• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* linux/drivers/usb/gadget/s3c-hsudc.c
3  *
4  * Copyright (c) 2010 Samsung Electronics Co., Ltd.
5  *		http://www.samsung.com/
6  *
7  * S3C24XX USB 2.0 High-speed USB controller gadget driver
8  *
9  * The S3C24XX USB 2.0 high-speed USB controller supports upto 9 endpoints.
10  * Each endpoint can be configured as either in or out endpoint. Endpoints
11  * can be configured for Bulk or Interrupt transfer mode.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/delay.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/clk.h>
24 #include <linux/err.h>
25 #include <linux/usb/ch9.h>
26 #include <linux/usb/gadget.h>
27 #include <linux/usb/otg.h>
28 #include <linux/prefetch.h>
29 #include <linux/platform_data/s3c-hsudc.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/pm_runtime.h>
32 
33 #define S3C_HSUDC_REG(x)	(x)
34 
35 /* Non-Indexed Registers */
36 #define S3C_IR				S3C_HSUDC_REG(0x00) /* Index Register */
37 #define S3C_EIR				S3C_HSUDC_REG(0x04) /* EP Intr Status */
38 #define S3C_EIR_EP0			(1<<0)
39 #define S3C_EIER			S3C_HSUDC_REG(0x08) /* EP Intr Enable */
40 #define S3C_FAR				S3C_HSUDC_REG(0x0c) /* Gadget Address */
41 #define S3C_FNR				S3C_HSUDC_REG(0x10) /* Frame Number */
42 #define S3C_EDR				S3C_HSUDC_REG(0x14) /* EP Direction */
43 #define S3C_TR				S3C_HSUDC_REG(0x18) /* Test Register */
44 #define S3C_SSR				S3C_HSUDC_REG(0x1c) /* System Status */
45 #define S3C_SSR_DTZIEN_EN		(0xff8f)
46 #define S3C_SSR_ERR			(0xff80)
47 #define S3C_SSR_VBUSON			(1 << 8)
48 #define S3C_SSR_HSP			(1 << 4)
49 #define S3C_SSR_SDE			(1 << 3)
50 #define S3C_SSR_RESUME			(1 << 2)
51 #define S3C_SSR_SUSPEND			(1 << 1)
52 #define S3C_SSR_RESET			(1 << 0)
53 #define S3C_SCR				S3C_HSUDC_REG(0x20) /* System Control */
54 #define S3C_SCR_DTZIEN_EN		(1 << 14)
55 #define S3C_SCR_RRD_EN			(1 << 5)
56 #define S3C_SCR_SUS_EN			(1 << 1)
57 #define S3C_SCR_RST_EN			(1 << 0)
58 #define S3C_EP0SR			S3C_HSUDC_REG(0x24) /* EP0 Status */
59 #define S3C_EP0SR_EP0_LWO		(1 << 6)
60 #define S3C_EP0SR_STALL			(1 << 4)
61 #define S3C_EP0SR_TX_SUCCESS		(1 << 1)
62 #define S3C_EP0SR_RX_SUCCESS		(1 << 0)
63 #define S3C_EP0CR			S3C_HSUDC_REG(0x28) /* EP0 Control */
64 #define S3C_BR(_x)			S3C_HSUDC_REG(0x60 + (_x * 4))
65 
66 /* Indexed Registers */
67 #define S3C_ESR				S3C_HSUDC_REG(0x2c) /* EPn Status */
68 #define S3C_ESR_FLUSH			(1 << 6)
69 #define S3C_ESR_STALL			(1 << 5)
70 #define S3C_ESR_LWO			(1 << 4)
71 #define S3C_ESR_PSIF_ONE		(1 << 2)
72 #define S3C_ESR_PSIF_TWO		(2 << 2)
73 #define S3C_ESR_TX_SUCCESS		(1 << 1)
74 #define S3C_ESR_RX_SUCCESS		(1 << 0)
75 #define S3C_ECR				S3C_HSUDC_REG(0x30) /* EPn Control */
76 #define S3C_ECR_DUEN			(1 << 7)
77 #define S3C_ECR_FLUSH			(1 << 6)
78 #define S3C_ECR_STALL			(1 << 1)
79 #define S3C_ECR_IEMS			(1 << 0)
80 #define S3C_BRCR			S3C_HSUDC_REG(0x34) /* Read Count */
81 #define S3C_BWCR			S3C_HSUDC_REG(0x38) /* Write Count */
82 #define S3C_MPR				S3C_HSUDC_REG(0x3c) /* Max Pkt Size */
83 
84 #define WAIT_FOR_SETUP			(0)
85 #define DATA_STATE_XMIT			(1)
86 #define DATA_STATE_RECV			(2)
87 
88 static const char * const s3c_hsudc_supply_names[] = {
89 	"vdda",		/* analog phy supply, 3.3V */
90 	"vddi",		/* digital phy supply, 1.2V */
91 	"vddosc",	/* oscillator supply, 1.8V - 3.3V */
92 };
93 
94 /**
95  * struct s3c_hsudc_ep - Endpoint representation used by driver.
96  * @ep: USB gadget layer representation of device endpoint.
97  * @name: Endpoint name (as required by ep autoconfiguration).
98  * @dev: Reference to the device controller to which this EP belongs.
99  * @desc: Endpoint descriptor obtained from the gadget driver.
100  * @queue: Transfer request queue for the endpoint.
101  * @stopped: Maintains state of endpoint, set if EP is halted.
102  * @bEndpointAddress: EP address (including direction bit).
103  * @fifo: Base address of EP FIFO.
104  */
105 struct s3c_hsudc_ep {
106 	struct usb_ep ep;
107 	char name[20];
108 	struct s3c_hsudc *dev;
109 	struct list_head queue;
110 	u8 stopped;
111 	u8 wedge;
112 	u8 bEndpointAddress;
113 	void __iomem *fifo;
114 };
115 
116 /**
117  * struct s3c_hsudc_req - Driver encapsulation of USB gadget transfer request.
118  * @req: Reference to USB gadget transfer request.
119  * @queue: Used for inserting this request to the endpoint request queue.
120  */
121 struct s3c_hsudc_req {
122 	struct usb_request req;
123 	struct list_head queue;
124 };
125 
126 /**
127  * struct s3c_hsudc - Driver's abstraction of the device controller.
128  * @gadget: Instance of usb_gadget which is referenced by gadget driver.
129  * @driver: Reference to currenty active gadget driver.
130  * @dev: The device reference used by probe function.
131  * @lock: Lock to synchronize the usage of Endpoints (EP's are indexed).
132  * @regs: Remapped base address of controller's register space.
133  * irq: IRQ number used by the controller.
134  * uclk: Reference to the controller clock.
135  * ep0state: Current state of EP0.
136  * ep: List of endpoints supported by the controller.
137  */
138 struct s3c_hsudc {
139 	struct usb_gadget gadget;
140 	struct usb_gadget_driver *driver;
141 	struct device *dev;
142 	struct s3c24xx_hsudc_platdata *pd;
143 	struct usb_phy *transceiver;
144 	struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsudc_supply_names)];
145 	spinlock_t lock;
146 	void __iomem *regs;
147 	int irq;
148 	struct clk *uclk;
149 	int ep0state;
150 	struct s3c_hsudc_ep ep[];
151 };
152 
153 #define ep_maxpacket(_ep)	((_ep)->ep.maxpacket)
154 #define ep_is_in(_ep)		((_ep)->bEndpointAddress & USB_DIR_IN)
155 #define ep_index(_ep)		((_ep)->bEndpointAddress & \
156 					USB_ENDPOINT_NUMBER_MASK)
157 
158 static const char driver_name[] = "s3c-udc";
159 static const char ep0name[] = "ep0-control";
160 
our_req(struct usb_request * req)161 static inline struct s3c_hsudc_req *our_req(struct usb_request *req)
162 {
163 	return container_of(req, struct s3c_hsudc_req, req);
164 }
165 
our_ep(struct usb_ep * ep)166 static inline struct s3c_hsudc_ep *our_ep(struct usb_ep *ep)
167 {
168 	return container_of(ep, struct s3c_hsudc_ep, ep);
169 }
170 
to_hsudc(struct usb_gadget * gadget)171 static inline struct s3c_hsudc *to_hsudc(struct usb_gadget *gadget)
172 {
173 	return container_of(gadget, struct s3c_hsudc, gadget);
174 }
175 
set_index(struct s3c_hsudc * hsudc,int ep_addr)176 static inline void set_index(struct s3c_hsudc *hsudc, int ep_addr)
177 {
178 	ep_addr &= USB_ENDPOINT_NUMBER_MASK;
179 	writel(ep_addr, hsudc->regs + S3C_IR);
180 }
181 
__orr32(void __iomem * ptr,u32 val)182 static inline void __orr32(void __iomem *ptr, u32 val)
183 {
184 	writel(readl(ptr) | val, ptr);
185 }
186 
187 /**
188  * s3c_hsudc_complete_request - Complete a transfer request.
189  * @hsep: Endpoint to which the request belongs.
190  * @hsreq: Transfer request to be completed.
191  * @status: Transfer completion status for the transfer request.
192  */
s3c_hsudc_complete_request(struct s3c_hsudc_ep * hsep,struct s3c_hsudc_req * hsreq,int status)193 static void s3c_hsudc_complete_request(struct s3c_hsudc_ep *hsep,
194 				struct s3c_hsudc_req *hsreq, int status)
195 {
196 	unsigned int stopped = hsep->stopped;
197 	struct s3c_hsudc *hsudc = hsep->dev;
198 
199 	list_del_init(&hsreq->queue);
200 	hsreq->req.status = status;
201 
202 	if (!ep_index(hsep)) {
203 		hsudc->ep0state = WAIT_FOR_SETUP;
204 		hsep->bEndpointAddress &= ~USB_DIR_IN;
205 	}
206 
207 	hsep->stopped = 1;
208 	spin_unlock(&hsudc->lock);
209 	usb_gadget_giveback_request(&hsep->ep, &hsreq->req);
210 	spin_lock(&hsudc->lock);
211 	hsep->stopped = stopped;
212 }
213 
214 /**
215  * s3c_hsudc_nuke_ep - Terminate all requests queued for a endpoint.
216  * @hsep: Endpoint for which queued requests have to be terminated.
217  * @status: Transfer completion status for the transfer request.
218  */
s3c_hsudc_nuke_ep(struct s3c_hsudc_ep * hsep,int status)219 static void s3c_hsudc_nuke_ep(struct s3c_hsudc_ep *hsep, int status)
220 {
221 	struct s3c_hsudc_req *hsreq;
222 
223 	while (!list_empty(&hsep->queue)) {
224 		hsreq = list_entry(hsep->queue.next,
225 				struct s3c_hsudc_req, queue);
226 		s3c_hsudc_complete_request(hsep, hsreq, status);
227 	}
228 }
229 
230 /**
231  * s3c_hsudc_stop_activity - Stop activity on all endpoints.
232  * @hsudc: Device controller for which EP activity is to be stopped.
233  *
234  * All the endpoints are stopped and any pending transfer requests if any on
235  * the endpoint are terminated.
236  */
s3c_hsudc_stop_activity(struct s3c_hsudc * hsudc)237 static void s3c_hsudc_stop_activity(struct s3c_hsudc *hsudc)
238 {
239 	struct s3c_hsudc_ep *hsep;
240 	int epnum;
241 
242 	hsudc->gadget.speed = USB_SPEED_UNKNOWN;
243 
244 	for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) {
245 		hsep = &hsudc->ep[epnum];
246 		hsep->stopped = 1;
247 		s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
248 	}
249 }
250 
251 /**
252  * s3c_hsudc_read_setup_pkt - Read the received setup packet from EP0 fifo.
253  * @hsudc: Device controller from which setup packet is to be read.
254  * @buf: The buffer into which the setup packet is read.
255  *
256  * The setup packet received in the EP0 fifo is read and stored into a
257  * given buffer address.
258  */
259 
s3c_hsudc_read_setup_pkt(struct s3c_hsudc * hsudc,u16 * buf)260 static void s3c_hsudc_read_setup_pkt(struct s3c_hsudc *hsudc, u16 *buf)
261 {
262 	int count;
263 
264 	count = readl(hsudc->regs + S3C_BRCR);
265 	while (count--)
266 		*buf++ = (u16)readl(hsudc->regs + S3C_BR(0));
267 
268 	writel(S3C_EP0SR_RX_SUCCESS, hsudc->regs + S3C_EP0SR);
269 }
270 
271 /**
272  * s3c_hsudc_write_fifo - Write next chunk of transfer data to EP fifo.
273  * @hsep: Endpoint to which the data is to be written.
274  * @hsreq: Transfer request from which the next chunk of data is written.
275  *
276  * Write the next chunk of data from a transfer request to the endpoint FIFO.
277  * If the transfer request completes, 1 is returned, otherwise 0 is returned.
278  */
s3c_hsudc_write_fifo(struct s3c_hsudc_ep * hsep,struct s3c_hsudc_req * hsreq)279 static int s3c_hsudc_write_fifo(struct s3c_hsudc_ep *hsep,
280 				struct s3c_hsudc_req *hsreq)
281 {
282 	u16 *buf;
283 	u32 max = ep_maxpacket(hsep);
284 	u32 count, length;
285 	bool is_last;
286 	void __iomem *fifo = hsep->fifo;
287 
288 	buf = hsreq->req.buf + hsreq->req.actual;
289 	prefetch(buf);
290 
291 	length = hsreq->req.length - hsreq->req.actual;
292 	length = min(length, max);
293 	hsreq->req.actual += length;
294 
295 	writel(length, hsep->dev->regs + S3C_BWCR);
296 	for (count = 0; count < length; count += 2)
297 		writel(*buf++, fifo);
298 
299 	if (count != max) {
300 		is_last = true;
301 	} else {
302 		if (hsreq->req.length != hsreq->req.actual || hsreq->req.zero)
303 			is_last = false;
304 		else
305 			is_last = true;
306 	}
307 
308 	if (is_last) {
309 		s3c_hsudc_complete_request(hsep, hsreq, 0);
310 		return 1;
311 	}
312 
313 	return 0;
314 }
315 
316 /**
317  * s3c_hsudc_read_fifo - Read the next chunk of data from EP fifo.
318  * @hsep: Endpoint from which the data is to be read.
319  * @hsreq: Transfer request to which the next chunk of data read is written.
320  *
321  * Read the next chunk of data from the endpoint FIFO and a write it to the
322  * transfer request buffer. If the transfer request completes, 1 is returned,
323  * otherwise 0 is returned.
324  */
s3c_hsudc_read_fifo(struct s3c_hsudc_ep * hsep,struct s3c_hsudc_req * hsreq)325 static int s3c_hsudc_read_fifo(struct s3c_hsudc_ep *hsep,
326 				struct s3c_hsudc_req *hsreq)
327 {
328 	struct s3c_hsudc *hsudc = hsep->dev;
329 	u32 csr, offset;
330 	u16 *buf, word;
331 	u32 buflen, rcnt, rlen;
332 	void __iomem *fifo = hsep->fifo;
333 	u32 is_short = 0;
334 
335 	offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
336 	csr = readl(hsudc->regs + offset);
337 	if (!(csr & S3C_ESR_RX_SUCCESS))
338 		return -EINVAL;
339 
340 	buf = hsreq->req.buf + hsreq->req.actual;
341 	prefetchw(buf);
342 	buflen = hsreq->req.length - hsreq->req.actual;
343 
344 	rcnt = readl(hsudc->regs + S3C_BRCR);
345 	rlen = (csr & S3C_ESR_LWO) ? (rcnt * 2 - 1) : (rcnt * 2);
346 
347 	hsreq->req.actual += min(rlen, buflen);
348 	is_short = (rlen < hsep->ep.maxpacket);
349 
350 	while (rcnt-- != 0) {
351 		word = (u16)readl(fifo);
352 		if (buflen) {
353 			*buf++ = word;
354 			buflen--;
355 		} else {
356 			hsreq->req.status = -EOVERFLOW;
357 		}
358 	}
359 
360 	writel(S3C_ESR_RX_SUCCESS, hsudc->regs + offset);
361 
362 	if (is_short || hsreq->req.actual == hsreq->req.length) {
363 		s3c_hsudc_complete_request(hsep, hsreq, 0);
364 		return 1;
365 	}
366 
367 	return 0;
368 }
369 
370 /**
371  * s3c_hsudc_epin_intr - Handle in-endpoint interrupt.
372  * @hsudc - Device controller for which the interrupt is to be handled.
373  * @ep_idx - Endpoint number on which an interrupt is pending.
374  *
375  * Handles interrupt for a in-endpoint. The interrupts that are handled are
376  * stall and data transmit complete interrupt.
377  */
s3c_hsudc_epin_intr(struct s3c_hsudc * hsudc,u32 ep_idx)378 static void s3c_hsudc_epin_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
379 {
380 	struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
381 	struct s3c_hsudc_req *hsreq;
382 	u32 csr;
383 
384 	csr = readl(hsudc->regs + S3C_ESR);
385 	if (csr & S3C_ESR_STALL) {
386 		writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
387 		return;
388 	}
389 
390 	if (csr & S3C_ESR_TX_SUCCESS) {
391 		writel(S3C_ESR_TX_SUCCESS, hsudc->regs + S3C_ESR);
392 		if (list_empty(&hsep->queue))
393 			return;
394 
395 		hsreq = list_entry(hsep->queue.next,
396 				struct s3c_hsudc_req, queue);
397 		if ((s3c_hsudc_write_fifo(hsep, hsreq) == 0) &&
398 				(csr & S3C_ESR_PSIF_TWO))
399 			s3c_hsudc_write_fifo(hsep, hsreq);
400 	}
401 }
402 
403 /**
404  * s3c_hsudc_epout_intr - Handle out-endpoint interrupt.
405  * @hsudc - Device controller for which the interrupt is to be handled.
406  * @ep_idx - Endpoint number on which an interrupt is pending.
407  *
408  * Handles interrupt for a out-endpoint. The interrupts that are handled are
409  * stall, flush and data ready interrupt.
410  */
s3c_hsudc_epout_intr(struct s3c_hsudc * hsudc,u32 ep_idx)411 static void s3c_hsudc_epout_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
412 {
413 	struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
414 	struct s3c_hsudc_req *hsreq;
415 	u32 csr;
416 
417 	csr = readl(hsudc->regs + S3C_ESR);
418 	if (csr & S3C_ESR_STALL) {
419 		writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
420 		return;
421 	}
422 
423 	if (csr & S3C_ESR_FLUSH) {
424 		__orr32(hsudc->regs + S3C_ECR, S3C_ECR_FLUSH);
425 		return;
426 	}
427 
428 	if (csr & S3C_ESR_RX_SUCCESS) {
429 		if (list_empty(&hsep->queue))
430 			return;
431 
432 		hsreq = list_entry(hsep->queue.next,
433 				struct s3c_hsudc_req, queue);
434 		if (((s3c_hsudc_read_fifo(hsep, hsreq)) == 0) &&
435 				(csr & S3C_ESR_PSIF_TWO))
436 			s3c_hsudc_read_fifo(hsep, hsreq);
437 	}
438 }
439 
440 /** s3c_hsudc_set_halt - Set or clear a endpoint halt.
441  * @_ep: Endpoint on which halt has to be set or cleared.
442  * @value: 1 for setting halt on endpoint, 0 to clear halt.
443  *
444  * Set or clear endpoint halt. If halt is set, the endpoint is stopped.
445  * If halt is cleared, for in-endpoints, if there are any pending
446  * transfer requests, transfers are started.
447  */
s3c_hsudc_set_halt(struct usb_ep * _ep,int value)448 static int s3c_hsudc_set_halt(struct usb_ep *_ep, int value)
449 {
450 	struct s3c_hsudc_ep *hsep = our_ep(_ep);
451 	struct s3c_hsudc *hsudc = hsep->dev;
452 	struct s3c_hsudc_req *hsreq;
453 	unsigned long irqflags;
454 	u32 ecr;
455 	u32 offset;
456 
457 	if (value && ep_is_in(hsep) && !list_empty(&hsep->queue))
458 		return -EAGAIN;
459 
460 	spin_lock_irqsave(&hsudc->lock, irqflags);
461 	set_index(hsudc, ep_index(hsep));
462 	offset = (ep_index(hsep)) ? S3C_ECR : S3C_EP0CR;
463 	ecr = readl(hsudc->regs + offset);
464 
465 	if (value) {
466 		ecr |= S3C_ECR_STALL;
467 		if (ep_index(hsep))
468 			ecr |= S3C_ECR_FLUSH;
469 		hsep->stopped = 1;
470 	} else {
471 		ecr &= ~S3C_ECR_STALL;
472 		hsep->stopped = hsep->wedge = 0;
473 	}
474 	writel(ecr, hsudc->regs + offset);
475 
476 	if (ep_is_in(hsep) && !list_empty(&hsep->queue) && !value) {
477 		hsreq = list_entry(hsep->queue.next,
478 			struct s3c_hsudc_req, queue);
479 		if (hsreq)
480 			s3c_hsudc_write_fifo(hsep, hsreq);
481 	}
482 
483 	spin_unlock_irqrestore(&hsudc->lock, irqflags);
484 	return 0;
485 }
486 
487 /** s3c_hsudc_set_wedge - Sets the halt feature with the clear requests ignored
488  * @_ep: Endpoint on which wedge has to be set.
489  *
490  * Sets the halt feature with the clear requests ignored.
491  */
s3c_hsudc_set_wedge(struct usb_ep * _ep)492 static int s3c_hsudc_set_wedge(struct usb_ep *_ep)
493 {
494 	struct s3c_hsudc_ep *hsep = our_ep(_ep);
495 
496 	if (!hsep)
497 		return -EINVAL;
498 
499 	hsep->wedge = 1;
500 	return usb_ep_set_halt(_ep);
501 }
502 
503 /** s3c_hsudc_handle_reqfeat - Handle set feature or clear feature requests.
504  * @_ep: Device controller on which the set/clear feature needs to be handled.
505  * @ctrl: Control request as received on the endpoint 0.
506  *
507  * Handle set feature or clear feature control requests on the control endpoint.
508  */
s3c_hsudc_handle_reqfeat(struct s3c_hsudc * hsudc,struct usb_ctrlrequest * ctrl)509 static int s3c_hsudc_handle_reqfeat(struct s3c_hsudc *hsudc,
510 					struct usb_ctrlrequest *ctrl)
511 {
512 	struct s3c_hsudc_ep *hsep;
513 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
514 	u8 ep_num = ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK;
515 
516 	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
517 		hsep = &hsudc->ep[ep_num];
518 		switch (le16_to_cpu(ctrl->wValue)) {
519 		case USB_ENDPOINT_HALT:
520 			if (set || !hsep->wedge)
521 				s3c_hsudc_set_halt(&hsep->ep, set);
522 			return 0;
523 		}
524 	}
525 
526 	return -ENOENT;
527 }
528 
529 /**
530  * s3c_hsudc_process_req_status - Handle get status control request.
531  * @hsudc: Device controller on which get status request has be handled.
532  * @ctrl: Control request as received on the endpoint 0.
533  *
534  * Handle get status control request received on control endpoint.
535  */
s3c_hsudc_process_req_status(struct s3c_hsudc * hsudc,struct usb_ctrlrequest * ctrl)536 static void s3c_hsudc_process_req_status(struct s3c_hsudc *hsudc,
537 					struct usb_ctrlrequest *ctrl)
538 {
539 	struct s3c_hsudc_ep *hsep0 = &hsudc->ep[0];
540 	struct s3c_hsudc_req hsreq;
541 	struct s3c_hsudc_ep *hsep;
542 	__le16 reply;
543 	u8 epnum;
544 
545 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
546 	case USB_RECIP_DEVICE:
547 		reply = cpu_to_le16(0);
548 		break;
549 
550 	case USB_RECIP_INTERFACE:
551 		reply = cpu_to_le16(0);
552 		break;
553 
554 	case USB_RECIP_ENDPOINT:
555 		epnum = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK;
556 		hsep = &hsudc->ep[epnum];
557 		reply = cpu_to_le16(hsep->stopped ? 1 : 0);
558 		break;
559 	}
560 
561 	INIT_LIST_HEAD(&hsreq.queue);
562 	hsreq.req.length = 2;
563 	hsreq.req.buf = &reply;
564 	hsreq.req.actual = 0;
565 	hsreq.req.complete = NULL;
566 	s3c_hsudc_write_fifo(hsep0, &hsreq);
567 }
568 
569 /**
570  * s3c_hsudc_process_setup - Process control request received on endpoint 0.
571  * @hsudc: Device controller on which control request has been received.
572  *
573  * Read the control request received on endpoint 0, decode it and handle
574  * the request.
575  */
s3c_hsudc_process_setup(struct s3c_hsudc * hsudc)576 static void s3c_hsudc_process_setup(struct s3c_hsudc *hsudc)
577 {
578 	struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
579 	struct usb_ctrlrequest ctrl = {0};
580 	int ret;
581 
582 	s3c_hsudc_nuke_ep(hsep, -EPROTO);
583 	s3c_hsudc_read_setup_pkt(hsudc, (u16 *)&ctrl);
584 
585 	if (ctrl.bRequestType & USB_DIR_IN) {
586 		hsep->bEndpointAddress |= USB_DIR_IN;
587 		hsudc->ep0state = DATA_STATE_XMIT;
588 	} else {
589 		hsep->bEndpointAddress &= ~USB_DIR_IN;
590 		hsudc->ep0state = DATA_STATE_RECV;
591 	}
592 
593 	switch (ctrl.bRequest) {
594 	case USB_REQ_SET_ADDRESS:
595 		if (ctrl.bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE))
596 			break;
597 		hsudc->ep0state = WAIT_FOR_SETUP;
598 		return;
599 
600 	case USB_REQ_GET_STATUS:
601 		if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
602 			break;
603 		s3c_hsudc_process_req_status(hsudc, &ctrl);
604 		return;
605 
606 	case USB_REQ_SET_FEATURE:
607 	case USB_REQ_CLEAR_FEATURE:
608 		if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
609 			break;
610 		s3c_hsudc_handle_reqfeat(hsudc, &ctrl);
611 		hsudc->ep0state = WAIT_FOR_SETUP;
612 		return;
613 	}
614 
615 	if (hsudc->driver) {
616 		spin_unlock(&hsudc->lock);
617 		ret = hsudc->driver->setup(&hsudc->gadget, &ctrl);
618 		spin_lock(&hsudc->lock);
619 
620 		if (ctrl.bRequest == USB_REQ_SET_CONFIGURATION) {
621 			hsep->bEndpointAddress &= ~USB_DIR_IN;
622 			hsudc->ep0state = WAIT_FOR_SETUP;
623 		}
624 
625 		if (ret < 0) {
626 			dev_err(hsudc->dev, "setup failed, returned %d\n",
627 						ret);
628 			s3c_hsudc_set_halt(&hsep->ep, 1);
629 			hsudc->ep0state = WAIT_FOR_SETUP;
630 			hsep->bEndpointAddress &= ~USB_DIR_IN;
631 		}
632 	}
633 }
634 
635 /** s3c_hsudc_handle_ep0_intr - Handle endpoint 0 interrupt.
636  * @hsudc: Device controller on which endpoint 0 interrupt has occured.
637  *
638  * Handle endpoint 0 interrupt when it occurs. EP0 interrupt could occur
639  * when a stall handshake is sent to host or data is sent/received on
640  * endpoint 0.
641  */
s3c_hsudc_handle_ep0_intr(struct s3c_hsudc * hsudc)642 static void s3c_hsudc_handle_ep0_intr(struct s3c_hsudc *hsudc)
643 {
644 	struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
645 	struct s3c_hsudc_req *hsreq;
646 	u32 csr = readl(hsudc->regs + S3C_EP0SR);
647 	u32 ecr;
648 
649 	if (csr & S3C_EP0SR_STALL) {
650 		ecr = readl(hsudc->regs + S3C_EP0CR);
651 		ecr &= ~(S3C_ECR_STALL | S3C_ECR_FLUSH);
652 		writel(ecr, hsudc->regs + S3C_EP0CR);
653 
654 		writel(S3C_EP0SR_STALL, hsudc->regs + S3C_EP0SR);
655 		hsep->stopped = 0;
656 
657 		s3c_hsudc_nuke_ep(hsep, -ECONNABORTED);
658 		hsudc->ep0state = WAIT_FOR_SETUP;
659 		hsep->bEndpointAddress &= ~USB_DIR_IN;
660 		return;
661 	}
662 
663 	if (csr & S3C_EP0SR_TX_SUCCESS) {
664 		writel(S3C_EP0SR_TX_SUCCESS, hsudc->regs + S3C_EP0SR);
665 		if (ep_is_in(hsep)) {
666 			if (list_empty(&hsep->queue))
667 				return;
668 
669 			hsreq = list_entry(hsep->queue.next,
670 					struct s3c_hsudc_req, queue);
671 			s3c_hsudc_write_fifo(hsep, hsreq);
672 		}
673 	}
674 
675 	if (csr & S3C_EP0SR_RX_SUCCESS) {
676 		if (hsudc->ep0state == WAIT_FOR_SETUP)
677 			s3c_hsudc_process_setup(hsudc);
678 		else {
679 			if (!ep_is_in(hsep)) {
680 				if (list_empty(&hsep->queue))
681 					return;
682 				hsreq = list_entry(hsep->queue.next,
683 					struct s3c_hsudc_req, queue);
684 				s3c_hsudc_read_fifo(hsep, hsreq);
685 			}
686 		}
687 	}
688 }
689 
690 /**
691  * s3c_hsudc_ep_enable - Enable a endpoint.
692  * @_ep: The endpoint to be enabled.
693  * @desc: Endpoint descriptor.
694  *
695  * Enables a endpoint when called from the gadget driver. Endpoint stall if
696  * any is cleared, transfer type is configured and endpoint interrupt is
697  * enabled.
698  */
s3c_hsudc_ep_enable(struct usb_ep * _ep,const struct usb_endpoint_descriptor * desc)699 static int s3c_hsudc_ep_enable(struct usb_ep *_ep,
700 				const struct usb_endpoint_descriptor *desc)
701 {
702 	struct s3c_hsudc_ep *hsep;
703 	struct s3c_hsudc *hsudc;
704 	unsigned long flags;
705 	u32 ecr = 0;
706 
707 	hsep = our_ep(_ep);
708 	if (!_ep || !desc || _ep->name == ep0name
709 		|| desc->bDescriptorType != USB_DT_ENDPOINT
710 		|| hsep->bEndpointAddress != desc->bEndpointAddress
711 		|| ep_maxpacket(hsep) < usb_endpoint_maxp(desc))
712 		return -EINVAL;
713 
714 	if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
715 		&& usb_endpoint_maxp(desc) != ep_maxpacket(hsep))
716 		|| !desc->wMaxPacketSize)
717 		return -ERANGE;
718 
719 	hsudc = hsep->dev;
720 	if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
721 		return -ESHUTDOWN;
722 
723 	spin_lock_irqsave(&hsudc->lock, flags);
724 
725 	set_index(hsudc, hsep->bEndpointAddress);
726 	ecr |= ((usb_endpoint_xfer_int(desc)) ? S3C_ECR_IEMS : S3C_ECR_DUEN);
727 	writel(ecr, hsudc->regs + S3C_ECR);
728 
729 	hsep->stopped = hsep->wedge = 0;
730 	hsep->ep.desc = desc;
731 	hsep->ep.maxpacket = usb_endpoint_maxp(desc);
732 
733 	s3c_hsudc_set_halt(_ep, 0);
734 	__set_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
735 
736 	spin_unlock_irqrestore(&hsudc->lock, flags);
737 	return 0;
738 }
739 
740 /**
741  * s3c_hsudc_ep_disable - Disable a endpoint.
742  * @_ep: The endpoint to be disabled.
743  * @desc: Endpoint descriptor.
744  *
745  * Disables a endpoint when called from the gadget driver.
746  */
s3c_hsudc_ep_disable(struct usb_ep * _ep)747 static int s3c_hsudc_ep_disable(struct usb_ep *_ep)
748 {
749 	struct s3c_hsudc_ep *hsep = our_ep(_ep);
750 	struct s3c_hsudc *hsudc = hsep->dev;
751 	unsigned long flags;
752 
753 	if (!_ep || !hsep->ep.desc)
754 		return -EINVAL;
755 
756 	spin_lock_irqsave(&hsudc->lock, flags);
757 
758 	set_index(hsudc, hsep->bEndpointAddress);
759 	__clear_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
760 
761 	s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
762 
763 	hsep->ep.desc = NULL;
764 	hsep->stopped = 1;
765 
766 	spin_unlock_irqrestore(&hsudc->lock, flags);
767 	return 0;
768 }
769 
770 /**
771  * s3c_hsudc_alloc_request - Allocate a new request.
772  * @_ep: Endpoint for which request is allocated (not used).
773  * @gfp_flags: Flags used for the allocation.
774  *
775  * Allocates a single transfer request structure when called from gadget driver.
776  */
s3c_hsudc_alloc_request(struct usb_ep * _ep,gfp_t gfp_flags)777 static struct usb_request *s3c_hsudc_alloc_request(struct usb_ep *_ep,
778 						gfp_t gfp_flags)
779 {
780 	struct s3c_hsudc_req *hsreq;
781 
782 	hsreq = kzalloc(sizeof(*hsreq), gfp_flags);
783 	if (!hsreq)
784 		return NULL;
785 
786 	INIT_LIST_HEAD(&hsreq->queue);
787 	return &hsreq->req;
788 }
789 
790 /**
791  * s3c_hsudc_free_request - Deallocate a request.
792  * @ep: Endpoint for which request is deallocated (not used).
793  * @_req: Request to be deallocated.
794  *
795  * Allocates a single transfer request structure when called from gadget driver.
796  */
s3c_hsudc_free_request(struct usb_ep * ep,struct usb_request * _req)797 static void s3c_hsudc_free_request(struct usb_ep *ep, struct usb_request *_req)
798 {
799 	struct s3c_hsudc_req *hsreq;
800 
801 	hsreq = our_req(_req);
802 	WARN_ON(!list_empty(&hsreq->queue));
803 	kfree(hsreq);
804 }
805 
806 /**
807  * s3c_hsudc_queue - Queue a transfer request for the endpoint.
808  * @_ep: Endpoint for which the request is queued.
809  * @_req: Request to be queued.
810  * @gfp_flags: Not used.
811  *
812  * Start or enqueue a request for a endpoint when called from gadget driver.
813  */
s3c_hsudc_queue(struct usb_ep * _ep,struct usb_request * _req,gfp_t gfp_flags)814 static int s3c_hsudc_queue(struct usb_ep *_ep, struct usb_request *_req,
815 			gfp_t gfp_flags)
816 {
817 	struct s3c_hsudc_req *hsreq;
818 	struct s3c_hsudc_ep *hsep;
819 	struct s3c_hsudc *hsudc;
820 	unsigned long flags;
821 	u32 offset;
822 	u32 csr;
823 
824 	hsreq = our_req(_req);
825 	if ((!_req || !_req->complete || !_req->buf ||
826 		!list_empty(&hsreq->queue)))
827 		return -EINVAL;
828 
829 	hsep = our_ep(_ep);
830 	hsudc = hsep->dev;
831 	if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
832 		return -ESHUTDOWN;
833 
834 	spin_lock_irqsave(&hsudc->lock, flags);
835 	set_index(hsudc, hsep->bEndpointAddress);
836 
837 	_req->status = -EINPROGRESS;
838 	_req->actual = 0;
839 
840 	if (!ep_index(hsep) && _req->length == 0) {
841 		hsudc->ep0state = WAIT_FOR_SETUP;
842 		s3c_hsudc_complete_request(hsep, hsreq, 0);
843 		spin_unlock_irqrestore(&hsudc->lock, flags);
844 		return 0;
845 	}
846 
847 	if (list_empty(&hsep->queue) && !hsep->stopped) {
848 		offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
849 		if (ep_is_in(hsep)) {
850 			csr = readl(hsudc->regs + offset);
851 			if (!(csr & S3C_ESR_TX_SUCCESS) &&
852 				(s3c_hsudc_write_fifo(hsep, hsreq) == 1))
853 				hsreq = NULL;
854 		} else {
855 			csr = readl(hsudc->regs + offset);
856 			if ((csr & S3C_ESR_RX_SUCCESS)
857 				   && (s3c_hsudc_read_fifo(hsep, hsreq) == 1))
858 				hsreq = NULL;
859 		}
860 	}
861 
862 	if (hsreq)
863 		list_add_tail(&hsreq->queue, &hsep->queue);
864 
865 	spin_unlock_irqrestore(&hsudc->lock, flags);
866 	return 0;
867 }
868 
869 /**
870  * s3c_hsudc_dequeue - Dequeue a transfer request from an endpoint.
871  * @_ep: Endpoint from which the request is dequeued.
872  * @_req: Request to be dequeued.
873  *
874  * Dequeue a request from a endpoint when called from gadget driver.
875  */
s3c_hsudc_dequeue(struct usb_ep * _ep,struct usb_request * _req)876 static int s3c_hsudc_dequeue(struct usb_ep *_ep, struct usb_request *_req)
877 {
878 	struct s3c_hsudc_ep *hsep = our_ep(_ep);
879 	struct s3c_hsudc *hsudc = hsep->dev;
880 	struct s3c_hsudc_req *hsreq;
881 	unsigned long flags;
882 
883 	hsep = our_ep(_ep);
884 	if (!_ep || hsep->ep.name == ep0name)
885 		return -EINVAL;
886 
887 	spin_lock_irqsave(&hsudc->lock, flags);
888 
889 	list_for_each_entry(hsreq, &hsep->queue, queue) {
890 		if (&hsreq->req == _req)
891 			break;
892 	}
893 	if (&hsreq->req != _req) {
894 		spin_unlock_irqrestore(&hsudc->lock, flags);
895 		return -EINVAL;
896 	}
897 
898 	set_index(hsudc, hsep->bEndpointAddress);
899 	s3c_hsudc_complete_request(hsep, hsreq, -ECONNRESET);
900 
901 	spin_unlock_irqrestore(&hsudc->lock, flags);
902 	return 0;
903 }
904 
905 static const struct usb_ep_ops s3c_hsudc_ep_ops = {
906 	.enable = s3c_hsudc_ep_enable,
907 	.disable = s3c_hsudc_ep_disable,
908 	.alloc_request = s3c_hsudc_alloc_request,
909 	.free_request = s3c_hsudc_free_request,
910 	.queue = s3c_hsudc_queue,
911 	.dequeue = s3c_hsudc_dequeue,
912 	.set_halt = s3c_hsudc_set_halt,
913 	.set_wedge = s3c_hsudc_set_wedge,
914 };
915 
916 /**
917  * s3c_hsudc_initep - Initialize a endpoint to default state.
918  * @hsudc - Reference to the device controller.
919  * @hsep - Endpoint to be initialized.
920  * @epnum - Address to be assigned to the endpoint.
921  *
922  * Initialize a endpoint with default configuration.
923  */
s3c_hsudc_initep(struct s3c_hsudc * hsudc,struct s3c_hsudc_ep * hsep,int epnum)924 static void s3c_hsudc_initep(struct s3c_hsudc *hsudc,
925 				struct s3c_hsudc_ep *hsep, int epnum)
926 {
927 	char *dir;
928 
929 	if ((epnum % 2) == 0) {
930 		dir = "out";
931 	} else {
932 		dir = "in";
933 		hsep->bEndpointAddress = USB_DIR_IN;
934 	}
935 
936 	hsep->bEndpointAddress |= epnum;
937 	if (epnum)
938 		snprintf(hsep->name, sizeof(hsep->name), "ep%d%s", epnum, dir);
939 	else
940 		snprintf(hsep->name, sizeof(hsep->name), "%s", ep0name);
941 
942 	INIT_LIST_HEAD(&hsep->queue);
943 	INIT_LIST_HEAD(&hsep->ep.ep_list);
944 	if (epnum)
945 		list_add_tail(&hsep->ep.ep_list, &hsudc->gadget.ep_list);
946 
947 	hsep->dev = hsudc;
948 	hsep->ep.name = hsep->name;
949 	usb_ep_set_maxpacket_limit(&hsep->ep, epnum ? 512 : 64);
950 	hsep->ep.ops = &s3c_hsudc_ep_ops;
951 	hsep->fifo = hsudc->regs + S3C_BR(epnum);
952 	hsep->ep.desc = NULL;
953 	hsep->stopped = 0;
954 	hsep->wedge = 0;
955 
956 	if (epnum == 0) {
957 		hsep->ep.caps.type_control = true;
958 		hsep->ep.caps.dir_in = true;
959 		hsep->ep.caps.dir_out = true;
960 	} else {
961 		hsep->ep.caps.type_iso = true;
962 		hsep->ep.caps.type_bulk = true;
963 		hsep->ep.caps.type_int = true;
964 	}
965 
966 	if (epnum & 1)
967 		hsep->ep.caps.dir_in = true;
968 	else
969 		hsep->ep.caps.dir_out = true;
970 
971 	set_index(hsudc, epnum);
972 	writel(hsep->ep.maxpacket, hsudc->regs + S3C_MPR);
973 }
974 
975 /**
976  * s3c_hsudc_setup_ep - Configure all endpoints to default state.
977  * @hsudc: Reference to device controller.
978  *
979  * Configures all endpoints to default state.
980  */
s3c_hsudc_setup_ep(struct s3c_hsudc * hsudc)981 static void s3c_hsudc_setup_ep(struct s3c_hsudc *hsudc)
982 {
983 	int epnum;
984 
985 	hsudc->ep0state = WAIT_FOR_SETUP;
986 	INIT_LIST_HEAD(&hsudc->gadget.ep_list);
987 	for (epnum = 0; epnum < hsudc->pd->epnum; epnum++)
988 		s3c_hsudc_initep(hsudc, &hsudc->ep[epnum], epnum);
989 }
990 
991 /**
992  * s3c_hsudc_reconfig - Reconfigure the device controller to default state.
993  * @hsudc: Reference to device controller.
994  *
995  * Reconfigures the device controller registers to a default state.
996  */
s3c_hsudc_reconfig(struct s3c_hsudc * hsudc)997 static void s3c_hsudc_reconfig(struct s3c_hsudc *hsudc)
998 {
999 	writel(0xAA, hsudc->regs + S3C_EDR);
1000 	writel(1, hsudc->regs + S3C_EIER);
1001 	writel(0, hsudc->regs + S3C_TR);
1002 	writel(S3C_SCR_DTZIEN_EN | S3C_SCR_RRD_EN | S3C_SCR_SUS_EN |
1003 			S3C_SCR_RST_EN, hsudc->regs + S3C_SCR);
1004 	writel(0, hsudc->regs + S3C_EP0CR);
1005 
1006 	s3c_hsudc_setup_ep(hsudc);
1007 }
1008 
1009 /**
1010  * s3c_hsudc_irq - Interrupt handler for device controller.
1011  * @irq: Not used.
1012  * @_dev: Reference to the device controller.
1013  *
1014  * Interrupt handler for the device controller. This handler handles controller
1015  * interrupts and endpoint interrupts.
1016  */
s3c_hsudc_irq(int irq,void * _dev)1017 static irqreturn_t s3c_hsudc_irq(int irq, void *_dev)
1018 {
1019 	struct s3c_hsudc *hsudc = _dev;
1020 	struct s3c_hsudc_ep *hsep;
1021 	u32 ep_intr;
1022 	u32 sys_status;
1023 	u32 ep_idx;
1024 
1025 	spin_lock(&hsudc->lock);
1026 
1027 	sys_status = readl(hsudc->regs + S3C_SSR);
1028 	ep_intr = readl(hsudc->regs + S3C_EIR) & 0x3FF;
1029 
1030 	if (!ep_intr && !(sys_status & S3C_SSR_DTZIEN_EN)) {
1031 		spin_unlock(&hsudc->lock);
1032 		return IRQ_HANDLED;
1033 	}
1034 
1035 	if (sys_status) {
1036 		if (sys_status & S3C_SSR_VBUSON)
1037 			writel(S3C_SSR_VBUSON, hsudc->regs + S3C_SSR);
1038 
1039 		if (sys_status & S3C_SSR_ERR)
1040 			writel(S3C_SSR_ERR, hsudc->regs + S3C_SSR);
1041 
1042 		if (sys_status & S3C_SSR_SDE) {
1043 			writel(S3C_SSR_SDE, hsudc->regs + S3C_SSR);
1044 			hsudc->gadget.speed = (sys_status & S3C_SSR_HSP) ?
1045 				USB_SPEED_HIGH : USB_SPEED_FULL;
1046 		}
1047 
1048 		if (sys_status & S3C_SSR_SUSPEND) {
1049 			writel(S3C_SSR_SUSPEND, hsudc->regs + S3C_SSR);
1050 			if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1051 				&& hsudc->driver && hsudc->driver->suspend)
1052 				hsudc->driver->suspend(&hsudc->gadget);
1053 		}
1054 
1055 		if (sys_status & S3C_SSR_RESUME) {
1056 			writel(S3C_SSR_RESUME, hsudc->regs + S3C_SSR);
1057 			if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1058 				&& hsudc->driver && hsudc->driver->resume)
1059 				hsudc->driver->resume(&hsudc->gadget);
1060 		}
1061 
1062 		if (sys_status & S3C_SSR_RESET) {
1063 			writel(S3C_SSR_RESET, hsudc->regs + S3C_SSR);
1064 			for (ep_idx = 0; ep_idx < hsudc->pd->epnum; ep_idx++) {
1065 				hsep = &hsudc->ep[ep_idx];
1066 				hsep->stopped = 1;
1067 				s3c_hsudc_nuke_ep(hsep, -ECONNRESET);
1068 			}
1069 			s3c_hsudc_reconfig(hsudc);
1070 			hsudc->ep0state = WAIT_FOR_SETUP;
1071 		}
1072 	}
1073 
1074 	if (ep_intr & S3C_EIR_EP0) {
1075 		writel(S3C_EIR_EP0, hsudc->regs + S3C_EIR);
1076 		set_index(hsudc, 0);
1077 		s3c_hsudc_handle_ep0_intr(hsudc);
1078 	}
1079 
1080 	ep_intr >>= 1;
1081 	ep_idx = 1;
1082 	while (ep_intr) {
1083 		if (ep_intr & 1)  {
1084 			hsep = &hsudc->ep[ep_idx];
1085 			set_index(hsudc, ep_idx);
1086 			writel(1 << ep_idx, hsudc->regs + S3C_EIR);
1087 			if (ep_is_in(hsep))
1088 				s3c_hsudc_epin_intr(hsudc, ep_idx);
1089 			else
1090 				s3c_hsudc_epout_intr(hsudc, ep_idx);
1091 		}
1092 		ep_intr >>= 1;
1093 		ep_idx++;
1094 	}
1095 
1096 	spin_unlock(&hsudc->lock);
1097 	return IRQ_HANDLED;
1098 }
1099 
s3c_hsudc_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1100 static int s3c_hsudc_start(struct usb_gadget *gadget,
1101 		struct usb_gadget_driver *driver)
1102 {
1103 	struct s3c_hsudc *hsudc = to_hsudc(gadget);
1104 	int ret;
1105 
1106 	if (!driver
1107 		|| driver->max_speed < USB_SPEED_FULL
1108 		|| !driver->setup)
1109 		return -EINVAL;
1110 
1111 	if (!hsudc)
1112 		return -ENODEV;
1113 
1114 	if (hsudc->driver)
1115 		return -EBUSY;
1116 
1117 	hsudc->driver = driver;
1118 
1119 	ret = regulator_bulk_enable(ARRAY_SIZE(hsudc->supplies),
1120 				    hsudc->supplies);
1121 	if (ret != 0) {
1122 		dev_err(hsudc->dev, "failed to enable supplies: %d\n", ret);
1123 		goto err_supplies;
1124 	}
1125 
1126 	/* connect to bus through transceiver */
1127 	if (!IS_ERR_OR_NULL(hsudc->transceiver)) {
1128 		ret = otg_set_peripheral(hsudc->transceiver->otg,
1129 					&hsudc->gadget);
1130 		if (ret) {
1131 			dev_err(hsudc->dev, "%s: can't bind to transceiver\n",
1132 					hsudc->gadget.name);
1133 			goto err_otg;
1134 		}
1135 	}
1136 
1137 	enable_irq(hsudc->irq);
1138 	s3c_hsudc_reconfig(hsudc);
1139 
1140 	pm_runtime_get_sync(hsudc->dev);
1141 
1142 	if (hsudc->pd->phy_init)
1143 		hsudc->pd->phy_init();
1144 	if (hsudc->pd->gpio_init)
1145 		hsudc->pd->gpio_init();
1146 
1147 	return 0;
1148 err_otg:
1149 	regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1150 err_supplies:
1151 	hsudc->driver = NULL;
1152 	return ret;
1153 }
1154 
s3c_hsudc_stop(struct usb_gadget * gadget)1155 static int s3c_hsudc_stop(struct usb_gadget *gadget)
1156 {
1157 	struct s3c_hsudc *hsudc = to_hsudc(gadget);
1158 	unsigned long flags;
1159 
1160 	if (!hsudc)
1161 		return -ENODEV;
1162 
1163 	spin_lock_irqsave(&hsudc->lock, flags);
1164 	hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1165 	if (hsudc->pd->phy_uninit)
1166 		hsudc->pd->phy_uninit();
1167 
1168 	pm_runtime_put(hsudc->dev);
1169 
1170 	if (hsudc->pd->gpio_uninit)
1171 		hsudc->pd->gpio_uninit();
1172 	s3c_hsudc_stop_activity(hsudc);
1173 	spin_unlock_irqrestore(&hsudc->lock, flags);
1174 
1175 	if (!IS_ERR_OR_NULL(hsudc->transceiver))
1176 		(void) otg_set_peripheral(hsudc->transceiver->otg, NULL);
1177 
1178 	disable_irq(hsudc->irq);
1179 
1180 	regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1181 	hsudc->driver = NULL;
1182 
1183 	return 0;
1184 }
1185 
s3c_hsudc_read_frameno(struct s3c_hsudc * hsudc)1186 static inline u32 s3c_hsudc_read_frameno(struct s3c_hsudc *hsudc)
1187 {
1188 	return readl(hsudc->regs + S3C_FNR) & 0x3FF;
1189 }
1190 
s3c_hsudc_gadget_getframe(struct usb_gadget * gadget)1191 static int s3c_hsudc_gadget_getframe(struct usb_gadget *gadget)
1192 {
1193 	return s3c_hsudc_read_frameno(to_hsudc(gadget));
1194 }
1195 
s3c_hsudc_vbus_draw(struct usb_gadget * gadget,unsigned mA)1196 static int s3c_hsudc_vbus_draw(struct usb_gadget *gadget, unsigned mA)
1197 {
1198 	struct s3c_hsudc *hsudc = to_hsudc(gadget);
1199 
1200 	if (!hsudc)
1201 		return -ENODEV;
1202 
1203 	if (!IS_ERR_OR_NULL(hsudc->transceiver))
1204 		return usb_phy_set_power(hsudc->transceiver, mA);
1205 
1206 	return -EOPNOTSUPP;
1207 }
1208 
1209 static const struct usb_gadget_ops s3c_hsudc_gadget_ops = {
1210 	.get_frame	= s3c_hsudc_gadget_getframe,
1211 	.udc_start	= s3c_hsudc_start,
1212 	.udc_stop	= s3c_hsudc_stop,
1213 	.vbus_draw	= s3c_hsudc_vbus_draw,
1214 };
1215 
s3c_hsudc_probe(struct platform_device * pdev)1216 static int s3c_hsudc_probe(struct platform_device *pdev)
1217 {
1218 	struct device *dev = &pdev->dev;
1219 	struct s3c_hsudc *hsudc;
1220 	struct s3c24xx_hsudc_platdata *pd = dev_get_platdata(&pdev->dev);
1221 	int ret, i;
1222 
1223 	hsudc = devm_kzalloc(&pdev->dev, struct_size(hsudc, ep, pd->epnum),
1224 			     GFP_KERNEL);
1225 	if (!hsudc)
1226 		return -ENOMEM;
1227 
1228 	platform_set_drvdata(pdev, dev);
1229 	hsudc->dev = dev;
1230 	hsudc->pd = dev_get_platdata(&pdev->dev);
1231 
1232 	hsudc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
1233 
1234 	for (i = 0; i < ARRAY_SIZE(hsudc->supplies); i++)
1235 		hsudc->supplies[i].supply = s3c_hsudc_supply_names[i];
1236 
1237 	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsudc->supplies),
1238 				 hsudc->supplies);
1239 	if (ret != 0) {
1240 		if (ret != -EPROBE_DEFER)
1241 			dev_err(dev, "failed to request supplies: %d\n", ret);
1242 		goto err_supplies;
1243 	}
1244 
1245 	hsudc->regs = devm_platform_ioremap_resource(pdev, 0);
1246 	if (IS_ERR(hsudc->regs)) {
1247 		ret = PTR_ERR(hsudc->regs);
1248 		goto err_res;
1249 	}
1250 
1251 	spin_lock_init(&hsudc->lock);
1252 
1253 	hsudc->gadget.max_speed = USB_SPEED_HIGH;
1254 	hsudc->gadget.ops = &s3c_hsudc_gadget_ops;
1255 	hsudc->gadget.name = dev_name(dev);
1256 	hsudc->gadget.ep0 = &hsudc->ep[0].ep;
1257 	hsudc->gadget.is_otg = 0;
1258 	hsudc->gadget.is_a_peripheral = 0;
1259 	hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1260 
1261 	s3c_hsudc_setup_ep(hsudc);
1262 
1263 	ret = platform_get_irq(pdev, 0);
1264 	if (ret < 0)
1265 		goto err_res;
1266 	hsudc->irq = ret;
1267 
1268 	ret = devm_request_irq(&pdev->dev, hsudc->irq, s3c_hsudc_irq, 0,
1269 				driver_name, hsudc);
1270 	if (ret < 0) {
1271 		dev_err(dev, "irq request failed\n");
1272 		goto err_res;
1273 	}
1274 
1275 	hsudc->uclk = devm_clk_get(&pdev->dev, "usb-device");
1276 	if (IS_ERR(hsudc->uclk)) {
1277 		dev_err(dev, "failed to find usb-device clock source\n");
1278 		ret = PTR_ERR(hsudc->uclk);
1279 		goto err_res;
1280 	}
1281 	clk_enable(hsudc->uclk);
1282 
1283 	local_irq_disable();
1284 
1285 	disable_irq(hsudc->irq);
1286 	local_irq_enable();
1287 
1288 	ret = usb_add_gadget_udc(&pdev->dev, &hsudc->gadget);
1289 	if (ret)
1290 		goto err_add_udc;
1291 
1292 	pm_runtime_enable(dev);
1293 
1294 	return 0;
1295 err_add_udc:
1296 	clk_disable(hsudc->uclk);
1297 err_res:
1298 	if (!IS_ERR_OR_NULL(hsudc->transceiver))
1299 		usb_put_phy(hsudc->transceiver);
1300 
1301 err_supplies:
1302 	return ret;
1303 }
1304 
1305 static struct platform_driver s3c_hsudc_driver = {
1306 	.driver		= {
1307 		.name	= "s3c-hsudc",
1308 	},
1309 	.probe		= s3c_hsudc_probe,
1310 };
1311 
1312 module_platform_driver(s3c_hsudc_driver);
1313 
1314 MODULE_DESCRIPTION("Samsung S3C24XX USB high-speed controller driver");
1315 MODULE_AUTHOR("Thomas Abraham <thomas.ab@samsung.com>");
1316 MODULE_LICENSE("GPL");
1317 MODULE_ALIAS("platform:s3c-hsudc");
1318