1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46
47 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
53
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
72 struct btrfs_end_io_wq {
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
77 blk_status_t status;
78 enum btrfs_wq_endio_type metadata;
79 struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
btrfs_end_io_wq_init(void)84 int __init btrfs_end_io_wq_init(void)
85 {
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
89 SLAB_MEM_SPREAD,
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94 }
95
btrfs_end_io_wq_exit(void)96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105 }
106
107 /*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
112 struct async_submit_bio {
113 struct inode *inode;
114 struct bio *bio;
115 extent_submit_bio_start_t *submit_bio_start;
116 int mirror_num;
117
118 /* Optional parameter for submit_bio_start used by direct io */
119 u64 dio_file_offset;
120 struct btrfs_work work;
121 blk_status_t status;
122 };
123
124 /*
125 * Compute the csum of a btree block and store the result to provided buffer.
126 */
csum_tree_block(struct extent_buffer * buf,u8 * result)127 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
128 {
129 struct btrfs_fs_info *fs_info = buf->fs_info;
130 const int num_pages = num_extent_pages(buf);
131 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
132 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
133 char *kaddr;
134 int i;
135
136 shash->tfm = fs_info->csum_shash;
137 crypto_shash_init(shash);
138 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
139 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
140 first_page_part - BTRFS_CSUM_SIZE);
141
142 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
143 kaddr = page_address(buf->pages[i]);
144 crypto_shash_update(shash, kaddr, PAGE_SIZE);
145 }
146 memset(result, 0, BTRFS_CSUM_SIZE);
147 crypto_shash_final(shash, result);
148 }
149
150 /*
151 * we can't consider a given block up to date unless the transid of the
152 * block matches the transid in the parent node's pointer. This is how we
153 * detect blocks that either didn't get written at all or got written
154 * in the wrong place.
155 */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)156 static int verify_parent_transid(struct extent_io_tree *io_tree,
157 struct extent_buffer *eb, u64 parent_transid,
158 int atomic)
159 {
160 struct extent_state *cached_state = NULL;
161 int ret;
162
163 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
164 return 0;
165
166 if (atomic)
167 return -EAGAIN;
168
169 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
170 &cached_state);
171 if (extent_buffer_uptodate(eb) &&
172 btrfs_header_generation(eb) == parent_transid) {
173 ret = 0;
174 goto out;
175 }
176 btrfs_err_rl(eb->fs_info,
177 "parent transid verify failed on %llu wanted %llu found %llu",
178 eb->start,
179 parent_transid, btrfs_header_generation(eb));
180 ret = 1;
181 clear_extent_buffer_uptodate(eb);
182 out:
183 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
184 &cached_state);
185 return ret;
186 }
187
btrfs_supported_super_csum(u16 csum_type)188 static bool btrfs_supported_super_csum(u16 csum_type)
189 {
190 switch (csum_type) {
191 case BTRFS_CSUM_TYPE_CRC32:
192 case BTRFS_CSUM_TYPE_XXHASH:
193 case BTRFS_CSUM_TYPE_SHA256:
194 case BTRFS_CSUM_TYPE_BLAKE2:
195 return true;
196 default:
197 return false;
198 }
199 }
200
201 /*
202 * Return 0 if the superblock checksum type matches the checksum value of that
203 * algorithm. Pass the raw disk superblock data.
204 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,const struct btrfs_super_block * disk_sb)205 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
206 const struct btrfs_super_block *disk_sb)
207 {
208 char result[BTRFS_CSUM_SIZE];
209 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
210
211 shash->tfm = fs_info->csum_shash;
212
213 /*
214 * The super_block structure does not span the whole
215 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
216 * filled with zeros and is included in the checksum.
217 */
218 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
219 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
220
221 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
222 return 1;
223
224 return 0;
225 }
226
btrfs_verify_level_key(struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)227 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
228 struct btrfs_key *first_key, u64 parent_transid)
229 {
230 struct btrfs_fs_info *fs_info = eb->fs_info;
231 int found_level;
232 struct btrfs_key found_key;
233 int ret;
234
235 found_level = btrfs_header_level(eb);
236 if (found_level != level) {
237 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
238 KERN_ERR "BTRFS: tree level check failed\n");
239 btrfs_err(fs_info,
240 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
241 eb->start, level, found_level);
242 return -EIO;
243 }
244
245 if (!first_key)
246 return 0;
247
248 /*
249 * For live tree block (new tree blocks in current transaction),
250 * we need proper lock context to avoid race, which is impossible here.
251 * So we only checks tree blocks which is read from disk, whose
252 * generation <= fs_info->last_trans_committed.
253 */
254 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
255 return 0;
256
257 /* We have @first_key, so this @eb must have at least one item */
258 if (btrfs_header_nritems(eb) == 0) {
259 btrfs_err(fs_info,
260 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
261 eb->start);
262 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
263 return -EUCLEAN;
264 }
265
266 if (found_level)
267 btrfs_node_key_to_cpu(eb, &found_key, 0);
268 else
269 btrfs_item_key_to_cpu(eb, &found_key, 0);
270 ret = btrfs_comp_cpu_keys(first_key, &found_key);
271
272 if (ret) {
273 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
274 KERN_ERR "BTRFS: tree first key check failed\n");
275 btrfs_err(fs_info,
276 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
277 eb->start, parent_transid, first_key->objectid,
278 first_key->type, first_key->offset,
279 found_key.objectid, found_key.type,
280 found_key.offset);
281 }
282 return ret;
283 }
284
285 /*
286 * helper to read a given tree block, doing retries as required when
287 * the checksums don't match and we have alternate mirrors to try.
288 *
289 * @parent_transid: expected transid, skip check if 0
290 * @level: expected level, mandatory check
291 * @first_key: expected key of first slot, skip check if NULL
292 */
btree_read_extent_buffer_pages(struct extent_buffer * eb,u64 parent_transid,int level,struct btrfs_key * first_key)293 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
294 u64 parent_transid, int level,
295 struct btrfs_key *first_key)
296 {
297 struct btrfs_fs_info *fs_info = eb->fs_info;
298 struct extent_io_tree *io_tree;
299 int failed = 0;
300 int ret;
301 int num_copies = 0;
302 int mirror_num = 0;
303 int failed_mirror = 0;
304
305 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
306 while (1) {
307 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
308 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
309 if (!ret) {
310 if (verify_parent_transid(io_tree, eb,
311 parent_transid, 0))
312 ret = -EIO;
313 else if (btrfs_verify_level_key(eb, level,
314 first_key, parent_transid))
315 ret = -EUCLEAN;
316 else
317 break;
318 }
319
320 num_copies = btrfs_num_copies(fs_info,
321 eb->start, eb->len);
322 if (num_copies == 1)
323 break;
324
325 if (!failed_mirror) {
326 failed = 1;
327 failed_mirror = eb->read_mirror;
328 }
329
330 mirror_num++;
331 if (mirror_num == failed_mirror)
332 mirror_num++;
333
334 if (mirror_num > num_copies)
335 break;
336 }
337
338 if (failed && !ret && failed_mirror)
339 btrfs_repair_eb_io_failure(eb, failed_mirror);
340
341 return ret;
342 }
343
csum_one_extent_buffer(struct extent_buffer * eb)344 static int csum_one_extent_buffer(struct extent_buffer *eb)
345 {
346 struct btrfs_fs_info *fs_info = eb->fs_info;
347 u8 result[BTRFS_CSUM_SIZE];
348 int ret;
349
350 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
351 offsetof(struct btrfs_header, fsid),
352 BTRFS_FSID_SIZE) == 0);
353 csum_tree_block(eb, result);
354
355 if (btrfs_header_level(eb))
356 ret = btrfs_check_node(eb);
357 else
358 ret = btrfs_check_leaf_full(eb);
359
360 if (ret < 0)
361 goto error;
362
363 /*
364 * Also check the generation, the eb reached here must be newer than
365 * last committed. Or something seriously wrong happened.
366 */
367 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
368 ret = -EUCLEAN;
369 btrfs_err(fs_info,
370 "block=%llu bad generation, have %llu expect > %llu",
371 eb->start, btrfs_header_generation(eb),
372 fs_info->last_trans_committed);
373 goto error;
374 }
375 write_extent_buffer(eb, result, 0, fs_info->csum_size);
376
377 return 0;
378
379 error:
380 btrfs_print_tree(eb, 0);
381 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
382 eb->start);
383 /*
384 * Be noisy if this is an extent buffer from a log tree. We don't abort
385 * a transaction in case there's a bad log tree extent buffer, we just
386 * fallback to a transaction commit. Still we want to know when there is
387 * a bad log tree extent buffer, as that may signal a bug somewhere.
388 */
389 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
390 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
391 return ret;
392 }
393
394 /* Checksum all dirty extent buffers in one bio_vec */
csum_dirty_subpage_buffers(struct btrfs_fs_info * fs_info,struct bio_vec * bvec)395 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
396 struct bio_vec *bvec)
397 {
398 struct page *page = bvec->bv_page;
399 u64 bvec_start = page_offset(page) + bvec->bv_offset;
400 u64 cur;
401 int ret = 0;
402
403 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
404 cur += fs_info->nodesize) {
405 struct extent_buffer *eb;
406 bool uptodate;
407
408 eb = find_extent_buffer(fs_info, cur);
409 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
410 fs_info->nodesize);
411
412 /* A dirty eb shouldn't disappear from buffer_radix */
413 if (WARN_ON(!eb))
414 return -EUCLEAN;
415
416 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
417 free_extent_buffer(eb);
418 return -EUCLEAN;
419 }
420 if (WARN_ON(!uptodate)) {
421 free_extent_buffer(eb);
422 return -EUCLEAN;
423 }
424
425 ret = csum_one_extent_buffer(eb);
426 free_extent_buffer(eb);
427 if (ret < 0)
428 return ret;
429 }
430 return ret;
431 }
432
433 /*
434 * Checksum a dirty tree block before IO. This has extra checks to make sure
435 * we only fill in the checksum field in the first page of a multi-page block.
436 * For subpage extent buffers we need bvec to also read the offset in the page.
437 */
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct bio_vec * bvec)438 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
439 {
440 struct page *page = bvec->bv_page;
441 u64 start = page_offset(page);
442 u64 found_start;
443 struct extent_buffer *eb;
444
445 if (fs_info->sectorsize < PAGE_SIZE)
446 return csum_dirty_subpage_buffers(fs_info, bvec);
447
448 eb = (struct extent_buffer *)page->private;
449 if (page != eb->pages[0])
450 return 0;
451
452 found_start = btrfs_header_bytenr(eb);
453
454 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
455 WARN_ON(found_start != 0);
456 return 0;
457 }
458
459 /*
460 * Please do not consolidate these warnings into a single if.
461 * It is useful to know what went wrong.
462 */
463 if (WARN_ON(found_start != start))
464 return -EUCLEAN;
465 if (WARN_ON(!PageUptodate(page)))
466 return -EUCLEAN;
467
468 return csum_one_extent_buffer(eb);
469 }
470
check_tree_block_fsid(struct extent_buffer * eb)471 static int check_tree_block_fsid(struct extent_buffer *eb)
472 {
473 struct btrfs_fs_info *fs_info = eb->fs_info;
474 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
475 u8 fsid[BTRFS_FSID_SIZE];
476 u8 *metadata_uuid;
477
478 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
479 BTRFS_FSID_SIZE);
480 /*
481 * Checking the incompat flag is only valid for the current fs. For
482 * seed devices it's forbidden to have their uuid changed so reading
483 * ->fsid in this case is fine
484 */
485 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
486 metadata_uuid = fs_devices->metadata_uuid;
487 else
488 metadata_uuid = fs_devices->fsid;
489
490 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
491 return 0;
492
493 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
494 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
495 return 0;
496
497 return 1;
498 }
499
500 /* Do basic extent buffer checks at read time */
validate_extent_buffer(struct extent_buffer * eb)501 static int validate_extent_buffer(struct extent_buffer *eb)
502 {
503 struct btrfs_fs_info *fs_info = eb->fs_info;
504 u64 found_start;
505 const u32 csum_size = fs_info->csum_size;
506 u8 found_level;
507 u8 result[BTRFS_CSUM_SIZE];
508 const u8 *header_csum;
509 int ret = 0;
510
511 found_start = btrfs_header_bytenr(eb);
512 if (found_start != eb->start) {
513 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
514 eb->start, found_start);
515 ret = -EIO;
516 goto out;
517 }
518 if (check_tree_block_fsid(eb)) {
519 btrfs_err_rl(fs_info, "bad fsid on block %llu",
520 eb->start);
521 ret = -EIO;
522 goto out;
523 }
524 found_level = btrfs_header_level(eb);
525 if (found_level >= BTRFS_MAX_LEVEL) {
526 btrfs_err(fs_info, "bad tree block level %d on %llu",
527 (int)btrfs_header_level(eb), eb->start);
528 ret = -EIO;
529 goto out;
530 }
531
532 csum_tree_block(eb, result);
533 header_csum = page_address(eb->pages[0]) +
534 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
535
536 if (memcmp(result, header_csum, csum_size) != 0) {
537 btrfs_warn_rl(fs_info,
538 "checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
539 eb->start,
540 CSUM_FMT_VALUE(csum_size, header_csum),
541 CSUM_FMT_VALUE(csum_size, result),
542 btrfs_header_level(eb));
543 ret = -EUCLEAN;
544 goto out;
545 }
546
547 /*
548 * If this is a leaf block and it is corrupt, set the corrupt bit so
549 * that we don't try and read the other copies of this block, just
550 * return -EIO.
551 */
552 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
553 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
554 ret = -EIO;
555 }
556
557 if (found_level > 0 && btrfs_check_node(eb))
558 ret = -EIO;
559
560 if (!ret)
561 set_extent_buffer_uptodate(eb);
562 else
563 btrfs_err(fs_info,
564 "block=%llu read time tree block corruption detected",
565 eb->start);
566 out:
567 return ret;
568 }
569
validate_subpage_buffer(struct page * page,u64 start,u64 end,int mirror)570 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
571 int mirror)
572 {
573 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
574 struct extent_buffer *eb;
575 bool reads_done;
576 int ret = 0;
577
578 /*
579 * We don't allow bio merge for subpage metadata read, so we should
580 * only get one eb for each endio hook.
581 */
582 ASSERT(end == start + fs_info->nodesize - 1);
583 ASSERT(PagePrivate(page));
584
585 eb = find_extent_buffer(fs_info, start);
586 /*
587 * When we are reading one tree block, eb must have been inserted into
588 * the radix tree. If not, something is wrong.
589 */
590 ASSERT(eb);
591
592 reads_done = atomic_dec_and_test(&eb->io_pages);
593 /* Subpage read must finish in page read */
594 ASSERT(reads_done);
595
596 eb->read_mirror = mirror;
597 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
598 ret = -EIO;
599 goto err;
600 }
601 ret = validate_extent_buffer(eb);
602 if (ret < 0)
603 goto err;
604
605 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
606 btree_readahead_hook(eb, ret);
607
608 set_extent_buffer_uptodate(eb);
609
610 free_extent_buffer(eb);
611 return ret;
612 err:
613 /*
614 * end_bio_extent_readpage decrements io_pages in case of error,
615 * make sure it has something to decrement.
616 */
617 atomic_inc(&eb->io_pages);
618 clear_extent_buffer_uptodate(eb);
619 free_extent_buffer(eb);
620 return ret;
621 }
622
btrfs_validate_metadata_buffer(struct btrfs_io_bio * io_bio,struct page * page,u64 start,u64 end,int mirror)623 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
624 struct page *page, u64 start, u64 end,
625 int mirror)
626 {
627 struct extent_buffer *eb;
628 int ret = 0;
629 int reads_done;
630
631 ASSERT(page->private);
632
633 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
634 return validate_subpage_buffer(page, start, end, mirror);
635
636 eb = (struct extent_buffer *)page->private;
637
638 /*
639 * The pending IO might have been the only thing that kept this buffer
640 * in memory. Make sure we have a ref for all this other checks
641 */
642 atomic_inc(&eb->refs);
643
644 reads_done = atomic_dec_and_test(&eb->io_pages);
645 if (!reads_done)
646 goto err;
647
648 eb->read_mirror = mirror;
649 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
650 ret = -EIO;
651 goto err;
652 }
653 ret = validate_extent_buffer(eb);
654 err:
655 if (reads_done &&
656 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
657 btree_readahead_hook(eb, ret);
658
659 if (ret) {
660 /*
661 * our io error hook is going to dec the io pages
662 * again, we have to make sure it has something
663 * to decrement
664 */
665 atomic_inc(&eb->io_pages);
666 clear_extent_buffer_uptodate(eb);
667 }
668 free_extent_buffer(eb);
669
670 return ret;
671 }
672
end_workqueue_bio(struct bio * bio)673 static void end_workqueue_bio(struct bio *bio)
674 {
675 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
676 struct btrfs_fs_info *fs_info;
677 struct btrfs_workqueue *wq;
678
679 fs_info = end_io_wq->info;
680 end_io_wq->status = bio->bi_status;
681
682 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
683 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
684 wq = fs_info->endio_meta_write_workers;
685 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
686 wq = fs_info->endio_freespace_worker;
687 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
688 wq = fs_info->endio_raid56_workers;
689 else
690 wq = fs_info->endio_write_workers;
691 } else {
692 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
693 wq = fs_info->endio_raid56_workers;
694 else if (end_io_wq->metadata)
695 wq = fs_info->endio_meta_workers;
696 else
697 wq = fs_info->endio_workers;
698 }
699
700 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
701 btrfs_queue_work(wq, &end_io_wq->work);
702 }
703
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)704 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
705 enum btrfs_wq_endio_type metadata)
706 {
707 struct btrfs_end_io_wq *end_io_wq;
708
709 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
710 if (!end_io_wq)
711 return BLK_STS_RESOURCE;
712
713 end_io_wq->private = bio->bi_private;
714 end_io_wq->end_io = bio->bi_end_io;
715 end_io_wq->info = info;
716 end_io_wq->status = 0;
717 end_io_wq->bio = bio;
718 end_io_wq->metadata = metadata;
719
720 bio->bi_private = end_io_wq;
721 bio->bi_end_io = end_workqueue_bio;
722 return 0;
723 }
724
run_one_async_start(struct btrfs_work * work)725 static void run_one_async_start(struct btrfs_work *work)
726 {
727 struct async_submit_bio *async;
728 blk_status_t ret;
729
730 async = container_of(work, struct async_submit_bio, work);
731 ret = async->submit_bio_start(async->inode, async->bio,
732 async->dio_file_offset);
733 if (ret)
734 async->status = ret;
735 }
736
737 /*
738 * In order to insert checksums into the metadata in large chunks, we wait
739 * until bio submission time. All the pages in the bio are checksummed and
740 * sums are attached onto the ordered extent record.
741 *
742 * At IO completion time the csums attached on the ordered extent record are
743 * inserted into the tree.
744 */
run_one_async_done(struct btrfs_work * work)745 static void run_one_async_done(struct btrfs_work *work)
746 {
747 struct async_submit_bio *async;
748 struct inode *inode;
749 blk_status_t ret;
750
751 async = container_of(work, struct async_submit_bio, work);
752 inode = async->inode;
753
754 /* If an error occurred we just want to clean up the bio and move on */
755 if (async->status) {
756 async->bio->bi_status = async->status;
757 bio_endio(async->bio);
758 return;
759 }
760
761 /*
762 * All of the bios that pass through here are from async helpers.
763 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
764 * This changes nothing when cgroups aren't in use.
765 */
766 async->bio->bi_opf |= REQ_CGROUP_PUNT;
767 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
768 if (ret) {
769 async->bio->bi_status = ret;
770 bio_endio(async->bio);
771 }
772 }
773
run_one_async_free(struct btrfs_work * work)774 static void run_one_async_free(struct btrfs_work *work)
775 {
776 struct async_submit_bio *async;
777
778 async = container_of(work, struct async_submit_bio, work);
779 kfree(async);
780 }
781
btrfs_wq_submit_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 dio_file_offset,extent_submit_bio_start_t * submit_bio_start)782 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
783 int mirror_num, unsigned long bio_flags,
784 u64 dio_file_offset,
785 extent_submit_bio_start_t *submit_bio_start)
786 {
787 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
788 struct async_submit_bio *async;
789
790 async = kmalloc(sizeof(*async), GFP_NOFS);
791 if (!async)
792 return BLK_STS_RESOURCE;
793
794 async->inode = inode;
795 async->bio = bio;
796 async->mirror_num = mirror_num;
797 async->submit_bio_start = submit_bio_start;
798
799 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
800 run_one_async_free);
801
802 async->dio_file_offset = dio_file_offset;
803
804 async->status = 0;
805
806 if (op_is_sync(bio->bi_opf))
807 btrfs_set_work_high_priority(&async->work);
808
809 btrfs_queue_work(fs_info->workers, &async->work);
810 return 0;
811 }
812
btree_csum_one_bio(struct bio * bio)813 static blk_status_t btree_csum_one_bio(struct bio *bio)
814 {
815 struct bio_vec *bvec;
816 struct btrfs_root *root;
817 int ret = 0;
818 struct bvec_iter_all iter_all;
819
820 ASSERT(!bio_flagged(bio, BIO_CLONED));
821 bio_for_each_segment_all(bvec, bio, iter_all) {
822 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
823 ret = csum_dirty_buffer(root->fs_info, bvec);
824 if (ret)
825 break;
826 }
827
828 return errno_to_blk_status(ret);
829 }
830
btree_submit_bio_start(struct inode * inode,struct bio * bio,u64 dio_file_offset)831 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
832 u64 dio_file_offset)
833 {
834 /*
835 * when we're called for a write, we're already in the async
836 * submission context. Just jump into btrfs_map_bio
837 */
838 return btree_csum_one_bio(bio);
839 }
840
should_async_write(struct btrfs_fs_info * fs_info,struct btrfs_inode * bi)841 static bool should_async_write(struct btrfs_fs_info *fs_info,
842 struct btrfs_inode *bi)
843 {
844 if (btrfs_is_zoned(fs_info))
845 return false;
846 if (atomic_read(&bi->sync_writers))
847 return false;
848 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
849 return false;
850 return true;
851 }
852
btrfs_submit_metadata_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)853 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
854 int mirror_num, unsigned long bio_flags)
855 {
856 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
857 blk_status_t ret;
858
859 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
860 /*
861 * called for a read, do the setup so that checksum validation
862 * can happen in the async kernel threads
863 */
864 ret = btrfs_bio_wq_end_io(fs_info, bio,
865 BTRFS_WQ_ENDIO_METADATA);
866 if (ret)
867 goto out_w_error;
868 ret = btrfs_map_bio(fs_info, bio, mirror_num);
869 } else if (!should_async_write(fs_info, BTRFS_I(inode))) {
870 ret = btree_csum_one_bio(bio);
871 if (ret)
872 goto out_w_error;
873 ret = btrfs_map_bio(fs_info, bio, mirror_num);
874 } else {
875 /*
876 * kthread helpers are used to submit writes so that
877 * checksumming can happen in parallel across all CPUs
878 */
879 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
880 0, btree_submit_bio_start);
881 }
882
883 if (ret)
884 goto out_w_error;
885 return 0;
886
887 out_w_error:
888 bio->bi_status = ret;
889 bio_endio(bio);
890 return ret;
891 }
892
893 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)894 static int btree_migratepage(struct address_space *mapping,
895 struct page *newpage, struct page *page,
896 enum migrate_mode mode)
897 {
898 /*
899 * we can't safely write a btree page from here,
900 * we haven't done the locking hook
901 */
902 if (PageDirty(page))
903 return -EAGAIN;
904 /*
905 * Buffers may be managed in a filesystem specific way.
906 * We must have no buffers or drop them.
907 */
908 if (page_has_private(page) &&
909 !try_to_release_page(page, GFP_KERNEL))
910 return -EAGAIN;
911 return migrate_page(mapping, newpage, page, mode);
912 }
913 #endif
914
915
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)916 static int btree_writepages(struct address_space *mapping,
917 struct writeback_control *wbc)
918 {
919 struct btrfs_fs_info *fs_info;
920 int ret;
921
922 if (wbc->sync_mode == WB_SYNC_NONE) {
923
924 if (wbc->for_kupdate)
925 return 0;
926
927 fs_info = BTRFS_I(mapping->host)->root->fs_info;
928 /* this is a bit racy, but that's ok */
929 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
930 BTRFS_DIRTY_METADATA_THRESH,
931 fs_info->dirty_metadata_batch);
932 if (ret < 0)
933 return 0;
934 }
935 return btree_write_cache_pages(mapping, wbc);
936 }
937
btree_releasepage(struct page * page,gfp_t gfp_flags)938 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
939 {
940 if (PageWriteback(page) || PageDirty(page))
941 return 0;
942
943 return try_release_extent_buffer(page);
944 }
945
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)946 static void btree_invalidatepage(struct page *page, unsigned int offset,
947 unsigned int length)
948 {
949 struct extent_io_tree *tree;
950 tree = &BTRFS_I(page->mapping->host)->io_tree;
951 extent_invalidatepage(tree, page, offset);
952 btree_releasepage(page, GFP_NOFS);
953 if (PagePrivate(page)) {
954 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
955 "page private not zero on page %llu",
956 (unsigned long long)page_offset(page));
957 detach_page_private(page);
958 }
959 }
960
btree_set_page_dirty(struct page * page)961 static int btree_set_page_dirty(struct page *page)
962 {
963 #ifdef DEBUG
964 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
965 struct btrfs_subpage *subpage;
966 struct extent_buffer *eb;
967 int cur_bit = 0;
968 u64 page_start = page_offset(page);
969
970 if (fs_info->sectorsize == PAGE_SIZE) {
971 BUG_ON(!PagePrivate(page));
972 eb = (struct extent_buffer *)page->private;
973 BUG_ON(!eb);
974 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
975 BUG_ON(!atomic_read(&eb->refs));
976 btrfs_assert_tree_locked(eb);
977 return __set_page_dirty_nobuffers(page);
978 }
979 ASSERT(PagePrivate(page) && page->private);
980 subpage = (struct btrfs_subpage *)page->private;
981
982 ASSERT(subpage->dirty_bitmap);
983 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
984 unsigned long flags;
985 u64 cur;
986 u16 tmp = (1 << cur_bit);
987
988 spin_lock_irqsave(&subpage->lock, flags);
989 if (!(tmp & subpage->dirty_bitmap)) {
990 spin_unlock_irqrestore(&subpage->lock, flags);
991 cur_bit++;
992 continue;
993 }
994 spin_unlock_irqrestore(&subpage->lock, flags);
995 cur = page_start + cur_bit * fs_info->sectorsize;
996
997 eb = find_extent_buffer(fs_info, cur);
998 ASSERT(eb);
999 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1000 ASSERT(atomic_read(&eb->refs));
1001 btrfs_assert_tree_locked(eb);
1002 free_extent_buffer(eb);
1003
1004 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1005 }
1006 #endif
1007 return __set_page_dirty_nobuffers(page);
1008 }
1009
1010 static const struct address_space_operations btree_aops = {
1011 .writepages = btree_writepages,
1012 .releasepage = btree_releasepage,
1013 .invalidatepage = btree_invalidatepage,
1014 #ifdef CONFIG_MIGRATION
1015 .migratepage = btree_migratepage,
1016 #endif
1017 .set_page_dirty = btree_set_page_dirty,
1018 };
1019
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level)1020 struct extent_buffer *btrfs_find_create_tree_block(
1021 struct btrfs_fs_info *fs_info,
1022 u64 bytenr, u64 owner_root,
1023 int level)
1024 {
1025 if (btrfs_is_testing(fs_info))
1026 return alloc_test_extent_buffer(fs_info, bytenr);
1027 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1028 }
1029
1030 /*
1031 * Read tree block at logical address @bytenr and do variant basic but critical
1032 * verification.
1033 *
1034 * @owner_root: the objectid of the root owner for this block.
1035 * @parent_transid: expected transid of this tree block, skip check if 0
1036 * @level: expected level, mandatory check
1037 * @first_key: expected key in slot 0, skip check if NULL
1038 */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 parent_transid,int level,struct btrfs_key * first_key)1039 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1040 u64 owner_root, u64 parent_transid,
1041 int level, struct btrfs_key *first_key)
1042 {
1043 struct extent_buffer *buf = NULL;
1044 int ret;
1045
1046 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1047 if (IS_ERR(buf))
1048 return buf;
1049
1050 ret = btree_read_extent_buffer_pages(buf, parent_transid,
1051 level, first_key);
1052 if (ret) {
1053 free_extent_buffer_stale(buf);
1054 return ERR_PTR(ret);
1055 }
1056 return buf;
1057
1058 }
1059
btrfs_clean_tree_block(struct extent_buffer * buf)1060 void btrfs_clean_tree_block(struct extent_buffer *buf)
1061 {
1062 struct btrfs_fs_info *fs_info = buf->fs_info;
1063 if (btrfs_header_generation(buf) ==
1064 fs_info->running_transaction->transid) {
1065 btrfs_assert_tree_locked(buf);
1066
1067 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1068 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1069 -buf->len,
1070 fs_info->dirty_metadata_batch);
1071 clear_extent_buffer_dirty(buf);
1072 }
1073 }
1074 }
1075
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1076 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1077 u64 objectid)
1078 {
1079 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1080 root->fs_info = fs_info;
1081 root->node = NULL;
1082 root->commit_root = NULL;
1083 root->state = 0;
1084 root->orphan_cleanup_state = 0;
1085
1086 root->last_trans = 0;
1087 root->free_objectid = 0;
1088 root->nr_delalloc_inodes = 0;
1089 root->nr_ordered_extents = 0;
1090 root->inode_tree = RB_ROOT;
1091 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1092 root->block_rsv = NULL;
1093
1094 INIT_LIST_HEAD(&root->dirty_list);
1095 INIT_LIST_HEAD(&root->root_list);
1096 INIT_LIST_HEAD(&root->delalloc_inodes);
1097 INIT_LIST_HEAD(&root->delalloc_root);
1098 INIT_LIST_HEAD(&root->ordered_extents);
1099 INIT_LIST_HEAD(&root->ordered_root);
1100 INIT_LIST_HEAD(&root->reloc_dirty_list);
1101 INIT_LIST_HEAD(&root->logged_list[0]);
1102 INIT_LIST_HEAD(&root->logged_list[1]);
1103 spin_lock_init(&root->inode_lock);
1104 spin_lock_init(&root->delalloc_lock);
1105 spin_lock_init(&root->ordered_extent_lock);
1106 spin_lock_init(&root->accounting_lock);
1107 spin_lock_init(&root->log_extents_lock[0]);
1108 spin_lock_init(&root->log_extents_lock[1]);
1109 spin_lock_init(&root->qgroup_meta_rsv_lock);
1110 mutex_init(&root->objectid_mutex);
1111 mutex_init(&root->log_mutex);
1112 mutex_init(&root->ordered_extent_mutex);
1113 mutex_init(&root->delalloc_mutex);
1114 init_waitqueue_head(&root->qgroup_flush_wait);
1115 init_waitqueue_head(&root->log_writer_wait);
1116 init_waitqueue_head(&root->log_commit_wait[0]);
1117 init_waitqueue_head(&root->log_commit_wait[1]);
1118 INIT_LIST_HEAD(&root->log_ctxs[0]);
1119 INIT_LIST_HEAD(&root->log_ctxs[1]);
1120 atomic_set(&root->log_commit[0], 0);
1121 atomic_set(&root->log_commit[1], 0);
1122 atomic_set(&root->log_writers, 0);
1123 atomic_set(&root->log_batch, 0);
1124 refcount_set(&root->refs, 1);
1125 atomic_set(&root->snapshot_force_cow, 0);
1126 atomic_set(&root->nr_swapfiles, 0);
1127 root->log_transid = 0;
1128 root->log_transid_committed = -1;
1129 root->last_log_commit = 0;
1130 if (!dummy) {
1131 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1132 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1133 extent_io_tree_init(fs_info, &root->log_csum_range,
1134 IO_TREE_LOG_CSUM_RANGE, NULL);
1135 }
1136
1137 memset(&root->root_key, 0, sizeof(root->root_key));
1138 memset(&root->root_item, 0, sizeof(root->root_item));
1139 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1140 root->root_key.objectid = objectid;
1141 root->anon_dev = 0;
1142
1143 spin_lock_init(&root->root_item_lock);
1144 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1145 #ifdef CONFIG_BTRFS_DEBUG
1146 INIT_LIST_HEAD(&root->leak_list);
1147 spin_lock(&fs_info->fs_roots_radix_lock);
1148 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1149 spin_unlock(&fs_info->fs_roots_radix_lock);
1150 #endif
1151 }
1152
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)1153 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1154 u64 objectid, gfp_t flags)
1155 {
1156 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1157 if (root)
1158 __setup_root(root, fs_info, objectid);
1159 return root;
1160 }
1161
1162 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1163 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1164 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1165 {
1166 struct btrfs_root *root;
1167
1168 if (!fs_info)
1169 return ERR_PTR(-EINVAL);
1170
1171 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1172 if (!root)
1173 return ERR_PTR(-ENOMEM);
1174
1175 /* We don't use the stripesize in selftest, set it as sectorsize */
1176 root->alloc_bytenr = 0;
1177
1178 return root;
1179 }
1180 #endif
1181
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)1182 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1183 u64 objectid)
1184 {
1185 struct btrfs_fs_info *fs_info = trans->fs_info;
1186 struct extent_buffer *leaf;
1187 struct btrfs_root *tree_root = fs_info->tree_root;
1188 struct btrfs_root *root;
1189 struct btrfs_key key;
1190 unsigned int nofs_flag;
1191 int ret = 0;
1192
1193 /*
1194 * We're holding a transaction handle, so use a NOFS memory allocation
1195 * context to avoid deadlock if reclaim happens.
1196 */
1197 nofs_flag = memalloc_nofs_save();
1198 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1199 memalloc_nofs_restore(nofs_flag);
1200 if (!root)
1201 return ERR_PTR(-ENOMEM);
1202
1203 root->root_key.objectid = objectid;
1204 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1205 root->root_key.offset = 0;
1206
1207 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1208 BTRFS_NESTING_NORMAL);
1209 if (IS_ERR(leaf)) {
1210 ret = PTR_ERR(leaf);
1211 leaf = NULL;
1212 goto fail_unlock;
1213 }
1214
1215 root->node = leaf;
1216 btrfs_mark_buffer_dirty(leaf);
1217
1218 root->commit_root = btrfs_root_node(root);
1219 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1220
1221 btrfs_set_root_flags(&root->root_item, 0);
1222 btrfs_set_root_limit(&root->root_item, 0);
1223 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1224 btrfs_set_root_generation(&root->root_item, trans->transid);
1225 btrfs_set_root_level(&root->root_item, 0);
1226 btrfs_set_root_refs(&root->root_item, 1);
1227 btrfs_set_root_used(&root->root_item, leaf->len);
1228 btrfs_set_root_last_snapshot(&root->root_item, 0);
1229 btrfs_set_root_dirid(&root->root_item, 0);
1230 if (is_fstree(objectid))
1231 generate_random_guid(root->root_item.uuid);
1232 else
1233 export_guid(root->root_item.uuid, &guid_null);
1234 btrfs_set_root_drop_level(&root->root_item, 0);
1235
1236 btrfs_tree_unlock(leaf);
1237
1238 key.objectid = objectid;
1239 key.type = BTRFS_ROOT_ITEM_KEY;
1240 key.offset = 0;
1241 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1242 if (ret)
1243 goto fail;
1244
1245 return root;
1246
1247 fail_unlock:
1248 if (leaf)
1249 btrfs_tree_unlock(leaf);
1250 fail:
1251 btrfs_put_root(root);
1252
1253 return ERR_PTR(ret);
1254 }
1255
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1256 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1257 struct btrfs_fs_info *fs_info)
1258 {
1259 struct btrfs_root *root;
1260
1261 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1262 if (!root)
1263 return ERR_PTR(-ENOMEM);
1264
1265 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1266 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1267 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1268
1269 return root;
1270 }
1271
btrfs_alloc_log_tree_node(struct btrfs_trans_handle * trans,struct btrfs_root * root)1272 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1273 struct btrfs_root *root)
1274 {
1275 struct extent_buffer *leaf;
1276
1277 /*
1278 * DON'T set SHAREABLE bit for log trees.
1279 *
1280 * Log trees are not exposed to user space thus can't be snapshotted,
1281 * and they go away before a real commit is actually done.
1282 *
1283 * They do store pointers to file data extents, and those reference
1284 * counts still get updated (along with back refs to the log tree).
1285 */
1286
1287 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1288 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1289 if (IS_ERR(leaf))
1290 return PTR_ERR(leaf);
1291
1292 root->node = leaf;
1293
1294 btrfs_mark_buffer_dirty(root->node);
1295 btrfs_tree_unlock(root->node);
1296
1297 return 0;
1298 }
1299
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1300 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1301 struct btrfs_fs_info *fs_info)
1302 {
1303 struct btrfs_root *log_root;
1304
1305 log_root = alloc_log_tree(trans, fs_info);
1306 if (IS_ERR(log_root))
1307 return PTR_ERR(log_root);
1308
1309 if (!btrfs_is_zoned(fs_info)) {
1310 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1311
1312 if (ret) {
1313 btrfs_put_root(log_root);
1314 return ret;
1315 }
1316 }
1317
1318 WARN_ON(fs_info->log_root_tree);
1319 fs_info->log_root_tree = log_root;
1320 return 0;
1321 }
1322
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1323 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1324 struct btrfs_root *root)
1325 {
1326 struct btrfs_fs_info *fs_info = root->fs_info;
1327 struct btrfs_root *log_root;
1328 struct btrfs_inode_item *inode_item;
1329 int ret;
1330
1331 log_root = alloc_log_tree(trans, fs_info);
1332 if (IS_ERR(log_root))
1333 return PTR_ERR(log_root);
1334
1335 ret = btrfs_alloc_log_tree_node(trans, log_root);
1336 if (ret) {
1337 btrfs_put_root(log_root);
1338 return ret;
1339 }
1340
1341 log_root->last_trans = trans->transid;
1342 log_root->root_key.offset = root->root_key.objectid;
1343
1344 inode_item = &log_root->root_item.inode;
1345 btrfs_set_stack_inode_generation(inode_item, 1);
1346 btrfs_set_stack_inode_size(inode_item, 3);
1347 btrfs_set_stack_inode_nlink(inode_item, 1);
1348 btrfs_set_stack_inode_nbytes(inode_item,
1349 fs_info->nodesize);
1350 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1351
1352 btrfs_set_root_node(&log_root->root_item, log_root->node);
1353
1354 WARN_ON(root->log_root);
1355 root->log_root = log_root;
1356 root->log_transid = 0;
1357 root->log_transid_committed = -1;
1358 root->last_log_commit = 0;
1359 return 0;
1360 }
1361
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,struct btrfs_key * key)1362 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1363 struct btrfs_path *path,
1364 struct btrfs_key *key)
1365 {
1366 struct btrfs_root *root;
1367 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1368 u64 generation;
1369 int ret;
1370 int level;
1371
1372 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1373 if (!root)
1374 return ERR_PTR(-ENOMEM);
1375
1376 ret = btrfs_find_root(tree_root, key, path,
1377 &root->root_item, &root->root_key);
1378 if (ret) {
1379 if (ret > 0)
1380 ret = -ENOENT;
1381 goto fail;
1382 }
1383
1384 generation = btrfs_root_generation(&root->root_item);
1385 level = btrfs_root_level(&root->root_item);
1386 root->node = read_tree_block(fs_info,
1387 btrfs_root_bytenr(&root->root_item),
1388 key->objectid, generation, level, NULL);
1389 if (IS_ERR(root->node)) {
1390 ret = PTR_ERR(root->node);
1391 root->node = NULL;
1392 goto fail;
1393 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1394 ret = -EIO;
1395 goto fail;
1396 }
1397 root->commit_root = btrfs_root_node(root);
1398 return root;
1399 fail:
1400 btrfs_put_root(root);
1401 return ERR_PTR(ret);
1402 }
1403
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1404 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1405 struct btrfs_key *key)
1406 {
1407 struct btrfs_root *root;
1408 struct btrfs_path *path;
1409
1410 path = btrfs_alloc_path();
1411 if (!path)
1412 return ERR_PTR(-ENOMEM);
1413 root = read_tree_root_path(tree_root, path, key);
1414 btrfs_free_path(path);
1415
1416 return root;
1417 }
1418
1419 /*
1420 * Initialize subvolume root in-memory structure
1421 *
1422 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1423 */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1424 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1425 {
1426 int ret;
1427 unsigned int nofs_flag;
1428
1429 /*
1430 * We might be called under a transaction (e.g. indirect backref
1431 * resolution) which could deadlock if it triggers memory reclaim
1432 */
1433 nofs_flag = memalloc_nofs_save();
1434 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1435 memalloc_nofs_restore(nofs_flag);
1436 if (ret)
1437 goto fail;
1438
1439 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1440 !btrfs_is_data_reloc_root(root) &&
1441 is_fstree(root->root_key.objectid)) {
1442 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1443 btrfs_check_and_init_root_item(&root->root_item);
1444 }
1445
1446 /*
1447 * Don't assign anonymous block device to roots that are not exposed to
1448 * userspace, the id pool is limited to 1M
1449 */
1450 if (is_fstree(root->root_key.objectid) &&
1451 btrfs_root_refs(&root->root_item) > 0) {
1452 if (!anon_dev) {
1453 ret = get_anon_bdev(&root->anon_dev);
1454 if (ret)
1455 goto fail;
1456 } else {
1457 root->anon_dev = anon_dev;
1458 }
1459 }
1460
1461 mutex_lock(&root->objectid_mutex);
1462 ret = btrfs_init_root_free_objectid(root);
1463 if (ret) {
1464 mutex_unlock(&root->objectid_mutex);
1465 goto fail;
1466 }
1467
1468 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1469
1470 mutex_unlock(&root->objectid_mutex);
1471
1472 return 0;
1473 fail:
1474 /* The caller is responsible to call btrfs_free_fs_root */
1475 return ret;
1476 }
1477
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1478 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1479 u64 root_id)
1480 {
1481 struct btrfs_root *root;
1482
1483 spin_lock(&fs_info->fs_roots_radix_lock);
1484 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1485 (unsigned long)root_id);
1486 if (root)
1487 root = btrfs_grab_root(root);
1488 spin_unlock(&fs_info->fs_roots_radix_lock);
1489 return root;
1490 }
1491
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1492 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1493 u64 objectid)
1494 {
1495 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1496 return btrfs_grab_root(fs_info->tree_root);
1497 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1498 return btrfs_grab_root(fs_info->extent_root);
1499 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1500 return btrfs_grab_root(fs_info->chunk_root);
1501 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1502 return btrfs_grab_root(fs_info->dev_root);
1503 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1504 return btrfs_grab_root(fs_info->csum_root);
1505 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1506 return btrfs_grab_root(fs_info->quota_root) ?
1507 fs_info->quota_root : ERR_PTR(-ENOENT);
1508 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1509 return btrfs_grab_root(fs_info->uuid_root) ?
1510 fs_info->uuid_root : ERR_PTR(-ENOENT);
1511 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1512 return btrfs_grab_root(fs_info->free_space_root) ?
1513 fs_info->free_space_root : ERR_PTR(-ENOENT);
1514 return NULL;
1515 }
1516
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1517 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1518 struct btrfs_root *root)
1519 {
1520 int ret;
1521
1522 ret = radix_tree_preload(GFP_NOFS);
1523 if (ret)
1524 return ret;
1525
1526 spin_lock(&fs_info->fs_roots_radix_lock);
1527 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1528 (unsigned long)root->root_key.objectid,
1529 root);
1530 if (ret == 0) {
1531 btrfs_grab_root(root);
1532 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1533 }
1534 spin_unlock(&fs_info->fs_roots_radix_lock);
1535 radix_tree_preload_end();
1536
1537 return ret;
1538 }
1539
btrfs_check_leaked_roots(struct btrfs_fs_info * fs_info)1540 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1541 {
1542 #ifdef CONFIG_BTRFS_DEBUG
1543 struct btrfs_root *root;
1544
1545 while (!list_empty(&fs_info->allocated_roots)) {
1546 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1547
1548 root = list_first_entry(&fs_info->allocated_roots,
1549 struct btrfs_root, leak_list);
1550 btrfs_err(fs_info, "leaked root %s refcount %d",
1551 btrfs_root_name(&root->root_key, buf),
1552 refcount_read(&root->refs));
1553 while (refcount_read(&root->refs) > 1)
1554 btrfs_put_root(root);
1555 btrfs_put_root(root);
1556 }
1557 #endif
1558 }
1559
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1560 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1561 {
1562 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1563 percpu_counter_destroy(&fs_info->delalloc_bytes);
1564 percpu_counter_destroy(&fs_info->ordered_bytes);
1565 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1566 btrfs_free_csum_hash(fs_info);
1567 btrfs_free_stripe_hash_table(fs_info);
1568 btrfs_free_ref_cache(fs_info);
1569 kfree(fs_info->balance_ctl);
1570 kfree(fs_info->delayed_root);
1571 btrfs_put_root(fs_info->extent_root);
1572 btrfs_put_root(fs_info->tree_root);
1573 btrfs_put_root(fs_info->chunk_root);
1574 btrfs_put_root(fs_info->dev_root);
1575 btrfs_put_root(fs_info->csum_root);
1576 btrfs_put_root(fs_info->quota_root);
1577 btrfs_put_root(fs_info->uuid_root);
1578 btrfs_put_root(fs_info->free_space_root);
1579 btrfs_put_root(fs_info->fs_root);
1580 btrfs_put_root(fs_info->data_reloc_root);
1581 btrfs_check_leaked_roots(fs_info);
1582 btrfs_extent_buffer_leak_debug_check(fs_info);
1583 kfree(fs_info->super_copy);
1584 kfree(fs_info->super_for_commit);
1585 kvfree(fs_info);
1586 }
1587
1588
1589 /*
1590 * Get an in-memory reference of a root structure.
1591 *
1592 * For essential trees like root/extent tree, we grab it from fs_info directly.
1593 * For subvolume trees, we check the cached filesystem roots first. If not
1594 * found, then read it from disk and add it to cached fs roots.
1595 *
1596 * Caller should release the root by calling btrfs_put_root() after the usage.
1597 *
1598 * NOTE: Reloc and log trees can't be read by this function as they share the
1599 * same root objectid.
1600 *
1601 * @objectid: root id
1602 * @anon_dev: preallocated anonymous block device number for new roots,
1603 * pass 0 for new allocation.
1604 * @check_ref: whether to check root item references, If true, return -ENOENT
1605 * for orphan roots
1606 */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev,bool check_ref)1607 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1608 u64 objectid, dev_t anon_dev,
1609 bool check_ref)
1610 {
1611 struct btrfs_root *root;
1612 struct btrfs_path *path;
1613 struct btrfs_key key;
1614 int ret;
1615
1616 root = btrfs_get_global_root(fs_info, objectid);
1617 if (root)
1618 return root;
1619 again:
1620 root = btrfs_lookup_fs_root(fs_info, objectid);
1621 if (root) {
1622 /*
1623 * Some other caller may have read out the newly inserted
1624 * subvolume already (for things like backref walk etc). Not
1625 * that common but still possible. In that case, we just need
1626 * to free the anon_dev.
1627 */
1628 if (unlikely(anon_dev)) {
1629 free_anon_bdev(anon_dev);
1630 anon_dev = 0;
1631 }
1632
1633 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1634 btrfs_put_root(root);
1635 return ERR_PTR(-ENOENT);
1636 }
1637 return root;
1638 }
1639
1640 key.objectid = objectid;
1641 key.type = BTRFS_ROOT_ITEM_KEY;
1642 key.offset = (u64)-1;
1643 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1644 if (IS_ERR(root))
1645 return root;
1646
1647 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1648 ret = -ENOENT;
1649 goto fail;
1650 }
1651
1652 ret = btrfs_init_fs_root(root, anon_dev);
1653 if (ret)
1654 goto fail;
1655
1656 path = btrfs_alloc_path();
1657 if (!path) {
1658 ret = -ENOMEM;
1659 goto fail;
1660 }
1661 key.objectid = BTRFS_ORPHAN_OBJECTID;
1662 key.type = BTRFS_ORPHAN_ITEM_KEY;
1663 key.offset = objectid;
1664
1665 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1666 btrfs_free_path(path);
1667 if (ret < 0)
1668 goto fail;
1669 if (ret == 0)
1670 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1671
1672 ret = btrfs_insert_fs_root(fs_info, root);
1673 if (ret) {
1674 if (ret == -EEXIST) {
1675 btrfs_put_root(root);
1676 goto again;
1677 }
1678 goto fail;
1679 }
1680 return root;
1681 fail:
1682 /*
1683 * If our caller provided us an anonymous device, then it's his
1684 * responsability to free it in case we fail. So we have to set our
1685 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1686 * and once again by our caller.
1687 */
1688 if (anon_dev)
1689 root->anon_dev = 0;
1690 btrfs_put_root(root);
1691 return ERR_PTR(ret);
1692 }
1693
1694 /*
1695 * Get in-memory reference of a root structure
1696 *
1697 * @objectid: tree objectid
1698 * @check_ref: if set, verify that the tree exists and the item has at least
1699 * one reference
1700 */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1701 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1702 u64 objectid, bool check_ref)
1703 {
1704 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1705 }
1706
1707 /*
1708 * Get in-memory reference of a root structure, created as new, optionally pass
1709 * the anonymous block device id
1710 *
1711 * @objectid: tree objectid
1712 * @anon_dev: if zero, allocate a new anonymous block device or use the
1713 * parameter value
1714 */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev)1715 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1716 u64 objectid, dev_t anon_dev)
1717 {
1718 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1719 }
1720
1721 /*
1722 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1723 * @fs_info: the fs_info
1724 * @objectid: the objectid we need to lookup
1725 *
1726 * This is exclusively used for backref walking, and exists specifically because
1727 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1728 * creation time, which means we may have to read the tree_root in order to look
1729 * up a fs root that is not in memory. If the root is not in memory we will
1730 * read the tree root commit root and look up the fs root from there. This is a
1731 * temporary root, it will not be inserted into the radix tree as it doesn't
1732 * have the most uptodate information, it'll simply be discarded once the
1733 * backref code is finished using the root.
1734 */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1735 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1736 struct btrfs_path *path,
1737 u64 objectid)
1738 {
1739 struct btrfs_root *root;
1740 struct btrfs_key key;
1741
1742 ASSERT(path->search_commit_root && path->skip_locking);
1743
1744 /*
1745 * This can return -ENOENT if we ask for a root that doesn't exist, but
1746 * since this is called via the backref walking code we won't be looking
1747 * up a root that doesn't exist, unless there's corruption. So if root
1748 * != NULL just return it.
1749 */
1750 root = btrfs_get_global_root(fs_info, objectid);
1751 if (root)
1752 return root;
1753
1754 root = btrfs_lookup_fs_root(fs_info, objectid);
1755 if (root)
1756 return root;
1757
1758 key.objectid = objectid;
1759 key.type = BTRFS_ROOT_ITEM_KEY;
1760 key.offset = (u64)-1;
1761 root = read_tree_root_path(fs_info->tree_root, path, &key);
1762 btrfs_release_path(path);
1763
1764 return root;
1765 }
1766
1767 /*
1768 * called by the kthread helper functions to finally call the bio end_io
1769 * functions. This is where read checksum verification actually happens
1770 */
end_workqueue_fn(struct btrfs_work * work)1771 static void end_workqueue_fn(struct btrfs_work *work)
1772 {
1773 struct bio *bio;
1774 struct btrfs_end_io_wq *end_io_wq;
1775
1776 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1777 bio = end_io_wq->bio;
1778
1779 bio->bi_status = end_io_wq->status;
1780 bio->bi_private = end_io_wq->private;
1781 bio->bi_end_io = end_io_wq->end_io;
1782 bio_endio(bio);
1783 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1784 }
1785
cleaner_kthread(void * arg)1786 static int cleaner_kthread(void *arg)
1787 {
1788 struct btrfs_root *root = arg;
1789 struct btrfs_fs_info *fs_info = root->fs_info;
1790 int again;
1791
1792 while (1) {
1793 again = 0;
1794
1795 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1796
1797 /* Make the cleaner go to sleep early. */
1798 if (btrfs_need_cleaner_sleep(fs_info))
1799 goto sleep;
1800
1801 /*
1802 * Do not do anything if we might cause open_ctree() to block
1803 * before we have finished mounting the filesystem.
1804 */
1805 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1806 goto sleep;
1807
1808 if (!mutex_trylock(&fs_info->cleaner_mutex))
1809 goto sleep;
1810
1811 /*
1812 * Avoid the problem that we change the status of the fs
1813 * during the above check and trylock.
1814 */
1815 if (btrfs_need_cleaner_sleep(fs_info)) {
1816 mutex_unlock(&fs_info->cleaner_mutex);
1817 goto sleep;
1818 }
1819
1820 btrfs_run_delayed_iputs(fs_info);
1821
1822 again = btrfs_clean_one_deleted_snapshot(root);
1823 mutex_unlock(&fs_info->cleaner_mutex);
1824
1825 /*
1826 * The defragger has dealt with the R/O remount and umount,
1827 * needn't do anything special here.
1828 */
1829 btrfs_run_defrag_inodes(fs_info);
1830
1831 /*
1832 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1833 * with relocation (btrfs_relocate_chunk) and relocation
1834 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1835 * after acquiring fs_info->reclaim_bgs_lock. So we
1836 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1837 * unused block groups.
1838 */
1839 btrfs_delete_unused_bgs(fs_info);
1840
1841 /*
1842 * Reclaim block groups in the reclaim_bgs list after we deleted
1843 * all unused block_groups. This possibly gives us some more free
1844 * space.
1845 */
1846 btrfs_reclaim_bgs(fs_info);
1847 sleep:
1848 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1849 if (kthread_should_park())
1850 kthread_parkme();
1851 if (kthread_should_stop())
1852 return 0;
1853 if (!again) {
1854 set_current_state(TASK_INTERRUPTIBLE);
1855 schedule();
1856 __set_current_state(TASK_RUNNING);
1857 }
1858 }
1859 }
1860
transaction_kthread(void * arg)1861 static int transaction_kthread(void *arg)
1862 {
1863 struct btrfs_root *root = arg;
1864 struct btrfs_fs_info *fs_info = root->fs_info;
1865 struct btrfs_trans_handle *trans;
1866 struct btrfs_transaction *cur;
1867 u64 transid;
1868 time64_t delta;
1869 unsigned long delay;
1870 bool cannot_commit;
1871
1872 do {
1873 cannot_commit = false;
1874 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1875 mutex_lock(&fs_info->transaction_kthread_mutex);
1876
1877 spin_lock(&fs_info->trans_lock);
1878 cur = fs_info->running_transaction;
1879 if (!cur) {
1880 spin_unlock(&fs_info->trans_lock);
1881 goto sleep;
1882 }
1883
1884 delta = ktime_get_seconds() - cur->start_time;
1885 if (cur->state < TRANS_STATE_COMMIT_START &&
1886 delta < fs_info->commit_interval) {
1887 spin_unlock(&fs_info->trans_lock);
1888 delay -= msecs_to_jiffies((delta - 1) * 1000);
1889 delay = min(delay,
1890 msecs_to_jiffies(fs_info->commit_interval * 1000));
1891 goto sleep;
1892 }
1893 transid = cur->transid;
1894 spin_unlock(&fs_info->trans_lock);
1895
1896 /* If the file system is aborted, this will always fail. */
1897 trans = btrfs_attach_transaction(root);
1898 if (IS_ERR(trans)) {
1899 if (PTR_ERR(trans) != -ENOENT)
1900 cannot_commit = true;
1901 goto sleep;
1902 }
1903 if (transid == trans->transid) {
1904 btrfs_commit_transaction(trans);
1905 } else {
1906 btrfs_end_transaction(trans);
1907 }
1908 sleep:
1909 wake_up_process(fs_info->cleaner_kthread);
1910 mutex_unlock(&fs_info->transaction_kthread_mutex);
1911
1912 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1913 &fs_info->fs_state)))
1914 btrfs_cleanup_transaction(fs_info);
1915 if (!kthread_should_stop() &&
1916 (!btrfs_transaction_blocked(fs_info) ||
1917 cannot_commit))
1918 schedule_timeout_interruptible(delay);
1919 } while (!kthread_should_stop());
1920 return 0;
1921 }
1922
1923 /*
1924 * This will find the highest generation in the array of root backups. The
1925 * index of the highest array is returned, or -EINVAL if we can't find
1926 * anything.
1927 *
1928 * We check to make sure the array is valid by comparing the
1929 * generation of the latest root in the array with the generation
1930 * in the super block. If they don't match we pitch it.
1931 */
find_newest_super_backup(struct btrfs_fs_info * info)1932 static int find_newest_super_backup(struct btrfs_fs_info *info)
1933 {
1934 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1935 u64 cur;
1936 struct btrfs_root_backup *root_backup;
1937 int i;
1938
1939 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1940 root_backup = info->super_copy->super_roots + i;
1941 cur = btrfs_backup_tree_root_gen(root_backup);
1942 if (cur == newest_gen)
1943 return i;
1944 }
1945
1946 return -EINVAL;
1947 }
1948
1949 /*
1950 * copy all the root pointers into the super backup array.
1951 * this will bump the backup pointer by one when it is
1952 * done
1953 */
backup_super_roots(struct btrfs_fs_info * info)1954 static void backup_super_roots(struct btrfs_fs_info *info)
1955 {
1956 const int next_backup = info->backup_root_index;
1957 struct btrfs_root_backup *root_backup;
1958
1959 root_backup = info->super_for_commit->super_roots + next_backup;
1960
1961 /*
1962 * make sure all of our padding and empty slots get zero filled
1963 * regardless of which ones we use today
1964 */
1965 memset(root_backup, 0, sizeof(*root_backup));
1966
1967 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1968
1969 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1970 btrfs_set_backup_tree_root_gen(root_backup,
1971 btrfs_header_generation(info->tree_root->node));
1972
1973 btrfs_set_backup_tree_root_level(root_backup,
1974 btrfs_header_level(info->tree_root->node));
1975
1976 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1977 btrfs_set_backup_chunk_root_gen(root_backup,
1978 btrfs_header_generation(info->chunk_root->node));
1979 btrfs_set_backup_chunk_root_level(root_backup,
1980 btrfs_header_level(info->chunk_root->node));
1981
1982 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1983 btrfs_set_backup_extent_root_gen(root_backup,
1984 btrfs_header_generation(info->extent_root->node));
1985 btrfs_set_backup_extent_root_level(root_backup,
1986 btrfs_header_level(info->extent_root->node));
1987
1988 /*
1989 * we might commit during log recovery, which happens before we set
1990 * the fs_root. Make sure it is valid before we fill it in.
1991 */
1992 if (info->fs_root && info->fs_root->node) {
1993 btrfs_set_backup_fs_root(root_backup,
1994 info->fs_root->node->start);
1995 btrfs_set_backup_fs_root_gen(root_backup,
1996 btrfs_header_generation(info->fs_root->node));
1997 btrfs_set_backup_fs_root_level(root_backup,
1998 btrfs_header_level(info->fs_root->node));
1999 }
2000
2001 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2002 btrfs_set_backup_dev_root_gen(root_backup,
2003 btrfs_header_generation(info->dev_root->node));
2004 btrfs_set_backup_dev_root_level(root_backup,
2005 btrfs_header_level(info->dev_root->node));
2006
2007 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2008 btrfs_set_backup_csum_root_gen(root_backup,
2009 btrfs_header_generation(info->csum_root->node));
2010 btrfs_set_backup_csum_root_level(root_backup,
2011 btrfs_header_level(info->csum_root->node));
2012
2013 btrfs_set_backup_total_bytes(root_backup,
2014 btrfs_super_total_bytes(info->super_copy));
2015 btrfs_set_backup_bytes_used(root_backup,
2016 btrfs_super_bytes_used(info->super_copy));
2017 btrfs_set_backup_num_devices(root_backup,
2018 btrfs_super_num_devices(info->super_copy));
2019
2020 /*
2021 * if we don't copy this out to the super_copy, it won't get remembered
2022 * for the next commit
2023 */
2024 memcpy(&info->super_copy->super_roots,
2025 &info->super_for_commit->super_roots,
2026 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2027 }
2028
2029 /*
2030 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2031 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2032 *
2033 * fs_info - filesystem whose backup roots need to be read
2034 * priority - priority of backup root required
2035 *
2036 * Returns backup root index on success and -EINVAL otherwise.
2037 */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)2038 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2039 {
2040 int backup_index = find_newest_super_backup(fs_info);
2041 struct btrfs_super_block *super = fs_info->super_copy;
2042 struct btrfs_root_backup *root_backup;
2043
2044 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2045 if (priority == 0)
2046 return backup_index;
2047
2048 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2049 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2050 } else {
2051 return -EINVAL;
2052 }
2053
2054 root_backup = super->super_roots + backup_index;
2055
2056 btrfs_set_super_generation(super,
2057 btrfs_backup_tree_root_gen(root_backup));
2058 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2059 btrfs_set_super_root_level(super,
2060 btrfs_backup_tree_root_level(root_backup));
2061 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2062
2063 /*
2064 * Fixme: the total bytes and num_devices need to match or we should
2065 * need a fsck
2066 */
2067 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2068 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2069
2070 return backup_index;
2071 }
2072
2073 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)2074 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2075 {
2076 btrfs_destroy_workqueue(fs_info->fixup_workers);
2077 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2078 btrfs_destroy_workqueue(fs_info->workers);
2079 btrfs_destroy_workqueue(fs_info->endio_workers);
2080 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2081 btrfs_destroy_workqueue(fs_info->rmw_workers);
2082 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2083 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2084 btrfs_destroy_workqueue(fs_info->delayed_workers);
2085 btrfs_destroy_workqueue(fs_info->caching_workers);
2086 btrfs_destroy_workqueue(fs_info->readahead_workers);
2087 btrfs_destroy_workqueue(fs_info->flush_workers);
2088 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2089 if (fs_info->discard_ctl.discard_workers)
2090 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2091 /*
2092 * Now that all other work queues are destroyed, we can safely destroy
2093 * the queues used for metadata I/O, since tasks from those other work
2094 * queues can do metadata I/O operations.
2095 */
2096 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2097 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2098 }
2099
free_root_extent_buffers(struct btrfs_root * root)2100 static void free_root_extent_buffers(struct btrfs_root *root)
2101 {
2102 if (root) {
2103 free_extent_buffer(root->node);
2104 free_extent_buffer(root->commit_root);
2105 root->node = NULL;
2106 root->commit_root = NULL;
2107 }
2108 }
2109
2110 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)2111 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2112 {
2113 free_root_extent_buffers(info->tree_root);
2114
2115 free_root_extent_buffers(info->dev_root);
2116 free_root_extent_buffers(info->extent_root);
2117 free_root_extent_buffers(info->csum_root);
2118 free_root_extent_buffers(info->quota_root);
2119 free_root_extent_buffers(info->uuid_root);
2120 free_root_extent_buffers(info->fs_root);
2121 free_root_extent_buffers(info->data_reloc_root);
2122 if (free_chunk_root)
2123 free_root_extent_buffers(info->chunk_root);
2124 free_root_extent_buffers(info->free_space_root);
2125 }
2126
btrfs_put_root(struct btrfs_root * root)2127 void btrfs_put_root(struct btrfs_root *root)
2128 {
2129 if (!root)
2130 return;
2131
2132 if (refcount_dec_and_test(&root->refs)) {
2133 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2134 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2135 if (root->anon_dev)
2136 free_anon_bdev(root->anon_dev);
2137 btrfs_drew_lock_destroy(&root->snapshot_lock);
2138 free_root_extent_buffers(root);
2139 #ifdef CONFIG_BTRFS_DEBUG
2140 spin_lock(&root->fs_info->fs_roots_radix_lock);
2141 list_del_init(&root->leak_list);
2142 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2143 #endif
2144 kfree(root);
2145 }
2146 }
2147
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2148 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2149 {
2150 int ret;
2151 struct btrfs_root *gang[8];
2152 int i;
2153
2154 while (!list_empty(&fs_info->dead_roots)) {
2155 gang[0] = list_entry(fs_info->dead_roots.next,
2156 struct btrfs_root, root_list);
2157 list_del(&gang[0]->root_list);
2158
2159 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2160 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2161 btrfs_put_root(gang[0]);
2162 }
2163
2164 while (1) {
2165 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2166 (void **)gang, 0,
2167 ARRAY_SIZE(gang));
2168 if (!ret)
2169 break;
2170 for (i = 0; i < ret; i++)
2171 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2172 }
2173 }
2174
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2175 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2176 {
2177 mutex_init(&fs_info->scrub_lock);
2178 atomic_set(&fs_info->scrubs_running, 0);
2179 atomic_set(&fs_info->scrub_pause_req, 0);
2180 atomic_set(&fs_info->scrubs_paused, 0);
2181 atomic_set(&fs_info->scrub_cancel_req, 0);
2182 init_waitqueue_head(&fs_info->scrub_pause_wait);
2183 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2184 }
2185
btrfs_init_balance(struct btrfs_fs_info * fs_info)2186 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2187 {
2188 spin_lock_init(&fs_info->balance_lock);
2189 mutex_init(&fs_info->balance_mutex);
2190 atomic_set(&fs_info->balance_pause_req, 0);
2191 atomic_set(&fs_info->balance_cancel_req, 0);
2192 fs_info->balance_ctl = NULL;
2193 init_waitqueue_head(&fs_info->balance_wait_q);
2194 atomic_set(&fs_info->reloc_cancel_req, 0);
2195 }
2196
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2197 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2198 {
2199 struct inode *inode = fs_info->btree_inode;
2200
2201 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2202 set_nlink(inode, 1);
2203 /*
2204 * we set the i_size on the btree inode to the max possible int.
2205 * the real end of the address space is determined by all of
2206 * the devices in the system
2207 */
2208 inode->i_size = OFFSET_MAX;
2209 inode->i_mapping->a_ops = &btree_aops;
2210
2211 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2212 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2213 IO_TREE_BTREE_INODE_IO, inode);
2214 BTRFS_I(inode)->io_tree.track_uptodate = false;
2215 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2216
2217 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2218 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2219 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2220 btrfs_insert_inode_hash(inode);
2221 }
2222
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2223 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2224 {
2225 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2226 init_rwsem(&fs_info->dev_replace.rwsem);
2227 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2228 }
2229
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2230 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2231 {
2232 spin_lock_init(&fs_info->qgroup_lock);
2233 mutex_init(&fs_info->qgroup_ioctl_lock);
2234 fs_info->qgroup_tree = RB_ROOT;
2235 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2236 fs_info->qgroup_seq = 1;
2237 fs_info->qgroup_ulist = NULL;
2238 fs_info->qgroup_rescan_running = false;
2239 mutex_init(&fs_info->qgroup_rescan_lock);
2240 }
2241
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2242 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2243 struct btrfs_fs_devices *fs_devices)
2244 {
2245 u32 max_active = fs_info->thread_pool_size;
2246 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2247
2248 fs_info->workers =
2249 btrfs_alloc_workqueue(fs_info, "worker",
2250 flags | WQ_HIGHPRI, max_active, 16);
2251
2252 fs_info->delalloc_workers =
2253 btrfs_alloc_workqueue(fs_info, "delalloc",
2254 flags, max_active, 2);
2255
2256 fs_info->flush_workers =
2257 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2258 flags, max_active, 0);
2259
2260 fs_info->caching_workers =
2261 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2262
2263 fs_info->fixup_workers =
2264 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2265
2266 /*
2267 * endios are largely parallel and should have a very
2268 * low idle thresh
2269 */
2270 fs_info->endio_workers =
2271 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2272 fs_info->endio_meta_workers =
2273 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2274 max_active, 4);
2275 fs_info->endio_meta_write_workers =
2276 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2277 max_active, 2);
2278 fs_info->endio_raid56_workers =
2279 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2280 max_active, 4);
2281 fs_info->rmw_workers =
2282 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2283 fs_info->endio_write_workers =
2284 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2285 max_active, 2);
2286 fs_info->endio_freespace_worker =
2287 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2288 max_active, 0);
2289 fs_info->delayed_workers =
2290 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2291 max_active, 0);
2292 fs_info->readahead_workers =
2293 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2294 max_active, 2);
2295 fs_info->qgroup_rescan_workers =
2296 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2297 fs_info->discard_ctl.discard_workers =
2298 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2299
2300 if (!(fs_info->workers && fs_info->delalloc_workers &&
2301 fs_info->flush_workers &&
2302 fs_info->endio_workers && fs_info->endio_meta_workers &&
2303 fs_info->endio_meta_write_workers &&
2304 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2305 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2306 fs_info->caching_workers && fs_info->readahead_workers &&
2307 fs_info->fixup_workers && fs_info->delayed_workers &&
2308 fs_info->qgroup_rescan_workers &&
2309 fs_info->discard_ctl.discard_workers)) {
2310 return -ENOMEM;
2311 }
2312
2313 return 0;
2314 }
2315
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2316 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2317 {
2318 struct crypto_shash *csum_shash;
2319 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2320
2321 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2322
2323 if (IS_ERR(csum_shash)) {
2324 btrfs_err(fs_info, "error allocating %s hash for checksum",
2325 csum_driver);
2326 return PTR_ERR(csum_shash);
2327 }
2328
2329 fs_info->csum_shash = csum_shash;
2330
2331 /*
2332 * Check if the checksum implementation is a fast accelerated one.
2333 * As-is this is a bit of a hack and should be replaced once the csum
2334 * implementations provide that information themselves.
2335 */
2336 switch (csum_type) {
2337 case BTRFS_CSUM_TYPE_CRC32:
2338 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2339 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2340 break;
2341 case BTRFS_CSUM_TYPE_XXHASH:
2342 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2343 break;
2344 default:
2345 break;
2346 }
2347
2348 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2349 btrfs_super_csum_name(csum_type),
2350 crypto_shash_driver_name(csum_shash));
2351 return 0;
2352 }
2353
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2354 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2355 struct btrfs_fs_devices *fs_devices)
2356 {
2357 int ret;
2358 struct btrfs_root *log_tree_root;
2359 struct btrfs_super_block *disk_super = fs_info->super_copy;
2360 u64 bytenr = btrfs_super_log_root(disk_super);
2361 int level = btrfs_super_log_root_level(disk_super);
2362
2363 if (fs_devices->rw_devices == 0) {
2364 btrfs_warn(fs_info, "log replay required on RO media");
2365 return -EIO;
2366 }
2367
2368 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2369 GFP_KERNEL);
2370 if (!log_tree_root)
2371 return -ENOMEM;
2372
2373 log_tree_root->node = read_tree_block(fs_info, bytenr,
2374 BTRFS_TREE_LOG_OBJECTID,
2375 fs_info->generation + 1, level,
2376 NULL);
2377 if (IS_ERR(log_tree_root->node)) {
2378 btrfs_warn(fs_info, "failed to read log tree");
2379 ret = PTR_ERR(log_tree_root->node);
2380 log_tree_root->node = NULL;
2381 btrfs_put_root(log_tree_root);
2382 return ret;
2383 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2384 btrfs_err(fs_info, "failed to read log tree");
2385 btrfs_put_root(log_tree_root);
2386 return -EIO;
2387 }
2388 /* returns with log_tree_root freed on success */
2389 ret = btrfs_recover_log_trees(log_tree_root);
2390 if (ret) {
2391 btrfs_handle_fs_error(fs_info, ret,
2392 "Failed to recover log tree");
2393 btrfs_put_root(log_tree_root);
2394 return ret;
2395 }
2396
2397 if (sb_rdonly(fs_info->sb)) {
2398 ret = btrfs_commit_super(fs_info);
2399 if (ret)
2400 return ret;
2401 }
2402
2403 return 0;
2404 }
2405
btrfs_read_roots(struct btrfs_fs_info * fs_info)2406 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2407 {
2408 struct btrfs_root *tree_root = fs_info->tree_root;
2409 struct btrfs_root *root;
2410 struct btrfs_key location;
2411 int ret;
2412
2413 BUG_ON(!fs_info->tree_root);
2414
2415 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2416 location.type = BTRFS_ROOT_ITEM_KEY;
2417 location.offset = 0;
2418
2419 root = btrfs_read_tree_root(tree_root, &location);
2420 if (IS_ERR(root)) {
2421 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2422 ret = PTR_ERR(root);
2423 goto out;
2424 }
2425 } else {
2426 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2427 fs_info->extent_root = root;
2428 }
2429
2430 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2431 root = btrfs_read_tree_root(tree_root, &location);
2432 if (IS_ERR(root)) {
2433 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2434 ret = PTR_ERR(root);
2435 goto out;
2436 }
2437 } else {
2438 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2439 fs_info->dev_root = root;
2440 }
2441 /* Initialize fs_info for all devices in any case */
2442 ret = btrfs_init_devices_late(fs_info);
2443 if (ret)
2444 goto out;
2445
2446 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2447 if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2448 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2449 root = btrfs_read_tree_root(tree_root, &location);
2450 if (IS_ERR(root)) {
2451 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2452 ret = PTR_ERR(root);
2453 goto out;
2454 }
2455 } else {
2456 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2457 fs_info->csum_root = root;
2458 }
2459 }
2460
2461 /*
2462 * This tree can share blocks with some other fs tree during relocation
2463 * and we need a proper setup by btrfs_get_fs_root
2464 */
2465 root = btrfs_get_fs_root(tree_root->fs_info,
2466 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2467 if (IS_ERR(root)) {
2468 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2469 ret = PTR_ERR(root);
2470 goto out;
2471 }
2472 } else {
2473 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2474 fs_info->data_reloc_root = root;
2475 }
2476
2477 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2478 root = btrfs_read_tree_root(tree_root, &location);
2479 if (!IS_ERR(root)) {
2480 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2481 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2482 fs_info->quota_root = root;
2483 }
2484
2485 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2486 root = btrfs_read_tree_root(tree_root, &location);
2487 if (IS_ERR(root)) {
2488 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2489 ret = PTR_ERR(root);
2490 if (ret != -ENOENT)
2491 goto out;
2492 }
2493 } else {
2494 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2495 fs_info->uuid_root = root;
2496 }
2497
2498 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2499 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2500 root = btrfs_read_tree_root(tree_root, &location);
2501 if (IS_ERR(root)) {
2502 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2503 ret = PTR_ERR(root);
2504 goto out;
2505 }
2506 } else {
2507 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2508 fs_info->free_space_root = root;
2509 }
2510 }
2511
2512 return 0;
2513 out:
2514 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2515 location.objectid, ret);
2516 return ret;
2517 }
2518
2519 /*
2520 * Real super block validation
2521 * NOTE: super csum type and incompat features will not be checked here.
2522 *
2523 * @sb: super block to check
2524 * @mirror_num: the super block number to check its bytenr:
2525 * 0 the primary (1st) sb
2526 * 1, 2 2nd and 3rd backup copy
2527 * -1 skip bytenr check
2528 */
btrfs_validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2529 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2530 struct btrfs_super_block *sb, int mirror_num)
2531 {
2532 u64 nodesize = btrfs_super_nodesize(sb);
2533 u64 sectorsize = btrfs_super_sectorsize(sb);
2534 int ret = 0;
2535
2536 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2537 btrfs_err(fs_info, "no valid FS found");
2538 ret = -EINVAL;
2539 }
2540 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2541 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2542 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2543 ret = -EINVAL;
2544 }
2545 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2546 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2547 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2548 ret = -EINVAL;
2549 }
2550 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2551 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2552 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2553 ret = -EINVAL;
2554 }
2555 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2556 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2557 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2558 ret = -EINVAL;
2559 }
2560
2561 /*
2562 * Check sectorsize and nodesize first, other check will need it.
2563 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2564 */
2565 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2566 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2567 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2568 ret = -EINVAL;
2569 }
2570
2571 /*
2572 * For 4K page size, we only support 4K sector size.
2573 * For 64K page size, we support read-write for 64K sector size, and
2574 * read-only for 4K sector size.
2575 */
2576 if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2577 (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2578 sectorsize != SZ_64K))) {
2579 btrfs_err(fs_info,
2580 "sectorsize %llu not yet supported for page size %lu",
2581 sectorsize, PAGE_SIZE);
2582 ret = -EINVAL;
2583 }
2584
2585 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2586 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2587 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2588 ret = -EINVAL;
2589 }
2590 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2591 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2592 le32_to_cpu(sb->__unused_leafsize), nodesize);
2593 ret = -EINVAL;
2594 }
2595
2596 /* Root alignment check */
2597 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2598 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2599 btrfs_super_root(sb));
2600 ret = -EINVAL;
2601 }
2602 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2603 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2604 btrfs_super_chunk_root(sb));
2605 ret = -EINVAL;
2606 }
2607 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2608 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2609 btrfs_super_log_root(sb));
2610 ret = -EINVAL;
2611 }
2612
2613 if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2614 btrfs_err(fs_info,
2615 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2616 sb->fsid, fs_info->fs_devices->fsid);
2617 ret = -EINVAL;
2618 }
2619
2620 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2621 BTRFS_FSID_SIZE) != 0) {
2622 btrfs_err(fs_info,
2623 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2624 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2625 ret = -EINVAL;
2626 }
2627
2628 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2629 BTRFS_FSID_SIZE) != 0) {
2630 btrfs_err(fs_info,
2631 "dev_item UUID does not match metadata fsid: %pU != %pU",
2632 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2633 ret = -EINVAL;
2634 }
2635
2636 /*
2637 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2638 * done later
2639 */
2640 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2641 btrfs_err(fs_info, "bytes_used is too small %llu",
2642 btrfs_super_bytes_used(sb));
2643 ret = -EINVAL;
2644 }
2645 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2646 btrfs_err(fs_info, "invalid stripesize %u",
2647 btrfs_super_stripesize(sb));
2648 ret = -EINVAL;
2649 }
2650 if (btrfs_super_num_devices(sb) > (1UL << 31))
2651 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2652 btrfs_super_num_devices(sb));
2653 if (btrfs_super_num_devices(sb) == 0) {
2654 btrfs_err(fs_info, "number of devices is 0");
2655 ret = -EINVAL;
2656 }
2657
2658 if (mirror_num >= 0 &&
2659 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2660 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2661 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2662 ret = -EINVAL;
2663 }
2664
2665 /*
2666 * Obvious sys_chunk_array corruptions, it must hold at least one key
2667 * and one chunk
2668 */
2669 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2670 btrfs_err(fs_info, "system chunk array too big %u > %u",
2671 btrfs_super_sys_array_size(sb),
2672 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2673 ret = -EINVAL;
2674 }
2675 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2676 + sizeof(struct btrfs_chunk)) {
2677 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2678 btrfs_super_sys_array_size(sb),
2679 sizeof(struct btrfs_disk_key)
2680 + sizeof(struct btrfs_chunk));
2681 ret = -EINVAL;
2682 }
2683
2684 /*
2685 * The generation is a global counter, we'll trust it more than the others
2686 * but it's still possible that it's the one that's wrong.
2687 */
2688 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2689 btrfs_warn(fs_info,
2690 "suspicious: generation < chunk_root_generation: %llu < %llu",
2691 btrfs_super_generation(sb),
2692 btrfs_super_chunk_root_generation(sb));
2693 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2694 && btrfs_super_cache_generation(sb) != (u64)-1)
2695 btrfs_warn(fs_info,
2696 "suspicious: generation < cache_generation: %llu < %llu",
2697 btrfs_super_generation(sb),
2698 btrfs_super_cache_generation(sb));
2699
2700 return ret;
2701 }
2702
2703 /*
2704 * Validation of super block at mount time.
2705 * Some checks already done early at mount time, like csum type and incompat
2706 * flags will be skipped.
2707 */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2708 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2709 {
2710 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2711 }
2712
2713 /*
2714 * Validation of super block at write time.
2715 * Some checks like bytenr check will be skipped as their values will be
2716 * overwritten soon.
2717 * Extra checks like csum type and incompat flags will be done here.
2718 */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2719 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2720 struct btrfs_super_block *sb)
2721 {
2722 int ret;
2723
2724 ret = btrfs_validate_super(fs_info, sb, -1);
2725 if (ret < 0)
2726 goto out;
2727 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2728 ret = -EUCLEAN;
2729 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2730 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2731 goto out;
2732 }
2733 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2734 ret = -EUCLEAN;
2735 btrfs_err(fs_info,
2736 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2737 btrfs_super_incompat_flags(sb),
2738 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2739 goto out;
2740 }
2741 out:
2742 if (ret < 0)
2743 btrfs_err(fs_info,
2744 "super block corruption detected before writing it to disk");
2745 return ret;
2746 }
2747
init_tree_roots(struct btrfs_fs_info * fs_info)2748 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2749 {
2750 int backup_index = find_newest_super_backup(fs_info);
2751 struct btrfs_super_block *sb = fs_info->super_copy;
2752 struct btrfs_root *tree_root = fs_info->tree_root;
2753 bool handle_error = false;
2754 int ret = 0;
2755 int i;
2756
2757 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2758 u64 generation;
2759 int level;
2760
2761 if (handle_error) {
2762 if (!IS_ERR(tree_root->node))
2763 free_extent_buffer(tree_root->node);
2764 tree_root->node = NULL;
2765
2766 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2767 break;
2768
2769 free_root_pointers(fs_info, 0);
2770
2771 /*
2772 * Don't use the log in recovery mode, it won't be
2773 * valid
2774 */
2775 btrfs_set_super_log_root(sb, 0);
2776
2777 /* We can't trust the free space cache either */
2778 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2779
2780 ret = read_backup_root(fs_info, i);
2781 backup_index = ret;
2782 if (ret < 0)
2783 return ret;
2784 }
2785 generation = btrfs_super_generation(sb);
2786 level = btrfs_super_root_level(sb);
2787 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2788 BTRFS_ROOT_TREE_OBJECTID,
2789 generation, level, NULL);
2790 if (IS_ERR(tree_root->node)) {
2791 handle_error = true;
2792 ret = PTR_ERR(tree_root->node);
2793 tree_root->node = NULL;
2794 btrfs_warn(fs_info, "couldn't read tree root");
2795 continue;
2796
2797 } else if (!extent_buffer_uptodate(tree_root->node)) {
2798 handle_error = true;
2799 ret = -EIO;
2800 btrfs_warn(fs_info, "error while reading tree root");
2801 continue;
2802 }
2803
2804 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2805 tree_root->commit_root = btrfs_root_node(tree_root);
2806 btrfs_set_root_refs(&tree_root->root_item, 1);
2807
2808 /*
2809 * No need to hold btrfs_root::objectid_mutex since the fs
2810 * hasn't been fully initialised and we are the only user
2811 */
2812 ret = btrfs_init_root_free_objectid(tree_root);
2813 if (ret < 0) {
2814 handle_error = true;
2815 continue;
2816 }
2817
2818 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2819
2820 ret = btrfs_read_roots(fs_info);
2821 if (ret < 0) {
2822 handle_error = true;
2823 continue;
2824 }
2825
2826 /* All successful */
2827 fs_info->generation = generation;
2828 fs_info->last_trans_committed = generation;
2829 fs_info->last_reloc_trans = 0;
2830
2831 /* Always begin writing backup roots after the one being used */
2832 if (backup_index < 0) {
2833 fs_info->backup_root_index = 0;
2834 } else {
2835 fs_info->backup_root_index = backup_index + 1;
2836 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2837 }
2838 break;
2839 }
2840
2841 return ret;
2842 }
2843
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2844 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2845 {
2846 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2847 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2848 INIT_LIST_HEAD(&fs_info->trans_list);
2849 INIT_LIST_HEAD(&fs_info->dead_roots);
2850 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2851 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2852 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2853 spin_lock_init(&fs_info->delalloc_root_lock);
2854 spin_lock_init(&fs_info->trans_lock);
2855 spin_lock_init(&fs_info->fs_roots_radix_lock);
2856 spin_lock_init(&fs_info->delayed_iput_lock);
2857 spin_lock_init(&fs_info->defrag_inodes_lock);
2858 spin_lock_init(&fs_info->super_lock);
2859 spin_lock_init(&fs_info->buffer_lock);
2860 spin_lock_init(&fs_info->unused_bgs_lock);
2861 spin_lock_init(&fs_info->treelog_bg_lock);
2862 spin_lock_init(&fs_info->relocation_bg_lock);
2863 rwlock_init(&fs_info->tree_mod_log_lock);
2864 mutex_init(&fs_info->unused_bg_unpin_mutex);
2865 mutex_init(&fs_info->reclaim_bgs_lock);
2866 mutex_init(&fs_info->reloc_mutex);
2867 mutex_init(&fs_info->delalloc_root_mutex);
2868 mutex_init(&fs_info->zoned_meta_io_lock);
2869 mutex_init(&fs_info->zoned_data_reloc_io_lock);
2870 seqlock_init(&fs_info->profiles_lock);
2871
2872 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2873 INIT_LIST_HEAD(&fs_info->space_info);
2874 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2875 INIT_LIST_HEAD(&fs_info->unused_bgs);
2876 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2877 #ifdef CONFIG_BTRFS_DEBUG
2878 INIT_LIST_HEAD(&fs_info->allocated_roots);
2879 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2880 spin_lock_init(&fs_info->eb_leak_lock);
2881 #endif
2882 extent_map_tree_init(&fs_info->mapping_tree);
2883 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2884 BTRFS_BLOCK_RSV_GLOBAL);
2885 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2886 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2887 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2888 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2889 BTRFS_BLOCK_RSV_DELOPS);
2890 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2891 BTRFS_BLOCK_RSV_DELREFS);
2892
2893 atomic_set(&fs_info->async_delalloc_pages, 0);
2894 atomic_set(&fs_info->defrag_running, 0);
2895 atomic_set(&fs_info->reada_works_cnt, 0);
2896 atomic_set(&fs_info->nr_delayed_iputs, 0);
2897 atomic64_set(&fs_info->tree_mod_seq, 0);
2898 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2899 fs_info->metadata_ratio = 0;
2900 fs_info->defrag_inodes = RB_ROOT;
2901 atomic64_set(&fs_info->free_chunk_space, 0);
2902 fs_info->tree_mod_log = RB_ROOT;
2903 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2904 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2905 /* readahead state */
2906 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2907 spin_lock_init(&fs_info->reada_lock);
2908 btrfs_init_ref_verify(fs_info);
2909
2910 fs_info->thread_pool_size = min_t(unsigned long,
2911 num_online_cpus() + 2, 8);
2912
2913 INIT_LIST_HEAD(&fs_info->ordered_roots);
2914 spin_lock_init(&fs_info->ordered_root_lock);
2915
2916 btrfs_init_scrub(fs_info);
2917 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2918 fs_info->check_integrity_print_mask = 0;
2919 #endif
2920 btrfs_init_balance(fs_info);
2921 btrfs_init_async_reclaim_work(fs_info);
2922
2923 spin_lock_init(&fs_info->block_group_cache_lock);
2924 fs_info->block_group_cache_tree = RB_ROOT;
2925 fs_info->first_logical_byte = (u64)-1;
2926
2927 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2928 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2929 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2930
2931 mutex_init(&fs_info->ordered_operations_mutex);
2932 mutex_init(&fs_info->tree_log_mutex);
2933 mutex_init(&fs_info->chunk_mutex);
2934 mutex_init(&fs_info->transaction_kthread_mutex);
2935 mutex_init(&fs_info->cleaner_mutex);
2936 mutex_init(&fs_info->ro_block_group_mutex);
2937 init_rwsem(&fs_info->commit_root_sem);
2938 init_rwsem(&fs_info->cleanup_work_sem);
2939 init_rwsem(&fs_info->subvol_sem);
2940 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2941
2942 btrfs_init_dev_replace_locks(fs_info);
2943 btrfs_init_qgroup(fs_info);
2944 btrfs_discard_init(fs_info);
2945
2946 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2947 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2948
2949 init_waitqueue_head(&fs_info->transaction_throttle);
2950 init_waitqueue_head(&fs_info->transaction_wait);
2951 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2952 init_waitqueue_head(&fs_info->async_submit_wait);
2953 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2954
2955 /* Usable values until the real ones are cached from the superblock */
2956 fs_info->nodesize = 4096;
2957 fs_info->sectorsize = 4096;
2958 fs_info->sectorsize_bits = ilog2(4096);
2959 fs_info->stripesize = 4096;
2960
2961 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2962
2963 spin_lock_init(&fs_info->swapfile_pins_lock);
2964 fs_info->swapfile_pins = RB_ROOT;
2965
2966 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2967 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2968 }
2969
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2970 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2971 {
2972 int ret;
2973
2974 fs_info->sb = sb;
2975 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2976 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2977
2978 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2979 if (ret)
2980 return ret;
2981
2982 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2983 if (ret)
2984 return ret;
2985
2986 fs_info->dirty_metadata_batch = PAGE_SIZE *
2987 (1 + ilog2(nr_cpu_ids));
2988
2989 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2990 if (ret)
2991 return ret;
2992
2993 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2994 GFP_KERNEL);
2995 if (ret)
2996 return ret;
2997
2998 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2999 GFP_KERNEL);
3000 if (!fs_info->delayed_root)
3001 return -ENOMEM;
3002 btrfs_init_delayed_root(fs_info->delayed_root);
3003
3004 if (sb_rdonly(sb))
3005 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3006
3007 return btrfs_alloc_stripe_hash_table(fs_info);
3008 }
3009
btrfs_uuid_rescan_kthread(void * data)3010 static int btrfs_uuid_rescan_kthread(void *data)
3011 {
3012 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3013 int ret;
3014
3015 /*
3016 * 1st step is to iterate through the existing UUID tree and
3017 * to delete all entries that contain outdated data.
3018 * 2nd step is to add all missing entries to the UUID tree.
3019 */
3020 ret = btrfs_uuid_tree_iterate(fs_info);
3021 if (ret < 0) {
3022 if (ret != -EINTR)
3023 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3024 ret);
3025 up(&fs_info->uuid_tree_rescan_sem);
3026 return ret;
3027 }
3028 return btrfs_uuid_scan_kthread(data);
3029 }
3030
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)3031 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3032 {
3033 struct task_struct *task;
3034
3035 down(&fs_info->uuid_tree_rescan_sem);
3036 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3037 if (IS_ERR(task)) {
3038 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3039 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3040 up(&fs_info->uuid_tree_rescan_sem);
3041 return PTR_ERR(task);
3042 }
3043
3044 return 0;
3045 }
3046
3047 /*
3048 * Some options only have meaning at mount time and shouldn't persist across
3049 * remounts, or be displayed. Clear these at the end of mount and remount
3050 * code paths.
3051 */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)3052 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3053 {
3054 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3055 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3056 }
3057
3058 /*
3059 * Mounting logic specific to read-write file systems. Shared by open_ctree
3060 * and btrfs_remount when remounting from read-only to read-write.
3061 */
btrfs_start_pre_rw_mount(struct btrfs_fs_info * fs_info)3062 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3063 {
3064 int ret;
3065 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3066 bool clear_free_space_tree = false;
3067
3068 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3069 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3070 clear_free_space_tree = true;
3071 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3072 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3073 btrfs_warn(fs_info, "free space tree is invalid");
3074 clear_free_space_tree = true;
3075 }
3076
3077 if (clear_free_space_tree) {
3078 btrfs_info(fs_info, "clearing free space tree");
3079 ret = btrfs_clear_free_space_tree(fs_info);
3080 if (ret) {
3081 btrfs_warn(fs_info,
3082 "failed to clear free space tree: %d", ret);
3083 goto out;
3084 }
3085 }
3086
3087 /*
3088 * btrfs_find_orphan_roots() is responsible for finding all the dead
3089 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3090 * them into the fs_info->fs_roots_radix tree. This must be done before
3091 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3092 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3093 * item before the root's tree is deleted - this means that if we unmount
3094 * or crash before the deletion completes, on the next mount we will not
3095 * delete what remains of the tree because the orphan item does not
3096 * exists anymore, which is what tells us we have a pending deletion.
3097 */
3098 ret = btrfs_find_orphan_roots(fs_info);
3099 if (ret)
3100 goto out;
3101
3102 ret = btrfs_cleanup_fs_roots(fs_info);
3103 if (ret)
3104 goto out;
3105
3106 down_read(&fs_info->cleanup_work_sem);
3107 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3108 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3109 up_read(&fs_info->cleanup_work_sem);
3110 goto out;
3111 }
3112 up_read(&fs_info->cleanup_work_sem);
3113
3114 mutex_lock(&fs_info->cleaner_mutex);
3115 ret = btrfs_recover_relocation(fs_info->tree_root);
3116 mutex_unlock(&fs_info->cleaner_mutex);
3117 if (ret < 0) {
3118 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3119 goto out;
3120 }
3121
3122 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3123 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3124 btrfs_info(fs_info, "creating free space tree");
3125 ret = btrfs_create_free_space_tree(fs_info);
3126 if (ret) {
3127 btrfs_warn(fs_info,
3128 "failed to create free space tree: %d", ret);
3129 goto out;
3130 }
3131 }
3132
3133 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3134 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3135 if (ret)
3136 goto out;
3137 }
3138
3139 ret = btrfs_resume_balance_async(fs_info);
3140 if (ret)
3141 goto out;
3142
3143 ret = btrfs_resume_dev_replace_async(fs_info);
3144 if (ret) {
3145 btrfs_warn(fs_info, "failed to resume dev_replace");
3146 goto out;
3147 }
3148
3149 btrfs_qgroup_rescan_resume(fs_info);
3150
3151 if (!fs_info->uuid_root) {
3152 btrfs_info(fs_info, "creating UUID tree");
3153 ret = btrfs_create_uuid_tree(fs_info);
3154 if (ret) {
3155 btrfs_warn(fs_info,
3156 "failed to create the UUID tree %d", ret);
3157 goto out;
3158 }
3159 }
3160
3161 out:
3162 return ret;
3163 }
3164
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)3165 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3166 char *options)
3167 {
3168 u32 sectorsize;
3169 u32 nodesize;
3170 u32 stripesize;
3171 u64 generation;
3172 u64 features;
3173 u16 csum_type;
3174 struct btrfs_super_block *disk_super;
3175 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3176 struct btrfs_root *tree_root;
3177 struct btrfs_root *chunk_root;
3178 int ret;
3179 int err = -EINVAL;
3180 int level;
3181
3182 ret = init_mount_fs_info(fs_info, sb);
3183 if (ret) {
3184 err = ret;
3185 goto fail;
3186 }
3187
3188 /* These need to be init'ed before we start creating inodes and such. */
3189 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3190 GFP_KERNEL);
3191 fs_info->tree_root = tree_root;
3192 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3193 GFP_KERNEL);
3194 fs_info->chunk_root = chunk_root;
3195 if (!tree_root || !chunk_root) {
3196 err = -ENOMEM;
3197 goto fail;
3198 }
3199
3200 fs_info->btree_inode = new_inode(sb);
3201 if (!fs_info->btree_inode) {
3202 err = -ENOMEM;
3203 goto fail;
3204 }
3205 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3206 btrfs_init_btree_inode(fs_info);
3207
3208 invalidate_bdev(fs_devices->latest_dev->bdev);
3209
3210 /*
3211 * Read super block and check the signature bytes only
3212 */
3213 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3214 if (IS_ERR(disk_super)) {
3215 err = PTR_ERR(disk_super);
3216 goto fail_alloc;
3217 }
3218
3219 /*
3220 * Verify the type first, if that or the checksum value are
3221 * corrupted, we'll find out
3222 */
3223 csum_type = btrfs_super_csum_type(disk_super);
3224 if (!btrfs_supported_super_csum(csum_type)) {
3225 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3226 csum_type);
3227 err = -EINVAL;
3228 btrfs_release_disk_super(disk_super);
3229 goto fail_alloc;
3230 }
3231
3232 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3233
3234 ret = btrfs_init_csum_hash(fs_info, csum_type);
3235 if (ret) {
3236 err = ret;
3237 btrfs_release_disk_super(disk_super);
3238 goto fail_alloc;
3239 }
3240
3241 /*
3242 * We want to check superblock checksum, the type is stored inside.
3243 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3244 */
3245 if (btrfs_check_super_csum(fs_info, disk_super)) {
3246 btrfs_err(fs_info, "superblock checksum mismatch");
3247 err = -EINVAL;
3248 btrfs_release_disk_super(disk_super);
3249 goto fail_alloc;
3250 }
3251
3252 /*
3253 * super_copy is zeroed at allocation time and we never touch the
3254 * following bytes up to INFO_SIZE, the checksum is calculated from
3255 * the whole block of INFO_SIZE
3256 */
3257 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3258 btrfs_release_disk_super(disk_super);
3259
3260 disk_super = fs_info->super_copy;
3261
3262
3263 features = btrfs_super_flags(disk_super);
3264 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3265 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3266 btrfs_set_super_flags(disk_super, features);
3267 btrfs_info(fs_info,
3268 "found metadata UUID change in progress flag, clearing");
3269 }
3270
3271 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3272 sizeof(*fs_info->super_for_commit));
3273
3274 ret = btrfs_validate_mount_super(fs_info);
3275 if (ret) {
3276 btrfs_err(fs_info, "superblock contains fatal errors");
3277 err = -EINVAL;
3278 goto fail_alloc;
3279 }
3280
3281 if (!btrfs_super_root(disk_super))
3282 goto fail_alloc;
3283
3284 /* check FS state, whether FS is broken. */
3285 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3286 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3287
3288 /*
3289 * In the long term, we'll store the compression type in the super
3290 * block, and it'll be used for per file compression control.
3291 */
3292 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3293
3294
3295 /* Set up fs_info before parsing mount options */
3296 nodesize = btrfs_super_nodesize(disk_super);
3297 sectorsize = btrfs_super_sectorsize(disk_super);
3298 stripesize = sectorsize;
3299 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3300 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3301
3302 fs_info->nodesize = nodesize;
3303 fs_info->sectorsize = sectorsize;
3304 fs_info->sectorsize_bits = ilog2(sectorsize);
3305 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3306 fs_info->stripesize = stripesize;
3307
3308 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3309 if (ret) {
3310 err = ret;
3311 goto fail_alloc;
3312 }
3313
3314 features = btrfs_super_incompat_flags(disk_super) &
3315 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3316 if (features) {
3317 btrfs_err(fs_info,
3318 "cannot mount because of unsupported optional features (0x%llx)",
3319 features);
3320 err = -EINVAL;
3321 goto fail_alloc;
3322 }
3323
3324 features = btrfs_super_incompat_flags(disk_super);
3325 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3326 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3327 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3328 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3329 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3330
3331 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3332 btrfs_info(fs_info, "has skinny extents");
3333
3334 /*
3335 * Flag our filesystem as having big metadata blocks if they are bigger
3336 * than the page size.
3337 */
3338 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3339 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3340 btrfs_info(fs_info,
3341 "flagging fs with big metadata feature");
3342 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3343 }
3344
3345 /*
3346 * mixed block groups end up with duplicate but slightly offset
3347 * extent buffers for the same range. It leads to corruptions
3348 */
3349 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3350 (sectorsize != nodesize)) {
3351 btrfs_err(fs_info,
3352 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3353 nodesize, sectorsize);
3354 goto fail_alloc;
3355 }
3356
3357 /*
3358 * Needn't use the lock because there is no other task which will
3359 * update the flag.
3360 */
3361 btrfs_set_super_incompat_flags(disk_super, features);
3362
3363 features = btrfs_super_compat_ro_flags(disk_super) &
3364 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3365 if (!sb_rdonly(sb) && features) {
3366 btrfs_err(fs_info,
3367 "cannot mount read-write because of unsupported optional features (0x%llx)",
3368 features);
3369 err = -EINVAL;
3370 goto fail_alloc;
3371 }
3372
3373 if (sectorsize != PAGE_SIZE) {
3374 /*
3375 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3376 * going to be deprecated.
3377 *
3378 * Force to use v2 cache for subpage case.
3379 */
3380 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3381 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3382 "forcing free space tree for sector size %u with page size %lu",
3383 sectorsize, PAGE_SIZE);
3384
3385 btrfs_warn(fs_info,
3386 "read-write for sector size %u with page size %lu is experimental",
3387 sectorsize, PAGE_SIZE);
3388 }
3389 if (sectorsize != PAGE_SIZE) {
3390 if (btrfs_super_incompat_flags(fs_info->super_copy) &
3391 BTRFS_FEATURE_INCOMPAT_RAID56) {
3392 btrfs_err(fs_info,
3393 "RAID56 is not yet supported for sector size %u with page size %lu",
3394 sectorsize, PAGE_SIZE);
3395 err = -EINVAL;
3396 goto fail_alloc;
3397 }
3398 }
3399
3400 ret = btrfs_init_workqueues(fs_info, fs_devices);
3401 if (ret) {
3402 err = ret;
3403 goto fail_sb_buffer;
3404 }
3405
3406 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3407 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3408
3409 sb->s_blocksize = sectorsize;
3410 sb->s_blocksize_bits = blksize_bits(sectorsize);
3411 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3412
3413 mutex_lock(&fs_info->chunk_mutex);
3414 ret = btrfs_read_sys_array(fs_info);
3415 mutex_unlock(&fs_info->chunk_mutex);
3416 if (ret) {
3417 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3418 goto fail_sb_buffer;
3419 }
3420
3421 generation = btrfs_super_chunk_root_generation(disk_super);
3422 level = btrfs_super_chunk_root_level(disk_super);
3423
3424 chunk_root->node = read_tree_block(fs_info,
3425 btrfs_super_chunk_root(disk_super),
3426 BTRFS_CHUNK_TREE_OBJECTID,
3427 generation, level, NULL);
3428 if (IS_ERR(chunk_root->node) ||
3429 !extent_buffer_uptodate(chunk_root->node)) {
3430 btrfs_err(fs_info, "failed to read chunk root");
3431 if (!IS_ERR(chunk_root->node))
3432 free_extent_buffer(chunk_root->node);
3433 chunk_root->node = NULL;
3434 goto fail_tree_roots;
3435 }
3436 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3437 chunk_root->commit_root = btrfs_root_node(chunk_root);
3438
3439 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3440 offsetof(struct btrfs_header, chunk_tree_uuid),
3441 BTRFS_UUID_SIZE);
3442
3443 ret = btrfs_read_chunk_tree(fs_info);
3444 if (ret) {
3445 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3446 goto fail_tree_roots;
3447 }
3448
3449 /*
3450 * At this point we know all the devices that make this filesystem,
3451 * including the seed devices but we don't know yet if the replace
3452 * target is required. So free devices that are not part of this
3453 * filesystem but skip the replace target device which is checked
3454 * below in btrfs_init_dev_replace().
3455 */
3456 btrfs_free_extra_devids(fs_devices);
3457 if (!fs_devices->latest_dev->bdev) {
3458 btrfs_err(fs_info, "failed to read devices");
3459 goto fail_tree_roots;
3460 }
3461
3462 ret = init_tree_roots(fs_info);
3463 if (ret)
3464 goto fail_tree_roots;
3465
3466 /*
3467 * Get zone type information of zoned block devices. This will also
3468 * handle emulation of a zoned filesystem if a regular device has the
3469 * zoned incompat feature flag set.
3470 */
3471 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3472 if (ret) {
3473 btrfs_err(fs_info,
3474 "zoned: failed to read device zone info: %d",
3475 ret);
3476 goto fail_block_groups;
3477 }
3478
3479 /*
3480 * If we have a uuid root and we're not being told to rescan we need to
3481 * check the generation here so we can set the
3482 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3483 * transaction during a balance or the log replay without updating the
3484 * uuid generation, and then if we crash we would rescan the uuid tree,
3485 * even though it was perfectly fine.
3486 */
3487 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3488 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3489 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3490
3491 ret = btrfs_verify_dev_extents(fs_info);
3492 if (ret) {
3493 btrfs_err(fs_info,
3494 "failed to verify dev extents against chunks: %d",
3495 ret);
3496 goto fail_block_groups;
3497 }
3498 ret = btrfs_recover_balance(fs_info);
3499 if (ret) {
3500 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3501 goto fail_block_groups;
3502 }
3503
3504 ret = btrfs_init_dev_stats(fs_info);
3505 if (ret) {
3506 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3507 goto fail_block_groups;
3508 }
3509
3510 ret = btrfs_init_dev_replace(fs_info);
3511 if (ret) {
3512 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3513 goto fail_block_groups;
3514 }
3515 /*
3516 * We have unsupported RO compat features, although RO mounted, we
3517 * should not cause any metadata write, including log replay.
3518 * Or we could screw up whatever the new feature requires.
3519 */
3520 if (unlikely(features && btrfs_super_log_root(disk_super) &&
3521 !btrfs_test_opt(fs_info, NOLOGREPLAY))) {
3522 btrfs_err(fs_info,
3523 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3524 features);
3525 err = -EINVAL;
3526 goto fail_alloc;
3527 }
3528
3529
3530 ret = btrfs_check_zoned_mode(fs_info);
3531 if (ret) {
3532 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3533 ret);
3534 goto fail_block_groups;
3535 }
3536
3537 ret = btrfs_sysfs_add_fsid(fs_devices);
3538 if (ret) {
3539 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3540 ret);
3541 goto fail_block_groups;
3542 }
3543
3544 ret = btrfs_sysfs_add_mounted(fs_info);
3545 if (ret) {
3546 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3547 goto fail_fsdev_sysfs;
3548 }
3549
3550 ret = btrfs_init_space_info(fs_info);
3551 if (ret) {
3552 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3553 goto fail_sysfs;
3554 }
3555
3556 ret = btrfs_read_block_groups(fs_info);
3557 if (ret) {
3558 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3559 goto fail_sysfs;
3560 }
3561
3562 btrfs_free_zone_cache(fs_info);
3563
3564 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3565 !btrfs_check_rw_degradable(fs_info, NULL)) {
3566 btrfs_warn(fs_info,
3567 "writable mount is not allowed due to too many missing devices");
3568 goto fail_sysfs;
3569 }
3570
3571 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3572 "btrfs-cleaner");
3573 if (IS_ERR(fs_info->cleaner_kthread))
3574 goto fail_sysfs;
3575
3576 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3577 tree_root,
3578 "btrfs-transaction");
3579 if (IS_ERR(fs_info->transaction_kthread))
3580 goto fail_cleaner;
3581
3582 if (!btrfs_test_opt(fs_info, NOSSD) &&
3583 !fs_info->fs_devices->rotating) {
3584 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3585 }
3586
3587 /*
3588 * Mount does not set all options immediately, we can do it now and do
3589 * not have to wait for transaction commit
3590 */
3591 btrfs_apply_pending_changes(fs_info);
3592
3593 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3594 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3595 ret = btrfsic_mount(fs_info, fs_devices,
3596 btrfs_test_opt(fs_info,
3597 CHECK_INTEGRITY_DATA) ? 1 : 0,
3598 fs_info->check_integrity_print_mask);
3599 if (ret)
3600 btrfs_warn(fs_info,
3601 "failed to initialize integrity check module: %d",
3602 ret);
3603 }
3604 #endif
3605 ret = btrfs_read_qgroup_config(fs_info);
3606 if (ret)
3607 goto fail_trans_kthread;
3608
3609 if (btrfs_build_ref_tree(fs_info))
3610 btrfs_err(fs_info, "couldn't build ref tree");
3611
3612 /* do not make disk changes in broken FS or nologreplay is given */
3613 if (btrfs_super_log_root(disk_super) != 0 &&
3614 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3615 btrfs_info(fs_info, "start tree-log replay");
3616 ret = btrfs_replay_log(fs_info, fs_devices);
3617 if (ret) {
3618 err = ret;
3619 goto fail_qgroup;
3620 }
3621 }
3622
3623 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3624 if (IS_ERR(fs_info->fs_root)) {
3625 err = PTR_ERR(fs_info->fs_root);
3626 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3627 fs_info->fs_root = NULL;
3628 goto fail_qgroup;
3629 }
3630
3631 if (sb_rdonly(sb))
3632 goto clear_oneshot;
3633
3634 ret = btrfs_start_pre_rw_mount(fs_info);
3635 if (ret) {
3636 close_ctree(fs_info);
3637 return ret;
3638 }
3639 btrfs_discard_resume(fs_info);
3640
3641 if (fs_info->uuid_root &&
3642 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3643 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3644 btrfs_info(fs_info, "checking UUID tree");
3645 ret = btrfs_check_uuid_tree(fs_info);
3646 if (ret) {
3647 btrfs_warn(fs_info,
3648 "failed to check the UUID tree: %d", ret);
3649 close_ctree(fs_info);
3650 return ret;
3651 }
3652 }
3653
3654 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3655
3656 /* Kick the cleaner thread so it'll start deleting snapshots. */
3657 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3658 wake_up_process(fs_info->cleaner_kthread);
3659
3660 clear_oneshot:
3661 btrfs_clear_oneshot_options(fs_info);
3662 return 0;
3663
3664 fail_qgroup:
3665 btrfs_free_qgroup_config(fs_info);
3666 fail_trans_kthread:
3667 kthread_stop(fs_info->transaction_kthread);
3668 btrfs_cleanup_transaction(fs_info);
3669 btrfs_free_fs_roots(fs_info);
3670 fail_cleaner:
3671 kthread_stop(fs_info->cleaner_kthread);
3672
3673 /*
3674 * make sure we're done with the btree inode before we stop our
3675 * kthreads
3676 */
3677 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3678
3679 fail_sysfs:
3680 btrfs_sysfs_remove_mounted(fs_info);
3681
3682 fail_fsdev_sysfs:
3683 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3684
3685 fail_block_groups:
3686 btrfs_put_block_group_cache(fs_info);
3687
3688 fail_tree_roots:
3689 if (fs_info->data_reloc_root)
3690 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3691 free_root_pointers(fs_info, true);
3692 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3693
3694 fail_sb_buffer:
3695 btrfs_stop_all_workers(fs_info);
3696 btrfs_free_block_groups(fs_info);
3697 fail_alloc:
3698 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3699
3700 iput(fs_info->btree_inode);
3701 fail:
3702 btrfs_close_devices(fs_info->fs_devices);
3703 return err;
3704 }
3705 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3706
btrfs_end_super_write(struct bio * bio)3707 static void btrfs_end_super_write(struct bio *bio)
3708 {
3709 struct btrfs_device *device = bio->bi_private;
3710 struct bio_vec *bvec;
3711 struct bvec_iter_all iter_all;
3712 struct page *page;
3713
3714 bio_for_each_segment_all(bvec, bio, iter_all) {
3715 page = bvec->bv_page;
3716
3717 if (bio->bi_status) {
3718 btrfs_warn_rl_in_rcu(device->fs_info,
3719 "lost page write due to IO error on %s (%d)",
3720 rcu_str_deref(device->name),
3721 blk_status_to_errno(bio->bi_status));
3722 ClearPageUptodate(page);
3723 SetPageError(page);
3724 btrfs_dev_stat_inc_and_print(device,
3725 BTRFS_DEV_STAT_WRITE_ERRS);
3726 } else {
3727 SetPageUptodate(page);
3728 }
3729
3730 put_page(page);
3731 unlock_page(page);
3732 }
3733
3734 bio_put(bio);
3735 }
3736
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,bool drop_cache)3737 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3738 int copy_num, bool drop_cache)
3739 {
3740 struct btrfs_super_block *super;
3741 struct page *page;
3742 u64 bytenr, bytenr_orig;
3743 struct address_space *mapping = bdev->bd_inode->i_mapping;
3744 int ret;
3745
3746 bytenr_orig = btrfs_sb_offset(copy_num);
3747 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3748 if (ret == -ENOENT)
3749 return ERR_PTR(-EINVAL);
3750 else if (ret)
3751 return ERR_PTR(ret);
3752
3753 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3754 return ERR_PTR(-EINVAL);
3755
3756 if (drop_cache) {
3757 /* This should only be called with the primary sb. */
3758 ASSERT(copy_num == 0);
3759
3760 /*
3761 * Drop the page of the primary superblock, so later read will
3762 * always read from the device.
3763 */
3764 invalidate_inode_pages2_range(mapping,
3765 bytenr >> PAGE_SHIFT,
3766 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3767 }
3768
3769 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3770 if (IS_ERR(page))
3771 return ERR_CAST(page);
3772
3773 super = page_address(page);
3774 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3775 btrfs_release_disk_super(super);
3776 return ERR_PTR(-ENODATA);
3777 }
3778
3779 if (btrfs_super_bytenr(super) != bytenr_orig) {
3780 btrfs_release_disk_super(super);
3781 return ERR_PTR(-EINVAL);
3782 }
3783
3784 return super;
3785 }
3786
3787
btrfs_read_dev_super(struct block_device * bdev)3788 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3789 {
3790 struct btrfs_super_block *super, *latest = NULL;
3791 int i;
3792 u64 transid = 0;
3793
3794 /* we would like to check all the supers, but that would make
3795 * a btrfs mount succeed after a mkfs from a different FS.
3796 * So, we need to add a special mount option to scan for
3797 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3798 */
3799 for (i = 0; i < 1; i++) {
3800 super = btrfs_read_dev_one_super(bdev, i, false);
3801 if (IS_ERR(super))
3802 continue;
3803
3804 if (!latest || btrfs_super_generation(super) > transid) {
3805 if (latest)
3806 btrfs_release_disk_super(super);
3807
3808 latest = super;
3809 transid = btrfs_super_generation(super);
3810 }
3811 }
3812
3813 return super;
3814 }
3815
3816 /*
3817 * Write superblock @sb to the @device. Do not wait for completion, all the
3818 * pages we use for writing are locked.
3819 *
3820 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3821 * the expected device size at commit time. Note that max_mirrors must be
3822 * same for write and wait phases.
3823 *
3824 * Return number of errors when page is not found or submission fails.
3825 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3826 static int write_dev_supers(struct btrfs_device *device,
3827 struct btrfs_super_block *sb, int max_mirrors)
3828 {
3829 struct btrfs_fs_info *fs_info = device->fs_info;
3830 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3831 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3832 int i;
3833 int errors = 0;
3834 int ret;
3835 u64 bytenr, bytenr_orig;
3836
3837 if (max_mirrors == 0)
3838 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3839
3840 shash->tfm = fs_info->csum_shash;
3841
3842 for (i = 0; i < max_mirrors; i++) {
3843 struct page *page;
3844 struct bio *bio;
3845 struct btrfs_super_block *disk_super;
3846
3847 bytenr_orig = btrfs_sb_offset(i);
3848 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3849 if (ret == -ENOENT) {
3850 continue;
3851 } else if (ret < 0) {
3852 btrfs_err(device->fs_info,
3853 "couldn't get super block location for mirror %d",
3854 i);
3855 errors++;
3856 continue;
3857 }
3858 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3859 device->commit_total_bytes)
3860 break;
3861
3862 btrfs_set_super_bytenr(sb, bytenr_orig);
3863
3864 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3865 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3866 sb->csum);
3867
3868 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3869 GFP_NOFS);
3870 if (!page) {
3871 btrfs_err(device->fs_info,
3872 "couldn't get super block page for bytenr %llu",
3873 bytenr);
3874 errors++;
3875 continue;
3876 }
3877
3878 /* Bump the refcount for wait_dev_supers() */
3879 get_page(page);
3880
3881 disk_super = page_address(page);
3882 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3883
3884 /*
3885 * Directly use bios here instead of relying on the page cache
3886 * to do I/O, so we don't lose the ability to do integrity
3887 * checking.
3888 */
3889 bio = bio_alloc(GFP_NOFS, 1);
3890 bio_set_dev(bio, device->bdev);
3891 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3892 bio->bi_private = device;
3893 bio->bi_end_io = btrfs_end_super_write;
3894 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3895 offset_in_page(bytenr));
3896
3897 /*
3898 * We FUA only the first super block. The others we allow to
3899 * go down lazy and there's a short window where the on-disk
3900 * copies might still contain the older version.
3901 */
3902 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3903 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3904 bio->bi_opf |= REQ_FUA;
3905
3906 btrfsic_submit_bio(bio);
3907 btrfs_advance_sb_log(device, i);
3908 }
3909 return errors < i ? 0 : -1;
3910 }
3911
3912 /*
3913 * Wait for write completion of superblocks done by write_dev_supers,
3914 * @max_mirrors same for write and wait phases.
3915 *
3916 * Return number of errors when page is not found or not marked up to
3917 * date.
3918 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3919 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3920 {
3921 int i;
3922 int errors = 0;
3923 bool primary_failed = false;
3924 int ret;
3925 u64 bytenr;
3926
3927 if (max_mirrors == 0)
3928 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3929
3930 for (i = 0; i < max_mirrors; i++) {
3931 struct page *page;
3932
3933 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3934 if (ret == -ENOENT) {
3935 break;
3936 } else if (ret < 0) {
3937 errors++;
3938 if (i == 0)
3939 primary_failed = true;
3940 continue;
3941 }
3942 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3943 device->commit_total_bytes)
3944 break;
3945
3946 page = find_get_page(device->bdev->bd_inode->i_mapping,
3947 bytenr >> PAGE_SHIFT);
3948 if (!page) {
3949 errors++;
3950 if (i == 0)
3951 primary_failed = true;
3952 continue;
3953 }
3954 /* Page is submitted locked and unlocked once the IO completes */
3955 wait_on_page_locked(page);
3956 if (PageError(page)) {
3957 errors++;
3958 if (i == 0)
3959 primary_failed = true;
3960 }
3961
3962 /* Drop our reference */
3963 put_page(page);
3964
3965 /* Drop the reference from the writing run */
3966 put_page(page);
3967 }
3968
3969 /* log error, force error return */
3970 if (primary_failed) {
3971 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3972 device->devid);
3973 return -1;
3974 }
3975
3976 return errors < i ? 0 : -1;
3977 }
3978
3979 /*
3980 * endio for the write_dev_flush, this will wake anyone waiting
3981 * for the barrier when it is done
3982 */
btrfs_end_empty_barrier(struct bio * bio)3983 static void btrfs_end_empty_barrier(struct bio *bio)
3984 {
3985 complete(bio->bi_private);
3986 }
3987
3988 /*
3989 * Submit a flush request to the device if it supports it. Error handling is
3990 * done in the waiting counterpart.
3991 */
write_dev_flush(struct btrfs_device * device)3992 static void write_dev_flush(struct btrfs_device *device)
3993 {
3994 struct bio *bio = device->flush_bio;
3995
3996 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3997 /*
3998 * When a disk has write caching disabled, we skip submission of a bio
3999 * with flush and sync requests before writing the superblock, since
4000 * it's not needed. However when the integrity checker is enabled, this
4001 * results in reports that there are metadata blocks referred by a
4002 * superblock that were not properly flushed. So don't skip the bio
4003 * submission only when the integrity checker is enabled for the sake
4004 * of simplicity, since this is a debug tool and not meant for use in
4005 * non-debug builds.
4006 */
4007 struct request_queue *q = bdev_get_queue(device->bdev);
4008 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4009 return;
4010 #endif
4011
4012 bio_reset(bio);
4013 bio->bi_end_io = btrfs_end_empty_barrier;
4014 bio_set_dev(bio, device->bdev);
4015 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
4016 init_completion(&device->flush_wait);
4017 bio->bi_private = &device->flush_wait;
4018
4019 btrfsic_submit_bio(bio);
4020 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4021 }
4022
4023 /*
4024 * If the flush bio has been submitted by write_dev_flush, wait for it.
4025 */
wait_dev_flush(struct btrfs_device * device)4026 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4027 {
4028 struct bio *bio = device->flush_bio;
4029
4030 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4031 return BLK_STS_OK;
4032
4033 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4034 wait_for_completion_io(&device->flush_wait);
4035
4036 return bio->bi_status;
4037 }
4038
check_barrier_error(struct btrfs_fs_info * fs_info)4039 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4040 {
4041 if (!btrfs_check_rw_degradable(fs_info, NULL))
4042 return -EIO;
4043 return 0;
4044 }
4045
4046 /*
4047 * send an empty flush down to each device in parallel,
4048 * then wait for them
4049 */
barrier_all_devices(struct btrfs_fs_info * info)4050 static int barrier_all_devices(struct btrfs_fs_info *info)
4051 {
4052 struct list_head *head;
4053 struct btrfs_device *dev;
4054 int errors_wait = 0;
4055 blk_status_t ret;
4056
4057 lockdep_assert_held(&info->fs_devices->device_list_mutex);
4058 /* send down all the barriers */
4059 head = &info->fs_devices->devices;
4060 list_for_each_entry(dev, head, dev_list) {
4061 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4062 continue;
4063 if (!dev->bdev)
4064 continue;
4065 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4066 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4067 continue;
4068
4069 write_dev_flush(dev);
4070 dev->last_flush_error = BLK_STS_OK;
4071 }
4072
4073 /* wait for all the barriers */
4074 list_for_each_entry(dev, head, dev_list) {
4075 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4076 continue;
4077 if (!dev->bdev) {
4078 errors_wait++;
4079 continue;
4080 }
4081 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4082 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4083 continue;
4084
4085 ret = wait_dev_flush(dev);
4086 if (ret) {
4087 dev->last_flush_error = ret;
4088 btrfs_dev_stat_inc_and_print(dev,
4089 BTRFS_DEV_STAT_FLUSH_ERRS);
4090 errors_wait++;
4091 }
4092 }
4093
4094 if (errors_wait) {
4095 /*
4096 * At some point we need the status of all disks
4097 * to arrive at the volume status. So error checking
4098 * is being pushed to a separate loop.
4099 */
4100 return check_barrier_error(info);
4101 }
4102 return 0;
4103 }
4104
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)4105 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4106 {
4107 int raid_type;
4108 int min_tolerated = INT_MAX;
4109
4110 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4111 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4112 min_tolerated = min_t(int, min_tolerated,
4113 btrfs_raid_array[BTRFS_RAID_SINGLE].
4114 tolerated_failures);
4115
4116 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4117 if (raid_type == BTRFS_RAID_SINGLE)
4118 continue;
4119 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4120 continue;
4121 min_tolerated = min_t(int, min_tolerated,
4122 btrfs_raid_array[raid_type].
4123 tolerated_failures);
4124 }
4125
4126 if (min_tolerated == INT_MAX) {
4127 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4128 min_tolerated = 0;
4129 }
4130
4131 return min_tolerated;
4132 }
4133
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)4134 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4135 {
4136 struct list_head *head;
4137 struct btrfs_device *dev;
4138 struct btrfs_super_block *sb;
4139 struct btrfs_dev_item *dev_item;
4140 int ret;
4141 int do_barriers;
4142 int max_errors;
4143 int total_errors = 0;
4144 u64 flags;
4145
4146 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4147
4148 /*
4149 * max_mirrors == 0 indicates we're from commit_transaction,
4150 * not from fsync where the tree roots in fs_info have not
4151 * been consistent on disk.
4152 */
4153 if (max_mirrors == 0)
4154 backup_super_roots(fs_info);
4155
4156 sb = fs_info->super_for_commit;
4157 dev_item = &sb->dev_item;
4158
4159 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4160 head = &fs_info->fs_devices->devices;
4161 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4162
4163 if (do_barriers) {
4164 ret = barrier_all_devices(fs_info);
4165 if (ret) {
4166 mutex_unlock(
4167 &fs_info->fs_devices->device_list_mutex);
4168 btrfs_handle_fs_error(fs_info, ret,
4169 "errors while submitting device barriers.");
4170 return ret;
4171 }
4172 }
4173
4174 list_for_each_entry(dev, head, dev_list) {
4175 if (!dev->bdev) {
4176 total_errors++;
4177 continue;
4178 }
4179 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4180 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4181 continue;
4182
4183 btrfs_set_stack_device_generation(dev_item, 0);
4184 btrfs_set_stack_device_type(dev_item, dev->type);
4185 btrfs_set_stack_device_id(dev_item, dev->devid);
4186 btrfs_set_stack_device_total_bytes(dev_item,
4187 dev->commit_total_bytes);
4188 btrfs_set_stack_device_bytes_used(dev_item,
4189 dev->commit_bytes_used);
4190 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4191 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4192 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4193 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4194 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4195 BTRFS_FSID_SIZE);
4196
4197 flags = btrfs_super_flags(sb);
4198 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4199
4200 ret = btrfs_validate_write_super(fs_info, sb);
4201 if (ret < 0) {
4202 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4203 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4204 "unexpected superblock corruption detected");
4205 return -EUCLEAN;
4206 }
4207
4208 ret = write_dev_supers(dev, sb, max_mirrors);
4209 if (ret)
4210 total_errors++;
4211 }
4212 if (total_errors > max_errors) {
4213 btrfs_err(fs_info, "%d errors while writing supers",
4214 total_errors);
4215 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4216
4217 /* FUA is masked off if unsupported and can't be the reason */
4218 btrfs_handle_fs_error(fs_info, -EIO,
4219 "%d errors while writing supers",
4220 total_errors);
4221 return -EIO;
4222 }
4223
4224 total_errors = 0;
4225 list_for_each_entry(dev, head, dev_list) {
4226 if (!dev->bdev)
4227 continue;
4228 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4229 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4230 continue;
4231
4232 ret = wait_dev_supers(dev, max_mirrors);
4233 if (ret)
4234 total_errors++;
4235 }
4236 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4237 if (total_errors > max_errors) {
4238 btrfs_handle_fs_error(fs_info, -EIO,
4239 "%d errors while writing supers",
4240 total_errors);
4241 return -EIO;
4242 }
4243 return 0;
4244 }
4245
4246 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)4247 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4248 struct btrfs_root *root)
4249 {
4250 bool drop_ref = false;
4251
4252 spin_lock(&fs_info->fs_roots_radix_lock);
4253 radix_tree_delete(&fs_info->fs_roots_radix,
4254 (unsigned long)root->root_key.objectid);
4255 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4256 drop_ref = true;
4257 spin_unlock(&fs_info->fs_roots_radix_lock);
4258
4259 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4260 ASSERT(root->log_root == NULL);
4261 if (root->reloc_root) {
4262 btrfs_put_root(root->reloc_root);
4263 root->reloc_root = NULL;
4264 }
4265 }
4266
4267 if (drop_ref)
4268 btrfs_put_root(root);
4269 }
4270
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)4271 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4272 {
4273 u64 root_objectid = 0;
4274 struct btrfs_root *gang[8];
4275 int i = 0;
4276 int err = 0;
4277 unsigned int ret = 0;
4278
4279 while (1) {
4280 spin_lock(&fs_info->fs_roots_radix_lock);
4281 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4282 (void **)gang, root_objectid,
4283 ARRAY_SIZE(gang));
4284 if (!ret) {
4285 spin_unlock(&fs_info->fs_roots_radix_lock);
4286 break;
4287 }
4288 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4289
4290 for (i = 0; i < ret; i++) {
4291 /* Avoid to grab roots in dead_roots */
4292 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4293 gang[i] = NULL;
4294 continue;
4295 }
4296 /* grab all the search result for later use */
4297 gang[i] = btrfs_grab_root(gang[i]);
4298 }
4299 spin_unlock(&fs_info->fs_roots_radix_lock);
4300
4301 for (i = 0; i < ret; i++) {
4302 if (!gang[i])
4303 continue;
4304 root_objectid = gang[i]->root_key.objectid;
4305 err = btrfs_orphan_cleanup(gang[i]);
4306 if (err)
4307 break;
4308 btrfs_put_root(gang[i]);
4309 }
4310 root_objectid++;
4311 }
4312
4313 /* release the uncleaned roots due to error */
4314 for (; i < ret; i++) {
4315 if (gang[i])
4316 btrfs_put_root(gang[i]);
4317 }
4318 return err;
4319 }
4320
btrfs_commit_super(struct btrfs_fs_info * fs_info)4321 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4322 {
4323 struct btrfs_root *root = fs_info->tree_root;
4324 struct btrfs_trans_handle *trans;
4325
4326 mutex_lock(&fs_info->cleaner_mutex);
4327 btrfs_run_delayed_iputs(fs_info);
4328 mutex_unlock(&fs_info->cleaner_mutex);
4329 wake_up_process(fs_info->cleaner_kthread);
4330
4331 /* wait until ongoing cleanup work done */
4332 down_write(&fs_info->cleanup_work_sem);
4333 up_write(&fs_info->cleanup_work_sem);
4334
4335 trans = btrfs_join_transaction(root);
4336 if (IS_ERR(trans))
4337 return PTR_ERR(trans);
4338 return btrfs_commit_transaction(trans);
4339 }
4340
close_ctree(struct btrfs_fs_info * fs_info)4341 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4342 {
4343 int ret;
4344
4345 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4346
4347 /*
4348 * If we had UNFINISHED_DROPS we could still be processing them, so
4349 * clear that bit and wake up relocation so it can stop.
4350 * We must do this before stopping the block group reclaim task, because
4351 * at btrfs_relocate_block_group() we wait for this bit, and after the
4352 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4353 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4354 * return 1.
4355 */
4356 btrfs_wake_unfinished_drop(fs_info);
4357
4358 /*
4359 * We may have the reclaim task running and relocating a data block group,
4360 * in which case it may create delayed iputs. So stop it before we park
4361 * the cleaner kthread otherwise we can get new delayed iputs after
4362 * parking the cleaner, and that can make the async reclaim task to hang
4363 * if it's waiting for delayed iputs to complete, since the cleaner is
4364 * parked and can not run delayed iputs - this will make us hang when
4365 * trying to stop the async reclaim task.
4366 */
4367 cancel_work_sync(&fs_info->reclaim_bgs_work);
4368 /*
4369 * We don't want the cleaner to start new transactions, add more delayed
4370 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4371 * because that frees the task_struct, and the transaction kthread might
4372 * still try to wake up the cleaner.
4373 */
4374 kthread_park(fs_info->cleaner_kthread);
4375
4376 /* wait for the qgroup rescan worker to stop */
4377 btrfs_qgroup_wait_for_completion(fs_info, false);
4378
4379 /* wait for the uuid_scan task to finish */
4380 down(&fs_info->uuid_tree_rescan_sem);
4381 /* avoid complains from lockdep et al., set sem back to initial state */
4382 up(&fs_info->uuid_tree_rescan_sem);
4383
4384 /* pause restriper - we want to resume on mount */
4385 btrfs_pause_balance(fs_info);
4386
4387 btrfs_dev_replace_suspend_for_unmount(fs_info);
4388
4389 btrfs_scrub_cancel(fs_info);
4390
4391 /* wait for any defraggers to finish */
4392 wait_event(fs_info->transaction_wait,
4393 (atomic_read(&fs_info->defrag_running) == 0));
4394
4395 /* clear out the rbtree of defraggable inodes */
4396 btrfs_cleanup_defrag_inodes(fs_info);
4397
4398 /*
4399 * After we parked the cleaner kthread, ordered extents may have
4400 * completed and created new delayed iputs. If one of the async reclaim
4401 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4402 * can hang forever trying to stop it, because if a delayed iput is
4403 * added after it ran btrfs_run_delayed_iputs() and before it called
4404 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4405 * no one else to run iputs.
4406 *
4407 * So wait for all ongoing ordered extents to complete and then run
4408 * delayed iputs. This works because once we reach this point no one
4409 * can either create new ordered extents nor create delayed iputs
4410 * through some other means.
4411 *
4412 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4413 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4414 * but the delayed iput for the respective inode is made only when doing
4415 * the final btrfs_put_ordered_extent() (which must happen at
4416 * btrfs_finish_ordered_io() when we are unmounting).
4417 */
4418 btrfs_flush_workqueue(fs_info->endio_write_workers);
4419 /* Ordered extents for free space inodes. */
4420 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4421 btrfs_run_delayed_iputs(fs_info);
4422
4423 cancel_work_sync(&fs_info->async_reclaim_work);
4424 cancel_work_sync(&fs_info->async_data_reclaim_work);
4425 cancel_work_sync(&fs_info->preempt_reclaim_work);
4426
4427 /* Cancel or finish ongoing discard work */
4428 btrfs_discard_cleanup(fs_info);
4429
4430 if (!sb_rdonly(fs_info->sb)) {
4431 /*
4432 * The cleaner kthread is stopped, so do one final pass over
4433 * unused block groups.
4434 */
4435 btrfs_delete_unused_bgs(fs_info);
4436
4437 /*
4438 * There might be existing delayed inode workers still running
4439 * and holding an empty delayed inode item. We must wait for
4440 * them to complete first because they can create a transaction.
4441 * This happens when someone calls btrfs_balance_delayed_items()
4442 * and then a transaction commit runs the same delayed nodes
4443 * before any delayed worker has done something with the nodes.
4444 * We must wait for any worker here and not at transaction
4445 * commit time since that could cause a deadlock.
4446 * This is a very rare case.
4447 */
4448 btrfs_flush_workqueue(fs_info->delayed_workers);
4449
4450 ret = btrfs_commit_super(fs_info);
4451 if (ret)
4452 btrfs_err(fs_info, "commit super ret %d", ret);
4453 }
4454
4455 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4456 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4457 btrfs_error_commit_super(fs_info);
4458
4459 kthread_stop(fs_info->transaction_kthread);
4460 kthread_stop(fs_info->cleaner_kthread);
4461
4462 ASSERT(list_empty(&fs_info->delayed_iputs));
4463 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4464
4465 if (btrfs_check_quota_leak(fs_info)) {
4466 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4467 btrfs_err(fs_info, "qgroup reserved space leaked");
4468 }
4469
4470 btrfs_free_qgroup_config(fs_info);
4471 ASSERT(list_empty(&fs_info->delalloc_roots));
4472
4473 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4474 btrfs_info(fs_info, "at unmount delalloc count %lld",
4475 percpu_counter_sum(&fs_info->delalloc_bytes));
4476 }
4477
4478 if (percpu_counter_sum(&fs_info->ordered_bytes))
4479 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4480 percpu_counter_sum(&fs_info->ordered_bytes));
4481
4482 btrfs_sysfs_remove_mounted(fs_info);
4483 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4484
4485 btrfs_put_block_group_cache(fs_info);
4486
4487 /*
4488 * we must make sure there is not any read request to
4489 * submit after we stopping all workers.
4490 */
4491 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4492 btrfs_stop_all_workers(fs_info);
4493
4494 /* We shouldn't have any transaction open at this point */
4495 ASSERT(list_empty(&fs_info->trans_list));
4496
4497 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4498 free_root_pointers(fs_info, true);
4499 btrfs_free_fs_roots(fs_info);
4500
4501 /*
4502 * We must free the block groups after dropping the fs_roots as we could
4503 * have had an IO error and have left over tree log blocks that aren't
4504 * cleaned up until the fs roots are freed. This makes the block group
4505 * accounting appear to be wrong because there's pending reserved bytes,
4506 * so make sure we do the block group cleanup afterwards.
4507 */
4508 btrfs_free_block_groups(fs_info);
4509
4510 iput(fs_info->btree_inode);
4511
4512 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4513 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4514 btrfsic_unmount(fs_info->fs_devices);
4515 #endif
4516
4517 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4518 btrfs_close_devices(fs_info->fs_devices);
4519 }
4520
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)4521 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4522 int atomic)
4523 {
4524 int ret;
4525 struct inode *btree_inode = buf->pages[0]->mapping->host;
4526
4527 ret = extent_buffer_uptodate(buf);
4528 if (!ret)
4529 return ret;
4530
4531 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4532 parent_transid, atomic);
4533 if (ret == -EAGAIN)
4534 return ret;
4535 return !ret;
4536 }
4537
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4538 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4539 {
4540 struct btrfs_fs_info *fs_info = buf->fs_info;
4541 u64 transid = btrfs_header_generation(buf);
4542 int was_dirty;
4543
4544 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4545 /*
4546 * This is a fast path so only do this check if we have sanity tests
4547 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4548 * outside of the sanity tests.
4549 */
4550 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4551 return;
4552 #endif
4553 btrfs_assert_tree_locked(buf);
4554 if (transid != fs_info->generation)
4555 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4556 buf->start, transid, fs_info->generation);
4557 was_dirty = set_extent_buffer_dirty(buf);
4558 if (!was_dirty)
4559 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4560 buf->len,
4561 fs_info->dirty_metadata_batch);
4562 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4563 /*
4564 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4565 * but item data not updated.
4566 * So here we should only check item pointers, not item data.
4567 */
4568 if (btrfs_header_level(buf) == 0 &&
4569 btrfs_check_leaf_relaxed(buf)) {
4570 btrfs_print_leaf(buf);
4571 ASSERT(0);
4572 }
4573 #endif
4574 }
4575
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4576 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4577 int flush_delayed)
4578 {
4579 /*
4580 * looks as though older kernels can get into trouble with
4581 * this code, they end up stuck in balance_dirty_pages forever
4582 */
4583 int ret;
4584
4585 if (current->flags & PF_MEMALLOC)
4586 return;
4587
4588 if (flush_delayed)
4589 btrfs_balance_delayed_items(fs_info);
4590
4591 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4592 BTRFS_DIRTY_METADATA_THRESH,
4593 fs_info->dirty_metadata_batch);
4594 if (ret > 0) {
4595 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4596 }
4597 }
4598
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4599 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4600 {
4601 __btrfs_btree_balance_dirty(fs_info, 1);
4602 }
4603
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4604 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4605 {
4606 __btrfs_btree_balance_dirty(fs_info, 0);
4607 }
4608
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid,int level,struct btrfs_key * first_key)4609 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4610 struct btrfs_key *first_key)
4611 {
4612 return btree_read_extent_buffer_pages(buf, parent_transid,
4613 level, first_key);
4614 }
4615
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4616 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4617 {
4618 /* cleanup FS via transaction */
4619 btrfs_cleanup_transaction(fs_info);
4620
4621 mutex_lock(&fs_info->cleaner_mutex);
4622 btrfs_run_delayed_iputs(fs_info);
4623 mutex_unlock(&fs_info->cleaner_mutex);
4624
4625 down_write(&fs_info->cleanup_work_sem);
4626 up_write(&fs_info->cleanup_work_sem);
4627 }
4628
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4629 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4630 {
4631 struct btrfs_root *gang[8];
4632 u64 root_objectid = 0;
4633 int ret;
4634
4635 spin_lock(&fs_info->fs_roots_radix_lock);
4636 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4637 (void **)gang, root_objectid,
4638 ARRAY_SIZE(gang))) != 0) {
4639 int i;
4640
4641 for (i = 0; i < ret; i++)
4642 gang[i] = btrfs_grab_root(gang[i]);
4643 spin_unlock(&fs_info->fs_roots_radix_lock);
4644
4645 for (i = 0; i < ret; i++) {
4646 if (!gang[i])
4647 continue;
4648 root_objectid = gang[i]->root_key.objectid;
4649 btrfs_free_log(NULL, gang[i]);
4650 btrfs_put_root(gang[i]);
4651 }
4652 root_objectid++;
4653 spin_lock(&fs_info->fs_roots_radix_lock);
4654 }
4655 spin_unlock(&fs_info->fs_roots_radix_lock);
4656 btrfs_free_log_root_tree(NULL, fs_info);
4657 }
4658
btrfs_destroy_ordered_extents(struct btrfs_root * root)4659 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4660 {
4661 struct btrfs_ordered_extent *ordered;
4662
4663 spin_lock(&root->ordered_extent_lock);
4664 /*
4665 * This will just short circuit the ordered completion stuff which will
4666 * make sure the ordered extent gets properly cleaned up.
4667 */
4668 list_for_each_entry(ordered, &root->ordered_extents,
4669 root_extent_list)
4670 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4671 spin_unlock(&root->ordered_extent_lock);
4672 }
4673
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4674 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4675 {
4676 struct btrfs_root *root;
4677 struct list_head splice;
4678
4679 INIT_LIST_HEAD(&splice);
4680
4681 spin_lock(&fs_info->ordered_root_lock);
4682 list_splice_init(&fs_info->ordered_roots, &splice);
4683 while (!list_empty(&splice)) {
4684 root = list_first_entry(&splice, struct btrfs_root,
4685 ordered_root);
4686 list_move_tail(&root->ordered_root,
4687 &fs_info->ordered_roots);
4688
4689 spin_unlock(&fs_info->ordered_root_lock);
4690 btrfs_destroy_ordered_extents(root);
4691
4692 cond_resched();
4693 spin_lock(&fs_info->ordered_root_lock);
4694 }
4695 spin_unlock(&fs_info->ordered_root_lock);
4696
4697 /*
4698 * We need this here because if we've been flipped read-only we won't
4699 * get sync() from the umount, so we need to make sure any ordered
4700 * extents that haven't had their dirty pages IO start writeout yet
4701 * actually get run and error out properly.
4702 */
4703 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4704 }
4705
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4706 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4707 struct btrfs_fs_info *fs_info)
4708 {
4709 struct rb_node *node;
4710 struct btrfs_delayed_ref_root *delayed_refs;
4711 struct btrfs_delayed_ref_node *ref;
4712 int ret = 0;
4713
4714 delayed_refs = &trans->delayed_refs;
4715
4716 spin_lock(&delayed_refs->lock);
4717 if (atomic_read(&delayed_refs->num_entries) == 0) {
4718 spin_unlock(&delayed_refs->lock);
4719 btrfs_debug(fs_info, "delayed_refs has NO entry");
4720 return ret;
4721 }
4722
4723 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4724 struct btrfs_delayed_ref_head *head;
4725 struct rb_node *n;
4726 bool pin_bytes = false;
4727
4728 head = rb_entry(node, struct btrfs_delayed_ref_head,
4729 href_node);
4730 if (btrfs_delayed_ref_lock(delayed_refs, head))
4731 continue;
4732
4733 spin_lock(&head->lock);
4734 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4735 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4736 ref_node);
4737 ref->in_tree = 0;
4738 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4739 RB_CLEAR_NODE(&ref->ref_node);
4740 if (!list_empty(&ref->add_list))
4741 list_del(&ref->add_list);
4742 atomic_dec(&delayed_refs->num_entries);
4743 btrfs_put_delayed_ref(ref);
4744 }
4745 if (head->must_insert_reserved)
4746 pin_bytes = true;
4747 btrfs_free_delayed_extent_op(head->extent_op);
4748 btrfs_delete_ref_head(delayed_refs, head);
4749 spin_unlock(&head->lock);
4750 spin_unlock(&delayed_refs->lock);
4751 mutex_unlock(&head->mutex);
4752
4753 if (pin_bytes) {
4754 struct btrfs_block_group *cache;
4755
4756 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4757 BUG_ON(!cache);
4758
4759 spin_lock(&cache->space_info->lock);
4760 spin_lock(&cache->lock);
4761 cache->pinned += head->num_bytes;
4762 btrfs_space_info_update_bytes_pinned(fs_info,
4763 cache->space_info, head->num_bytes);
4764 cache->reserved -= head->num_bytes;
4765 cache->space_info->bytes_reserved -= head->num_bytes;
4766 spin_unlock(&cache->lock);
4767 spin_unlock(&cache->space_info->lock);
4768
4769 btrfs_put_block_group(cache);
4770
4771 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4772 head->bytenr + head->num_bytes - 1);
4773 }
4774 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4775 btrfs_put_delayed_ref_head(head);
4776 cond_resched();
4777 spin_lock(&delayed_refs->lock);
4778 }
4779 btrfs_qgroup_destroy_extent_records(trans);
4780
4781 spin_unlock(&delayed_refs->lock);
4782
4783 return ret;
4784 }
4785
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4786 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4787 {
4788 struct btrfs_inode *btrfs_inode;
4789 struct list_head splice;
4790
4791 INIT_LIST_HEAD(&splice);
4792
4793 spin_lock(&root->delalloc_lock);
4794 list_splice_init(&root->delalloc_inodes, &splice);
4795
4796 while (!list_empty(&splice)) {
4797 struct inode *inode = NULL;
4798 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4799 delalloc_inodes);
4800 __btrfs_del_delalloc_inode(root, btrfs_inode);
4801 spin_unlock(&root->delalloc_lock);
4802
4803 /*
4804 * Make sure we get a live inode and that it'll not disappear
4805 * meanwhile.
4806 */
4807 inode = igrab(&btrfs_inode->vfs_inode);
4808 if (inode) {
4809 unsigned int nofs_flag;
4810
4811 nofs_flag = memalloc_nofs_save();
4812 invalidate_inode_pages2(inode->i_mapping);
4813 memalloc_nofs_restore(nofs_flag);
4814 iput(inode);
4815 }
4816 spin_lock(&root->delalloc_lock);
4817 }
4818 spin_unlock(&root->delalloc_lock);
4819 }
4820
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4821 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4822 {
4823 struct btrfs_root *root;
4824 struct list_head splice;
4825
4826 INIT_LIST_HEAD(&splice);
4827
4828 spin_lock(&fs_info->delalloc_root_lock);
4829 list_splice_init(&fs_info->delalloc_roots, &splice);
4830 while (!list_empty(&splice)) {
4831 root = list_first_entry(&splice, struct btrfs_root,
4832 delalloc_root);
4833 root = btrfs_grab_root(root);
4834 BUG_ON(!root);
4835 spin_unlock(&fs_info->delalloc_root_lock);
4836
4837 btrfs_destroy_delalloc_inodes(root);
4838 btrfs_put_root(root);
4839
4840 spin_lock(&fs_info->delalloc_root_lock);
4841 }
4842 spin_unlock(&fs_info->delalloc_root_lock);
4843 }
4844
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4845 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4846 struct extent_io_tree *dirty_pages,
4847 int mark)
4848 {
4849 int ret;
4850 struct extent_buffer *eb;
4851 u64 start = 0;
4852 u64 end;
4853
4854 while (1) {
4855 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4856 mark, NULL);
4857 if (ret)
4858 break;
4859
4860 clear_extent_bits(dirty_pages, start, end, mark);
4861 while (start <= end) {
4862 eb = find_extent_buffer(fs_info, start);
4863 start += fs_info->nodesize;
4864 if (!eb)
4865 continue;
4866 wait_on_extent_buffer_writeback(eb);
4867
4868 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4869 &eb->bflags))
4870 clear_extent_buffer_dirty(eb);
4871 free_extent_buffer_stale(eb);
4872 }
4873 }
4874
4875 return ret;
4876 }
4877
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4878 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4879 struct extent_io_tree *unpin)
4880 {
4881 u64 start;
4882 u64 end;
4883 int ret;
4884
4885 while (1) {
4886 struct extent_state *cached_state = NULL;
4887
4888 /*
4889 * The btrfs_finish_extent_commit() may get the same range as
4890 * ours between find_first_extent_bit and clear_extent_dirty.
4891 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4892 * the same extent range.
4893 */
4894 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4895 ret = find_first_extent_bit(unpin, 0, &start, &end,
4896 EXTENT_DIRTY, &cached_state);
4897 if (ret) {
4898 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4899 break;
4900 }
4901
4902 clear_extent_dirty(unpin, start, end, &cached_state);
4903 free_extent_state(cached_state);
4904 btrfs_error_unpin_extent_range(fs_info, start, end);
4905 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4906 cond_resched();
4907 }
4908
4909 return 0;
4910 }
4911
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4912 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4913 {
4914 struct inode *inode;
4915
4916 inode = cache->io_ctl.inode;
4917 if (inode) {
4918 unsigned int nofs_flag;
4919
4920 nofs_flag = memalloc_nofs_save();
4921 invalidate_inode_pages2(inode->i_mapping);
4922 memalloc_nofs_restore(nofs_flag);
4923
4924 BTRFS_I(inode)->generation = 0;
4925 cache->io_ctl.inode = NULL;
4926 iput(inode);
4927 }
4928 ASSERT(cache->io_ctl.pages == NULL);
4929 btrfs_put_block_group(cache);
4930 }
4931
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4932 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4933 struct btrfs_fs_info *fs_info)
4934 {
4935 struct btrfs_block_group *cache;
4936
4937 spin_lock(&cur_trans->dirty_bgs_lock);
4938 while (!list_empty(&cur_trans->dirty_bgs)) {
4939 cache = list_first_entry(&cur_trans->dirty_bgs,
4940 struct btrfs_block_group,
4941 dirty_list);
4942
4943 if (!list_empty(&cache->io_list)) {
4944 spin_unlock(&cur_trans->dirty_bgs_lock);
4945 list_del_init(&cache->io_list);
4946 btrfs_cleanup_bg_io(cache);
4947 spin_lock(&cur_trans->dirty_bgs_lock);
4948 }
4949
4950 list_del_init(&cache->dirty_list);
4951 spin_lock(&cache->lock);
4952 cache->disk_cache_state = BTRFS_DC_ERROR;
4953 spin_unlock(&cache->lock);
4954
4955 spin_unlock(&cur_trans->dirty_bgs_lock);
4956 btrfs_put_block_group(cache);
4957 btrfs_delayed_refs_rsv_release(fs_info, 1);
4958 spin_lock(&cur_trans->dirty_bgs_lock);
4959 }
4960 spin_unlock(&cur_trans->dirty_bgs_lock);
4961
4962 /*
4963 * Refer to the definition of io_bgs member for details why it's safe
4964 * to use it without any locking
4965 */
4966 while (!list_empty(&cur_trans->io_bgs)) {
4967 cache = list_first_entry(&cur_trans->io_bgs,
4968 struct btrfs_block_group,
4969 io_list);
4970
4971 list_del_init(&cache->io_list);
4972 spin_lock(&cache->lock);
4973 cache->disk_cache_state = BTRFS_DC_ERROR;
4974 spin_unlock(&cache->lock);
4975 btrfs_cleanup_bg_io(cache);
4976 }
4977 }
4978
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4979 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4980 struct btrfs_fs_info *fs_info)
4981 {
4982 struct btrfs_device *dev, *tmp;
4983
4984 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4985 ASSERT(list_empty(&cur_trans->dirty_bgs));
4986 ASSERT(list_empty(&cur_trans->io_bgs));
4987
4988 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4989 post_commit_list) {
4990 list_del_init(&dev->post_commit_list);
4991 }
4992
4993 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4994
4995 cur_trans->state = TRANS_STATE_COMMIT_START;
4996 wake_up(&fs_info->transaction_blocked_wait);
4997
4998 cur_trans->state = TRANS_STATE_UNBLOCKED;
4999 wake_up(&fs_info->transaction_wait);
5000
5001 btrfs_destroy_delayed_inodes(fs_info);
5002
5003 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5004 EXTENT_DIRTY);
5005 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5006
5007 btrfs_free_redirty_list(cur_trans);
5008
5009 cur_trans->state =TRANS_STATE_COMPLETED;
5010 wake_up(&cur_trans->commit_wait);
5011 }
5012
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)5013 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5014 {
5015 struct btrfs_transaction *t;
5016
5017 mutex_lock(&fs_info->transaction_kthread_mutex);
5018
5019 spin_lock(&fs_info->trans_lock);
5020 while (!list_empty(&fs_info->trans_list)) {
5021 t = list_first_entry(&fs_info->trans_list,
5022 struct btrfs_transaction, list);
5023 if (t->state >= TRANS_STATE_COMMIT_START) {
5024 refcount_inc(&t->use_count);
5025 spin_unlock(&fs_info->trans_lock);
5026 btrfs_wait_for_commit(fs_info, t->transid);
5027 btrfs_put_transaction(t);
5028 spin_lock(&fs_info->trans_lock);
5029 continue;
5030 }
5031 if (t == fs_info->running_transaction) {
5032 t->state = TRANS_STATE_COMMIT_DOING;
5033 spin_unlock(&fs_info->trans_lock);
5034 /*
5035 * We wait for 0 num_writers since we don't hold a trans
5036 * handle open currently for this transaction.
5037 */
5038 wait_event(t->writer_wait,
5039 atomic_read(&t->num_writers) == 0);
5040 } else {
5041 spin_unlock(&fs_info->trans_lock);
5042 }
5043 btrfs_cleanup_one_transaction(t, fs_info);
5044
5045 spin_lock(&fs_info->trans_lock);
5046 if (t == fs_info->running_transaction)
5047 fs_info->running_transaction = NULL;
5048 list_del_init(&t->list);
5049 spin_unlock(&fs_info->trans_lock);
5050
5051 btrfs_put_transaction(t);
5052 trace_btrfs_transaction_commit(fs_info->tree_root);
5053 spin_lock(&fs_info->trans_lock);
5054 }
5055 spin_unlock(&fs_info->trans_lock);
5056 btrfs_destroy_all_ordered_extents(fs_info);
5057 btrfs_destroy_delayed_inodes(fs_info);
5058 btrfs_assert_delayed_root_empty(fs_info);
5059 btrfs_destroy_all_delalloc_inodes(fs_info);
5060 btrfs_drop_all_logs(fs_info);
5061 mutex_unlock(&fs_info->transaction_kthread_mutex);
5062
5063 return 0;
5064 }
5065
btrfs_init_root_free_objectid(struct btrfs_root * root)5066 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5067 {
5068 struct btrfs_path *path;
5069 int ret;
5070 struct extent_buffer *l;
5071 struct btrfs_key search_key;
5072 struct btrfs_key found_key;
5073 int slot;
5074
5075 path = btrfs_alloc_path();
5076 if (!path)
5077 return -ENOMEM;
5078
5079 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5080 search_key.type = -1;
5081 search_key.offset = (u64)-1;
5082 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5083 if (ret < 0)
5084 goto error;
5085 BUG_ON(ret == 0); /* Corruption */
5086 if (path->slots[0] > 0) {
5087 slot = path->slots[0] - 1;
5088 l = path->nodes[0];
5089 btrfs_item_key_to_cpu(l, &found_key, slot);
5090 root->free_objectid = max_t(u64, found_key.objectid + 1,
5091 BTRFS_FIRST_FREE_OBJECTID);
5092 } else {
5093 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5094 }
5095 ret = 0;
5096 error:
5097 btrfs_free_path(path);
5098 return ret;
5099 }
5100
btrfs_get_free_objectid(struct btrfs_root * root,u64 * objectid)5101 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5102 {
5103 int ret;
5104 mutex_lock(&root->objectid_mutex);
5105
5106 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5107 btrfs_warn(root->fs_info,
5108 "the objectid of root %llu reaches its highest value",
5109 root->root_key.objectid);
5110 ret = -ENOSPC;
5111 goto out;
5112 }
5113
5114 *objectid = root->free_objectid++;
5115 ret = 0;
5116 out:
5117 mutex_unlock(&root->objectid_mutex);
5118 return ret;
5119 }
5120