• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "block-group.h"
21 #include "space-info.h"
22 #include "zoned.h"
23 
24 /* magic values for the inode_only field in btrfs_log_inode:
25  *
26  * LOG_INODE_ALL means to log everything
27  * LOG_INODE_EXISTS means to log just enough to recreate the inode
28  * during log replay
29  */
30 enum {
31 	LOG_INODE_ALL,
32 	LOG_INODE_EXISTS,
33 	LOG_OTHER_INODE,
34 	LOG_OTHER_INODE_ALL,
35 };
36 
37 /*
38  * directory trouble cases
39  *
40  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41  * log, we must force a full commit before doing an fsync of the directory
42  * where the unlink was done.
43  * ---> record transid of last unlink/rename per directory
44  *
45  * mkdir foo/some_dir
46  * normal commit
47  * rename foo/some_dir foo2/some_dir
48  * mkdir foo/some_dir
49  * fsync foo/some_dir/some_file
50  *
51  * The fsync above will unlink the original some_dir without recording
52  * it in its new location (foo2).  After a crash, some_dir will be gone
53  * unless the fsync of some_file forces a full commit
54  *
55  * 2) we must log any new names for any file or dir that is in the fsync
56  * log. ---> check inode while renaming/linking.
57  *
58  * 2a) we must log any new names for any file or dir during rename
59  * when the directory they are being removed from was logged.
60  * ---> check inode and old parent dir during rename
61  *
62  *  2a is actually the more important variant.  With the extra logging
63  *  a crash might unlink the old name without recreating the new one
64  *
65  * 3) after a crash, we must go through any directories with a link count
66  * of zero and redo the rm -rf
67  *
68  * mkdir f1/foo
69  * normal commit
70  * rm -rf f1/foo
71  * fsync(f1)
72  *
73  * The directory f1 was fully removed from the FS, but fsync was never
74  * called on f1, only its parent dir.  After a crash the rm -rf must
75  * be replayed.  This must be able to recurse down the entire
76  * directory tree.  The inode link count fixup code takes care of the
77  * ugly details.
78  */
79 
80 /*
81  * stages for the tree walking.  The first
82  * stage (0) is to only pin down the blocks we find
83  * the second stage (1) is to make sure that all the inodes
84  * we find in the log are created in the subvolume.
85  *
86  * The last stage is to deal with directories and links and extents
87  * and all the other fun semantics
88  */
89 enum {
90 	LOG_WALK_PIN_ONLY,
91 	LOG_WALK_REPLAY_INODES,
92 	LOG_WALK_REPLAY_DIR_INDEX,
93 	LOG_WALK_REPLAY_ALL,
94 };
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct btrfs_inode *inode,
98 			   int inode_only,
99 			   struct btrfs_log_ctx *ctx);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 			     struct btrfs_root *root,
102 			     struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 				       struct btrfs_root *root,
105 				       struct btrfs_root *log,
106 				       struct btrfs_path *path,
107 				       u64 dirid, int del_all);
108 static void wait_log_commit(struct btrfs_root *root, int transid);
109 
110 /*
111  * tree logging is a special write ahead log used to make sure that
112  * fsyncs and O_SYNCs can happen without doing full tree commits.
113  *
114  * Full tree commits are expensive because they require commonly
115  * modified blocks to be recowed, creating many dirty pages in the
116  * extent tree an 4x-6x higher write load than ext3.
117  *
118  * Instead of doing a tree commit on every fsync, we use the
119  * key ranges and transaction ids to find items for a given file or directory
120  * that have changed in this transaction.  Those items are copied into
121  * a special tree (one per subvolume root), that tree is written to disk
122  * and then the fsync is considered complete.
123  *
124  * After a crash, items are copied out of the log-tree back into the
125  * subvolume tree.  Any file data extents found are recorded in the extent
126  * allocation tree, and the log-tree freed.
127  *
128  * The log tree is read three times, once to pin down all the extents it is
129  * using in ram and once, once to create all the inodes logged in the tree
130  * and once to do all the other items.
131  */
132 
133 /*
134  * start a sub transaction and setup the log tree
135  * this increments the log tree writer count to make the people
136  * syncing the tree wait for us to finish
137  */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)138 static int start_log_trans(struct btrfs_trans_handle *trans,
139 			   struct btrfs_root *root,
140 			   struct btrfs_log_ctx *ctx)
141 {
142 	struct btrfs_fs_info *fs_info = root->fs_info;
143 	struct btrfs_root *tree_root = fs_info->tree_root;
144 	const bool zoned = btrfs_is_zoned(fs_info);
145 	int ret = 0;
146 	bool created = false;
147 
148 	/*
149 	 * First check if the log root tree was already created. If not, create
150 	 * it before locking the root's log_mutex, just to keep lockdep happy.
151 	 */
152 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
153 		mutex_lock(&tree_root->log_mutex);
154 		if (!fs_info->log_root_tree) {
155 			ret = btrfs_init_log_root_tree(trans, fs_info);
156 			if (!ret) {
157 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
158 				created = true;
159 			}
160 		}
161 		mutex_unlock(&tree_root->log_mutex);
162 		if (ret)
163 			return ret;
164 	}
165 
166 	mutex_lock(&root->log_mutex);
167 
168 again:
169 	if (root->log_root) {
170 		int index = (root->log_transid + 1) % 2;
171 
172 		if (btrfs_need_log_full_commit(trans)) {
173 			ret = -EAGAIN;
174 			goto out;
175 		}
176 
177 		if (zoned && atomic_read(&root->log_commit[index])) {
178 			wait_log_commit(root, root->log_transid - 1);
179 			goto again;
180 		}
181 
182 		if (!root->log_start_pid) {
183 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
184 			root->log_start_pid = current->pid;
185 		} else if (root->log_start_pid != current->pid) {
186 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
187 		}
188 	} else {
189 		/*
190 		 * This means fs_info->log_root_tree was already created
191 		 * for some other FS trees. Do the full commit not to mix
192 		 * nodes from multiple log transactions to do sequential
193 		 * writing.
194 		 */
195 		if (zoned && !created) {
196 			ret = -EAGAIN;
197 			goto out;
198 		}
199 
200 		ret = btrfs_add_log_tree(trans, root);
201 		if (ret)
202 			goto out;
203 
204 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
205 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
206 		root->log_start_pid = current->pid;
207 	}
208 
209 	atomic_inc(&root->log_writers);
210 	if (ctx && !ctx->logging_new_name) {
211 		int index = root->log_transid % 2;
212 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
213 		ctx->log_transid = root->log_transid;
214 	}
215 
216 out:
217 	mutex_unlock(&root->log_mutex);
218 	return ret;
219 }
220 
221 /*
222  * returns 0 if there was a log transaction running and we were able
223  * to join, or returns -ENOENT if there were not transactions
224  * in progress
225  */
join_running_log_trans(struct btrfs_root * root)226 static int join_running_log_trans(struct btrfs_root *root)
227 {
228 	const bool zoned = btrfs_is_zoned(root->fs_info);
229 	int ret = -ENOENT;
230 
231 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
232 		return ret;
233 
234 	mutex_lock(&root->log_mutex);
235 again:
236 	if (root->log_root) {
237 		int index = (root->log_transid + 1) % 2;
238 
239 		ret = 0;
240 		if (zoned && atomic_read(&root->log_commit[index])) {
241 			wait_log_commit(root, root->log_transid - 1);
242 			goto again;
243 		}
244 		atomic_inc(&root->log_writers);
245 	}
246 	mutex_unlock(&root->log_mutex);
247 	return ret;
248 }
249 
250 /*
251  * This either makes the current running log transaction wait
252  * until you call btrfs_end_log_trans() or it makes any future
253  * log transactions wait until you call btrfs_end_log_trans()
254  */
btrfs_pin_log_trans(struct btrfs_root * root)255 void btrfs_pin_log_trans(struct btrfs_root *root)
256 {
257 	atomic_inc(&root->log_writers);
258 }
259 
260 /*
261  * indicate we're done making changes to the log tree
262  * and wake up anyone waiting to do a sync
263  */
btrfs_end_log_trans(struct btrfs_root * root)264 void btrfs_end_log_trans(struct btrfs_root *root)
265 {
266 	if (atomic_dec_and_test(&root->log_writers)) {
267 		/* atomic_dec_and_test implies a barrier */
268 		cond_wake_up_nomb(&root->log_writer_wait);
269 	}
270 }
271 
btrfs_write_tree_block(struct extent_buffer * buf)272 static int btrfs_write_tree_block(struct extent_buffer *buf)
273 {
274 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
275 					buf->start + buf->len - 1);
276 }
277 
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)278 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
279 {
280 	filemap_fdatawait_range(buf->pages[0]->mapping,
281 			        buf->start, buf->start + buf->len - 1);
282 }
283 
284 /*
285  * the walk control struct is used to pass state down the chain when
286  * processing the log tree.  The stage field tells us which part
287  * of the log tree processing we are currently doing.  The others
288  * are state fields used for that specific part
289  */
290 struct walk_control {
291 	/* should we free the extent on disk when done?  This is used
292 	 * at transaction commit time while freeing a log tree
293 	 */
294 	int free;
295 
296 	/* should we write out the extent buffer?  This is used
297 	 * while flushing the log tree to disk during a sync
298 	 */
299 	int write;
300 
301 	/* should we wait for the extent buffer io to finish?  Also used
302 	 * while flushing the log tree to disk for a sync
303 	 */
304 	int wait;
305 
306 	/* pin only walk, we record which extents on disk belong to the
307 	 * log trees
308 	 */
309 	int pin;
310 
311 	/* what stage of the replay code we're currently in */
312 	int stage;
313 
314 	/*
315 	 * Ignore any items from the inode currently being processed. Needs
316 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
317 	 * the LOG_WALK_REPLAY_INODES stage.
318 	 */
319 	bool ignore_cur_inode;
320 
321 	/* the root we are currently replaying */
322 	struct btrfs_root *replay_dest;
323 
324 	/* the trans handle for the current replay */
325 	struct btrfs_trans_handle *trans;
326 
327 	/* the function that gets used to process blocks we find in the
328 	 * tree.  Note the extent_buffer might not be up to date when it is
329 	 * passed in, and it must be checked or read if you need the data
330 	 * inside it
331 	 */
332 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
333 			    struct walk_control *wc, u64 gen, int level);
334 };
335 
336 /*
337  * process_func used to pin down extents, write them or wait on them
338  */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)339 static int process_one_buffer(struct btrfs_root *log,
340 			      struct extent_buffer *eb,
341 			      struct walk_control *wc, u64 gen, int level)
342 {
343 	struct btrfs_fs_info *fs_info = log->fs_info;
344 	int ret = 0;
345 
346 	/*
347 	 * If this fs is mixed then we need to be able to process the leaves to
348 	 * pin down any logged extents, so we have to read the block.
349 	 */
350 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
351 		ret = btrfs_read_buffer(eb, gen, level, NULL);
352 		if (ret)
353 			return ret;
354 	}
355 
356 	if (wc->pin)
357 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
358 						      eb->len);
359 
360 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
361 		if (wc->pin && btrfs_header_level(eb) == 0)
362 			ret = btrfs_exclude_logged_extents(eb);
363 		if (wc->write)
364 			btrfs_write_tree_block(eb);
365 		if (wc->wait)
366 			btrfs_wait_tree_block_writeback(eb);
367 	}
368 	return ret;
369 }
370 
371 /*
372  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
373  * to the src data we are copying out.
374  *
375  * root is the tree we are copying into, and path is a scratch
376  * path for use in this function (it should be released on entry and
377  * will be released on exit).
378  *
379  * If the key is already in the destination tree the existing item is
380  * overwritten.  If the existing item isn't big enough, it is extended.
381  * If it is too large, it is truncated.
382  *
383  * If the key isn't in the destination yet, a new item is inserted.
384  */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)385 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
386 				   struct btrfs_root *root,
387 				   struct btrfs_path *path,
388 				   struct extent_buffer *eb, int slot,
389 				   struct btrfs_key *key)
390 {
391 	int ret;
392 	u32 item_size;
393 	u64 saved_i_size = 0;
394 	int save_old_i_size = 0;
395 	unsigned long src_ptr;
396 	unsigned long dst_ptr;
397 	int overwrite_root = 0;
398 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
399 
400 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
401 		overwrite_root = 1;
402 
403 	item_size = btrfs_item_size_nr(eb, slot);
404 	src_ptr = btrfs_item_ptr_offset(eb, slot);
405 
406 	/* look for the key in the destination tree */
407 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
408 	if (ret < 0)
409 		return ret;
410 
411 	if (ret == 0) {
412 		char *src_copy;
413 		char *dst_copy;
414 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
415 						  path->slots[0]);
416 		if (dst_size != item_size)
417 			goto insert;
418 
419 		if (item_size == 0) {
420 			btrfs_release_path(path);
421 			return 0;
422 		}
423 		dst_copy = kmalloc(item_size, GFP_NOFS);
424 		src_copy = kmalloc(item_size, GFP_NOFS);
425 		if (!dst_copy || !src_copy) {
426 			btrfs_release_path(path);
427 			kfree(dst_copy);
428 			kfree(src_copy);
429 			return -ENOMEM;
430 		}
431 
432 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
433 
434 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
435 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
436 				   item_size);
437 		ret = memcmp(dst_copy, src_copy, item_size);
438 
439 		kfree(dst_copy);
440 		kfree(src_copy);
441 		/*
442 		 * they have the same contents, just return, this saves
443 		 * us from cowing blocks in the destination tree and doing
444 		 * extra writes that may not have been done by a previous
445 		 * sync
446 		 */
447 		if (ret == 0) {
448 			btrfs_release_path(path);
449 			return 0;
450 		}
451 
452 		/*
453 		 * We need to load the old nbytes into the inode so when we
454 		 * replay the extents we've logged we get the right nbytes.
455 		 */
456 		if (inode_item) {
457 			struct btrfs_inode_item *item;
458 			u64 nbytes;
459 			u32 mode;
460 
461 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
462 					      struct btrfs_inode_item);
463 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
464 			item = btrfs_item_ptr(eb, slot,
465 					      struct btrfs_inode_item);
466 			btrfs_set_inode_nbytes(eb, item, nbytes);
467 
468 			/*
469 			 * If this is a directory we need to reset the i_size to
470 			 * 0 so that we can set it up properly when replaying
471 			 * the rest of the items in this log.
472 			 */
473 			mode = btrfs_inode_mode(eb, item);
474 			if (S_ISDIR(mode))
475 				btrfs_set_inode_size(eb, item, 0);
476 		}
477 	} else if (inode_item) {
478 		struct btrfs_inode_item *item;
479 		u32 mode;
480 
481 		/*
482 		 * New inode, set nbytes to 0 so that the nbytes comes out
483 		 * properly when we replay the extents.
484 		 */
485 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
486 		btrfs_set_inode_nbytes(eb, item, 0);
487 
488 		/*
489 		 * If this is a directory we need to reset the i_size to 0 so
490 		 * that we can set it up properly when replaying the rest of
491 		 * the items in this log.
492 		 */
493 		mode = btrfs_inode_mode(eb, item);
494 		if (S_ISDIR(mode))
495 			btrfs_set_inode_size(eb, item, 0);
496 	}
497 insert:
498 	btrfs_release_path(path);
499 	/* try to insert the key into the destination tree */
500 	path->skip_release_on_error = 1;
501 	ret = btrfs_insert_empty_item(trans, root, path,
502 				      key, item_size);
503 	path->skip_release_on_error = 0;
504 
505 	/* make sure any existing item is the correct size */
506 	if (ret == -EEXIST || ret == -EOVERFLOW) {
507 		u32 found_size;
508 		found_size = btrfs_item_size_nr(path->nodes[0],
509 						path->slots[0]);
510 		if (found_size > item_size)
511 			btrfs_truncate_item(path, item_size, 1);
512 		else if (found_size < item_size)
513 			btrfs_extend_item(path, item_size - found_size);
514 	} else if (ret) {
515 		return ret;
516 	}
517 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
518 					path->slots[0]);
519 
520 	/* don't overwrite an existing inode if the generation number
521 	 * was logged as zero.  This is done when the tree logging code
522 	 * is just logging an inode to make sure it exists after recovery.
523 	 *
524 	 * Also, don't overwrite i_size on directories during replay.
525 	 * log replay inserts and removes directory items based on the
526 	 * state of the tree found in the subvolume, and i_size is modified
527 	 * as it goes
528 	 */
529 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
530 		struct btrfs_inode_item *src_item;
531 		struct btrfs_inode_item *dst_item;
532 
533 		src_item = (struct btrfs_inode_item *)src_ptr;
534 		dst_item = (struct btrfs_inode_item *)dst_ptr;
535 
536 		if (btrfs_inode_generation(eb, src_item) == 0) {
537 			struct extent_buffer *dst_eb = path->nodes[0];
538 			const u64 ino_size = btrfs_inode_size(eb, src_item);
539 
540 			/*
541 			 * For regular files an ino_size == 0 is used only when
542 			 * logging that an inode exists, as part of a directory
543 			 * fsync, and the inode wasn't fsynced before. In this
544 			 * case don't set the size of the inode in the fs/subvol
545 			 * tree, otherwise we would be throwing valid data away.
546 			 */
547 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
548 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
549 			    ino_size != 0)
550 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
551 			goto no_copy;
552 		}
553 
554 		if (overwrite_root &&
555 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
556 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
557 			save_old_i_size = 1;
558 			saved_i_size = btrfs_inode_size(path->nodes[0],
559 							dst_item);
560 		}
561 	}
562 
563 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
564 			   src_ptr, item_size);
565 
566 	if (save_old_i_size) {
567 		struct btrfs_inode_item *dst_item;
568 		dst_item = (struct btrfs_inode_item *)dst_ptr;
569 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
570 	}
571 
572 	/* make sure the generation is filled in */
573 	if (key->type == BTRFS_INODE_ITEM_KEY) {
574 		struct btrfs_inode_item *dst_item;
575 		dst_item = (struct btrfs_inode_item *)dst_ptr;
576 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
577 			btrfs_set_inode_generation(path->nodes[0], dst_item,
578 						   trans->transid);
579 		}
580 	}
581 no_copy:
582 	btrfs_mark_buffer_dirty(path->nodes[0]);
583 	btrfs_release_path(path);
584 	return 0;
585 }
586 
587 /*
588  * simple helper to read an inode off the disk from a given root
589  * This can only be called for subvolume roots and not for the log
590  */
read_one_inode(struct btrfs_root * root,u64 objectid)591 static noinline struct inode *read_one_inode(struct btrfs_root *root,
592 					     u64 objectid)
593 {
594 	struct inode *inode;
595 
596 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
597 	if (IS_ERR(inode))
598 		inode = NULL;
599 	return inode;
600 }
601 
602 /* replays a single extent in 'eb' at 'slot' with 'key' into the
603  * subvolume 'root'.  path is released on entry and should be released
604  * on exit.
605  *
606  * extents in the log tree have not been allocated out of the extent
607  * tree yet.  So, this completes the allocation, taking a reference
608  * as required if the extent already exists or creating a new extent
609  * if it isn't in the extent allocation tree yet.
610  *
611  * The extent is inserted into the file, dropping any existing extents
612  * from the file that overlap the new one.
613  */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)614 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
615 				      struct btrfs_root *root,
616 				      struct btrfs_path *path,
617 				      struct extent_buffer *eb, int slot,
618 				      struct btrfs_key *key)
619 {
620 	struct btrfs_drop_extents_args drop_args = { 0 };
621 	struct btrfs_fs_info *fs_info = root->fs_info;
622 	int found_type;
623 	u64 extent_end;
624 	u64 start = key->offset;
625 	u64 nbytes = 0;
626 	struct btrfs_file_extent_item *item;
627 	struct inode *inode = NULL;
628 	unsigned long size;
629 	int ret = 0;
630 
631 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
632 	found_type = btrfs_file_extent_type(eb, item);
633 
634 	if (found_type == BTRFS_FILE_EXTENT_REG ||
635 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
636 		nbytes = btrfs_file_extent_num_bytes(eb, item);
637 		extent_end = start + nbytes;
638 
639 		/*
640 		 * We don't add to the inodes nbytes if we are prealloc or a
641 		 * hole.
642 		 */
643 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
644 			nbytes = 0;
645 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
646 		size = btrfs_file_extent_ram_bytes(eb, item);
647 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
648 		extent_end = ALIGN(start + size,
649 				   fs_info->sectorsize);
650 	} else {
651 		ret = 0;
652 		goto out;
653 	}
654 
655 	inode = read_one_inode(root, key->objectid);
656 	if (!inode) {
657 		ret = -EIO;
658 		goto out;
659 	}
660 
661 	/*
662 	 * first check to see if we already have this extent in the
663 	 * file.  This must be done before the btrfs_drop_extents run
664 	 * so we don't try to drop this extent.
665 	 */
666 	ret = btrfs_lookup_file_extent(trans, root, path,
667 			btrfs_ino(BTRFS_I(inode)), start, 0);
668 
669 	if (ret == 0 &&
670 	    (found_type == BTRFS_FILE_EXTENT_REG ||
671 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
672 		struct btrfs_file_extent_item cmp1;
673 		struct btrfs_file_extent_item cmp2;
674 		struct btrfs_file_extent_item *existing;
675 		struct extent_buffer *leaf;
676 
677 		leaf = path->nodes[0];
678 		existing = btrfs_item_ptr(leaf, path->slots[0],
679 					  struct btrfs_file_extent_item);
680 
681 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
682 				   sizeof(cmp1));
683 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
684 				   sizeof(cmp2));
685 
686 		/*
687 		 * we already have a pointer to this exact extent,
688 		 * we don't have to do anything
689 		 */
690 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
691 			btrfs_release_path(path);
692 			goto out;
693 		}
694 	}
695 	btrfs_release_path(path);
696 
697 	/* drop any overlapping extents */
698 	drop_args.start = start;
699 	drop_args.end = extent_end;
700 	drop_args.drop_cache = true;
701 	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
702 	if (ret)
703 		goto out;
704 
705 	if (found_type == BTRFS_FILE_EXTENT_REG ||
706 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
707 		u64 offset;
708 		unsigned long dest_offset;
709 		struct btrfs_key ins;
710 
711 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
712 		    btrfs_fs_incompat(fs_info, NO_HOLES))
713 			goto update_inode;
714 
715 		ret = btrfs_insert_empty_item(trans, root, path, key,
716 					      sizeof(*item));
717 		if (ret)
718 			goto out;
719 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
720 						    path->slots[0]);
721 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
722 				(unsigned long)item,  sizeof(*item));
723 
724 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
725 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
726 		ins.type = BTRFS_EXTENT_ITEM_KEY;
727 		offset = key->offset - btrfs_file_extent_offset(eb, item);
728 
729 		/*
730 		 * Manually record dirty extent, as here we did a shallow
731 		 * file extent item copy and skip normal backref update,
732 		 * but modifying extent tree all by ourselves.
733 		 * So need to manually record dirty extent for qgroup,
734 		 * as the owner of the file extent changed from log tree
735 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
736 		 */
737 		ret = btrfs_qgroup_trace_extent(trans,
738 				btrfs_file_extent_disk_bytenr(eb, item),
739 				btrfs_file_extent_disk_num_bytes(eb, item),
740 				GFP_NOFS);
741 		if (ret < 0)
742 			goto out;
743 
744 		if (ins.objectid > 0) {
745 			struct btrfs_ref ref = { 0 };
746 			u64 csum_start;
747 			u64 csum_end;
748 			LIST_HEAD(ordered_sums);
749 
750 			/*
751 			 * is this extent already allocated in the extent
752 			 * allocation tree?  If so, just add a reference
753 			 */
754 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
755 						ins.offset);
756 			if (ret < 0) {
757 				goto out;
758 			} else if (ret == 0) {
759 				btrfs_init_generic_ref(&ref,
760 						BTRFS_ADD_DELAYED_REF,
761 						ins.objectid, ins.offset, 0);
762 				btrfs_init_data_ref(&ref,
763 						root->root_key.objectid,
764 						key->objectid, offset, 0, false);
765 				ret = btrfs_inc_extent_ref(trans, &ref);
766 				if (ret)
767 					goto out;
768 			} else {
769 				/*
770 				 * insert the extent pointer in the extent
771 				 * allocation tree
772 				 */
773 				ret = btrfs_alloc_logged_file_extent(trans,
774 						root->root_key.objectid,
775 						key->objectid, offset, &ins);
776 				if (ret)
777 					goto out;
778 			}
779 			btrfs_release_path(path);
780 
781 			if (btrfs_file_extent_compression(eb, item)) {
782 				csum_start = ins.objectid;
783 				csum_end = csum_start + ins.offset;
784 			} else {
785 				csum_start = ins.objectid +
786 					btrfs_file_extent_offset(eb, item);
787 				csum_end = csum_start +
788 					btrfs_file_extent_num_bytes(eb, item);
789 			}
790 
791 			ret = btrfs_lookup_csums_range(root->log_root,
792 						csum_start, csum_end - 1,
793 						&ordered_sums, 0);
794 			if (ret)
795 				goto out;
796 			/*
797 			 * Now delete all existing cums in the csum root that
798 			 * cover our range. We do this because we can have an
799 			 * extent that is completely referenced by one file
800 			 * extent item and partially referenced by another
801 			 * file extent item (like after using the clone or
802 			 * extent_same ioctls). In this case if we end up doing
803 			 * the replay of the one that partially references the
804 			 * extent first, and we do not do the csum deletion
805 			 * below, we can get 2 csum items in the csum tree that
806 			 * overlap each other. For example, imagine our log has
807 			 * the two following file extent items:
808 			 *
809 			 * key (257 EXTENT_DATA 409600)
810 			 *     extent data disk byte 12845056 nr 102400
811 			 *     extent data offset 20480 nr 20480 ram 102400
812 			 *
813 			 * key (257 EXTENT_DATA 819200)
814 			 *     extent data disk byte 12845056 nr 102400
815 			 *     extent data offset 0 nr 102400 ram 102400
816 			 *
817 			 * Where the second one fully references the 100K extent
818 			 * that starts at disk byte 12845056, and the log tree
819 			 * has a single csum item that covers the entire range
820 			 * of the extent:
821 			 *
822 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
823 			 *
824 			 * After the first file extent item is replayed, the
825 			 * csum tree gets the following csum item:
826 			 *
827 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
828 			 *
829 			 * Which covers the 20K sub-range starting at offset 20K
830 			 * of our extent. Now when we replay the second file
831 			 * extent item, if we do not delete existing csum items
832 			 * that cover any of its blocks, we end up getting two
833 			 * csum items in our csum tree that overlap each other:
834 			 *
835 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
836 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
837 			 *
838 			 * Which is a problem, because after this anyone trying
839 			 * to lookup up for the checksum of any block of our
840 			 * extent starting at an offset of 40K or higher, will
841 			 * end up looking at the second csum item only, which
842 			 * does not contain the checksum for any block starting
843 			 * at offset 40K or higher of our extent.
844 			 */
845 			while (!list_empty(&ordered_sums)) {
846 				struct btrfs_ordered_sum *sums;
847 				sums = list_entry(ordered_sums.next,
848 						struct btrfs_ordered_sum,
849 						list);
850 				if (!ret)
851 					ret = btrfs_del_csums(trans,
852 							      fs_info->csum_root,
853 							      sums->bytenr,
854 							      sums->len);
855 				if (!ret)
856 					ret = btrfs_csum_file_blocks(trans,
857 						fs_info->csum_root, sums);
858 				list_del(&sums->list);
859 				kfree(sums);
860 			}
861 			if (ret)
862 				goto out;
863 		} else {
864 			btrfs_release_path(path);
865 		}
866 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
867 		/* inline extents are easy, we just overwrite them */
868 		ret = overwrite_item(trans, root, path, eb, slot, key);
869 		if (ret)
870 			goto out;
871 	}
872 
873 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
874 						extent_end - start);
875 	if (ret)
876 		goto out;
877 
878 update_inode:
879 	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
880 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
881 out:
882 	if (inode)
883 		iput(inode);
884 	return ret;
885 }
886 
unlink_inode_for_log_replay(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)887 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
888 				       struct btrfs_inode *dir,
889 				       struct btrfs_inode *inode,
890 				       const char *name,
891 				       int name_len)
892 {
893 	int ret;
894 
895 	ret = btrfs_unlink_inode(trans, dir, inode, name, name_len);
896 	if (ret)
897 		return ret;
898 	/*
899 	 * Whenever we need to check if a name exists or not, we check the
900 	 * fs/subvolume tree. So after an unlink we must run delayed items, so
901 	 * that future checks for a name during log replay see that the name
902 	 * does not exists anymore.
903 	 */
904 	return btrfs_run_delayed_items(trans);
905 }
906 
907 /*
908  * when cleaning up conflicts between the directory names in the
909  * subvolume, directory names in the log and directory names in the
910  * inode back references, we may have to unlink inodes from directories.
911  *
912  * This is a helper function to do the unlink of a specific directory
913  * item
914  */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)915 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
916 				      struct btrfs_root *root,
917 				      struct btrfs_path *path,
918 				      struct btrfs_inode *dir,
919 				      struct btrfs_dir_item *di)
920 {
921 	struct inode *inode;
922 	char *name;
923 	int name_len;
924 	struct extent_buffer *leaf;
925 	struct btrfs_key location;
926 	int ret;
927 
928 	leaf = path->nodes[0];
929 
930 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
931 	name_len = btrfs_dir_name_len(leaf, di);
932 	name = kmalloc(name_len, GFP_NOFS);
933 	if (!name)
934 		return -ENOMEM;
935 
936 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
937 	btrfs_release_path(path);
938 
939 	inode = read_one_inode(root, location.objectid);
940 	if (!inode) {
941 		ret = -EIO;
942 		goto out;
943 	}
944 
945 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
946 	if (ret)
947 		goto out;
948 
949 	ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), name,
950 			name_len);
951 out:
952 	kfree(name);
953 	iput(inode);
954 	return ret;
955 }
956 
957 /*
958  * See if a given name and sequence number found in an inode back reference are
959  * already in a directory and correctly point to this inode.
960  *
961  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
962  * exists.
963  */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,const char * name,int name_len)964 static noinline int inode_in_dir(struct btrfs_root *root,
965 				 struct btrfs_path *path,
966 				 u64 dirid, u64 objectid, u64 index,
967 				 const char *name, int name_len)
968 {
969 	struct btrfs_dir_item *di;
970 	struct btrfs_key location;
971 	int ret = 0;
972 
973 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
974 					 index, name, name_len, 0);
975 	if (IS_ERR(di)) {
976 		ret = PTR_ERR(di);
977 		goto out;
978 	} else if (di) {
979 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
980 		if (location.objectid != objectid)
981 			goto out;
982 	} else {
983 		goto out;
984 	}
985 
986 	btrfs_release_path(path);
987 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
988 	if (IS_ERR(di)) {
989 		ret = PTR_ERR(di);
990 		goto out;
991 	} else if (di) {
992 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
993 		if (location.objectid == objectid)
994 			ret = 1;
995 	}
996 out:
997 	btrfs_release_path(path);
998 	return ret;
999 }
1000 
1001 /*
1002  * helper function to check a log tree for a named back reference in
1003  * an inode.  This is used to decide if a back reference that is
1004  * found in the subvolume conflicts with what we find in the log.
1005  *
1006  * inode backreferences may have multiple refs in a single item,
1007  * during replay we process one reference at a time, and we don't
1008  * want to delete valid links to a file from the subvolume if that
1009  * link is also in the log.
1010  */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const char * name,int namelen)1011 static noinline int backref_in_log(struct btrfs_root *log,
1012 				   struct btrfs_key *key,
1013 				   u64 ref_objectid,
1014 				   const char *name, int namelen)
1015 {
1016 	struct btrfs_path *path;
1017 	int ret;
1018 
1019 	path = btrfs_alloc_path();
1020 	if (!path)
1021 		return -ENOMEM;
1022 
1023 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1024 	if (ret < 0) {
1025 		goto out;
1026 	} else if (ret == 1) {
1027 		ret = 0;
1028 		goto out;
1029 	}
1030 
1031 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1032 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1033 						       path->slots[0],
1034 						       ref_objectid,
1035 						       name, namelen);
1036 	else
1037 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1038 						   path->slots[0],
1039 						   name, namelen);
1040 out:
1041 	btrfs_free_path(path);
1042 	return ret;
1043 }
1044 
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,char * name,int namelen,int * search_done)1045 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1046 				  struct btrfs_root *root,
1047 				  struct btrfs_path *path,
1048 				  struct btrfs_root *log_root,
1049 				  struct btrfs_inode *dir,
1050 				  struct btrfs_inode *inode,
1051 				  u64 inode_objectid, u64 parent_objectid,
1052 				  u64 ref_index, char *name, int namelen,
1053 				  int *search_done)
1054 {
1055 	int ret;
1056 	char *victim_name;
1057 	int victim_name_len;
1058 	struct extent_buffer *leaf;
1059 	struct btrfs_dir_item *di;
1060 	struct btrfs_key search_key;
1061 	struct btrfs_inode_extref *extref;
1062 
1063 again:
1064 	/* Search old style refs */
1065 	search_key.objectid = inode_objectid;
1066 	search_key.type = BTRFS_INODE_REF_KEY;
1067 	search_key.offset = parent_objectid;
1068 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1069 	if (ret == 0) {
1070 		struct btrfs_inode_ref *victim_ref;
1071 		unsigned long ptr;
1072 		unsigned long ptr_end;
1073 
1074 		leaf = path->nodes[0];
1075 
1076 		/* are we trying to overwrite a back ref for the root directory
1077 		 * if so, just jump out, we're done
1078 		 */
1079 		if (search_key.objectid == search_key.offset)
1080 			return 1;
1081 
1082 		/* check all the names in this back reference to see
1083 		 * if they are in the log.  if so, we allow them to stay
1084 		 * otherwise they must be unlinked as a conflict
1085 		 */
1086 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1087 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1088 		while (ptr < ptr_end) {
1089 			victim_ref = (struct btrfs_inode_ref *)ptr;
1090 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1091 								   victim_ref);
1092 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1093 			if (!victim_name)
1094 				return -ENOMEM;
1095 
1096 			read_extent_buffer(leaf, victim_name,
1097 					   (unsigned long)(victim_ref + 1),
1098 					   victim_name_len);
1099 
1100 			ret = backref_in_log(log_root, &search_key,
1101 					     parent_objectid, victim_name,
1102 					     victim_name_len);
1103 			if (ret < 0) {
1104 				kfree(victim_name);
1105 				return ret;
1106 			} else if (!ret) {
1107 				inc_nlink(&inode->vfs_inode);
1108 				btrfs_release_path(path);
1109 
1110 				ret = unlink_inode_for_log_replay(trans, dir, inode,
1111 						victim_name, victim_name_len);
1112 				kfree(victim_name);
1113 				if (ret)
1114 					return ret;
1115 				*search_done = 1;
1116 				goto again;
1117 			}
1118 			kfree(victim_name);
1119 
1120 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1121 		}
1122 
1123 		/*
1124 		 * NOTE: we have searched root tree and checked the
1125 		 * corresponding ref, it does not need to check again.
1126 		 */
1127 		*search_done = 1;
1128 	}
1129 	btrfs_release_path(path);
1130 
1131 	/* Same search but for extended refs */
1132 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1133 					   inode_objectid, parent_objectid, 0,
1134 					   0);
1135 	if (IS_ERR(extref)) {
1136 		return PTR_ERR(extref);
1137 	} else if (extref) {
1138 		u32 item_size;
1139 		u32 cur_offset = 0;
1140 		unsigned long base;
1141 		struct inode *victim_parent;
1142 
1143 		leaf = path->nodes[0];
1144 
1145 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1146 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1147 
1148 		while (cur_offset < item_size) {
1149 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1150 
1151 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1152 
1153 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1154 				goto next;
1155 
1156 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1157 			if (!victim_name)
1158 				return -ENOMEM;
1159 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1160 					   victim_name_len);
1161 
1162 			search_key.objectid = inode_objectid;
1163 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1164 			search_key.offset = btrfs_extref_hash(parent_objectid,
1165 							      victim_name,
1166 							      victim_name_len);
1167 			ret = backref_in_log(log_root, &search_key,
1168 					     parent_objectid, victim_name,
1169 					     victim_name_len);
1170 			if (ret < 0) {
1171 				kfree(victim_name);
1172 				return ret;
1173 			} else if (!ret) {
1174 				ret = -ENOENT;
1175 				victim_parent = read_one_inode(root,
1176 						parent_objectid);
1177 				if (victim_parent) {
1178 					inc_nlink(&inode->vfs_inode);
1179 					btrfs_release_path(path);
1180 
1181 					ret = unlink_inode_for_log_replay(trans,
1182 							BTRFS_I(victim_parent),
1183 							inode,
1184 							victim_name,
1185 							victim_name_len);
1186 				}
1187 				iput(victim_parent);
1188 				kfree(victim_name);
1189 				if (ret)
1190 					return ret;
1191 				*search_done = 1;
1192 				goto again;
1193 			}
1194 			kfree(victim_name);
1195 next:
1196 			cur_offset += victim_name_len + sizeof(*extref);
1197 		}
1198 		*search_done = 1;
1199 	}
1200 	btrfs_release_path(path);
1201 
1202 	/* look for a conflicting sequence number */
1203 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1204 					 ref_index, name, namelen, 0);
1205 	if (IS_ERR(di)) {
1206 		return PTR_ERR(di);
1207 	} else if (di) {
1208 		ret = drop_one_dir_item(trans, root, path, dir, di);
1209 		if (ret)
1210 			return ret;
1211 	}
1212 	btrfs_release_path(path);
1213 
1214 	/* look for a conflicting name */
1215 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1216 				   name, namelen, 0);
1217 	if (IS_ERR(di)) {
1218 		return PTR_ERR(di);
1219 	} else if (di) {
1220 		ret = drop_one_dir_item(trans, root, path, dir, di);
1221 		if (ret)
1222 			return ret;
1223 	}
1224 	btrfs_release_path(path);
1225 
1226 	return 0;
1227 }
1228 
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index,u64 * parent_objectid)1229 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1230 			     u32 *namelen, char **name, u64 *index,
1231 			     u64 *parent_objectid)
1232 {
1233 	struct btrfs_inode_extref *extref;
1234 
1235 	extref = (struct btrfs_inode_extref *)ref_ptr;
1236 
1237 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1238 	*name = kmalloc(*namelen, GFP_NOFS);
1239 	if (*name == NULL)
1240 		return -ENOMEM;
1241 
1242 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1243 			   *namelen);
1244 
1245 	if (index)
1246 		*index = btrfs_inode_extref_index(eb, extref);
1247 	if (parent_objectid)
1248 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1249 
1250 	return 0;
1251 }
1252 
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index)1253 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1254 			  u32 *namelen, char **name, u64 *index)
1255 {
1256 	struct btrfs_inode_ref *ref;
1257 
1258 	ref = (struct btrfs_inode_ref *)ref_ptr;
1259 
1260 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1261 	*name = kmalloc(*namelen, GFP_NOFS);
1262 	if (*name == NULL)
1263 		return -ENOMEM;
1264 
1265 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1266 
1267 	if (index)
1268 		*index = btrfs_inode_ref_index(eb, ref);
1269 
1270 	return 0;
1271 }
1272 
1273 /*
1274  * Take an inode reference item from the log tree and iterate all names from the
1275  * inode reference item in the subvolume tree with the same key (if it exists).
1276  * For any name that is not in the inode reference item from the log tree, do a
1277  * proper unlink of that name (that is, remove its entry from the inode
1278  * reference item and both dir index keys).
1279  */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1280 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1281 				 struct btrfs_root *root,
1282 				 struct btrfs_path *path,
1283 				 struct btrfs_inode *inode,
1284 				 struct extent_buffer *log_eb,
1285 				 int log_slot,
1286 				 struct btrfs_key *key)
1287 {
1288 	int ret;
1289 	unsigned long ref_ptr;
1290 	unsigned long ref_end;
1291 	struct extent_buffer *eb;
1292 
1293 again:
1294 	btrfs_release_path(path);
1295 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1296 	if (ret > 0) {
1297 		ret = 0;
1298 		goto out;
1299 	}
1300 	if (ret < 0)
1301 		goto out;
1302 
1303 	eb = path->nodes[0];
1304 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1305 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1306 	while (ref_ptr < ref_end) {
1307 		char *name = NULL;
1308 		int namelen;
1309 		u64 parent_id;
1310 
1311 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1312 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1313 						NULL, &parent_id);
1314 		} else {
1315 			parent_id = key->offset;
1316 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1317 					     NULL);
1318 		}
1319 		if (ret)
1320 			goto out;
1321 
1322 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1323 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1324 							       parent_id, name,
1325 							       namelen);
1326 		else
1327 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1328 							   name, namelen);
1329 
1330 		if (!ret) {
1331 			struct inode *dir;
1332 
1333 			btrfs_release_path(path);
1334 			dir = read_one_inode(root, parent_id);
1335 			if (!dir) {
1336 				ret = -ENOENT;
1337 				kfree(name);
1338 				goto out;
1339 			}
1340 			ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1341 						 inode, name, namelen);
1342 			kfree(name);
1343 			iput(dir);
1344 			if (ret)
1345 				goto out;
1346 			goto again;
1347 		}
1348 
1349 		kfree(name);
1350 		ref_ptr += namelen;
1351 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1352 			ref_ptr += sizeof(struct btrfs_inode_extref);
1353 		else
1354 			ref_ptr += sizeof(struct btrfs_inode_ref);
1355 	}
1356 	ret = 0;
1357  out:
1358 	btrfs_release_path(path);
1359 	return ret;
1360 }
1361 
btrfs_inode_ref_exists(struct inode * inode,struct inode * dir,const u8 ref_type,const char * name,const int namelen)1362 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1363 				  const u8 ref_type, const char *name,
1364 				  const int namelen)
1365 {
1366 	struct btrfs_key key;
1367 	struct btrfs_path *path;
1368 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1369 	int ret;
1370 
1371 	path = btrfs_alloc_path();
1372 	if (!path)
1373 		return -ENOMEM;
1374 
1375 	key.objectid = btrfs_ino(BTRFS_I(inode));
1376 	key.type = ref_type;
1377 	if (key.type == BTRFS_INODE_REF_KEY)
1378 		key.offset = parent_id;
1379 	else
1380 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1381 
1382 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1383 	if (ret < 0)
1384 		goto out;
1385 	if (ret > 0) {
1386 		ret = 0;
1387 		goto out;
1388 	}
1389 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1390 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1391 				path->slots[0], parent_id, name, namelen);
1392 	else
1393 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1394 						   name, namelen);
1395 
1396 out:
1397 	btrfs_free_path(path);
1398 	return ret;
1399 }
1400 
add_link(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct inode * inode,const char * name,int namelen,u64 ref_index)1401 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1402 		    struct inode *dir, struct inode *inode, const char *name,
1403 		    int namelen, u64 ref_index)
1404 {
1405 	struct btrfs_dir_item *dir_item;
1406 	struct btrfs_key key;
1407 	struct btrfs_path *path;
1408 	struct inode *other_inode = NULL;
1409 	int ret;
1410 
1411 	path = btrfs_alloc_path();
1412 	if (!path)
1413 		return -ENOMEM;
1414 
1415 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1416 					 btrfs_ino(BTRFS_I(dir)),
1417 					 name, namelen, 0);
1418 	if (!dir_item) {
1419 		btrfs_release_path(path);
1420 		goto add_link;
1421 	} else if (IS_ERR(dir_item)) {
1422 		ret = PTR_ERR(dir_item);
1423 		goto out;
1424 	}
1425 
1426 	/*
1427 	 * Our inode's dentry collides with the dentry of another inode which is
1428 	 * in the log but not yet processed since it has a higher inode number.
1429 	 * So delete that other dentry.
1430 	 */
1431 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1432 	btrfs_release_path(path);
1433 	other_inode = read_one_inode(root, key.objectid);
1434 	if (!other_inode) {
1435 		ret = -ENOENT;
1436 		goto out;
1437 	}
1438 	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(other_inode),
1439 					  name, namelen);
1440 	if (ret)
1441 		goto out;
1442 	/*
1443 	 * If we dropped the link count to 0, bump it so that later the iput()
1444 	 * on the inode will not free it. We will fixup the link count later.
1445 	 */
1446 	if (other_inode->i_nlink == 0)
1447 		set_nlink(other_inode, 1);
1448 add_link:
1449 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1450 			     name, namelen, 0, ref_index);
1451 out:
1452 	iput(other_inode);
1453 	btrfs_free_path(path);
1454 
1455 	return ret;
1456 }
1457 
1458 /*
1459  * replay one inode back reference item found in the log tree.
1460  * eb, slot and key refer to the buffer and key found in the log tree.
1461  * root is the destination we are replaying into, and path is for temp
1462  * use by this function.  (it should be released on return).
1463  */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1464 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1465 				  struct btrfs_root *root,
1466 				  struct btrfs_root *log,
1467 				  struct btrfs_path *path,
1468 				  struct extent_buffer *eb, int slot,
1469 				  struct btrfs_key *key)
1470 {
1471 	struct inode *dir = NULL;
1472 	struct inode *inode = NULL;
1473 	unsigned long ref_ptr;
1474 	unsigned long ref_end;
1475 	char *name = NULL;
1476 	int namelen;
1477 	int ret;
1478 	int search_done = 0;
1479 	int log_ref_ver = 0;
1480 	u64 parent_objectid;
1481 	u64 inode_objectid;
1482 	u64 ref_index = 0;
1483 	int ref_struct_size;
1484 
1485 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1486 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1487 
1488 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1489 		struct btrfs_inode_extref *r;
1490 
1491 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1492 		log_ref_ver = 1;
1493 		r = (struct btrfs_inode_extref *)ref_ptr;
1494 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1495 	} else {
1496 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1497 		parent_objectid = key->offset;
1498 	}
1499 	inode_objectid = key->objectid;
1500 
1501 	/*
1502 	 * it is possible that we didn't log all the parent directories
1503 	 * for a given inode.  If we don't find the dir, just don't
1504 	 * copy the back ref in.  The link count fixup code will take
1505 	 * care of the rest
1506 	 */
1507 	dir = read_one_inode(root, parent_objectid);
1508 	if (!dir) {
1509 		ret = -ENOENT;
1510 		goto out;
1511 	}
1512 
1513 	inode = read_one_inode(root, inode_objectid);
1514 	if (!inode) {
1515 		ret = -EIO;
1516 		goto out;
1517 	}
1518 
1519 	while (ref_ptr < ref_end) {
1520 		if (log_ref_ver) {
1521 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1522 						&ref_index, &parent_objectid);
1523 			/*
1524 			 * parent object can change from one array
1525 			 * item to another.
1526 			 */
1527 			if (!dir)
1528 				dir = read_one_inode(root, parent_objectid);
1529 			if (!dir) {
1530 				ret = -ENOENT;
1531 				goto out;
1532 			}
1533 		} else {
1534 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1535 					     &ref_index);
1536 		}
1537 		if (ret)
1538 			goto out;
1539 
1540 		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1541 				   btrfs_ino(BTRFS_I(inode)), ref_index,
1542 				   name, namelen);
1543 		if (ret < 0) {
1544 			goto out;
1545 		} else if (ret == 0) {
1546 			/*
1547 			 * look for a conflicting back reference in the
1548 			 * metadata. if we find one we have to unlink that name
1549 			 * of the file before we add our new link.  Later on, we
1550 			 * overwrite any existing back reference, and we don't
1551 			 * want to create dangling pointers in the directory.
1552 			 */
1553 
1554 			if (!search_done) {
1555 				ret = __add_inode_ref(trans, root, path, log,
1556 						      BTRFS_I(dir),
1557 						      BTRFS_I(inode),
1558 						      inode_objectid,
1559 						      parent_objectid,
1560 						      ref_index, name, namelen,
1561 						      &search_done);
1562 				if (ret) {
1563 					if (ret == 1)
1564 						ret = 0;
1565 					goto out;
1566 				}
1567 			}
1568 
1569 			/*
1570 			 * If a reference item already exists for this inode
1571 			 * with the same parent and name, but different index,
1572 			 * drop it and the corresponding directory index entries
1573 			 * from the parent before adding the new reference item
1574 			 * and dir index entries, otherwise we would fail with
1575 			 * -EEXIST returned from btrfs_add_link() below.
1576 			 */
1577 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1578 						     name, namelen);
1579 			if (ret > 0) {
1580 				ret = unlink_inode_for_log_replay(trans,
1581 							 BTRFS_I(dir),
1582 							 BTRFS_I(inode),
1583 							 name, namelen);
1584 				/*
1585 				 * If we dropped the link count to 0, bump it so
1586 				 * that later the iput() on the inode will not
1587 				 * free it. We will fixup the link count later.
1588 				 */
1589 				if (!ret && inode->i_nlink == 0)
1590 					set_nlink(inode, 1);
1591 			}
1592 			if (ret < 0)
1593 				goto out;
1594 
1595 			/* insert our name */
1596 			ret = add_link(trans, root, dir, inode, name, namelen,
1597 				       ref_index);
1598 			if (ret)
1599 				goto out;
1600 
1601 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1602 			if (ret)
1603 				goto out;
1604 		}
1605 		/* Else, ret == 1, we already have a perfect match, we're done. */
1606 
1607 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1608 		kfree(name);
1609 		name = NULL;
1610 		if (log_ref_ver) {
1611 			iput(dir);
1612 			dir = NULL;
1613 		}
1614 	}
1615 
1616 	/*
1617 	 * Before we overwrite the inode reference item in the subvolume tree
1618 	 * with the item from the log tree, we must unlink all names from the
1619 	 * parent directory that are in the subvolume's tree inode reference
1620 	 * item, otherwise we end up with an inconsistent subvolume tree where
1621 	 * dir index entries exist for a name but there is no inode reference
1622 	 * item with the same name.
1623 	 */
1624 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1625 				    key);
1626 	if (ret)
1627 		goto out;
1628 
1629 	/* finally write the back reference in the inode */
1630 	ret = overwrite_item(trans, root, path, eb, slot, key);
1631 out:
1632 	btrfs_release_path(path);
1633 	kfree(name);
1634 	iput(dir);
1635 	iput(inode);
1636 	return ret;
1637 }
1638 
count_inode_extrefs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1639 static int count_inode_extrefs(struct btrfs_root *root,
1640 		struct btrfs_inode *inode, struct btrfs_path *path)
1641 {
1642 	int ret = 0;
1643 	int name_len;
1644 	unsigned int nlink = 0;
1645 	u32 item_size;
1646 	u32 cur_offset = 0;
1647 	u64 inode_objectid = btrfs_ino(inode);
1648 	u64 offset = 0;
1649 	unsigned long ptr;
1650 	struct btrfs_inode_extref *extref;
1651 	struct extent_buffer *leaf;
1652 
1653 	while (1) {
1654 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1655 					    &extref, &offset);
1656 		if (ret)
1657 			break;
1658 
1659 		leaf = path->nodes[0];
1660 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1661 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1662 		cur_offset = 0;
1663 
1664 		while (cur_offset < item_size) {
1665 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1666 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1667 
1668 			nlink++;
1669 
1670 			cur_offset += name_len + sizeof(*extref);
1671 		}
1672 
1673 		offset++;
1674 		btrfs_release_path(path);
1675 	}
1676 	btrfs_release_path(path);
1677 
1678 	if (ret < 0 && ret != -ENOENT)
1679 		return ret;
1680 	return nlink;
1681 }
1682 
count_inode_refs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1683 static int count_inode_refs(struct btrfs_root *root,
1684 			struct btrfs_inode *inode, struct btrfs_path *path)
1685 {
1686 	int ret;
1687 	struct btrfs_key key;
1688 	unsigned int nlink = 0;
1689 	unsigned long ptr;
1690 	unsigned long ptr_end;
1691 	int name_len;
1692 	u64 ino = btrfs_ino(inode);
1693 
1694 	key.objectid = ino;
1695 	key.type = BTRFS_INODE_REF_KEY;
1696 	key.offset = (u64)-1;
1697 
1698 	while (1) {
1699 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1700 		if (ret < 0)
1701 			break;
1702 		if (ret > 0) {
1703 			if (path->slots[0] == 0)
1704 				break;
1705 			path->slots[0]--;
1706 		}
1707 process_slot:
1708 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1709 				      path->slots[0]);
1710 		if (key.objectid != ino ||
1711 		    key.type != BTRFS_INODE_REF_KEY)
1712 			break;
1713 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1714 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1715 						   path->slots[0]);
1716 		while (ptr < ptr_end) {
1717 			struct btrfs_inode_ref *ref;
1718 
1719 			ref = (struct btrfs_inode_ref *)ptr;
1720 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1721 							    ref);
1722 			ptr = (unsigned long)(ref + 1) + name_len;
1723 			nlink++;
1724 		}
1725 
1726 		if (key.offset == 0)
1727 			break;
1728 		if (path->slots[0] > 0) {
1729 			path->slots[0]--;
1730 			goto process_slot;
1731 		}
1732 		key.offset--;
1733 		btrfs_release_path(path);
1734 	}
1735 	btrfs_release_path(path);
1736 
1737 	return nlink;
1738 }
1739 
1740 /*
1741  * There are a few corners where the link count of the file can't
1742  * be properly maintained during replay.  So, instead of adding
1743  * lots of complexity to the log code, we just scan the backrefs
1744  * for any file that has been through replay.
1745  *
1746  * The scan will update the link count on the inode to reflect the
1747  * number of back refs found.  If it goes down to zero, the iput
1748  * will free the inode.
1749  */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1750 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1751 					   struct btrfs_root *root,
1752 					   struct inode *inode)
1753 {
1754 	struct btrfs_path *path;
1755 	int ret;
1756 	u64 nlink = 0;
1757 	u64 ino = btrfs_ino(BTRFS_I(inode));
1758 
1759 	path = btrfs_alloc_path();
1760 	if (!path)
1761 		return -ENOMEM;
1762 
1763 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1764 	if (ret < 0)
1765 		goto out;
1766 
1767 	nlink = ret;
1768 
1769 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1770 	if (ret < 0)
1771 		goto out;
1772 
1773 	nlink += ret;
1774 
1775 	ret = 0;
1776 
1777 	if (nlink != inode->i_nlink) {
1778 		set_nlink(inode, nlink);
1779 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1780 		if (ret)
1781 			goto out;
1782 	}
1783 	BTRFS_I(inode)->index_cnt = (u64)-1;
1784 
1785 	if (inode->i_nlink == 0) {
1786 		if (S_ISDIR(inode->i_mode)) {
1787 			ret = replay_dir_deletes(trans, root, NULL, path,
1788 						 ino, 1);
1789 			if (ret)
1790 				goto out;
1791 		}
1792 		ret = btrfs_insert_orphan_item(trans, root, ino);
1793 		if (ret == -EEXIST)
1794 			ret = 0;
1795 	}
1796 
1797 out:
1798 	btrfs_free_path(path);
1799 	return ret;
1800 }
1801 
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1802 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1803 					    struct btrfs_root *root,
1804 					    struct btrfs_path *path)
1805 {
1806 	int ret;
1807 	struct btrfs_key key;
1808 	struct inode *inode;
1809 
1810 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1811 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1812 	key.offset = (u64)-1;
1813 	while (1) {
1814 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1815 		if (ret < 0)
1816 			break;
1817 
1818 		if (ret == 1) {
1819 			ret = 0;
1820 			if (path->slots[0] == 0)
1821 				break;
1822 			path->slots[0]--;
1823 		}
1824 
1825 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1826 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1827 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1828 			break;
1829 
1830 		ret = btrfs_del_item(trans, root, path);
1831 		if (ret)
1832 			break;
1833 
1834 		btrfs_release_path(path);
1835 		inode = read_one_inode(root, key.offset);
1836 		if (!inode) {
1837 			ret = -EIO;
1838 			break;
1839 		}
1840 
1841 		ret = fixup_inode_link_count(trans, root, inode);
1842 		iput(inode);
1843 		if (ret)
1844 			break;
1845 
1846 		/*
1847 		 * fixup on a directory may create new entries,
1848 		 * make sure we always look for the highset possible
1849 		 * offset
1850 		 */
1851 		key.offset = (u64)-1;
1852 	}
1853 	btrfs_release_path(path);
1854 	return ret;
1855 }
1856 
1857 
1858 /*
1859  * record a given inode in the fixup dir so we can check its link
1860  * count when replay is done.  The link count is incremented here
1861  * so the inode won't go away until we check it
1862  */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1863 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1864 				      struct btrfs_root *root,
1865 				      struct btrfs_path *path,
1866 				      u64 objectid)
1867 {
1868 	struct btrfs_key key;
1869 	int ret = 0;
1870 	struct inode *inode;
1871 
1872 	inode = read_one_inode(root, objectid);
1873 	if (!inode)
1874 		return -EIO;
1875 
1876 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1877 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1878 	key.offset = objectid;
1879 
1880 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1881 
1882 	btrfs_release_path(path);
1883 	if (ret == 0) {
1884 		if (!inode->i_nlink)
1885 			set_nlink(inode, 1);
1886 		else
1887 			inc_nlink(inode);
1888 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1889 	} else if (ret == -EEXIST) {
1890 		ret = 0;
1891 	}
1892 	iput(inode);
1893 
1894 	return ret;
1895 }
1896 
1897 /*
1898  * when replaying the log for a directory, we only insert names
1899  * for inodes that actually exist.  This means an fsync on a directory
1900  * does not implicitly fsync all the new files in it
1901  */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,char * name,int name_len,struct btrfs_key * location)1902 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1903 				    struct btrfs_root *root,
1904 				    u64 dirid, u64 index,
1905 				    char *name, int name_len,
1906 				    struct btrfs_key *location)
1907 {
1908 	struct inode *inode;
1909 	struct inode *dir;
1910 	int ret;
1911 
1912 	inode = read_one_inode(root, location->objectid);
1913 	if (!inode)
1914 		return -ENOENT;
1915 
1916 	dir = read_one_inode(root, dirid);
1917 	if (!dir) {
1918 		iput(inode);
1919 		return -EIO;
1920 	}
1921 
1922 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1923 			name_len, 1, index);
1924 
1925 	/* FIXME, put inode into FIXUP list */
1926 
1927 	iput(inode);
1928 	iput(dir);
1929 	return ret;
1930 }
1931 
1932 /*
1933  * take a single entry in a log directory item and replay it into
1934  * the subvolume.
1935  *
1936  * if a conflicting item exists in the subdirectory already,
1937  * the inode it points to is unlinked and put into the link count
1938  * fix up tree.
1939  *
1940  * If a name from the log points to a file or directory that does
1941  * not exist in the FS, it is skipped.  fsyncs on directories
1942  * do not force down inodes inside that directory, just changes to the
1943  * names or unlinks in a directory.
1944  *
1945  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1946  * non-existing inode) and 1 if the name was replayed.
1947  */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1948 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1949 				    struct btrfs_root *root,
1950 				    struct btrfs_path *path,
1951 				    struct extent_buffer *eb,
1952 				    struct btrfs_dir_item *di,
1953 				    struct btrfs_key *key)
1954 {
1955 	char *name;
1956 	int name_len;
1957 	struct btrfs_dir_item *dst_di;
1958 	struct btrfs_key found_key;
1959 	struct btrfs_key log_key;
1960 	struct inode *dir;
1961 	u8 log_type;
1962 	bool exists;
1963 	int ret;
1964 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1965 	bool name_added = false;
1966 
1967 	dir = read_one_inode(root, key->objectid);
1968 	if (!dir)
1969 		return -EIO;
1970 
1971 	name_len = btrfs_dir_name_len(eb, di);
1972 	name = kmalloc(name_len, GFP_NOFS);
1973 	if (!name) {
1974 		ret = -ENOMEM;
1975 		goto out;
1976 	}
1977 
1978 	log_type = btrfs_dir_type(eb, di);
1979 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1980 		   name_len);
1981 
1982 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1983 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1984 	btrfs_release_path(path);
1985 	if (ret < 0)
1986 		goto out;
1987 	exists = (ret == 0);
1988 	ret = 0;
1989 
1990 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1991 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1992 				       name, name_len, 1);
1993 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1994 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1995 						     key->objectid,
1996 						     key->offset, name,
1997 						     name_len, 1);
1998 	} else {
1999 		/* Corruption */
2000 		ret = -EINVAL;
2001 		goto out;
2002 	}
2003 
2004 	if (IS_ERR(dst_di)) {
2005 		ret = PTR_ERR(dst_di);
2006 		goto out;
2007 	} else if (!dst_di) {
2008 		/* we need a sequence number to insert, so we only
2009 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
2010 		 */
2011 		if (key->type != BTRFS_DIR_INDEX_KEY)
2012 			goto out;
2013 		goto insert;
2014 	}
2015 
2016 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
2017 	/* the existing item matches the logged item */
2018 	if (found_key.objectid == log_key.objectid &&
2019 	    found_key.type == log_key.type &&
2020 	    found_key.offset == log_key.offset &&
2021 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
2022 		update_size = false;
2023 		goto out;
2024 	}
2025 
2026 	/*
2027 	 * don't drop the conflicting directory entry if the inode
2028 	 * for the new entry doesn't exist
2029 	 */
2030 	if (!exists)
2031 		goto out;
2032 
2033 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2034 	if (ret)
2035 		goto out;
2036 
2037 	if (key->type == BTRFS_DIR_INDEX_KEY)
2038 		goto insert;
2039 out:
2040 	btrfs_release_path(path);
2041 	if (!ret && update_size) {
2042 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2043 		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2044 	}
2045 	kfree(name);
2046 	iput(dir);
2047 	if (!ret && name_added)
2048 		ret = 1;
2049 	return ret;
2050 
2051 insert:
2052 	/*
2053 	 * Check if the inode reference exists in the log for the given name,
2054 	 * inode and parent inode
2055 	 */
2056 	found_key.objectid = log_key.objectid;
2057 	found_key.type = BTRFS_INODE_REF_KEY;
2058 	found_key.offset = key->objectid;
2059 	ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2060 	if (ret < 0) {
2061 	        goto out;
2062 	} else if (ret) {
2063 	        /* The dentry will be added later. */
2064 	        ret = 0;
2065 	        update_size = false;
2066 	        goto out;
2067 	}
2068 
2069 	found_key.objectid = log_key.objectid;
2070 	found_key.type = BTRFS_INODE_EXTREF_KEY;
2071 	found_key.offset = key->objectid;
2072 	ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2073 			     name_len);
2074 	if (ret < 0) {
2075 		goto out;
2076 	} else if (ret) {
2077 		/* The dentry will be added later. */
2078 		ret = 0;
2079 		update_size = false;
2080 		goto out;
2081 	}
2082 	btrfs_release_path(path);
2083 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2084 			      name, name_len, &log_key);
2085 	if (ret && ret != -ENOENT && ret != -EEXIST)
2086 		goto out;
2087 	if (!ret)
2088 		name_added = true;
2089 	update_size = false;
2090 	ret = 0;
2091 	goto out;
2092 }
2093 
2094 /*
2095  * find all the names in a directory item and reconcile them into
2096  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2097  * one name in a directory item, but the same code gets used for
2098  * both directory index types
2099  */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)2100 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2101 					struct btrfs_root *root,
2102 					struct btrfs_path *path,
2103 					struct extent_buffer *eb, int slot,
2104 					struct btrfs_key *key)
2105 {
2106 	int ret = 0;
2107 	u32 item_size = btrfs_item_size_nr(eb, slot);
2108 	struct btrfs_dir_item *di;
2109 	int name_len;
2110 	unsigned long ptr;
2111 	unsigned long ptr_end;
2112 	struct btrfs_path *fixup_path = NULL;
2113 
2114 	ptr = btrfs_item_ptr_offset(eb, slot);
2115 	ptr_end = ptr + item_size;
2116 	while (ptr < ptr_end) {
2117 		di = (struct btrfs_dir_item *)ptr;
2118 		name_len = btrfs_dir_name_len(eb, di);
2119 		ret = replay_one_name(trans, root, path, eb, di, key);
2120 		if (ret < 0)
2121 			break;
2122 		ptr = (unsigned long)(di + 1);
2123 		ptr += name_len;
2124 
2125 		/*
2126 		 * If this entry refers to a non-directory (directories can not
2127 		 * have a link count > 1) and it was added in the transaction
2128 		 * that was not committed, make sure we fixup the link count of
2129 		 * the inode it the entry points to. Otherwise something like
2130 		 * the following would result in a directory pointing to an
2131 		 * inode with a wrong link that does not account for this dir
2132 		 * entry:
2133 		 *
2134 		 * mkdir testdir
2135 		 * touch testdir/foo
2136 		 * touch testdir/bar
2137 		 * sync
2138 		 *
2139 		 * ln testdir/bar testdir/bar_link
2140 		 * ln testdir/foo testdir/foo_link
2141 		 * xfs_io -c "fsync" testdir/bar
2142 		 *
2143 		 * <power failure>
2144 		 *
2145 		 * mount fs, log replay happens
2146 		 *
2147 		 * File foo would remain with a link count of 1 when it has two
2148 		 * entries pointing to it in the directory testdir. This would
2149 		 * make it impossible to ever delete the parent directory has
2150 		 * it would result in stale dentries that can never be deleted.
2151 		 */
2152 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2153 			struct btrfs_key di_key;
2154 
2155 			if (!fixup_path) {
2156 				fixup_path = btrfs_alloc_path();
2157 				if (!fixup_path) {
2158 					ret = -ENOMEM;
2159 					break;
2160 				}
2161 			}
2162 
2163 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2164 			ret = link_to_fixup_dir(trans, root, fixup_path,
2165 						di_key.objectid);
2166 			if (ret)
2167 				break;
2168 		}
2169 		ret = 0;
2170 	}
2171 	btrfs_free_path(fixup_path);
2172 	return ret;
2173 }
2174 
2175 /*
2176  * directory replay has two parts.  There are the standard directory
2177  * items in the log copied from the subvolume, and range items
2178  * created in the log while the subvolume was logged.
2179  *
2180  * The range items tell us which parts of the key space the log
2181  * is authoritative for.  During replay, if a key in the subvolume
2182  * directory is in a logged range item, but not actually in the log
2183  * that means it was deleted from the directory before the fsync
2184  * and should be removed.
2185  */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 * start_ret,u64 * end_ret)2186 static noinline int find_dir_range(struct btrfs_root *root,
2187 				   struct btrfs_path *path,
2188 				   u64 dirid,
2189 				   u64 *start_ret, u64 *end_ret)
2190 {
2191 	struct btrfs_key key;
2192 	u64 found_end;
2193 	struct btrfs_dir_log_item *item;
2194 	int ret;
2195 	int nritems;
2196 
2197 	if (*start_ret == (u64)-1)
2198 		return 1;
2199 
2200 	key.objectid = dirid;
2201 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2202 	key.offset = *start_ret;
2203 
2204 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2205 	if (ret < 0)
2206 		goto out;
2207 	if (ret > 0) {
2208 		if (path->slots[0] == 0)
2209 			goto out;
2210 		path->slots[0]--;
2211 	}
2212 	if (ret != 0)
2213 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2214 
2215 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2216 		ret = 1;
2217 		goto next;
2218 	}
2219 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2220 			      struct btrfs_dir_log_item);
2221 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2222 
2223 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2224 		ret = 0;
2225 		*start_ret = key.offset;
2226 		*end_ret = found_end;
2227 		goto out;
2228 	}
2229 	ret = 1;
2230 next:
2231 	/* check the next slot in the tree to see if it is a valid item */
2232 	nritems = btrfs_header_nritems(path->nodes[0]);
2233 	path->slots[0]++;
2234 	if (path->slots[0] >= nritems) {
2235 		ret = btrfs_next_leaf(root, path);
2236 		if (ret)
2237 			goto out;
2238 	}
2239 
2240 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2241 
2242 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2243 		ret = 1;
2244 		goto out;
2245 	}
2246 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2247 			      struct btrfs_dir_log_item);
2248 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2249 	*start_ret = key.offset;
2250 	*end_ret = found_end;
2251 	ret = 0;
2252 out:
2253 	btrfs_release_path(path);
2254 	return ret;
2255 }
2256 
2257 /*
2258  * this looks for a given directory item in the log.  If the directory
2259  * item is not in the log, the item is removed and the inode it points
2260  * to is unlinked
2261  */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)2262 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2263 				      struct btrfs_root *root,
2264 				      struct btrfs_root *log,
2265 				      struct btrfs_path *path,
2266 				      struct btrfs_path *log_path,
2267 				      struct inode *dir,
2268 				      struct btrfs_key *dir_key)
2269 {
2270 	int ret;
2271 	struct extent_buffer *eb;
2272 	int slot;
2273 	struct btrfs_dir_item *di;
2274 	int name_len;
2275 	char *name;
2276 	struct inode *inode = NULL;
2277 	struct btrfs_key location;
2278 
2279 	/*
2280 	 * Currenly we only log dir index keys. Even if we replay a log created
2281 	 * by an older kernel that logged both dir index and dir item keys, all
2282 	 * we need to do is process the dir index keys, we (and our caller) can
2283 	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2284 	 */
2285 	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2286 
2287 	eb = path->nodes[0];
2288 	slot = path->slots[0];
2289 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2290 	name_len = btrfs_dir_name_len(eb, di);
2291 	name = kmalloc(name_len, GFP_NOFS);
2292 	if (!name) {
2293 		ret = -ENOMEM;
2294 		goto out;
2295 	}
2296 
2297 	read_extent_buffer(eb, name, (unsigned long)(di + 1), name_len);
2298 
2299 	if (log) {
2300 		struct btrfs_dir_item *log_di;
2301 
2302 		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2303 						     dir_key->objectid,
2304 						     dir_key->offset,
2305 						     name, name_len, 0);
2306 		if (IS_ERR(log_di)) {
2307 			ret = PTR_ERR(log_di);
2308 			goto out;
2309 		} else if (log_di) {
2310 			/* The dentry exists in the log, we have nothing to do. */
2311 			ret = 0;
2312 			goto out;
2313 		}
2314 	}
2315 
2316 	btrfs_dir_item_key_to_cpu(eb, di, &location);
2317 	btrfs_release_path(path);
2318 	btrfs_release_path(log_path);
2319 	inode = read_one_inode(root, location.objectid);
2320 	if (!inode) {
2321 		ret = -EIO;
2322 		goto out;
2323 	}
2324 
2325 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2326 	if (ret)
2327 		goto out;
2328 
2329 	inc_nlink(inode);
2330 	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2331 					  name, name_len);
2332 	/*
2333 	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2334 	 * them, as there are no key collisions since each key has a unique offset
2335 	 * (an index number), so we're done.
2336 	 */
2337 out:
2338 	btrfs_release_path(path);
2339 	btrfs_release_path(log_path);
2340 	kfree(name);
2341 	iput(inode);
2342 	return ret;
2343 }
2344 
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2345 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2346 			      struct btrfs_root *root,
2347 			      struct btrfs_root *log,
2348 			      struct btrfs_path *path,
2349 			      const u64 ino)
2350 {
2351 	struct btrfs_key search_key;
2352 	struct btrfs_path *log_path;
2353 	int i;
2354 	int nritems;
2355 	int ret;
2356 
2357 	log_path = btrfs_alloc_path();
2358 	if (!log_path)
2359 		return -ENOMEM;
2360 
2361 	search_key.objectid = ino;
2362 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2363 	search_key.offset = 0;
2364 again:
2365 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2366 	if (ret < 0)
2367 		goto out;
2368 process_leaf:
2369 	nritems = btrfs_header_nritems(path->nodes[0]);
2370 	for (i = path->slots[0]; i < nritems; i++) {
2371 		struct btrfs_key key;
2372 		struct btrfs_dir_item *di;
2373 		struct btrfs_dir_item *log_di;
2374 		u32 total_size;
2375 		u32 cur;
2376 
2377 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2378 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2379 			ret = 0;
2380 			goto out;
2381 		}
2382 
2383 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2384 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2385 		cur = 0;
2386 		while (cur < total_size) {
2387 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2388 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2389 			u32 this_len = sizeof(*di) + name_len + data_len;
2390 			char *name;
2391 
2392 			name = kmalloc(name_len, GFP_NOFS);
2393 			if (!name) {
2394 				ret = -ENOMEM;
2395 				goto out;
2396 			}
2397 			read_extent_buffer(path->nodes[0], name,
2398 					   (unsigned long)(di + 1), name_len);
2399 
2400 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2401 						    name, name_len, 0);
2402 			btrfs_release_path(log_path);
2403 			if (!log_di) {
2404 				/* Doesn't exist in log tree, so delete it. */
2405 				btrfs_release_path(path);
2406 				di = btrfs_lookup_xattr(trans, root, path, ino,
2407 							name, name_len, -1);
2408 				kfree(name);
2409 				if (IS_ERR(di)) {
2410 					ret = PTR_ERR(di);
2411 					goto out;
2412 				}
2413 				ASSERT(di);
2414 				ret = btrfs_delete_one_dir_name(trans, root,
2415 								path, di);
2416 				if (ret)
2417 					goto out;
2418 				btrfs_release_path(path);
2419 				search_key = key;
2420 				goto again;
2421 			}
2422 			kfree(name);
2423 			if (IS_ERR(log_di)) {
2424 				ret = PTR_ERR(log_di);
2425 				goto out;
2426 			}
2427 			cur += this_len;
2428 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2429 		}
2430 	}
2431 	ret = btrfs_next_leaf(root, path);
2432 	if (ret > 0)
2433 		ret = 0;
2434 	else if (ret == 0)
2435 		goto process_leaf;
2436 out:
2437 	btrfs_free_path(log_path);
2438 	btrfs_release_path(path);
2439 	return ret;
2440 }
2441 
2442 
2443 /*
2444  * deletion replay happens before we copy any new directory items
2445  * out of the log or out of backreferences from inodes.  It
2446  * scans the log to find ranges of keys that log is authoritative for,
2447  * and then scans the directory to find items in those ranges that are
2448  * not present in the log.
2449  *
2450  * Anything we don't find in the log is unlinked and removed from the
2451  * directory.
2452  */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2453 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2454 				       struct btrfs_root *root,
2455 				       struct btrfs_root *log,
2456 				       struct btrfs_path *path,
2457 				       u64 dirid, int del_all)
2458 {
2459 	u64 range_start;
2460 	u64 range_end;
2461 	int ret = 0;
2462 	struct btrfs_key dir_key;
2463 	struct btrfs_key found_key;
2464 	struct btrfs_path *log_path;
2465 	struct inode *dir;
2466 
2467 	dir_key.objectid = dirid;
2468 	dir_key.type = BTRFS_DIR_INDEX_KEY;
2469 	log_path = btrfs_alloc_path();
2470 	if (!log_path)
2471 		return -ENOMEM;
2472 
2473 	dir = read_one_inode(root, dirid);
2474 	/* it isn't an error if the inode isn't there, that can happen
2475 	 * because we replay the deletes before we copy in the inode item
2476 	 * from the log
2477 	 */
2478 	if (!dir) {
2479 		btrfs_free_path(log_path);
2480 		return 0;
2481 	}
2482 
2483 	range_start = 0;
2484 	range_end = 0;
2485 	while (1) {
2486 		if (del_all)
2487 			range_end = (u64)-1;
2488 		else {
2489 			ret = find_dir_range(log, path, dirid,
2490 					     &range_start, &range_end);
2491 			if (ret < 0)
2492 				goto out;
2493 			else if (ret > 0)
2494 				break;
2495 		}
2496 
2497 		dir_key.offset = range_start;
2498 		while (1) {
2499 			int nritems;
2500 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2501 						0, 0);
2502 			if (ret < 0)
2503 				goto out;
2504 
2505 			nritems = btrfs_header_nritems(path->nodes[0]);
2506 			if (path->slots[0] >= nritems) {
2507 				ret = btrfs_next_leaf(root, path);
2508 				if (ret == 1)
2509 					break;
2510 				else if (ret < 0)
2511 					goto out;
2512 			}
2513 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2514 					      path->slots[0]);
2515 			if (found_key.objectid != dirid ||
2516 			    found_key.type != dir_key.type) {
2517 				ret = 0;
2518 				goto out;
2519 			}
2520 
2521 			if (found_key.offset > range_end)
2522 				break;
2523 
2524 			ret = check_item_in_log(trans, root, log, path,
2525 						log_path, dir,
2526 						&found_key);
2527 			if (ret)
2528 				goto out;
2529 			if (found_key.offset == (u64)-1)
2530 				break;
2531 			dir_key.offset = found_key.offset + 1;
2532 		}
2533 		btrfs_release_path(path);
2534 		if (range_end == (u64)-1)
2535 			break;
2536 		range_start = range_end + 1;
2537 	}
2538 	ret = 0;
2539 out:
2540 	btrfs_release_path(path);
2541 	btrfs_free_path(log_path);
2542 	iput(dir);
2543 	return ret;
2544 }
2545 
2546 /*
2547  * the process_func used to replay items from the log tree.  This
2548  * gets called in two different stages.  The first stage just looks
2549  * for inodes and makes sure they are all copied into the subvolume.
2550  *
2551  * The second stage copies all the other item types from the log into
2552  * the subvolume.  The two stage approach is slower, but gets rid of
2553  * lots of complexity around inodes referencing other inodes that exist
2554  * only in the log (references come from either directory items or inode
2555  * back refs).
2556  */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2557 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2558 			     struct walk_control *wc, u64 gen, int level)
2559 {
2560 	int nritems;
2561 	struct btrfs_path *path;
2562 	struct btrfs_root *root = wc->replay_dest;
2563 	struct btrfs_key key;
2564 	int i;
2565 	int ret;
2566 
2567 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2568 	if (ret)
2569 		return ret;
2570 
2571 	level = btrfs_header_level(eb);
2572 
2573 	if (level != 0)
2574 		return 0;
2575 
2576 	path = btrfs_alloc_path();
2577 	if (!path)
2578 		return -ENOMEM;
2579 
2580 	nritems = btrfs_header_nritems(eb);
2581 	for (i = 0; i < nritems; i++) {
2582 		btrfs_item_key_to_cpu(eb, &key, i);
2583 
2584 		/* inode keys are done during the first stage */
2585 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2586 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2587 			struct btrfs_inode_item *inode_item;
2588 			u32 mode;
2589 
2590 			inode_item = btrfs_item_ptr(eb, i,
2591 					    struct btrfs_inode_item);
2592 			/*
2593 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2594 			 * and never got linked before the fsync, skip it, as
2595 			 * replaying it is pointless since it would be deleted
2596 			 * later. We skip logging tmpfiles, but it's always
2597 			 * possible we are replaying a log created with a kernel
2598 			 * that used to log tmpfiles.
2599 			 */
2600 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2601 				wc->ignore_cur_inode = true;
2602 				continue;
2603 			} else {
2604 				wc->ignore_cur_inode = false;
2605 			}
2606 			ret = replay_xattr_deletes(wc->trans, root, log,
2607 						   path, key.objectid);
2608 			if (ret)
2609 				break;
2610 			mode = btrfs_inode_mode(eb, inode_item);
2611 			if (S_ISDIR(mode)) {
2612 				ret = replay_dir_deletes(wc->trans,
2613 					 root, log, path, key.objectid, 0);
2614 				if (ret)
2615 					break;
2616 			}
2617 			ret = overwrite_item(wc->trans, root, path,
2618 					     eb, i, &key);
2619 			if (ret)
2620 				break;
2621 
2622 			/*
2623 			 * Before replaying extents, truncate the inode to its
2624 			 * size. We need to do it now and not after log replay
2625 			 * because before an fsync we can have prealloc extents
2626 			 * added beyond the inode's i_size. If we did it after,
2627 			 * through orphan cleanup for example, we would drop
2628 			 * those prealloc extents just after replaying them.
2629 			 */
2630 			if (S_ISREG(mode)) {
2631 				struct btrfs_drop_extents_args drop_args = { 0 };
2632 				struct inode *inode;
2633 				u64 from;
2634 
2635 				inode = read_one_inode(root, key.objectid);
2636 				if (!inode) {
2637 					ret = -EIO;
2638 					break;
2639 				}
2640 				from = ALIGN(i_size_read(inode),
2641 					     root->fs_info->sectorsize);
2642 				drop_args.start = from;
2643 				drop_args.end = (u64)-1;
2644 				drop_args.drop_cache = true;
2645 				ret = btrfs_drop_extents(wc->trans, root,
2646 							 BTRFS_I(inode),
2647 							 &drop_args);
2648 				if (!ret) {
2649 					inode_sub_bytes(inode,
2650 							drop_args.bytes_found);
2651 					/* Update the inode's nbytes. */
2652 					ret = btrfs_update_inode(wc->trans,
2653 							root, BTRFS_I(inode));
2654 				}
2655 				iput(inode);
2656 				if (ret)
2657 					break;
2658 			}
2659 
2660 			ret = link_to_fixup_dir(wc->trans, root,
2661 						path, key.objectid);
2662 			if (ret)
2663 				break;
2664 		}
2665 
2666 		if (wc->ignore_cur_inode)
2667 			continue;
2668 
2669 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2670 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2671 			ret = replay_one_dir_item(wc->trans, root, path,
2672 						  eb, i, &key);
2673 			if (ret)
2674 				break;
2675 		}
2676 
2677 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2678 			continue;
2679 
2680 		/* these keys are simply copied */
2681 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2682 			ret = overwrite_item(wc->trans, root, path,
2683 					     eb, i, &key);
2684 			if (ret)
2685 				break;
2686 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2687 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2688 			ret = add_inode_ref(wc->trans, root, log, path,
2689 					    eb, i, &key);
2690 			if (ret && ret != -ENOENT)
2691 				break;
2692 			ret = 0;
2693 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2694 			ret = replay_one_extent(wc->trans, root, path,
2695 						eb, i, &key);
2696 			if (ret)
2697 				break;
2698 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2699 			ret = replay_one_dir_item(wc->trans, root, path,
2700 						  eb, i, &key);
2701 			if (ret)
2702 				break;
2703 		}
2704 	}
2705 	btrfs_free_path(path);
2706 	return ret;
2707 }
2708 
2709 /*
2710  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2711  */
unaccount_log_buffer(struct btrfs_fs_info * fs_info,u64 start)2712 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2713 {
2714 	struct btrfs_block_group *cache;
2715 
2716 	cache = btrfs_lookup_block_group(fs_info, start);
2717 	if (!cache) {
2718 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2719 		return;
2720 	}
2721 
2722 	spin_lock(&cache->space_info->lock);
2723 	spin_lock(&cache->lock);
2724 	cache->reserved -= fs_info->nodesize;
2725 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2726 	spin_unlock(&cache->lock);
2727 	spin_unlock(&cache->space_info->lock);
2728 
2729 	btrfs_put_block_group(cache);
2730 }
2731 
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2732 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2733 				   struct btrfs_root *root,
2734 				   struct btrfs_path *path, int *level,
2735 				   struct walk_control *wc)
2736 {
2737 	struct btrfs_fs_info *fs_info = root->fs_info;
2738 	u64 bytenr;
2739 	u64 ptr_gen;
2740 	struct extent_buffer *next;
2741 	struct extent_buffer *cur;
2742 	u32 blocksize;
2743 	int ret = 0;
2744 
2745 	while (*level > 0) {
2746 		struct btrfs_key first_key;
2747 
2748 		cur = path->nodes[*level];
2749 
2750 		WARN_ON(btrfs_header_level(cur) != *level);
2751 
2752 		if (path->slots[*level] >=
2753 		    btrfs_header_nritems(cur))
2754 			break;
2755 
2756 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2757 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2758 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2759 		blocksize = fs_info->nodesize;
2760 
2761 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2762 						    btrfs_header_owner(cur),
2763 						    *level - 1);
2764 		if (IS_ERR(next))
2765 			return PTR_ERR(next);
2766 
2767 		if (*level == 1) {
2768 			ret = wc->process_func(root, next, wc, ptr_gen,
2769 					       *level - 1);
2770 			if (ret) {
2771 				free_extent_buffer(next);
2772 				return ret;
2773 			}
2774 
2775 			path->slots[*level]++;
2776 			if (wc->free) {
2777 				ret = btrfs_read_buffer(next, ptr_gen,
2778 							*level - 1, &first_key);
2779 				if (ret) {
2780 					free_extent_buffer(next);
2781 					return ret;
2782 				}
2783 
2784 				if (trans) {
2785 					btrfs_tree_lock(next);
2786 					btrfs_clean_tree_block(next);
2787 					btrfs_wait_tree_block_writeback(next);
2788 					btrfs_tree_unlock(next);
2789 					ret = btrfs_pin_reserved_extent(trans,
2790 							bytenr, blocksize);
2791 					if (ret) {
2792 						free_extent_buffer(next);
2793 						return ret;
2794 					}
2795 					btrfs_redirty_list_add(
2796 						trans->transaction, next);
2797 				} else {
2798 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2799 						clear_extent_buffer_dirty(next);
2800 					unaccount_log_buffer(fs_info, bytenr);
2801 				}
2802 			}
2803 			free_extent_buffer(next);
2804 			continue;
2805 		}
2806 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2807 		if (ret) {
2808 			free_extent_buffer(next);
2809 			return ret;
2810 		}
2811 
2812 		if (path->nodes[*level-1])
2813 			free_extent_buffer(path->nodes[*level-1]);
2814 		path->nodes[*level-1] = next;
2815 		*level = btrfs_header_level(next);
2816 		path->slots[*level] = 0;
2817 		cond_resched();
2818 	}
2819 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2820 
2821 	cond_resched();
2822 	return 0;
2823 }
2824 
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2825 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2826 				 struct btrfs_root *root,
2827 				 struct btrfs_path *path, int *level,
2828 				 struct walk_control *wc)
2829 {
2830 	struct btrfs_fs_info *fs_info = root->fs_info;
2831 	int i;
2832 	int slot;
2833 	int ret;
2834 
2835 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2836 		slot = path->slots[i];
2837 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2838 			path->slots[i]++;
2839 			*level = i;
2840 			WARN_ON(*level == 0);
2841 			return 0;
2842 		} else {
2843 			ret = wc->process_func(root, path->nodes[*level], wc,
2844 				 btrfs_header_generation(path->nodes[*level]),
2845 				 *level);
2846 			if (ret)
2847 				return ret;
2848 
2849 			if (wc->free) {
2850 				struct extent_buffer *next;
2851 
2852 				next = path->nodes[*level];
2853 
2854 				if (trans) {
2855 					btrfs_tree_lock(next);
2856 					btrfs_clean_tree_block(next);
2857 					btrfs_wait_tree_block_writeback(next);
2858 					btrfs_tree_unlock(next);
2859 					ret = btrfs_pin_reserved_extent(trans,
2860 						     path->nodes[*level]->start,
2861 						     path->nodes[*level]->len);
2862 					if (ret)
2863 						return ret;
2864 					btrfs_redirty_list_add(trans->transaction,
2865 							       next);
2866 				} else {
2867 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2868 						clear_extent_buffer_dirty(next);
2869 
2870 					unaccount_log_buffer(fs_info,
2871 						path->nodes[*level]->start);
2872 				}
2873 			}
2874 			free_extent_buffer(path->nodes[*level]);
2875 			path->nodes[*level] = NULL;
2876 			*level = i + 1;
2877 		}
2878 	}
2879 	return 1;
2880 }
2881 
2882 /*
2883  * drop the reference count on the tree rooted at 'snap'.  This traverses
2884  * the tree freeing any blocks that have a ref count of zero after being
2885  * decremented.
2886  */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2887 static int walk_log_tree(struct btrfs_trans_handle *trans,
2888 			 struct btrfs_root *log, struct walk_control *wc)
2889 {
2890 	struct btrfs_fs_info *fs_info = log->fs_info;
2891 	int ret = 0;
2892 	int wret;
2893 	int level;
2894 	struct btrfs_path *path;
2895 	int orig_level;
2896 
2897 	path = btrfs_alloc_path();
2898 	if (!path)
2899 		return -ENOMEM;
2900 
2901 	level = btrfs_header_level(log->node);
2902 	orig_level = level;
2903 	path->nodes[level] = log->node;
2904 	atomic_inc(&log->node->refs);
2905 	path->slots[level] = 0;
2906 
2907 	while (1) {
2908 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2909 		if (wret > 0)
2910 			break;
2911 		if (wret < 0) {
2912 			ret = wret;
2913 			goto out;
2914 		}
2915 
2916 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2917 		if (wret > 0)
2918 			break;
2919 		if (wret < 0) {
2920 			ret = wret;
2921 			goto out;
2922 		}
2923 	}
2924 
2925 	/* was the root node processed? if not, catch it here */
2926 	if (path->nodes[orig_level]) {
2927 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2928 			 btrfs_header_generation(path->nodes[orig_level]),
2929 			 orig_level);
2930 		if (ret)
2931 			goto out;
2932 		if (wc->free) {
2933 			struct extent_buffer *next;
2934 
2935 			next = path->nodes[orig_level];
2936 
2937 			if (trans) {
2938 				btrfs_tree_lock(next);
2939 				btrfs_clean_tree_block(next);
2940 				btrfs_wait_tree_block_writeback(next);
2941 				btrfs_tree_unlock(next);
2942 				ret = btrfs_pin_reserved_extent(trans,
2943 						next->start, next->len);
2944 				if (ret)
2945 					goto out;
2946 				btrfs_redirty_list_add(trans->transaction, next);
2947 			} else {
2948 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2949 					clear_extent_buffer_dirty(next);
2950 				unaccount_log_buffer(fs_info, next->start);
2951 			}
2952 		}
2953 	}
2954 
2955 out:
2956 	btrfs_free_path(path);
2957 	return ret;
2958 }
2959 
2960 /*
2961  * helper function to update the item for a given subvolumes log root
2962  * in the tree of log roots
2963  */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2964 static int update_log_root(struct btrfs_trans_handle *trans,
2965 			   struct btrfs_root *log,
2966 			   struct btrfs_root_item *root_item)
2967 {
2968 	struct btrfs_fs_info *fs_info = log->fs_info;
2969 	int ret;
2970 
2971 	if (log->log_transid == 1) {
2972 		/* insert root item on the first sync */
2973 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2974 				&log->root_key, root_item);
2975 	} else {
2976 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2977 				&log->root_key, root_item);
2978 	}
2979 	return ret;
2980 }
2981 
wait_log_commit(struct btrfs_root * root,int transid)2982 static void wait_log_commit(struct btrfs_root *root, int transid)
2983 {
2984 	DEFINE_WAIT(wait);
2985 	int index = transid % 2;
2986 
2987 	/*
2988 	 * we only allow two pending log transactions at a time,
2989 	 * so we know that if ours is more than 2 older than the
2990 	 * current transaction, we're done
2991 	 */
2992 	for (;;) {
2993 		prepare_to_wait(&root->log_commit_wait[index],
2994 				&wait, TASK_UNINTERRUPTIBLE);
2995 
2996 		if (!(root->log_transid_committed < transid &&
2997 		      atomic_read(&root->log_commit[index])))
2998 			break;
2999 
3000 		mutex_unlock(&root->log_mutex);
3001 		schedule();
3002 		mutex_lock(&root->log_mutex);
3003 	}
3004 	finish_wait(&root->log_commit_wait[index], &wait);
3005 }
3006 
wait_for_writer(struct btrfs_root * root)3007 static void wait_for_writer(struct btrfs_root *root)
3008 {
3009 	DEFINE_WAIT(wait);
3010 
3011 	for (;;) {
3012 		prepare_to_wait(&root->log_writer_wait, &wait,
3013 				TASK_UNINTERRUPTIBLE);
3014 		if (!atomic_read(&root->log_writers))
3015 			break;
3016 
3017 		mutex_unlock(&root->log_mutex);
3018 		schedule();
3019 		mutex_lock(&root->log_mutex);
3020 	}
3021 	finish_wait(&root->log_writer_wait, &wait);
3022 }
3023 
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)3024 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3025 					struct btrfs_log_ctx *ctx)
3026 {
3027 	if (!ctx)
3028 		return;
3029 
3030 	mutex_lock(&root->log_mutex);
3031 	list_del_init(&ctx->list);
3032 	mutex_unlock(&root->log_mutex);
3033 }
3034 
3035 /*
3036  * Invoked in log mutex context, or be sure there is no other task which
3037  * can access the list.
3038  */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)3039 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3040 					     int index, int error)
3041 {
3042 	struct btrfs_log_ctx *ctx;
3043 	struct btrfs_log_ctx *safe;
3044 
3045 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3046 		list_del_init(&ctx->list);
3047 		ctx->log_ret = error;
3048 	}
3049 }
3050 
3051 /*
3052  * btrfs_sync_log does sends a given tree log down to the disk and
3053  * updates the super blocks to record it.  When this call is done,
3054  * you know that any inodes previously logged are safely on disk only
3055  * if it returns 0.
3056  *
3057  * Any other return value means you need to call btrfs_commit_transaction.
3058  * Some of the edge cases for fsyncing directories that have had unlinks
3059  * or renames done in the past mean that sometimes the only safe
3060  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3061  * that has happened.
3062  */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)3063 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3064 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3065 {
3066 	int index1;
3067 	int index2;
3068 	int mark;
3069 	int ret;
3070 	struct btrfs_fs_info *fs_info = root->fs_info;
3071 	struct btrfs_root *log = root->log_root;
3072 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3073 	struct btrfs_root_item new_root_item;
3074 	int log_transid = 0;
3075 	struct btrfs_log_ctx root_log_ctx;
3076 	struct blk_plug plug;
3077 	u64 log_root_start;
3078 	u64 log_root_level;
3079 
3080 	mutex_lock(&root->log_mutex);
3081 	log_transid = ctx->log_transid;
3082 	if (root->log_transid_committed >= log_transid) {
3083 		mutex_unlock(&root->log_mutex);
3084 		return ctx->log_ret;
3085 	}
3086 
3087 	index1 = log_transid % 2;
3088 	if (atomic_read(&root->log_commit[index1])) {
3089 		wait_log_commit(root, log_transid);
3090 		mutex_unlock(&root->log_mutex);
3091 		return ctx->log_ret;
3092 	}
3093 	ASSERT(log_transid == root->log_transid);
3094 	atomic_set(&root->log_commit[index1], 1);
3095 
3096 	/* wait for previous tree log sync to complete */
3097 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3098 		wait_log_commit(root, log_transid - 1);
3099 
3100 	while (1) {
3101 		int batch = atomic_read(&root->log_batch);
3102 		/* when we're on an ssd, just kick the log commit out */
3103 		if (!btrfs_test_opt(fs_info, SSD) &&
3104 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3105 			mutex_unlock(&root->log_mutex);
3106 			schedule_timeout_uninterruptible(1);
3107 			mutex_lock(&root->log_mutex);
3108 		}
3109 		wait_for_writer(root);
3110 		if (batch == atomic_read(&root->log_batch))
3111 			break;
3112 	}
3113 
3114 	/* bail out if we need to do a full commit */
3115 	if (btrfs_need_log_full_commit(trans)) {
3116 		ret = -EAGAIN;
3117 		mutex_unlock(&root->log_mutex);
3118 		goto out;
3119 	}
3120 
3121 	if (log_transid % 2 == 0)
3122 		mark = EXTENT_DIRTY;
3123 	else
3124 		mark = EXTENT_NEW;
3125 
3126 	/* we start IO on  all the marked extents here, but we don't actually
3127 	 * wait for them until later.
3128 	 */
3129 	blk_start_plug(&plug);
3130 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3131 	/*
3132 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
3133 	 *  commit, writes a dirty extent in this tree-log commit. This
3134 	 *  concurrent write will create a hole writing out the extents,
3135 	 *  and we cannot proceed on a zoned filesystem, requiring
3136 	 *  sequential writing. While we can bail out to a full commit
3137 	 *  here, but we can continue hoping the concurrent writing fills
3138 	 *  the hole.
3139 	 */
3140 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3141 		ret = 0;
3142 	if (ret) {
3143 		blk_finish_plug(&plug);
3144 		btrfs_set_log_full_commit(trans);
3145 		mutex_unlock(&root->log_mutex);
3146 		goto out;
3147 	}
3148 
3149 	/*
3150 	 * We _must_ update under the root->log_mutex in order to make sure we
3151 	 * have a consistent view of the log root we are trying to commit at
3152 	 * this moment.
3153 	 *
3154 	 * We _must_ copy this into a local copy, because we are not holding the
3155 	 * log_root_tree->log_mutex yet.  This is important because when we
3156 	 * commit the log_root_tree we must have a consistent view of the
3157 	 * log_root_tree when we update the super block to point at the
3158 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3159 	 * with the commit and possibly point at the new block which we may not
3160 	 * have written out.
3161 	 */
3162 	btrfs_set_root_node(&log->root_item, log->node);
3163 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3164 
3165 	root->log_transid++;
3166 	log->log_transid = root->log_transid;
3167 	root->log_start_pid = 0;
3168 	/*
3169 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3170 	 * in their headers. new modifications of the log will be written to
3171 	 * new positions. so it's safe to allow log writers to go in.
3172 	 */
3173 	mutex_unlock(&root->log_mutex);
3174 
3175 	if (btrfs_is_zoned(fs_info)) {
3176 		mutex_lock(&fs_info->tree_root->log_mutex);
3177 		if (!log_root_tree->node) {
3178 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3179 			if (ret) {
3180 				mutex_unlock(&fs_info->tree_root->log_mutex);
3181 				blk_finish_plug(&plug);
3182 				goto out;
3183 			}
3184 		}
3185 		mutex_unlock(&fs_info->tree_root->log_mutex);
3186 	}
3187 
3188 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3189 
3190 	mutex_lock(&log_root_tree->log_mutex);
3191 
3192 	index2 = log_root_tree->log_transid % 2;
3193 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3194 	root_log_ctx.log_transid = log_root_tree->log_transid;
3195 
3196 	/*
3197 	 * Now we are safe to update the log_root_tree because we're under the
3198 	 * log_mutex, and we're a current writer so we're holding the commit
3199 	 * open until we drop the log_mutex.
3200 	 */
3201 	ret = update_log_root(trans, log, &new_root_item);
3202 	if (ret) {
3203 		if (!list_empty(&root_log_ctx.list))
3204 			list_del_init(&root_log_ctx.list);
3205 
3206 		blk_finish_plug(&plug);
3207 		btrfs_set_log_full_commit(trans);
3208 
3209 		if (ret != -ENOSPC) {
3210 			btrfs_abort_transaction(trans, ret);
3211 			mutex_unlock(&log_root_tree->log_mutex);
3212 			goto out;
3213 		}
3214 		btrfs_wait_tree_log_extents(log, mark);
3215 		mutex_unlock(&log_root_tree->log_mutex);
3216 		ret = -EAGAIN;
3217 		goto out;
3218 	}
3219 
3220 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3221 		blk_finish_plug(&plug);
3222 		list_del_init(&root_log_ctx.list);
3223 		mutex_unlock(&log_root_tree->log_mutex);
3224 		ret = root_log_ctx.log_ret;
3225 		goto out;
3226 	}
3227 
3228 	index2 = root_log_ctx.log_transid % 2;
3229 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3230 		blk_finish_plug(&plug);
3231 		ret = btrfs_wait_tree_log_extents(log, mark);
3232 		wait_log_commit(log_root_tree,
3233 				root_log_ctx.log_transid);
3234 		mutex_unlock(&log_root_tree->log_mutex);
3235 		if (!ret)
3236 			ret = root_log_ctx.log_ret;
3237 		goto out;
3238 	}
3239 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3240 	atomic_set(&log_root_tree->log_commit[index2], 1);
3241 
3242 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3243 		wait_log_commit(log_root_tree,
3244 				root_log_ctx.log_transid - 1);
3245 	}
3246 
3247 	/*
3248 	 * now that we've moved on to the tree of log tree roots,
3249 	 * check the full commit flag again
3250 	 */
3251 	if (btrfs_need_log_full_commit(trans)) {
3252 		blk_finish_plug(&plug);
3253 		btrfs_wait_tree_log_extents(log, mark);
3254 		mutex_unlock(&log_root_tree->log_mutex);
3255 		ret = -EAGAIN;
3256 		goto out_wake_log_root;
3257 	}
3258 
3259 	ret = btrfs_write_marked_extents(fs_info,
3260 					 &log_root_tree->dirty_log_pages,
3261 					 EXTENT_DIRTY | EXTENT_NEW);
3262 	blk_finish_plug(&plug);
3263 	/*
3264 	 * As described above, -EAGAIN indicates a hole in the extents. We
3265 	 * cannot wait for these write outs since the waiting cause a
3266 	 * deadlock. Bail out to the full commit instead.
3267 	 */
3268 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3269 		btrfs_set_log_full_commit(trans);
3270 		btrfs_wait_tree_log_extents(log, mark);
3271 		mutex_unlock(&log_root_tree->log_mutex);
3272 		goto out_wake_log_root;
3273 	} else if (ret) {
3274 		btrfs_set_log_full_commit(trans);
3275 		mutex_unlock(&log_root_tree->log_mutex);
3276 		goto out_wake_log_root;
3277 	}
3278 	ret = btrfs_wait_tree_log_extents(log, mark);
3279 	if (!ret)
3280 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3281 						  EXTENT_NEW | EXTENT_DIRTY);
3282 	if (ret) {
3283 		btrfs_set_log_full_commit(trans);
3284 		mutex_unlock(&log_root_tree->log_mutex);
3285 		goto out_wake_log_root;
3286 	}
3287 
3288 	log_root_start = log_root_tree->node->start;
3289 	log_root_level = btrfs_header_level(log_root_tree->node);
3290 	log_root_tree->log_transid++;
3291 	mutex_unlock(&log_root_tree->log_mutex);
3292 
3293 	/*
3294 	 * Here we are guaranteed that nobody is going to write the superblock
3295 	 * for the current transaction before us and that neither we do write
3296 	 * our superblock before the previous transaction finishes its commit
3297 	 * and writes its superblock, because:
3298 	 *
3299 	 * 1) We are holding a handle on the current transaction, so no body
3300 	 *    can commit it until we release the handle;
3301 	 *
3302 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3303 	 *    if the previous transaction is still committing, and hasn't yet
3304 	 *    written its superblock, we wait for it to do it, because a
3305 	 *    transaction commit acquires the tree_log_mutex when the commit
3306 	 *    begins and releases it only after writing its superblock.
3307 	 */
3308 	mutex_lock(&fs_info->tree_log_mutex);
3309 
3310 	/*
3311 	 * The previous transaction writeout phase could have failed, and thus
3312 	 * marked the fs in an error state.  We must not commit here, as we
3313 	 * could have updated our generation in the super_for_commit and
3314 	 * writing the super here would result in transid mismatches.  If there
3315 	 * is an error here just bail.
3316 	 */
3317 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3318 		ret = -EIO;
3319 		btrfs_set_log_full_commit(trans);
3320 		btrfs_abort_transaction(trans, ret);
3321 		mutex_unlock(&fs_info->tree_log_mutex);
3322 		goto out_wake_log_root;
3323 	}
3324 
3325 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3326 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3327 	ret = write_all_supers(fs_info, 1);
3328 	mutex_unlock(&fs_info->tree_log_mutex);
3329 	if (ret) {
3330 		btrfs_set_log_full_commit(trans);
3331 		btrfs_abort_transaction(trans, ret);
3332 		goto out_wake_log_root;
3333 	}
3334 
3335 	/*
3336 	 * We know there can only be one task here, since we have not yet set
3337 	 * root->log_commit[index1] to 0 and any task attempting to sync the
3338 	 * log must wait for the previous log transaction to commit if it's
3339 	 * still in progress or wait for the current log transaction commit if
3340 	 * someone else already started it. We use <= and not < because the
3341 	 * first log transaction has an ID of 0.
3342 	 */
3343 	ASSERT(root->last_log_commit <= log_transid);
3344 	root->last_log_commit = log_transid;
3345 
3346 out_wake_log_root:
3347 	mutex_lock(&log_root_tree->log_mutex);
3348 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3349 
3350 	log_root_tree->log_transid_committed++;
3351 	atomic_set(&log_root_tree->log_commit[index2], 0);
3352 	mutex_unlock(&log_root_tree->log_mutex);
3353 
3354 	/*
3355 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3356 	 * all the updates above are seen by the woken threads. It might not be
3357 	 * necessary, but proving that seems to be hard.
3358 	 */
3359 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3360 out:
3361 	mutex_lock(&root->log_mutex);
3362 	btrfs_remove_all_log_ctxs(root, index1, ret);
3363 	root->log_transid_committed++;
3364 	atomic_set(&root->log_commit[index1], 0);
3365 	mutex_unlock(&root->log_mutex);
3366 
3367 	/*
3368 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3369 	 * all the updates above are seen by the woken threads. It might not be
3370 	 * necessary, but proving that seems to be hard.
3371 	 */
3372 	cond_wake_up(&root->log_commit_wait[index1]);
3373 	return ret;
3374 }
3375 
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3376 static void free_log_tree(struct btrfs_trans_handle *trans,
3377 			  struct btrfs_root *log)
3378 {
3379 	int ret;
3380 	struct walk_control wc = {
3381 		.free = 1,
3382 		.process_func = process_one_buffer
3383 	};
3384 
3385 	if (log->node) {
3386 		ret = walk_log_tree(trans, log, &wc);
3387 		if (ret) {
3388 			/*
3389 			 * We weren't able to traverse the entire log tree, the
3390 			 * typical scenario is getting an -EIO when reading an
3391 			 * extent buffer of the tree, due to a previous writeback
3392 			 * failure of it.
3393 			 */
3394 			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3395 				&log->fs_info->fs_state);
3396 
3397 			/*
3398 			 * Some extent buffers of the log tree may still be dirty
3399 			 * and not yet written back to storage, because we may
3400 			 * have updates to a log tree without syncing a log tree,
3401 			 * such as during rename and link operations. So flush
3402 			 * them out and wait for their writeback to complete, so
3403 			 * that we properly cleanup their state and pages.
3404 			 */
3405 			btrfs_write_marked_extents(log->fs_info,
3406 						   &log->dirty_log_pages,
3407 						   EXTENT_DIRTY | EXTENT_NEW);
3408 			btrfs_wait_tree_log_extents(log,
3409 						    EXTENT_DIRTY | EXTENT_NEW);
3410 
3411 			if (trans)
3412 				btrfs_abort_transaction(trans, ret);
3413 			else
3414 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3415 		}
3416 	}
3417 
3418 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3419 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3420 	extent_io_tree_release(&log->log_csum_range);
3421 
3422 	btrfs_put_root(log);
3423 }
3424 
3425 /*
3426  * free all the extents used by the tree log.  This should be called
3427  * at commit time of the full transaction
3428  */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3429 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3430 {
3431 	if (root->log_root) {
3432 		free_log_tree(trans, root->log_root);
3433 		root->log_root = NULL;
3434 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3435 	}
3436 	return 0;
3437 }
3438 
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3439 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3440 			     struct btrfs_fs_info *fs_info)
3441 {
3442 	if (fs_info->log_root_tree) {
3443 		free_log_tree(trans, fs_info->log_root_tree);
3444 		fs_info->log_root_tree = NULL;
3445 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3446 	}
3447 	return 0;
3448 }
3449 
3450 /*
3451  * Check if an inode was logged in the current transaction. This may often
3452  * return some false positives, because logged_trans is an in memory only field,
3453  * not persisted anywhere. This is meant to be used in contexts where a false
3454  * positive has no functional consequences.
3455  */
inode_logged(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3456 static bool inode_logged(struct btrfs_trans_handle *trans,
3457 			 struct btrfs_inode *inode)
3458 {
3459 	if (inode->logged_trans == trans->transid)
3460 		return true;
3461 
3462 	/*
3463 	 * The inode's logged_trans is always 0 when we load it (because it is
3464 	 * not persisted in the inode item or elsewhere). So if it is 0, the
3465 	 * inode was last modified in the current transaction then the inode may
3466 	 * have been logged before in the current transaction, then evicted and
3467 	 * loaded again in the current transaction - or may have never been logged
3468 	 * in the current transaction, but since we can not be sure, we have to
3469 	 * assume it was, otherwise our callers can leave an inconsistent log.
3470 	 */
3471 	if (inode->logged_trans == 0 &&
3472 	    inode->last_trans == trans->transid &&
3473 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3474 		return true;
3475 
3476 	return false;
3477 }
3478 
3479 /*
3480  * If both a file and directory are logged, and unlinks or renames are
3481  * mixed in, we have a few interesting corners:
3482  *
3483  * create file X in dir Y
3484  * link file X to X.link in dir Y
3485  * fsync file X
3486  * unlink file X but leave X.link
3487  * fsync dir Y
3488  *
3489  * After a crash we would expect only X.link to exist.  But file X
3490  * didn't get fsync'd again so the log has back refs for X and X.link.
3491  *
3492  * We solve this by removing directory entries and inode backrefs from the
3493  * log when a file that was logged in the current transaction is
3494  * unlinked.  Any later fsync will include the updated log entries, and
3495  * we'll be able to reconstruct the proper directory items from backrefs.
3496  *
3497  * This optimizations allows us to avoid relogging the entire inode
3498  * or the entire directory.
3499  */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * dir,u64 index)3500 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3501 				 struct btrfs_root *root,
3502 				 const char *name, int name_len,
3503 				 struct btrfs_inode *dir, u64 index)
3504 {
3505 	struct btrfs_root *log;
3506 	struct btrfs_dir_item *di;
3507 	struct btrfs_path *path;
3508 	int ret;
3509 	int err = 0;
3510 	u64 dir_ino = btrfs_ino(dir);
3511 
3512 	if (!inode_logged(trans, dir))
3513 		return 0;
3514 
3515 	ret = join_running_log_trans(root);
3516 	if (ret)
3517 		return 0;
3518 
3519 	mutex_lock(&dir->log_mutex);
3520 
3521 	log = root->log_root;
3522 	path = btrfs_alloc_path();
3523 	if (!path) {
3524 		err = -ENOMEM;
3525 		goto out_unlock;
3526 	}
3527 
3528 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3529 				   name, name_len, -1);
3530 	if (IS_ERR(di)) {
3531 		err = PTR_ERR(di);
3532 		goto fail;
3533 	}
3534 	if (di) {
3535 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3536 		if (ret) {
3537 			err = ret;
3538 			goto fail;
3539 		}
3540 	}
3541 	btrfs_release_path(path);
3542 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3543 					 index, name, name_len, -1);
3544 	if (IS_ERR(di)) {
3545 		err = PTR_ERR(di);
3546 		goto fail;
3547 	}
3548 	if (di) {
3549 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3550 		if (ret) {
3551 			err = ret;
3552 			goto fail;
3553 		}
3554 	}
3555 
3556 	/*
3557 	 * We do not need to update the size field of the directory's inode item
3558 	 * because on log replay we update the field to reflect all existing
3559 	 * entries in the directory (see overwrite_item()).
3560 	 */
3561 fail:
3562 	btrfs_free_path(path);
3563 out_unlock:
3564 	mutex_unlock(&dir->log_mutex);
3565 	if (err == -ENOSPC) {
3566 		btrfs_set_log_full_commit(trans);
3567 		err = 0;
3568 	} else if (err < 0) {
3569 		btrfs_abort_transaction(trans, err);
3570 	}
3571 
3572 	btrfs_end_log_trans(root);
3573 
3574 	return err;
3575 }
3576 
3577 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * inode,u64 dirid)3578 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3579 			       struct btrfs_root *root,
3580 			       const char *name, int name_len,
3581 			       struct btrfs_inode *inode, u64 dirid)
3582 {
3583 	struct btrfs_root *log;
3584 	u64 index;
3585 	int ret;
3586 
3587 	if (!inode_logged(trans, inode))
3588 		return 0;
3589 
3590 	ret = join_running_log_trans(root);
3591 	if (ret)
3592 		return 0;
3593 	log = root->log_root;
3594 	mutex_lock(&inode->log_mutex);
3595 
3596 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3597 				  dirid, &index);
3598 	mutex_unlock(&inode->log_mutex);
3599 	if (ret == -ENOSPC) {
3600 		btrfs_set_log_full_commit(trans);
3601 		ret = 0;
3602 	} else if (ret < 0 && ret != -ENOENT)
3603 		btrfs_abort_transaction(trans, ret);
3604 	btrfs_end_log_trans(root);
3605 
3606 	return ret;
3607 }
3608 
3609 /*
3610  * creates a range item in the log for 'dirid'.  first_offset and
3611  * last_offset tell us which parts of the key space the log should
3612  * be considered authoritative for.
3613  */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,int key_type,u64 dirid,u64 first_offset,u64 last_offset)3614 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3615 				       struct btrfs_root *log,
3616 				       struct btrfs_path *path,
3617 				       int key_type, u64 dirid,
3618 				       u64 first_offset, u64 last_offset)
3619 {
3620 	int ret;
3621 	struct btrfs_key key;
3622 	struct btrfs_dir_log_item *item;
3623 
3624 	key.objectid = dirid;
3625 	key.offset = first_offset;
3626 	if (key_type == BTRFS_DIR_ITEM_KEY)
3627 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3628 	else
3629 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3630 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3631 	if (ret)
3632 		return ret;
3633 
3634 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3635 			      struct btrfs_dir_log_item);
3636 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3637 	btrfs_mark_buffer_dirty(path->nodes[0]);
3638 	btrfs_release_path(path);
3639 	return 0;
3640 }
3641 
3642 /*
3643  * log all the items included in the current transaction for a given
3644  * directory.  This also creates the range items in the log tree required
3645  * to replay anything deleted before the fsync
3646  */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,int key_type,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3647 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3648 			  struct btrfs_root *root, struct btrfs_inode *inode,
3649 			  struct btrfs_path *path,
3650 			  struct btrfs_path *dst_path, int key_type,
3651 			  struct btrfs_log_ctx *ctx,
3652 			  u64 min_offset, u64 *last_offset_ret)
3653 {
3654 	struct btrfs_key min_key;
3655 	struct btrfs_root *log = root->log_root;
3656 	struct extent_buffer *src;
3657 	int err = 0;
3658 	int ret;
3659 	int i;
3660 	int nritems;
3661 	u64 first_offset = min_offset;
3662 	u64 last_offset = (u64)-1;
3663 	u64 ino = btrfs_ino(inode);
3664 
3665 	log = root->log_root;
3666 
3667 	min_key.objectid = ino;
3668 	min_key.type = key_type;
3669 	min_key.offset = min_offset;
3670 
3671 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3672 
3673 	/*
3674 	 * we didn't find anything from this transaction, see if there
3675 	 * is anything at all
3676 	 */
3677 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3678 		min_key.objectid = ino;
3679 		min_key.type = key_type;
3680 		min_key.offset = (u64)-1;
3681 		btrfs_release_path(path);
3682 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3683 		if (ret < 0) {
3684 			btrfs_release_path(path);
3685 			return ret;
3686 		}
3687 		ret = btrfs_previous_item(root, path, ino, key_type);
3688 
3689 		/* if ret == 0 there are items for this type,
3690 		 * create a range to tell us the last key of this type.
3691 		 * otherwise, there are no items in this directory after
3692 		 * *min_offset, and we create a range to indicate that.
3693 		 */
3694 		if (ret == 0) {
3695 			struct btrfs_key tmp;
3696 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3697 					      path->slots[0]);
3698 			if (key_type == tmp.type)
3699 				first_offset = max(min_offset, tmp.offset) + 1;
3700 		}
3701 		goto done;
3702 	}
3703 
3704 	/* go backward to find any previous key */
3705 	ret = btrfs_previous_item(root, path, ino, key_type);
3706 	if (ret == 0) {
3707 		struct btrfs_key tmp;
3708 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3709 		if (key_type == tmp.type) {
3710 			first_offset = tmp.offset;
3711 			ret = overwrite_item(trans, log, dst_path,
3712 					     path->nodes[0], path->slots[0],
3713 					     &tmp);
3714 			if (ret) {
3715 				err = ret;
3716 				goto done;
3717 			}
3718 		}
3719 	}
3720 	btrfs_release_path(path);
3721 
3722 	/*
3723 	 * Find the first key from this transaction again.  See the note for
3724 	 * log_new_dir_dentries, if we're logging a directory recursively we
3725 	 * won't be holding its i_mutex, which means we can modify the directory
3726 	 * while we're logging it.  If we remove an entry between our first
3727 	 * search and this search we'll not find the key again and can just
3728 	 * bail.
3729 	 */
3730 search:
3731 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3732 	if (ret != 0)
3733 		goto done;
3734 
3735 	/*
3736 	 * we have a block from this transaction, log every item in it
3737 	 * from our directory
3738 	 */
3739 	while (1) {
3740 		struct btrfs_key tmp;
3741 		src = path->nodes[0];
3742 		nritems = btrfs_header_nritems(src);
3743 		for (i = path->slots[0]; i < nritems; i++) {
3744 			struct btrfs_dir_item *di;
3745 
3746 			btrfs_item_key_to_cpu(src, &min_key, i);
3747 
3748 			if (min_key.objectid != ino || min_key.type != key_type)
3749 				goto done;
3750 
3751 			if (need_resched()) {
3752 				btrfs_release_path(path);
3753 				cond_resched();
3754 				goto search;
3755 			}
3756 
3757 			ret = overwrite_item(trans, log, dst_path, src, i,
3758 					     &min_key);
3759 			if (ret) {
3760 				err = ret;
3761 				goto done;
3762 			}
3763 
3764 			/*
3765 			 * We must make sure that when we log a directory entry,
3766 			 * the corresponding inode, after log replay, has a
3767 			 * matching link count. For example:
3768 			 *
3769 			 * touch foo
3770 			 * mkdir mydir
3771 			 * sync
3772 			 * ln foo mydir/bar
3773 			 * xfs_io -c "fsync" mydir
3774 			 * <crash>
3775 			 * <mount fs and log replay>
3776 			 *
3777 			 * Would result in a fsync log that when replayed, our
3778 			 * file inode would have a link count of 1, but we get
3779 			 * two directory entries pointing to the same inode.
3780 			 * After removing one of the names, it would not be
3781 			 * possible to remove the other name, which resulted
3782 			 * always in stale file handle errors, and would not
3783 			 * be possible to rmdir the parent directory, since
3784 			 * its i_size could never decrement to the value
3785 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3786 			 */
3787 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3788 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3789 			if (ctx &&
3790 			    (btrfs_dir_transid(src, di) == trans->transid ||
3791 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3792 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3793 				ctx->log_new_dentries = true;
3794 		}
3795 		path->slots[0] = nritems;
3796 
3797 		/*
3798 		 * look ahead to the next item and see if it is also
3799 		 * from this directory and from this transaction
3800 		 */
3801 		ret = btrfs_next_leaf(root, path);
3802 		if (ret) {
3803 			if (ret == 1)
3804 				last_offset = (u64)-1;
3805 			else
3806 				err = ret;
3807 			goto done;
3808 		}
3809 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3810 		if (tmp.objectid != ino || tmp.type != key_type) {
3811 			last_offset = (u64)-1;
3812 			goto done;
3813 		}
3814 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3815 			ret = overwrite_item(trans, log, dst_path,
3816 					     path->nodes[0], path->slots[0],
3817 					     &tmp);
3818 			if (ret)
3819 				err = ret;
3820 			else
3821 				last_offset = tmp.offset;
3822 			goto done;
3823 		}
3824 	}
3825 done:
3826 	btrfs_release_path(path);
3827 	btrfs_release_path(dst_path);
3828 
3829 	if (err == 0) {
3830 		*last_offset_ret = last_offset;
3831 		/*
3832 		 * insert the log range keys to indicate where the log
3833 		 * is valid
3834 		 */
3835 		ret = insert_dir_log_key(trans, log, path, key_type,
3836 					 ino, first_offset, last_offset);
3837 		if (ret)
3838 			err = ret;
3839 	}
3840 	return err;
3841 }
3842 
3843 /*
3844  * logging directories is very similar to logging inodes, We find all the items
3845  * from the current transaction and write them to the log.
3846  *
3847  * The recovery code scans the directory in the subvolume, and if it finds a
3848  * key in the range logged that is not present in the log tree, then it means
3849  * that dir entry was unlinked during the transaction.
3850  *
3851  * In order for that scan to work, we must include one key smaller than
3852  * the smallest logged by this transaction and one key larger than the largest
3853  * key logged by this transaction.
3854  */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)3855 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3856 			  struct btrfs_root *root, struct btrfs_inode *inode,
3857 			  struct btrfs_path *path,
3858 			  struct btrfs_path *dst_path,
3859 			  struct btrfs_log_ctx *ctx)
3860 {
3861 	u64 min_key;
3862 	u64 max_key;
3863 	int ret;
3864 	int key_type = BTRFS_DIR_ITEM_KEY;
3865 
3866 again:
3867 	min_key = 0;
3868 	max_key = 0;
3869 	while (1) {
3870 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3871 				ctx, min_key, &max_key);
3872 		if (ret)
3873 			return ret;
3874 		if (max_key == (u64)-1)
3875 			break;
3876 		min_key = max_key + 1;
3877 	}
3878 
3879 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3880 		key_type = BTRFS_DIR_INDEX_KEY;
3881 		goto again;
3882 	}
3883 	return 0;
3884 }
3885 
3886 /*
3887  * a helper function to drop items from the log before we relog an
3888  * inode.  max_key_type indicates the highest item type to remove.
3889  * This cannot be run for file data extents because it does not
3890  * free the extents they point to.
3891  */
drop_objectid_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 objectid,int max_key_type)3892 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3893 				  struct btrfs_root *log,
3894 				  struct btrfs_path *path,
3895 				  u64 objectid, int max_key_type)
3896 {
3897 	int ret;
3898 	struct btrfs_key key;
3899 	struct btrfs_key found_key;
3900 	int start_slot;
3901 
3902 	key.objectid = objectid;
3903 	key.type = max_key_type;
3904 	key.offset = (u64)-1;
3905 
3906 	while (1) {
3907 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3908 		BUG_ON(ret == 0); /* Logic error */
3909 		if (ret < 0)
3910 			break;
3911 
3912 		if (path->slots[0] == 0)
3913 			break;
3914 
3915 		path->slots[0]--;
3916 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3917 				      path->slots[0]);
3918 
3919 		if (found_key.objectid != objectid)
3920 			break;
3921 
3922 		found_key.offset = 0;
3923 		found_key.type = 0;
3924 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3925 		if (ret < 0)
3926 			break;
3927 
3928 		ret = btrfs_del_items(trans, log, path, start_slot,
3929 				      path->slots[0] - start_slot + 1);
3930 		/*
3931 		 * If start slot isn't 0 then we don't need to re-search, we've
3932 		 * found the last guy with the objectid in this tree.
3933 		 */
3934 		if (ret || start_slot != 0)
3935 			break;
3936 		btrfs_release_path(path);
3937 	}
3938 	btrfs_release_path(path);
3939 	if (ret > 0)
3940 		ret = 0;
3941 	return ret;
3942 }
3943 
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)3944 static void fill_inode_item(struct btrfs_trans_handle *trans,
3945 			    struct extent_buffer *leaf,
3946 			    struct btrfs_inode_item *item,
3947 			    struct inode *inode, int log_inode_only,
3948 			    u64 logged_isize)
3949 {
3950 	struct btrfs_map_token token;
3951 	u64 flags;
3952 
3953 	btrfs_init_map_token(&token, leaf);
3954 
3955 	if (log_inode_only) {
3956 		/* set the generation to zero so the recover code
3957 		 * can tell the difference between an logging
3958 		 * just to say 'this inode exists' and a logging
3959 		 * to say 'update this inode with these values'
3960 		 */
3961 		btrfs_set_token_inode_generation(&token, item, 0);
3962 		btrfs_set_token_inode_size(&token, item, logged_isize);
3963 	} else {
3964 		btrfs_set_token_inode_generation(&token, item,
3965 						 BTRFS_I(inode)->generation);
3966 		btrfs_set_token_inode_size(&token, item, inode->i_size);
3967 	}
3968 
3969 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3970 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3971 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3972 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3973 
3974 	btrfs_set_token_timespec_sec(&token, &item->atime,
3975 				     inode->i_atime.tv_sec);
3976 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3977 				      inode->i_atime.tv_nsec);
3978 
3979 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3980 				     inode->i_mtime.tv_sec);
3981 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3982 				      inode->i_mtime.tv_nsec);
3983 
3984 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3985 				     inode->i_ctime.tv_sec);
3986 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3987 				      inode->i_ctime.tv_nsec);
3988 
3989 	/*
3990 	 * We do not need to set the nbytes field, in fact during a fast fsync
3991 	 * its value may not even be correct, since a fast fsync does not wait
3992 	 * for ordered extent completion, which is where we update nbytes, it
3993 	 * only waits for writeback to complete. During log replay as we find
3994 	 * file extent items and replay them, we adjust the nbytes field of the
3995 	 * inode item in subvolume tree as needed (see overwrite_item()).
3996 	 */
3997 
3998 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3999 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4000 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4001 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4002 					  BTRFS_I(inode)->ro_flags);
4003 	btrfs_set_token_inode_flags(&token, item, flags);
4004 	btrfs_set_token_inode_block_group(&token, item, 0);
4005 }
4006 
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,bool inode_item_dropped)4007 static int log_inode_item(struct btrfs_trans_handle *trans,
4008 			  struct btrfs_root *log, struct btrfs_path *path,
4009 			  struct btrfs_inode *inode, bool inode_item_dropped)
4010 {
4011 	struct btrfs_inode_item *inode_item;
4012 	int ret;
4013 
4014 	/*
4015 	 * If we are doing a fast fsync and the inode was logged before in the
4016 	 * current transaction, then we know the inode was previously logged and
4017 	 * it exists in the log tree. For performance reasons, in this case use
4018 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4019 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4020 	 * contention in case there are concurrent fsyncs for other inodes of the
4021 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4022 	 * already exists can also result in unnecessarily splitting a leaf.
4023 	 */
4024 	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4025 		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4026 		ASSERT(ret <= 0);
4027 		if (ret > 0)
4028 			ret = -ENOENT;
4029 	} else {
4030 		/*
4031 		 * This means it is the first fsync in the current transaction,
4032 		 * so the inode item is not in the log and we need to insert it.
4033 		 * We can never get -EEXIST because we are only called for a fast
4034 		 * fsync and in case an inode eviction happens after the inode was
4035 		 * logged before in the current transaction, when we load again
4036 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4037 		 * flags and set ->logged_trans to 0.
4038 		 */
4039 		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4040 					      sizeof(*inode_item));
4041 		ASSERT(ret != -EEXIST);
4042 	}
4043 	if (ret)
4044 		return ret;
4045 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4046 				    struct btrfs_inode_item);
4047 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4048 			0, 0);
4049 	btrfs_release_path(path);
4050 	return 0;
4051 }
4052 
log_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)4053 static int log_csums(struct btrfs_trans_handle *trans,
4054 		     struct btrfs_inode *inode,
4055 		     struct btrfs_root *log_root,
4056 		     struct btrfs_ordered_sum *sums)
4057 {
4058 	const u64 lock_end = sums->bytenr + sums->len - 1;
4059 	struct extent_state *cached_state = NULL;
4060 	int ret;
4061 
4062 	/*
4063 	 * If this inode was not used for reflink operations in the current
4064 	 * transaction with new extents, then do the fast path, no need to
4065 	 * worry about logging checksum items with overlapping ranges.
4066 	 */
4067 	if (inode->last_reflink_trans < trans->transid)
4068 		return btrfs_csum_file_blocks(trans, log_root, sums);
4069 
4070 	/*
4071 	 * Serialize logging for checksums. This is to avoid racing with the
4072 	 * same checksum being logged by another task that is logging another
4073 	 * file which happens to refer to the same extent as well. Such races
4074 	 * can leave checksum items in the log with overlapping ranges.
4075 	 */
4076 	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4077 			       lock_end, &cached_state);
4078 	if (ret)
4079 		return ret;
4080 	/*
4081 	 * Due to extent cloning, we might have logged a csum item that covers a
4082 	 * subrange of a cloned extent, and later we can end up logging a csum
4083 	 * item for a larger subrange of the same extent or the entire range.
4084 	 * This would leave csum items in the log tree that cover the same range
4085 	 * and break the searches for checksums in the log tree, resulting in
4086 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4087 	 * trim and adjust) any existing csum items in the log for this range.
4088 	 */
4089 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4090 	if (!ret)
4091 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4092 
4093 	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4094 			     &cached_state);
4095 
4096 	return ret;
4097 }
4098 
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize)4099 static noinline int copy_items(struct btrfs_trans_handle *trans,
4100 			       struct btrfs_inode *inode,
4101 			       struct btrfs_path *dst_path,
4102 			       struct btrfs_path *src_path,
4103 			       int start_slot, int nr, int inode_only,
4104 			       u64 logged_isize)
4105 {
4106 	struct btrfs_fs_info *fs_info = trans->fs_info;
4107 	unsigned long src_offset;
4108 	unsigned long dst_offset;
4109 	struct btrfs_root *log = inode->root->log_root;
4110 	struct btrfs_file_extent_item *extent;
4111 	struct btrfs_inode_item *inode_item;
4112 	struct extent_buffer *src = src_path->nodes[0];
4113 	int ret;
4114 	struct btrfs_key *ins_keys;
4115 	u32 *ins_sizes;
4116 	char *ins_data;
4117 	int i;
4118 	struct list_head ordered_sums;
4119 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
4120 
4121 	INIT_LIST_HEAD(&ordered_sums);
4122 
4123 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4124 			   nr * sizeof(u32), GFP_NOFS);
4125 	if (!ins_data)
4126 		return -ENOMEM;
4127 
4128 	ins_sizes = (u32 *)ins_data;
4129 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4130 
4131 	for (i = 0; i < nr; i++) {
4132 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4133 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4134 	}
4135 	ret = btrfs_insert_empty_items(trans, log, dst_path,
4136 				       ins_keys, ins_sizes, nr);
4137 	if (ret) {
4138 		kfree(ins_data);
4139 		return ret;
4140 	}
4141 
4142 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4143 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4144 						   dst_path->slots[0]);
4145 
4146 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4147 
4148 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
4149 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
4150 						    dst_path->slots[0],
4151 						    struct btrfs_inode_item);
4152 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4153 					&inode->vfs_inode,
4154 					inode_only == LOG_INODE_EXISTS,
4155 					logged_isize);
4156 		} else {
4157 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4158 					   src_offset, ins_sizes[i]);
4159 		}
4160 
4161 		/* take a reference on file data extents so that truncates
4162 		 * or deletes of this inode don't have to relog the inode
4163 		 * again
4164 		 */
4165 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4166 		    !skip_csum) {
4167 			int found_type;
4168 			extent = btrfs_item_ptr(src, start_slot + i,
4169 						struct btrfs_file_extent_item);
4170 
4171 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4172 				continue;
4173 
4174 			found_type = btrfs_file_extent_type(src, extent);
4175 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4176 				u64 ds, dl, cs, cl;
4177 				ds = btrfs_file_extent_disk_bytenr(src,
4178 								extent);
4179 				/* ds == 0 is a hole */
4180 				if (ds == 0)
4181 					continue;
4182 
4183 				dl = btrfs_file_extent_disk_num_bytes(src,
4184 								extent);
4185 				cs = btrfs_file_extent_offset(src, extent);
4186 				cl = btrfs_file_extent_num_bytes(src,
4187 								extent);
4188 				if (btrfs_file_extent_compression(src,
4189 								  extent)) {
4190 					cs = 0;
4191 					cl = dl;
4192 				}
4193 
4194 				ret = btrfs_lookup_csums_range(
4195 						fs_info->csum_root,
4196 						ds + cs, ds + cs + cl - 1,
4197 						&ordered_sums, 0);
4198 				if (ret)
4199 					break;
4200 			}
4201 		}
4202 	}
4203 
4204 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4205 	btrfs_release_path(dst_path);
4206 	kfree(ins_data);
4207 
4208 	/*
4209 	 * we have to do this after the loop above to avoid changing the
4210 	 * log tree while trying to change the log tree.
4211 	 */
4212 	while (!list_empty(&ordered_sums)) {
4213 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4214 						   struct btrfs_ordered_sum,
4215 						   list);
4216 		if (!ret)
4217 			ret = log_csums(trans, inode, log, sums);
4218 		list_del(&sums->list);
4219 		kfree(sums);
4220 	}
4221 
4222 	return ret;
4223 }
4224 
extent_cmp(void * priv,const struct list_head * a,const struct list_head * b)4225 static int extent_cmp(void *priv, const struct list_head *a,
4226 		      const struct list_head *b)
4227 {
4228 	const struct extent_map *em1, *em2;
4229 
4230 	em1 = list_entry(a, struct extent_map, list);
4231 	em2 = list_entry(b, struct extent_map, list);
4232 
4233 	if (em1->start < em2->start)
4234 		return -1;
4235 	else if (em1->start > em2->start)
4236 		return 1;
4237 	return 0;
4238 }
4239 
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em,struct btrfs_log_ctx * ctx)4240 static int log_extent_csums(struct btrfs_trans_handle *trans,
4241 			    struct btrfs_inode *inode,
4242 			    struct btrfs_root *log_root,
4243 			    const struct extent_map *em,
4244 			    struct btrfs_log_ctx *ctx)
4245 {
4246 	struct btrfs_ordered_extent *ordered;
4247 	u64 csum_offset;
4248 	u64 csum_len;
4249 	u64 mod_start = em->mod_start;
4250 	u64 mod_len = em->mod_len;
4251 	LIST_HEAD(ordered_sums);
4252 	int ret = 0;
4253 
4254 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4255 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4256 	    em->block_start == EXTENT_MAP_HOLE)
4257 		return 0;
4258 
4259 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4260 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4261 		const u64 mod_end = mod_start + mod_len;
4262 		struct btrfs_ordered_sum *sums;
4263 
4264 		if (mod_len == 0)
4265 			break;
4266 
4267 		if (ordered_end <= mod_start)
4268 			continue;
4269 		if (mod_end <= ordered->file_offset)
4270 			break;
4271 
4272 		/*
4273 		 * We are going to copy all the csums on this ordered extent, so
4274 		 * go ahead and adjust mod_start and mod_len in case this ordered
4275 		 * extent has already been logged.
4276 		 */
4277 		if (ordered->file_offset > mod_start) {
4278 			if (ordered_end >= mod_end)
4279 				mod_len = ordered->file_offset - mod_start;
4280 			/*
4281 			 * If we have this case
4282 			 *
4283 			 * |--------- logged extent ---------|
4284 			 *       |----- ordered extent ----|
4285 			 *
4286 			 * Just don't mess with mod_start and mod_len, we'll
4287 			 * just end up logging more csums than we need and it
4288 			 * will be ok.
4289 			 */
4290 		} else {
4291 			if (ordered_end < mod_end) {
4292 				mod_len = mod_end - ordered_end;
4293 				mod_start = ordered_end;
4294 			} else {
4295 				mod_len = 0;
4296 			}
4297 		}
4298 
4299 		/*
4300 		 * To keep us from looping for the above case of an ordered
4301 		 * extent that falls inside of the logged extent.
4302 		 */
4303 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4304 			continue;
4305 
4306 		list_for_each_entry(sums, &ordered->list, list) {
4307 			ret = log_csums(trans, inode, log_root, sums);
4308 			if (ret)
4309 				return ret;
4310 		}
4311 	}
4312 
4313 	/* We're done, found all csums in the ordered extents. */
4314 	if (mod_len == 0)
4315 		return 0;
4316 
4317 	/* If we're compressed we have to save the entire range of csums. */
4318 	if (em->compress_type) {
4319 		csum_offset = 0;
4320 		csum_len = max(em->block_len, em->orig_block_len);
4321 	} else {
4322 		csum_offset = mod_start - em->start;
4323 		csum_len = mod_len;
4324 	}
4325 
4326 	/* block start is already adjusted for the file extent offset. */
4327 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4328 				       em->block_start + csum_offset,
4329 				       em->block_start + csum_offset +
4330 				       csum_len - 1, &ordered_sums, 0);
4331 	if (ret)
4332 		return ret;
4333 
4334 	while (!list_empty(&ordered_sums)) {
4335 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4336 						   struct btrfs_ordered_sum,
4337 						   list);
4338 		if (!ret)
4339 			ret = log_csums(trans, inode, log_root, sums);
4340 		list_del(&sums->list);
4341 		kfree(sums);
4342 	}
4343 
4344 	return ret;
4345 }
4346 
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * root,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4347 static int log_one_extent(struct btrfs_trans_handle *trans,
4348 			  struct btrfs_inode *inode, struct btrfs_root *root,
4349 			  const struct extent_map *em,
4350 			  struct btrfs_path *path,
4351 			  struct btrfs_log_ctx *ctx)
4352 {
4353 	struct btrfs_drop_extents_args drop_args = { 0 };
4354 	struct btrfs_root *log = root->log_root;
4355 	struct btrfs_file_extent_item *fi;
4356 	struct extent_buffer *leaf;
4357 	struct btrfs_map_token token;
4358 	struct btrfs_key key;
4359 	u64 extent_offset = em->start - em->orig_start;
4360 	u64 block_len;
4361 	int ret;
4362 
4363 	ret = log_extent_csums(trans, inode, log, em, ctx);
4364 	if (ret)
4365 		return ret;
4366 
4367 	drop_args.path = path;
4368 	drop_args.start = em->start;
4369 	drop_args.end = em->start + em->len;
4370 	drop_args.replace_extent = true;
4371 	drop_args.extent_item_size = sizeof(*fi);
4372 	ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4373 	if (ret)
4374 		return ret;
4375 
4376 	if (!drop_args.extent_inserted) {
4377 		key.objectid = btrfs_ino(inode);
4378 		key.type = BTRFS_EXTENT_DATA_KEY;
4379 		key.offset = em->start;
4380 
4381 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4382 					      sizeof(*fi));
4383 		if (ret)
4384 			return ret;
4385 	}
4386 	leaf = path->nodes[0];
4387 	btrfs_init_map_token(&token, leaf);
4388 	fi = btrfs_item_ptr(leaf, path->slots[0],
4389 			    struct btrfs_file_extent_item);
4390 
4391 	btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4392 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4393 		btrfs_set_token_file_extent_type(&token, fi,
4394 						 BTRFS_FILE_EXTENT_PREALLOC);
4395 	else
4396 		btrfs_set_token_file_extent_type(&token, fi,
4397 						 BTRFS_FILE_EXTENT_REG);
4398 
4399 	block_len = max(em->block_len, em->orig_block_len);
4400 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4401 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4402 							em->block_start);
4403 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4404 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4405 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4406 							em->block_start -
4407 							extent_offset);
4408 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4409 	} else {
4410 		btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4411 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4412 	}
4413 
4414 	btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4415 	btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4416 	btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4417 	btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4418 	btrfs_set_token_file_extent_encryption(&token, fi, 0);
4419 	btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4420 	btrfs_mark_buffer_dirty(leaf);
4421 
4422 	btrfs_release_path(path);
4423 
4424 	return ret;
4425 }
4426 
4427 /*
4428  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4429  * lose them after doing a full/fast fsync and replaying the log. We scan the
4430  * subvolume's root instead of iterating the inode's extent map tree because
4431  * otherwise we can log incorrect extent items based on extent map conversion.
4432  * That can happen due to the fact that extent maps are merged when they
4433  * are not in the extent map tree's list of modified extents.
4434  */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)4435 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4436 				      struct btrfs_inode *inode,
4437 				      struct btrfs_path *path)
4438 {
4439 	struct btrfs_root *root = inode->root;
4440 	struct btrfs_key key;
4441 	const u64 i_size = i_size_read(&inode->vfs_inode);
4442 	const u64 ino = btrfs_ino(inode);
4443 	struct btrfs_path *dst_path = NULL;
4444 	bool dropped_extents = false;
4445 	u64 truncate_offset = i_size;
4446 	struct extent_buffer *leaf;
4447 	int slot;
4448 	int ins_nr = 0;
4449 	int start_slot = 0;
4450 	int ret;
4451 
4452 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4453 		return 0;
4454 
4455 	key.objectid = ino;
4456 	key.type = BTRFS_EXTENT_DATA_KEY;
4457 	key.offset = i_size;
4458 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4459 	if (ret < 0)
4460 		goto out;
4461 
4462 	/*
4463 	 * We must check if there is a prealloc extent that starts before the
4464 	 * i_size and crosses the i_size boundary. This is to ensure later we
4465 	 * truncate down to the end of that extent and not to the i_size, as
4466 	 * otherwise we end up losing part of the prealloc extent after a log
4467 	 * replay and with an implicit hole if there is another prealloc extent
4468 	 * that starts at an offset beyond i_size.
4469 	 */
4470 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4471 	if (ret < 0)
4472 		goto out;
4473 
4474 	if (ret == 0) {
4475 		struct btrfs_file_extent_item *ei;
4476 
4477 		leaf = path->nodes[0];
4478 		slot = path->slots[0];
4479 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4480 
4481 		if (btrfs_file_extent_type(leaf, ei) ==
4482 		    BTRFS_FILE_EXTENT_PREALLOC) {
4483 			u64 extent_end;
4484 
4485 			btrfs_item_key_to_cpu(leaf, &key, slot);
4486 			extent_end = key.offset +
4487 				btrfs_file_extent_num_bytes(leaf, ei);
4488 
4489 			if (extent_end > i_size)
4490 				truncate_offset = extent_end;
4491 		}
4492 	} else {
4493 		ret = 0;
4494 	}
4495 
4496 	while (true) {
4497 		leaf = path->nodes[0];
4498 		slot = path->slots[0];
4499 
4500 		if (slot >= btrfs_header_nritems(leaf)) {
4501 			if (ins_nr > 0) {
4502 				ret = copy_items(trans, inode, dst_path, path,
4503 						 start_slot, ins_nr, 1, 0);
4504 				if (ret < 0)
4505 					goto out;
4506 				ins_nr = 0;
4507 			}
4508 			ret = btrfs_next_leaf(root, path);
4509 			if (ret < 0)
4510 				goto out;
4511 			if (ret > 0) {
4512 				ret = 0;
4513 				break;
4514 			}
4515 			continue;
4516 		}
4517 
4518 		btrfs_item_key_to_cpu(leaf, &key, slot);
4519 		if (key.objectid > ino)
4520 			break;
4521 		if (WARN_ON_ONCE(key.objectid < ino) ||
4522 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4523 		    key.offset < i_size) {
4524 			path->slots[0]++;
4525 			continue;
4526 		}
4527 		if (!dropped_extents) {
4528 			/*
4529 			 * Avoid logging extent items logged in past fsync calls
4530 			 * and leading to duplicate keys in the log tree.
4531 			 */
4532 			do {
4533 				ret = btrfs_truncate_inode_items(trans,
4534 							 root->log_root,
4535 							 inode, truncate_offset,
4536 							 BTRFS_EXTENT_DATA_KEY,
4537 							 NULL);
4538 			} while (ret == -EAGAIN);
4539 			if (ret)
4540 				goto out;
4541 			dropped_extents = true;
4542 		}
4543 		if (ins_nr == 0)
4544 			start_slot = slot;
4545 		ins_nr++;
4546 		path->slots[0]++;
4547 		if (!dst_path) {
4548 			dst_path = btrfs_alloc_path();
4549 			if (!dst_path) {
4550 				ret = -ENOMEM;
4551 				goto out;
4552 			}
4553 		}
4554 	}
4555 	if (ins_nr > 0)
4556 		ret = copy_items(trans, inode, dst_path, path,
4557 				 start_slot, ins_nr, 1, 0);
4558 out:
4559 	btrfs_release_path(path);
4560 	btrfs_free_path(dst_path);
4561 	return ret;
4562 }
4563 
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4564 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4565 				     struct btrfs_root *root,
4566 				     struct btrfs_inode *inode,
4567 				     struct btrfs_path *path,
4568 				     struct btrfs_log_ctx *ctx)
4569 {
4570 	struct btrfs_ordered_extent *ordered;
4571 	struct btrfs_ordered_extent *tmp;
4572 	struct extent_map *em, *n;
4573 	struct list_head extents;
4574 	struct extent_map_tree *tree = &inode->extent_tree;
4575 	int ret = 0;
4576 	int num = 0;
4577 
4578 	INIT_LIST_HEAD(&extents);
4579 
4580 	write_lock(&tree->lock);
4581 
4582 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4583 		list_del_init(&em->list);
4584 		/*
4585 		 * Just an arbitrary number, this can be really CPU intensive
4586 		 * once we start getting a lot of extents, and really once we
4587 		 * have a bunch of extents we just want to commit since it will
4588 		 * be faster.
4589 		 */
4590 		if (++num > 32768) {
4591 			list_del_init(&tree->modified_extents);
4592 			ret = -EFBIG;
4593 			goto process;
4594 		}
4595 
4596 		if (em->generation < trans->transid)
4597 			continue;
4598 
4599 		/* We log prealloc extents beyond eof later. */
4600 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4601 		    em->start >= i_size_read(&inode->vfs_inode))
4602 			continue;
4603 
4604 		/* Need a ref to keep it from getting evicted from cache */
4605 		refcount_inc(&em->refs);
4606 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4607 		list_add_tail(&em->list, &extents);
4608 		num++;
4609 	}
4610 
4611 	list_sort(NULL, &extents, extent_cmp);
4612 process:
4613 	while (!list_empty(&extents)) {
4614 		em = list_entry(extents.next, struct extent_map, list);
4615 
4616 		list_del_init(&em->list);
4617 
4618 		/*
4619 		 * If we had an error we just need to delete everybody from our
4620 		 * private list.
4621 		 */
4622 		if (ret) {
4623 			clear_em_logging(tree, em);
4624 			free_extent_map(em);
4625 			continue;
4626 		}
4627 
4628 		write_unlock(&tree->lock);
4629 
4630 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4631 		write_lock(&tree->lock);
4632 		clear_em_logging(tree, em);
4633 		free_extent_map(em);
4634 	}
4635 	WARN_ON(!list_empty(&extents));
4636 	write_unlock(&tree->lock);
4637 
4638 	btrfs_release_path(path);
4639 	if (!ret)
4640 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4641 	if (ret)
4642 		return ret;
4643 
4644 	/*
4645 	 * We have logged all extents successfully, now make sure the commit of
4646 	 * the current transaction waits for the ordered extents to complete
4647 	 * before it commits and wipes out the log trees, otherwise we would
4648 	 * lose data if an ordered extents completes after the transaction
4649 	 * commits and a power failure happens after the transaction commit.
4650 	 */
4651 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4652 		list_del_init(&ordered->log_list);
4653 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4654 
4655 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4656 			spin_lock_irq(&inode->ordered_tree.lock);
4657 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4658 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4659 				atomic_inc(&trans->transaction->pending_ordered);
4660 			}
4661 			spin_unlock_irq(&inode->ordered_tree.lock);
4662 		}
4663 		btrfs_put_ordered_extent(ordered);
4664 	}
4665 
4666 	return 0;
4667 }
4668 
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)4669 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4670 			     struct btrfs_path *path, u64 *size_ret)
4671 {
4672 	struct btrfs_key key;
4673 	int ret;
4674 
4675 	key.objectid = btrfs_ino(inode);
4676 	key.type = BTRFS_INODE_ITEM_KEY;
4677 	key.offset = 0;
4678 
4679 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4680 	if (ret < 0) {
4681 		return ret;
4682 	} else if (ret > 0) {
4683 		*size_ret = 0;
4684 	} else {
4685 		struct btrfs_inode_item *item;
4686 
4687 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4688 				      struct btrfs_inode_item);
4689 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4690 		/*
4691 		 * If the in-memory inode's i_size is smaller then the inode
4692 		 * size stored in the btree, return the inode's i_size, so
4693 		 * that we get a correct inode size after replaying the log
4694 		 * when before a power failure we had a shrinking truncate
4695 		 * followed by addition of a new name (rename / new hard link).
4696 		 * Otherwise return the inode size from the btree, to avoid
4697 		 * data loss when replaying a log due to previously doing a
4698 		 * write that expands the inode's size and logging a new name
4699 		 * immediately after.
4700 		 */
4701 		if (*size_ret > inode->vfs_inode.i_size)
4702 			*size_ret = inode->vfs_inode.i_size;
4703 	}
4704 
4705 	btrfs_release_path(path);
4706 	return 0;
4707 }
4708 
4709 /*
4710  * At the moment we always log all xattrs. This is to figure out at log replay
4711  * time which xattrs must have their deletion replayed. If a xattr is missing
4712  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4713  * because if a xattr is deleted, the inode is fsynced and a power failure
4714  * happens, causing the log to be replayed the next time the fs is mounted,
4715  * we want the xattr to not exist anymore (same behaviour as other filesystems
4716  * with a journal, ext3/4, xfs, f2fs, etc).
4717  */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)4718 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4719 				struct btrfs_root *root,
4720 				struct btrfs_inode *inode,
4721 				struct btrfs_path *path,
4722 				struct btrfs_path *dst_path)
4723 {
4724 	int ret;
4725 	struct btrfs_key key;
4726 	const u64 ino = btrfs_ino(inode);
4727 	int ins_nr = 0;
4728 	int start_slot = 0;
4729 	bool found_xattrs = false;
4730 
4731 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4732 		return 0;
4733 
4734 	key.objectid = ino;
4735 	key.type = BTRFS_XATTR_ITEM_KEY;
4736 	key.offset = 0;
4737 
4738 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4739 	if (ret < 0)
4740 		return ret;
4741 
4742 	while (true) {
4743 		int slot = path->slots[0];
4744 		struct extent_buffer *leaf = path->nodes[0];
4745 		int nritems = btrfs_header_nritems(leaf);
4746 
4747 		if (slot >= nritems) {
4748 			if (ins_nr > 0) {
4749 				ret = copy_items(trans, inode, dst_path, path,
4750 						 start_slot, ins_nr, 1, 0);
4751 				if (ret < 0)
4752 					return ret;
4753 				ins_nr = 0;
4754 			}
4755 			ret = btrfs_next_leaf(root, path);
4756 			if (ret < 0)
4757 				return ret;
4758 			else if (ret > 0)
4759 				break;
4760 			continue;
4761 		}
4762 
4763 		btrfs_item_key_to_cpu(leaf, &key, slot);
4764 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4765 			break;
4766 
4767 		if (ins_nr == 0)
4768 			start_slot = slot;
4769 		ins_nr++;
4770 		path->slots[0]++;
4771 		found_xattrs = true;
4772 		cond_resched();
4773 	}
4774 	if (ins_nr > 0) {
4775 		ret = copy_items(trans, inode, dst_path, path,
4776 				 start_slot, ins_nr, 1, 0);
4777 		if (ret < 0)
4778 			return ret;
4779 	}
4780 
4781 	if (!found_xattrs)
4782 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4783 
4784 	return 0;
4785 }
4786 
4787 /*
4788  * When using the NO_HOLES feature if we punched a hole that causes the
4789  * deletion of entire leafs or all the extent items of the first leaf (the one
4790  * that contains the inode item and references) we may end up not processing
4791  * any extents, because there are no leafs with a generation matching the
4792  * current transaction that have extent items for our inode. So we need to find
4793  * if any holes exist and then log them. We also need to log holes after any
4794  * truncate operation that changes the inode's size.
4795  */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)4796 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4797 			   struct btrfs_root *root,
4798 			   struct btrfs_inode *inode,
4799 			   struct btrfs_path *path)
4800 {
4801 	struct btrfs_fs_info *fs_info = root->fs_info;
4802 	struct btrfs_key key;
4803 	const u64 ino = btrfs_ino(inode);
4804 	const u64 i_size = i_size_read(&inode->vfs_inode);
4805 	u64 prev_extent_end = 0;
4806 	int ret;
4807 
4808 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4809 		return 0;
4810 
4811 	key.objectid = ino;
4812 	key.type = BTRFS_EXTENT_DATA_KEY;
4813 	key.offset = 0;
4814 
4815 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4816 	if (ret < 0)
4817 		return ret;
4818 
4819 	while (true) {
4820 		struct extent_buffer *leaf = path->nodes[0];
4821 
4822 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4823 			ret = btrfs_next_leaf(root, path);
4824 			if (ret < 0)
4825 				return ret;
4826 			if (ret > 0) {
4827 				ret = 0;
4828 				break;
4829 			}
4830 			leaf = path->nodes[0];
4831 		}
4832 
4833 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4834 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4835 			break;
4836 
4837 		/* We have a hole, log it. */
4838 		if (prev_extent_end < key.offset) {
4839 			const u64 hole_len = key.offset - prev_extent_end;
4840 
4841 			/*
4842 			 * Release the path to avoid deadlocks with other code
4843 			 * paths that search the root while holding locks on
4844 			 * leafs from the log root.
4845 			 */
4846 			btrfs_release_path(path);
4847 			ret = btrfs_insert_file_extent(trans, root->log_root,
4848 						       ino, prev_extent_end, 0,
4849 						       0, hole_len, 0, hole_len,
4850 						       0, 0, 0);
4851 			if (ret < 0)
4852 				return ret;
4853 
4854 			/*
4855 			 * Search for the same key again in the root. Since it's
4856 			 * an extent item and we are holding the inode lock, the
4857 			 * key must still exist. If it doesn't just emit warning
4858 			 * and return an error to fall back to a transaction
4859 			 * commit.
4860 			 */
4861 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4862 			if (ret < 0)
4863 				return ret;
4864 			if (WARN_ON(ret > 0))
4865 				return -ENOENT;
4866 			leaf = path->nodes[0];
4867 		}
4868 
4869 		prev_extent_end = btrfs_file_extent_end(path);
4870 		path->slots[0]++;
4871 		cond_resched();
4872 	}
4873 
4874 	if (prev_extent_end < i_size) {
4875 		u64 hole_len;
4876 
4877 		btrfs_release_path(path);
4878 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4879 		ret = btrfs_insert_file_extent(trans, root->log_root,
4880 					       ino, prev_extent_end, 0, 0,
4881 					       hole_len, 0, hole_len,
4882 					       0, 0, 0);
4883 		if (ret < 0)
4884 			return ret;
4885 	}
4886 
4887 	return 0;
4888 }
4889 
4890 /*
4891  * When we are logging a new inode X, check if it doesn't have a reference that
4892  * matches the reference from some other inode Y created in a past transaction
4893  * and that was renamed in the current transaction. If we don't do this, then at
4894  * log replay time we can lose inode Y (and all its files if it's a directory):
4895  *
4896  * mkdir /mnt/x
4897  * echo "hello world" > /mnt/x/foobar
4898  * sync
4899  * mv /mnt/x /mnt/y
4900  * mkdir /mnt/x                 # or touch /mnt/x
4901  * xfs_io -c fsync /mnt/x
4902  * <power fail>
4903  * mount fs, trigger log replay
4904  *
4905  * After the log replay procedure, we would lose the first directory and all its
4906  * files (file foobar).
4907  * For the case where inode Y is not a directory we simply end up losing it:
4908  *
4909  * echo "123" > /mnt/foo
4910  * sync
4911  * mv /mnt/foo /mnt/bar
4912  * echo "abc" > /mnt/foo
4913  * xfs_io -c fsync /mnt/foo
4914  * <power fail>
4915  *
4916  * We also need this for cases where a snapshot entry is replaced by some other
4917  * entry (file or directory) otherwise we end up with an unreplayable log due to
4918  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4919  * if it were a regular entry:
4920  *
4921  * mkdir /mnt/x
4922  * btrfs subvolume snapshot /mnt /mnt/x/snap
4923  * btrfs subvolume delete /mnt/x/snap
4924  * rmdir /mnt/x
4925  * mkdir /mnt/x
4926  * fsync /mnt/x or fsync some new file inside it
4927  * <power fail>
4928  *
4929  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4930  * the same transaction.
4931  */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)4932 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4933 					 const int slot,
4934 					 const struct btrfs_key *key,
4935 					 struct btrfs_inode *inode,
4936 					 u64 *other_ino, u64 *other_parent)
4937 {
4938 	int ret;
4939 	struct btrfs_path *search_path;
4940 	char *name = NULL;
4941 	u32 name_len = 0;
4942 	u32 item_size = btrfs_item_size_nr(eb, slot);
4943 	u32 cur_offset = 0;
4944 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4945 
4946 	search_path = btrfs_alloc_path();
4947 	if (!search_path)
4948 		return -ENOMEM;
4949 	search_path->search_commit_root = 1;
4950 	search_path->skip_locking = 1;
4951 
4952 	while (cur_offset < item_size) {
4953 		u64 parent;
4954 		u32 this_name_len;
4955 		u32 this_len;
4956 		unsigned long name_ptr;
4957 		struct btrfs_dir_item *di;
4958 
4959 		if (key->type == BTRFS_INODE_REF_KEY) {
4960 			struct btrfs_inode_ref *iref;
4961 
4962 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4963 			parent = key->offset;
4964 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4965 			name_ptr = (unsigned long)(iref + 1);
4966 			this_len = sizeof(*iref) + this_name_len;
4967 		} else {
4968 			struct btrfs_inode_extref *extref;
4969 
4970 			extref = (struct btrfs_inode_extref *)(ptr +
4971 							       cur_offset);
4972 			parent = btrfs_inode_extref_parent(eb, extref);
4973 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4974 			name_ptr = (unsigned long)&extref->name;
4975 			this_len = sizeof(*extref) + this_name_len;
4976 		}
4977 
4978 		if (this_name_len > name_len) {
4979 			char *new_name;
4980 
4981 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4982 			if (!new_name) {
4983 				ret = -ENOMEM;
4984 				goto out;
4985 			}
4986 			name_len = this_name_len;
4987 			name = new_name;
4988 		}
4989 
4990 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4991 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4992 				parent, name, this_name_len, 0);
4993 		if (di && !IS_ERR(di)) {
4994 			struct btrfs_key di_key;
4995 
4996 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4997 						  di, &di_key);
4998 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4999 				if (di_key.objectid != key->objectid) {
5000 					ret = 1;
5001 					*other_ino = di_key.objectid;
5002 					*other_parent = parent;
5003 				} else {
5004 					ret = 0;
5005 				}
5006 			} else {
5007 				ret = -EAGAIN;
5008 			}
5009 			goto out;
5010 		} else if (IS_ERR(di)) {
5011 			ret = PTR_ERR(di);
5012 			goto out;
5013 		}
5014 		btrfs_release_path(search_path);
5015 
5016 		cur_offset += this_len;
5017 	}
5018 	ret = 0;
5019 out:
5020 	btrfs_free_path(search_path);
5021 	kfree(name);
5022 	return ret;
5023 }
5024 
5025 struct btrfs_ino_list {
5026 	u64 ino;
5027 	u64 parent;
5028 	struct list_head list;
5029 };
5030 
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx,u64 ino,u64 parent)5031 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5032 				  struct btrfs_root *root,
5033 				  struct btrfs_path *path,
5034 				  struct btrfs_log_ctx *ctx,
5035 				  u64 ino, u64 parent)
5036 {
5037 	struct btrfs_ino_list *ino_elem;
5038 	LIST_HEAD(inode_list);
5039 	int ret = 0;
5040 
5041 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5042 	if (!ino_elem)
5043 		return -ENOMEM;
5044 	ino_elem->ino = ino;
5045 	ino_elem->parent = parent;
5046 	list_add_tail(&ino_elem->list, &inode_list);
5047 
5048 	while (!list_empty(&inode_list)) {
5049 		struct btrfs_fs_info *fs_info = root->fs_info;
5050 		struct btrfs_key key;
5051 		struct inode *inode;
5052 
5053 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5054 					    list);
5055 		ino = ino_elem->ino;
5056 		parent = ino_elem->parent;
5057 		list_del(&ino_elem->list);
5058 		kfree(ino_elem);
5059 		if (ret)
5060 			continue;
5061 
5062 		btrfs_release_path(path);
5063 
5064 		inode = btrfs_iget(fs_info->sb, ino, root);
5065 		/*
5066 		 * If the other inode that had a conflicting dir entry was
5067 		 * deleted in the current transaction, we need to log its parent
5068 		 * directory.
5069 		 */
5070 		if (IS_ERR(inode)) {
5071 			ret = PTR_ERR(inode);
5072 			if (ret == -ENOENT) {
5073 				inode = btrfs_iget(fs_info->sb, parent, root);
5074 				if (IS_ERR(inode)) {
5075 					ret = PTR_ERR(inode);
5076 				} else {
5077 					ret = btrfs_log_inode(trans, root,
5078 						      BTRFS_I(inode),
5079 						      LOG_OTHER_INODE_ALL,
5080 						      ctx);
5081 					btrfs_add_delayed_iput(inode);
5082 				}
5083 			}
5084 			continue;
5085 		}
5086 		/*
5087 		 * If the inode was already logged skip it - otherwise we can
5088 		 * hit an infinite loop. Example:
5089 		 *
5090 		 * From the commit root (previous transaction) we have the
5091 		 * following inodes:
5092 		 *
5093 		 * inode 257 a directory
5094 		 * inode 258 with references "zz" and "zz_link" on inode 257
5095 		 * inode 259 with reference "a" on inode 257
5096 		 *
5097 		 * And in the current (uncommitted) transaction we have:
5098 		 *
5099 		 * inode 257 a directory, unchanged
5100 		 * inode 258 with references "a" and "a2" on inode 257
5101 		 * inode 259 with reference "zz_link" on inode 257
5102 		 * inode 261 with reference "zz" on inode 257
5103 		 *
5104 		 * When logging inode 261 the following infinite loop could
5105 		 * happen if we don't skip already logged inodes:
5106 		 *
5107 		 * - we detect inode 258 as a conflicting inode, with inode 261
5108 		 *   on reference "zz", and log it;
5109 		 *
5110 		 * - we detect inode 259 as a conflicting inode, with inode 258
5111 		 *   on reference "a", and log it;
5112 		 *
5113 		 * - we detect inode 258 as a conflicting inode, with inode 259
5114 		 *   on reference "zz_link", and log it - again! After this we
5115 		 *   repeat the above steps forever.
5116 		 */
5117 		spin_lock(&BTRFS_I(inode)->lock);
5118 		/*
5119 		 * Check the inode's logged_trans only instead of
5120 		 * btrfs_inode_in_log(). This is because the last_log_commit of
5121 		 * the inode is not updated when we only log that it exists (see
5122 		 * btrfs_log_inode()).
5123 		 */
5124 		if (BTRFS_I(inode)->logged_trans == trans->transid) {
5125 			spin_unlock(&BTRFS_I(inode)->lock);
5126 			btrfs_add_delayed_iput(inode);
5127 			continue;
5128 		}
5129 		spin_unlock(&BTRFS_I(inode)->lock);
5130 		/*
5131 		 * We are safe logging the other inode without acquiring its
5132 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5133 		 * are safe against concurrent renames of the other inode as
5134 		 * well because during a rename we pin the log and update the
5135 		 * log with the new name before we unpin it.
5136 		 */
5137 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5138 				      LOG_OTHER_INODE, ctx);
5139 		if (ret) {
5140 			btrfs_add_delayed_iput(inode);
5141 			continue;
5142 		}
5143 
5144 		key.objectid = ino;
5145 		key.type = BTRFS_INODE_REF_KEY;
5146 		key.offset = 0;
5147 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5148 		if (ret < 0) {
5149 			btrfs_add_delayed_iput(inode);
5150 			continue;
5151 		}
5152 
5153 		while (true) {
5154 			struct extent_buffer *leaf = path->nodes[0];
5155 			int slot = path->slots[0];
5156 			u64 other_ino = 0;
5157 			u64 other_parent = 0;
5158 
5159 			if (slot >= btrfs_header_nritems(leaf)) {
5160 				ret = btrfs_next_leaf(root, path);
5161 				if (ret < 0) {
5162 					break;
5163 				} else if (ret > 0) {
5164 					ret = 0;
5165 					break;
5166 				}
5167 				continue;
5168 			}
5169 
5170 			btrfs_item_key_to_cpu(leaf, &key, slot);
5171 			if (key.objectid != ino ||
5172 			    (key.type != BTRFS_INODE_REF_KEY &&
5173 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5174 				ret = 0;
5175 				break;
5176 			}
5177 
5178 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5179 					BTRFS_I(inode), &other_ino,
5180 					&other_parent);
5181 			if (ret < 0)
5182 				break;
5183 			if (ret > 0) {
5184 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5185 				if (!ino_elem) {
5186 					ret = -ENOMEM;
5187 					break;
5188 				}
5189 				ino_elem->ino = other_ino;
5190 				ino_elem->parent = other_parent;
5191 				list_add_tail(&ino_elem->list, &inode_list);
5192 				ret = 0;
5193 			}
5194 			path->slots[0]++;
5195 		}
5196 		btrfs_add_delayed_iput(inode);
5197 	}
5198 
5199 	return ret;
5200 }
5201 
copy_inode_items_to_log(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_key * min_key,const struct btrfs_key * max_key,struct btrfs_path * path,struct btrfs_path * dst_path,const u64 logged_isize,const bool recursive_logging,const int inode_only,struct btrfs_log_ctx * ctx,bool * need_log_inode_item)5202 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5203 				   struct btrfs_inode *inode,
5204 				   struct btrfs_key *min_key,
5205 				   const struct btrfs_key *max_key,
5206 				   struct btrfs_path *path,
5207 				   struct btrfs_path *dst_path,
5208 				   const u64 logged_isize,
5209 				   const bool recursive_logging,
5210 				   const int inode_only,
5211 				   struct btrfs_log_ctx *ctx,
5212 				   bool *need_log_inode_item)
5213 {
5214 	const u64 i_size = i_size_read(&inode->vfs_inode);
5215 	struct btrfs_root *root = inode->root;
5216 	int ins_start_slot = 0;
5217 	int ins_nr = 0;
5218 	int ret;
5219 
5220 	while (1) {
5221 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5222 		if (ret < 0)
5223 			return ret;
5224 		if (ret > 0) {
5225 			ret = 0;
5226 			break;
5227 		}
5228 again:
5229 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5230 		if (min_key->objectid != max_key->objectid)
5231 			break;
5232 		if (min_key->type > max_key->type)
5233 			break;
5234 
5235 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5236 			*need_log_inode_item = false;
5237 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5238 			   min_key->offset >= i_size) {
5239 			/*
5240 			 * Extents at and beyond eof are logged with
5241 			 * btrfs_log_prealloc_extents().
5242 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5243 			 * and no keys greater than that, so bail out.
5244 			 */
5245 			break;
5246 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5247 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5248 			   inode->generation == trans->transid &&
5249 			   !recursive_logging) {
5250 			u64 other_ino = 0;
5251 			u64 other_parent = 0;
5252 
5253 			ret = btrfs_check_ref_name_override(path->nodes[0],
5254 					path->slots[0], min_key, inode,
5255 					&other_ino, &other_parent);
5256 			if (ret < 0) {
5257 				return ret;
5258 			} else if (ret > 0 && ctx &&
5259 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5260 				if (ins_nr > 0) {
5261 					ins_nr++;
5262 				} else {
5263 					ins_nr = 1;
5264 					ins_start_slot = path->slots[0];
5265 				}
5266 				ret = copy_items(trans, inode, dst_path, path,
5267 						 ins_start_slot, ins_nr,
5268 						 inode_only, logged_isize);
5269 				if (ret < 0)
5270 					return ret;
5271 				ins_nr = 0;
5272 
5273 				ret = log_conflicting_inodes(trans, root, path,
5274 						ctx, other_ino, other_parent);
5275 				if (ret)
5276 					return ret;
5277 				btrfs_release_path(path);
5278 				goto next_key;
5279 			}
5280 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5281 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5282 			if (ins_nr == 0)
5283 				goto next_slot;
5284 			ret = copy_items(trans, inode, dst_path, path,
5285 					 ins_start_slot,
5286 					 ins_nr, inode_only, logged_isize);
5287 			if (ret < 0)
5288 				return ret;
5289 			ins_nr = 0;
5290 			goto next_slot;
5291 		}
5292 
5293 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5294 			ins_nr++;
5295 			goto next_slot;
5296 		} else if (!ins_nr) {
5297 			ins_start_slot = path->slots[0];
5298 			ins_nr = 1;
5299 			goto next_slot;
5300 		}
5301 
5302 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5303 				 ins_nr, inode_only, logged_isize);
5304 		if (ret < 0)
5305 			return ret;
5306 		ins_nr = 1;
5307 		ins_start_slot = path->slots[0];
5308 next_slot:
5309 		path->slots[0]++;
5310 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5311 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5312 					      path->slots[0]);
5313 			goto again;
5314 		}
5315 		if (ins_nr) {
5316 			ret = copy_items(trans, inode, dst_path, path,
5317 					 ins_start_slot, ins_nr, inode_only,
5318 					 logged_isize);
5319 			if (ret < 0)
5320 				return ret;
5321 			ins_nr = 0;
5322 		}
5323 		btrfs_release_path(path);
5324 next_key:
5325 		if (min_key->offset < (u64)-1) {
5326 			min_key->offset++;
5327 		} else if (min_key->type < max_key->type) {
5328 			min_key->type++;
5329 			min_key->offset = 0;
5330 		} else {
5331 			break;
5332 		}
5333 	}
5334 	if (ins_nr) {
5335 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5336 				 ins_nr, inode_only, logged_isize);
5337 		if (ret)
5338 			return ret;
5339 	}
5340 
5341 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5342 		/*
5343 		 * Release the path because otherwise we might attempt to double
5344 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
5345 		 */
5346 		btrfs_release_path(path);
5347 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5348 	}
5349 
5350 	return ret;
5351 }
5352 
5353 /* log a single inode in the tree log.
5354  * At least one parent directory for this inode must exist in the tree
5355  * or be logged already.
5356  *
5357  * Any items from this inode changed by the current transaction are copied
5358  * to the log tree.  An extra reference is taken on any extents in this
5359  * file, allowing us to avoid a whole pile of corner cases around logging
5360  * blocks that have been removed from the tree.
5361  *
5362  * See LOG_INODE_ALL and related defines for a description of what inode_only
5363  * does.
5364  *
5365  * This handles both files and directories.
5366  */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,int inode_only,struct btrfs_log_ctx * ctx)5367 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5368 			   struct btrfs_root *root, struct btrfs_inode *inode,
5369 			   int inode_only,
5370 			   struct btrfs_log_ctx *ctx)
5371 {
5372 	struct btrfs_path *path;
5373 	struct btrfs_path *dst_path;
5374 	struct btrfs_key min_key;
5375 	struct btrfs_key max_key;
5376 	struct btrfs_root *log = root->log_root;
5377 	int err = 0;
5378 	int ret = 0;
5379 	bool fast_search = false;
5380 	u64 ino = btrfs_ino(inode);
5381 	struct extent_map_tree *em_tree = &inode->extent_tree;
5382 	u64 logged_isize = 0;
5383 	bool need_log_inode_item = true;
5384 	bool xattrs_logged = false;
5385 	bool recursive_logging = false;
5386 	bool inode_item_dropped = true;
5387 
5388 	path = btrfs_alloc_path();
5389 	if (!path)
5390 		return -ENOMEM;
5391 	dst_path = btrfs_alloc_path();
5392 	if (!dst_path) {
5393 		btrfs_free_path(path);
5394 		return -ENOMEM;
5395 	}
5396 
5397 	min_key.objectid = ino;
5398 	min_key.type = BTRFS_INODE_ITEM_KEY;
5399 	min_key.offset = 0;
5400 
5401 	max_key.objectid = ino;
5402 
5403 
5404 	/* today the code can only do partial logging of directories */
5405 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5406 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5407 		       &inode->runtime_flags) &&
5408 	     inode_only >= LOG_INODE_EXISTS))
5409 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5410 	else
5411 		max_key.type = (u8)-1;
5412 	max_key.offset = (u64)-1;
5413 
5414 	/*
5415 	 * Only run delayed items if we are a directory. We want to make sure
5416 	 * all directory indexes hit the fs/subvolume tree so we can find them
5417 	 * and figure out which index ranges have to be logged.
5418 	 *
5419 	 * Otherwise commit the delayed inode only if the full sync flag is set,
5420 	 * as we want to make sure an up to date version is in the subvolume
5421 	 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5422 	 * it to the log tree. For a non full sync, we always log the inode item
5423 	 * based on the in-memory struct btrfs_inode which is always up to date.
5424 	 */
5425 	if (S_ISDIR(inode->vfs_inode.i_mode))
5426 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5427 	else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5428 		ret = btrfs_commit_inode_delayed_inode(inode);
5429 
5430 	if (ret) {
5431 		btrfs_free_path(path);
5432 		btrfs_free_path(dst_path);
5433 		return ret;
5434 	}
5435 
5436 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5437 		recursive_logging = true;
5438 		if (inode_only == LOG_OTHER_INODE)
5439 			inode_only = LOG_INODE_EXISTS;
5440 		else
5441 			inode_only = LOG_INODE_ALL;
5442 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5443 	} else {
5444 		mutex_lock(&inode->log_mutex);
5445 	}
5446 
5447 	/*
5448 	 * For symlinks, we must always log their content, which is stored in an
5449 	 * inline extent, otherwise we could end up with an empty symlink after
5450 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
5451 	 * one attempts to create an empty symlink).
5452 	 * We don't need to worry about flushing delalloc, because when we create
5453 	 * the inline extent when the symlink is created (we never have delalloc
5454 	 * for symlinks).
5455 	 */
5456 	if (S_ISLNK(inode->vfs_inode.i_mode))
5457 		inode_only = LOG_INODE_ALL;
5458 
5459 	/*
5460 	 * This is for cases where logging a directory could result in losing a
5461 	 * a file after replaying the log. For example, if we move a file from a
5462 	 * directory A to a directory B, then fsync directory A, we have no way
5463 	 * to known the file was moved from A to B, so logging just A would
5464 	 * result in losing the file after a log replay.
5465 	 */
5466 	if (S_ISDIR(inode->vfs_inode.i_mode) &&
5467 	    inode_only == LOG_INODE_ALL &&
5468 	    inode->last_unlink_trans >= trans->transid) {
5469 		btrfs_set_log_full_commit(trans);
5470 		err = 1;
5471 		goto out_unlock;
5472 	}
5473 
5474 	/*
5475 	 * a brute force approach to making sure we get the most uptodate
5476 	 * copies of everything.
5477 	 */
5478 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5479 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5480 
5481 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
5482 		if (inode_only == LOG_INODE_EXISTS)
5483 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5484 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5485 	} else {
5486 		if (inode_only == LOG_INODE_EXISTS) {
5487 			/*
5488 			 * Make sure the new inode item we write to the log has
5489 			 * the same isize as the current one (if it exists).
5490 			 * This is necessary to prevent data loss after log
5491 			 * replay, and also to prevent doing a wrong expanding
5492 			 * truncate - for e.g. create file, write 4K into offset
5493 			 * 0, fsync, write 4K into offset 4096, add hard link,
5494 			 * fsync some other file (to sync log), power fail - if
5495 			 * we use the inode's current i_size, after log replay
5496 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5497 			 * (zeroes), as if an expanding truncate happened,
5498 			 * instead of getting a file of 4Kb only.
5499 			 */
5500 			err = logged_inode_size(log, inode, path, &logged_isize);
5501 			if (err)
5502 				goto out_unlock;
5503 		}
5504 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5505 			     &inode->runtime_flags)) {
5506 			if (inode_only == LOG_INODE_EXISTS) {
5507 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5508 				ret = drop_objectid_items(trans, log, path, ino,
5509 							  max_key.type);
5510 			} else {
5511 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5512 					  &inode->runtime_flags);
5513 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5514 					  &inode->runtime_flags);
5515 				while(1) {
5516 					ret = btrfs_truncate_inode_items(trans,
5517 						log, inode, 0, 0, NULL);
5518 					if (ret != -EAGAIN)
5519 						break;
5520 				}
5521 			}
5522 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5523 					      &inode->runtime_flags) ||
5524 			   inode_only == LOG_INODE_EXISTS) {
5525 			if (inode_only == LOG_INODE_ALL)
5526 				fast_search = true;
5527 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5528 			ret = drop_objectid_items(trans, log, path, ino,
5529 						  max_key.type);
5530 		} else {
5531 			if (inode_only == LOG_INODE_ALL)
5532 				fast_search = true;
5533 			inode_item_dropped = false;
5534 			goto log_extents;
5535 		}
5536 
5537 	}
5538 	if (ret) {
5539 		err = ret;
5540 		goto out_unlock;
5541 	}
5542 
5543 	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5544 				      path, dst_path, logged_isize,
5545 				      recursive_logging, inode_only, ctx,
5546 				      &need_log_inode_item);
5547 	if (err)
5548 		goto out_unlock;
5549 
5550 	btrfs_release_path(path);
5551 	btrfs_release_path(dst_path);
5552 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5553 	if (err)
5554 		goto out_unlock;
5555 	xattrs_logged = true;
5556 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5557 		btrfs_release_path(path);
5558 		btrfs_release_path(dst_path);
5559 		err = btrfs_log_holes(trans, root, inode, path);
5560 		if (err)
5561 			goto out_unlock;
5562 	}
5563 log_extents:
5564 	btrfs_release_path(path);
5565 	btrfs_release_path(dst_path);
5566 	if (need_log_inode_item) {
5567 		err = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
5568 		if (err)
5569 			goto out_unlock;
5570 		/*
5571 		 * If we are doing a fast fsync and the inode was logged before
5572 		 * in this transaction, we don't need to log the xattrs because
5573 		 * they were logged before. If xattrs were added, changed or
5574 		 * deleted since the last time we logged the inode, then we have
5575 		 * already logged them because the inode had the runtime flag
5576 		 * BTRFS_INODE_COPY_EVERYTHING set.
5577 		 */
5578 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
5579 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5580 						   dst_path);
5581 			if (err)
5582 				goto out_unlock;
5583 			btrfs_release_path(path);
5584 		}
5585 	}
5586 	if (fast_search) {
5587 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5588 						ctx);
5589 		if (ret) {
5590 			err = ret;
5591 			goto out_unlock;
5592 		}
5593 	} else if (inode_only == LOG_INODE_ALL) {
5594 		struct extent_map *em, *n;
5595 
5596 		write_lock(&em_tree->lock);
5597 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5598 			list_del_init(&em->list);
5599 		write_unlock(&em_tree->lock);
5600 	}
5601 
5602 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5603 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5604 					ctx);
5605 		if (ret) {
5606 			err = ret;
5607 			goto out_unlock;
5608 		}
5609 	}
5610 
5611 	/*
5612 	 * If we are logging that an ancestor inode exists as part of logging a
5613 	 * new name from a link or rename operation, don't mark the inode as
5614 	 * logged - otherwise if an explicit fsync is made against an ancestor,
5615 	 * the fsync considers the inode in the log and doesn't sync the log,
5616 	 * resulting in the ancestor missing after a power failure unless the
5617 	 * log was synced as part of an fsync against any other unrelated inode.
5618 	 * So keep it simple for this case and just don't flag the ancestors as
5619 	 * logged.
5620 	 */
5621 	if (!ctx ||
5622 	    !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5623 	      &inode->vfs_inode != ctx->inode)) {
5624 		spin_lock(&inode->lock);
5625 		inode->logged_trans = trans->transid;
5626 		/*
5627 		 * Don't update last_log_commit if we logged that an inode exists.
5628 		 * We do this for two reasons:
5629 		 *
5630 		 * 1) We might have had buffered writes to this inode that were
5631 		 *    flushed and had their ordered extents completed in this
5632 		 *    transaction, but we did not previously log the inode with
5633 		 *    LOG_INODE_ALL. Later the inode was evicted and after that
5634 		 *    it was loaded again and this LOG_INODE_EXISTS log operation
5635 		 *    happened. We must make sure that if an explicit fsync against
5636 		 *    the inode is performed later, it logs the new extents, an
5637 		 *    updated inode item, etc, and syncs the log. The same logic
5638 		 *    applies to direct IO writes instead of buffered writes.
5639 		 *
5640 		 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
5641 		 *    is logged with an i_size of 0 or whatever value was logged
5642 		 *    before. If later the i_size of the inode is increased by a
5643 		 *    truncate operation, the log is synced through an fsync of
5644 		 *    some other inode and then finally an explicit fsync against
5645 		 *    this inode is made, we must make sure this fsync logs the
5646 		 *    inode with the new i_size, the hole between old i_size and
5647 		 *    the new i_size, and syncs the log.
5648 		 */
5649 		if (inode_only != LOG_INODE_EXISTS)
5650 			inode->last_log_commit = inode->last_sub_trans;
5651 		spin_unlock(&inode->lock);
5652 	}
5653 out_unlock:
5654 	mutex_unlock(&inode->log_mutex);
5655 
5656 	btrfs_free_path(path);
5657 	btrfs_free_path(dst_path);
5658 	return err;
5659 }
5660 
5661 /*
5662  * Check if we need to log an inode. This is used in contexts where while
5663  * logging an inode we need to log another inode (either that it exists or in
5664  * full mode). This is used instead of btrfs_inode_in_log() because the later
5665  * requires the inode to be in the log and have the log transaction committed,
5666  * while here we do not care if the log transaction was already committed - our
5667  * caller will commit the log later - and we want to avoid logging an inode
5668  * multiple times when multiple tasks have joined the same log transaction.
5669  */
need_log_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5670 static bool need_log_inode(struct btrfs_trans_handle *trans,
5671 			   struct btrfs_inode *inode)
5672 {
5673 	/*
5674 	 * If a directory was not modified, no dentries added or removed, we can
5675 	 * and should avoid logging it.
5676 	 */
5677 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5678 		return false;
5679 
5680 	/*
5681 	 * If this inode does not have new/updated/deleted xattrs since the last
5682 	 * time it was logged and is flagged as logged in the current transaction,
5683 	 * we can skip logging it. As for new/deleted names, those are updated in
5684 	 * the log by link/unlink/rename operations.
5685 	 * In case the inode was logged and then evicted and reloaded, its
5686 	 * logged_trans will be 0, in which case we have to fully log it since
5687 	 * logged_trans is a transient field, not persisted.
5688 	 */
5689 	if (inode->logged_trans == trans->transid &&
5690 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5691 		return false;
5692 
5693 	return true;
5694 }
5695 
5696 struct btrfs_dir_list {
5697 	u64 ino;
5698 	struct list_head list;
5699 };
5700 
5701 /*
5702  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5703  * details about the why it is needed.
5704  * This is a recursive operation - if an existing dentry corresponds to a
5705  * directory, that directory's new entries are logged too (same behaviour as
5706  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5707  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5708  * complains about the following circular lock dependency / possible deadlock:
5709  *
5710  *        CPU0                                        CPU1
5711  *        ----                                        ----
5712  * lock(&type->i_mutex_dir_key#3/2);
5713  *                                            lock(sb_internal#2);
5714  *                                            lock(&type->i_mutex_dir_key#3/2);
5715  * lock(&sb->s_type->i_mutex_key#14);
5716  *
5717  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5718  * sb_start_intwrite() in btrfs_start_transaction().
5719  * Not locking i_mutex of the inodes is still safe because:
5720  *
5721  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5722  *    that while logging the inode new references (names) are added or removed
5723  *    from the inode, leaving the logged inode item with a link count that does
5724  *    not match the number of logged inode reference items. This is fine because
5725  *    at log replay time we compute the real number of links and correct the
5726  *    link count in the inode item (see replay_one_buffer() and
5727  *    link_to_fixup_dir());
5728  *
5729  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5730  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5731  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5732  *    has a size that doesn't match the sum of the lengths of all the logged
5733  *    names. This does not result in a problem because if a dir_item key is
5734  *    logged but its matching dir_index key is not logged, at log replay time we
5735  *    don't use it to replay the respective name (see replay_one_name()). On the
5736  *    other hand if only the dir_index key ends up being logged, the respective
5737  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5738  *    keys created (see replay_one_name()).
5739  *    The directory's inode item with a wrong i_size is not a problem as well,
5740  *    since we don't use it at log replay time to set the i_size in the inode
5741  *    item of the fs/subvol tree (see overwrite_item()).
5742  */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5743 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5744 				struct btrfs_root *root,
5745 				struct btrfs_inode *start_inode,
5746 				struct btrfs_log_ctx *ctx)
5747 {
5748 	struct btrfs_fs_info *fs_info = root->fs_info;
5749 	struct btrfs_root *log = root->log_root;
5750 	struct btrfs_path *path;
5751 	LIST_HEAD(dir_list);
5752 	struct btrfs_dir_list *dir_elem;
5753 	int ret = 0;
5754 
5755 	path = btrfs_alloc_path();
5756 	if (!path)
5757 		return -ENOMEM;
5758 
5759 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5760 	if (!dir_elem) {
5761 		btrfs_free_path(path);
5762 		return -ENOMEM;
5763 	}
5764 	dir_elem->ino = btrfs_ino(start_inode);
5765 	list_add_tail(&dir_elem->list, &dir_list);
5766 
5767 	while (!list_empty(&dir_list)) {
5768 		struct extent_buffer *leaf;
5769 		struct btrfs_key min_key;
5770 		int nritems;
5771 		int i;
5772 
5773 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5774 					    list);
5775 		if (ret)
5776 			goto next_dir_inode;
5777 
5778 		min_key.objectid = dir_elem->ino;
5779 		min_key.type = BTRFS_DIR_ITEM_KEY;
5780 		min_key.offset = 0;
5781 again:
5782 		btrfs_release_path(path);
5783 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5784 		if (ret < 0) {
5785 			goto next_dir_inode;
5786 		} else if (ret > 0) {
5787 			ret = 0;
5788 			goto next_dir_inode;
5789 		}
5790 
5791 process_leaf:
5792 		leaf = path->nodes[0];
5793 		nritems = btrfs_header_nritems(leaf);
5794 		for (i = path->slots[0]; i < nritems; i++) {
5795 			struct btrfs_dir_item *di;
5796 			struct btrfs_key di_key;
5797 			struct inode *di_inode;
5798 			struct btrfs_dir_list *new_dir_elem;
5799 			int log_mode = LOG_INODE_EXISTS;
5800 			int type;
5801 
5802 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5803 			if (min_key.objectid != dir_elem->ino ||
5804 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5805 				goto next_dir_inode;
5806 
5807 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5808 			type = btrfs_dir_type(leaf, di);
5809 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5810 			    type != BTRFS_FT_DIR)
5811 				continue;
5812 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5813 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5814 				continue;
5815 
5816 			btrfs_release_path(path);
5817 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5818 			if (IS_ERR(di_inode)) {
5819 				ret = PTR_ERR(di_inode);
5820 				goto next_dir_inode;
5821 			}
5822 
5823 			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5824 				btrfs_add_delayed_iput(di_inode);
5825 				break;
5826 			}
5827 
5828 			ctx->log_new_dentries = false;
5829 			if (type == BTRFS_FT_DIR)
5830 				log_mode = LOG_INODE_ALL;
5831 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5832 					      log_mode, ctx);
5833 			btrfs_add_delayed_iput(di_inode);
5834 			if (ret)
5835 				goto next_dir_inode;
5836 			if (ctx->log_new_dentries) {
5837 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5838 						       GFP_NOFS);
5839 				if (!new_dir_elem) {
5840 					ret = -ENOMEM;
5841 					goto next_dir_inode;
5842 				}
5843 				new_dir_elem->ino = di_key.objectid;
5844 				list_add_tail(&new_dir_elem->list, &dir_list);
5845 			}
5846 			break;
5847 		}
5848 		if (i == nritems) {
5849 			ret = btrfs_next_leaf(log, path);
5850 			if (ret < 0) {
5851 				goto next_dir_inode;
5852 			} else if (ret > 0) {
5853 				ret = 0;
5854 				goto next_dir_inode;
5855 			}
5856 			goto process_leaf;
5857 		}
5858 		if (min_key.offset < (u64)-1) {
5859 			min_key.offset++;
5860 			goto again;
5861 		}
5862 next_dir_inode:
5863 		list_del(&dir_elem->list);
5864 		kfree(dir_elem);
5865 	}
5866 
5867 	btrfs_free_path(path);
5868 	return ret;
5869 }
5870 
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)5871 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5872 				 struct btrfs_inode *inode,
5873 				 struct btrfs_log_ctx *ctx)
5874 {
5875 	struct btrfs_fs_info *fs_info = trans->fs_info;
5876 	int ret;
5877 	struct btrfs_path *path;
5878 	struct btrfs_key key;
5879 	struct btrfs_root *root = inode->root;
5880 	const u64 ino = btrfs_ino(inode);
5881 
5882 	path = btrfs_alloc_path();
5883 	if (!path)
5884 		return -ENOMEM;
5885 	path->skip_locking = 1;
5886 	path->search_commit_root = 1;
5887 
5888 	key.objectid = ino;
5889 	key.type = BTRFS_INODE_REF_KEY;
5890 	key.offset = 0;
5891 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5892 	if (ret < 0)
5893 		goto out;
5894 
5895 	while (true) {
5896 		struct extent_buffer *leaf = path->nodes[0];
5897 		int slot = path->slots[0];
5898 		u32 cur_offset = 0;
5899 		u32 item_size;
5900 		unsigned long ptr;
5901 
5902 		if (slot >= btrfs_header_nritems(leaf)) {
5903 			ret = btrfs_next_leaf(root, path);
5904 			if (ret < 0)
5905 				goto out;
5906 			else if (ret > 0)
5907 				break;
5908 			continue;
5909 		}
5910 
5911 		btrfs_item_key_to_cpu(leaf, &key, slot);
5912 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5913 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5914 			break;
5915 
5916 		item_size = btrfs_item_size_nr(leaf, slot);
5917 		ptr = btrfs_item_ptr_offset(leaf, slot);
5918 		while (cur_offset < item_size) {
5919 			struct btrfs_key inode_key;
5920 			struct inode *dir_inode;
5921 
5922 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5923 			inode_key.offset = 0;
5924 
5925 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5926 				struct btrfs_inode_extref *extref;
5927 
5928 				extref = (struct btrfs_inode_extref *)
5929 					(ptr + cur_offset);
5930 				inode_key.objectid = btrfs_inode_extref_parent(
5931 					leaf, extref);
5932 				cur_offset += sizeof(*extref);
5933 				cur_offset += btrfs_inode_extref_name_len(leaf,
5934 					extref);
5935 			} else {
5936 				inode_key.objectid = key.offset;
5937 				cur_offset = item_size;
5938 			}
5939 
5940 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5941 					       root);
5942 			/*
5943 			 * If the parent inode was deleted, return an error to
5944 			 * fallback to a transaction commit. This is to prevent
5945 			 * getting an inode that was moved from one parent A to
5946 			 * a parent B, got its former parent A deleted and then
5947 			 * it got fsync'ed, from existing at both parents after
5948 			 * a log replay (and the old parent still existing).
5949 			 * Example:
5950 			 *
5951 			 * mkdir /mnt/A
5952 			 * mkdir /mnt/B
5953 			 * touch /mnt/B/bar
5954 			 * sync
5955 			 * mv /mnt/B/bar /mnt/A/bar
5956 			 * mv -T /mnt/A /mnt/B
5957 			 * fsync /mnt/B/bar
5958 			 * <power fail>
5959 			 *
5960 			 * If we ignore the old parent B which got deleted,
5961 			 * after a log replay we would have file bar linked
5962 			 * at both parents and the old parent B would still
5963 			 * exist.
5964 			 */
5965 			if (IS_ERR(dir_inode)) {
5966 				ret = PTR_ERR(dir_inode);
5967 				goto out;
5968 			}
5969 
5970 			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
5971 				btrfs_add_delayed_iput(dir_inode);
5972 				continue;
5973 			}
5974 
5975 			if (ctx)
5976 				ctx->log_new_dentries = false;
5977 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5978 					      LOG_INODE_ALL, ctx);
5979 			if (!ret && ctx && ctx->log_new_dentries)
5980 				ret = log_new_dir_dentries(trans, root,
5981 						   BTRFS_I(dir_inode), ctx);
5982 			btrfs_add_delayed_iput(dir_inode);
5983 			if (ret)
5984 				goto out;
5985 		}
5986 		path->slots[0]++;
5987 	}
5988 	ret = 0;
5989 out:
5990 	btrfs_free_path(path);
5991 	return ret;
5992 }
5993 
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)5994 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5995 			     struct btrfs_root *root,
5996 			     struct btrfs_path *path,
5997 			     struct btrfs_log_ctx *ctx)
5998 {
5999 	struct btrfs_key found_key;
6000 
6001 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6002 
6003 	while (true) {
6004 		struct btrfs_fs_info *fs_info = root->fs_info;
6005 		struct extent_buffer *leaf = path->nodes[0];
6006 		int slot = path->slots[0];
6007 		struct btrfs_key search_key;
6008 		struct inode *inode;
6009 		u64 ino;
6010 		int ret = 0;
6011 
6012 		btrfs_release_path(path);
6013 
6014 		ino = found_key.offset;
6015 
6016 		search_key.objectid = found_key.offset;
6017 		search_key.type = BTRFS_INODE_ITEM_KEY;
6018 		search_key.offset = 0;
6019 		inode = btrfs_iget(fs_info->sb, ino, root);
6020 		if (IS_ERR(inode))
6021 			return PTR_ERR(inode);
6022 
6023 		if (BTRFS_I(inode)->generation >= trans->transid &&
6024 		    need_log_inode(trans, BTRFS_I(inode)))
6025 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
6026 					      LOG_INODE_EXISTS, ctx);
6027 		btrfs_add_delayed_iput(inode);
6028 		if (ret)
6029 			return ret;
6030 
6031 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6032 			break;
6033 
6034 		search_key.type = BTRFS_INODE_REF_KEY;
6035 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6036 		if (ret < 0)
6037 			return ret;
6038 
6039 		leaf = path->nodes[0];
6040 		slot = path->slots[0];
6041 		if (slot >= btrfs_header_nritems(leaf)) {
6042 			ret = btrfs_next_leaf(root, path);
6043 			if (ret < 0)
6044 				return ret;
6045 			else if (ret > 0)
6046 				return -ENOENT;
6047 			leaf = path->nodes[0];
6048 			slot = path->slots[0];
6049 		}
6050 
6051 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6052 		if (found_key.objectid != search_key.objectid ||
6053 		    found_key.type != BTRFS_INODE_REF_KEY)
6054 			return -ENOENT;
6055 	}
6056 	return 0;
6057 }
6058 
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6059 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6060 				  struct btrfs_inode *inode,
6061 				  struct dentry *parent,
6062 				  struct btrfs_log_ctx *ctx)
6063 {
6064 	struct btrfs_root *root = inode->root;
6065 	struct dentry *old_parent = NULL;
6066 	struct super_block *sb = inode->vfs_inode.i_sb;
6067 	int ret = 0;
6068 
6069 	while (true) {
6070 		if (!parent || d_really_is_negative(parent) ||
6071 		    sb != parent->d_sb)
6072 			break;
6073 
6074 		inode = BTRFS_I(d_inode(parent));
6075 		if (root != inode->root)
6076 			break;
6077 
6078 		if (inode->generation >= trans->transid &&
6079 		    need_log_inode(trans, inode)) {
6080 			ret = btrfs_log_inode(trans, root, inode,
6081 					      LOG_INODE_EXISTS, ctx);
6082 			if (ret)
6083 				break;
6084 		}
6085 		if (IS_ROOT(parent))
6086 			break;
6087 
6088 		parent = dget_parent(parent);
6089 		dput(old_parent);
6090 		old_parent = parent;
6091 	}
6092 	dput(old_parent);
6093 
6094 	return ret;
6095 }
6096 
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6097 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6098 				 struct btrfs_inode *inode,
6099 				 struct dentry *parent,
6100 				 struct btrfs_log_ctx *ctx)
6101 {
6102 	struct btrfs_root *root = inode->root;
6103 	const u64 ino = btrfs_ino(inode);
6104 	struct btrfs_path *path;
6105 	struct btrfs_key search_key;
6106 	int ret;
6107 
6108 	/*
6109 	 * For a single hard link case, go through a fast path that does not
6110 	 * need to iterate the fs/subvolume tree.
6111 	 */
6112 	if (inode->vfs_inode.i_nlink < 2)
6113 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6114 
6115 	path = btrfs_alloc_path();
6116 	if (!path)
6117 		return -ENOMEM;
6118 
6119 	search_key.objectid = ino;
6120 	search_key.type = BTRFS_INODE_REF_KEY;
6121 	search_key.offset = 0;
6122 again:
6123 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6124 	if (ret < 0)
6125 		goto out;
6126 	if (ret == 0)
6127 		path->slots[0]++;
6128 
6129 	while (true) {
6130 		struct extent_buffer *leaf = path->nodes[0];
6131 		int slot = path->slots[0];
6132 		struct btrfs_key found_key;
6133 
6134 		if (slot >= btrfs_header_nritems(leaf)) {
6135 			ret = btrfs_next_leaf(root, path);
6136 			if (ret < 0)
6137 				goto out;
6138 			else if (ret > 0)
6139 				break;
6140 			continue;
6141 		}
6142 
6143 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6144 		if (found_key.objectid != ino ||
6145 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6146 			break;
6147 
6148 		/*
6149 		 * Don't deal with extended references because they are rare
6150 		 * cases and too complex to deal with (we would need to keep
6151 		 * track of which subitem we are processing for each item in
6152 		 * this loop, etc). So just return some error to fallback to
6153 		 * a transaction commit.
6154 		 */
6155 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6156 			ret = -EMLINK;
6157 			goto out;
6158 		}
6159 
6160 		/*
6161 		 * Logging ancestors needs to do more searches on the fs/subvol
6162 		 * tree, so it releases the path as needed to avoid deadlocks.
6163 		 * Keep track of the last inode ref key and resume from that key
6164 		 * after logging all new ancestors for the current hard link.
6165 		 */
6166 		memcpy(&search_key, &found_key, sizeof(search_key));
6167 
6168 		ret = log_new_ancestors(trans, root, path, ctx);
6169 		if (ret)
6170 			goto out;
6171 		btrfs_release_path(path);
6172 		goto again;
6173 	}
6174 	ret = 0;
6175 out:
6176 	btrfs_free_path(path);
6177 	return ret;
6178 }
6179 
6180 /*
6181  * helper function around btrfs_log_inode to make sure newly created
6182  * parent directories also end up in the log.  A minimal inode and backref
6183  * only logging is done of any parent directories that are older than
6184  * the last committed transaction
6185  */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,int inode_only,struct btrfs_log_ctx * ctx)6186 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6187 				  struct btrfs_inode *inode,
6188 				  struct dentry *parent,
6189 				  int inode_only,
6190 				  struct btrfs_log_ctx *ctx)
6191 {
6192 	struct btrfs_root *root = inode->root;
6193 	struct btrfs_fs_info *fs_info = root->fs_info;
6194 	int ret = 0;
6195 	bool log_dentries = false;
6196 
6197 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6198 		ret = 1;
6199 		goto end_no_trans;
6200 	}
6201 
6202 	if (btrfs_root_refs(&root->root_item) == 0) {
6203 		ret = 1;
6204 		goto end_no_trans;
6205 	}
6206 
6207 	/*
6208 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6209 	 * (since logging them is pointless, a link count of 0 means they
6210 	 * will never be accessible).
6211 	 */
6212 	if ((btrfs_inode_in_log(inode, trans->transid) &&
6213 	     list_empty(&ctx->ordered_extents)) ||
6214 	    inode->vfs_inode.i_nlink == 0) {
6215 		ret = BTRFS_NO_LOG_SYNC;
6216 		goto end_no_trans;
6217 	}
6218 
6219 	ret = start_log_trans(trans, root, ctx);
6220 	if (ret)
6221 		goto end_no_trans;
6222 
6223 	ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
6224 	if (ret)
6225 		goto end_trans;
6226 
6227 	/*
6228 	 * for regular files, if its inode is already on disk, we don't
6229 	 * have to worry about the parents at all.  This is because
6230 	 * we can use the last_unlink_trans field to record renames
6231 	 * and other fun in this file.
6232 	 */
6233 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6234 	    inode->generation < trans->transid &&
6235 	    inode->last_unlink_trans < trans->transid) {
6236 		ret = 0;
6237 		goto end_trans;
6238 	}
6239 
6240 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6241 		log_dentries = true;
6242 
6243 	/*
6244 	 * On unlink we must make sure all our current and old parent directory
6245 	 * inodes are fully logged. This is to prevent leaving dangling
6246 	 * directory index entries in directories that were our parents but are
6247 	 * not anymore. Not doing this results in old parent directory being
6248 	 * impossible to delete after log replay (rmdir will always fail with
6249 	 * error -ENOTEMPTY).
6250 	 *
6251 	 * Example 1:
6252 	 *
6253 	 * mkdir testdir
6254 	 * touch testdir/foo
6255 	 * ln testdir/foo testdir/bar
6256 	 * sync
6257 	 * unlink testdir/bar
6258 	 * xfs_io -c fsync testdir/foo
6259 	 * <power failure>
6260 	 * mount fs, triggers log replay
6261 	 *
6262 	 * If we don't log the parent directory (testdir), after log replay the
6263 	 * directory still has an entry pointing to the file inode using the bar
6264 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6265 	 * the file inode has a link count of 1.
6266 	 *
6267 	 * Example 2:
6268 	 *
6269 	 * mkdir testdir
6270 	 * touch foo
6271 	 * ln foo testdir/foo2
6272 	 * ln foo testdir/foo3
6273 	 * sync
6274 	 * unlink testdir/foo3
6275 	 * xfs_io -c fsync foo
6276 	 * <power failure>
6277 	 * mount fs, triggers log replay
6278 	 *
6279 	 * Similar as the first example, after log replay the parent directory
6280 	 * testdir still has an entry pointing to the inode file with name foo3
6281 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6282 	 * and has a link count of 2.
6283 	 */
6284 	if (inode->last_unlink_trans >= trans->transid) {
6285 		ret = btrfs_log_all_parents(trans, inode, ctx);
6286 		if (ret)
6287 			goto end_trans;
6288 	}
6289 
6290 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6291 	if (ret)
6292 		goto end_trans;
6293 
6294 	if (log_dentries)
6295 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6296 	else
6297 		ret = 0;
6298 end_trans:
6299 	if (ret < 0) {
6300 		btrfs_set_log_full_commit(trans);
6301 		ret = 1;
6302 	}
6303 
6304 	if (ret)
6305 		btrfs_remove_log_ctx(root, ctx);
6306 	btrfs_end_log_trans(root);
6307 end_no_trans:
6308 	return ret;
6309 }
6310 
6311 /*
6312  * it is not safe to log dentry if the chunk root has added new
6313  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6314  * If this returns 1, you must commit the transaction to safely get your
6315  * data on disk.
6316  */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,struct btrfs_log_ctx * ctx)6317 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6318 			  struct dentry *dentry,
6319 			  struct btrfs_log_ctx *ctx)
6320 {
6321 	struct dentry *parent = dget_parent(dentry);
6322 	int ret;
6323 
6324 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6325 				     LOG_INODE_ALL, ctx);
6326 	dput(parent);
6327 
6328 	return ret;
6329 }
6330 
6331 /*
6332  * should be called during mount to recover any replay any log trees
6333  * from the FS
6334  */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)6335 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6336 {
6337 	int ret;
6338 	struct btrfs_path *path;
6339 	struct btrfs_trans_handle *trans;
6340 	struct btrfs_key key;
6341 	struct btrfs_key found_key;
6342 	struct btrfs_root *log;
6343 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6344 	struct walk_control wc = {
6345 		.process_func = process_one_buffer,
6346 		.stage = LOG_WALK_PIN_ONLY,
6347 	};
6348 
6349 	path = btrfs_alloc_path();
6350 	if (!path)
6351 		return -ENOMEM;
6352 
6353 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6354 
6355 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6356 	if (IS_ERR(trans)) {
6357 		ret = PTR_ERR(trans);
6358 		goto error;
6359 	}
6360 
6361 	wc.trans = trans;
6362 	wc.pin = 1;
6363 
6364 	ret = walk_log_tree(trans, log_root_tree, &wc);
6365 	if (ret) {
6366 		btrfs_handle_fs_error(fs_info, ret,
6367 			"Failed to pin buffers while recovering log root tree.");
6368 		goto error;
6369 	}
6370 
6371 again:
6372 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6373 	key.offset = (u64)-1;
6374 	key.type = BTRFS_ROOT_ITEM_KEY;
6375 
6376 	while (1) {
6377 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6378 
6379 		if (ret < 0) {
6380 			btrfs_handle_fs_error(fs_info, ret,
6381 				    "Couldn't find tree log root.");
6382 			goto error;
6383 		}
6384 		if (ret > 0) {
6385 			if (path->slots[0] == 0)
6386 				break;
6387 			path->slots[0]--;
6388 		}
6389 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6390 				      path->slots[0]);
6391 		btrfs_release_path(path);
6392 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6393 			break;
6394 
6395 		log = btrfs_read_tree_root(log_root_tree, &found_key);
6396 		if (IS_ERR(log)) {
6397 			ret = PTR_ERR(log);
6398 			btrfs_handle_fs_error(fs_info, ret,
6399 				    "Couldn't read tree log root.");
6400 			goto error;
6401 		}
6402 
6403 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6404 						   true);
6405 		if (IS_ERR(wc.replay_dest)) {
6406 			ret = PTR_ERR(wc.replay_dest);
6407 
6408 			/*
6409 			 * We didn't find the subvol, likely because it was
6410 			 * deleted.  This is ok, simply skip this log and go to
6411 			 * the next one.
6412 			 *
6413 			 * We need to exclude the root because we can't have
6414 			 * other log replays overwriting this log as we'll read
6415 			 * it back in a few more times.  This will keep our
6416 			 * block from being modified, and we'll just bail for
6417 			 * each subsequent pass.
6418 			 */
6419 			if (ret == -ENOENT)
6420 				ret = btrfs_pin_extent_for_log_replay(trans,
6421 							log->node->start,
6422 							log->node->len);
6423 			btrfs_put_root(log);
6424 
6425 			if (!ret)
6426 				goto next;
6427 			btrfs_handle_fs_error(fs_info, ret,
6428 				"Couldn't read target root for tree log recovery.");
6429 			goto error;
6430 		}
6431 
6432 		wc.replay_dest->log_root = log;
6433 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6434 		if (ret)
6435 			/* The loop needs to continue due to the root refs */
6436 			btrfs_handle_fs_error(fs_info, ret,
6437 				"failed to record the log root in transaction");
6438 		else
6439 			ret = walk_log_tree(trans, log, &wc);
6440 
6441 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6442 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6443 						      path);
6444 		}
6445 
6446 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6447 			struct btrfs_root *root = wc.replay_dest;
6448 
6449 			btrfs_release_path(path);
6450 
6451 			/*
6452 			 * We have just replayed everything, and the highest
6453 			 * objectid of fs roots probably has changed in case
6454 			 * some inode_item's got replayed.
6455 			 *
6456 			 * root->objectid_mutex is not acquired as log replay
6457 			 * could only happen during mount.
6458 			 */
6459 			ret = btrfs_init_root_free_objectid(root);
6460 		}
6461 
6462 		wc.replay_dest->log_root = NULL;
6463 		btrfs_put_root(wc.replay_dest);
6464 		btrfs_put_root(log);
6465 
6466 		if (ret)
6467 			goto error;
6468 next:
6469 		if (found_key.offset == 0)
6470 			break;
6471 		key.offset = found_key.offset - 1;
6472 	}
6473 	btrfs_release_path(path);
6474 
6475 	/* step one is to pin it all, step two is to replay just inodes */
6476 	if (wc.pin) {
6477 		wc.pin = 0;
6478 		wc.process_func = replay_one_buffer;
6479 		wc.stage = LOG_WALK_REPLAY_INODES;
6480 		goto again;
6481 	}
6482 	/* step three is to replay everything */
6483 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6484 		wc.stage++;
6485 		goto again;
6486 	}
6487 
6488 	btrfs_free_path(path);
6489 
6490 	/* step 4: commit the transaction, which also unpins the blocks */
6491 	ret = btrfs_commit_transaction(trans);
6492 	if (ret)
6493 		return ret;
6494 
6495 	log_root_tree->log_root = NULL;
6496 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6497 	btrfs_put_root(log_root_tree);
6498 
6499 	return 0;
6500 error:
6501 	if (wc.trans)
6502 		btrfs_end_transaction(wc.trans);
6503 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6504 	btrfs_free_path(path);
6505 	return ret;
6506 }
6507 
6508 /*
6509  * there are some corner cases where we want to force a full
6510  * commit instead of allowing a directory to be logged.
6511  *
6512  * They revolve around files there were unlinked from the directory, and
6513  * this function updates the parent directory so that a full commit is
6514  * properly done if it is fsync'd later after the unlinks are done.
6515  *
6516  * Must be called before the unlink operations (updates to the subvolume tree,
6517  * inodes, etc) are done.
6518  */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,int for_rename)6519 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6520 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6521 			     int for_rename)
6522 {
6523 	/*
6524 	 * when we're logging a file, if it hasn't been renamed
6525 	 * or unlinked, and its inode is fully committed on disk,
6526 	 * we don't have to worry about walking up the directory chain
6527 	 * to log its parents.
6528 	 *
6529 	 * So, we use the last_unlink_trans field to put this transid
6530 	 * into the file.  When the file is logged we check it and
6531 	 * don't log the parents if the file is fully on disk.
6532 	 */
6533 	mutex_lock(&inode->log_mutex);
6534 	inode->last_unlink_trans = trans->transid;
6535 	mutex_unlock(&inode->log_mutex);
6536 
6537 	/*
6538 	 * if this directory was already logged any new
6539 	 * names for this file/dir will get recorded
6540 	 */
6541 	if (dir->logged_trans == trans->transid)
6542 		return;
6543 
6544 	/*
6545 	 * if the inode we're about to unlink was logged,
6546 	 * the log will be properly updated for any new names
6547 	 */
6548 	if (inode->logged_trans == trans->transid)
6549 		return;
6550 
6551 	/*
6552 	 * when renaming files across directories, if the directory
6553 	 * there we're unlinking from gets fsync'd later on, there's
6554 	 * no way to find the destination directory later and fsync it
6555 	 * properly.  So, we have to be conservative and force commits
6556 	 * so the new name gets discovered.
6557 	 */
6558 	if (for_rename)
6559 		goto record;
6560 
6561 	/* we can safely do the unlink without any special recording */
6562 	return;
6563 
6564 record:
6565 	mutex_lock(&dir->log_mutex);
6566 	dir->last_unlink_trans = trans->transid;
6567 	mutex_unlock(&dir->log_mutex);
6568 }
6569 
6570 /*
6571  * Make sure that if someone attempts to fsync the parent directory of a deleted
6572  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6573  * that after replaying the log tree of the parent directory's root we will not
6574  * see the snapshot anymore and at log replay time we will not see any log tree
6575  * corresponding to the deleted snapshot's root, which could lead to replaying
6576  * it after replaying the log tree of the parent directory (which would replay
6577  * the snapshot delete operation).
6578  *
6579  * Must be called before the actual snapshot destroy operation (updates to the
6580  * parent root and tree of tree roots trees, etc) are done.
6581  */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)6582 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6583 				   struct btrfs_inode *dir)
6584 {
6585 	mutex_lock(&dir->log_mutex);
6586 	dir->last_unlink_trans = trans->transid;
6587 	mutex_unlock(&dir->log_mutex);
6588 }
6589 
6590 /**
6591  * Update the log after adding a new name for an inode.
6592  *
6593  * @trans:              Transaction handle.
6594  * @old_dentry:         The dentry associated with the old name and the old
6595  *                      parent directory.
6596  * @old_dir:            The inode of the previous parent directory for the case
6597  *                      of a rename. For a link operation, it must be NULL.
6598  * @parent:             The dentry associated with the directory under which the
6599  *                      new name is located.
6600  *
6601  * Call this after adding a new name for an inode, as a result of a link or
6602  * rename operation, and it will properly update the log to reflect the new name.
6603  */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct dentry * old_dentry,struct btrfs_inode * old_dir,struct dentry * parent)6604 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6605 			struct dentry *old_dentry, struct btrfs_inode *old_dir,
6606 			struct dentry *parent)
6607 {
6608 	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
6609 	struct btrfs_log_ctx ctx;
6610 
6611 	/*
6612 	 * this will force the logging code to walk the dentry chain
6613 	 * up for the file
6614 	 */
6615 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6616 		inode->last_unlink_trans = trans->transid;
6617 
6618 	/*
6619 	 * if this inode hasn't been logged and directory we're renaming it
6620 	 * from hasn't been logged, we don't need to log it
6621 	 */
6622 	if (!inode_logged(trans, inode) &&
6623 	    (!old_dir || !inode_logged(trans, old_dir)))
6624 		return;
6625 
6626 	/*
6627 	 * If we are doing a rename (old_dir is not NULL) from a directory that
6628 	 * was previously logged, make sure the next log attempt on the directory
6629 	 * is not skipped and logs the inode again. This is because the log may
6630 	 * not currently be authoritative for a range including the old
6631 	 * BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY keys, so we want to make
6632 	 * sure after a log replay we do not end up with both the new and old
6633 	 * dentries around (in case the inode is a directory we would have a
6634 	 * directory with two hard links and 2 inode references for different
6635 	 * parents). The next log attempt of old_dir will happen at
6636 	 * btrfs_log_all_parents(), called through btrfs_log_inode_parent()
6637 	 * below, because we have previously set inode->last_unlink_trans to the
6638 	 * current transaction ID, either here or at btrfs_record_unlink_dir() in
6639 	 * case inode is a directory.
6640 	 */
6641 	if (old_dir)
6642 		old_dir->logged_trans = 0;
6643 
6644 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6645 	ctx.logging_new_name = true;
6646 	/*
6647 	 * We don't care about the return value. If we fail to log the new name
6648 	 * then we know the next attempt to sync the log will fallback to a full
6649 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6650 	 * we don't need to worry about getting a log committed that has an
6651 	 * inconsistent state after a rename operation.
6652 	 */
6653 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
6654 }
6655 
6656