1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "compression.h"
6 #include "ctree.h"
7 #include "delalloc-space.h"
8 #include "reflink.h"
9 #include "transaction.h"
10 #include "subpage.h"
11
12 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
13
clone_finish_inode_update(struct btrfs_trans_handle * trans,struct inode * inode,u64 endoff,const u64 destoff,const u64 olen,int no_time_update)14 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
15 struct inode *inode,
16 u64 endoff,
17 const u64 destoff,
18 const u64 olen,
19 int no_time_update)
20 {
21 struct btrfs_root *root = BTRFS_I(inode)->root;
22 int ret;
23
24 inode_inc_iversion(inode);
25 if (!no_time_update)
26 inode->i_mtime = inode->i_ctime = current_time(inode);
27 /*
28 * We round up to the block size at eof when determining which
29 * extents to clone above, but shouldn't round up the file size.
30 */
31 if (endoff > destoff + olen)
32 endoff = destoff + olen;
33 if (endoff > inode->i_size) {
34 i_size_write(inode, endoff);
35 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
36 }
37
38 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
39 if (ret) {
40 btrfs_abort_transaction(trans, ret);
41 btrfs_end_transaction(trans);
42 goto out;
43 }
44 ret = btrfs_end_transaction(trans);
45 out:
46 return ret;
47 }
48
copy_inline_to_page(struct btrfs_inode * inode,const u64 file_offset,char * inline_data,const u64 size,const u64 datal,const u8 comp_type)49 static int copy_inline_to_page(struct btrfs_inode *inode,
50 const u64 file_offset,
51 char *inline_data,
52 const u64 size,
53 const u64 datal,
54 const u8 comp_type)
55 {
56 struct btrfs_fs_info *fs_info = inode->root->fs_info;
57 const u32 block_size = fs_info->sectorsize;
58 const u64 range_end = file_offset + block_size - 1;
59 const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
60 char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
61 struct extent_changeset *data_reserved = NULL;
62 struct page *page = NULL;
63 struct address_space *mapping = inode->vfs_inode.i_mapping;
64 int ret;
65
66 ASSERT(IS_ALIGNED(file_offset, block_size));
67
68 /*
69 * We have flushed and locked the ranges of the source and destination
70 * inodes, we also have locked the inodes, so we are safe to do a
71 * reservation here. Also we must not do the reservation while holding
72 * a transaction open, otherwise we would deadlock.
73 */
74 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
75 block_size);
76 if (ret)
77 goto out;
78
79 page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
80 btrfs_alloc_write_mask(mapping));
81 if (!page) {
82 ret = -ENOMEM;
83 goto out_unlock;
84 }
85
86 ret = set_page_extent_mapped(page);
87 if (ret < 0)
88 goto out_unlock;
89
90 clear_extent_bit(&inode->io_tree, file_offset, range_end,
91 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
92 0, 0, NULL);
93 ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
94 if (ret)
95 goto out_unlock;
96
97 /*
98 * After dirtying the page our caller will need to start a transaction,
99 * and if we are low on metadata free space, that can cause flushing of
100 * delalloc for all inodes in order to get metadata space released.
101 * However we are holding the range locked for the whole duration of
102 * the clone/dedupe operation, so we may deadlock if that happens and no
103 * other task releases enough space. So mark this inode as not being
104 * possible to flush to avoid such deadlock. We will clear that flag
105 * when we finish cloning all extents, since a transaction is started
106 * after finding each extent to clone.
107 */
108 set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
109
110 if (comp_type == BTRFS_COMPRESS_NONE) {
111 memcpy_to_page(page, offset_in_page(file_offset), data_start,
112 datal);
113 flush_dcache_page(page);
114 } else {
115 ret = btrfs_decompress(comp_type, data_start, page,
116 offset_in_page(file_offset),
117 inline_size, datal);
118 if (ret)
119 goto out_unlock;
120 flush_dcache_page(page);
121 }
122
123 /*
124 * If our inline data is smaller then the block/page size, then the
125 * remaining of the block/page is equivalent to zeroes. We had something
126 * like the following done:
127 *
128 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
129 * $ sync # (or fsync)
130 * $ xfs_io -c "falloc 0 4K" file
131 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
132 *
133 * So what's in the range [500, 4095] corresponds to zeroes.
134 */
135 if (datal < block_size) {
136 memzero_page(page, datal, block_size - datal);
137 flush_dcache_page(page);
138 }
139
140 btrfs_page_set_uptodate(fs_info, page, file_offset, block_size);
141 ClearPageChecked(page);
142 btrfs_page_set_dirty(fs_info, page, file_offset, block_size);
143 out_unlock:
144 if (page) {
145 unlock_page(page);
146 put_page(page);
147 }
148 if (ret)
149 btrfs_delalloc_release_space(inode, data_reserved, file_offset,
150 block_size, true);
151 btrfs_delalloc_release_extents(inode, block_size);
152 out:
153 extent_changeset_free(data_reserved);
154
155 return ret;
156 }
157
158 /*
159 * Deal with cloning of inline extents. We try to copy the inline extent from
160 * the source inode to destination inode when possible. When not possible we
161 * copy the inline extent's data into the respective page of the inode.
162 */
clone_copy_inline_extent(struct inode * dst,struct btrfs_path * path,struct btrfs_key * new_key,const u64 drop_start,const u64 datal,const u64 size,const u8 comp_type,char * inline_data,struct btrfs_trans_handle ** trans_out)163 static int clone_copy_inline_extent(struct inode *dst,
164 struct btrfs_path *path,
165 struct btrfs_key *new_key,
166 const u64 drop_start,
167 const u64 datal,
168 const u64 size,
169 const u8 comp_type,
170 char *inline_data,
171 struct btrfs_trans_handle **trans_out)
172 {
173 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
174 struct btrfs_root *root = BTRFS_I(dst)->root;
175 const u64 aligned_end = ALIGN(new_key->offset + datal,
176 fs_info->sectorsize);
177 struct btrfs_trans_handle *trans = NULL;
178 struct btrfs_drop_extents_args drop_args = { 0 };
179 int ret;
180 struct btrfs_key key;
181
182 if (new_key->offset > 0) {
183 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
184 inline_data, size, datal, comp_type);
185 goto out;
186 }
187
188 key.objectid = btrfs_ino(BTRFS_I(dst));
189 key.type = BTRFS_EXTENT_DATA_KEY;
190 key.offset = 0;
191 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
192 if (ret < 0) {
193 return ret;
194 } else if (ret > 0) {
195 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
196 ret = btrfs_next_leaf(root, path);
197 if (ret < 0)
198 return ret;
199 else if (ret > 0)
200 goto copy_inline_extent;
201 }
202 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
203 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
204 key.type == BTRFS_EXTENT_DATA_KEY) {
205 /*
206 * There's an implicit hole at file offset 0, copy the
207 * inline extent's data to the page.
208 */
209 ASSERT(key.offset > 0);
210 goto copy_to_page;
211 }
212 } else if (i_size_read(dst) <= datal) {
213 struct btrfs_file_extent_item *ei;
214
215 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
216 struct btrfs_file_extent_item);
217 /*
218 * If it's an inline extent replace it with the source inline
219 * extent, otherwise copy the source inline extent data into
220 * the respective page at the destination inode.
221 */
222 if (btrfs_file_extent_type(path->nodes[0], ei) ==
223 BTRFS_FILE_EXTENT_INLINE)
224 goto copy_inline_extent;
225
226 goto copy_to_page;
227 }
228
229 copy_inline_extent:
230 /*
231 * We have no extent items, or we have an extent at offset 0 which may
232 * or may not be inlined. All these cases are dealt the same way.
233 */
234 if (i_size_read(dst) > datal) {
235 /*
236 * At the destination offset 0 we have either a hole, a regular
237 * extent or an inline extent larger then the one we want to
238 * clone. Deal with all these cases by copying the inline extent
239 * data into the respective page at the destination inode.
240 */
241 goto copy_to_page;
242 }
243
244 /*
245 * Release path before starting a new transaction so we don't hold locks
246 * that would confuse lockdep.
247 */
248 btrfs_release_path(path);
249 /*
250 * If we end up here it means were copy the inline extent into a leaf
251 * of the destination inode. We know we will drop or adjust at most one
252 * extent item in the destination root.
253 *
254 * 1 unit - adjusting old extent (we may have to split it)
255 * 1 unit - add new extent
256 * 1 unit - inode update
257 */
258 trans = btrfs_start_transaction(root, 3);
259 if (IS_ERR(trans)) {
260 ret = PTR_ERR(trans);
261 trans = NULL;
262 goto out;
263 }
264 drop_args.path = path;
265 drop_args.start = drop_start;
266 drop_args.end = aligned_end;
267 drop_args.drop_cache = true;
268 ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
269 if (ret)
270 goto out;
271 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
272 if (ret)
273 goto out;
274
275 write_extent_buffer(path->nodes[0], inline_data,
276 btrfs_item_ptr_offset(path->nodes[0],
277 path->slots[0]),
278 size);
279 btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
280 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags);
281 ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
282 out:
283 if (!ret && !trans) {
284 /*
285 * No transaction here means we copied the inline extent into a
286 * page of the destination inode.
287 *
288 * 1 unit to update inode item
289 */
290 trans = btrfs_start_transaction(root, 1);
291 if (IS_ERR(trans)) {
292 ret = PTR_ERR(trans);
293 trans = NULL;
294 }
295 }
296 if (ret && trans) {
297 btrfs_abort_transaction(trans, ret);
298 btrfs_end_transaction(trans);
299 }
300 if (!ret)
301 *trans_out = trans;
302
303 return ret;
304
305 copy_to_page:
306 /*
307 * Release our path because we don't need it anymore and also because
308 * copy_inline_to_page() needs to reserve data and metadata, which may
309 * need to flush delalloc when we are low on available space and
310 * therefore cause a deadlock if writeback of an inline extent needs to
311 * write to the same leaf or an ordered extent completion needs to write
312 * to the same leaf.
313 */
314 btrfs_release_path(path);
315
316 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
317 inline_data, size, datal, comp_type);
318 goto out;
319 }
320
321 /**
322 * btrfs_clone() - clone a range from inode file to another
323 *
324 * @src: Inode to clone from
325 * @inode: Inode to clone to
326 * @off: Offset within source to start clone from
327 * @olen: Original length, passed by user, of range to clone
328 * @olen_aligned: Block-aligned value of olen
329 * @destoff: Offset within @inode to start clone
330 * @no_time_update: Whether to update mtime/ctime on the target inode
331 */
btrfs_clone(struct inode * src,struct inode * inode,const u64 off,const u64 olen,const u64 olen_aligned,const u64 destoff,int no_time_update)332 static int btrfs_clone(struct inode *src, struct inode *inode,
333 const u64 off, const u64 olen, const u64 olen_aligned,
334 const u64 destoff, int no_time_update)
335 {
336 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
337 struct btrfs_path *path = NULL;
338 struct extent_buffer *leaf;
339 struct btrfs_trans_handle *trans;
340 char *buf = NULL;
341 struct btrfs_key key;
342 u32 nritems;
343 int slot;
344 int ret;
345 const u64 len = olen_aligned;
346 u64 last_dest_end = destoff;
347
348 ret = -ENOMEM;
349 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
350 if (!buf)
351 return ret;
352
353 path = btrfs_alloc_path();
354 if (!path) {
355 kvfree(buf);
356 return ret;
357 }
358
359 path->reada = READA_FORWARD;
360 /* Clone data */
361 key.objectid = btrfs_ino(BTRFS_I(src));
362 key.type = BTRFS_EXTENT_DATA_KEY;
363 key.offset = off;
364
365 while (1) {
366 u64 next_key_min_offset = key.offset + 1;
367 struct btrfs_file_extent_item *extent;
368 u64 extent_gen;
369 int type;
370 u32 size;
371 struct btrfs_key new_key;
372 u64 disko = 0, diskl = 0;
373 u64 datao = 0, datal = 0;
374 u8 comp;
375 u64 drop_start;
376
377 /* Note the key will change type as we walk through the tree */
378 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
379 0, 0);
380 if (ret < 0)
381 goto out;
382 /*
383 * First search, if no extent item that starts at offset off was
384 * found but the previous item is an extent item, it's possible
385 * it might overlap our target range, therefore process it.
386 */
387 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
388 btrfs_item_key_to_cpu(path->nodes[0], &key,
389 path->slots[0] - 1);
390 if (key.type == BTRFS_EXTENT_DATA_KEY)
391 path->slots[0]--;
392 }
393
394 nritems = btrfs_header_nritems(path->nodes[0]);
395 process_slot:
396 if (path->slots[0] >= nritems) {
397 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
398 if (ret < 0)
399 goto out;
400 if (ret > 0)
401 break;
402 nritems = btrfs_header_nritems(path->nodes[0]);
403 }
404 leaf = path->nodes[0];
405 slot = path->slots[0];
406
407 btrfs_item_key_to_cpu(leaf, &key, slot);
408 if (key.type > BTRFS_EXTENT_DATA_KEY ||
409 key.objectid != btrfs_ino(BTRFS_I(src)))
410 break;
411
412 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
413
414 extent = btrfs_item_ptr(leaf, slot,
415 struct btrfs_file_extent_item);
416 extent_gen = btrfs_file_extent_generation(leaf, extent);
417 comp = btrfs_file_extent_compression(leaf, extent);
418 type = btrfs_file_extent_type(leaf, extent);
419 if (type == BTRFS_FILE_EXTENT_REG ||
420 type == BTRFS_FILE_EXTENT_PREALLOC) {
421 disko = btrfs_file_extent_disk_bytenr(leaf, extent);
422 diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
423 datao = btrfs_file_extent_offset(leaf, extent);
424 datal = btrfs_file_extent_num_bytes(leaf, extent);
425 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
426 /* Take upper bound, may be compressed */
427 datal = btrfs_file_extent_ram_bytes(leaf, extent);
428 }
429
430 /*
431 * The first search might have left us at an extent item that
432 * ends before our target range's start, can happen if we have
433 * holes and NO_HOLES feature enabled.
434 */
435 if (key.offset + datal <= off) {
436 path->slots[0]++;
437 goto process_slot;
438 } else if (key.offset >= off + len) {
439 break;
440 }
441 next_key_min_offset = key.offset + datal;
442 size = btrfs_item_size_nr(leaf, slot);
443 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
444 size);
445
446 btrfs_release_path(path);
447
448 memcpy(&new_key, &key, sizeof(new_key));
449 new_key.objectid = btrfs_ino(BTRFS_I(inode));
450 if (off <= key.offset)
451 new_key.offset = key.offset + destoff - off;
452 else
453 new_key.offset = destoff;
454
455 /*
456 * Deal with a hole that doesn't have an extent item that
457 * represents it (NO_HOLES feature enabled).
458 * This hole is either in the middle of the cloning range or at
459 * the beginning (fully overlaps it or partially overlaps it).
460 */
461 if (new_key.offset != last_dest_end)
462 drop_start = last_dest_end;
463 else
464 drop_start = new_key.offset;
465
466 if (type == BTRFS_FILE_EXTENT_REG ||
467 type == BTRFS_FILE_EXTENT_PREALLOC) {
468 struct btrfs_replace_extent_info clone_info;
469
470 /*
471 * a | --- range to clone ---| b
472 * | ------------- extent ------------- |
473 */
474
475 /* Subtract range b */
476 if (key.offset + datal > off + len)
477 datal = off + len - key.offset;
478
479 /* Subtract range a */
480 if (off > key.offset) {
481 datao += off - key.offset;
482 datal -= off - key.offset;
483 }
484
485 clone_info.disk_offset = disko;
486 clone_info.disk_len = diskl;
487 clone_info.data_offset = datao;
488 clone_info.data_len = datal;
489 clone_info.file_offset = new_key.offset;
490 clone_info.extent_buf = buf;
491 clone_info.is_new_extent = false;
492 ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
493 drop_start, new_key.offset + datal - 1,
494 &clone_info, &trans);
495 if (ret)
496 goto out;
497 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
498 /*
499 * Inline extents always have to start at file offset 0
500 * and can never be bigger then the sector size. We can
501 * never clone only parts of an inline extent, since all
502 * reflink operations must start at a sector size aligned
503 * offset, and the length must be aligned too or end at
504 * the i_size (which implies the whole inlined data).
505 */
506 ASSERT(key.offset == 0);
507 ASSERT(datal <= fs_info->sectorsize);
508 if (WARN_ON(key.offset != 0) ||
509 WARN_ON(datal > fs_info->sectorsize)) {
510 ret = -EUCLEAN;
511 goto out;
512 }
513
514 ret = clone_copy_inline_extent(inode, path, &new_key,
515 drop_start, datal, size,
516 comp, buf, &trans);
517 if (ret)
518 goto out;
519 }
520
521 btrfs_release_path(path);
522
523 /*
524 * If this is a new extent update the last_reflink_trans of both
525 * inodes. This is used by fsync to make sure it does not log
526 * multiple checksum items with overlapping ranges. For older
527 * extents we don't need to do it since inode logging skips the
528 * checksums for older extents. Also ignore holes and inline
529 * extents because they don't have checksums in the csum tree.
530 */
531 if (extent_gen == trans->transid && disko > 0) {
532 BTRFS_I(src)->last_reflink_trans = trans->transid;
533 BTRFS_I(inode)->last_reflink_trans = trans->transid;
534 }
535
536 last_dest_end = ALIGN(new_key.offset + datal,
537 fs_info->sectorsize);
538 ret = clone_finish_inode_update(trans, inode, last_dest_end,
539 destoff, olen, no_time_update);
540 if (ret)
541 goto out;
542 if (new_key.offset + datal >= destoff + len)
543 break;
544
545 btrfs_release_path(path);
546 key.offset = next_key_min_offset;
547
548 if (fatal_signal_pending(current)) {
549 ret = -EINTR;
550 goto out;
551 }
552
553 cond_resched();
554 }
555 ret = 0;
556
557 if (last_dest_end < destoff + len) {
558 /*
559 * We have an implicit hole that fully or partially overlaps our
560 * cloning range at its end. This means that we either have the
561 * NO_HOLES feature enabled or the implicit hole happened due to
562 * mixing buffered and direct IO writes against this file.
563 */
564 btrfs_release_path(path);
565
566 /*
567 * When using NO_HOLES and we are cloning a range that covers
568 * only a hole (no extents) into a range beyond the current
569 * i_size, punching a hole in the target range will not create
570 * an extent map defining a hole, because the range starts at or
571 * beyond current i_size. If the file previously had an i_size
572 * greater than the new i_size set by this clone operation, we
573 * need to make sure the next fsync is a full fsync, so that it
574 * detects and logs a hole covering a range from the current
575 * i_size to the new i_size. If the clone range covers extents,
576 * besides a hole, then we know the full sync flag was already
577 * set by previous calls to btrfs_replace_file_extents() that
578 * replaced file extent items.
579 */
580 if (last_dest_end >= i_size_read(inode))
581 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
582 &BTRFS_I(inode)->runtime_flags);
583
584 ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
585 last_dest_end, destoff + len - 1, NULL, &trans);
586 if (ret)
587 goto out;
588
589 ret = clone_finish_inode_update(trans, inode, destoff + len,
590 destoff, olen, no_time_update);
591 }
592
593 out:
594 btrfs_free_path(path);
595 kvfree(buf);
596 clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
597
598 return ret;
599 }
600
btrfs_double_extent_unlock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)601 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
602 struct inode *inode2, u64 loff2, u64 len)
603 {
604 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
605 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
606 }
607
btrfs_double_extent_lock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)608 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
609 struct inode *inode2, u64 loff2, u64 len)
610 {
611 if (inode1 < inode2) {
612 swap(inode1, inode2);
613 swap(loff1, loff2);
614 } else if (inode1 == inode2 && loff2 < loff1) {
615 swap(loff1, loff2);
616 }
617 lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
618 lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
619 }
620
btrfs_double_mmap_lock(struct inode * inode1,struct inode * inode2)621 static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
622 {
623 if (inode1 < inode2)
624 swap(inode1, inode2);
625 down_write(&BTRFS_I(inode1)->i_mmap_lock);
626 down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
627 }
628
btrfs_double_mmap_unlock(struct inode * inode1,struct inode * inode2)629 static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
630 {
631 up_write(&BTRFS_I(inode1)->i_mmap_lock);
632 up_write(&BTRFS_I(inode2)->i_mmap_lock);
633 }
634
btrfs_extent_same_range(struct inode * src,u64 loff,u64 len,struct inode * dst,u64 dst_loff)635 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
636 struct inode *dst, u64 dst_loff)
637 {
638 const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
639 int ret;
640
641 /*
642 * Lock destination range to serialize with concurrent readpages() and
643 * source range to serialize with relocation.
644 */
645 btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
646 ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
647 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
648
649 return ret;
650 }
651
btrfs_extent_same(struct inode * src,u64 loff,u64 olen,struct inode * dst,u64 dst_loff)652 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
653 struct inode *dst, u64 dst_loff)
654 {
655 int ret = 0;
656 u64 i, tail_len, chunk_count;
657 struct btrfs_root *root_dst = BTRFS_I(dst)->root;
658
659 spin_lock(&root_dst->root_item_lock);
660 if (root_dst->send_in_progress) {
661 btrfs_warn_rl(root_dst->fs_info,
662 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
663 root_dst->root_key.objectid,
664 root_dst->send_in_progress);
665 spin_unlock(&root_dst->root_item_lock);
666 return -EAGAIN;
667 }
668 root_dst->dedupe_in_progress++;
669 spin_unlock(&root_dst->root_item_lock);
670
671 tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
672 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
673
674 for (i = 0; i < chunk_count; i++) {
675 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
676 dst, dst_loff);
677 if (ret)
678 goto out;
679
680 loff += BTRFS_MAX_DEDUPE_LEN;
681 dst_loff += BTRFS_MAX_DEDUPE_LEN;
682 }
683
684 if (tail_len > 0)
685 ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
686 out:
687 spin_lock(&root_dst->root_item_lock);
688 root_dst->dedupe_in_progress--;
689 spin_unlock(&root_dst->root_item_lock);
690
691 return ret;
692 }
693
btrfs_clone_files(struct file * file,struct file * file_src,u64 off,u64 olen,u64 destoff)694 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
695 u64 off, u64 olen, u64 destoff)
696 {
697 struct inode *inode = file_inode(file);
698 struct inode *src = file_inode(file_src);
699 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
700 int ret;
701 int wb_ret;
702 u64 len = olen;
703 u64 bs = fs_info->sb->s_blocksize;
704
705 /*
706 * VFS's generic_remap_file_range_prep() protects us from cloning the
707 * eof block into the middle of a file, which would result in corruption
708 * if the file size is not blocksize aligned. So we don't need to check
709 * for that case here.
710 */
711 if (off + len == src->i_size)
712 len = ALIGN(src->i_size, bs) - off;
713
714 if (destoff > inode->i_size) {
715 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
716
717 ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
718 if (ret)
719 return ret;
720 /*
721 * We may have truncated the last block if the inode's size is
722 * not sector size aligned, so we need to wait for writeback to
723 * complete before proceeding further, otherwise we can race
724 * with cloning and attempt to increment a reference to an
725 * extent that no longer exists (writeback completed right after
726 * we found the previous extent covering eof and before we
727 * attempted to increment its reference count).
728 */
729 ret = btrfs_wait_ordered_range(inode, wb_start,
730 destoff - wb_start);
731 if (ret)
732 return ret;
733 }
734
735 /*
736 * Lock destination range to serialize with concurrent readpages() and
737 * source range to serialize with relocation.
738 */
739 btrfs_double_extent_lock(src, off, inode, destoff, len);
740 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
741 btrfs_double_extent_unlock(src, off, inode, destoff, len);
742
743 /*
744 * We may have copied an inline extent into a page of the destination
745 * range, so wait for writeback to complete before truncating pages
746 * from the page cache. This is a rare case.
747 */
748 wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
749 ret = ret ? ret : wb_ret;
750 /*
751 * Truncate page cache pages so that future reads will see the cloned
752 * data immediately and not the previous data.
753 */
754 truncate_inode_pages_range(&inode->i_data,
755 round_down(destoff, PAGE_SIZE),
756 round_up(destoff + len, PAGE_SIZE) - 1);
757
758 return ret;
759 }
760
btrfs_remap_file_range_prep(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t * len,unsigned int remap_flags)761 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
762 struct file *file_out, loff_t pos_out,
763 loff_t *len, unsigned int remap_flags)
764 {
765 struct inode *inode_in = file_inode(file_in);
766 struct inode *inode_out = file_inode(file_out);
767 u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
768 bool same_inode = inode_out == inode_in;
769 u64 wb_len;
770 int ret;
771
772 if (!(remap_flags & REMAP_FILE_DEDUP)) {
773 struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
774
775 if (btrfs_root_readonly(root_out))
776 return -EROFS;
777
778 if (file_in->f_path.mnt != file_out->f_path.mnt ||
779 inode_in->i_sb != inode_out->i_sb)
780 return -EXDEV;
781 }
782
783 /* Don't make the dst file partly checksummed */
784 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
785 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
786 return -EINVAL;
787 }
788
789 /*
790 * Now that the inodes are locked, we need to start writeback ourselves
791 * and can not rely on the writeback from the VFS's generic helper
792 * generic_remap_file_range_prep() because:
793 *
794 * 1) For compression we must call filemap_fdatawrite_range() range
795 * twice (btrfs_fdatawrite_range() does it for us), and the generic
796 * helper only calls it once;
797 *
798 * 2) filemap_fdatawrite_range(), called by the generic helper only
799 * waits for the writeback to complete, i.e. for IO to be done, and
800 * not for the ordered extents to complete. We need to wait for them
801 * to complete so that new file extent items are in the fs tree.
802 */
803 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
804 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
805 else
806 wb_len = ALIGN(*len, bs);
807
808 /*
809 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
810 * any in progress could create its ordered extents after we wait for
811 * existing ordered extents below).
812 */
813 inode_dio_wait(inode_in);
814 if (!same_inode)
815 inode_dio_wait(inode_out);
816
817 /*
818 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
819 *
820 * Btrfs' back references do not have a block level granularity, they
821 * work at the whole extent level.
822 * NOCOW buffered write without data space reserved may not be able
823 * to fall back to CoW due to lack of data space, thus could cause
824 * data loss.
825 *
826 * Here we take a shortcut by flushing the whole inode, so that all
827 * nocow write should reach disk as nocow before we increase the
828 * reference of the extent. We could do better by only flushing NOCOW
829 * data, but that needs extra accounting.
830 *
831 * Also we don't need to check ASYNC_EXTENT, as async extent will be
832 * CoWed anyway, not affecting nocow part.
833 */
834 ret = filemap_flush(inode_in->i_mapping);
835 if (ret < 0)
836 return ret;
837
838 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
839 wb_len);
840 if (ret < 0)
841 return ret;
842 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
843 wb_len);
844 if (ret < 0)
845 return ret;
846
847 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
848 len, remap_flags);
849 }
850
file_sync_write(const struct file * file)851 static bool file_sync_write(const struct file *file)
852 {
853 if (file->f_flags & (__O_SYNC | O_DSYNC))
854 return true;
855 if (IS_SYNC(file_inode(file)))
856 return true;
857
858 return false;
859 }
860
btrfs_remap_file_range(struct file * src_file,loff_t off,struct file * dst_file,loff_t destoff,loff_t len,unsigned int remap_flags)861 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
862 struct file *dst_file, loff_t destoff, loff_t len,
863 unsigned int remap_flags)
864 {
865 struct inode *src_inode = file_inode(src_file);
866 struct inode *dst_inode = file_inode(dst_file);
867 bool same_inode = dst_inode == src_inode;
868 int ret;
869
870 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
871 return -EINVAL;
872
873 if (same_inode) {
874 btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP);
875 } else {
876 lock_two_nondirectories(src_inode, dst_inode);
877 btrfs_double_mmap_lock(src_inode, dst_inode);
878 }
879
880 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
881 &len, remap_flags);
882 if (ret < 0 || len == 0)
883 goto out_unlock;
884
885 if (remap_flags & REMAP_FILE_DEDUP)
886 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
887 else
888 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
889
890 out_unlock:
891 if (same_inode) {
892 btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP);
893 } else {
894 btrfs_double_mmap_unlock(src_inode, dst_inode);
895 unlock_two_nondirectories(src_inode, dst_inode);
896 }
897
898 /*
899 * If either the source or the destination file was opened with O_SYNC,
900 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
901 * source files/ranges, so that after a successful return (0) followed
902 * by a power failure results in the reflinked data to be readable from
903 * both files/ranges.
904 */
905 if (ret == 0 && len > 0 &&
906 (file_sync_write(src_file) || file_sync_write(dst_file))) {
907 ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
908 if (ret == 0)
909 ret = btrfs_sync_file(dst_file, destoff,
910 destoff + len - 1, 0);
911 }
912
913 return ret < 0 ? ret : len;
914 }
915