!initial_setup) {
2103 retval = dwc2_core_reset(hsotg, false);
2104 if (retval) {
2105 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2106 __func__);
2107 return retval;
2108 }
2109 }
2110
2111 /*
2112 * This needs to happen in FS mode before any other programming occurs
2113 */
2114 retval = dwc2_phy_init(hsotg, initial_setup);
2115 if (retval)
2116 return retval;
2117
2118 /* Program the GAHBCFG Register */
2119 retval = dwc2_gahbcfg_init(hsotg);
2120 if (retval)
2121 return retval;
2122
2123 /* Program the GUSBCFG register */
2124 dwc2_gusbcfg_init(hsotg);
2125
2126 /* Program the GOTGCTL register */
2127 otgctl = dwc2_readl(hsotg, GOTGCTL);
2128 otgctl &= ~GOTGCTL_OTGVER;
2129 dwc2_writel(hsotg, otgctl, GOTGCTL);
2130
2131 /* Clear the SRP success bit for FS-I2c */
2132 hsotg->srp_success = 0;
2133
2134 /* Enable common interrupts */
2135 dwc2_enable_common_interrupts(hsotg);
2136
2137 /*
2138 * Do device or host initialization based on mode during PCD and
2139 * HCD initialization
2140 */
2141 if (dwc2_is_host_mode(hsotg)) {
2142 dev_dbg(hsotg->dev, "Host Mode\n");
2143 hsotg->op_state = OTG_STATE_A_HOST;
2144 } else {
2145 dev_dbg(hsotg->dev, "Device Mode\n");
2146 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2147 }
2148
2149 return 0;
2150 }
2151
2152 /**
2153 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2154 * Host mode
2155 *
2156 * @hsotg: Programming view of DWC_otg controller
2157 *
2158 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2159 * request queues. Host channels are reset to ensure that they are ready for
2160 * performing transfers.
2161 */
dwc2_core_host_init(struct dwc2_hsotg * hsotg)2162 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2163 {
2164 u32 hcfg, hfir, otgctl, usbcfg;
2165
2166 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2167
2168 /* Set HS/FS Timeout Calibration to 7 (max available value).
2169 * The number of PHY clocks that the application programs in
2170 * this field is added to the high/full speed interpacket timeout
2171 * duration in the core to account for any additional delays
2172 * introduced by the PHY. This can be required, because the delay
2173 * introduced by the PHY in generating the linestate condition
2174 * can vary from one PHY to another.
2175 */
2176 usbcfg = dwc2_readl(hsotg, GUSBCFG);
2177 usbcfg |= GUSBCFG_TOUTCAL(7);
2178 dwc2_writel(hsotg, usbcfg, GUSBCFG);
2179
2180 /* Restart the Phy Clock */
2181 dwc2_writel(hsotg, 0, PCGCTL);
2182
2183 /* Initialize Host Configuration Register */
2184 dwc2_init_fs_ls_pclk_sel(hsotg);
2185 if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2186 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2187 hcfg = dwc2_readl(hsotg, HCFG);
2188 hcfg |= HCFG_FSLSSUPP;
2189 dwc2_writel(hsotg, hcfg, HCFG);
2190 }
2191
2192 /*
2193 * This bit allows dynamic reloading of the HFIR register during
2194 * runtime. This bit needs to be programmed during initial configuration
2195 * and its value must not be changed during runtime.
2196 */
2197 if (hsotg->params.reload_ctl) {
2198 hfir = dwc2_readl(hsotg, HFIR);
2199 hfir |= HFIR_RLDCTRL;
2200 dwc2_writel(hsotg, hfir, HFIR);
2201 }
2202
2203 if (hsotg->params.dma_desc_enable) {
2204 u32 op_mode = hsotg->hw_params.op_mode;
2205
2206 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2207 !hsotg->hw_params.dma_desc_enable ||
2208 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2209 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2210 op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2211 dev_err(hsotg->dev,
2212 "Hardware does not support descriptor DMA mode -\n");
2213 dev_err(hsotg->dev,
2214 "falling back to buffer DMA mode.\n");
2215 hsotg->params.dma_desc_enable = false;
2216 } else {
2217 hcfg = dwc2_readl(hsotg, HCFG);
2218 hcfg |= HCFG_DESCDMA;
2219 dwc2_writel(hsotg, hcfg, HCFG);
2220 }
2221 }
2222
2223 /* Configure data FIFO sizes */
2224 dwc2_config_fifos(hsotg);
2225
2226 /* TODO - check this */
2227 /* Clear Host Set HNP Enable in the OTG Control Register */
2228 otgctl = dwc2_readl(hsotg, GOTGCTL);
2229 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2230 dwc2_writel(hsotg, otgctl, GOTGCTL);
2231
2232 /* Make sure the FIFOs are flushed */
2233 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2234 dwc2_flush_rx_fifo(hsotg);
2235
2236 /* Clear Host Set HNP Enable in the OTG Control Register */
2237 otgctl = dwc2_readl(hsotg, GOTGCTL);
2238 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2239 dwc2_writel(hsotg, otgctl, GOTGCTL);
2240
2241 if (!hsotg->params.dma_desc_enable) {
2242 int num_channels, i;
2243 u32 hcchar;
2244
2245 /* Flush out any leftover queued requests */
2246 num_channels = hsotg->params.host_channels;
2247 for (i = 0; i < num_channels; i++) {
2248 hcchar = dwc2_readl(hsotg, HCCHAR(i));
2249 if (hcchar & HCCHAR_CHENA) {
2250 hcchar &= ~HCCHAR_CHENA;
2251 hcchar |= HCCHAR_CHDIS;
2252 hcchar &= ~HCCHAR_EPDIR;
2253 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2254 }
2255 }
2256
2257 /* Halt all channels to put them into a known state */
2258 for (i = 0; i < num_channels; i++) {
2259 hcchar = dwc2_readl(hsotg, HCCHAR(i));
2260 if (hcchar & HCCHAR_CHENA) {
2261 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2262 hcchar &= ~HCCHAR_EPDIR;
2263 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2264 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2265 __func__, i);
2266
2267 if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2268 HCCHAR_CHENA,
2269 1000)) {
2270 dev_warn(hsotg->dev,
2271 "Unable to clear enable on channel %d\n",
2272 i);
2273 }
2274 }
2275 }
2276 }
2277
2278 /* Enable ACG feature in host mode, if supported */
2279 dwc2_enable_acg(hsotg);
2280
2281 /* Turn on the vbus power */
2282 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2283 if (hsotg->op_state == OTG_STATE_A_HOST) {
2284 u32 hprt0 = dwc2_read_hprt0(hsotg);
2285
2286 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2287 !!(hprt0 & HPRT0_PWR));
2288 if (!(hprt0 & HPRT0_PWR)) {
2289 hprt0 |= HPRT0_PWR;
2290 dwc2_writel(hsotg, hprt0, HPRT0);
2291 }
2292 }
2293
2294 dwc2_enable_host_interrupts(hsotg);
2295 }
2296
2297 /*
2298 * Initializes dynamic portions of the DWC_otg HCD state
2299 *
2300 * Must be called with interrupt disabled and spinlock held
2301 */
dwc2_hcd_reinit(struct dwc2_hsotg * hsotg)2302 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2303 {
2304 struct dwc2_host_chan *chan, *chan_tmp;
2305 int num_channels;
2306 int i;
2307
2308 hsotg->flags.d32 = 0;
2309 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2310
2311 if (hsotg->params.uframe_sched) {
2312 hsotg->available_host_channels =
2313 hsotg->params.host_channels;
2314 } else {
2315 hsotg->non_periodic_channels = 0;
2316 hsotg->periodic_channels = 0;
2317 }
2318
2319 /*
2320 * Put all channels in the free channel list and clean up channel
2321 * states
2322 */
2323 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2324 hc_list_entry)
2325 list_del_init(&chan->hc_list_entry);
2326
2327 num_channels = hsotg->params.host_channels;
2328 for (i = 0; i < num_channels; i++) {
2329 chan = hsotg->hc_ptr_array[i];
2330 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2331 dwc2_hc_cleanup(hsotg, chan);
2332 }
2333
2334 /* Initialize the DWC core for host mode operation */
2335 dwc2_core_host_init(hsotg);
2336 }
2337
dwc2_hc_init_split(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,struct dwc2_qtd * qtd,struct dwc2_hcd_urb * urb)2338 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2339 struct dwc2_host_chan *chan,
2340 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2341 {
2342 int hub_addr, hub_port;
2343
2344 chan->do_split = 1;
2345 chan->xact_pos = qtd->isoc_split_pos;
2346 chan->complete_split = qtd->complete_split;
2347 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2348 chan->hub_addr = (u8)hub_addr;
2349 chan->hub_port = (u8)hub_port;
2350 }
2351
dwc2_hc_init_xfer(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,struct dwc2_qtd * qtd)2352 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2353 struct dwc2_host_chan *chan,
2354 struct dwc2_qtd *qtd)
2355 {
2356 struct dwc2_hcd_urb *urb = qtd->urb;
2357 struct dwc2_hcd_iso_packet_desc *frame_desc;
2358
2359 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2360 case USB_ENDPOINT_XFER_CONTROL:
2361 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2362
2363 switch (qtd->control_phase) {
2364 case DWC2_CONTROL_SETUP:
2365 dev_vdbg(hsotg->dev, " Control setup transaction\n");
2366 chan->do_ping = 0;
2367 chan->ep_is_in = 0;
2368 chan->data_pid_start = DWC2_HC_PID_SETUP;
2369 if (hsotg->params.host_dma)
2370 chan->xfer_dma = urb->setup_dma;
2371 else
2372 chan->xfer_buf = urb->setup_packet;
2373 chan->xfer_len = 8;
2374 break;
2375
2376 case DWC2_CONTROL_DATA:
2377 dev_vdbg(hsotg->dev, " Control data transaction\n");
2378 chan->data_pid_start = qtd->data_toggle;
2379 break;
2380
2381 case DWC2_CONTROL_STATUS:
2382 /*
2383 * Direction is opposite of data direction or IN if no
2384 * data
2385 */
2386 dev_vdbg(hsotg->dev, " Control status transaction\n");
2387 if (urb->length == 0)
2388 chan->ep_is_in = 1;
2389 else
2390 chan->ep_is_in =
2391 dwc2_hcd_is_pipe_out(&urb->pipe_info);
2392 if (chan->ep_is_in)
2393 chan->do_ping = 0;
2394 chan->data_pid_start = DWC2_HC_PID_DATA1;
2395 chan->xfer_len = 0;
2396 if (hsotg->params.host_dma)
2397 chan->xfer_dma = hsotg->status_buf_dma;
2398 else
2399 chan->xfer_buf = hsotg->status_buf;
2400 break;
2401 }
2402 break;
2403
2404 case USB_ENDPOINT_XFER_BULK:
2405 chan->ep_type = USB_ENDPOINT_XFER_BULK;
2406 break;
2407
2408 case USB_ENDPOINT_XFER_INT:
2409 chan->ep_type = USB_ENDPOINT_XFER_INT;
2410 break;
2411
2412 case USB_ENDPOINT_XFER_ISOC:
2413 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2414 if (hsotg->params.dma_desc_enable)
2415 break;
2416
2417 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2418 frame_desc->status = 0;
2419
2420 if (hsotg->params.host_dma) {
2421 chan->xfer_dma = urb->dma;
2422 chan->xfer_dma += frame_desc->offset +
2423 qtd->isoc_split_offset;
2424 } else {
2425 chan->xfer_buf = urb->buf;
2426 chan->xfer_buf += frame_desc->offset +
2427 qtd->isoc_split_offset;
2428 }
2429
2430 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2431
2432 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2433 if (chan->xfer_len <= 188)
2434 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2435 else
2436 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2437 }
2438 break;
2439 }
2440 }
2441
dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh,struct dwc2_host_chan * chan)2442 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2443 struct dwc2_qh *qh,
2444 struct dwc2_host_chan *chan)
2445 {
2446 if (!hsotg->unaligned_cache ||
2447 chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2448 return -ENOMEM;
2449
2450 if (!qh->dw_align_buf) {
2451 qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2452 GFP_ATOMIC | GFP_DMA);
2453 if (!qh->dw_align_buf)
2454 return -ENOMEM;
2455 }
2456
2457 qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2458 DWC2_KMEM_UNALIGNED_BUF_SIZE,
2459 DMA_FROM_DEVICE);
2460
2461 if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2462 dev_err(hsotg->dev, "can't map align_buf\n");
2463 chan->align_buf = 0;
2464 return -EINVAL;
2465 }
2466
2467 chan->align_buf = qh->dw_align_buf_dma;
2468 return 0;
2469 }
2470
2471 #define DWC2_USB_DMA_ALIGN 4
2472
dwc2_free_dma_aligned_buffer(struct urb * urb)2473 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2474 {
2475 void *stored_xfer_buffer;
2476 size_t length;
2477
2478 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2479 return;
2480
2481 /* Restore urb->transfer_buffer from the end of the allocated area */
2482 memcpy(&stored_xfer_buffer,
2483 PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2484 dma_get_cache_alignment()),
2485 sizeof(urb->transfer_buffer));
2486
2487 if (usb_urb_dir_in(urb)) {
2488 if (usb_pipeisoc(urb->pipe))
2489 length = urb->transfer_buffer_length;
2490 else
2491 length = urb->actual_length;
2492
2493 memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2494 }
2495 kfree(urb->transfer_buffer);
2496 urb->transfer_buffer = stored_xfer_buffer;
2497
2498 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2499 }
2500
dwc2_alloc_dma_aligned_buffer(struct urb * urb,gfp_t mem_flags)2501 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2502 {
2503 void *kmalloc_ptr;
2504 size_t kmalloc_size;
2505
2506 if (urb->num_sgs || urb->sg ||
2507 urb->transfer_buffer_length == 0 ||
2508 !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2509 return 0;
2510
2511 /*
2512 * Allocate a buffer with enough padding for original transfer_buffer
2513 * pointer. This allocation is guaranteed to be aligned properly for
2514 * DMA
2515 */
2516 kmalloc_size = urb->transfer_buffer_length +
2517 (dma_get_cache_alignment() - 1) +
2518 sizeof(urb->transfer_buffer);
2519
2520 kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2521 if (!kmalloc_ptr)
2522 return -ENOMEM;
2523
2524 /*
2525 * Position value of original urb->transfer_buffer pointer to the end
2526 * of allocation for later referencing
2527 */
2528 memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2529 dma_get_cache_alignment()),
2530 &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2531
2532 if (usb_urb_dir_out(urb))
2533 memcpy(kmalloc_ptr, urb->transfer_buffer,
2534 urb->transfer_buffer_length);
2535 urb->transfer_buffer = kmalloc_ptr;
2536
2537 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2538
2539 return 0;
2540 }
2541
dwc2_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)2542 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2543 gfp_t mem_flags)
2544 {
2545 int ret;
2546
2547 /* We assume setup_dma is always aligned; warn if not */
2548 WARN_ON_ONCE(urb->setup_dma &&
2549 (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2550
2551 ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2552 if (ret)
2553 return ret;
2554
2555 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2556 if (ret)
2557 dwc2_free_dma_aligned_buffer(urb);
2558
2559 return ret;
2560 }
2561
dwc2_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)2562 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2563 {
2564 usb_hcd_unmap_urb_for_dma(hcd, urb);
2565 dwc2_free_dma_aligned_buffer(urb);
2566 }
2567
2568 /**
2569 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2570 * channel and initializes the host channel to perform the transactions. The
2571 * host channel is removed from the free list.
2572 *
2573 * @hsotg: The HCD state structure
2574 * @qh: Transactions from the first QTD for this QH are selected and assigned
2575 * to a free host channel
2576 */
dwc2_assign_and_init_hc(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)2577 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2578 {
2579 struct dwc2_host_chan *chan;
2580 struct dwc2_hcd_urb *urb;
2581 struct dwc2_qtd *qtd;
2582
2583 if (dbg_qh(qh))
2584 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2585
2586 if (list_empty(&qh->qtd_list)) {
2587 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2588 return -ENOMEM;
2589 }
2590
2591 if (list_empty(&hsotg->free_hc_list)) {
2592 dev_dbg(hsotg->dev, "No free channel to assign\n");
2593 return -ENOMEM;
2594 }
2595
2596 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2597 hc_list_entry);
2598
2599 /* Remove host channel from free list */
2600 list_del_init(&chan->hc_list_entry);
2601
2602 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2603 urb = qtd->urb;
2604 qh->channel = chan;
2605 qtd->in_process = 1;
2606
2607 /*
2608 * Use usb_pipedevice to determine device address. This address is
2609 * 0 before the SET_ADDRESS command and the correct address afterward.
2610 */
2611 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2612 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2613 chan->speed = qh->dev_speed;
2614 chan->max_packet = qh->maxp;
2615
2616 chan->xfer_started = 0;
2617 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2618 chan->error_state = (qtd->error_count > 0);
2619 chan->halt_on_queue = 0;
2620 chan->halt_pending = 0;
2621 chan->requests = 0;
2622
2623 /*
2624 * The following values may be modified in the transfer type section
2625 * below. The xfer_len value may be reduced when the transfer is
2626 * started to accommodate the max widths of the XferSize and PktCnt
2627 * fields in the HCTSIZn register.
2628 */
2629
2630 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2631 if (chan->ep_is_in)
2632 chan->do_ping = 0;
2633 else
2634 chan->do_ping = qh->ping_state;
2635
2636 chan->data_pid_start = qh->data_toggle;
2637 chan->multi_count = 1;
2638
2639 if (urb->actual_length > urb->length &&
2640 !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2641 urb->actual_length = urb->length;
2642
2643 if (hsotg->params.host_dma)
2644 chan->xfer_dma = urb->dma + urb->actual_length;
2645 else
2646 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2647
2648 chan->xfer_len = urb->length - urb->actual_length;
2649 chan->xfer_count = 0;
2650
2651 /* Set the split attributes if required */
2652 if (qh->do_split)
2653 dwc2_hc_init_split(hsotg, chan, qtd, urb);
2654 else
2655 chan->do_split = 0;
2656
2657 /* Set the transfer attributes */
2658 dwc2_hc_init_xfer(hsotg, chan, qtd);
2659
2660 /* For non-dword aligned buffers */
2661 if (hsotg->params.host_dma && qh->do_split &&
2662 chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2663 dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2664 if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2665 dev_err(hsotg->dev,
2666 "Failed to allocate memory to handle non-aligned buffer\n");
2667 /* Add channel back to free list */
2668 chan->align_buf = 0;
2669 chan->multi_count = 0;
2670 list_add_tail(&chan->hc_list_entry,
2671 &hsotg->free_hc_list);
2672 qtd->in_process = 0;
2673 qh->channel = NULL;
2674 return -ENOMEM;
2675 }
2676 } else {
2677 /*
2678 * We assume that DMA is always aligned in non-split
2679 * case or split out case. Warn if not.
2680 */
2681 WARN_ON_ONCE(hsotg->params.host_dma &&
2682 (chan->xfer_dma & 0x3));
2683 chan->align_buf = 0;
2684 }
2685
2686 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2687 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2688 /*
2689 * This value may be modified when the transfer is started
2690 * to reflect the actual transfer length
2691 */
2692 chan->multi_count = qh->maxp_mult;
2693
2694 if (hsotg->params.dma_desc_enable) {
2695 chan->desc_list_addr = qh->desc_list_dma;
2696 chan->desc_list_sz = qh->desc_list_sz;
2697 }
2698
2699 dwc2_hc_init(hsotg, chan);
2700 chan->qh = qh;
2701
2702 return 0;
2703 }
2704
2705 /**
2706 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2707 * schedule and assigns them to available host channels. Called from the HCD
2708 * interrupt handler functions.
2709 *
2710 * @hsotg: The HCD state structure
2711 *
2712 * Return: The types of new transactions that were assigned to host channels
2713 */
dwc2_hcd_select_transactions(struct dwc2_hsotg * hsotg)2714 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2715 struct dwc2_hsotg *hsotg)
2716 {
2717 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2718 struct list_head *qh_ptr;
2719 struct dwc2_qh *qh;
2720 int num_channels;
2721
2722 #ifdef DWC2_DEBUG_SOF
2723 dev_vdbg(hsotg->dev, " Select Transactions\n");
2724 #endif
2725
2726 /* Process entries in the periodic ready list */
2727 qh_ptr = hsotg->periodic_sched_ready.next;
2728 while (qh_ptr != &hsotg->periodic_sched_ready) {
2729 if (list_empty(&hsotg->free_hc_list))
2730 break;
2731 if (hsotg->params.uframe_sched) {
2732 if (hsotg->available_host_channels <= 1)
2733 break;
2734 hsotg->available_host_channels--;
2735 }
2736 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2737 if (dwc2_assign_and_init_hc(hsotg, qh))
2738 break;
2739
2740 /*
2741 * Move the QH from the periodic ready schedule to the
2742 * periodic assigned schedule
2743 */
2744 qh_ptr = qh_ptr->next;
2745 list_move_tail(&qh->qh_list_entry,
2746 &hsotg->periodic_sched_assigned);
2747 ret_val = DWC2_TRANSACTION_PERIODIC;
2748 }
2749
2750 /*
2751 * Process entries in the inactive portion of the non-periodic
2752 * schedule. Some free host channels may not be used if they are
2753 * reserved for periodic transfers.
2754 */
2755 num_channels = hsotg->params.host_channels;
2756 qh_ptr = hsotg->non_periodic_sched_inactive.next;
2757 while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2758 if (!hsotg->params.uframe_sched &&
2759 hsotg->non_periodic_channels >= num_channels -
2760 hsotg->periodic_channels)
2761 break;
2762 if (list_empty(&hsotg->free_hc_list))
2763 break;
2764 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2765 if (hsotg->params.uframe_sched) {
2766 if (hsotg->available_host_channels < 1)
2767 break;
2768 hsotg->available_host_channels--;
2769 }
2770
2771 if (dwc2_assign_and_init_hc(hsotg, qh))
2772 break;
2773
2774 /*
2775 * Move the QH from the non-periodic inactive schedule to the
2776 * non-periodic active schedule
2777 */
2778 qh_ptr = qh_ptr->next;
2779 list_move_tail(&qh->qh_list_entry,
2780 &hsotg->non_periodic_sched_active);
2781
2782 if (ret_val == DWC2_TRANSACTION_NONE)
2783 ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2784 else
2785 ret_val = DWC2_TRANSACTION_ALL;
2786
2787 if (!hsotg->params.uframe_sched)
2788 hsotg->non_periodic_channels++;
2789 }
2790
2791 return ret_val;
2792 }
2793
2794 /**
2795 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2796 * a host channel associated with either a periodic or non-periodic transfer
2797 *
2798 * @hsotg: The HCD state structure
2799 * @chan: Host channel descriptor associated with either a periodic or
2800 * non-periodic transfer
2801 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2802 * for periodic transfers or the non-periodic Tx FIFO
2803 * for non-periodic transfers
2804 *
2805 * Return: 1 if a request is queued and more requests may be needed to
2806 * complete the transfer, 0 if no more requests are required for this
2807 * transfer, -1 if there is insufficient space in the Tx FIFO
2808 *
2809 * This function assumes that there is space available in the appropriate
2810 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2811 * it checks whether space is available in the appropriate Tx FIFO.
2812 *
2813 * Must be called with interrupt disabled and spinlock held
2814 */
dwc2_queue_transaction(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,u16 fifo_dwords_avail)2815 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2816 struct dwc2_host_chan *chan,
2817 u16 fifo_dwords_avail)
2818 {
2819 int retval = 0;
2820
2821 if (chan->do_split)
2822 /* Put ourselves on the list to keep order straight */
2823 list_move_tail(&chan->split_order_list_entry,
2824 &hsotg->split_order);
2825
2826 if (hsotg->params.host_dma && chan->qh) {
2827 if (hsotg->params.dma_desc_enable) {
2828 if (!chan->xfer_started ||
2829 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2830 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2831 chan->qh->ping_state = 0;
2832 }
2833 } else if (!chan->xfer_started) {
2834 dwc2_hc_start_transfer(hsotg, chan);
2835 chan->qh->ping_state = 0;
2836 }
2837 } else if (chan->halt_pending) {
2838 /* Don't queue a request if the channel has been halted */
2839 } else if (chan->halt_on_queue) {
2840 dwc2_hc_halt(hsotg, chan, chan->halt_status);
2841 } else if (chan->do_ping) {
2842 if (!chan->xfer_started)
2843 dwc2_hc_start_transfer(hsotg, chan);
2844 } else if (!chan->ep_is_in ||
2845 chan->data_pid_start == DWC2_HC_PID_SETUP) {
2846 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2847 if (!chan->xfer_started) {
2848 dwc2_hc_start_transfer(hsotg, chan);
2849 retval = 1;
2850 } else {
2851 retval = dwc2_hc_continue_transfer(hsotg, chan);
2852 }
2853 } else {
2854 retval = -1;
2855 }
2856 } else {
2857 if (!chan->xfer_started) {
2858 dwc2_hc_start_transfer(hsotg, chan);
2859 retval = 1;
2860 } else {
2861 retval = dwc2_hc_continue_transfer(hsotg, chan);
2862 }
2863 }
2864
2865 return retval;
2866 }
2867
2868 /*
2869 * Processes periodic channels for the next frame and queues transactions for
2870 * these channels to the DWC_otg controller. After queueing transactions, the
2871 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2872 * to queue as Periodic Tx FIFO or request queue space becomes available.
2873 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2874 *
2875 * Must be called with interrupt disabled and spinlock held
2876 */
dwc2_process_periodic_channels(struct dwc2_hsotg * hsotg)2877 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2878 {
2879 struct list_head *qh_ptr;
2880 struct dwc2_qh *qh;
2881 u32 tx_status;
2882 u32 fspcavail;
2883 u32 gintmsk;
2884 int status;
2885 bool no_queue_space = false;
2886 bool no_fifo_space = false;
2887 u32 qspcavail;
2888
2889 /* If empty list then just adjust interrupt enables */
2890 if (list_empty(&hsotg->periodic_sched_assigned))
2891 goto exit;
2892
2893 if (dbg_perio())
2894 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2895
2896 tx_status = dwc2_readl(hsotg, HPTXSTS);
2897 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2898 TXSTS_QSPCAVAIL_SHIFT;
2899 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2900 TXSTS_FSPCAVAIL_SHIFT;
2901
2902 if (dbg_perio()) {
2903 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n",
2904 qspcavail);
2905 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n",
2906 fspcavail);
2907 }
2908
2909 qh_ptr = hsotg->periodic_sched_assigned.next;
2910 while (qh_ptr != &hsotg->periodic_sched_assigned) {
2911 tx_status = dwc2_readl(hsotg, HPTXSTS);
2912 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2913 TXSTS_QSPCAVAIL_SHIFT;
2914 if (qspcavail == 0) {
2915 no_queue_space = true;
2916 break;
2917 }
2918
2919 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2920 if (!qh->channel) {
2921 qh_ptr = qh_ptr->next;
2922 continue;
2923 }
2924
2925 /* Make sure EP's TT buffer is clean before queueing qtds */
2926 if (qh->tt_buffer_dirty) {
2927 qh_ptr = qh_ptr->next;
2928 continue;
2929 }
2930
2931 /*
2932 * Set a flag if we're queuing high-bandwidth in slave mode.
2933 * The flag prevents any halts to get into the request queue in
2934 * the middle of multiple high-bandwidth packets getting queued.
2935 */
2936 if (!hsotg->params.host_dma &&
2937 qh->channel->multi_count > 1)
2938 hsotg->queuing_high_bandwidth = 1;
2939
2940 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2941 TXSTS_FSPCAVAIL_SHIFT;
2942 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2943 if (status < 0) {
2944 no_fifo_space = true;
2945 break;
2946 }
2947
2948 /*
2949 * In Slave mode, stay on the current transfer until there is
2950 * nothing more to do or the high-bandwidth request count is
2951 * reached. In DMA mode, only need to queue one request. The
2952 * controller automatically handles multiple packets for
2953 * high-bandwidth transfers.
2954 */
2955 if (hsotg->params.host_dma || status == 0 ||
2956 qh->channel->requests == qh->channel->multi_count) {
2957 qh_ptr = qh_ptr->next;
2958 /*
2959 * Move the QH from the periodic assigned schedule to
2960 * the periodic queued schedule
2961 */
2962 list_move_tail(&qh->qh_list_entry,
2963 &hsotg->periodic_sched_queued);
2964
2965 /* done queuing high bandwidth */
2966 hsotg->queuing_high_bandwidth = 0;
2967 }
2968 }
2969
2970 exit:
2971 if (no_queue_space || no_fifo_space ||
2972 (!hsotg->params.host_dma &&
2973 !list_empty(&hsotg->periodic_sched_assigned))) {
2974 /*
2975 * May need to queue more transactions as the request
2976 * queue or Tx FIFO empties. Enable the periodic Tx
2977 * FIFO empty interrupt. (Always use the half-empty
2978 * level to ensure that new requests are loaded as
2979 * soon as possible.)
2980 */
2981 gintmsk = dwc2_readl(hsotg, GINTMSK);
2982 if (!(gintmsk & GINTSTS_PTXFEMP)) {
2983 gintmsk |= GINTSTS_PTXFEMP;
2984 dwc2_writel(hsotg, gintmsk, GINTMSK);
2985 }
2986 } else {
2987 /*
2988 * Disable the Tx FIFO empty interrupt since there are
2989 * no more transactions that need to be queued right
2990 * now. This function is called from interrupt
2991 * handlers to queue more transactions as transfer
2992 * states change.
2993 */
2994 gintmsk = dwc2_readl(hsotg, GINTMSK);
2995 if (gintmsk & GINTSTS_PTXFEMP) {
2996 gintmsk &= ~GINTSTS_PTXFEMP;
2997 dwc2_writel(hsotg, gintmsk, GINTMSK);
2998 }
2999 }
3000 }
3001
3002 /*
3003 * Processes active non-periodic channels and queues transactions for these
3004 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3005 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3006 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3007 * FIFO Empty interrupt is disabled.
3008 *
3009 * Must be called with interrupt disabled and spinlock held
3010 */
dwc2_process_non_periodic_channels(struct dwc2_hsotg * hsotg)3011 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3012 {
3013 struct list_head *orig_qh_ptr;
3014 struct dwc2_qh *qh;
3015 u32 tx_status;
3016 u32 qspcavail;
3017 u32 fspcavail;
3018 u32 gintmsk;
3019 int status;
3020 int no_queue_space = 0;
3021 int no_fifo_space = 0;
3022 int more_to_do = 0;
3023
3024 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3025
3026 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3027 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3028 TXSTS_QSPCAVAIL_SHIFT;
3029 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3030 TXSTS_FSPCAVAIL_SHIFT;
3031 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n",
3032 qspcavail);
3033 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n",
3034 fspcavail);
3035
3036 /*
3037 * Keep track of the starting point. Skip over the start-of-list
3038 * entry.
3039 */
3040 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3041 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3042 orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3043
3044 /*
3045 * Process once through the active list or until no more space is
3046 * available in the request queue or the Tx FIFO
3047 */
3048 do {
3049 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3050 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3051 TXSTS_QSPCAVAIL_SHIFT;
3052 if (!hsotg->params.host_dma && qspcavail == 0) {
3053 no_queue_space = 1;
3054 break;
3055 }
3056
3057 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3058 qh_list_entry);
3059 if (!qh->channel)
3060 goto next;
3061
3062 /* Make sure EP's TT buffer is clean before queueing qtds */
3063 if (qh->tt_buffer_dirty)
3064 goto next;
3065
3066 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3067 TXSTS_FSPCAVAIL_SHIFT;
3068 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3069
3070 if (status > 0) {
3071 more_to_do = 1;
3072 } else if (status < 0) {
3073 no_fifo_space = 1;
3074 break;
3075 }
3076 next:
3077 /* Advance to next QH, skipping start-of-list entry */
3078 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3079 if (hsotg->non_periodic_qh_ptr ==
3080 &hsotg->non_periodic_sched_active)
3081 hsotg->non_periodic_qh_ptr =
3082 hsotg->non_periodic_qh_ptr->next;
3083 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3084
3085 if (!hsotg->params.host_dma) {
3086 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3087 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3088 TXSTS_QSPCAVAIL_SHIFT;
3089 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3090 TXSTS_FSPCAVAIL_SHIFT;
3091 dev_vdbg(hsotg->dev,
3092 " NP Tx Req Queue Space Avail (after queue): %d\n",
3093 qspcavail);
3094 dev_vdbg(hsotg->dev,
3095 " NP Tx FIFO Space Avail (after queue): %d\n",
3096 fspcavail);
3097
3098 if (more_to_do || no_queue_space || no_fifo_space) {
3099 /*
3100 * May need to queue more transactions as the request
3101 * queue or Tx FIFO empties. Enable the non-periodic
3102 * Tx FIFO empty interrupt. (Always use the half-empty
3103 * level to ensure that new requests are loaded as
3104 * soon as possible.)
3105 */
3106 gintmsk = dwc2_readl(hsotg, GINTMSK);
3107 gintmsk |= GINTSTS_NPTXFEMP;
3108 dwc2_writel(hsotg, gintmsk, GINTMSK);
3109 } else {
3110 /*
3111 * Disable the Tx FIFO empty interrupt since there are
3112 * no more transactions that need to be queued right
3113 * now. This function is called from interrupt
3114 * handlers to queue more transactions as transfer
3115 * states change.
3116 */
3117 gintmsk = dwc2_readl(hsotg, GINTMSK);
3118 gintmsk &= ~GINTSTS_NPTXFEMP;
3119 dwc2_writel(hsotg, gintmsk, GINTMSK);
3120 }
3121 }
3122 }
3123
3124 /**
3125 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3126 * and queues transactions for these channels to the DWC_otg controller. Called
3127 * from the HCD interrupt handler functions.
3128 *
3129 * @hsotg: The HCD state structure
3130 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3131 * or both)
3132 *
3133 * Must be called with interrupt disabled and spinlock held
3134 */
dwc2_hcd_queue_transactions(struct dwc2_hsotg * hsotg,enum dwc2_transaction_type tr_type)3135 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3136 enum dwc2_transaction_type tr_type)
3137 {
3138 #ifdef DWC2_DEBUG_SOF
3139 dev_vdbg(hsotg->dev, "Queue Transactions\n");
3140 #endif
3141 /* Process host channels associated with periodic transfers */
3142 if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3143 tr_type == DWC2_TRANSACTION_ALL)
3144 dwc2_process_periodic_channels(hsotg);
3145
3146 /* Process host channels associated with non-periodic transfers */
3147 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3148 tr_type == DWC2_TRANSACTION_ALL) {
3149 if (!list_empty(&hsotg->non_periodic_sched_active)) {
3150 dwc2_process_non_periodic_channels(hsotg);
3151 } else {
3152 /*
3153 * Ensure NP Tx FIFO empty interrupt is disabled when
3154 * there are no non-periodic transfers to process
3155 */
3156 u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3157
3158 gintmsk &= ~GINTSTS_NPTXFEMP;
3159 dwc2_writel(hsotg, gintmsk, GINTMSK);
3160 }
3161 }
3162 }
3163
dwc2_conn_id_status_change(struct work_struct * work)3164 static void dwc2_conn_id_status_change(struct work_struct *work)
3165 {
3166 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3167 wf_otg);
3168 u32 count = 0;
3169 u32 gotgctl;
3170 unsigned long flags;
3171
3172 dev_dbg(hsotg->dev, "%s()\n", __func__);
3173
3174 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3175 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3176 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3177 !!(gotgctl & GOTGCTL_CONID_B));
3178
3179 /* B-Device connector (Device Mode) */
3180 if (gotgctl & GOTGCTL_CONID_B) {
3181 dwc2_vbus_supply_exit(hsotg);
3182 /* Wait for switch to device mode */
3183 dev_dbg(hsotg->dev, "connId B\n");
3184 if (hsotg->bus_suspended) {
3185 dev_info(hsotg->dev,
3186 "Do port resume before switching to device mode\n");
3187 dwc2_port_resume(hsotg);
3188 }
3189 while (!dwc2_is_device_mode(hsotg)) {
3190 dev_info(hsotg->dev,
3191 "Waiting for Peripheral Mode, Mode=%s\n",
3192 dwc2_is_host_mode(hsotg) ? "Host" :
3193 "Peripheral");
3194 msleep(20);
3195 /*
3196 * Sometimes the initial GOTGCTRL read is wrong, so
3197 * check it again and jump to host mode if that was
3198 * the case.
3199 */
3200 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3201 if (!(gotgctl & GOTGCTL_CONID_B))
3202 goto host;
3203 if (++count > 250)
3204 break;
3205 }
3206 if (count > 250)
3207 dev_err(hsotg->dev,
3208 "Connection id status change timed out\n");
3209
3210 /*
3211 * Exit Partial Power Down without restoring registers.
3212 * No need to check the return value as registers
3213 * are not being restored.
3214 */
3215 if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3216 dwc2_exit_partial_power_down(hsotg, 0, false);
3217
3218 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3219 dwc2_core_init(hsotg, false);
3220 dwc2_enable_global_interrupts(hsotg);
3221 spin_lock_irqsave(&hsotg->lock, flags);
3222 dwc2_hsotg_core_init_disconnected(hsotg, false);
3223 spin_unlock_irqrestore(&hsotg->lock, flags);
3224 /* Enable ACG feature in device mode,if supported */
3225 dwc2_enable_acg(hsotg);
3226 dwc2_hsotg_core_connect(hsotg);
3227 } else {
3228 host:
3229 /* A-Device connector (Host Mode) */
3230 dev_dbg(hsotg->dev, "connId A\n");
3231 while (!dwc2_is_host_mode(hsotg)) {
3232 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3233 dwc2_is_host_mode(hsotg) ?
3234 "Host" : "Peripheral");
3235 msleep(20);
3236 if (++count > 250)
3237 break;
3238 }
3239 if (count > 250)
3240 dev_err(hsotg->dev,
3241 "Connection id status change timed out\n");
3242
3243 spin_lock_irqsave(&hsotg->lock, flags);
3244 dwc2_hsotg_disconnect(hsotg);
3245 spin_unlock_irqrestore(&hsotg->lock, flags);
3246
3247 hsotg->op_state = OTG_STATE_A_HOST;
3248 /* Initialize the Core for Host mode */
3249 dwc2_core_init(hsotg, false);
3250 dwc2_enable_global_interrupts(hsotg);
3251 dwc2_hcd_start(hsotg);
3252 }
3253 }
3254
dwc2_wakeup_detected(struct timer_list * t)3255 static void dwc2_wakeup_detected(struct timer_list *t)
3256 {
3257 struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3258 u32 hprt0;
3259
3260 dev_dbg(hsotg->dev, "%s()\n", __func__);
3261
3262 /*
3263 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3264 * so that OPT tests pass with all PHYs.)
3265 */
3266 hprt0 = dwc2_read_hprt0(hsotg);
3267 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3268 hprt0 &= ~HPRT0_RES;
3269 dwc2_writel(hsotg, hprt0, HPRT0);
3270 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3271 dwc2_readl(hsotg, HPRT0));
3272
3273 dwc2_hcd_rem_wakeup(hsotg);
3274 hsotg->bus_suspended = false;
3275
3276 /* Change to L0 state */
3277 hsotg->lx_state = DWC2_L0;
3278 }
3279
dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg * hsotg)3280 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3281 {
3282 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3283
3284 return hcd->self.b_hnp_enable;
3285 }
3286
3287 /**
3288 * dwc2_port_suspend() - Put controller in suspend mode for host.
3289 *
3290 * @hsotg: Programming view of the DWC_otg controller
3291 * @windex: The control request wIndex field
3292 *
3293 * Return: non-zero if failed to enter suspend mode for host.
3294 *
3295 * This function is for entering Host mode suspend.
3296 * Must NOT be called with interrupt disabled or spinlock held.
3297 */
dwc2_port_suspend(struct dwc2_hsotg * hsotg,u16 windex)3298 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3299 {
3300 unsigned long flags;
3301 u32 pcgctl;
3302 u32 gotgctl;
3303 int ret = 0;
3304
3305 dev_dbg(hsotg->dev, "%s()\n", __func__);
3306
3307 spin_lock_irqsave(&hsotg->lock, flags);
3308
3309 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3310 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3311 gotgctl |= GOTGCTL_HSTSETHNPEN;
3312 dwc2_writel(hsotg, gotgctl, GOTGCTL);
3313 hsotg->op_state = OTG_STATE_A_SUSPEND;
3314 }
3315
3316 switch (hsotg->params.power_down) {
3317 case DWC2_POWER_DOWN_PARAM_PARTIAL:
3318 ret = dwc2_enter_partial_power_down(hsotg);
3319 if (ret)
3320 dev_err(hsotg->dev,
3321 "enter partial_power_down failed.\n");
3322 break;
3323 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3324 /*
3325 * Perform spin unlock and lock because in
3326 * "dwc2_host_enter_hibernation()" function there is a spinlock
3327 * logic which prevents servicing of any IRQ during entering
3328 * hibernation.
3329 */
3330 spin_unlock_irqrestore(&hsotg->lock, flags);
3331 ret = dwc2_enter_hibernation(hsotg, 1);
3332 if (ret)
3333 dev_err(hsotg->dev, "enter hibernation failed.\n");
3334 spin_lock_irqsave(&hsotg->lock, flags);
3335 break;
3336 case DWC2_POWER_DOWN_PARAM_NONE:
3337 /*
3338 * If not hibernation nor partial power down are supported,
3339 * clock gating is used to save power.
3340 */
3341 if (!hsotg->params.no_clock_gating)
3342 dwc2_host_enter_clock_gating(hsotg);
3343 break;
3344 }
3345
3346 /* For HNP the bus must be suspended for at least 200ms */
3347 if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3348 pcgctl = dwc2_readl(hsotg, PCGCTL);
3349 pcgctl &= ~PCGCTL_STOPPCLK;
3350 dwc2_writel(hsotg, pcgctl, PCGCTL);
3351
3352 spin_unlock_irqrestore(&hsotg->lock, flags);
3353
3354 msleep(200);
3355 } else {
3356 spin_unlock_irqrestore(&hsotg->lock, flags);
3357 }
3358
3359 return ret;
3360 }
3361
3362 /**
3363 * dwc2_port_resume() - Exit controller from suspend mode for host.
3364 *
3365 * @hsotg: Programming view of the DWC_otg controller
3366 *
3367 * Return: non-zero if failed to exit suspend mode for host.
3368 *
3369 * This function is for exiting Host mode suspend.
3370 * Must NOT be called with interrupt disabled or spinlock held.
3371 */
dwc2_port_resume(struct dwc2_hsotg * hsotg)3372 int dwc2_port_resume(struct dwc2_hsotg *hsotg)
3373 {
3374 unsigned long flags;
3375 int ret = 0;
3376
3377 spin_lock_irqsave(&hsotg->lock, flags);
3378
3379 switch (hsotg->params.power_down) {
3380 case DWC2_POWER_DOWN_PARAM_PARTIAL:
3381 ret = dwc2_exit_partial_power_down(hsotg, 0, true);
3382 if (ret)
3383 dev_err(hsotg->dev,
3384 "exit partial_power_down failed.\n");
3385 break;
3386 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3387 /* Exit host hibernation. */
3388 ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
3389 if (ret)
3390 dev_err(hsotg->dev, "exit hibernation failed.\n");
3391 break;
3392 case DWC2_POWER_DOWN_PARAM_NONE:
3393 /*
3394 * If not hibernation nor partial power down are supported,
3395 * port resume is done using the clock gating programming flow.
3396 */
3397 spin_unlock_irqrestore(&hsotg->lock, flags);
3398 dwc2_host_exit_clock_gating(hsotg, 0);
3399 spin_lock_irqsave(&hsotg->lock, flags);
3400 break;
3401 }
3402
3403 spin_unlock_irqrestore(&hsotg->lock, flags);
3404
3405 return ret;
3406 }
3407
3408 /* Handles hub class-specific requests */
dwc2_hcd_hub_control(struct dwc2_hsotg * hsotg,u16 typereq,u16 wvalue,u16 windex,char * buf,u16 wlength)3409 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3410 u16 wvalue, u16 windex, char *buf, u16 wlength)
3411 {
3412 struct usb_hub_descriptor *hub_desc;
3413 int retval = 0;
3414 u32 hprt0;
3415 u32 port_status;
3416 u32 speed;
3417 u32 pcgctl;
3418 u32 pwr;
3419
3420 switch (typereq) {
3421 case ClearHubFeature:
3422 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3423
3424 switch (wvalue) {
3425 case C_HUB_LOCAL_POWER:
3426 case C_HUB_OVER_CURRENT:
3427 /* Nothing required here */
3428 break;
3429
3430 default:
3431 retval = -EINVAL;
3432 dev_err(hsotg->dev,
3433 "ClearHubFeature request %1xh unknown\n",
3434 wvalue);
3435 }
3436 break;
3437
3438 case ClearPortFeature:
3439 if (wvalue != USB_PORT_FEAT_L1)
3440 if (!windex || windex > 1)
3441 goto error;
3442 switch (wvalue) {
3443 case USB_PORT_FEAT_ENABLE:
3444 dev_dbg(hsotg->dev,
3445 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3446 hprt0 = dwc2_read_hprt0(hsotg);
3447 hprt0 |= HPRT0_ENA;
3448 dwc2_writel(hsotg, hprt0, HPRT0);
3449 break;
3450
3451 case USB_PORT_FEAT_SUSPEND:
3452 dev_dbg(hsotg->dev,
3453 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3454
3455 if (hsotg->bus_suspended)
3456 retval = dwc2_port_resume(hsotg);
3457 break;
3458
3459 case USB_PORT_FEAT_POWER:
3460 dev_dbg(hsotg->dev,
3461 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3462 hprt0 = dwc2_read_hprt0(hsotg);
3463 pwr = hprt0 & HPRT0_PWR;
3464 hprt0 &= ~HPRT0_PWR;
3465 dwc2_writel(hsotg, hprt0, HPRT0);
3466 if (pwr)
3467 dwc2_vbus_supply_exit(hsotg);
3468 break;
3469
3470 case USB_PORT_FEAT_INDICATOR:
3471 dev_dbg(hsotg->dev,
3472 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3473 /* Port indicator not supported */
3474 break;
3475
3476 case USB_PORT_FEAT_C_CONNECTION:
3477 /*
3478 * Clears driver's internal Connect Status Change flag
3479 */
3480 dev_dbg(hsotg->dev,
3481 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3482 hsotg->flags.b.port_connect_status_change = 0;
3483 break;
3484
3485 case USB_PORT_FEAT_C_RESET:
3486 /* Clears driver's internal Port Reset Change flag */
3487 dev_dbg(hsotg->dev,
3488 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3489 hsotg->flags.b.port_reset_change = 0;
3490 break;
3491
3492 case USB_PORT_FEAT_C_ENABLE:
3493 /*
3494 * Clears the driver's internal Port Enable/Disable
3495 * Change flag
3496 */
3497 dev_dbg(hsotg->dev,
3498 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3499 hsotg->flags.b.port_enable_change = 0;
3500 break;
3501
3502 case USB_PORT_FEAT_C_SUSPEND:
3503 /*
3504 * Clears the driver's internal Port Suspend Change
3505 * flag, which is set when resume signaling on the host
3506 * port is complete
3507 */
3508 dev_dbg(hsotg->dev,
3509 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3510 hsotg->flags.b.port_suspend_change = 0;
3511 break;
3512
3513 case USB_PORT_FEAT_C_PORT_L1:
3514 dev_dbg(hsotg->dev,
3515 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3516 hsotg->flags.b.port_l1_change = 0;
3517 break;
3518
3519 case USB_PORT_FEAT_C_OVER_CURRENT:
3520 dev_dbg(hsotg->dev,
3521 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3522 hsotg->flags.b.port_over_current_change = 0;
3523 break;
3524
3525 default:
3526 retval = -EINVAL;
3527 dev_err(hsotg->dev,
3528 "ClearPortFeature request %1xh unknown or unsupported\n",
3529 wvalue);
3530 }
3531 break;
3532
3533 case GetHubDescriptor:
3534 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3535 hub_desc = (struct usb_hub_descriptor *)buf;
3536 hub_desc->bDescLength = 9;
3537 hub_desc->bDescriptorType = USB_DT_HUB;
3538 hub_desc->bNbrPorts = 1;
3539 hub_desc->wHubCharacteristics =
3540 cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3541 HUB_CHAR_INDV_PORT_OCPM);
3542 hub_desc->bPwrOn2PwrGood = 1;
3543 hub_desc->bHubContrCurrent = 0;
3544 hub_desc->u.hs.DeviceRemovable[0] = 0;
3545 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3546 break;
3547
3548 case GetHubStatus:
3549 dev_dbg(hsotg->dev, "GetHubStatus\n");
3550 memset(buf, 0, 4);
3551 break;
3552
3553 case GetPortStatus:
3554 dev_vdbg(hsotg->dev,
3555 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3556 hsotg->flags.d32);
3557 if (!windex || windex > 1)
3558 goto error;
3559
3560 port_status = 0;
3561 if (hsotg->flags.b.port_connect_status_change)
3562 port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3563 if (hsotg->flags.b.port_enable_change)
3564 port_status |= USB_PORT_STAT_C_ENABLE << 16;
3565 if (hsotg->flags.b.port_suspend_change)
3566 port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3567 if (hsotg->flags.b.port_l1_change)
3568 port_status |= USB_PORT_STAT_C_L1 << 16;
3569 if (hsotg->flags.b.port_reset_change)
3570 port_status |= USB_PORT_STAT_C_RESET << 16;
3571 if (hsotg->flags.b.port_over_current_change) {
3572 dev_warn(hsotg->dev, "Overcurrent change detected\n");
3573 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3574 }
3575
3576 if (!hsotg->flags.b.port_connect_status) {
3577 /*
3578 * The port is disconnected, which means the core is
3579 * either in device mode or it soon will be. Just
3580 * return 0's for the remainder of the port status
3581 * since the port register can't be read if the core
3582 * is in device mode.
3583 */
3584 *(__le32 *)buf = cpu_to_le32(port_status);
3585 break;
3586 }
3587
3588 hprt0 = dwc2_readl(hsotg, HPRT0);
3589 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0);
3590
3591 if (hprt0 & HPRT0_CONNSTS)
3592 port_status |= USB_PORT_STAT_CONNECTION;
3593 if (hprt0 & HPRT0_ENA)
3594 port_status |= USB_PORT_STAT_ENABLE;
3595 if (hprt0 & HPRT0_SUSP)
3596 port_status |= USB_PORT_STAT_SUSPEND;
3597 if (hprt0 & HPRT0_OVRCURRACT)
3598 port_status |= USB_PORT_STAT_OVERCURRENT;
3599 if (hprt0 & HPRT0_RST)
3600 port_status |= USB_PORT_STAT_RESET;
3601 if (hprt0 & HPRT0_PWR)
3602 port_status |= USB_PORT_STAT_POWER;
3603
3604 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3605 if (speed == HPRT0_SPD_HIGH_SPEED)
3606 port_status |= USB_PORT_STAT_HIGH_SPEED;
3607 else if (speed == HPRT0_SPD_LOW_SPEED)
3608 port_status |= USB_PORT_STAT_LOW_SPEED;
3609
3610 if (hprt0 & HPRT0_TSTCTL_MASK)
3611 port_status |= USB_PORT_STAT_TEST;
3612 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3613
3614 if (hsotg->params.dma_desc_fs_enable) {
3615 /*
3616 * Enable descriptor DMA only if a full speed
3617 * device is connected.
3618 */
3619 if (hsotg->new_connection &&
3620 ((port_status &
3621 (USB_PORT_STAT_CONNECTION |
3622 USB_PORT_STAT_HIGH_SPEED |
3623 USB_PORT_STAT_LOW_SPEED)) ==
3624 USB_PORT_STAT_CONNECTION)) {
3625 u32 hcfg;
3626
3627 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3628 hsotg->params.dma_desc_enable = true;
3629 hcfg = dwc2_readl(hsotg, HCFG);
3630 hcfg |= HCFG_DESCDMA;
3631 dwc2_writel(hsotg, hcfg, HCFG);
3632 hsotg->new_connection = false;
3633 }
3634 }
3635
3636 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3637 *(__le32 *)buf = cpu_to_le32(port_status);
3638 break;
3639
3640 case SetHubFeature:
3641 dev_dbg(hsotg->dev, "SetHubFeature\n");
3642 /* No HUB features supported */
3643 break;
3644
3645 case SetPortFeature:
3646 dev_dbg(hsotg->dev, "SetPortFeature\n");
3647 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3648 goto error;
3649
3650 if (!hsotg->flags.b.port_connect_status) {
3651 /*
3652 * The port is disconnected, which means the core is
3653 * either in device mode or it soon will be. Just
3654 * return without doing anything since the port
3655 * register can't be written if the core is in device
3656 * mode.
3657 */
3658 break;
3659 }
3660
3661 switch (wvalue) {
3662 case USB_PORT_FEAT_SUSPEND:
3663 dev_dbg(hsotg->dev,
3664 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3665 if (windex != hsotg->otg_port)
3666 goto error;
3667 if (!hsotg->bus_suspended)
3668 retval = dwc2_port_suspend(hsotg, windex);
3669 break;
3670
3671 case USB_PORT_FEAT_POWER:
3672 dev_dbg(hsotg->dev,
3673 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3674 hprt0 = dwc2_read_hprt0(hsotg);
3675 pwr = hprt0 & HPRT0_PWR;
3676 hprt0 |= HPRT0_PWR;
3677 dwc2_writel(hsotg, hprt0, HPRT0);
3678 if (!pwr)
3679 dwc2_vbus_supply_init(hsotg);
3680 break;
3681
3682 case USB_PORT_FEAT_RESET:
3683 dev_dbg(hsotg->dev,
3684 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3685
3686 hprt0 = dwc2_read_hprt0(hsotg);
3687
3688 if (hsotg->hibernated) {
3689 retval = dwc2_exit_hibernation(hsotg, 0, 1, 1);
3690 if (retval)
3691 dev_err(hsotg->dev,
3692 "exit hibernation failed\n");
3693 }
3694
3695 if (hsotg->in_ppd) {
3696 retval = dwc2_exit_partial_power_down(hsotg, 1,
3697 true);
3698 if (retval)
3699 dev_err(hsotg->dev,
3700 "exit partial_power_down failed\n");
3701 }
3702
3703 if (hsotg->params.power_down ==
3704 DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended)
3705 dwc2_host_exit_clock_gating(hsotg, 0);
3706
3707 pcgctl = dwc2_readl(hsotg, PCGCTL);
3708 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3709 dwc2_writel(hsotg, pcgctl, PCGCTL);
3710 /* ??? Original driver does this */
3711 dwc2_writel(hsotg, 0, PCGCTL);
3712
3713 hprt0 = dwc2_read_hprt0(hsotg);
3714 pwr = hprt0 & HPRT0_PWR;
3715 /* Clear suspend bit if resetting from suspend state */
3716 hprt0 &= ~HPRT0_SUSP;
3717
3718 /*
3719 * When B-Host the Port reset bit is set in the Start
3720 * HCD Callback function, so that the reset is started
3721 * within 1ms of the HNP success interrupt
3722 */
3723 if (!dwc2_hcd_is_b_host(hsotg)) {
3724 hprt0 |= HPRT0_PWR | HPRT0_RST;
3725 dev_dbg(hsotg->dev,
3726 "In host mode, hprt0=%08x\n", hprt0);
3727 dwc2_writel(hsotg, hprt0, HPRT0);
3728 if (!pwr)
3729 dwc2_vbus_supply_init(hsotg);
3730 }
3731
3732 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3733 msleep(50);
3734 hprt0 &= ~HPRT0_RST;
3735 dwc2_writel(hsotg, hprt0, HPRT0);
3736 hsotg->lx_state = DWC2_L0; /* Now back to On state */
3737 break;
3738
3739 case USB_PORT_FEAT_INDICATOR:
3740 dev_dbg(hsotg->dev,
3741 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3742 /* Not supported */
3743 break;
3744
3745 case USB_PORT_FEAT_TEST:
3746 hprt0 = dwc2_read_hprt0(hsotg);
3747 dev_dbg(hsotg->dev,
3748 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3749 hprt0 &= ~HPRT0_TSTCTL_MASK;
3750 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3751 dwc2_writel(hsotg, hprt0, HPRT0);
3752 break;
3753
3754 default:
3755 retval = -EINVAL;
3756 dev_err(hsotg->dev,
3757 "SetPortFeature %1xh unknown or unsupported\n",
3758 wvalue);
3759 break;
3760 }
3761 break;
3762
3763 default:
3764 error:
3765 retval = -EINVAL;
3766 dev_dbg(hsotg->dev,
3767 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3768 typereq, windex, wvalue);
3769 break;
3770 }
3771
3772 return retval;
3773 }
3774
dwc2_hcd_is_status_changed(struct dwc2_hsotg * hsotg,int port)3775 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3776 {
3777 int retval;
3778
3779 if (port != 1)
3780 return -EINVAL;
3781
3782 retval = (hsotg->flags.b.port_connect_status_change ||
3783 hsotg->flags.b.port_reset_change ||
3784 hsotg->flags.b.port_enable_change ||
3785 hsotg->flags.b.port_suspend_change ||
3786 hsotg->flags.b.port_over_current_change);
3787
3788 if (retval) {
3789 dev_dbg(hsotg->dev,
3790 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3791 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n",
3792 hsotg->flags.b.port_connect_status_change);
3793 dev_dbg(hsotg->dev, " port_reset_change: %d\n",
3794 hsotg->flags.b.port_reset_change);
3795 dev_dbg(hsotg->dev, " port_enable_change: %d\n",
3796 hsotg->flags.b.port_enable_change);
3797 dev_dbg(hsotg->dev, " port_suspend_change: %d\n",
3798 hsotg->flags.b.port_suspend_change);
3799 dev_dbg(hsotg->dev, " port_over_current_change: %d\n",
3800 hsotg->flags.b.port_over_current_change);
3801 }
3802
3803 return retval;
3804 }
3805
dwc2_hcd_get_frame_number(struct dwc2_hsotg * hsotg)3806 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3807 {
3808 u32 hfnum = dwc2_readl(hsotg, HFNUM);
3809
3810 #ifdef DWC2_DEBUG_SOF
3811 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3812 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3813 #endif
3814 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3815 }
3816
dwc2_hcd_get_future_frame_number(struct dwc2_hsotg * hsotg,int us)3817 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3818 {
3819 u32 hprt = dwc2_readl(hsotg, HPRT0);
3820 u32 hfir = dwc2_readl(hsotg, HFIR);
3821 u32 hfnum = dwc2_readl(hsotg, HFNUM);
3822 unsigned int us_per_frame;
3823 unsigned int frame_number;
3824 unsigned int remaining;
3825 unsigned int interval;
3826 unsigned int phy_clks;
3827
3828 /* High speed has 125 us per (micro) frame; others are 1 ms per */
3829 us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3830
3831 /* Extract fields */
3832 frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3833 remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3834 interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3835
3836 /*
3837 * Number of phy clocks since the last tick of the frame number after
3838 * "us" has passed.
3839 */
3840 phy_clks = (interval - remaining) +
3841 DIV_ROUND_UP(interval * us, us_per_frame);
3842
3843 return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3844 }
3845
dwc2_hcd_is_b_host(struct dwc2_hsotg * hsotg)3846 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3847 {
3848 return hsotg->op_state == OTG_STATE_B_HOST;
3849 }
3850
dwc2_hcd_urb_alloc(struct dwc2_hsotg * hsotg,int iso_desc_count,gfp_t mem_flags)3851 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3852 int iso_desc_count,
3853 gfp_t mem_flags)
3854 {
3855 struct dwc2_hcd_urb *urb;
3856
3857 urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3858 if (urb)
3859 urb->packet_count = iso_desc_count;
3860 return urb;
3861 }
3862
dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg * hsotg,struct dwc2_hcd_urb * urb,u8 dev_addr,u8 ep_num,u8 ep_type,u8 ep_dir,u16 maxp,u16 maxp_mult)3863 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3864 struct dwc2_hcd_urb *urb, u8 dev_addr,
3865 u8 ep_num, u8 ep_type, u8 ep_dir,
3866 u16 maxp, u16 maxp_mult)
3867 {
3868 if (dbg_perio() ||
3869 ep_type == USB_ENDPOINT_XFER_BULK ||
3870 ep_type == USB_ENDPOINT_XFER_CONTROL)
3871 dev_vdbg(hsotg->dev,
3872 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3873 dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3874 urb->pipe_info.dev_addr = dev_addr;
3875 urb->pipe_info.ep_num = ep_num;
3876 urb->pipe_info.pipe_type = ep_type;
3877 urb->pipe_info.pipe_dir = ep_dir;
3878 urb->pipe_info.maxp = maxp;
3879 urb->pipe_info.maxp_mult = maxp_mult;
3880 }
3881
3882 /*
3883 * NOTE: This function will be removed once the peripheral controller code
3884 * is integrated and the driver is stable
3885 */
dwc2_hcd_dump_state(struct dwc2_hsotg * hsotg)3886 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3887 {
3888 #ifdef DEBUG
3889 struct dwc2_host_chan *chan;
3890 struct dwc2_hcd_urb *urb;
3891 struct dwc2_qtd *qtd;
3892 int num_channels;
3893 u32 np_tx_status;
3894 u32 p_tx_status;
3895 int i;
3896
3897 num_channels = hsotg->params.host_channels;
3898 dev_dbg(hsotg->dev, "\n");
3899 dev_dbg(hsotg->dev,
3900 "************************************************************\n");
3901 dev_dbg(hsotg->dev, "HCD State:\n");
3902 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels);
3903
3904 for (i = 0; i < num_channels; i++) {
3905 chan = hsotg->hc_ptr_array[i];
3906 dev_dbg(hsotg->dev, " Channel %d:\n", i);
3907 dev_dbg(hsotg->dev,
3908 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3909 chan->dev_addr, chan->ep_num, chan->ep_is_in);
3910 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed);
3911 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
3912 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
3913 dev_dbg(hsotg->dev, " data_pid_start: %d\n",
3914 chan->data_pid_start);
3915 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count);
3916 dev_dbg(hsotg->dev, " xfer_started: %d\n",
3917 chan->xfer_started);
3918 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
3919 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
3920 (unsigned long)chan->xfer_dma);
3921 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
3922 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count);
3923 dev_dbg(hsotg->dev, " halt_on_queue: %d\n",
3924 chan->halt_on_queue);
3925 dev_dbg(hsotg->dev, " halt_pending: %d\n",
3926 chan->halt_pending);
3927 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
3928 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split);
3929 dev_dbg(hsotg->dev, " complete_split: %d\n",
3930 chan->complete_split);
3931 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr);
3932 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port);
3933 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos);
3934 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests);
3935 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
3936
3937 if (chan->xfer_started) {
3938 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3939
3940 hfnum = dwc2_readl(hsotg, HFNUM);
3941 hcchar = dwc2_readl(hsotg, HCCHAR(i));
3942 hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3943 hcint = dwc2_readl(hsotg, HCINT(i));
3944 hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3945 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum);
3946 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar);
3947 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz);
3948 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint);
3949 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk);
3950 }
3951
3952 if (!(chan->xfer_started && chan->qh))
3953 continue;
3954
3955 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3956 if (!qtd->in_process)
3957 break;
3958 urb = qtd->urb;
3959 dev_dbg(hsotg->dev, " URB Info:\n");
3960 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n",
3961 qtd, urb);
3962 if (urb) {
3963 dev_dbg(hsotg->dev,
3964 " Dev: %d, EP: %d %s\n",
3965 dwc2_hcd_get_dev_addr(&urb->pipe_info),
3966 dwc2_hcd_get_ep_num(&urb->pipe_info),
3967 dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3968 "IN" : "OUT");
3969 dev_dbg(hsotg->dev,
3970 " Max packet size: %d (%d mult)\n",
3971 dwc2_hcd_get_maxp(&urb->pipe_info),
3972 dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3973 dev_dbg(hsotg->dev,
3974 " transfer_buffer: %p\n",
3975 urb->buf);
3976 dev_dbg(hsotg->dev,
3977 " transfer_dma: %08lx\n",
3978 (unsigned long)urb->dma);
3979 dev_dbg(hsotg->dev,
3980 " transfer_buffer_length: %d\n",
3981 urb->length);
3982 dev_dbg(hsotg->dev, " actual_length: %d\n",
3983 urb->actual_length);
3984 }
3985 }
3986 }
3987
3988 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n",
3989 hsotg->non_periodic_channels);
3990 dev_dbg(hsotg->dev, " periodic_channels: %d\n",
3991 hsotg->periodic_channels);
3992 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs);
3993 np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3994 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n",
3995 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3996 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n",
3997 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3998 p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3999 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n",
4000 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4001 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n",
4002 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4003 dwc2_dump_global_registers(hsotg);
4004 dwc2_dump_host_registers(hsotg);
4005 dev_dbg(hsotg->dev,
4006 "************************************************************\n");
4007 dev_dbg(hsotg->dev, "\n");
4008 #endif
4009 }
4010
4011 struct wrapper_priv_data {
4012 struct dwc2_hsotg *hsotg;
4013 };
4014
4015 /* Gets the dwc2_hsotg from a usb_hcd */
dwc2_hcd_to_hsotg(struct usb_hcd * hcd)4016 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4017 {
4018 struct wrapper_priv_data *p;
4019
4020 p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4021 return p->hsotg;
4022 }
4023
4024 /**
4025 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4026 *
4027 * This will get the dwc2_tt structure (and ttport) associated with the given
4028 * context (which is really just a struct urb pointer).
4029 *
4030 * The first time this is called for a given TT we allocate memory for our
4031 * structure. When everyone is done and has called dwc2_host_put_tt_info()
4032 * then the refcount for the structure will go to 0 and we'll free it.
4033 *
4034 * @hsotg: The HCD state structure for the DWC OTG controller.
4035 * @context: The priv pointer from a struct dwc2_hcd_urb.
4036 * @mem_flags: Flags for allocating memory.
4037 * @ttport: We'll return this device's port number here. That's used to
4038 * reference into the bitmap if we're on a multi_tt hub.
4039 *
4040 * Return: a pointer to a struct dwc2_tt. Don't forget to call
4041 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure.
4042 */
4043
dwc2_host_get_tt_info(struct dwc2_hsotg * hsotg,void * context,gfp_t mem_flags,int * ttport)4044 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4045 gfp_t mem_flags, int *ttport)
4046 {
4047 struct urb *urb = context;
4048 struct dwc2_tt *dwc_tt = NULL;
4049
4050 if (urb->dev->tt) {
4051 *ttport = urb->dev->ttport;
4052
4053 dwc_tt = urb->dev->tt->hcpriv;
4054 if (!dwc_tt) {
4055 size_t bitmap_size;
4056
4057 /*
4058 * For single_tt we need one schedule. For multi_tt
4059 * we need one per port.
4060 */
4061 bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4062 sizeof(dwc_tt->periodic_bitmaps[0]);
4063 if (urb->dev->tt->multi)
4064 bitmap_size *= urb->dev->tt->hub->maxchild;
4065
4066 dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4067 mem_flags);
4068 if (!dwc_tt)
4069 return NULL;
4070
4071 dwc_tt->usb_tt = urb->dev->tt;
4072 dwc_tt->usb_tt->hcpriv = dwc_tt;
4073 }
4074
4075 dwc_tt->refcount++;
4076 }
4077
4078 return dwc_tt;
4079 }
4080
4081 /**
4082 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4083 *
4084 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4085 * of the structure are done.
4086 *
4087 * It's OK to call this with NULL.
4088 *
4089 * @hsotg: The HCD state structure for the DWC OTG controller.
4090 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info.
4091 */
dwc2_host_put_tt_info(struct dwc2_hsotg * hsotg,struct dwc2_tt * dwc_tt)4092 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4093 {
4094 /* Model kfree and make put of NULL a no-op */
4095 if (!dwc_tt)
4096 return;
4097
4098 WARN_ON(dwc_tt->refcount < 1);
4099
4100 dwc_tt->refcount--;
4101 if (!dwc_tt->refcount) {
4102 dwc_tt->usb_tt->hcpriv = NULL;
4103 kfree(dwc_tt);
4104 }
4105 }
4106
dwc2_host_get_speed(struct dwc2_hsotg * hsotg,void * context)4107 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4108 {
4109 struct urb *urb = context;
4110
4111 return urb->dev->speed;
4112 }
4113
dwc2_allocate_bus_bandwidth(struct usb_hcd * hcd,u16 bw,struct urb * urb)4114 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4115 struct urb *urb)
4116 {
4117 struct usb_bus *bus = hcd_to_bus(hcd);
4118
4119 if (urb->interval)
4120 bus->bandwidth_allocated += bw / urb->interval;
4121 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4122 bus->bandwidth_isoc_reqs++;
4123 else
4124 bus->bandwidth_int_reqs++;
4125 }
4126
dwc2_free_bus_bandwidth(struct usb_hcd * hcd,u16 bw,struct urb * urb)4127 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4128 struct urb *urb)
4129 {
4130 struct usb_bus *bus = hcd_to_bus(hcd);
4131
4132 if (urb->interval)
4133 bus->bandwidth_allocated -= bw / urb->interval;
4134 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4135 bus->bandwidth_isoc_reqs--;
4136 else
4137 bus->bandwidth_int_reqs--;
4138 }
4139
4140 /*
4141 * Sets the final status of an URB and returns it to the upper layer. Any
4142 * required cleanup of the URB is performed.
4143 *
4144 * Must be called with interrupt disabled and spinlock held
4145 */
dwc2_host_complete(struct dwc2_hsotg * hsotg,struct dwc2_qtd * qtd,int status)4146 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4147 int status)
4148 {
4149 struct urb *urb;
4150 int i;
4151
4152 if (!qtd) {
4153 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4154 return;
4155 }
4156
4157 if (!qtd->urb) {
4158 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4159 return;
4160 }
4161
4162 urb = qtd->urb->priv;
4163 if (!urb) {
4164 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4165 return;
4166 }
4167
4168 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4169
4170 if (dbg_urb(urb))
4171 dev_vdbg(hsotg->dev,
4172 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4173 __func__, urb, usb_pipedevice(urb->pipe),
4174 usb_pipeendpoint(urb->pipe),
4175 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4176 urb->actual_length);
4177
4178 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4179 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4180 for (i = 0; i < urb->number_of_packets; ++i) {
4181 urb->iso_frame_desc[i].actual_length =
4182 dwc2_hcd_urb_get_iso_desc_actual_length(
4183 qtd->urb, i);
4184 urb->iso_frame_desc[i].status =
4185 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4186 }
4187 }
4188
4189 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4190 for (i = 0; i < urb->number_of_packets; i++)
4191 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4192 i, urb->iso_frame_desc[i].status);
4193 }
4194
4195 urb->status = status;
4196 if (!status) {
4197 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4198 urb->actual_length < urb->transfer_buffer_length)
4199 urb->status = -EREMOTEIO;
4200 }
4201
4202 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4203 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4204 struct usb_host_endpoint *ep = urb->ep;
4205
4206 if (ep)
4207 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4208 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4209 urb);
4210 }
4211
4212 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4213 urb->hcpriv = NULL;
4214 kfree(qtd->urb);
4215 qtd->urb = NULL;
4216
4217 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4218 }
4219
4220 /*
4221 * Work queue function for starting the HCD when A-Cable is connected
4222 */
dwc2_hcd_start_func(struct work_struct * work)4223 static void dwc2_hcd_start_func(struct work_struct *work)
4224 {
4225 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4226 start_work.work);
4227
4228 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4229 dwc2_host_start(hsotg);
4230 }
4231
4232 /*
4233 * Reset work queue function
4234 */
dwc2_hcd_reset_func(struct work_struct * work)4235 static void dwc2_hcd_reset_func(struct work_struct *work)
4236 {
4237 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4238 reset_work.work);
4239 unsigned long flags;
4240 u32 hprt0;
4241
4242 dev_dbg(hsotg->dev, "USB RESET function called\n");
4243
4244 spin_lock_irqsave(&hsotg->lock, flags);
4245
4246 hprt0 = dwc2_read_hprt0(hsotg);
4247 hprt0 &= ~HPRT0_RST;
4248 dwc2_writel(hsotg, hprt0, HPRT0);
4249 hsotg->flags.b.port_reset_change = 1;
4250
4251 spin_unlock_irqrestore(&hsotg->lock, flags);
4252 }
4253
dwc2_hcd_phy_reset_func(struct work_struct * work)4254 static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4255 {
4256 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4257 phy_reset_work);
4258 int ret;
4259
4260 ret = phy_reset(hsotg->phy);
4261 if (ret)
4262 dev_warn(hsotg->dev, "PHY reset failed\n");
4263 }
4264
4265 /*
4266 * =========================================================================
4267 * Linux HC Driver Functions
4268 * =========================================================================
4269 */
4270
4271 /*
4272 * Initializes the DWC_otg controller and its root hub and prepares it for host
4273 * mode operation. Activates the root port. Returns 0 on success and a negative
4274 * error code on failure.
4275 */
_dwc2_hcd_start(struct usb_hcd * hcd)4276 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4277 {
4278 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4279 struct usb_bus *bus = hcd_to_bus(hcd);
4280 unsigned long flags;
4281 u32 hprt0;
4282 int ret;
4283
4284 dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4285
4286 spin_lock_irqsave(&hsotg->lock, flags);
4287 hsotg->lx_state = DWC2_L0;
4288 hcd->state = HC_STATE_RUNNING;
4289 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4290
4291 if (dwc2_is_device_mode(hsotg)) {
4292 spin_unlock_irqrestore(&hsotg->lock, flags);
4293 return 0; /* why 0 ?? */
4294 }
4295
4296 dwc2_hcd_reinit(hsotg);
4297
4298 hprt0 = dwc2_read_hprt0(hsotg);
4299 /* Has vbus power been turned on in dwc2_core_host_init ? */
4300 if (hprt0 & HPRT0_PWR) {
4301 /* Enable external vbus supply before resuming root hub */
4302 spin_unlock_irqrestore(&hsotg->lock, flags);
4303 ret = dwc2_vbus_supply_init(hsotg);
4304 if (ret)
4305 return ret;
4306 spin_lock_irqsave(&hsotg->lock, flags);
4307 }
4308
4309 /* Initialize and connect root hub if one is not already attached */
4310 if (bus->root_hub) {
4311 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4312 /* Inform the HUB driver to resume */
4313 usb_hcd_resume_root_hub(hcd);
4314 }
4315
4316 spin_unlock_irqrestore(&hsotg->lock, flags);
4317
4318 return 0;
4319 }
4320
4321 /*
4322 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4323 * stopped.
4324 */
_dwc2_hcd_stop(struct usb_hcd * hcd)4325 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4326 {
4327 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4328 unsigned long flags;
4329 u32 hprt0;
4330
4331 /* Turn off all host-specific interrupts */
4332 dwc2_disable_host_interrupts(hsotg);
4333
4334 /* Wait for interrupt processing to finish */
4335 synchronize_irq(hcd->irq);
4336
4337 spin_lock_irqsave(&hsotg->lock, flags);
4338 hprt0 = dwc2_read_hprt0(hsotg);
4339 /* Ensure hcd is disconnected */
4340 dwc2_hcd_disconnect(hsotg, true);
4341 dwc2_hcd_stop(hsotg);
4342 hsotg->lx_state = DWC2_L3;
4343 hcd->state = HC_STATE_HALT;
4344 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4345 spin_unlock_irqrestore(&hsotg->lock, flags);
4346
4347 /* keep balanced supply init/exit by checking HPRT0_PWR */
4348 if (hprt0 & HPRT0_PWR)
4349 dwc2_vbus_supply_exit(hsotg);
4350
4351 usleep_range(1000, 3000);
4352 }
4353
_dwc2_hcd_suspend(struct usb_hcd * hcd)4354 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4355 {
4356 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4357 unsigned long flags;
4358 int ret = 0;
4359
4360 spin_lock_irqsave(&hsotg->lock, flags);
4361
4362 if (dwc2_is_device_mode(hsotg))
4363 goto unlock;
4364
4365 if (hsotg->lx_state != DWC2_L0)
4366 goto unlock;
4367
4368 if (!HCD_HW_ACCESSIBLE(hcd))
4369 goto unlock;
4370
4371 if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4372 goto unlock;
4373
4374 if (hsotg->bus_suspended)
4375 goto skip_power_saving;
4376
4377 if (hsotg->flags.b.port_connect_status == 0)
4378 goto skip_power_saving;
4379
4380 switch (hsotg->params.power_down) {
4381 case DWC2_POWER_DOWN_PARAM_PARTIAL:
4382 /* Enter partial_power_down */
4383 ret = dwc2_enter_partial_power_down(hsotg);
4384 if (ret)
4385 dev_err(hsotg->dev,
4386 "enter partial_power_down failed\n");
4387 /* After entering suspend, hardware is not accessible */
4388 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4389 break;
4390 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4391 /* Enter hibernation */
4392 spin_unlock_irqrestore(&hsotg->lock, flags);
4393 ret = dwc2_enter_hibernation(hsotg, 1);
4394 if (ret)
4395 dev_err(hsotg->dev, "enter hibernation failed\n");
4396 spin_lock_irqsave(&hsotg->lock, flags);
4397
4398 /* After entering suspend, hardware is not accessible */
4399 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4400 break;
4401 case DWC2_POWER_DOWN_PARAM_NONE:
4402 /*
4403 * If not hibernation nor partial power down are supported,
4404 * clock gating is used to save power.
4405 */
4406 if (!hsotg->params.no_clock_gating) {
4407 dwc2_host_enter_clock_gating(hsotg);
4408
4409 /* After entering suspend, hardware is not accessible */
4410 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4411 }
4412 break;
4413 default:
4414 goto skip_power_saving;
4415 }
4416
4417 spin_unlock_irqrestore(&hsotg->lock, flags);
4418 dwc2_vbus_supply_exit(hsotg);
4419 spin_lock_irqsave(&hsotg->lock, flags);
4420
4421 /* Ask phy to be suspended */
4422 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4423 spin_unlock_irqrestore(&hsotg->lock, flags);
4424 usb_phy_set_suspend(hsotg->uphy, true);
4425 spin_lock_irqsave(&hsotg->lock, flags);
4426 }
4427
4428 skip_power_saving:
4429 hsotg->lx_state = DWC2_L2;
4430 unlock:
4431 spin_unlock_irqrestore(&hsotg->lock, flags);
4432
4433 return ret;
4434 }
4435
_dwc2_hcd_resume(struct usb_hcd * hcd)4436 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4437 {
4438 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4439 unsigned long flags;
4440 u32 hprt0;
4441 int ret = 0;
4442
4443 spin_lock_irqsave(&hsotg->lock, flags);
4444
4445 if (dwc2_is_device_mode(hsotg))
4446 goto unlock;
4447
4448 if (hsotg->lx_state != DWC2_L2)
4449 goto unlock;
4450
4451 hprt0 = dwc2_read_hprt0(hsotg);
4452
4453 /*
4454 * Added port connection status checking which prevents exiting from
4455 * Partial Power Down mode from _dwc2_hcd_resume() if not in Partial
4456 * Power Down mode.
4457 */
4458 if (hprt0 & HPRT0_CONNSTS) {
4459 hsotg->lx_state = DWC2_L0;
4460 goto unlock;
4461 }
4462
4463 switch (hsotg->params.power_down) {
4464 case DWC2_POWER_DOWN_PARAM_PARTIAL:
4465 ret = dwc2_exit_partial_power_down(hsotg, 0, true);
4466 if (ret)
4467 dev_err(hsotg->dev,
4468 "exit partial_power_down failed\n");
4469 /*
4470 * Set HW accessible bit before powering on the controller
4471 * since an interrupt may rise.
4472 */
4473 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4474 break;
4475 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4476 ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4477 if (ret)
4478 dev_err(hsotg->dev, "exit hibernation failed.\n");
4479
4480 /*
4481 * Set HW accessible bit before powering on the controller
4482 * since an interrupt may rise.
4483 */
4484 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4485 break;
4486 case DWC2_POWER_DOWN_PARAM_NONE:
4487 /*
4488 * If not hibernation nor partial power down are supported,
4489 * port resume is done using the clock gating programming flow.
4490 */
4491 spin_unlock_irqrestore(&hsotg->lock, flags);
4492 dwc2_host_exit_clock_gating(hsotg, 0);
4493
4494 /*
4495 * Initialize the Core for Host mode, as after system resume
4496 * the global interrupts are disabled.
4497 */
4498 dwc2_core_init(hsotg, false);
4499 dwc2_enable_global_interrupts(hsotg);
4500 dwc2_hcd_reinit(hsotg);
4501 spin_lock_irqsave(&hsotg->lock, flags);
4502
4503 /*
4504 * Set HW accessible bit before powering on the controller
4505 * since an interrupt may rise.
4506 */
4507 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4508 break;
4509 default:
4510 hsotg->lx_state = DWC2_L0;
4511 goto unlock;
4512 }
4513
4514 /* Change Root port status, as port status change occurred after resume.*/
4515 hsotg->flags.b.port_suspend_change = 1;
4516
4517 /*
4518 * Enable power if not already done.
4519 * This must not be spinlocked since duration
4520 * of this call is unknown.
4521 */
4522 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4523 spin_unlock_irqrestore(&hsotg->lock, flags);
4524 usb_phy_set_suspend(hsotg->uphy, false);
4525 spin_lock_irqsave(&hsotg->lock, flags);
4526 }
4527
4528 /* Enable external vbus supply after resuming the port. */
4529 spin_unlock_irqrestore(&hsotg->lock, flags);
4530 dwc2_vbus_supply_init(hsotg);
4531
4532 /* Wait for controller to correctly update D+/D- level */
4533 usleep_range(3000, 5000);
4534 spin_lock_irqsave(&hsotg->lock, flags);
4535
4536 /*
4537 * Clear Port Enable and Port Status changes.
4538 * Enable Port Power.
4539 */
4540 dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4541 HPRT0_ENACHG, HPRT0);
4542
4543 /* Wait for controller to detect Port Connect */
4544 spin_unlock_irqrestore(&hsotg->lock, flags);
4545 usleep_range(5000, 7000);
4546 spin_lock_irqsave(&hsotg->lock, flags);
4547 unlock:
4548 spin_unlock_irqrestore(&hsotg->lock, flags);
4549
4550 return ret;
4551 }
4552
4553 /* Returns the current frame number */
_dwc2_hcd_get_frame_number(struct usb_hcd * hcd)4554 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4555 {
4556 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4557
4558 return dwc2_hcd_get_frame_number(hsotg);
4559 }
4560
dwc2_dump_urb_info(struct usb_hcd * hcd,struct urb * urb,char * fn_name)4561 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4562 char *fn_name)
4563 {
4564 #ifdef VERBOSE_DEBUG
4565 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4566 char *pipetype = NULL;
4567 char *speed = NULL;
4568
4569 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4570 dev_vdbg(hsotg->dev, " Device address: %d\n",
4571 usb_pipedevice(urb->pipe));
4572 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n",
4573 usb_pipeendpoint(urb->pipe),
4574 usb_pipein(urb->pipe) ? "IN" : "OUT");
4575
4576 switch (usb_pipetype(urb->pipe)) {
4577 case PIPE_CONTROL:
4578 pipetype = "CONTROL";
4579 break;
4580 case PIPE_BULK:
4581 pipetype = "BULK";
4582 break;
4583 case PIPE_INTERRUPT:
4584 pipetype = "INTERRUPT";
4585 break;
4586 case PIPE_ISOCHRONOUS:
4587 pipetype = "ISOCHRONOUS";
4588 break;
4589 }
4590
4591 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype,
4592 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4593 "IN" : "OUT");
4594
4595 switch (urb->dev->speed) {
4596 case USB_SPEED_HIGH:
4597 speed = "HIGH";
4598 break;
4599 case USB_SPEED_FULL:
4600 speed = "FULL";
4601 break;
4602 case USB_SPEED_LOW:
4603 speed = "LOW";
4604 break;
4605 default:
4606 speed = "UNKNOWN";
4607 break;
4608 }
4609
4610 dev_vdbg(hsotg->dev, " Speed: %s\n", speed);
4611 dev_vdbg(hsotg->dev, " Max packet size: %d (%d mult)\n",
4612 usb_endpoint_maxp(&urb->ep->desc),
4613 usb_endpoint_maxp_mult(&urb->ep->desc));
4614
4615 dev_vdbg(hsotg->dev, " Data buffer length: %d\n",
4616 urb->transfer_buffer_length);
4617 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n",
4618 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4619 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n",
4620 urb->setup_packet, (unsigned long)urb->setup_dma);
4621 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval);
4622
4623 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4624 int i;
4625
4626 for (i = 0; i < urb->number_of_packets; i++) {
4627 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i);
4628 dev_vdbg(hsotg->dev, " offset: %d, length %d\n",
4629 urb->iso_frame_desc[i].offset,
4630 urb->iso_frame_desc[i].length);
4631 }
4632 }
4633 #endif
4634 }
4635
4636 /*
4637 * Starts processing a USB transfer request specified by a USB Request Block
4638 * (URB). mem_flags indicates the type of memory allocation to use while
4639 * processing this URB.
4640 */
_dwc2_hcd_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)4641 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4642 gfp_t mem_flags)
4643 {
4644 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4645 struct usb_host_endpoint *ep = urb->ep;
4646 struct dwc2_hcd_urb *dwc2_urb;
4647 int i;
4648 int retval;
4649 int alloc_bandwidth = 0;
4650 u8 ep_type = 0;
4651 u32 tflags = 0;
4652 void *buf;
4653 unsigned long flags;
4654 struct dwc2_qh *qh;
4655 bool qh_allocated = false;
4656 struct dwc2_qtd *qtd;
4657 struct dwc2_gregs_backup *gr;
4658
4659 gr = &hsotg->gr_backup;
4660
4661 if (dbg_urb(urb)) {
4662 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4663 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4664 }
4665
4666 if (hsotg->hibernated) {
4667 if (gr->gotgctl & GOTGCTL_CURMODE_HOST)
4668 retval = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4669 else
4670 retval = dwc2_exit_hibernation(hsotg, 0, 0, 0);
4671
4672 if (retval)
4673 dev_err(hsotg->dev,
4674 "exit hibernation failed.\n");
4675 }
4676
4677 if (hsotg->in_ppd) {
4678 retval = dwc2_exit_partial_power_down(hsotg, 0, true);
4679 if (retval)
4680 dev_err(hsotg->dev,
4681 "exit partial_power_down failed\n");
4682 }
4683
4684 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_NONE &&
4685 hsotg->bus_suspended) {
4686 if (dwc2_is_device_mode(hsotg))
4687 dwc2_gadget_exit_clock_gating(hsotg, 0);
4688 else
4689 dwc2_host_exit_clock_gating(hsotg, 0);
4690 }
4691
4692 if (!ep)
4693 return -EINVAL;
4694
4695 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4696 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4697 spin_lock_irqsave(&hsotg->lock, flags);
4698 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4699 alloc_bandwidth = 1;
4700 spin_unlock_irqrestore(&hsotg->lock, flags);
4701 }
4702
4703 switch (usb_pipetype(urb->pipe)) {
4704 case PIPE_CONTROL:
4705 ep_type = USB_ENDPOINT_XFER_CONTROL;
4706 break;
4707 case PIPE_ISOCHRONOUS:
4708 ep_type = USB_ENDPOINT_XFER_ISOC;
4709 break;
4710 case PIPE_BULK:
4711 ep_type = USB_ENDPOINT_XFER_BULK;
4712 break;
4713 case PIPE_INTERRUPT:
4714 ep_type = USB_ENDPOINT_XFER_INT;
4715 break;
4716 }
4717
4718 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4719 mem_flags);
4720 if (!dwc2_urb)
4721 return -ENOMEM;
4722
4723 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4724 usb_pipeendpoint(urb->pipe), ep_type,
4725 usb_pipein(urb->pipe),
4726 usb_endpoint_maxp(&ep->desc),
4727 usb_endpoint_maxp_mult(&ep->desc));
4728
4729 buf = urb->transfer_buffer;
4730
4731 if (hcd_uses_dma(hcd)) {
4732 if (!buf && (urb->transfer_dma & 3)) {
4733 dev_err(hsotg->dev,
4734 "%s: unaligned transfer with no transfer_buffer",
4735 __func__);
4736 retval = -EINVAL;
4737 goto fail0;
4738 }
4739 }
4740
4741 if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4742 tflags |= URB_GIVEBACK_ASAP;
4743 if (urb->transfer_flags & URB_ZERO_PACKET)
4744 tflags |= URB_SEND_ZERO_PACKET;
4745
4746 dwc2_urb->priv = urb;
4747 dwc2_urb->buf = buf;
4748 dwc2_urb->dma = urb->transfer_dma;
4749 dwc2_urb->length = urb->transfer_buffer_length;
4750 dwc2_urb->setup_packet = urb->setup_packet;
4751 dwc2_urb->setup_dma = urb->setup_dma;
4752 dwc2_urb->flags = tflags;
4753 dwc2_urb->interval = urb->interval;
4754 dwc2_urb->status = -EINPROGRESS;
4755
4756 for (i = 0; i < urb->number_of_packets; ++i)
4757 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4758 urb->iso_frame_desc[i].offset,
4759 urb->iso_frame_desc[i].length);
4760
4761 urb->hcpriv = dwc2_urb;
4762 qh = (struct dwc2_qh *)ep->hcpriv;
4763 /* Create QH for the endpoint if it doesn't exist */
4764 if (!qh) {
4765 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4766 if (!qh) {
4767 retval = -ENOMEM;
4768 goto fail0;
4769 }
4770 ep->hcpriv = qh;
4771 qh_allocated = true;
4772 }
4773
4774 qtd = kzalloc(sizeof(*qtd), mem_flags);
4775 if (!qtd) {
4776 retval = -ENOMEM;
4777 goto fail1;
4778 }
4779
4780 spin_lock_irqsave(&hsotg->lock, flags);
4781 retval = usb_hcd_link_urb_to_ep(hcd, urb);
4782 if (retval)
4783 goto fail2;
4784
4785 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4786 if (retval)
4787 goto fail3;
4788
4789 if (alloc_bandwidth) {
4790 dwc2_allocate_bus_bandwidth(hcd,
4791 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4792 urb);
4793 }
4794
4795 spin_unlock_irqrestore(&hsotg->lock, flags);
4796
4797 return 0;
4798
4799 fail3:
4800 dwc2_urb->priv = NULL;
4801 usb_hcd_unlink_urb_from_ep(hcd, urb);
4802 if (qh_allocated && qh->channel && qh->channel->qh == qh)
4803 qh->channel->qh = NULL;
4804 fail2:
4805 urb->hcpriv = NULL;
4806 spin_unlock_irqrestore(&hsotg->lock, flags);
4807 kfree(qtd);
4808 fail1:
4809 if (qh_allocated) {
4810 struct dwc2_qtd *qtd2, *qtd2_tmp;
4811
4812 ep->hcpriv = NULL;
4813 dwc2_hcd_qh_unlink(hsotg, qh);
4814 /* Free each QTD in the QH's QTD list */
4815 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4816 qtd_list_entry)
4817 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4818 dwc2_hcd_qh_free(hsotg, qh);
4819 }
4820 fail0:
4821 kfree(dwc2_urb);
4822
4823 return retval;
4824 }
4825
4826 /*
4827 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4828 */
_dwc2_hcd_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)4829 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4830 int status)
4831 {
4832 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4833 int rc;
4834 unsigned long flags;
4835
4836 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4837 dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4838
4839 spin_lock_irqsave(&hsotg->lock, flags);
4840
4841 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4842 if (rc)
4843 goto out;
4844
4845 if (!urb->hcpriv) {
4846 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4847 goto out;
4848 }
4849
4850 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4851
4852 usb_hcd_unlink_urb_from_ep(hcd, urb);
4853
4854 kfree(urb->hcpriv);
4855 urb->hcpriv = NULL;
4856
4857 /* Higher layer software sets URB status */
4858 spin_unlock(&hsotg->lock);
4859 usb_hcd_giveback_urb(hcd, urb, status);
4860 spin_lock(&hsotg->lock);
4861
4862 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4863 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status);
4864 out:
4865 spin_unlock_irqrestore(&hsotg->lock, flags);
4866
4867 return rc;
4868 }
4869
4870 /*
4871 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4872 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4873 * must already be dequeued.
4874 */
_dwc2_hcd_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)4875 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4876 struct usb_host_endpoint *ep)
4877 {
4878 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4879
4880 dev_dbg(hsotg->dev,
4881 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4882 ep->desc.bEndpointAddress, ep->hcpriv);
4883 dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4884 }
4885
4886 /*
4887 * Resets endpoint specific parameter values, in current version used to reset
4888 * the data toggle (as a WA). This function can be called from usb_clear_halt
4889 * routine.
4890 */
_dwc2_hcd_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)4891 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4892 struct usb_host_endpoint *ep)
4893 {
4894 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4895 unsigned long flags;
4896
4897 dev_dbg(hsotg->dev,
4898 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4899 ep->desc.bEndpointAddress);
4900
4901 spin_lock_irqsave(&hsotg->lock, flags);
4902 dwc2_hcd_endpoint_reset(hsotg, ep);
4903 spin_unlock_irqrestore(&hsotg->lock, flags);
4904 }
4905
4906 /*
4907 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4908 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4909 * interrupt.
4910 *
4911 * This function is called by the USB core when an interrupt occurs
4912 */
_dwc2_hcd_irq(struct usb_hcd * hcd)4913 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4914 {
4915 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4916
4917 return dwc2_handle_hcd_intr(hsotg);
4918 }
4919
4920 /*
4921 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4922 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4923 * is the status change indicator for the single root port. Returns 1 if either
4924 * change indicator is 1, otherwise returns 0.
4925 */
_dwc2_hcd_hub_status_data(struct usb_hcd * hcd,char * buf)4926 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4927 {
4928 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4929
4930 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4931 return buf[0] != 0;
4932 }
4933
4934 /* Handles hub class-specific requests */
_dwc2_hcd_hub_control(struct usb_hcd * hcd,u16 typereq,u16 wvalue,u16 windex,char * buf,u16 wlength)4935 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4936 u16 windex, char *buf, u16 wlength)
4937 {
4938 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4939 wvalue, windex, buf, wlength);
4940 return retval;
4941 }
4942
4943 /* Handles hub TT buffer clear completions */
_dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)4944 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4945 struct usb_host_endpoint *ep)
4946 {
4947 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4948 struct dwc2_qh *qh;
4949 unsigned long flags;
4950
4951 qh = ep->hcpriv;
4952 if (!qh)
4953 return;
4954
4955 spin_lock_irqsave(&hsotg->lock, flags);
4956 qh->tt_buffer_dirty = 0;
4957
4958 if (hsotg->flags.b.port_connect_status)
4959 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4960
4961 spin_unlock_irqrestore(&hsotg->lock, flags);
4962 }
4963
4964 /*
4965 * HPRT0_SPD_HIGH_SPEED: high speed
4966 * HPRT0_SPD_FULL_SPEED: full speed
4967 */
dwc2_change_bus_speed(struct usb_hcd * hcd,int speed)4968 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4969 {
4970 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4971
4972 if (hsotg->params.speed == speed)
4973 return;
4974
4975 hsotg->params.speed = speed;
4976 queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4977 }
4978
dwc2_free_dev(struct usb_hcd * hcd,struct usb_device * udev)4979 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4980 {
4981 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4982
4983 if (!hsotg->params.change_speed_quirk)
4984 return;
4985
4986 /*
4987 * On removal, set speed to default high-speed.
4988 */
4989 if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4990 udev->parent->speed < USB_SPEED_HIGH) {
4991 dev_info(hsotg->dev, "Set speed to default high-speed\n");
4992 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4993 }
4994 }
4995
dwc2_reset_device(struct usb_hcd * hcd,struct usb_device * udev)4996 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4997 {
4998 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4999
5000 if (!hsotg->params.change_speed_quirk)
5001 return 0;
5002
5003 if (udev->speed == USB_SPEED_HIGH) {
5004 dev_info(hsotg->dev, "Set speed to high-speed\n");
5005 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
5006 } else if ((udev->speed == USB_SPEED_FULL ||
5007 udev->speed == USB_SPEED_LOW)) {
5008 /*
5009 * Change speed setting to full-speed if there's
5010 * a full-speed or low-speed device plugged in.
5011 */
5012 dev_info(hsotg->dev, "Set speed to full-speed\n");
5013 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
5014 }
5015
5016 return 0;
5017 }
5018
5019 static struct hc_driver dwc2_hc_driver = {
5020 .description = "dwc2_hsotg",
5021 .product_desc = "DWC OTG Controller",
5022 .hcd_priv_size = sizeof(struct wrapper_priv_data),
5023
5024 .irq = _dwc2_hcd_irq,
5025 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
5026
5027 .start = _dwc2_hcd_start,
5028 .stop = _dwc2_hcd_stop,
5029 .urb_enqueue = _dwc2_hcd_urb_enqueue,
5030 .urb_dequeue = _dwc2_hcd_urb_dequeue,
5031 .endpoint_disable = _dwc2_hcd_endpoint_disable,
5032 .endpoint_reset = _dwc2_hcd_endpoint_reset,
5033 .get_frame_number = _dwc2_hcd_get_frame_number,
5034
5035 .hub_status_data = _dwc2_hcd_hub_status_data,
5036 .hub_control = _dwc2_hcd_hub_control,
5037 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5038
5039 .bus_suspend = _dwc2_hcd_suspend,
5040 .bus_resume = _dwc2_hcd_resume,
5041
5042 .map_urb_for_dma = dwc2_map_urb_for_dma,
5043 .unmap_urb_for_dma = dwc2_unmap_urb_for_dma,
5044 };
5045
5046 /*
5047 * Frees secondary storage associated with the dwc2_hsotg structure contained
5048 * in the struct usb_hcd field
5049 */
dwc2_hcd_free(struct dwc2_hsotg * hsotg)5050 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5051 {
5052 u32 ahbcfg;
5053 u32 dctl;
5054 int i;
5055
5056 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5057
5058 /* Free memory for QH/QTD lists */
5059 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5060 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5061 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5062 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5063 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5064 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5065 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5066
5067 /* Free memory for the host channels */
5068 for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5069 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5070
5071 if (chan) {
5072 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5073 i, chan);
5074 hsotg->hc_ptr_array[i] = NULL;
5075 kfree(chan);
5076 }
5077 }
5078
5079 if (hsotg->params.host_dma) {
5080 if (hsotg->status_buf) {
5081 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5082 hsotg->status_buf,
5083 hsotg->status_buf_dma);
5084 hsotg->status_buf = NULL;
5085 }
5086 } else {
5087 kfree(hsotg->status_buf);
5088 hsotg->status_buf = NULL;
5089 }
5090
5091 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
5092
5093 /* Disable all interrupts */
5094 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5095 dwc2_writel(hsotg, ahbcfg, GAHBCFG);
5096 dwc2_writel(hsotg, 0, GINTMSK);
5097
5098 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5099 dctl = dwc2_readl(hsotg, DCTL);
5100 dctl |= DCTL_SFTDISCON;
5101 dwc2_writel(hsotg, dctl, DCTL);
5102 }
5103
5104 if (hsotg->wq_otg) {
5105 if (!cancel_work_sync(&hsotg->wf_otg))
5106 flush_workqueue(hsotg->wq_otg);
5107 destroy_workqueue(hsotg->wq_otg);
5108 }
5109
5110 cancel_work_sync(&hsotg->phy_reset_work);
5111
5112 del_timer(&hsotg->wkp_timer);
5113 }
5114
dwc2_hcd_release(struct dwc2_hsotg * hsotg)5115 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5116 {
5117 /* Turn off all host-specific interrupts */
5118 dwc2_disable_host_interrupts(hsotg);
5119
5120 dwc2_hcd_free(hsotg);
5121 }
5122
5123 /*
5124 * Initializes the HCD. This function allocates memory for and initializes the
5125 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5126 * USB bus with the core and calls the hc_driver->start() function. It returns
5127 * a negative error on failure.
5128 */
dwc2_hcd_init(struct dwc2_hsotg * hsotg)5129 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5130 {
5131 struct platform_device *pdev = to_platform_device(hsotg->dev);
5132 struct resource *res;
5133 struct usb_hcd *hcd;
5134 struct dwc2_host_chan *channel;
5135 u32 hcfg;
5136 int i, num_channels;
5137 int retval;
5138
5139 if (usb_disabled())
5140 return -ENODEV;
5141
5142 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5143
5144 retval = -ENOMEM;
5145
5146 hcfg = dwc2_readl(hsotg, HCFG);
5147 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5148
5149 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5150 hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5151 sizeof(*hsotg->frame_num_array),
5152 GFP_KERNEL);
5153 if (!hsotg->frame_num_array)
5154 goto error1;
5155 hsotg->last_frame_num_array =
5156 kcalloc(FRAME_NUM_ARRAY_SIZE,
5157 sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5158 if (!hsotg->last_frame_num_array)
5159 goto error1;
5160 #endif
5161 hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5162
5163 /* Check if the bus driver or platform code has setup a dma_mask */
5164 if (hsotg->params.host_dma &&
5165 !hsotg->dev->dma_mask) {
5166 dev_warn(hsotg->dev,
5167 "dma_mask not set, disabling DMA\n");
5168 hsotg->params.host_dma = false;
5169 hsotg->params.dma_desc_enable = false;
5170 }
5171
5172 /* Set device flags indicating whether the HCD supports DMA */
5173 if (hsotg->params.host_dma) {
5174 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5175 dev_warn(hsotg->dev, "can't set DMA mask\n");
5176 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5177 dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5178 }
5179
5180 if (hsotg->params.change_speed_quirk) {
5181 dwc2_hc_driver.free_dev = dwc2_free_dev;
5182 dwc2_hc_driver.reset_device = dwc2_reset_device;
5183 }
5184
5185 if (hsotg->params.host_dma)
5186 dwc2_hc_driver.flags |= HCD_DMA;
5187
5188 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5189 if (!hcd)
5190 goto error1;
5191
5192 hcd->has_tt = 1;
5193
5194 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5195 if (!res) {
5196 retval = -EINVAL;
5197 goto error2;
5198 }
5199 hcd->rsrc_start = res->start;
5200 hcd->rsrc_len = resource_size(res);
5201
5202 ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5203 hsotg->priv = hcd;
5204
5205 /*
5206 * Disable the global interrupt until all the interrupt handlers are
5207 * installed
5208 */
5209 dwc2_disable_global_interrupts(hsotg);
5210
5211 /* Initialize the DWC_otg core, and select the Phy type */
5212 retval = dwc2_core_init(hsotg, true);
5213 if (retval)
5214 goto error2;
5215
5216 /* Create new workqueue and init work */
5217 retval = -ENOMEM;
5218 hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5219 if (!hsotg->wq_otg) {
5220 dev_err(hsotg->dev, "Failed to create workqueue\n");
5221 goto error2;
5222 }
5223 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5224
5225 timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5226
5227 /* Initialize the non-periodic schedule */
5228 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5229 INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5230 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5231
5232 /* Initialize the periodic schedule */
5233 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5234 INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5235 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5236 INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5237
5238 INIT_LIST_HEAD(&hsotg->split_order);
5239
5240 /*
5241 * Create a host channel descriptor for each host channel implemented
5242 * in the controller. Initialize the channel descriptor array.
5243 */
5244 INIT_LIST_HEAD(&hsotg->free_hc_list);
5245 num_channels = hsotg->params.host_channels;
5246 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5247
5248 for (i = 0; i < num_channels; i++) {
5249 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5250 if (!channel)
5251 goto error3;
5252 channel->hc_num = i;
5253 INIT_LIST_HEAD(&channel->split_order_list_entry);
5254 hsotg->hc_ptr_array[i] = channel;
5255 }
5256
5257 /* Initialize work */
5258 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5259 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5260 INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5261
5262 /*
5263 * Allocate space for storing data on status transactions. Normally no
5264 * data is sent, but this space acts as a bit bucket. This must be
5265 * done after usb_add_hcd since that function allocates the DMA buffer
5266 * pool.
5267 */
5268 if (hsotg->params.host_dma)
5269 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5270 DWC2_HCD_STATUS_BUF_SIZE,
5271 &hsotg->status_buf_dma, GFP_KERNEL);
5272 else
5273 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5274 GFP_KERNEL);
5275
5276 if (!hsotg->status_buf)
5277 goto error3;
5278
5279 /*
5280 * Create kmem caches to handle descriptor buffers in descriptor
5281 * DMA mode.
5282 * Alignment must be set to 512 bytes.
5283 */
5284 if (hsotg->params.dma_desc_enable ||
5285 hsotg->params.dma_desc_fs_enable) {
5286 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5287 sizeof(struct dwc2_dma_desc) *
5288 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5289 NULL);
5290 if (!hsotg->desc_gen_cache) {
5291 dev_err(hsotg->dev,
5292 "unable to create dwc2 generic desc cache\n");
5293
5294 /*
5295 * Disable descriptor dma mode since it will not be
5296 * usable.
5297 */
5298 hsotg->params.dma_desc_enable = false;
5299 hsotg->params.dma_desc_fs_enable = false;
5300 }
5301
5302 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5303 sizeof(struct dwc2_dma_desc) *
5304 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5305 if (!hsotg->desc_hsisoc_cache) {
5306 dev_err(hsotg->dev,
5307 "unable to create dwc2 hs isoc desc cache\n");
5308
5309 kmem_cache_destroy(hsotg->desc_gen_cache);
5310
5311 /*
5312 * Disable descriptor dma mode since it will not be
5313 * usable.
5314 */
5315 hsotg->params.dma_desc_enable = false;
5316 hsotg->params.dma_desc_fs_enable = false;
5317 }
5318 }
5319
5320 if (hsotg->params.host_dma) {
5321 /*
5322 * Create kmem caches to handle non-aligned buffer
5323 * in Buffer DMA mode.
5324 */
5325 hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5326 DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5327 SLAB_CACHE_DMA, NULL);
5328 if (!hsotg->unaligned_cache)
5329 dev_err(hsotg->dev,
5330 "unable to create dwc2 unaligned cache\n");
5331 }
5332
5333 hsotg->otg_port = 1;
5334 hsotg->frame_list = NULL;
5335 hsotg->frame_list_dma = 0;
5336 hsotg->periodic_qh_count = 0;
5337
5338 /* Initiate lx_state to L3 disconnected state */
5339 hsotg->lx_state = DWC2_L3;
5340
5341 hcd->self.otg_port = hsotg->otg_port;
5342
5343 /* Don't support SG list at this point */
5344 hcd->self.sg_tablesize = 0;
5345
5346 if (!IS_ERR_OR_NULL(hsotg->uphy))
5347 otg_set_host(hsotg->uphy->otg, &hcd->self);
5348
5349 /*
5350 * Finish generic HCD initialization and start the HCD. This function
5351 * allocates the DMA buffer pool, registers the USB bus, requests the
5352 * IRQ line, and calls hcd_start method.
5353 */
5354 retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5355 if (retval < 0)
5356 goto error4;
5357
5358 device_wakeup_enable(hcd->self.controller);
5359
5360 dwc2_hcd_dump_state(hsotg);
5361
5362 dwc2_enable_global_interrupts(hsotg);
5363
5364 return 0;
5365
5366 error4:
5367 kmem_cache_destroy(hsotg->unaligned_cache);
5368 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5369 kmem_cache_destroy(hsotg->desc_gen_cache);
5370 error3:
5371 dwc2_hcd_release(hsotg);
5372 error2:
5373 usb_put_hcd(hcd);
5374 error1:
5375
5376 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5377 kfree(hsotg->last_frame_num_array);
5378 kfree(hsotg->frame_num_array);
5379 #endif
5380
5381 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5382 return retval;
5383 }
5384
5385 /*
5386 * Removes the HCD.
5387 * Frees memory and resources associated with the HCD and deregisters the bus.
5388 */
dwc2_hcd_remove(struct dwc2_hsotg * hsotg)5389 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5390 {
5391 struct usb_hcd *hcd;
5392
5393 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5394
5395 hcd = dwc2_hsotg_to_hcd(hsotg);
5396 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5397
5398 if (!hcd) {
5399 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5400 __func__);
5401 return;
5402 }
5403
5404 if (!IS_ERR_OR_NULL(hsotg->uphy))
5405 otg_set_host(hsotg->uphy->otg, NULL);
5406
5407 usb_remove_hcd(hcd);
5408 hsotg->priv = NULL;
5409
5410 kmem_cache_destroy(hsotg->unaligned_cache);
5411 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5412 kmem_cache_destroy(hsotg->desc_gen_cache);
5413
5414 dwc2_hcd_release(hsotg);
5415 usb_put_hcd(hcd);
5416
5417 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5418 kfree(hsotg->last_frame_num_array);
5419 kfree(hsotg->frame_num_array);
5420 #endif
5421 }
5422
5423 /**
5424 * dwc2_backup_host_registers() - Backup controller host registers.
5425 * When suspending usb bus, registers needs to be backuped
5426 * if controller power is disabled once suspended.
5427 *
5428 * @hsotg: Programming view of the DWC_otg controller
5429 */
dwc2_backup_host_registers(struct dwc2_hsotg * hsotg)5430 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5431 {
5432 struct dwc2_hregs_backup *hr;
5433 int i;
5434
5435 dev_dbg(hsotg->dev, "%s\n", __func__);
5436
5437 /* Backup Host regs */
5438 hr = &hsotg->hr_backup;
5439 hr->hcfg = dwc2_readl(hsotg, HCFG);
5440 hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5441 for (i = 0; i < hsotg->params.host_channels; ++i)
5442 hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5443
5444 hr->hprt0 = dwc2_read_hprt0(hsotg);
5445 hr->hfir = dwc2_readl(hsotg, HFIR);
5446 hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5447 hr->valid = true;
5448
5449 return 0;
5450 }
5451
5452 /**
5453 * dwc2_restore_host_registers() - Restore controller host registers.
5454 * When resuming usb bus, device registers needs to be restored
5455 * if controller power were disabled.
5456 *
5457 * @hsotg: Programming view of the DWC_otg controller
5458 */
dwc2_restore_host_registers(struct dwc2_hsotg * hsotg)5459 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5460 {
5461 struct dwc2_hregs_backup *hr;
5462 int i;
5463
5464 dev_dbg(hsotg->dev, "%s\n", __func__);
5465
5466 /* Restore host regs */
5467 hr = &hsotg->hr_backup;
5468 if (!hr->valid) {
5469 dev_err(hsotg->dev, "%s: no host registers to restore\n",
5470 __func__);
5471 return -EINVAL;
5472 }
5473 hr->valid = false;
5474
5475 dwc2_writel(hsotg, hr->hcfg, HCFG);
5476 dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5477
5478 for (i = 0; i < hsotg->params.host_channels; ++i)
5479 dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5480
5481 dwc2_writel(hsotg, hr->hprt0, HPRT0);
5482 dwc2_writel(hsotg, hr->hfir, HFIR);
5483 dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5484 hsotg->frame_number = 0;
5485
5486 return 0;
5487 }
5488
5489 /**
5490 * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5491 *
5492 * @hsotg: Programming view of the DWC_otg controller
5493 */
dwc2_host_enter_hibernation(struct dwc2_hsotg * hsotg)5494 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5495 {
5496 unsigned long flags;
5497 int ret = 0;
5498 u32 hprt0;
5499 u32 pcgcctl;
5500 u32 gusbcfg;
5501 u32 gpwrdn;
5502
5503 dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5504 ret = dwc2_backup_global_registers(hsotg);
5505 if (ret) {
5506 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5507 __func__);
5508 return ret;
5509 }
5510 ret = dwc2_backup_host_registers(hsotg);
5511 if (ret) {
5512 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5513 __func__);
5514 return ret;
5515 }
5516
5517 /* Enter USB Suspend Mode */
5518 hprt0 = dwc2_readl(hsotg, HPRT0);
5519 hprt0 |= HPRT0_SUSP;
5520 hprt0 &= ~HPRT0_ENA;
5521 dwc2_writel(hsotg, hprt0, HPRT0);
5522
5523 /* Wait for the HPRT0.PrtSusp register field to be set */
5524 if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 5000))
5525 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5526
5527 /*
5528 * We need to disable interrupts to prevent servicing of any IRQ
5529 * during going to hibernation
5530 */
5531 spin_lock_irqsave(&hsotg->lock, flags);
5532 hsotg->lx_state = DWC2_L2;
5533
5534 gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5535 if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5536 /* ULPI interface */
5537 /* Suspend the Phy Clock */
5538 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5539 pcgcctl |= PCGCTL_STOPPCLK;
5540 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5541 udelay(10);
5542
5543 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5544 gpwrdn |= GPWRDN_PMUACTV;
5545 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5546 udelay(10);
5547 } else {
5548 /* UTMI+ Interface */
5549 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5550 gpwrdn |= GPWRDN_PMUACTV;
5551 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5552 udelay(10);
5553
5554 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5555 pcgcctl |= PCGCTL_STOPPCLK;
5556 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5557 udelay(10);
5558 }
5559
5560 /* Enable interrupts from wake up logic */
5561 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5562 gpwrdn |= GPWRDN_PMUINTSEL;
5563 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5564 udelay(10);
5565
5566 /* Unmask host mode interrupts in GPWRDN */
5567 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5568 gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5569 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5570 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5571 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5572 udelay(10);
5573
5574 /* Enable Power Down Clamp */
5575 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5576 gpwrdn |= GPWRDN_PWRDNCLMP;
5577 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5578 udelay(10);
5579
5580 /* Switch off VDD */
5581 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5582 gpwrdn |= GPWRDN_PWRDNSWTCH;
5583 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5584
5585 hsotg->hibernated = 1;
5586 hsotg->bus_suspended = 1;
5587 dev_dbg(hsotg->dev, "Host hibernation completed\n");
5588 spin_unlock_irqrestore(&hsotg->lock, flags);
5589 return ret;
5590 }
5591
5592 /*
5593 * dwc2_host_exit_hibernation()
5594 *
5595 * @hsotg: Programming view of the DWC_otg controller
5596 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5597 * @param reset: indicates whether resume is initiated by Reset.
5598 *
5599 * Return: non-zero if failed to enter to hibernation.
5600 *
5601 * This function is for exiting from Host mode hibernation by
5602 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5603 */
dwc2_host_exit_hibernation(struct dwc2_hsotg * hsotg,int rem_wakeup,int reset)5604 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5605 int reset)
5606 {
5607 u32 gpwrdn;
5608 u32 hprt0;
5609 int ret = 0;
5610 struct dwc2_gregs_backup *gr;
5611 struct dwc2_hregs_backup *hr;
5612
5613 gr = &hsotg->gr_backup;
5614 hr = &hsotg->hr_backup;
5615
5616 dev_dbg(hsotg->dev,
5617 "%s: called with rem_wakeup = %d reset = %d\n",
5618 __func__, rem_wakeup, reset);
5619
5620 dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5621 hsotg->hibernated = 0;
5622
5623 /*
5624 * This step is not described in functional spec but if not wait for
5625 * this delay, mismatch interrupts occurred because just after restore
5626 * core is in Device mode(gintsts.curmode == 0)
5627 */
5628 mdelay(100);
5629
5630 /* Clear all pending interupts */
5631 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5632
5633 /* De-assert Restore */
5634 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5635 gpwrdn &= ~GPWRDN_RESTORE;
5636 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5637 udelay(10);
5638
5639 /* Restore GUSBCFG, HCFG */
5640 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5641 dwc2_writel(hsotg, hr->hcfg, HCFG);
5642
5643 /* De-assert Wakeup Logic */
5644 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5645 gpwrdn &= ~GPWRDN_PMUACTV;
5646 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5647 udelay(10);
5648
5649 hprt0 = hr->hprt0;
5650 hprt0 |= HPRT0_PWR;
5651 hprt0 &= ~HPRT0_ENA;
5652 hprt0 &= ~HPRT0_SUSP;
5653 dwc2_writel(hsotg, hprt0, HPRT0);
5654
5655 hprt0 = hr->hprt0;
5656 hprt0 |= HPRT0_PWR;
5657 hprt0 &= ~HPRT0_ENA;
5658 hprt0 &= ~HPRT0_SUSP;
5659
5660 if (reset) {
5661 hprt0 |= HPRT0_RST;
5662 dwc2_writel(hsotg, hprt0, HPRT0);
5663
5664 /* Wait for Resume time and then program HPRT again */
5665 mdelay(60);
5666 hprt0 &= ~HPRT0_RST;
5667 dwc2_writel(hsotg, hprt0, HPRT0);
5668 } else {
5669 hprt0 |= HPRT0_RES;
5670 dwc2_writel(hsotg, hprt0, HPRT0);
5671
5672 /* Wait for Resume time and then program HPRT again */
5673 mdelay(100);
5674 hprt0 &= ~HPRT0_RES;
5675 dwc2_writel(hsotg, hprt0, HPRT0);
5676 }
5677 /* Clear all interrupt status */
5678 hprt0 = dwc2_readl(hsotg, HPRT0);
5679 hprt0 |= HPRT0_CONNDET;
5680 hprt0 |= HPRT0_ENACHG;
5681 hprt0 &= ~HPRT0_ENA;
5682 dwc2_writel(hsotg, hprt0, HPRT0);
5683
5684 hprt0 = dwc2_readl(hsotg, HPRT0);
5685
5686 /* Clear all pending interupts */
5687 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5688
5689 /* Restore global registers */
5690 ret = dwc2_restore_global_registers(hsotg);
5691 if (ret) {
5692 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5693 __func__);
5694 return ret;
5695 }
5696
5697 /* Restore host registers */
5698 ret = dwc2_restore_host_registers(hsotg);
5699 if (ret) {
5700 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5701 __func__);
5702 return ret;
5703 }
5704
5705 if (rem_wakeup) {
5706 dwc2_hcd_rem_wakeup(hsotg);
5707 /*
5708 * Change "port_connect_status_change" flag to re-enumerate,
5709 * because after exit from hibernation port connection status
5710 * is not detected.
5711 */
5712 hsotg->flags.b.port_connect_status_change = 1;
5713 }
5714
5715 hsotg->hibernated = 0;
5716 hsotg->bus_suspended = 0;
5717 hsotg->lx_state = DWC2_L0;
5718 dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5719 return ret;
5720 }
5721
dwc2_host_can_poweroff_phy(struct dwc2_hsotg * dwc2)5722 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5723 {
5724 struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5725
5726 /* If the controller isn't allowed to wakeup then we can power off. */
5727 if (!device_may_wakeup(dwc2->dev))
5728 return true;
5729
5730 /*
5731 * We don't want to power off the PHY if something under the
5732 * root hub has wakeup enabled.
5733 */
5734 if (usb_wakeup_enabled_descendants(root_hub))
5735 return false;
5736
5737 /* No reason to keep the PHY powered, so allow poweroff */
5738 return true;
5739 }
5740
5741 /**
5742 * dwc2_host_enter_partial_power_down() - Put controller in partial
5743 * power down.
5744 *
5745 * @hsotg: Programming view of the DWC_otg controller
5746 *
5747 * Return: non-zero if failed to enter host partial power down.
5748 *
5749 * This function is for entering Host mode partial power down.
5750 */
dwc2_host_enter_partial_power_down(struct dwc2_hsotg * hsotg)5751 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5752 {
5753 u32 pcgcctl;
5754 u32 hprt0;
5755 int ret = 0;
5756
5757 dev_dbg(hsotg->dev, "Entering host partial power down started.\n");
5758
5759 /* Put this port in suspend mode. */
5760 hprt0 = dwc2_read_hprt0(hsotg);
5761 hprt0 |= HPRT0_SUSP;
5762 dwc2_writel(hsotg, hprt0, HPRT0);
5763 udelay(5);
5764
5765 /* Wait for the HPRT0.PrtSusp register field to be set */
5766 if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5767 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5768
5769 /* Backup all registers */
5770 ret = dwc2_backup_global_registers(hsotg);
5771 if (ret) {
5772 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5773 __func__);
5774 return ret;
5775 }
5776
5777 ret = dwc2_backup_host_registers(hsotg);
5778 if (ret) {
5779 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5780 __func__);
5781 return ret;
5782 }
5783
5784 /*
5785 * Clear any pending interrupts since dwc2 will not be able to
5786 * clear them after entering partial_power_down.
5787 */
5788 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5789
5790 /* Put the controller in low power state */
5791 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5792
5793 pcgcctl |= PCGCTL_PWRCLMP;
5794 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5795 udelay(5);
5796
5797 pcgcctl |= PCGCTL_RSTPDWNMODULE;
5798 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5799 udelay(5);
5800
5801 pcgcctl |= PCGCTL_STOPPCLK;
5802 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5803
5804 /* Set in_ppd flag to 1 as here core enters suspend. */
5805 hsotg->in_ppd = 1;
5806 hsotg->lx_state = DWC2_L2;
5807 hsotg->bus_suspended = true;
5808
5809 dev_dbg(hsotg->dev, "Entering host partial power down completed.\n");
5810
5811 return ret;
5812 }
5813
5814 /*
5815 * dwc2_host_exit_partial_power_down() - Exit controller from host partial
5816 * power down.
5817 *
5818 * @hsotg: Programming view of the DWC_otg controller
5819 * @rem_wakeup: indicates whether resume is initiated by Reset.
5820 * @restore: indicates whether need to restore the registers or not.
5821 *
5822 * Return: non-zero if failed to exit host partial power down.
5823 *
5824 * This function is for exiting from Host mode partial power down.
5825 */
dwc2_host_exit_partial_power_down(struct dwc2_hsotg * hsotg,int rem_wakeup,bool restore)5826 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5827 int rem_wakeup, bool restore)
5828 {
5829 u32 pcgcctl;
5830 int ret = 0;
5831 u32 hprt0;
5832
5833 dev_dbg(hsotg->dev, "Exiting host partial power down started.\n");
5834
5835 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5836 pcgcctl &= ~PCGCTL_STOPPCLK;
5837 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5838 udelay(5);
5839
5840 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5841 pcgcctl &= ~PCGCTL_PWRCLMP;
5842 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5843 udelay(5);
5844
5845 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5846 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5847 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5848
5849 udelay(100);
5850 if (restore) {
5851 ret = dwc2_restore_global_registers(hsotg);
5852 if (ret) {
5853 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5854 __func__);
5855 return ret;
5856 }
5857
5858 ret = dwc2_restore_host_registers(hsotg);
5859 if (ret) {
5860 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5861 __func__);
5862 return ret;
5863 }
5864 }
5865
5866 /* Drive resume signaling and exit suspend mode on the port. */
5867 hprt0 = dwc2_read_hprt0(hsotg);
5868 hprt0 |= HPRT0_RES;
5869 hprt0 &= ~HPRT0_SUSP;
5870 dwc2_writel(hsotg, hprt0, HPRT0);
5871 udelay(5);
5872
5873 if (!rem_wakeup) {
5874 /* Stop driveing resume signaling on the port. */
5875 hprt0 = dwc2_read_hprt0(hsotg);
5876 hprt0 &= ~HPRT0_RES;
5877 dwc2_writel(hsotg, hprt0, HPRT0);
5878
5879 hsotg->bus_suspended = false;
5880 } else {
5881 /* Turn on the port power bit. */
5882 hprt0 = dwc2_read_hprt0(hsotg);
5883 hprt0 |= HPRT0_PWR;
5884 dwc2_writel(hsotg, hprt0, HPRT0);
5885
5886 /* Connect hcd. */
5887 dwc2_hcd_connect(hsotg);
5888
5889 mod_timer(&hsotg->wkp_timer,
5890 jiffies + msecs_to_jiffies(71));
5891 }
5892
5893 /* Set lx_state to and in_ppd to 0 as here core exits from suspend. */
5894 hsotg->in_ppd = 0;
5895 hsotg->lx_state = DWC2_L0;
5896
5897 dev_dbg(hsotg->dev, "Exiting host partial power down completed.\n");
5898 return ret;
5899 }
5900
5901 /**
5902 * dwc2_host_enter_clock_gating() - Put controller in clock gating.
5903 *
5904 * @hsotg: Programming view of the DWC_otg controller
5905 *
5906 * This function is for entering Host mode clock gating.
5907 */
dwc2_host_enter_clock_gating(struct dwc2_hsotg * hsotg)5908 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg)
5909 {
5910 u32 hprt0;
5911 u32 pcgctl;
5912
5913 dev_dbg(hsotg->dev, "Entering host clock gating.\n");
5914
5915 /* Put this port in suspend mode. */
5916 hprt0 = dwc2_read_hprt0(hsotg);
5917 hprt0 |= HPRT0_SUSP;
5918 dwc2_writel(hsotg, hprt0, HPRT0);
5919
5920 /* Set the Phy Clock bit as suspend is received. */
5921 pcgctl = dwc2_readl(hsotg, PCGCTL);
5922 pcgctl |= PCGCTL_STOPPCLK;
5923 dwc2_writel(hsotg, pcgctl, PCGCTL);
5924 udelay(5);
5925
5926 /* Set the Gate hclk as suspend is received. */
5927 pcgctl = dwc2_readl(hsotg, PCGCTL);
5928 pcgctl |= PCGCTL_GATEHCLK;
5929 dwc2_writel(hsotg, pcgctl, PCGCTL);
5930 udelay(5);
5931
5932 hsotg->bus_suspended = true;
5933 hsotg->lx_state = DWC2_L2;
5934 }
5935
5936 /**
5937 * dwc2_host_exit_clock_gating() - Exit controller from clock gating.
5938 *
5939 * @hsotg: Programming view of the DWC_otg controller
5940 * @rem_wakeup: indicates whether resume is initiated by remote wakeup
5941 *
5942 * This function is for exiting Host mode clock gating.
5943 */
dwc2_host_exit_clock_gating(struct dwc2_hsotg * hsotg,int rem_wakeup)5944 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5945 {
5946 u32 hprt0;
5947 u32 pcgctl;
5948
5949 dev_dbg(hsotg->dev, "Exiting host clock gating.\n");
5950
5951 /* Clear the Gate hclk. */
5952 pcgctl = dwc2_readl(hsotg, PCGCTL);
5953 pcgctl &= ~PCGCTL_GATEHCLK;
5954 dwc2_writel(hsotg, pcgctl, PCGCTL);
5955 udelay(5);
5956
5957 /* Phy Clock bit. */
5958 pcgctl = dwc2_readl(hsotg, PCGCTL);
5959 pcgctl &= ~PCGCTL_STOPPCLK;
5960 dwc2_writel(hsotg, pcgctl, PCGCTL);
5961 udelay(5);
5962
5963 /* Drive resume signaling and exit suspend mode on the port. */
5964 hprt0 = dwc2_read_hprt0(hsotg);
5965 hprt0 |= HPRT0_RES;
5966 hprt0 &= ~HPRT0_SUSP;
5967 dwc2_writel(hsotg, hprt0, HPRT0);
5968 udelay(5);
5969
5970 if (!rem_wakeup) {
5971 /* In case of port resume need to wait for 40 ms */
5972 msleep(USB_RESUME_TIMEOUT);
5973
5974 /* Stop driveing resume signaling on the port. */
5975 hprt0 = dwc2_read_hprt0(hsotg);
5976 hprt0 &= ~HPRT0_RES;
5977 dwc2_writel(hsotg, hprt0, HPRT0);
5978
5979 hsotg->bus_suspended = false;
5980 hsotg->lx_state = DWC2_L0;
5981 } else {
5982 mod_timer(&hsotg->wkp_timer,
5983 jiffies + msecs_to_jiffies(71));
5984 }
5985 }
5986