1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
9 *
10 * See ../COPYING for licensing terms.
11 */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48
49 #include "internal.h"
50
51 #define KIOCB_KEY 0
52
53 #define AIO_RING_MAGIC 0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES 1
55 #define AIO_RING_INCOMPAT_FEATURES 0
56 struct aio_ring {
57 unsigned id; /* kernel internal index number */
58 unsigned nr; /* number of io_events */
59 unsigned head; /* Written to by userland or under ring_lock
60 * mutex by aio_read_events_ring(). */
61 unsigned tail;
62
63 unsigned magic;
64 unsigned compat_features;
65 unsigned incompat_features;
66 unsigned header_length; /* size of aio_ring */
67
68
69 struct io_event io_events[];
70 }; /* 128 bytes + ring size */
71
72 /*
73 * Plugging is meant to work with larger batches of IOs. If we don't
74 * have more than the below, then don't bother setting up a plug.
75 */
76 #define AIO_PLUG_THRESHOLD 2
77
78 #define AIO_RING_PAGES 8
79
80 struct kioctx_table {
81 struct rcu_head rcu;
82 unsigned nr;
83 struct kioctx __rcu *table[];
84 };
85
86 struct kioctx_cpu {
87 unsigned reqs_available;
88 };
89
90 struct ctx_rq_wait {
91 struct completion comp;
92 atomic_t count;
93 };
94
95 struct kioctx {
96 struct percpu_ref users;
97 atomic_t dead;
98
99 struct percpu_ref reqs;
100
101 unsigned long user_id;
102
103 struct __percpu kioctx_cpu *cpu;
104
105 /*
106 * For percpu reqs_available, number of slots we move to/from global
107 * counter at a time:
108 */
109 unsigned req_batch;
110 /*
111 * This is what userspace passed to io_setup(), it's not used for
112 * anything but counting against the global max_reqs quota.
113 *
114 * The real limit is nr_events - 1, which will be larger (see
115 * aio_setup_ring())
116 */
117 unsigned max_reqs;
118
119 /* Size of ringbuffer, in units of struct io_event */
120 unsigned nr_events;
121
122 unsigned long mmap_base;
123 unsigned long mmap_size;
124
125 struct page **ring_pages;
126 long nr_pages;
127
128 struct rcu_work free_rwork; /* see free_ioctx() */
129
130 /*
131 * signals when all in-flight requests are done
132 */
133 struct ctx_rq_wait *rq_wait;
134
135 struct {
136 /*
137 * This counts the number of available slots in the ringbuffer,
138 * so we avoid overflowing it: it's decremented (if positive)
139 * when allocating a kiocb and incremented when the resulting
140 * io_event is pulled off the ringbuffer.
141 *
142 * We batch accesses to it with a percpu version.
143 */
144 atomic_t reqs_available;
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 spinlock_t ctx_lock;
149 struct list_head active_reqs; /* used for cancellation */
150 } ____cacheline_aligned_in_smp;
151
152 struct {
153 struct mutex ring_lock;
154 wait_queue_head_t wait;
155 } ____cacheline_aligned_in_smp;
156
157 struct {
158 unsigned tail;
159 unsigned completed_events;
160 spinlock_t completion_lock;
161 } ____cacheline_aligned_in_smp;
162
163 struct page *internal_pages[AIO_RING_PAGES];
164 struct file *aio_ring_file;
165
166 unsigned id;
167 };
168
169 /*
170 * First field must be the file pointer in all the
171 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172 */
173 struct fsync_iocb {
174 struct file *file;
175 struct work_struct work;
176 bool datasync;
177 struct cred *creds;
178 };
179
180 struct poll_iocb {
181 struct file *file;
182 struct wait_queue_head *head;
183 __poll_t events;
184 bool cancelled;
185 bool work_scheduled;
186 bool work_need_resched;
187 struct wait_queue_entry wait;
188 struct work_struct work;
189 };
190
191 /*
192 * NOTE! Each of the iocb union members has the file pointer
193 * as the first entry in their struct definition. So you can
194 * access the file pointer through any of the sub-structs,
195 * or directly as just 'ki_filp' in this struct.
196 */
197 struct aio_kiocb {
198 union {
199 struct file *ki_filp;
200 struct kiocb rw;
201 struct fsync_iocb fsync;
202 struct poll_iocb poll;
203 };
204
205 struct kioctx *ki_ctx;
206 kiocb_cancel_fn *ki_cancel;
207
208 struct io_event ki_res;
209
210 struct list_head ki_list; /* the aio core uses this
211 * for cancellation */
212 refcount_t ki_refcnt;
213
214 /*
215 * If the aio_resfd field of the userspace iocb is not zero,
216 * this is the underlying eventfd context to deliver events to.
217 */
218 struct eventfd_ctx *ki_eventfd;
219 };
220
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 unsigned long aio_nr; /* current system wide number of aio requests */
224 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226
227 static struct kmem_cache *kiocb_cachep;
228 static struct kmem_cache *kioctx_cachep;
229
230 static struct vfsmount *aio_mnt;
231
232 static const struct file_operations aio_ring_fops;
233 static const struct address_space_operations aio_ctx_aops;
234
aio_private_file(struct kioctx * ctx,loff_t nr_pages)235 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
236 {
237 struct file *file;
238 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
239 if (IS_ERR(inode))
240 return ERR_CAST(inode);
241
242 inode->i_mapping->a_ops = &aio_ctx_aops;
243 inode->i_mapping->private_data = ctx;
244 inode->i_size = PAGE_SIZE * nr_pages;
245
246 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
247 O_RDWR, &aio_ring_fops);
248 if (IS_ERR(file))
249 iput(inode);
250 return file;
251 }
252
aio_init_fs_context(struct fs_context * fc)253 static int aio_init_fs_context(struct fs_context *fc)
254 {
255 if (!init_pseudo(fc, AIO_RING_MAGIC))
256 return -ENOMEM;
257 fc->s_iflags |= SB_I_NOEXEC;
258 return 0;
259 }
260
261 /* aio_setup
262 * Creates the slab caches used by the aio routines, panic on
263 * failure as this is done early during the boot sequence.
264 */
aio_setup(void)265 static int __init aio_setup(void)
266 {
267 static struct file_system_type aio_fs = {
268 .name = "aio",
269 .init_fs_context = aio_init_fs_context,
270 .kill_sb = kill_anon_super,
271 };
272 aio_mnt = kern_mount(&aio_fs);
273 if (IS_ERR(aio_mnt))
274 panic("Failed to create aio fs mount.");
275
276 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
277 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
278 return 0;
279 }
280 __initcall(aio_setup);
281
put_aio_ring_file(struct kioctx * ctx)282 static void put_aio_ring_file(struct kioctx *ctx)
283 {
284 struct file *aio_ring_file = ctx->aio_ring_file;
285 struct address_space *i_mapping;
286
287 if (aio_ring_file) {
288 truncate_setsize(file_inode(aio_ring_file), 0);
289
290 /* Prevent further access to the kioctx from migratepages */
291 i_mapping = aio_ring_file->f_mapping;
292 spin_lock(&i_mapping->private_lock);
293 i_mapping->private_data = NULL;
294 ctx->aio_ring_file = NULL;
295 spin_unlock(&i_mapping->private_lock);
296
297 fput(aio_ring_file);
298 }
299 }
300
aio_free_ring(struct kioctx * ctx)301 static void aio_free_ring(struct kioctx *ctx)
302 {
303 int i;
304
305 /* Disconnect the kiotx from the ring file. This prevents future
306 * accesses to the kioctx from page migration.
307 */
308 put_aio_ring_file(ctx);
309
310 for (i = 0; i < ctx->nr_pages; i++) {
311 struct page *page;
312 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
313 page_count(ctx->ring_pages[i]));
314 page = ctx->ring_pages[i];
315 if (!page)
316 continue;
317 ctx->ring_pages[i] = NULL;
318 put_page(page);
319 }
320
321 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
322 kfree(ctx->ring_pages);
323 ctx->ring_pages = NULL;
324 }
325 }
326
aio_ring_mremap(struct vm_area_struct * vma)327 static int aio_ring_mremap(struct vm_area_struct *vma)
328 {
329 struct file *file = vma->vm_file;
330 struct mm_struct *mm = vma->vm_mm;
331 struct kioctx_table *table;
332 int i, res = -EINVAL;
333
334 spin_lock(&mm->ioctx_lock);
335 rcu_read_lock();
336 table = rcu_dereference(mm->ioctx_table);
337 if (!table)
338 goto out_unlock;
339
340 for (i = 0; i < table->nr; i++) {
341 struct kioctx *ctx;
342
343 ctx = rcu_dereference(table->table[i]);
344 if (ctx && ctx->aio_ring_file == file) {
345 if (!atomic_read(&ctx->dead)) {
346 ctx->user_id = ctx->mmap_base = vma->vm_start;
347 res = 0;
348 }
349 break;
350 }
351 }
352
353 out_unlock:
354 rcu_read_unlock();
355 spin_unlock(&mm->ioctx_lock);
356 return res;
357 }
358
359 static const struct vm_operations_struct aio_ring_vm_ops = {
360 .mremap = aio_ring_mremap,
361 #if IS_ENABLED(CONFIG_MMU)
362 .fault = filemap_fault,
363 .map_pages = filemap_map_pages,
364 .page_mkwrite = filemap_page_mkwrite,
365 #endif
366 };
367
aio_ring_mmap(struct file * file,struct vm_area_struct * vma)368 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
369 {
370 vma->vm_flags |= VM_DONTEXPAND;
371 vma->vm_ops = &aio_ring_vm_ops;
372 return 0;
373 }
374
375 static const struct file_operations aio_ring_fops = {
376 .mmap = aio_ring_mmap,
377 };
378
379 #if IS_ENABLED(CONFIG_MIGRATION)
aio_migratepage(struct address_space * mapping,struct page * new,struct page * old,enum migrate_mode mode)380 static int aio_migratepage(struct address_space *mapping, struct page *new,
381 struct page *old, enum migrate_mode mode)
382 {
383 struct kioctx *ctx;
384 unsigned long flags;
385 pgoff_t idx;
386 int rc;
387
388 /*
389 * We cannot support the _NO_COPY case here, because copy needs to
390 * happen under the ctx->completion_lock. That does not work with the
391 * migration workflow of MIGRATE_SYNC_NO_COPY.
392 */
393 if (mode == MIGRATE_SYNC_NO_COPY)
394 return -EINVAL;
395
396 rc = 0;
397
398 /* mapping->private_lock here protects against the kioctx teardown. */
399 spin_lock(&mapping->private_lock);
400 ctx = mapping->private_data;
401 if (!ctx) {
402 rc = -EINVAL;
403 goto out;
404 }
405
406 /* The ring_lock mutex. The prevents aio_read_events() from writing
407 * to the ring's head, and prevents page migration from mucking in
408 * a partially initialized kiotx.
409 */
410 if (!mutex_trylock(&ctx->ring_lock)) {
411 rc = -EAGAIN;
412 goto out;
413 }
414
415 idx = old->index;
416 if (idx < (pgoff_t)ctx->nr_pages) {
417 /* Make sure the old page hasn't already been changed */
418 if (ctx->ring_pages[idx] != old)
419 rc = -EAGAIN;
420 } else
421 rc = -EINVAL;
422
423 if (rc != 0)
424 goto out_unlock;
425
426 /* Writeback must be complete */
427 BUG_ON(PageWriteback(old));
428 get_page(new);
429
430 rc = migrate_page_move_mapping(mapping, new, old, 1);
431 if (rc != MIGRATEPAGE_SUCCESS) {
432 put_page(new);
433 goto out_unlock;
434 }
435
436 /* Take completion_lock to prevent other writes to the ring buffer
437 * while the old page is copied to the new. This prevents new
438 * events from being lost.
439 */
440 spin_lock_irqsave(&ctx->completion_lock, flags);
441 migrate_page_copy(new, old);
442 BUG_ON(ctx->ring_pages[idx] != old);
443 ctx->ring_pages[idx] = new;
444 spin_unlock_irqrestore(&ctx->completion_lock, flags);
445
446 /* The old page is no longer accessible. */
447 put_page(old);
448
449 out_unlock:
450 mutex_unlock(&ctx->ring_lock);
451 out:
452 spin_unlock(&mapping->private_lock);
453 return rc;
454 }
455 #endif
456
457 static const struct address_space_operations aio_ctx_aops = {
458 .set_page_dirty = __set_page_dirty_no_writeback,
459 #if IS_ENABLED(CONFIG_MIGRATION)
460 .migratepage = aio_migratepage,
461 #endif
462 };
463
aio_setup_ring(struct kioctx * ctx,unsigned int nr_events)464 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
465 {
466 struct aio_ring *ring;
467 struct mm_struct *mm = current->mm;
468 unsigned long size, unused;
469 int nr_pages;
470 int i;
471 struct file *file;
472
473 /* Compensate for the ring buffer's head/tail overlap entry */
474 nr_events += 2; /* 1 is required, 2 for good luck */
475
476 size = sizeof(struct aio_ring);
477 size += sizeof(struct io_event) * nr_events;
478
479 nr_pages = PFN_UP(size);
480 if (nr_pages < 0)
481 return -EINVAL;
482
483 file = aio_private_file(ctx, nr_pages);
484 if (IS_ERR(file)) {
485 ctx->aio_ring_file = NULL;
486 return -ENOMEM;
487 }
488
489 ctx->aio_ring_file = file;
490 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
491 / sizeof(struct io_event);
492
493 ctx->ring_pages = ctx->internal_pages;
494 if (nr_pages > AIO_RING_PAGES) {
495 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
496 GFP_KERNEL);
497 if (!ctx->ring_pages) {
498 put_aio_ring_file(ctx);
499 return -ENOMEM;
500 }
501 }
502
503 for (i = 0; i < nr_pages; i++) {
504 struct page *page;
505 page = find_or_create_page(file->f_mapping,
506 i, GFP_HIGHUSER | __GFP_ZERO);
507 if (!page)
508 break;
509 pr_debug("pid(%d) page[%d]->count=%d\n",
510 current->pid, i, page_count(page));
511 SetPageUptodate(page);
512 unlock_page(page);
513
514 ctx->ring_pages[i] = page;
515 }
516 ctx->nr_pages = i;
517
518 if (unlikely(i != nr_pages)) {
519 aio_free_ring(ctx);
520 return -ENOMEM;
521 }
522
523 ctx->mmap_size = nr_pages * PAGE_SIZE;
524 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
525
526 if (mmap_write_lock_killable(mm)) {
527 ctx->mmap_size = 0;
528 aio_free_ring(ctx);
529 return -EINTR;
530 }
531
532 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
533 PROT_READ | PROT_WRITE,
534 MAP_SHARED, 0, &unused, NULL);
535 mmap_write_unlock(mm);
536 if (IS_ERR((void *)ctx->mmap_base)) {
537 ctx->mmap_size = 0;
538 aio_free_ring(ctx);
539 return -ENOMEM;
540 }
541
542 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
543
544 ctx->user_id = ctx->mmap_base;
545 ctx->nr_events = nr_events; /* trusted copy */
546
547 ring = kmap_atomic(ctx->ring_pages[0]);
548 ring->nr = nr_events; /* user copy */
549 ring->id = ~0U;
550 ring->head = ring->tail = 0;
551 ring->magic = AIO_RING_MAGIC;
552 ring->compat_features = AIO_RING_COMPAT_FEATURES;
553 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
554 ring->header_length = sizeof(struct aio_ring);
555 kunmap_atomic(ring);
556 flush_dcache_page(ctx->ring_pages[0]);
557
558 return 0;
559 }
560
561 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
562 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
563 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
564
kiocb_set_cancel_fn(struct kiocb * iocb,kiocb_cancel_fn * cancel)565 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
566 {
567 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
568 struct kioctx *ctx = req->ki_ctx;
569 unsigned long flags;
570
571 /*
572 * kiocb didn't come from aio or is neither a read nor a write, hence
573 * ignore it.
574 */
575 if (!(iocb->ki_flags & IOCB_AIO_RW))
576 return;
577
578 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
579 return;
580
581 spin_lock_irqsave(&ctx->ctx_lock, flags);
582 list_add_tail(&req->ki_list, &ctx->active_reqs);
583 req->ki_cancel = cancel;
584 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
585 }
586 EXPORT_SYMBOL(kiocb_set_cancel_fn);
587
588 /*
589 * free_ioctx() should be RCU delayed to synchronize against the RCU
590 * protected lookup_ioctx() and also needs process context to call
591 * aio_free_ring(). Use rcu_work.
592 */
free_ioctx(struct work_struct * work)593 static void free_ioctx(struct work_struct *work)
594 {
595 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
596 free_rwork);
597 pr_debug("freeing %p\n", ctx);
598
599 aio_free_ring(ctx);
600 free_percpu(ctx->cpu);
601 percpu_ref_exit(&ctx->reqs);
602 percpu_ref_exit(&ctx->users);
603 kmem_cache_free(kioctx_cachep, ctx);
604 }
605
free_ioctx_reqs(struct percpu_ref * ref)606 static void free_ioctx_reqs(struct percpu_ref *ref)
607 {
608 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
609
610 /* At this point we know that there are no any in-flight requests */
611 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
612 complete(&ctx->rq_wait->comp);
613
614 /* Synchronize against RCU protected table->table[] dereferences */
615 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
616 queue_rcu_work(system_wq, &ctx->free_rwork);
617 }
618
619 /*
620 * When this function runs, the kioctx has been removed from the "hash table"
621 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
622 * now it's safe to cancel any that need to be.
623 */
free_ioctx_users(struct percpu_ref * ref)624 static void free_ioctx_users(struct percpu_ref *ref)
625 {
626 struct kioctx *ctx = container_of(ref, struct kioctx, users);
627 struct aio_kiocb *req;
628
629 spin_lock_irq(&ctx->ctx_lock);
630
631 while (!list_empty(&ctx->active_reqs)) {
632 req = list_first_entry(&ctx->active_reqs,
633 struct aio_kiocb, ki_list);
634 req->ki_cancel(&req->rw);
635 list_del_init(&req->ki_list);
636 }
637
638 spin_unlock_irq(&ctx->ctx_lock);
639
640 percpu_ref_kill(&ctx->reqs);
641 percpu_ref_put(&ctx->reqs);
642 }
643
ioctx_add_table(struct kioctx * ctx,struct mm_struct * mm)644 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
645 {
646 unsigned i, new_nr;
647 struct kioctx_table *table, *old;
648 struct aio_ring *ring;
649
650 spin_lock(&mm->ioctx_lock);
651 table = rcu_dereference_raw(mm->ioctx_table);
652
653 while (1) {
654 if (table)
655 for (i = 0; i < table->nr; i++)
656 if (!rcu_access_pointer(table->table[i])) {
657 ctx->id = i;
658 rcu_assign_pointer(table->table[i], ctx);
659 spin_unlock(&mm->ioctx_lock);
660
661 /* While kioctx setup is in progress,
662 * we are protected from page migration
663 * changes ring_pages by ->ring_lock.
664 */
665 ring = kmap_atomic(ctx->ring_pages[0]);
666 ring->id = ctx->id;
667 kunmap_atomic(ring);
668 return 0;
669 }
670
671 new_nr = (table ? table->nr : 1) * 4;
672 spin_unlock(&mm->ioctx_lock);
673
674 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
675 new_nr, GFP_KERNEL);
676 if (!table)
677 return -ENOMEM;
678
679 table->nr = new_nr;
680
681 spin_lock(&mm->ioctx_lock);
682 old = rcu_dereference_raw(mm->ioctx_table);
683
684 if (!old) {
685 rcu_assign_pointer(mm->ioctx_table, table);
686 } else if (table->nr > old->nr) {
687 memcpy(table->table, old->table,
688 old->nr * sizeof(struct kioctx *));
689
690 rcu_assign_pointer(mm->ioctx_table, table);
691 kfree_rcu(old, rcu);
692 } else {
693 kfree(table);
694 table = old;
695 }
696 }
697 }
698
aio_nr_sub(unsigned nr)699 static void aio_nr_sub(unsigned nr)
700 {
701 spin_lock(&aio_nr_lock);
702 if (WARN_ON(aio_nr - nr > aio_nr))
703 aio_nr = 0;
704 else
705 aio_nr -= nr;
706 spin_unlock(&aio_nr_lock);
707 }
708
709 /* ioctx_alloc
710 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
711 */
ioctx_alloc(unsigned nr_events)712 static struct kioctx *ioctx_alloc(unsigned nr_events)
713 {
714 struct mm_struct *mm = current->mm;
715 struct kioctx *ctx;
716 int err = -ENOMEM;
717
718 /*
719 * Store the original nr_events -- what userspace passed to io_setup(),
720 * for counting against the global limit -- before it changes.
721 */
722 unsigned int max_reqs = nr_events;
723
724 /*
725 * We keep track of the number of available ringbuffer slots, to prevent
726 * overflow (reqs_available), and we also use percpu counters for this.
727 *
728 * So since up to half the slots might be on other cpu's percpu counters
729 * and unavailable, double nr_events so userspace sees what they
730 * expected: additionally, we move req_batch slots to/from percpu
731 * counters at a time, so make sure that isn't 0:
732 */
733 nr_events = max(nr_events, num_possible_cpus() * 4);
734 nr_events *= 2;
735
736 /* Prevent overflows */
737 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
738 pr_debug("ENOMEM: nr_events too high\n");
739 return ERR_PTR(-EINVAL);
740 }
741
742 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
743 return ERR_PTR(-EAGAIN);
744
745 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
746 if (!ctx)
747 return ERR_PTR(-ENOMEM);
748
749 ctx->max_reqs = max_reqs;
750
751 spin_lock_init(&ctx->ctx_lock);
752 spin_lock_init(&ctx->completion_lock);
753 mutex_init(&ctx->ring_lock);
754 /* Protect against page migration throughout kiotx setup by keeping
755 * the ring_lock mutex held until setup is complete. */
756 mutex_lock(&ctx->ring_lock);
757 init_waitqueue_head(&ctx->wait);
758
759 INIT_LIST_HEAD(&ctx->active_reqs);
760
761 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
762 goto err;
763
764 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
765 goto err;
766
767 ctx->cpu = alloc_percpu(struct kioctx_cpu);
768 if (!ctx->cpu)
769 goto err;
770
771 err = aio_setup_ring(ctx, nr_events);
772 if (err < 0)
773 goto err;
774
775 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
776 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
777 if (ctx->req_batch < 1)
778 ctx->req_batch = 1;
779
780 /* limit the number of system wide aios */
781 spin_lock(&aio_nr_lock);
782 if (aio_nr + ctx->max_reqs > aio_max_nr ||
783 aio_nr + ctx->max_reqs < aio_nr) {
784 spin_unlock(&aio_nr_lock);
785 err = -EAGAIN;
786 goto err_ctx;
787 }
788 aio_nr += ctx->max_reqs;
789 spin_unlock(&aio_nr_lock);
790
791 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
792 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
793
794 err = ioctx_add_table(ctx, mm);
795 if (err)
796 goto err_cleanup;
797
798 /* Release the ring_lock mutex now that all setup is complete. */
799 mutex_unlock(&ctx->ring_lock);
800
801 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
802 ctx, ctx->user_id, mm, ctx->nr_events);
803 return ctx;
804
805 err_cleanup:
806 aio_nr_sub(ctx->max_reqs);
807 err_ctx:
808 atomic_set(&ctx->dead, 1);
809 if (ctx->mmap_size)
810 vm_munmap(ctx->mmap_base, ctx->mmap_size);
811 aio_free_ring(ctx);
812 err:
813 mutex_unlock(&ctx->ring_lock);
814 free_percpu(ctx->cpu);
815 percpu_ref_exit(&ctx->reqs);
816 percpu_ref_exit(&ctx->users);
817 kmem_cache_free(kioctx_cachep, ctx);
818 pr_debug("error allocating ioctx %d\n", err);
819 return ERR_PTR(err);
820 }
821
822 /* kill_ioctx
823 * Cancels all outstanding aio requests on an aio context. Used
824 * when the processes owning a context have all exited to encourage
825 * the rapid destruction of the kioctx.
826 */
kill_ioctx(struct mm_struct * mm,struct kioctx * ctx,struct ctx_rq_wait * wait)827 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
828 struct ctx_rq_wait *wait)
829 {
830 struct kioctx_table *table;
831
832 spin_lock(&mm->ioctx_lock);
833 if (atomic_xchg(&ctx->dead, 1)) {
834 spin_unlock(&mm->ioctx_lock);
835 return -EINVAL;
836 }
837
838 table = rcu_dereference_raw(mm->ioctx_table);
839 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
840 RCU_INIT_POINTER(table->table[ctx->id], NULL);
841 spin_unlock(&mm->ioctx_lock);
842
843 /* free_ioctx_reqs() will do the necessary RCU synchronization */
844 wake_up_all(&ctx->wait);
845
846 /*
847 * It'd be more correct to do this in free_ioctx(), after all
848 * the outstanding kiocbs have finished - but by then io_destroy
849 * has already returned, so io_setup() could potentially return
850 * -EAGAIN with no ioctxs actually in use (as far as userspace
851 * could tell).
852 */
853 aio_nr_sub(ctx->max_reqs);
854
855 if (ctx->mmap_size)
856 vm_munmap(ctx->mmap_base, ctx->mmap_size);
857
858 ctx->rq_wait = wait;
859 percpu_ref_kill(&ctx->users);
860 return 0;
861 }
862
863 /*
864 * exit_aio: called when the last user of mm goes away. At this point, there is
865 * no way for any new requests to be submited or any of the io_* syscalls to be
866 * called on the context.
867 *
868 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
869 * them.
870 */
exit_aio(struct mm_struct * mm)871 void exit_aio(struct mm_struct *mm)
872 {
873 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
874 struct ctx_rq_wait wait;
875 int i, skipped;
876
877 if (!table)
878 return;
879
880 atomic_set(&wait.count, table->nr);
881 init_completion(&wait.comp);
882
883 skipped = 0;
884 for (i = 0; i < table->nr; ++i) {
885 struct kioctx *ctx =
886 rcu_dereference_protected(table->table[i], true);
887
888 if (!ctx) {
889 skipped++;
890 continue;
891 }
892
893 /*
894 * We don't need to bother with munmap() here - exit_mmap(mm)
895 * is coming and it'll unmap everything. And we simply can't,
896 * this is not necessarily our ->mm.
897 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
898 * that it needs to unmap the area, just set it to 0.
899 */
900 ctx->mmap_size = 0;
901 kill_ioctx(mm, ctx, &wait);
902 }
903
904 if (!atomic_sub_and_test(skipped, &wait.count)) {
905 /* Wait until all IO for the context are done. */
906 wait_for_completion(&wait.comp);
907 }
908
909 RCU_INIT_POINTER(mm->ioctx_table, NULL);
910 kfree(table);
911 }
912
put_reqs_available(struct kioctx * ctx,unsigned nr)913 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
914 {
915 struct kioctx_cpu *kcpu;
916 unsigned long flags;
917
918 local_irq_save(flags);
919 kcpu = this_cpu_ptr(ctx->cpu);
920 kcpu->reqs_available += nr;
921
922 while (kcpu->reqs_available >= ctx->req_batch * 2) {
923 kcpu->reqs_available -= ctx->req_batch;
924 atomic_add(ctx->req_batch, &ctx->reqs_available);
925 }
926
927 local_irq_restore(flags);
928 }
929
__get_reqs_available(struct kioctx * ctx)930 static bool __get_reqs_available(struct kioctx *ctx)
931 {
932 struct kioctx_cpu *kcpu;
933 bool ret = false;
934 unsigned long flags;
935
936 local_irq_save(flags);
937 kcpu = this_cpu_ptr(ctx->cpu);
938 if (!kcpu->reqs_available) {
939 int old, avail = atomic_read(&ctx->reqs_available);
940
941 do {
942 if (avail < ctx->req_batch)
943 goto out;
944
945 old = avail;
946 avail = atomic_cmpxchg(&ctx->reqs_available,
947 avail, avail - ctx->req_batch);
948 } while (avail != old);
949
950 kcpu->reqs_available += ctx->req_batch;
951 }
952
953 ret = true;
954 kcpu->reqs_available--;
955 out:
956 local_irq_restore(flags);
957 return ret;
958 }
959
960 /* refill_reqs_available
961 * Updates the reqs_available reference counts used for tracking the
962 * number of free slots in the completion ring. This can be called
963 * from aio_complete() (to optimistically update reqs_available) or
964 * from aio_get_req() (the we're out of events case). It must be
965 * called holding ctx->completion_lock.
966 */
refill_reqs_available(struct kioctx * ctx,unsigned head,unsigned tail)967 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
968 unsigned tail)
969 {
970 unsigned events_in_ring, completed;
971
972 /* Clamp head since userland can write to it. */
973 head %= ctx->nr_events;
974 if (head <= tail)
975 events_in_ring = tail - head;
976 else
977 events_in_ring = ctx->nr_events - (head - tail);
978
979 completed = ctx->completed_events;
980 if (events_in_ring < completed)
981 completed -= events_in_ring;
982 else
983 completed = 0;
984
985 if (!completed)
986 return;
987
988 ctx->completed_events -= completed;
989 put_reqs_available(ctx, completed);
990 }
991
992 /* user_refill_reqs_available
993 * Called to refill reqs_available when aio_get_req() encounters an
994 * out of space in the completion ring.
995 */
user_refill_reqs_available(struct kioctx * ctx)996 static void user_refill_reqs_available(struct kioctx *ctx)
997 {
998 spin_lock_irq(&ctx->completion_lock);
999 if (ctx->completed_events) {
1000 struct aio_ring *ring;
1001 unsigned head;
1002
1003 /* Access of ring->head may race with aio_read_events_ring()
1004 * here, but that's okay since whether we read the old version
1005 * or the new version, and either will be valid. The important
1006 * part is that head cannot pass tail since we prevent
1007 * aio_complete() from updating tail by holding
1008 * ctx->completion_lock. Even if head is invalid, the check
1009 * against ctx->completed_events below will make sure we do the
1010 * safe/right thing.
1011 */
1012 ring = kmap_atomic(ctx->ring_pages[0]);
1013 head = ring->head;
1014 kunmap_atomic(ring);
1015
1016 refill_reqs_available(ctx, head, ctx->tail);
1017 }
1018
1019 spin_unlock_irq(&ctx->completion_lock);
1020 }
1021
get_reqs_available(struct kioctx * ctx)1022 static bool get_reqs_available(struct kioctx *ctx)
1023 {
1024 if (__get_reqs_available(ctx))
1025 return true;
1026 user_refill_reqs_available(ctx);
1027 return __get_reqs_available(ctx);
1028 }
1029
1030 /* aio_get_req
1031 * Allocate a slot for an aio request.
1032 * Returns NULL if no requests are free.
1033 *
1034 * The refcount is initialized to 2 - one for the async op completion,
1035 * one for the synchronous code that does this.
1036 */
aio_get_req(struct kioctx * ctx)1037 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1038 {
1039 struct aio_kiocb *req;
1040
1041 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1042 if (unlikely(!req))
1043 return NULL;
1044
1045 if (unlikely(!get_reqs_available(ctx))) {
1046 kmem_cache_free(kiocb_cachep, req);
1047 return NULL;
1048 }
1049
1050 percpu_ref_get(&ctx->reqs);
1051 req->ki_ctx = ctx;
1052 INIT_LIST_HEAD(&req->ki_list);
1053 refcount_set(&req->ki_refcnt, 2);
1054 req->ki_eventfd = NULL;
1055 return req;
1056 }
1057
lookup_ioctx(unsigned long ctx_id)1058 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1059 {
1060 struct aio_ring __user *ring = (void __user *)ctx_id;
1061 struct mm_struct *mm = current->mm;
1062 struct kioctx *ctx, *ret = NULL;
1063 struct kioctx_table *table;
1064 unsigned id;
1065
1066 if (get_user(id, &ring->id))
1067 return NULL;
1068
1069 rcu_read_lock();
1070 table = rcu_dereference(mm->ioctx_table);
1071
1072 if (!table || id >= table->nr)
1073 goto out;
1074
1075 id = array_index_nospec(id, table->nr);
1076 ctx = rcu_dereference(table->table[id]);
1077 if (ctx && ctx->user_id == ctx_id) {
1078 if (percpu_ref_tryget_live(&ctx->users))
1079 ret = ctx;
1080 }
1081 out:
1082 rcu_read_unlock();
1083 return ret;
1084 }
1085
iocb_destroy(struct aio_kiocb * iocb)1086 static inline void iocb_destroy(struct aio_kiocb *iocb)
1087 {
1088 if (iocb->ki_eventfd)
1089 eventfd_ctx_put(iocb->ki_eventfd);
1090 if (iocb->ki_filp)
1091 fput(iocb->ki_filp);
1092 percpu_ref_put(&iocb->ki_ctx->reqs);
1093 kmem_cache_free(kiocb_cachep, iocb);
1094 }
1095
1096 /* aio_complete
1097 * Called when the io request on the given iocb is complete.
1098 */
aio_complete(struct aio_kiocb * iocb)1099 static void aio_complete(struct aio_kiocb *iocb)
1100 {
1101 struct kioctx *ctx = iocb->ki_ctx;
1102 struct aio_ring *ring;
1103 struct io_event *ev_page, *event;
1104 unsigned tail, pos, head;
1105 unsigned long flags;
1106
1107 /*
1108 * Add a completion event to the ring buffer. Must be done holding
1109 * ctx->completion_lock to prevent other code from messing with the tail
1110 * pointer since we might be called from irq context.
1111 */
1112 spin_lock_irqsave(&ctx->completion_lock, flags);
1113
1114 tail = ctx->tail;
1115 pos = tail + AIO_EVENTS_OFFSET;
1116
1117 if (++tail >= ctx->nr_events)
1118 tail = 0;
1119
1120 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1121 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1122
1123 *event = iocb->ki_res;
1124
1125 kunmap_atomic(ev_page);
1126 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1127
1128 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1129 (void __user *)(unsigned long)iocb->ki_res.obj,
1130 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1131
1132 /* after flagging the request as done, we
1133 * must never even look at it again
1134 */
1135 smp_wmb(); /* make event visible before updating tail */
1136
1137 ctx->tail = tail;
1138
1139 ring = kmap_atomic(ctx->ring_pages[0]);
1140 head = ring->head;
1141 ring->tail = tail;
1142 kunmap_atomic(ring);
1143 flush_dcache_page(ctx->ring_pages[0]);
1144
1145 ctx->completed_events++;
1146 if (ctx->completed_events > 1)
1147 refill_reqs_available(ctx, head, tail);
1148 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1149
1150 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1151
1152 /*
1153 * Check if the user asked us to deliver the result through an
1154 * eventfd. The eventfd_signal() function is safe to be called
1155 * from IRQ context.
1156 */
1157 if (iocb->ki_eventfd)
1158 eventfd_signal(iocb->ki_eventfd, 1);
1159
1160 /*
1161 * We have to order our ring_info tail store above and test
1162 * of the wait list below outside the wait lock. This is
1163 * like in wake_up_bit() where clearing a bit has to be
1164 * ordered with the unlocked test.
1165 */
1166 smp_mb();
1167
1168 if (waitqueue_active(&ctx->wait))
1169 wake_up(&ctx->wait);
1170 }
1171
iocb_put(struct aio_kiocb * iocb)1172 static inline void iocb_put(struct aio_kiocb *iocb)
1173 {
1174 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1175 aio_complete(iocb);
1176 iocb_destroy(iocb);
1177 }
1178 }
1179
1180 /* aio_read_events_ring
1181 * Pull an event off of the ioctx's event ring. Returns the number of
1182 * events fetched
1183 */
aio_read_events_ring(struct kioctx * ctx,struct io_event __user * event,long nr)1184 static long aio_read_events_ring(struct kioctx *ctx,
1185 struct io_event __user *event, long nr)
1186 {
1187 struct aio_ring *ring;
1188 unsigned head, tail, pos;
1189 long ret = 0;
1190 int copy_ret;
1191
1192 /*
1193 * The mutex can block and wake us up and that will cause
1194 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1195 * and repeat. This should be rare enough that it doesn't cause
1196 * peformance issues. See the comment in read_events() for more detail.
1197 */
1198 sched_annotate_sleep();
1199 mutex_lock(&ctx->ring_lock);
1200
1201 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1202 ring = kmap_atomic(ctx->ring_pages[0]);
1203 head = ring->head;
1204 tail = ring->tail;
1205 kunmap_atomic(ring);
1206
1207 /*
1208 * Ensure that once we've read the current tail pointer, that
1209 * we also see the events that were stored up to the tail.
1210 */
1211 smp_rmb();
1212
1213 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1214
1215 if (head == tail)
1216 goto out;
1217
1218 head %= ctx->nr_events;
1219 tail %= ctx->nr_events;
1220
1221 while (ret < nr) {
1222 long avail;
1223 struct io_event *ev;
1224 struct page *page;
1225
1226 avail = (head <= tail ? tail : ctx->nr_events) - head;
1227 if (head == tail)
1228 break;
1229
1230 pos = head + AIO_EVENTS_OFFSET;
1231 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1232 pos %= AIO_EVENTS_PER_PAGE;
1233
1234 avail = min(avail, nr - ret);
1235 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1236
1237 ev = kmap(page);
1238 copy_ret = copy_to_user(event + ret, ev + pos,
1239 sizeof(*ev) * avail);
1240 kunmap(page);
1241
1242 if (unlikely(copy_ret)) {
1243 ret = -EFAULT;
1244 goto out;
1245 }
1246
1247 ret += avail;
1248 head += avail;
1249 head %= ctx->nr_events;
1250 }
1251
1252 ring = kmap_atomic(ctx->ring_pages[0]);
1253 ring->head = head;
1254 kunmap_atomic(ring);
1255 flush_dcache_page(ctx->ring_pages[0]);
1256
1257 pr_debug("%li h%u t%u\n", ret, head, tail);
1258 out:
1259 mutex_unlock(&ctx->ring_lock);
1260
1261 return ret;
1262 }
1263
aio_read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,long * i)1264 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1265 struct io_event __user *event, long *i)
1266 {
1267 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1268
1269 if (ret > 0)
1270 *i += ret;
1271
1272 if (unlikely(atomic_read(&ctx->dead)))
1273 ret = -EINVAL;
1274
1275 if (!*i)
1276 *i = ret;
1277
1278 return ret < 0 || *i >= min_nr;
1279 }
1280
read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,ktime_t until)1281 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1282 struct io_event __user *event,
1283 ktime_t until)
1284 {
1285 long ret = 0;
1286
1287 /*
1288 * Note that aio_read_events() is being called as the conditional - i.e.
1289 * we're calling it after prepare_to_wait() has set task state to
1290 * TASK_INTERRUPTIBLE.
1291 *
1292 * But aio_read_events() can block, and if it blocks it's going to flip
1293 * the task state back to TASK_RUNNING.
1294 *
1295 * This should be ok, provided it doesn't flip the state back to
1296 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1297 * will only happen if the mutex_lock() call blocks, and we then find
1298 * the ringbuffer empty. So in practice we should be ok, but it's
1299 * something to be aware of when touching this code.
1300 */
1301 if (until == 0)
1302 aio_read_events(ctx, min_nr, nr, event, &ret);
1303 else
1304 wait_event_interruptible_hrtimeout(ctx->wait,
1305 aio_read_events(ctx, min_nr, nr, event, &ret),
1306 until);
1307 return ret;
1308 }
1309
1310 /* sys_io_setup:
1311 * Create an aio_context capable of receiving at least nr_events.
1312 * ctxp must not point to an aio_context that already exists, and
1313 * must be initialized to 0 prior to the call. On successful
1314 * creation of the aio_context, *ctxp is filled in with the resulting
1315 * handle. May fail with -EINVAL if *ctxp is not initialized,
1316 * if the specified nr_events exceeds internal limits. May fail
1317 * with -EAGAIN if the specified nr_events exceeds the user's limit
1318 * of available events. May fail with -ENOMEM if insufficient kernel
1319 * resources are available. May fail with -EFAULT if an invalid
1320 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1321 * implemented.
1322 */
SYSCALL_DEFINE2(io_setup,unsigned,nr_events,aio_context_t __user *,ctxp)1323 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1324 {
1325 struct kioctx *ioctx = NULL;
1326 unsigned long ctx;
1327 long ret;
1328
1329 ret = get_user(ctx, ctxp);
1330 if (unlikely(ret))
1331 goto out;
1332
1333 ret = -EINVAL;
1334 if (unlikely(ctx || nr_events == 0)) {
1335 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1336 ctx, nr_events);
1337 goto out;
1338 }
1339
1340 ioctx = ioctx_alloc(nr_events);
1341 ret = PTR_ERR(ioctx);
1342 if (!IS_ERR(ioctx)) {
1343 ret = put_user(ioctx->user_id, ctxp);
1344 if (ret)
1345 kill_ioctx(current->mm, ioctx, NULL);
1346 percpu_ref_put(&ioctx->users);
1347 }
1348
1349 out:
1350 return ret;
1351 }
1352
1353 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(io_setup,unsigned,nr_events,u32 __user *,ctx32p)1354 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1355 {
1356 struct kioctx *ioctx = NULL;
1357 unsigned long ctx;
1358 long ret;
1359
1360 ret = get_user(ctx, ctx32p);
1361 if (unlikely(ret))
1362 goto out;
1363
1364 ret = -EINVAL;
1365 if (unlikely(ctx || nr_events == 0)) {
1366 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1367 ctx, nr_events);
1368 goto out;
1369 }
1370
1371 ioctx = ioctx_alloc(nr_events);
1372 ret = PTR_ERR(ioctx);
1373 if (!IS_ERR(ioctx)) {
1374 /* truncating is ok because it's a user address */
1375 ret = put_user((u32)ioctx->user_id, ctx32p);
1376 if (ret)
1377 kill_ioctx(current->mm, ioctx, NULL);
1378 percpu_ref_put(&ioctx->users);
1379 }
1380
1381 out:
1382 return ret;
1383 }
1384 #endif
1385
1386 /* sys_io_destroy:
1387 * Destroy the aio_context specified. May cancel any outstanding
1388 * AIOs and block on completion. Will fail with -ENOSYS if not
1389 * implemented. May fail with -EINVAL if the context pointed to
1390 * is invalid.
1391 */
SYSCALL_DEFINE1(io_destroy,aio_context_t,ctx)1392 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1393 {
1394 struct kioctx *ioctx = lookup_ioctx(ctx);
1395 if (likely(NULL != ioctx)) {
1396 struct ctx_rq_wait wait;
1397 int ret;
1398
1399 init_completion(&wait.comp);
1400 atomic_set(&wait.count, 1);
1401
1402 /* Pass requests_done to kill_ioctx() where it can be set
1403 * in a thread-safe way. If we try to set it here then we have
1404 * a race condition if two io_destroy() called simultaneously.
1405 */
1406 ret = kill_ioctx(current->mm, ioctx, &wait);
1407 percpu_ref_put(&ioctx->users);
1408
1409 /* Wait until all IO for the context are done. Otherwise kernel
1410 * keep using user-space buffers even if user thinks the context
1411 * is destroyed.
1412 */
1413 if (!ret)
1414 wait_for_completion(&wait.comp);
1415
1416 return ret;
1417 }
1418 pr_debug("EINVAL: invalid context id\n");
1419 return -EINVAL;
1420 }
1421
aio_remove_iocb(struct aio_kiocb * iocb)1422 static void aio_remove_iocb(struct aio_kiocb *iocb)
1423 {
1424 struct kioctx *ctx = iocb->ki_ctx;
1425 unsigned long flags;
1426
1427 spin_lock_irqsave(&ctx->ctx_lock, flags);
1428 list_del(&iocb->ki_list);
1429 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1430 }
1431
aio_complete_rw(struct kiocb * kiocb,long res,long res2)1432 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1433 {
1434 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1435
1436 if (!list_empty_careful(&iocb->ki_list))
1437 aio_remove_iocb(iocb);
1438
1439 if (kiocb->ki_flags & IOCB_WRITE) {
1440 struct inode *inode = file_inode(kiocb->ki_filp);
1441
1442 /*
1443 * Tell lockdep we inherited freeze protection from submission
1444 * thread.
1445 */
1446 if (S_ISREG(inode->i_mode))
1447 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1448 file_end_write(kiocb->ki_filp);
1449 }
1450
1451 iocb->ki_res.res = res;
1452 iocb->ki_res.res2 = res2;
1453 iocb_put(iocb);
1454 }
1455
aio_prep_rw(struct kiocb * req,const struct iocb * iocb)1456 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1457 {
1458 int ret;
1459
1460 req->ki_complete = aio_complete_rw;
1461 req->private = NULL;
1462 req->ki_pos = iocb->aio_offset;
1463 req->ki_flags = iocb_flags(req->ki_filp) | IOCB_AIO_RW;
1464 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1465 req->ki_flags |= IOCB_EVENTFD;
1466 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1467 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1468 /*
1469 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1470 * aio_reqprio is interpreted as an I/O scheduling
1471 * class and priority.
1472 */
1473 ret = ioprio_check_cap(iocb->aio_reqprio);
1474 if (ret) {
1475 pr_debug("aio ioprio check cap error: %d\n", ret);
1476 return ret;
1477 }
1478
1479 req->ki_ioprio = iocb->aio_reqprio;
1480 } else
1481 req->ki_ioprio = get_current_ioprio();
1482
1483 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1484 if (unlikely(ret))
1485 return ret;
1486
1487 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1488 return 0;
1489 }
1490
aio_setup_rw(int rw,const struct iocb * iocb,struct iovec ** iovec,bool vectored,bool compat,struct iov_iter * iter)1491 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1492 struct iovec **iovec, bool vectored, bool compat,
1493 struct iov_iter *iter)
1494 {
1495 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1496 size_t len = iocb->aio_nbytes;
1497
1498 if (!vectored) {
1499 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1500 *iovec = NULL;
1501 return ret;
1502 }
1503
1504 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1505 }
1506
aio_rw_done(struct kiocb * req,ssize_t ret)1507 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1508 {
1509 switch (ret) {
1510 case -EIOCBQUEUED:
1511 break;
1512 case -ERESTARTSYS:
1513 case -ERESTARTNOINTR:
1514 case -ERESTARTNOHAND:
1515 case -ERESTART_RESTARTBLOCK:
1516 /*
1517 * There's no easy way to restart the syscall since other AIO's
1518 * may be already running. Just fail this IO with EINTR.
1519 */
1520 ret = -EINTR;
1521 fallthrough;
1522 default:
1523 req->ki_complete(req, ret, 0);
1524 }
1525 }
1526
aio_read(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1527 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1528 bool vectored, bool compat)
1529 {
1530 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1531 struct iov_iter iter;
1532 struct file *file;
1533 int ret;
1534
1535 ret = aio_prep_rw(req, iocb);
1536 if (ret)
1537 return ret;
1538 file = req->ki_filp;
1539 if (unlikely(!(file->f_mode & FMODE_READ)))
1540 return -EBADF;
1541 ret = -EINVAL;
1542 if (unlikely(!file->f_op->read_iter))
1543 return -EINVAL;
1544
1545 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1546 if (ret < 0)
1547 return ret;
1548 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1549 if (!ret)
1550 aio_rw_done(req, call_read_iter(file, req, &iter));
1551 kfree(iovec);
1552 return ret;
1553 }
1554
aio_write(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1555 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1556 bool vectored, bool compat)
1557 {
1558 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1559 struct iov_iter iter;
1560 struct file *file;
1561 int ret;
1562
1563 ret = aio_prep_rw(req, iocb);
1564 if (ret)
1565 return ret;
1566 file = req->ki_filp;
1567
1568 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1569 return -EBADF;
1570 if (unlikely(!file->f_op->write_iter))
1571 return -EINVAL;
1572
1573 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1574 if (ret < 0)
1575 return ret;
1576 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1577 if (!ret) {
1578 /*
1579 * Open-code file_start_write here to grab freeze protection,
1580 * which will be released by another thread in
1581 * aio_complete_rw(). Fool lockdep by telling it the lock got
1582 * released so that it doesn't complain about the held lock when
1583 * we return to userspace.
1584 */
1585 if (S_ISREG(file_inode(file)->i_mode)) {
1586 sb_start_write(file_inode(file)->i_sb);
1587 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1588 }
1589 req->ki_flags |= IOCB_WRITE;
1590 aio_rw_done(req, call_write_iter(file, req, &iter));
1591 }
1592 kfree(iovec);
1593 return ret;
1594 }
1595
aio_fsync_work(struct work_struct * work)1596 static void aio_fsync_work(struct work_struct *work)
1597 {
1598 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1599 const struct cred *old_cred = override_creds(iocb->fsync.creds);
1600
1601 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1602 revert_creds(old_cred);
1603 put_cred(iocb->fsync.creds);
1604 iocb_put(iocb);
1605 }
1606
aio_fsync(struct fsync_iocb * req,const struct iocb * iocb,bool datasync)1607 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1608 bool datasync)
1609 {
1610 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1611 iocb->aio_rw_flags))
1612 return -EINVAL;
1613
1614 if (unlikely(!req->file->f_op->fsync))
1615 return -EINVAL;
1616
1617 req->creds = prepare_creds();
1618 if (!req->creds)
1619 return -ENOMEM;
1620
1621 req->datasync = datasync;
1622 INIT_WORK(&req->work, aio_fsync_work);
1623 schedule_work(&req->work);
1624 return 0;
1625 }
1626
aio_poll_put_work(struct work_struct * work)1627 static void aio_poll_put_work(struct work_struct *work)
1628 {
1629 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1630 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1631
1632 iocb_put(iocb);
1633 }
1634
1635 /*
1636 * Safely lock the waitqueue which the request is on, synchronizing with the
1637 * case where the ->poll() provider decides to free its waitqueue early.
1638 *
1639 * Returns true on success, meaning that req->head->lock was locked, req->wait
1640 * is on req->head, and an RCU read lock was taken. Returns false if the
1641 * request was already removed from its waitqueue (which might no longer exist).
1642 */
poll_iocb_lock_wq(struct poll_iocb * req)1643 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1644 {
1645 wait_queue_head_t *head;
1646
1647 /*
1648 * While we hold the waitqueue lock and the waitqueue is nonempty,
1649 * wake_up_pollfree() will wait for us. However, taking the waitqueue
1650 * lock in the first place can race with the waitqueue being freed.
1651 *
1652 * We solve this as eventpoll does: by taking advantage of the fact that
1653 * all users of wake_up_pollfree() will RCU-delay the actual free. If
1654 * we enter rcu_read_lock() and see that the pointer to the queue is
1655 * non-NULL, we can then lock it without the memory being freed out from
1656 * under us, then check whether the request is still on the queue.
1657 *
1658 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1659 * case the caller deletes the entry from the queue, leaving it empty.
1660 * In that case, only RCU prevents the queue memory from being freed.
1661 */
1662 rcu_read_lock();
1663 head = smp_load_acquire(&req->head);
1664 if (head) {
1665 spin_lock(&head->lock);
1666 if (!list_empty(&req->wait.entry))
1667 return true;
1668 spin_unlock(&head->lock);
1669 }
1670 rcu_read_unlock();
1671 return false;
1672 }
1673
poll_iocb_unlock_wq(struct poll_iocb * req)1674 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1675 {
1676 spin_unlock(&req->head->lock);
1677 rcu_read_unlock();
1678 }
1679
aio_poll_complete_work(struct work_struct * work)1680 static void aio_poll_complete_work(struct work_struct *work)
1681 {
1682 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1683 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1684 struct poll_table_struct pt = { ._key = req->events };
1685 struct kioctx *ctx = iocb->ki_ctx;
1686 __poll_t mask = 0;
1687
1688 if (!READ_ONCE(req->cancelled))
1689 mask = vfs_poll(req->file, &pt) & req->events;
1690
1691 /*
1692 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1693 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1694 * synchronize with them. In the cancellation case the list_del_init
1695 * itself is not actually needed, but harmless so we keep it in to
1696 * avoid further branches in the fast path.
1697 */
1698 spin_lock_irq(&ctx->ctx_lock);
1699 if (poll_iocb_lock_wq(req)) {
1700 if (!mask && !READ_ONCE(req->cancelled)) {
1701 /*
1702 * The request isn't actually ready to be completed yet.
1703 * Reschedule completion if another wakeup came in.
1704 */
1705 if (req->work_need_resched) {
1706 schedule_work(&req->work);
1707 req->work_need_resched = false;
1708 } else {
1709 req->work_scheduled = false;
1710 }
1711 poll_iocb_unlock_wq(req);
1712 spin_unlock_irq(&ctx->ctx_lock);
1713 return;
1714 }
1715 list_del_init(&req->wait.entry);
1716 poll_iocb_unlock_wq(req);
1717 } /* else, POLLFREE has freed the waitqueue, so we must complete */
1718 list_del_init(&iocb->ki_list);
1719 iocb->ki_res.res = mangle_poll(mask);
1720 spin_unlock_irq(&ctx->ctx_lock);
1721
1722 iocb_put(iocb);
1723 }
1724
1725 /* assumes we are called with irqs disabled */
aio_poll_cancel(struct kiocb * iocb)1726 static int aio_poll_cancel(struct kiocb *iocb)
1727 {
1728 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1729 struct poll_iocb *req = &aiocb->poll;
1730
1731 if (poll_iocb_lock_wq(req)) {
1732 WRITE_ONCE(req->cancelled, true);
1733 if (!req->work_scheduled) {
1734 schedule_work(&aiocb->poll.work);
1735 req->work_scheduled = true;
1736 }
1737 poll_iocb_unlock_wq(req);
1738 } /* else, the request was force-cancelled by POLLFREE already */
1739
1740 return 0;
1741 }
1742
aio_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)1743 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1744 void *key)
1745 {
1746 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1747 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1748 __poll_t mask = key_to_poll(key);
1749 unsigned long flags;
1750
1751 /* for instances that support it check for an event match first: */
1752 if (mask && !(mask & req->events))
1753 return 0;
1754
1755 /*
1756 * Complete the request inline if possible. This requires that three
1757 * conditions be met:
1758 * 1. An event mask must have been passed. If a plain wakeup was done
1759 * instead, then mask == 0 and we have to call vfs_poll() to get
1760 * the events, so inline completion isn't possible.
1761 * 2. The completion work must not have already been scheduled.
1762 * 3. ctx_lock must not be busy. We have to use trylock because we
1763 * already hold the waitqueue lock, so this inverts the normal
1764 * locking order. Use irqsave/irqrestore because not all
1765 * filesystems (e.g. fuse) call this function with IRQs disabled,
1766 * yet IRQs have to be disabled before ctx_lock is obtained.
1767 */
1768 if (mask && !req->work_scheduled &&
1769 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1770 struct kioctx *ctx = iocb->ki_ctx;
1771
1772 list_del_init(&req->wait.entry);
1773 list_del(&iocb->ki_list);
1774 iocb->ki_res.res = mangle_poll(mask);
1775 if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1776 iocb = NULL;
1777 INIT_WORK(&req->work, aio_poll_put_work);
1778 schedule_work(&req->work);
1779 }
1780 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1781 if (iocb)
1782 iocb_put(iocb);
1783 } else {
1784 /*
1785 * Schedule the completion work if needed. If it was already
1786 * scheduled, record that another wakeup came in.
1787 *
1788 * Don't remove the request from the waitqueue here, as it might
1789 * not actually be complete yet (we won't know until vfs_poll()
1790 * is called), and we must not miss any wakeups. POLLFREE is an
1791 * exception to this; see below.
1792 */
1793 if (req->work_scheduled) {
1794 req->work_need_resched = true;
1795 } else {
1796 schedule_work(&req->work);
1797 req->work_scheduled = true;
1798 }
1799
1800 /*
1801 * If the waitqueue is being freed early but we can't complete
1802 * the request inline, we have to tear down the request as best
1803 * we can. That means immediately removing the request from its
1804 * waitqueue and preventing all further accesses to the
1805 * waitqueue via the request. We also need to schedule the
1806 * completion work (done above). Also mark the request as
1807 * cancelled, to potentially skip an unneeded call to ->poll().
1808 */
1809 if (mask & POLLFREE) {
1810 WRITE_ONCE(req->cancelled, true);
1811 list_del_init(&req->wait.entry);
1812
1813 /*
1814 * Careful: this *must* be the last step, since as soon
1815 * as req->head is NULL'ed out, the request can be
1816 * completed and freed, since aio_poll_complete_work()
1817 * will no longer need to take the waitqueue lock.
1818 */
1819 smp_store_release(&req->head, NULL);
1820 }
1821 }
1822 return 1;
1823 }
1824
1825 struct aio_poll_table {
1826 struct poll_table_struct pt;
1827 struct aio_kiocb *iocb;
1828 bool queued;
1829 int error;
1830 };
1831
1832 static void
aio_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)1833 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1834 struct poll_table_struct *p)
1835 {
1836 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1837
1838 /* multiple wait queues per file are not supported */
1839 if (unlikely(pt->queued)) {
1840 pt->error = -EINVAL;
1841 return;
1842 }
1843
1844 pt->queued = true;
1845 pt->error = 0;
1846 pt->iocb->poll.head = head;
1847 add_wait_queue(head, &pt->iocb->poll.wait);
1848 }
1849
aio_poll(struct aio_kiocb * aiocb,const struct iocb * iocb)1850 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1851 {
1852 struct kioctx *ctx = aiocb->ki_ctx;
1853 struct poll_iocb *req = &aiocb->poll;
1854 struct aio_poll_table apt;
1855 bool cancel = false;
1856 __poll_t mask;
1857
1858 /* reject any unknown events outside the normal event mask. */
1859 if ((u16)iocb->aio_buf != iocb->aio_buf)
1860 return -EINVAL;
1861 /* reject fields that are not defined for poll */
1862 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1863 return -EINVAL;
1864
1865 INIT_WORK(&req->work, aio_poll_complete_work);
1866 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1867
1868 req->head = NULL;
1869 req->cancelled = false;
1870 req->work_scheduled = false;
1871 req->work_need_resched = false;
1872
1873 apt.pt._qproc = aio_poll_queue_proc;
1874 apt.pt._key = req->events;
1875 apt.iocb = aiocb;
1876 apt.queued = false;
1877 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1878
1879 /* initialized the list so that we can do list_empty checks */
1880 INIT_LIST_HEAD(&req->wait.entry);
1881 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1882
1883 mask = vfs_poll(req->file, &apt.pt) & req->events;
1884 spin_lock_irq(&ctx->ctx_lock);
1885 if (likely(apt.queued)) {
1886 bool on_queue = poll_iocb_lock_wq(req);
1887
1888 if (!on_queue || req->work_scheduled) {
1889 /*
1890 * aio_poll_wake() already either scheduled the async
1891 * completion work, or completed the request inline.
1892 */
1893 if (apt.error) /* unsupported case: multiple queues */
1894 cancel = true;
1895 apt.error = 0;
1896 mask = 0;
1897 }
1898 if (mask || apt.error) {
1899 /* Steal to complete synchronously. */
1900 list_del_init(&req->wait.entry);
1901 } else if (cancel) {
1902 /* Cancel if possible (may be too late though). */
1903 WRITE_ONCE(req->cancelled, true);
1904 } else if (on_queue) {
1905 /*
1906 * Actually waiting for an event, so add the request to
1907 * active_reqs so that it can be cancelled if needed.
1908 */
1909 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1910 aiocb->ki_cancel = aio_poll_cancel;
1911 }
1912 if (on_queue)
1913 poll_iocb_unlock_wq(req);
1914 }
1915 if (mask) { /* no async, we'd stolen it */
1916 aiocb->ki_res.res = mangle_poll(mask);
1917 apt.error = 0;
1918 }
1919 spin_unlock_irq(&ctx->ctx_lock);
1920 if (mask)
1921 iocb_put(aiocb);
1922 return apt.error;
1923 }
1924
__io_submit_one(struct kioctx * ctx,const struct iocb * iocb,struct iocb __user * user_iocb,struct aio_kiocb * req,bool compat)1925 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1926 struct iocb __user *user_iocb, struct aio_kiocb *req,
1927 bool compat)
1928 {
1929 req->ki_filp = fget(iocb->aio_fildes);
1930 if (unlikely(!req->ki_filp))
1931 return -EBADF;
1932
1933 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1934 struct eventfd_ctx *eventfd;
1935 /*
1936 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1937 * instance of the file* now. The file descriptor must be
1938 * an eventfd() fd, and will be signaled for each completed
1939 * event using the eventfd_signal() function.
1940 */
1941 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1942 if (IS_ERR(eventfd))
1943 return PTR_ERR(eventfd);
1944
1945 req->ki_eventfd = eventfd;
1946 }
1947
1948 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1949 pr_debug("EFAULT: aio_key\n");
1950 return -EFAULT;
1951 }
1952
1953 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1954 req->ki_res.data = iocb->aio_data;
1955 req->ki_res.res = 0;
1956 req->ki_res.res2 = 0;
1957
1958 switch (iocb->aio_lio_opcode) {
1959 case IOCB_CMD_PREAD:
1960 return aio_read(&req->rw, iocb, false, compat);
1961 case IOCB_CMD_PWRITE:
1962 return aio_write(&req->rw, iocb, false, compat);
1963 case IOCB_CMD_PREADV:
1964 return aio_read(&req->rw, iocb, true, compat);
1965 case IOCB_CMD_PWRITEV:
1966 return aio_write(&req->rw, iocb, true, compat);
1967 case IOCB_CMD_FSYNC:
1968 return aio_fsync(&req->fsync, iocb, false);
1969 case IOCB_CMD_FDSYNC:
1970 return aio_fsync(&req->fsync, iocb, true);
1971 case IOCB_CMD_POLL:
1972 return aio_poll(req, iocb);
1973 default:
1974 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1975 return -EINVAL;
1976 }
1977 }
1978
io_submit_one(struct kioctx * ctx,struct iocb __user * user_iocb,bool compat)1979 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1980 bool compat)
1981 {
1982 struct aio_kiocb *req;
1983 struct iocb iocb;
1984 int err;
1985
1986 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1987 return -EFAULT;
1988
1989 /* enforce forwards compatibility on users */
1990 if (unlikely(iocb.aio_reserved2)) {
1991 pr_debug("EINVAL: reserve field set\n");
1992 return -EINVAL;
1993 }
1994
1995 /* prevent overflows */
1996 if (unlikely(
1997 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1998 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1999 ((ssize_t)iocb.aio_nbytes < 0)
2000 )) {
2001 pr_debug("EINVAL: overflow check\n");
2002 return -EINVAL;
2003 }
2004
2005 req = aio_get_req(ctx);
2006 if (unlikely(!req))
2007 return -EAGAIN;
2008
2009 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2010
2011 /* Done with the synchronous reference */
2012 iocb_put(req);
2013
2014 /*
2015 * If err is 0, we'd either done aio_complete() ourselves or have
2016 * arranged for that to be done asynchronously. Anything non-zero
2017 * means that we need to destroy req ourselves.
2018 */
2019 if (unlikely(err)) {
2020 iocb_destroy(req);
2021 put_reqs_available(ctx, 1);
2022 }
2023 return err;
2024 }
2025
2026 /* sys_io_submit:
2027 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
2028 * the number of iocbs queued. May return -EINVAL if the aio_context
2029 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
2030 * *iocbpp[0] is not properly initialized, if the operation specified
2031 * is invalid for the file descriptor in the iocb. May fail with
2032 * -EFAULT if any of the data structures point to invalid data. May
2033 * fail with -EBADF if the file descriptor specified in the first
2034 * iocb is invalid. May fail with -EAGAIN if insufficient resources
2035 * are available to queue any iocbs. Will return 0 if nr is 0. Will
2036 * fail with -ENOSYS if not implemented.
2037 */
SYSCALL_DEFINE3(io_submit,aio_context_t,ctx_id,long,nr,struct iocb __user * __user *,iocbpp)2038 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2039 struct iocb __user * __user *, iocbpp)
2040 {
2041 struct kioctx *ctx;
2042 long ret = 0;
2043 int i = 0;
2044 struct blk_plug plug;
2045
2046 if (unlikely(nr < 0))
2047 return -EINVAL;
2048
2049 ctx = lookup_ioctx(ctx_id);
2050 if (unlikely(!ctx)) {
2051 pr_debug("EINVAL: invalid context id\n");
2052 return -EINVAL;
2053 }
2054
2055 if (nr > ctx->nr_events)
2056 nr = ctx->nr_events;
2057
2058 if (nr > AIO_PLUG_THRESHOLD)
2059 blk_start_plug(&plug);
2060 for (i = 0; i < nr; i++) {
2061 struct iocb __user *user_iocb;
2062
2063 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2064 ret = -EFAULT;
2065 break;
2066 }
2067
2068 ret = io_submit_one(ctx, user_iocb, false);
2069 if (ret)
2070 break;
2071 }
2072 if (nr > AIO_PLUG_THRESHOLD)
2073 blk_finish_plug(&plug);
2074
2075 percpu_ref_put(&ctx->users);
2076 return i ? i : ret;
2077 }
2078
2079 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(io_submit,compat_aio_context_t,ctx_id,int,nr,compat_uptr_t __user *,iocbpp)2080 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2081 int, nr, compat_uptr_t __user *, iocbpp)
2082 {
2083 struct kioctx *ctx;
2084 long ret = 0;
2085 int i = 0;
2086 struct blk_plug plug;
2087
2088 if (unlikely(nr < 0))
2089 return -EINVAL;
2090
2091 ctx = lookup_ioctx(ctx_id);
2092 if (unlikely(!ctx)) {
2093 pr_debug("EINVAL: invalid context id\n");
2094 return -EINVAL;
2095 }
2096
2097 if (nr > ctx->nr_events)
2098 nr = ctx->nr_events;
2099
2100 if (nr > AIO_PLUG_THRESHOLD)
2101 blk_start_plug(&plug);
2102 for (i = 0; i < nr; i++) {
2103 compat_uptr_t user_iocb;
2104
2105 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2106 ret = -EFAULT;
2107 break;
2108 }
2109
2110 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2111 if (ret)
2112 break;
2113 }
2114 if (nr > AIO_PLUG_THRESHOLD)
2115 blk_finish_plug(&plug);
2116
2117 percpu_ref_put(&ctx->users);
2118 return i ? i : ret;
2119 }
2120 #endif
2121
2122 /* sys_io_cancel:
2123 * Attempts to cancel an iocb previously passed to io_submit. If
2124 * the operation is successfully cancelled, the resulting event is
2125 * copied into the memory pointed to by result without being placed
2126 * into the completion queue and 0 is returned. May fail with
2127 * -EFAULT if any of the data structures pointed to are invalid.
2128 * May fail with -EINVAL if aio_context specified by ctx_id is
2129 * invalid. May fail with -EAGAIN if the iocb specified was not
2130 * cancelled. Will fail with -ENOSYS if not implemented.
2131 */
SYSCALL_DEFINE3(io_cancel,aio_context_t,ctx_id,struct iocb __user *,iocb,struct io_event __user *,result)2132 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2133 struct io_event __user *, result)
2134 {
2135 struct kioctx *ctx;
2136 struct aio_kiocb *kiocb;
2137 int ret = -EINVAL;
2138 u32 key;
2139 u64 obj = (u64)(unsigned long)iocb;
2140
2141 if (unlikely(get_user(key, &iocb->aio_key)))
2142 return -EFAULT;
2143 if (unlikely(key != KIOCB_KEY))
2144 return -EINVAL;
2145
2146 ctx = lookup_ioctx(ctx_id);
2147 if (unlikely(!ctx))
2148 return -EINVAL;
2149
2150 spin_lock_irq(&ctx->ctx_lock);
2151 /* TODO: use a hash or array, this sucks. */
2152 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2153 if (kiocb->ki_res.obj == obj) {
2154 ret = kiocb->ki_cancel(&kiocb->rw);
2155 list_del_init(&kiocb->ki_list);
2156 break;
2157 }
2158 }
2159 spin_unlock_irq(&ctx->ctx_lock);
2160
2161 if (!ret) {
2162 /*
2163 * The result argument is no longer used - the io_event is
2164 * always delivered via the ring buffer. -EINPROGRESS indicates
2165 * cancellation is progress:
2166 */
2167 ret = -EINPROGRESS;
2168 }
2169
2170 percpu_ref_put(&ctx->users);
2171
2172 return ret;
2173 }
2174
do_io_getevents(aio_context_t ctx_id,long min_nr,long nr,struct io_event __user * events,struct timespec64 * ts)2175 static long do_io_getevents(aio_context_t ctx_id,
2176 long min_nr,
2177 long nr,
2178 struct io_event __user *events,
2179 struct timespec64 *ts)
2180 {
2181 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2182 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2183 long ret = -EINVAL;
2184
2185 if (likely(ioctx)) {
2186 if (likely(min_nr <= nr && min_nr >= 0))
2187 ret = read_events(ioctx, min_nr, nr, events, until);
2188 percpu_ref_put(&ioctx->users);
2189 }
2190
2191 return ret;
2192 }
2193
2194 /* io_getevents:
2195 * Attempts to read at least min_nr events and up to nr events from
2196 * the completion queue for the aio_context specified by ctx_id. If
2197 * it succeeds, the number of read events is returned. May fail with
2198 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2199 * out of range, if timeout is out of range. May fail with -EFAULT
2200 * if any of the memory specified is invalid. May return 0 or
2201 * < min_nr if the timeout specified by timeout has elapsed
2202 * before sufficient events are available, where timeout == NULL
2203 * specifies an infinite timeout. Note that the timeout pointed to by
2204 * timeout is relative. Will fail with -ENOSYS if not implemented.
2205 */
2206 #ifdef CONFIG_64BIT
2207
SYSCALL_DEFINE5(io_getevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout)2208 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2209 long, min_nr,
2210 long, nr,
2211 struct io_event __user *, events,
2212 struct __kernel_timespec __user *, timeout)
2213 {
2214 struct timespec64 ts;
2215 int ret;
2216
2217 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2218 return -EFAULT;
2219
2220 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2221 if (!ret && signal_pending(current))
2222 ret = -EINTR;
2223 return ret;
2224 }
2225
2226 #endif
2227
2228 struct __aio_sigset {
2229 const sigset_t __user *sigmask;
2230 size_t sigsetsize;
2231 };
2232
SYSCALL_DEFINE6(io_pgetevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout,const struct __aio_sigset __user *,usig)2233 SYSCALL_DEFINE6(io_pgetevents,
2234 aio_context_t, ctx_id,
2235 long, min_nr,
2236 long, nr,
2237 struct io_event __user *, events,
2238 struct __kernel_timespec __user *, timeout,
2239 const struct __aio_sigset __user *, usig)
2240 {
2241 struct __aio_sigset ksig = { NULL, };
2242 struct timespec64 ts;
2243 bool interrupted;
2244 int ret;
2245
2246 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2247 return -EFAULT;
2248
2249 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2250 return -EFAULT;
2251
2252 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2253 if (ret)
2254 return ret;
2255
2256 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2257
2258 interrupted = signal_pending(current);
2259 restore_saved_sigmask_unless(interrupted);
2260 if (interrupted && !ret)
2261 ret = -ERESTARTNOHAND;
2262
2263 return ret;
2264 }
2265
2266 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2267
SYSCALL_DEFINE6(io_pgetevents_time32,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout,const struct __aio_sigset __user *,usig)2268 SYSCALL_DEFINE6(io_pgetevents_time32,
2269 aio_context_t, ctx_id,
2270 long, min_nr,
2271 long, nr,
2272 struct io_event __user *, events,
2273 struct old_timespec32 __user *, timeout,
2274 const struct __aio_sigset __user *, usig)
2275 {
2276 struct __aio_sigset ksig = { NULL, };
2277 struct timespec64 ts;
2278 bool interrupted;
2279 int ret;
2280
2281 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2282 return -EFAULT;
2283
2284 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2285 return -EFAULT;
2286
2287
2288 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2289 if (ret)
2290 return ret;
2291
2292 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2293
2294 interrupted = signal_pending(current);
2295 restore_saved_sigmask_unless(interrupted);
2296 if (interrupted && !ret)
2297 ret = -ERESTARTNOHAND;
2298
2299 return ret;
2300 }
2301
2302 #endif
2303
2304 #if defined(CONFIG_COMPAT_32BIT_TIME)
2305
SYSCALL_DEFINE5(io_getevents_time32,__u32,ctx_id,__s32,min_nr,__s32,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout)2306 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2307 __s32, min_nr,
2308 __s32, nr,
2309 struct io_event __user *, events,
2310 struct old_timespec32 __user *, timeout)
2311 {
2312 struct timespec64 t;
2313 int ret;
2314
2315 if (timeout && get_old_timespec32(&t, timeout))
2316 return -EFAULT;
2317
2318 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2319 if (!ret && signal_pending(current))
2320 ret = -EINTR;
2321 return ret;
2322 }
2323
2324 #endif
2325
2326 #ifdef CONFIG_COMPAT
2327
2328 struct __compat_aio_sigset {
2329 compat_uptr_t sigmask;
2330 compat_size_t sigsetsize;
2331 };
2332
2333 #if defined(CONFIG_COMPAT_32BIT_TIME)
2334
COMPAT_SYSCALL_DEFINE6(io_pgetevents,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout,const struct __compat_aio_sigset __user *,usig)2335 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2336 compat_aio_context_t, ctx_id,
2337 compat_long_t, min_nr,
2338 compat_long_t, nr,
2339 struct io_event __user *, events,
2340 struct old_timespec32 __user *, timeout,
2341 const struct __compat_aio_sigset __user *, usig)
2342 {
2343 struct __compat_aio_sigset ksig = { 0, };
2344 struct timespec64 t;
2345 bool interrupted;
2346 int ret;
2347
2348 if (timeout && get_old_timespec32(&t, timeout))
2349 return -EFAULT;
2350
2351 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2352 return -EFAULT;
2353
2354 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2355 if (ret)
2356 return ret;
2357
2358 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2359
2360 interrupted = signal_pending(current);
2361 restore_saved_sigmask_unless(interrupted);
2362 if (interrupted && !ret)
2363 ret = -ERESTARTNOHAND;
2364
2365 return ret;
2366 }
2367
2368 #endif
2369
COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout,const struct __compat_aio_sigset __user *,usig)2370 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2371 compat_aio_context_t, ctx_id,
2372 compat_long_t, min_nr,
2373 compat_long_t, nr,
2374 struct io_event __user *, events,
2375 struct __kernel_timespec __user *, timeout,
2376 const struct __compat_aio_sigset __user *, usig)
2377 {
2378 struct __compat_aio_sigset ksig = { 0, };
2379 struct timespec64 t;
2380 bool interrupted;
2381 int ret;
2382
2383 if (timeout && get_timespec64(&t, timeout))
2384 return -EFAULT;
2385
2386 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2387 return -EFAULT;
2388
2389 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2390 if (ret)
2391 return ret;
2392
2393 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2394
2395 interrupted = signal_pending(current);
2396 restore_saved_sigmask_unless(interrupted);
2397 if (interrupted && !ret)
2398 ret = -ERESTARTNOHAND;
2399
2400 return ret;
2401 }
2402 #endif
2403