1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8 /*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52
53 #include "internal.h"
54
55 #include <trace/hooks/buffer.h>
56
57 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
58 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
59 enum rw_hint hint, struct writeback_control *wbc);
60
61 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
62
touch_buffer(struct buffer_head * bh)63 inline void touch_buffer(struct buffer_head *bh)
64 {
65 trace_block_touch_buffer(bh);
66 mark_page_accessed(bh->b_page);
67 }
68 EXPORT_SYMBOL(touch_buffer);
69
__lock_buffer(struct buffer_head * bh)70 void __lock_buffer(struct buffer_head *bh)
71 {
72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
73 }
74 EXPORT_SYMBOL(__lock_buffer);
75
unlock_buffer(struct buffer_head * bh)76 void unlock_buffer(struct buffer_head *bh)
77 {
78 clear_bit_unlock(BH_Lock, &bh->b_state);
79 smp_mb__after_atomic();
80 wake_up_bit(&bh->b_state, BH_Lock);
81 }
82 EXPORT_SYMBOL(unlock_buffer);
83
84 /*
85 * Returns if the page has dirty or writeback buffers. If all the buffers
86 * are unlocked and clean then the PageDirty information is stale. If
87 * any of the pages are locked, it is assumed they are locked for IO.
88 */
buffer_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)89 void buffer_check_dirty_writeback(struct page *page,
90 bool *dirty, bool *writeback)
91 {
92 struct buffer_head *head, *bh;
93 *dirty = false;
94 *writeback = false;
95
96 BUG_ON(!PageLocked(page));
97
98 if (!page_has_buffers(page))
99 return;
100
101 if (PageWriteback(page))
102 *writeback = true;
103
104 head = page_buffers(page);
105 bh = head;
106 do {
107 if (buffer_locked(bh))
108 *writeback = true;
109
110 if (buffer_dirty(bh))
111 *dirty = true;
112
113 bh = bh->b_this_page;
114 } while (bh != head);
115 }
116 EXPORT_SYMBOL(buffer_check_dirty_writeback);
117
118 /*
119 * Block until a buffer comes unlocked. This doesn't stop it
120 * from becoming locked again - you have to lock it yourself
121 * if you want to preserve its state.
122 */
__wait_on_buffer(struct buffer_head * bh)123 void __wait_on_buffer(struct buffer_head * bh)
124 {
125 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
126 }
127 EXPORT_SYMBOL(__wait_on_buffer);
128
buffer_io_error(struct buffer_head * bh,char * msg)129 static void buffer_io_error(struct buffer_head *bh, char *msg)
130 {
131 if (!test_bit(BH_Quiet, &bh->b_state))
132 printk_ratelimited(KERN_ERR
133 "Buffer I/O error on dev %pg, logical block %llu%s\n",
134 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
135 }
136
137 /*
138 * End-of-IO handler helper function which does not touch the bh after
139 * unlocking it.
140 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
141 * a race there is benign: unlock_buffer() only use the bh's address for
142 * hashing after unlocking the buffer, so it doesn't actually touch the bh
143 * itself.
144 */
__end_buffer_read_notouch(struct buffer_head * bh,int uptodate)145 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
146 {
147 if (uptodate) {
148 set_buffer_uptodate(bh);
149 } else {
150 /* This happens, due to failed read-ahead attempts. */
151 clear_buffer_uptodate(bh);
152 }
153 unlock_buffer(bh);
154 }
155
156 /*
157 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
158 * unlock the buffer. This is what ll_rw_block uses too.
159 */
end_buffer_read_sync(struct buffer_head * bh,int uptodate)160 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
161 {
162 __end_buffer_read_notouch(bh, uptodate);
163 put_bh(bh);
164 }
165 EXPORT_SYMBOL(end_buffer_read_sync);
166
end_buffer_write_sync(struct buffer_head * bh,int uptodate)167 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
168 {
169 if (uptodate) {
170 set_buffer_uptodate(bh);
171 } else {
172 buffer_io_error(bh, ", lost sync page write");
173 mark_buffer_write_io_error(bh);
174 clear_buffer_uptodate(bh);
175 }
176 unlock_buffer(bh);
177 put_bh(bh);
178 }
179 EXPORT_SYMBOL_NS(end_buffer_write_sync, ANDROID_GKI_VFS_EXPORT_ONLY);
180
181 /*
182 * Various filesystems appear to want __find_get_block to be non-blocking.
183 * But it's the page lock which protects the buffers. To get around this,
184 * we get exclusion from try_to_free_buffers with the blockdev mapping's
185 * private_lock.
186 *
187 * Hack idea: for the blockdev mapping, private_lock contention
188 * may be quite high. This code could TryLock the page, and if that
189 * succeeds, there is no need to take private_lock.
190 */
191 static struct buffer_head *
__find_get_block_slow(struct block_device * bdev,sector_t block)192 __find_get_block_slow(struct block_device *bdev, sector_t block)
193 {
194 struct inode *bd_inode = bdev->bd_inode;
195 struct address_space *bd_mapping = bd_inode->i_mapping;
196 struct buffer_head *ret = NULL;
197 pgoff_t index;
198 struct buffer_head *bh;
199 struct buffer_head *head;
200 struct page *page;
201 int all_mapped = 1;
202 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
203
204 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
205 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
206 if (!page)
207 goto out;
208
209 spin_lock(&bd_mapping->private_lock);
210 if (!page_has_buffers(page))
211 goto out_unlock;
212 head = page_buffers(page);
213 bh = head;
214 do {
215 if (!buffer_mapped(bh))
216 all_mapped = 0;
217 else if (bh->b_blocknr == block) {
218 ret = bh;
219 get_bh(bh);
220 goto out_unlock;
221 }
222 bh = bh->b_this_page;
223 } while (bh != head);
224
225 /* we might be here because some of the buffers on this page are
226 * not mapped. This is due to various races between
227 * file io on the block device and getblk. It gets dealt with
228 * elsewhere, don't buffer_error if we had some unmapped buffers
229 */
230 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
231 if (all_mapped && __ratelimit(&last_warned)) {
232 printk("__find_get_block_slow() failed. block=%llu, "
233 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
234 "device %pg blocksize: %d\n",
235 (unsigned long long)block,
236 (unsigned long long)bh->b_blocknr,
237 bh->b_state, bh->b_size, bdev,
238 1 << bd_inode->i_blkbits);
239 }
240 out_unlock:
241 spin_unlock(&bd_mapping->private_lock);
242 put_page(page);
243 out:
244 return ret;
245 }
246
end_buffer_async_read(struct buffer_head * bh,int uptodate)247 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
248 {
249 unsigned long flags;
250 struct buffer_head *first;
251 struct buffer_head *tmp;
252 struct page *page;
253 int page_uptodate = 1;
254
255 BUG_ON(!buffer_async_read(bh));
256
257 page = bh->b_page;
258 if (uptodate) {
259 set_buffer_uptodate(bh);
260 } else {
261 clear_buffer_uptodate(bh);
262 buffer_io_error(bh, ", async page read");
263 SetPageError(page);
264 }
265
266 /*
267 * Be _very_ careful from here on. Bad things can happen if
268 * two buffer heads end IO at almost the same time and both
269 * decide that the page is now completely done.
270 */
271 first = page_buffers(page);
272 spin_lock_irqsave(&first->b_uptodate_lock, flags);
273 clear_buffer_async_read(bh);
274 unlock_buffer(bh);
275 tmp = bh;
276 do {
277 if (!buffer_uptodate(tmp))
278 page_uptodate = 0;
279 if (buffer_async_read(tmp)) {
280 BUG_ON(!buffer_locked(tmp));
281 goto still_busy;
282 }
283 tmp = tmp->b_this_page;
284 } while (tmp != bh);
285 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
286
287 /*
288 * If none of the buffers had errors and they are all
289 * uptodate then we can set the page uptodate.
290 */
291 if (page_uptodate && !PageError(page))
292 SetPageUptodate(page);
293 unlock_page(page);
294 return;
295
296 still_busy:
297 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
298 return;
299 }
300
301 struct postprocess_bh_ctx {
302 struct work_struct work;
303 struct buffer_head *bh;
304 };
305
verify_bh(struct work_struct * work)306 static void verify_bh(struct work_struct *work)
307 {
308 struct postprocess_bh_ctx *ctx =
309 container_of(work, struct postprocess_bh_ctx, work);
310 struct buffer_head *bh = ctx->bh;
311 bool valid;
312
313 valid = fsverity_verify_blocks(bh->b_page, bh->b_size, bh_offset(bh));
314 end_buffer_async_read(bh, valid);
315 kfree(ctx);
316 }
317
need_fsverity(struct buffer_head * bh)318 static bool need_fsverity(struct buffer_head *bh)
319 {
320 struct page *page = bh->b_page;
321 struct inode *inode = page->mapping->host;
322
323 return fsverity_active(inode) &&
324 /* needed by ext4 */
325 page->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
326 }
327
decrypt_bh(struct work_struct * work)328 static void decrypt_bh(struct work_struct *work)
329 {
330 struct postprocess_bh_ctx *ctx =
331 container_of(work, struct postprocess_bh_ctx, work);
332 struct buffer_head *bh = ctx->bh;
333 int err;
334
335 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
336 bh_offset(bh));
337 if (err == 0 && need_fsverity(bh)) {
338 /*
339 * We use different work queues for decryption and for verity
340 * because verity may require reading metadata pages that need
341 * decryption, and we shouldn't recurse to the same workqueue.
342 */
343 INIT_WORK(&ctx->work, verify_bh);
344 fsverity_enqueue_verify_work(&ctx->work);
345 return;
346 }
347 end_buffer_async_read(bh, err == 0);
348 kfree(ctx);
349 }
350
351 /*
352 * I/O completion handler for block_read_full_page() - pages
353 * which come unlocked at the end of I/O.
354 */
end_buffer_async_read_io(struct buffer_head * bh,int uptodate)355 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
356 {
357 struct inode *inode = bh->b_page->mapping->host;
358 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
359 bool verify = need_fsverity(bh);
360
361 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
362 if (uptodate && (decrypt || verify)) {
363 struct postprocess_bh_ctx *ctx =
364 kmalloc(sizeof(*ctx), GFP_ATOMIC);
365
366 if (ctx) {
367 ctx->bh = bh;
368 if (decrypt) {
369 INIT_WORK(&ctx->work, decrypt_bh);
370 fscrypt_enqueue_decrypt_work(&ctx->work);
371 } else {
372 INIT_WORK(&ctx->work, verify_bh);
373 fsverity_enqueue_verify_work(&ctx->work);
374 }
375 return;
376 }
377 uptodate = 0;
378 }
379 end_buffer_async_read(bh, uptodate);
380 }
381
382 /*
383 * Completion handler for block_write_full_page() - pages which are unlocked
384 * during I/O, and which have PageWriteback cleared upon I/O completion.
385 */
end_buffer_async_write(struct buffer_head * bh,int uptodate)386 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
387 {
388 unsigned long flags;
389 struct buffer_head *first;
390 struct buffer_head *tmp;
391 struct page *page;
392
393 BUG_ON(!buffer_async_write(bh));
394
395 page = bh->b_page;
396 if (uptodate) {
397 set_buffer_uptodate(bh);
398 } else {
399 buffer_io_error(bh, ", lost async page write");
400 mark_buffer_write_io_error(bh);
401 clear_buffer_uptodate(bh);
402 SetPageError(page);
403 }
404
405 first = page_buffers(page);
406 spin_lock_irqsave(&first->b_uptodate_lock, flags);
407
408 clear_buffer_async_write(bh);
409 unlock_buffer(bh);
410 tmp = bh->b_this_page;
411 while (tmp != bh) {
412 if (buffer_async_write(tmp)) {
413 BUG_ON(!buffer_locked(tmp));
414 goto still_busy;
415 }
416 tmp = tmp->b_this_page;
417 }
418 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
419 end_page_writeback(page);
420 return;
421
422 still_busy:
423 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
424 return;
425 }
426 EXPORT_SYMBOL(end_buffer_async_write);
427
428 /*
429 * If a page's buffers are under async readin (end_buffer_async_read
430 * completion) then there is a possibility that another thread of
431 * control could lock one of the buffers after it has completed
432 * but while some of the other buffers have not completed. This
433 * locked buffer would confuse end_buffer_async_read() into not unlocking
434 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
435 * that this buffer is not under async I/O.
436 *
437 * The page comes unlocked when it has no locked buffer_async buffers
438 * left.
439 *
440 * PageLocked prevents anyone starting new async I/O reads any of
441 * the buffers.
442 *
443 * PageWriteback is used to prevent simultaneous writeout of the same
444 * page.
445 *
446 * PageLocked prevents anyone from starting writeback of a page which is
447 * under read I/O (PageWriteback is only ever set against a locked page).
448 */
mark_buffer_async_read(struct buffer_head * bh)449 static void mark_buffer_async_read(struct buffer_head *bh)
450 {
451 bh->b_end_io = end_buffer_async_read_io;
452 set_buffer_async_read(bh);
453 }
454
mark_buffer_async_write_endio(struct buffer_head * bh,bh_end_io_t * handler)455 static void mark_buffer_async_write_endio(struct buffer_head *bh,
456 bh_end_io_t *handler)
457 {
458 bh->b_end_io = handler;
459 set_buffer_async_write(bh);
460 }
461
mark_buffer_async_write(struct buffer_head * bh)462 void mark_buffer_async_write(struct buffer_head *bh)
463 {
464 mark_buffer_async_write_endio(bh, end_buffer_async_write);
465 }
466 EXPORT_SYMBOL_NS(mark_buffer_async_write, ANDROID_GKI_VFS_EXPORT_ONLY);
467
468
469 /*
470 * fs/buffer.c contains helper functions for buffer-backed address space's
471 * fsync functions. A common requirement for buffer-based filesystems is
472 * that certain data from the backing blockdev needs to be written out for
473 * a successful fsync(). For example, ext2 indirect blocks need to be
474 * written back and waited upon before fsync() returns.
475 *
476 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
477 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
478 * management of a list of dependent buffers at ->i_mapping->private_list.
479 *
480 * Locking is a little subtle: try_to_free_buffers() will remove buffers
481 * from their controlling inode's queue when they are being freed. But
482 * try_to_free_buffers() will be operating against the *blockdev* mapping
483 * at the time, not against the S_ISREG file which depends on those buffers.
484 * So the locking for private_list is via the private_lock in the address_space
485 * which backs the buffers. Which is different from the address_space
486 * against which the buffers are listed. So for a particular address_space,
487 * mapping->private_lock does *not* protect mapping->private_list! In fact,
488 * mapping->private_list will always be protected by the backing blockdev's
489 * ->private_lock.
490 *
491 * Which introduces a requirement: all buffers on an address_space's
492 * ->private_list must be from the same address_space: the blockdev's.
493 *
494 * address_spaces which do not place buffers at ->private_list via these
495 * utility functions are free to use private_lock and private_list for
496 * whatever they want. The only requirement is that list_empty(private_list)
497 * be true at clear_inode() time.
498 *
499 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
500 * filesystems should do that. invalidate_inode_buffers() should just go
501 * BUG_ON(!list_empty).
502 *
503 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
504 * take an address_space, not an inode. And it should be called
505 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
506 * queued up.
507 *
508 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
509 * list if it is already on a list. Because if the buffer is on a list,
510 * it *must* already be on the right one. If not, the filesystem is being
511 * silly. This will save a ton of locking. But first we have to ensure
512 * that buffers are taken *off* the old inode's list when they are freed
513 * (presumably in truncate). That requires careful auditing of all
514 * filesystems (do it inside bforget()). It could also be done by bringing
515 * b_inode back.
516 */
517
518 /*
519 * The buffer's backing address_space's private_lock must be held
520 */
__remove_assoc_queue(struct buffer_head * bh)521 static void __remove_assoc_queue(struct buffer_head *bh)
522 {
523 list_del_init(&bh->b_assoc_buffers);
524 WARN_ON(!bh->b_assoc_map);
525 bh->b_assoc_map = NULL;
526 }
527
inode_has_buffers(struct inode * inode)528 int inode_has_buffers(struct inode *inode)
529 {
530 return !list_empty(&inode->i_data.private_list);
531 }
532
533 /*
534 * osync is designed to support O_SYNC io. It waits synchronously for
535 * all already-submitted IO to complete, but does not queue any new
536 * writes to the disk.
537 *
538 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
539 * you dirty the buffers, and then use osync_inode_buffers to wait for
540 * completion. Any other dirty buffers which are not yet queued for
541 * write will not be flushed to disk by the osync.
542 */
osync_buffers_list(spinlock_t * lock,struct list_head * list)543 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
544 {
545 struct buffer_head *bh;
546 struct list_head *p;
547 int err = 0;
548
549 spin_lock(lock);
550 repeat:
551 list_for_each_prev(p, list) {
552 bh = BH_ENTRY(p);
553 if (buffer_locked(bh)) {
554 get_bh(bh);
555 spin_unlock(lock);
556 wait_on_buffer(bh);
557 if (!buffer_uptodate(bh))
558 err = -EIO;
559 brelse(bh);
560 spin_lock(lock);
561 goto repeat;
562 }
563 }
564 spin_unlock(lock);
565 return err;
566 }
567
emergency_thaw_bdev(struct super_block * sb)568 void emergency_thaw_bdev(struct super_block *sb)
569 {
570 while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
571 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
572 }
573
574 /**
575 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
576 * @mapping: the mapping which wants those buffers written
577 *
578 * Starts I/O against the buffers at mapping->private_list, and waits upon
579 * that I/O.
580 *
581 * Basically, this is a convenience function for fsync().
582 * @mapping is a file or directory which needs those buffers to be written for
583 * a successful fsync().
584 */
sync_mapping_buffers(struct address_space * mapping)585 int sync_mapping_buffers(struct address_space *mapping)
586 {
587 struct address_space *buffer_mapping = mapping->private_data;
588
589 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
590 return 0;
591
592 return fsync_buffers_list(&buffer_mapping->private_lock,
593 &mapping->private_list);
594 }
595 EXPORT_SYMBOL(sync_mapping_buffers);
596
597 /*
598 * Called when we've recently written block `bblock', and it is known that
599 * `bblock' was for a buffer_boundary() buffer. This means that the block at
600 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
601 * dirty, schedule it for IO. So that indirects merge nicely with their data.
602 */
write_boundary_block(struct block_device * bdev,sector_t bblock,unsigned blocksize)603 void write_boundary_block(struct block_device *bdev,
604 sector_t bblock, unsigned blocksize)
605 {
606 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
607 if (bh) {
608 if (buffer_dirty(bh))
609 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
610 put_bh(bh);
611 }
612 }
613
mark_buffer_dirty_inode(struct buffer_head * bh,struct inode * inode)614 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
615 {
616 struct address_space *mapping = inode->i_mapping;
617 struct address_space *buffer_mapping = bh->b_page->mapping;
618
619 mark_buffer_dirty(bh);
620 if (!mapping->private_data) {
621 mapping->private_data = buffer_mapping;
622 } else {
623 BUG_ON(mapping->private_data != buffer_mapping);
624 }
625 if (!bh->b_assoc_map) {
626 spin_lock(&buffer_mapping->private_lock);
627 list_move_tail(&bh->b_assoc_buffers,
628 &mapping->private_list);
629 bh->b_assoc_map = mapping;
630 spin_unlock(&buffer_mapping->private_lock);
631 }
632 }
633 EXPORT_SYMBOL(mark_buffer_dirty_inode);
634
635 /*
636 * Add a page to the dirty page list.
637 *
638 * It is a sad fact of life that this function is called from several places
639 * deeply under spinlocking. It may not sleep.
640 *
641 * If the page has buffers, the uptodate buffers are set dirty, to preserve
642 * dirty-state coherency between the page and the buffers. It the page does
643 * not have buffers then when they are later attached they will all be set
644 * dirty.
645 *
646 * The buffers are dirtied before the page is dirtied. There's a small race
647 * window in which a writepage caller may see the page cleanness but not the
648 * buffer dirtiness. That's fine. If this code were to set the page dirty
649 * before the buffers, a concurrent writepage caller could clear the page dirty
650 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
651 * page on the dirty page list.
652 *
653 * We use private_lock to lock against try_to_free_buffers while using the
654 * page's buffer list. Also use this to protect against clean buffers being
655 * added to the page after it was set dirty.
656 *
657 * FIXME: may need to call ->reservepage here as well. That's rather up to the
658 * address_space though.
659 */
__set_page_dirty_buffers(struct page * page)660 int __set_page_dirty_buffers(struct page *page)
661 {
662 int newly_dirty;
663 struct address_space *mapping = page_mapping(page);
664
665 if (unlikely(!mapping))
666 return !TestSetPageDirty(page);
667
668 spin_lock(&mapping->private_lock);
669 if (page_has_buffers(page)) {
670 struct buffer_head *head = page_buffers(page);
671 struct buffer_head *bh = head;
672
673 do {
674 set_buffer_dirty(bh);
675 bh = bh->b_this_page;
676 } while (bh != head);
677 }
678 /*
679 * Lock out page's memcg migration to keep PageDirty
680 * synchronized with per-memcg dirty page counters.
681 */
682 lock_page_memcg(page);
683 newly_dirty = !TestSetPageDirty(page);
684 spin_unlock(&mapping->private_lock);
685
686 if (newly_dirty)
687 __set_page_dirty(page, mapping, 1);
688
689 unlock_page_memcg(page);
690
691 if (newly_dirty)
692 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
693
694 return newly_dirty;
695 }
696 EXPORT_SYMBOL_NS(__set_page_dirty_buffers, ANDROID_GKI_VFS_EXPORT_ONLY);
697
698 /*
699 * Write out and wait upon a list of buffers.
700 *
701 * We have conflicting pressures: we want to make sure that all
702 * initially dirty buffers get waited on, but that any subsequently
703 * dirtied buffers don't. After all, we don't want fsync to last
704 * forever if somebody is actively writing to the file.
705 *
706 * Do this in two main stages: first we copy dirty buffers to a
707 * temporary inode list, queueing the writes as we go. Then we clean
708 * up, waiting for those writes to complete.
709 *
710 * During this second stage, any subsequent updates to the file may end
711 * up refiling the buffer on the original inode's dirty list again, so
712 * there is a chance we will end up with a buffer queued for write but
713 * not yet completed on that list. So, as a final cleanup we go through
714 * the osync code to catch these locked, dirty buffers without requeuing
715 * any newly dirty buffers for write.
716 */
fsync_buffers_list(spinlock_t * lock,struct list_head * list)717 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
718 {
719 struct buffer_head *bh;
720 struct list_head tmp;
721 struct address_space *mapping;
722 int err = 0, err2;
723 struct blk_plug plug;
724
725 INIT_LIST_HEAD(&tmp);
726 blk_start_plug(&plug);
727
728 spin_lock(lock);
729 while (!list_empty(list)) {
730 bh = BH_ENTRY(list->next);
731 mapping = bh->b_assoc_map;
732 __remove_assoc_queue(bh);
733 /* Avoid race with mark_buffer_dirty_inode() which does
734 * a lockless check and we rely on seeing the dirty bit */
735 smp_mb();
736 if (buffer_dirty(bh) || buffer_locked(bh)) {
737 list_add(&bh->b_assoc_buffers, &tmp);
738 bh->b_assoc_map = mapping;
739 if (buffer_dirty(bh)) {
740 get_bh(bh);
741 spin_unlock(lock);
742 /*
743 * Ensure any pending I/O completes so that
744 * write_dirty_buffer() actually writes the
745 * current contents - it is a noop if I/O is
746 * still in flight on potentially older
747 * contents.
748 */
749 write_dirty_buffer(bh, REQ_SYNC);
750
751 /*
752 * Kick off IO for the previous mapping. Note
753 * that we will not run the very last mapping,
754 * wait_on_buffer() will do that for us
755 * through sync_buffer().
756 */
757 brelse(bh);
758 spin_lock(lock);
759 }
760 }
761 }
762
763 spin_unlock(lock);
764 blk_finish_plug(&plug);
765 spin_lock(lock);
766
767 while (!list_empty(&tmp)) {
768 bh = BH_ENTRY(tmp.prev);
769 get_bh(bh);
770 mapping = bh->b_assoc_map;
771 __remove_assoc_queue(bh);
772 /* Avoid race with mark_buffer_dirty_inode() which does
773 * a lockless check and we rely on seeing the dirty bit */
774 smp_mb();
775 if (buffer_dirty(bh)) {
776 list_add(&bh->b_assoc_buffers,
777 &mapping->private_list);
778 bh->b_assoc_map = mapping;
779 }
780 spin_unlock(lock);
781 wait_on_buffer(bh);
782 if (!buffer_uptodate(bh))
783 err = -EIO;
784 brelse(bh);
785 spin_lock(lock);
786 }
787
788 spin_unlock(lock);
789 err2 = osync_buffers_list(lock, list);
790 if (err)
791 return err;
792 else
793 return err2;
794 }
795
796 /*
797 * Invalidate any and all dirty buffers on a given inode. We are
798 * probably unmounting the fs, but that doesn't mean we have already
799 * done a sync(). Just drop the buffers from the inode list.
800 *
801 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
802 * assumes that all the buffers are against the blockdev. Not true
803 * for reiserfs.
804 */
invalidate_inode_buffers(struct inode * inode)805 void invalidate_inode_buffers(struct inode *inode)
806 {
807 if (inode_has_buffers(inode)) {
808 struct address_space *mapping = &inode->i_data;
809 struct list_head *list = &mapping->private_list;
810 struct address_space *buffer_mapping = mapping->private_data;
811
812 spin_lock(&buffer_mapping->private_lock);
813 while (!list_empty(list))
814 __remove_assoc_queue(BH_ENTRY(list->next));
815 spin_unlock(&buffer_mapping->private_lock);
816 }
817 }
818 EXPORT_SYMBOL(invalidate_inode_buffers);
819
820 /*
821 * Remove any clean buffers from the inode's buffer list. This is called
822 * when we're trying to free the inode itself. Those buffers can pin it.
823 *
824 * Returns true if all buffers were removed.
825 */
remove_inode_buffers(struct inode * inode)826 int remove_inode_buffers(struct inode *inode)
827 {
828 int ret = 1;
829
830 if (inode_has_buffers(inode)) {
831 struct address_space *mapping = &inode->i_data;
832 struct list_head *list = &mapping->private_list;
833 struct address_space *buffer_mapping = mapping->private_data;
834
835 spin_lock(&buffer_mapping->private_lock);
836 while (!list_empty(list)) {
837 struct buffer_head *bh = BH_ENTRY(list->next);
838 if (buffer_dirty(bh)) {
839 ret = 0;
840 break;
841 }
842 __remove_assoc_queue(bh);
843 }
844 spin_unlock(&buffer_mapping->private_lock);
845 }
846 return ret;
847 }
848
849 /*
850 * Create the appropriate buffers when given a page for data area and
851 * the size of each buffer.. Use the bh->b_this_page linked list to
852 * follow the buffers created. Return NULL if unable to create more
853 * buffers.
854 *
855 * The retry flag is used to differentiate async IO (paging, swapping)
856 * which may not fail from ordinary buffer allocations.
857 */
alloc_page_buffers(struct page * page,unsigned long size,bool retry)858 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
859 bool retry)
860 {
861 struct buffer_head *bh, *head;
862 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
863 long offset;
864 struct mem_cgroup *memcg, *old_memcg;
865
866 if (retry)
867 gfp |= __GFP_NOFAIL;
868
869 /* The page lock pins the memcg */
870 memcg = page_memcg(page);
871 old_memcg = set_active_memcg(memcg);
872
873 head = NULL;
874 offset = PAGE_SIZE;
875 while ((offset -= size) >= 0) {
876 bh = alloc_buffer_head(gfp);
877 if (!bh)
878 goto no_grow;
879
880 bh->b_this_page = head;
881 bh->b_blocknr = -1;
882 head = bh;
883
884 bh->b_size = size;
885
886 /* Link the buffer to its page */
887 set_bh_page(bh, page, offset);
888 }
889 out:
890 set_active_memcg(old_memcg);
891 return head;
892 /*
893 * In case anything failed, we just free everything we got.
894 */
895 no_grow:
896 if (head) {
897 do {
898 bh = head;
899 head = head->b_this_page;
900 free_buffer_head(bh);
901 } while (head);
902 }
903
904 goto out;
905 }
906 EXPORT_SYMBOL_GPL(alloc_page_buffers);
907
908 static inline void
link_dev_buffers(struct page * page,struct buffer_head * head)909 link_dev_buffers(struct page *page, struct buffer_head *head)
910 {
911 struct buffer_head *bh, *tail;
912
913 bh = head;
914 do {
915 tail = bh;
916 bh = bh->b_this_page;
917 } while (bh);
918 tail->b_this_page = head;
919 attach_page_private(page, head);
920 }
921
blkdev_max_block(struct block_device * bdev,unsigned int size)922 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
923 {
924 sector_t retval = ~((sector_t)0);
925 loff_t sz = i_size_read(bdev->bd_inode);
926
927 if (sz) {
928 unsigned int sizebits = blksize_bits(size);
929 retval = (sz >> sizebits);
930 }
931 return retval;
932 }
933
934 /*
935 * Initialise the state of a blockdev page's buffers.
936 */
937 static sector_t
init_page_buffers(struct page * page,struct block_device * bdev,sector_t block,int size)938 init_page_buffers(struct page *page, struct block_device *bdev,
939 sector_t block, int size)
940 {
941 struct buffer_head *head = page_buffers(page);
942 struct buffer_head *bh = head;
943 int uptodate = PageUptodate(page);
944 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
945
946 do {
947 if (!buffer_mapped(bh)) {
948 bh->b_end_io = NULL;
949 bh->b_private = NULL;
950 bh->b_bdev = bdev;
951 bh->b_blocknr = block;
952 if (uptodate)
953 set_buffer_uptodate(bh);
954 if (block < end_block)
955 set_buffer_mapped(bh);
956 }
957 block++;
958 bh = bh->b_this_page;
959 } while (bh != head);
960
961 /*
962 * Caller needs to validate requested block against end of device.
963 */
964 return end_block;
965 }
966
967 /*
968 * Create the page-cache page that contains the requested block.
969 *
970 * This is used purely for blockdev mappings.
971 */
972 static int
grow_dev_page(struct block_device * bdev,sector_t block,pgoff_t index,int size,int sizebits,gfp_t gfp)973 grow_dev_page(struct block_device *bdev, sector_t block,
974 pgoff_t index, int size, int sizebits, gfp_t gfp)
975 {
976 struct inode *inode = bdev->bd_inode;
977 struct page *page;
978 struct buffer_head *bh;
979 sector_t end_block;
980 int ret = 0;
981 gfp_t gfp_mask;
982
983 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
984
985 /*
986 * XXX: __getblk_slow() can not really deal with failure and
987 * will endlessly loop on improvised global reclaim. Prefer
988 * looping in the allocator rather than here, at least that
989 * code knows what it's doing.
990 */
991 gfp_mask |= __GFP_NOFAIL;
992
993 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
994
995 BUG_ON(!PageLocked(page));
996
997 if (page_has_buffers(page)) {
998 bh = page_buffers(page);
999 if (bh->b_size == size) {
1000 end_block = init_page_buffers(page, bdev,
1001 (sector_t)index << sizebits,
1002 size);
1003 goto done;
1004 }
1005 if (!try_to_free_buffers(page))
1006 goto failed;
1007 }
1008
1009 /*
1010 * Allocate some buffers for this page
1011 */
1012 bh = alloc_page_buffers(page, size, true);
1013
1014 /*
1015 * Link the page to the buffers and initialise them. Take the
1016 * lock to be atomic wrt __find_get_block(), which does not
1017 * run under the page lock.
1018 */
1019 spin_lock(&inode->i_mapping->private_lock);
1020 link_dev_buffers(page, bh);
1021 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1022 size);
1023 spin_unlock(&inode->i_mapping->private_lock);
1024 done:
1025 ret = (block < end_block) ? 1 : -ENXIO;
1026 failed:
1027 unlock_page(page);
1028 put_page(page);
1029 return ret;
1030 }
1031
1032 /*
1033 * Create buffers for the specified block device block's page. If
1034 * that page was dirty, the buffers are set dirty also.
1035 */
1036 static int
grow_buffers(struct block_device * bdev,sector_t block,int size,gfp_t gfp)1037 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1038 {
1039 pgoff_t index;
1040 int sizebits;
1041
1042 sizebits = PAGE_SHIFT - __ffs(size);
1043 index = block >> sizebits;
1044
1045 /*
1046 * Check for a block which wants to lie outside our maximum possible
1047 * pagecache index. (this comparison is done using sector_t types).
1048 */
1049 if (unlikely(index != block >> sizebits)) {
1050 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1051 "device %pg\n",
1052 __func__, (unsigned long long)block,
1053 bdev);
1054 return -EIO;
1055 }
1056
1057 /* Create a page with the proper size buffers.. */
1058 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1059 }
1060
1061 static struct buffer_head *
__getblk_slow(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1062 __getblk_slow(struct block_device *bdev, sector_t block,
1063 unsigned size, gfp_t gfp)
1064 {
1065 /* Size must be multiple of hard sectorsize */
1066 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1067 (size < 512 || size > PAGE_SIZE))) {
1068 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1069 size);
1070 printk(KERN_ERR "logical block size: %d\n",
1071 bdev_logical_block_size(bdev));
1072
1073 dump_stack();
1074 return NULL;
1075 }
1076
1077 for (;;) {
1078 struct buffer_head *bh;
1079 int ret;
1080
1081 bh = __find_get_block(bdev, block, size);
1082 if (bh)
1083 return bh;
1084
1085 ret = grow_buffers(bdev, block, size, gfp);
1086 if (ret < 0)
1087 return NULL;
1088 }
1089 }
1090
1091 /*
1092 * The relationship between dirty buffers and dirty pages:
1093 *
1094 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1095 * the page is tagged dirty in the page cache.
1096 *
1097 * At all times, the dirtiness of the buffers represents the dirtiness of
1098 * subsections of the page. If the page has buffers, the page dirty bit is
1099 * merely a hint about the true dirty state.
1100 *
1101 * When a page is set dirty in its entirety, all its buffers are marked dirty
1102 * (if the page has buffers).
1103 *
1104 * When a buffer is marked dirty, its page is dirtied, but the page's other
1105 * buffers are not.
1106 *
1107 * Also. When blockdev buffers are explicitly read with bread(), they
1108 * individually become uptodate. But their backing page remains not
1109 * uptodate - even if all of its buffers are uptodate. A subsequent
1110 * block_read_full_page() against that page will discover all the uptodate
1111 * buffers, will set the page uptodate and will perform no I/O.
1112 */
1113
1114 /**
1115 * mark_buffer_dirty - mark a buffer_head as needing writeout
1116 * @bh: the buffer_head to mark dirty
1117 *
1118 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1119 * its backing page dirty, then tag the page as dirty in the page cache
1120 * and then attach the address_space's inode to its superblock's dirty
1121 * inode list.
1122 *
1123 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1124 * i_pages lock and mapping->host->i_lock.
1125 */
mark_buffer_dirty(struct buffer_head * bh)1126 void mark_buffer_dirty(struct buffer_head *bh)
1127 {
1128 WARN_ON_ONCE(!buffer_uptodate(bh));
1129
1130 trace_block_dirty_buffer(bh);
1131
1132 /*
1133 * Very *carefully* optimize the it-is-already-dirty case.
1134 *
1135 * Don't let the final "is it dirty" escape to before we
1136 * perhaps modified the buffer.
1137 */
1138 if (buffer_dirty(bh)) {
1139 smp_mb();
1140 if (buffer_dirty(bh))
1141 return;
1142 }
1143
1144 if (!test_set_buffer_dirty(bh)) {
1145 struct page *page = bh->b_page;
1146 struct address_space *mapping = NULL;
1147
1148 lock_page_memcg(page);
1149 if (!TestSetPageDirty(page)) {
1150 mapping = page_mapping(page);
1151 if (mapping)
1152 __set_page_dirty(page, mapping, 0);
1153 }
1154 unlock_page_memcg(page);
1155 if (mapping)
1156 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1157 }
1158 }
1159 EXPORT_SYMBOL_NS(mark_buffer_dirty, ANDROID_GKI_VFS_EXPORT_ONLY);
1160
mark_buffer_write_io_error(struct buffer_head * bh)1161 void mark_buffer_write_io_error(struct buffer_head *bh)
1162 {
1163 struct super_block *sb;
1164
1165 set_buffer_write_io_error(bh);
1166 /* FIXME: do we need to set this in both places? */
1167 if (bh->b_page && bh->b_page->mapping)
1168 mapping_set_error(bh->b_page->mapping, -EIO);
1169 if (bh->b_assoc_map)
1170 mapping_set_error(bh->b_assoc_map, -EIO);
1171 rcu_read_lock();
1172 sb = READ_ONCE(bh->b_bdev->bd_super);
1173 if (sb)
1174 errseq_set(&sb->s_wb_err, -EIO);
1175 rcu_read_unlock();
1176 }
1177 EXPORT_SYMBOL_NS(mark_buffer_write_io_error, ANDROID_GKI_VFS_EXPORT_ONLY);
1178
1179 /*
1180 * Decrement a buffer_head's reference count. If all buffers against a page
1181 * have zero reference count, are clean and unlocked, and if the page is clean
1182 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1183 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1184 * a page but it ends up not being freed, and buffers may later be reattached).
1185 */
__brelse(struct buffer_head * buf)1186 void __brelse(struct buffer_head * buf)
1187 {
1188 if (atomic_read(&buf->b_count)) {
1189 put_bh(buf);
1190 return;
1191 }
1192 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1193 }
1194 EXPORT_SYMBOL_NS(__brelse, ANDROID_GKI_VFS_EXPORT_ONLY);
1195
1196 /*
1197 * bforget() is like brelse(), except it discards any
1198 * potentially dirty data.
1199 */
__bforget(struct buffer_head * bh)1200 void __bforget(struct buffer_head *bh)
1201 {
1202 clear_buffer_dirty(bh);
1203 if (bh->b_assoc_map) {
1204 struct address_space *buffer_mapping = bh->b_page->mapping;
1205
1206 spin_lock(&buffer_mapping->private_lock);
1207 list_del_init(&bh->b_assoc_buffers);
1208 bh->b_assoc_map = NULL;
1209 spin_unlock(&buffer_mapping->private_lock);
1210 }
1211 __brelse(bh);
1212 }
1213 EXPORT_SYMBOL_NS(__bforget, ANDROID_GKI_VFS_EXPORT_ONLY);
1214
__bread_slow(struct buffer_head * bh)1215 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1216 {
1217 lock_buffer(bh);
1218 if (buffer_uptodate(bh)) {
1219 unlock_buffer(bh);
1220 return bh;
1221 } else {
1222 get_bh(bh);
1223 bh->b_end_io = end_buffer_read_sync;
1224 submit_bh(REQ_OP_READ, 0, bh);
1225 wait_on_buffer(bh);
1226 if (buffer_uptodate(bh))
1227 return bh;
1228 }
1229 brelse(bh);
1230 return NULL;
1231 }
1232
1233 /*
1234 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1235 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1236 * refcount elevated by one when they're in an LRU. A buffer can only appear
1237 * once in a particular CPU's LRU. A single buffer can be present in multiple
1238 * CPU's LRUs at the same time.
1239 *
1240 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1241 * sb_find_get_block().
1242 *
1243 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1244 * a local interrupt disable for that.
1245 */
1246
1247 #define BH_LRU_SIZE 16
1248
1249 struct bh_lru {
1250 struct buffer_head *bhs[BH_LRU_SIZE];
1251 };
1252
1253 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1254
1255 #ifdef CONFIG_SMP
1256 #define bh_lru_lock() local_irq_disable()
1257 #define bh_lru_unlock() local_irq_enable()
1258 #else
1259 #define bh_lru_lock() preempt_disable()
1260 #define bh_lru_unlock() preempt_enable()
1261 #endif
1262
check_irqs_on(void)1263 static inline void check_irqs_on(void)
1264 {
1265 #ifdef irqs_disabled
1266 BUG_ON(irqs_disabled());
1267 #endif
1268 }
1269
1270 /*
1271 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1272 * inserted at the front, and the buffer_head at the back if any is evicted.
1273 * Or, if already in the LRU it is moved to the front.
1274 */
bh_lru_install(struct buffer_head * bh)1275 static void bh_lru_install(struct buffer_head *bh)
1276 {
1277 struct buffer_head *evictee = bh;
1278 struct bh_lru *b;
1279 int i;
1280 bool skip = false;
1281
1282 check_irqs_on();
1283 bh_lru_lock();
1284
1285 /*
1286 * the refcount of buffer_head in bh_lru prevents dropping the
1287 * attached page(i.e., try_to_free_buffers) so it could cause
1288 * failing page migration.
1289 * Skip putting upcoming bh into bh_lru until migration is done.
1290 */
1291 if (lru_cache_disabled()) {
1292 bh_lru_unlock();
1293 return;
1294 }
1295
1296 trace_android_vh_bh_lru_install(bh->b_page, &skip);
1297 if (skip) {
1298 bh_lru_unlock();
1299 return;
1300 }
1301
1302 b = this_cpu_ptr(&bh_lrus);
1303 for (i = 0; i < BH_LRU_SIZE; i++) {
1304 swap(evictee, b->bhs[i]);
1305 if (evictee == bh) {
1306 bh_lru_unlock();
1307 return;
1308 }
1309 }
1310
1311 get_bh(bh);
1312 bh_lru_unlock();
1313 brelse(evictee);
1314 }
1315
1316 /*
1317 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1318 */
1319 static struct buffer_head *
lookup_bh_lru(struct block_device * bdev,sector_t block,unsigned size)1320 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1321 {
1322 struct buffer_head *ret = NULL;
1323 unsigned int i;
1324
1325 check_irqs_on();
1326 bh_lru_lock();
1327 for (i = 0; i < BH_LRU_SIZE; i++) {
1328 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1329
1330 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1331 bh->b_size == size) {
1332 if (i) {
1333 while (i) {
1334 __this_cpu_write(bh_lrus.bhs[i],
1335 __this_cpu_read(bh_lrus.bhs[i - 1]));
1336 i--;
1337 }
1338 __this_cpu_write(bh_lrus.bhs[0], bh);
1339 }
1340 get_bh(bh);
1341 ret = bh;
1342 break;
1343 }
1344 }
1345 bh_lru_unlock();
1346 return ret;
1347 }
1348
1349 /*
1350 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1351 * it in the LRU and mark it as accessed. If it is not present then return
1352 * NULL
1353 */
1354 struct buffer_head *
__find_get_block(struct block_device * bdev,sector_t block,unsigned size)1355 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1356 {
1357 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1358
1359 if (bh == NULL) {
1360 /* __find_get_block_slow will mark the page accessed */
1361 bh = __find_get_block_slow(bdev, block);
1362 if (bh)
1363 bh_lru_install(bh);
1364 } else
1365 touch_buffer(bh);
1366
1367 return bh;
1368 }
1369 EXPORT_SYMBOL(__find_get_block);
1370
1371 /*
1372 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1373 * which corresponds to the passed block_device, block and size. The
1374 * returned buffer has its reference count incremented.
1375 *
1376 * __getblk_gfp() will lock up the machine if grow_dev_page's
1377 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1378 */
1379 struct buffer_head *
__getblk_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1380 __getblk_gfp(struct block_device *bdev, sector_t block,
1381 unsigned size, gfp_t gfp)
1382 {
1383 struct buffer_head *bh = __find_get_block(bdev, block, size);
1384
1385 might_sleep();
1386 if (bh == NULL)
1387 bh = __getblk_slow(bdev, block, size, gfp);
1388 return bh;
1389 }
1390 EXPORT_SYMBOL(__getblk_gfp);
1391
1392 /*
1393 * Do async read-ahead on a buffer..
1394 */
__breadahead(struct block_device * bdev,sector_t block,unsigned size)1395 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1396 {
1397 struct buffer_head *bh = __getblk(bdev, block, size);
1398 if (likely(bh)) {
1399 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1400 brelse(bh);
1401 }
1402 }
1403 EXPORT_SYMBOL_NS(__breadahead, ANDROID_GKI_VFS_EXPORT_ONLY);
1404
__breadahead_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1405 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1406 gfp_t gfp)
1407 {
1408 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1409 if (likely(bh)) {
1410 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1411 brelse(bh);
1412 }
1413 }
1414 EXPORT_SYMBOL(__breadahead_gfp);
1415
1416 /**
1417 * __bread_gfp() - reads a specified block and returns the bh
1418 * @bdev: the block_device to read from
1419 * @block: number of block
1420 * @size: size (in bytes) to read
1421 * @gfp: page allocation flag
1422 *
1423 * Reads a specified block, and returns buffer head that contains it.
1424 * The page cache can be allocated from non-movable area
1425 * not to prevent page migration if you set gfp to zero.
1426 * It returns NULL if the block was unreadable.
1427 */
1428 struct buffer_head *
__bread_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1429 __bread_gfp(struct block_device *bdev, sector_t block,
1430 unsigned size, gfp_t gfp)
1431 {
1432 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1433
1434 if (likely(bh) && !buffer_uptodate(bh))
1435 bh = __bread_slow(bh);
1436 return bh;
1437 }
1438 EXPORT_SYMBOL_NS(__bread_gfp, ANDROID_GKI_VFS_EXPORT_ONLY);
1439
__invalidate_bh_lrus(struct bh_lru * b)1440 static void __invalidate_bh_lrus(struct bh_lru *b)
1441 {
1442 int i;
1443
1444 for (i = 0; i < BH_LRU_SIZE; i++) {
1445 brelse(b->bhs[i]);
1446 b->bhs[i] = NULL;
1447 }
1448 }
1449 /*
1450 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1451 * This doesn't race because it runs in each cpu either in irq
1452 * or with preempt disabled.
1453 */
invalidate_bh_lru(void * arg)1454 static void invalidate_bh_lru(void *arg)
1455 {
1456 struct bh_lru *b = &get_cpu_var(bh_lrus);
1457
1458 __invalidate_bh_lrus(b);
1459 put_cpu_var(bh_lrus);
1460 }
1461
has_bh_in_lru(int cpu,void * dummy)1462 bool has_bh_in_lru(int cpu, void *dummy)
1463 {
1464 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1465 int i;
1466
1467 for (i = 0; i < BH_LRU_SIZE; i++) {
1468 if (b->bhs[i])
1469 return true;
1470 }
1471
1472 return false;
1473 }
1474
invalidate_bh_lrus(void)1475 void invalidate_bh_lrus(void)
1476 {
1477 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1478 }
1479 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1480
1481 /*
1482 * It's called from workqueue context so we need a bh_lru_lock to close
1483 * the race with preemption/irq.
1484 */
invalidate_bh_lrus_cpu(void)1485 void invalidate_bh_lrus_cpu(void)
1486 {
1487 struct bh_lru *b;
1488
1489 bh_lru_lock();
1490 b = this_cpu_ptr(&bh_lrus);
1491 __invalidate_bh_lrus(b);
1492 bh_lru_unlock();
1493 }
1494
set_bh_page(struct buffer_head * bh,struct page * page,unsigned long offset)1495 void set_bh_page(struct buffer_head *bh,
1496 struct page *page, unsigned long offset)
1497 {
1498 bh->b_page = page;
1499 BUG_ON(offset >= PAGE_SIZE);
1500 if (PageHighMem(page))
1501 /*
1502 * This catches illegal uses and preserves the offset:
1503 */
1504 bh->b_data = (char *)(0 + offset);
1505 else
1506 bh->b_data = page_address(page) + offset;
1507 }
1508 EXPORT_SYMBOL(set_bh_page);
1509
1510 /*
1511 * Called when truncating a buffer on a page completely.
1512 */
1513
1514 /* Bits that are cleared during an invalidate */
1515 #define BUFFER_FLAGS_DISCARD \
1516 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1517 1 << BH_Delay | 1 << BH_Unwritten)
1518
discard_buffer(struct buffer_head * bh)1519 static void discard_buffer(struct buffer_head * bh)
1520 {
1521 unsigned long b_state, b_state_old;
1522
1523 lock_buffer(bh);
1524 clear_buffer_dirty(bh);
1525 bh->b_bdev = NULL;
1526 b_state = bh->b_state;
1527 for (;;) {
1528 b_state_old = cmpxchg(&bh->b_state, b_state,
1529 (b_state & ~BUFFER_FLAGS_DISCARD));
1530 if (b_state_old == b_state)
1531 break;
1532 b_state = b_state_old;
1533 }
1534 unlock_buffer(bh);
1535 }
1536
1537 /**
1538 * block_invalidatepage - invalidate part or all of a buffer-backed page
1539 *
1540 * @page: the page which is affected
1541 * @offset: start of the range to invalidate
1542 * @length: length of the range to invalidate
1543 *
1544 * block_invalidatepage() is called when all or part of the page has become
1545 * invalidated by a truncate operation.
1546 *
1547 * block_invalidatepage() does not have to release all buffers, but it must
1548 * ensure that no dirty buffer is left outside @offset and that no I/O
1549 * is underway against any of the blocks which are outside the truncation
1550 * point. Because the caller is about to free (and possibly reuse) those
1551 * blocks on-disk.
1552 */
block_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1553 void block_invalidatepage(struct page *page, unsigned int offset,
1554 unsigned int length)
1555 {
1556 struct buffer_head *head, *bh, *next;
1557 unsigned int curr_off = 0;
1558 unsigned int stop = length + offset;
1559
1560 BUG_ON(!PageLocked(page));
1561 if (!page_has_buffers(page))
1562 goto out;
1563
1564 /*
1565 * Check for overflow
1566 */
1567 BUG_ON(stop > PAGE_SIZE || stop < length);
1568
1569 head = page_buffers(page);
1570 bh = head;
1571 do {
1572 unsigned int next_off = curr_off + bh->b_size;
1573 next = bh->b_this_page;
1574
1575 /*
1576 * Are we still fully in range ?
1577 */
1578 if (next_off > stop)
1579 goto out;
1580
1581 /*
1582 * is this block fully invalidated?
1583 */
1584 if (offset <= curr_off)
1585 discard_buffer(bh);
1586 curr_off = next_off;
1587 bh = next;
1588 } while (bh != head);
1589
1590 /*
1591 * We release buffers only if the entire page is being invalidated.
1592 * The get_block cached value has been unconditionally invalidated,
1593 * so real IO is not possible anymore.
1594 */
1595 if (length == PAGE_SIZE)
1596 try_to_release_page(page, 0);
1597 out:
1598 return;
1599 }
1600 EXPORT_SYMBOL_NS(block_invalidatepage, ANDROID_GKI_VFS_EXPORT_ONLY);
1601
1602
1603 /*
1604 * We attach and possibly dirty the buffers atomically wrt
1605 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1606 * is already excluded via the page lock.
1607 */
create_empty_buffers(struct page * page,unsigned long blocksize,unsigned long b_state)1608 void create_empty_buffers(struct page *page,
1609 unsigned long blocksize, unsigned long b_state)
1610 {
1611 struct buffer_head *bh, *head, *tail;
1612
1613 head = alloc_page_buffers(page, blocksize, true);
1614 bh = head;
1615 do {
1616 bh->b_state |= b_state;
1617 tail = bh;
1618 bh = bh->b_this_page;
1619 } while (bh);
1620 tail->b_this_page = head;
1621
1622 spin_lock(&page->mapping->private_lock);
1623 if (PageUptodate(page) || PageDirty(page)) {
1624 bh = head;
1625 do {
1626 if (PageDirty(page))
1627 set_buffer_dirty(bh);
1628 if (PageUptodate(page))
1629 set_buffer_uptodate(bh);
1630 bh = bh->b_this_page;
1631 } while (bh != head);
1632 }
1633 attach_page_private(page, head);
1634 spin_unlock(&page->mapping->private_lock);
1635 }
1636 EXPORT_SYMBOL_NS(create_empty_buffers, ANDROID_GKI_VFS_EXPORT_ONLY);
1637
1638 /**
1639 * clean_bdev_aliases: clean a range of buffers in block device
1640 * @bdev: Block device to clean buffers in
1641 * @block: Start of a range of blocks to clean
1642 * @len: Number of blocks to clean
1643 *
1644 * We are taking a range of blocks for data and we don't want writeback of any
1645 * buffer-cache aliases starting from return from this function and until the
1646 * moment when something will explicitly mark the buffer dirty (hopefully that
1647 * will not happen until we will free that block ;-) We don't even need to mark
1648 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1649 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1650 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1651 * would confuse anyone who might pick it with bread() afterwards...
1652 *
1653 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1654 * writeout I/O going on against recently-freed buffers. We don't wait on that
1655 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1656 * need to. That happens here.
1657 */
clean_bdev_aliases(struct block_device * bdev,sector_t block,sector_t len)1658 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1659 {
1660 struct inode *bd_inode = bdev->bd_inode;
1661 struct address_space *bd_mapping = bd_inode->i_mapping;
1662 struct pagevec pvec;
1663 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1664 pgoff_t end;
1665 int i, count;
1666 struct buffer_head *bh;
1667 struct buffer_head *head;
1668
1669 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1670 pagevec_init(&pvec);
1671 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1672 count = pagevec_count(&pvec);
1673 for (i = 0; i < count; i++) {
1674 struct page *page = pvec.pages[i];
1675
1676 if (!page_has_buffers(page))
1677 continue;
1678 /*
1679 * We use page lock instead of bd_mapping->private_lock
1680 * to pin buffers here since we can afford to sleep and
1681 * it scales better than a global spinlock lock.
1682 */
1683 lock_page(page);
1684 /* Recheck when the page is locked which pins bhs */
1685 if (!page_has_buffers(page))
1686 goto unlock_page;
1687 head = page_buffers(page);
1688 bh = head;
1689 do {
1690 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1691 goto next;
1692 if (bh->b_blocknr >= block + len)
1693 break;
1694 clear_buffer_dirty(bh);
1695 wait_on_buffer(bh);
1696 clear_buffer_req(bh);
1697 next:
1698 bh = bh->b_this_page;
1699 } while (bh != head);
1700 unlock_page:
1701 unlock_page(page);
1702 }
1703 pagevec_release(&pvec);
1704 cond_resched();
1705 /* End of range already reached? */
1706 if (index > end || !index)
1707 break;
1708 }
1709 }
1710 EXPORT_SYMBOL_NS(clean_bdev_aliases, ANDROID_GKI_VFS_EXPORT_ONLY);
1711
1712 /*
1713 * Size is a power-of-two in the range 512..PAGE_SIZE,
1714 * and the case we care about most is PAGE_SIZE.
1715 *
1716 * So this *could* possibly be written with those
1717 * constraints in mind (relevant mostly if some
1718 * architecture has a slow bit-scan instruction)
1719 */
block_size_bits(unsigned int blocksize)1720 static inline int block_size_bits(unsigned int blocksize)
1721 {
1722 return ilog2(blocksize);
1723 }
1724
create_page_buffers(struct page * page,struct inode * inode,unsigned int b_state)1725 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1726 {
1727 BUG_ON(!PageLocked(page));
1728
1729 if (!page_has_buffers(page))
1730 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1731 b_state);
1732 return page_buffers(page);
1733 }
1734
1735 /*
1736 * NOTE! All mapped/uptodate combinations are valid:
1737 *
1738 * Mapped Uptodate Meaning
1739 *
1740 * No No "unknown" - must do get_block()
1741 * No Yes "hole" - zero-filled
1742 * Yes No "allocated" - allocated on disk, not read in
1743 * Yes Yes "valid" - allocated and up-to-date in memory.
1744 *
1745 * "Dirty" is valid only with the last case (mapped+uptodate).
1746 */
1747
1748 /*
1749 * While block_write_full_page is writing back the dirty buffers under
1750 * the page lock, whoever dirtied the buffers may decide to clean them
1751 * again at any time. We handle that by only looking at the buffer
1752 * state inside lock_buffer().
1753 *
1754 * If block_write_full_page() is called for regular writeback
1755 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1756 * locked buffer. This only can happen if someone has written the buffer
1757 * directly, with submit_bh(). At the address_space level PageWriteback
1758 * prevents this contention from occurring.
1759 *
1760 * If block_write_full_page() is called with wbc->sync_mode ==
1761 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1762 * causes the writes to be flagged as synchronous writes.
1763 */
__block_write_full_page(struct inode * inode,struct page * page,get_block_t * get_block,struct writeback_control * wbc,bh_end_io_t * handler)1764 int __block_write_full_page(struct inode *inode, struct page *page,
1765 get_block_t *get_block, struct writeback_control *wbc,
1766 bh_end_io_t *handler)
1767 {
1768 int err;
1769 sector_t block;
1770 sector_t last_block;
1771 struct buffer_head *bh, *head;
1772 unsigned int blocksize, bbits;
1773 int nr_underway = 0;
1774 int write_flags = wbc_to_write_flags(wbc);
1775
1776 head = create_page_buffers(page, inode,
1777 (1 << BH_Dirty)|(1 << BH_Uptodate));
1778
1779 /*
1780 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1781 * here, and the (potentially unmapped) buffers may become dirty at
1782 * any time. If a buffer becomes dirty here after we've inspected it
1783 * then we just miss that fact, and the page stays dirty.
1784 *
1785 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1786 * handle that here by just cleaning them.
1787 */
1788
1789 bh = head;
1790 blocksize = bh->b_size;
1791 bbits = block_size_bits(blocksize);
1792
1793 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1794 last_block = (i_size_read(inode) - 1) >> bbits;
1795
1796 /*
1797 * Get all the dirty buffers mapped to disk addresses and
1798 * handle any aliases from the underlying blockdev's mapping.
1799 */
1800 do {
1801 if (block > last_block) {
1802 /*
1803 * mapped buffers outside i_size will occur, because
1804 * this page can be outside i_size when there is a
1805 * truncate in progress.
1806 */
1807 /*
1808 * The buffer was zeroed by block_write_full_page()
1809 */
1810 clear_buffer_dirty(bh);
1811 set_buffer_uptodate(bh);
1812 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1813 buffer_dirty(bh)) {
1814 WARN_ON(bh->b_size != blocksize);
1815 err = get_block(inode, block, bh, 1);
1816 if (err)
1817 goto recover;
1818 clear_buffer_delay(bh);
1819 if (buffer_new(bh)) {
1820 /* blockdev mappings never come here */
1821 clear_buffer_new(bh);
1822 clean_bdev_bh_alias(bh);
1823 }
1824 }
1825 bh = bh->b_this_page;
1826 block++;
1827 } while (bh != head);
1828
1829 do {
1830 if (!buffer_mapped(bh))
1831 continue;
1832 /*
1833 * If it's a fully non-blocking write attempt and we cannot
1834 * lock the buffer then redirty the page. Note that this can
1835 * potentially cause a busy-wait loop from writeback threads
1836 * and kswapd activity, but those code paths have their own
1837 * higher-level throttling.
1838 */
1839 if (wbc->sync_mode != WB_SYNC_NONE) {
1840 lock_buffer(bh);
1841 } else if (!trylock_buffer(bh)) {
1842 redirty_page_for_writepage(wbc, page);
1843 continue;
1844 }
1845 if (test_clear_buffer_dirty(bh)) {
1846 mark_buffer_async_write_endio(bh, handler);
1847 } else {
1848 unlock_buffer(bh);
1849 }
1850 } while ((bh = bh->b_this_page) != head);
1851
1852 /*
1853 * The page and its buffers are protected by PageWriteback(), so we can
1854 * drop the bh refcounts early.
1855 */
1856 BUG_ON(PageWriteback(page));
1857 set_page_writeback(page);
1858
1859 do {
1860 struct buffer_head *next = bh->b_this_page;
1861 if (buffer_async_write(bh)) {
1862 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1863 inode->i_write_hint, wbc);
1864 nr_underway++;
1865 }
1866 bh = next;
1867 } while (bh != head);
1868 unlock_page(page);
1869
1870 err = 0;
1871 done:
1872 if (nr_underway == 0) {
1873 /*
1874 * The page was marked dirty, but the buffers were
1875 * clean. Someone wrote them back by hand with
1876 * ll_rw_block/submit_bh. A rare case.
1877 */
1878 end_page_writeback(page);
1879
1880 /*
1881 * The page and buffer_heads can be released at any time from
1882 * here on.
1883 */
1884 }
1885 return err;
1886
1887 recover:
1888 /*
1889 * ENOSPC, or some other error. We may already have added some
1890 * blocks to the file, so we need to write these out to avoid
1891 * exposing stale data.
1892 * The page is currently locked and not marked for writeback
1893 */
1894 bh = head;
1895 /* Recovery: lock and submit the mapped buffers */
1896 do {
1897 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1898 !buffer_delay(bh)) {
1899 lock_buffer(bh);
1900 mark_buffer_async_write_endio(bh, handler);
1901 } else {
1902 /*
1903 * The buffer may have been set dirty during
1904 * attachment to a dirty page.
1905 */
1906 clear_buffer_dirty(bh);
1907 }
1908 } while ((bh = bh->b_this_page) != head);
1909 SetPageError(page);
1910 BUG_ON(PageWriteback(page));
1911 mapping_set_error(page->mapping, err);
1912 set_page_writeback(page);
1913 do {
1914 struct buffer_head *next = bh->b_this_page;
1915 if (buffer_async_write(bh)) {
1916 clear_buffer_dirty(bh);
1917 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1918 inode->i_write_hint, wbc);
1919 nr_underway++;
1920 }
1921 bh = next;
1922 } while (bh != head);
1923 unlock_page(page);
1924 goto done;
1925 }
1926 EXPORT_SYMBOL(__block_write_full_page);
1927
1928 /*
1929 * If a page has any new buffers, zero them out here, and mark them uptodate
1930 * and dirty so they'll be written out (in order to prevent uninitialised
1931 * block data from leaking). And clear the new bit.
1932 */
page_zero_new_buffers(struct page * page,unsigned from,unsigned to)1933 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1934 {
1935 unsigned int block_start, block_end;
1936 struct buffer_head *head, *bh;
1937
1938 BUG_ON(!PageLocked(page));
1939 if (!page_has_buffers(page))
1940 return;
1941
1942 bh = head = page_buffers(page);
1943 block_start = 0;
1944 do {
1945 block_end = block_start + bh->b_size;
1946
1947 if (buffer_new(bh)) {
1948 if (block_end > from && block_start < to) {
1949 if (!PageUptodate(page)) {
1950 unsigned start, size;
1951
1952 start = max(from, block_start);
1953 size = min(to, block_end) - start;
1954
1955 zero_user(page, start, size);
1956 set_buffer_uptodate(bh);
1957 }
1958
1959 clear_buffer_new(bh);
1960 mark_buffer_dirty(bh);
1961 }
1962 }
1963
1964 block_start = block_end;
1965 bh = bh->b_this_page;
1966 } while (bh != head);
1967 }
1968 EXPORT_SYMBOL_NS(page_zero_new_buffers, ANDROID_GKI_VFS_EXPORT_ONLY);
1969
1970 static void
iomap_to_bh(struct inode * inode,sector_t block,struct buffer_head * bh,const struct iomap * iomap)1971 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1972 const struct iomap *iomap)
1973 {
1974 loff_t offset = block << inode->i_blkbits;
1975
1976 bh->b_bdev = iomap->bdev;
1977
1978 /*
1979 * Block points to offset in file we need to map, iomap contains
1980 * the offset at which the map starts. If the map ends before the
1981 * current block, then do not map the buffer and let the caller
1982 * handle it.
1983 */
1984 BUG_ON(offset >= iomap->offset + iomap->length);
1985
1986 switch (iomap->type) {
1987 case IOMAP_HOLE:
1988 /*
1989 * If the buffer is not up to date or beyond the current EOF,
1990 * we need to mark it as new to ensure sub-block zeroing is
1991 * executed if necessary.
1992 */
1993 if (!buffer_uptodate(bh) ||
1994 (offset >= i_size_read(inode)))
1995 set_buffer_new(bh);
1996 break;
1997 case IOMAP_DELALLOC:
1998 if (!buffer_uptodate(bh) ||
1999 (offset >= i_size_read(inode)))
2000 set_buffer_new(bh);
2001 set_buffer_uptodate(bh);
2002 set_buffer_mapped(bh);
2003 set_buffer_delay(bh);
2004 break;
2005 case IOMAP_UNWRITTEN:
2006 /*
2007 * For unwritten regions, we always need to ensure that regions
2008 * in the block we are not writing to are zeroed. Mark the
2009 * buffer as new to ensure this.
2010 */
2011 set_buffer_new(bh);
2012 set_buffer_unwritten(bh);
2013 fallthrough;
2014 case IOMAP_MAPPED:
2015 if ((iomap->flags & IOMAP_F_NEW) ||
2016 offset >= i_size_read(inode))
2017 set_buffer_new(bh);
2018 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2019 inode->i_blkbits;
2020 set_buffer_mapped(bh);
2021 break;
2022 }
2023 }
2024
__block_write_begin_int(struct page * page,loff_t pos,unsigned len,get_block_t * get_block,const struct iomap * iomap)2025 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
2026 get_block_t *get_block, const struct iomap *iomap)
2027 {
2028 unsigned from = pos & (PAGE_SIZE - 1);
2029 unsigned to = from + len;
2030 struct inode *inode = page->mapping->host;
2031 unsigned block_start, block_end;
2032 sector_t block;
2033 int err = 0;
2034 unsigned blocksize, bbits;
2035 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2036
2037 BUG_ON(!PageLocked(page));
2038 BUG_ON(from > PAGE_SIZE);
2039 BUG_ON(to > PAGE_SIZE);
2040 BUG_ON(from > to);
2041
2042 head = create_page_buffers(page, inode, 0);
2043 blocksize = head->b_size;
2044 bbits = block_size_bits(blocksize);
2045
2046 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2047
2048 for(bh = head, block_start = 0; bh != head || !block_start;
2049 block++, block_start=block_end, bh = bh->b_this_page) {
2050 block_end = block_start + blocksize;
2051 if (block_end <= from || block_start >= to) {
2052 if (PageUptodate(page)) {
2053 if (!buffer_uptodate(bh))
2054 set_buffer_uptodate(bh);
2055 }
2056 continue;
2057 }
2058 if (buffer_new(bh))
2059 clear_buffer_new(bh);
2060 if (!buffer_mapped(bh)) {
2061 WARN_ON(bh->b_size != blocksize);
2062 if (get_block) {
2063 err = get_block(inode, block, bh, 1);
2064 if (err)
2065 break;
2066 } else {
2067 iomap_to_bh(inode, block, bh, iomap);
2068 }
2069
2070 if (buffer_new(bh)) {
2071 clean_bdev_bh_alias(bh);
2072 if (PageUptodate(page)) {
2073 clear_buffer_new(bh);
2074 set_buffer_uptodate(bh);
2075 mark_buffer_dirty(bh);
2076 continue;
2077 }
2078 if (block_end > to || block_start < from)
2079 zero_user_segments(page,
2080 to, block_end,
2081 block_start, from);
2082 continue;
2083 }
2084 }
2085 if (PageUptodate(page)) {
2086 if (!buffer_uptodate(bh))
2087 set_buffer_uptodate(bh);
2088 continue;
2089 }
2090 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2091 !buffer_unwritten(bh) &&
2092 (block_start < from || block_end > to)) {
2093 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2094 *wait_bh++=bh;
2095 }
2096 }
2097 /*
2098 * If we issued read requests - let them complete.
2099 */
2100 while(wait_bh > wait) {
2101 wait_on_buffer(*--wait_bh);
2102 if (!buffer_uptodate(*wait_bh))
2103 err = -EIO;
2104 }
2105 if (unlikely(err))
2106 page_zero_new_buffers(page, from, to);
2107 return err;
2108 }
2109
__block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)2110 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2111 get_block_t *get_block)
2112 {
2113 return __block_write_begin_int(page, pos, len, get_block, NULL);
2114 }
2115 EXPORT_SYMBOL(__block_write_begin);
2116
__block_commit_write(struct inode * inode,struct page * page,unsigned from,unsigned to)2117 static int __block_commit_write(struct inode *inode, struct page *page,
2118 unsigned from, unsigned to)
2119 {
2120 unsigned block_start, block_end;
2121 int partial = 0;
2122 unsigned blocksize;
2123 struct buffer_head *bh, *head;
2124
2125 bh = head = page_buffers(page);
2126 blocksize = bh->b_size;
2127
2128 block_start = 0;
2129 do {
2130 block_end = block_start + blocksize;
2131 if (block_end <= from || block_start >= to) {
2132 if (!buffer_uptodate(bh))
2133 partial = 1;
2134 } else {
2135 set_buffer_uptodate(bh);
2136 mark_buffer_dirty(bh);
2137 }
2138 if (buffer_new(bh))
2139 clear_buffer_new(bh);
2140
2141 block_start = block_end;
2142 bh = bh->b_this_page;
2143 } while (bh != head);
2144
2145 /*
2146 * If this is a partial write which happened to make all buffers
2147 * uptodate then we can optimize away a bogus readpage() for
2148 * the next read(). Here we 'discover' whether the page went
2149 * uptodate as a result of this (potentially partial) write.
2150 */
2151 if (!partial)
2152 SetPageUptodate(page);
2153 return 0;
2154 }
2155
2156 /*
2157 * block_write_begin takes care of the basic task of block allocation and
2158 * bringing partial write blocks uptodate first.
2159 *
2160 * The filesystem needs to handle block truncation upon failure.
2161 */
block_write_begin(struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,get_block_t * get_block)2162 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2163 unsigned flags, struct page **pagep, get_block_t *get_block)
2164 {
2165 pgoff_t index = pos >> PAGE_SHIFT;
2166 struct page *page;
2167 int status;
2168
2169 page = grab_cache_page_write_begin(mapping, index, flags);
2170 if (!page)
2171 return -ENOMEM;
2172
2173 status = __block_write_begin(page, pos, len, get_block);
2174 if (unlikely(status)) {
2175 unlock_page(page);
2176 put_page(page);
2177 page = NULL;
2178 }
2179
2180 *pagep = page;
2181 return status;
2182 }
2183 EXPORT_SYMBOL(block_write_begin);
2184
block_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2185 int block_write_end(struct file *file, struct address_space *mapping,
2186 loff_t pos, unsigned len, unsigned copied,
2187 struct page *page, void *fsdata)
2188 {
2189 struct inode *inode = mapping->host;
2190 unsigned start;
2191
2192 start = pos & (PAGE_SIZE - 1);
2193
2194 if (unlikely(copied < len)) {
2195 /*
2196 * The buffers that were written will now be uptodate, so we
2197 * don't have to worry about a readpage reading them and
2198 * overwriting a partial write. However if we have encountered
2199 * a short write and only partially written into a buffer, it
2200 * will not be marked uptodate, so a readpage might come in and
2201 * destroy our partial write.
2202 *
2203 * Do the simplest thing, and just treat any short write to a
2204 * non uptodate page as a zero-length write, and force the
2205 * caller to redo the whole thing.
2206 */
2207 if (!PageUptodate(page))
2208 copied = 0;
2209
2210 page_zero_new_buffers(page, start+copied, start+len);
2211 }
2212 flush_dcache_page(page);
2213
2214 /* This could be a short (even 0-length) commit */
2215 __block_commit_write(inode, page, start, start+copied);
2216
2217 return copied;
2218 }
2219 EXPORT_SYMBOL(block_write_end);
2220
generic_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2221 int generic_write_end(struct file *file, struct address_space *mapping,
2222 loff_t pos, unsigned len, unsigned copied,
2223 struct page *page, void *fsdata)
2224 {
2225 struct inode *inode = mapping->host;
2226 loff_t old_size = inode->i_size;
2227 bool i_size_changed = false;
2228
2229 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2230
2231 /*
2232 * No need to use i_size_read() here, the i_size cannot change under us
2233 * because we hold i_rwsem.
2234 *
2235 * But it's important to update i_size while still holding page lock:
2236 * page writeout could otherwise come in and zero beyond i_size.
2237 */
2238 if (pos + copied > inode->i_size) {
2239 i_size_write(inode, pos + copied);
2240 i_size_changed = true;
2241 }
2242
2243 unlock_page(page);
2244 put_page(page);
2245
2246 if (old_size < pos)
2247 pagecache_isize_extended(inode, old_size, pos);
2248 /*
2249 * Don't mark the inode dirty under page lock. First, it unnecessarily
2250 * makes the holding time of page lock longer. Second, it forces lock
2251 * ordering of page lock and transaction start for journaling
2252 * filesystems.
2253 */
2254 if (i_size_changed)
2255 mark_inode_dirty(inode);
2256 return copied;
2257 }
2258 EXPORT_SYMBOL_NS(generic_write_end, ANDROID_GKI_VFS_EXPORT_ONLY);
2259
2260 /*
2261 * block_is_partially_uptodate checks whether buffers within a page are
2262 * uptodate or not.
2263 *
2264 * Returns true if all buffers which correspond to a file portion
2265 * we want to read are uptodate.
2266 */
block_is_partially_uptodate(struct page * page,unsigned long from,unsigned long count)2267 int block_is_partially_uptodate(struct page *page, unsigned long from,
2268 unsigned long count)
2269 {
2270 unsigned block_start, block_end, blocksize;
2271 unsigned to;
2272 struct buffer_head *bh, *head;
2273 int ret = 1;
2274
2275 if (!page_has_buffers(page))
2276 return 0;
2277
2278 head = page_buffers(page);
2279 blocksize = head->b_size;
2280 to = min_t(unsigned, PAGE_SIZE - from, count);
2281 to = from + to;
2282 if (from < blocksize && to > PAGE_SIZE - blocksize)
2283 return 0;
2284
2285 bh = head;
2286 block_start = 0;
2287 do {
2288 block_end = block_start + blocksize;
2289 if (block_end > from && block_start < to) {
2290 if (!buffer_uptodate(bh)) {
2291 ret = 0;
2292 break;
2293 }
2294 if (block_end >= to)
2295 break;
2296 }
2297 block_start = block_end;
2298 bh = bh->b_this_page;
2299 } while (bh != head);
2300
2301 return ret;
2302 }
2303 EXPORT_SYMBOL_NS(block_is_partially_uptodate, ANDROID_GKI_VFS_EXPORT_ONLY);
2304
2305 /*
2306 * Generic "read page" function for block devices that have the normal
2307 * get_block functionality. This is most of the block device filesystems.
2308 * Reads the page asynchronously --- the unlock_buffer() and
2309 * set/clear_buffer_uptodate() functions propagate buffer state into the
2310 * page struct once IO has completed.
2311 */
block_read_full_page(struct page * page,get_block_t * get_block)2312 int block_read_full_page(struct page *page, get_block_t *get_block)
2313 {
2314 struct inode *inode = page->mapping->host;
2315 sector_t iblock, lblock;
2316 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2317 unsigned int blocksize, bbits;
2318 int nr, i;
2319 int fully_mapped = 1;
2320 loff_t limit = i_size_read(inode);
2321
2322 /* This is needed for ext4. */
2323 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2324 limit = inode->i_sb->s_maxbytes;
2325
2326 head = create_page_buffers(page, inode, 0);
2327 blocksize = head->b_size;
2328 bbits = block_size_bits(blocksize);
2329
2330 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2331 lblock = (limit+blocksize-1) >> bbits;
2332 bh = head;
2333 nr = 0;
2334 i = 0;
2335
2336 do {
2337 if (buffer_uptodate(bh))
2338 continue;
2339
2340 if (!buffer_mapped(bh)) {
2341 int err = 0;
2342
2343 fully_mapped = 0;
2344 if (iblock < lblock) {
2345 WARN_ON(bh->b_size != blocksize);
2346 err = get_block(inode, iblock, bh, 0);
2347 if (err)
2348 SetPageError(page);
2349 }
2350 if (!buffer_mapped(bh)) {
2351 zero_user(page, i * blocksize, blocksize);
2352 if (!err)
2353 set_buffer_uptodate(bh);
2354 continue;
2355 }
2356 /*
2357 * get_block() might have updated the buffer
2358 * synchronously
2359 */
2360 if (buffer_uptodate(bh))
2361 continue;
2362 }
2363 arr[nr++] = bh;
2364 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2365
2366 if (fully_mapped)
2367 SetPageMappedToDisk(page);
2368
2369 if (!nr) {
2370 /*
2371 * All buffers are uptodate - we can set the page uptodate
2372 * as well. But not if get_block() returned an error.
2373 */
2374 if (!PageError(page))
2375 SetPageUptodate(page);
2376 unlock_page(page);
2377 return 0;
2378 }
2379
2380 /* Stage two: lock the buffers */
2381 for (i = 0; i < nr; i++) {
2382 bh = arr[i];
2383 lock_buffer(bh);
2384 mark_buffer_async_read(bh);
2385 }
2386
2387 /*
2388 * Stage 3: start the IO. Check for uptodateness
2389 * inside the buffer lock in case another process reading
2390 * the underlying blockdev brought it uptodate (the sct fix).
2391 */
2392 for (i = 0; i < nr; i++) {
2393 bh = arr[i];
2394 if (buffer_uptodate(bh))
2395 end_buffer_async_read(bh, 1);
2396 else
2397 submit_bh(REQ_OP_READ, 0, bh);
2398 }
2399 return 0;
2400 }
2401 EXPORT_SYMBOL(block_read_full_page);
2402
2403 /* utility function for filesystems that need to do work on expanding
2404 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2405 * deal with the hole.
2406 */
generic_cont_expand_simple(struct inode * inode,loff_t size)2407 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2408 {
2409 struct address_space *mapping = inode->i_mapping;
2410 struct page *page;
2411 void *fsdata = NULL;
2412 int err;
2413
2414 err = inode_newsize_ok(inode, size);
2415 if (err)
2416 goto out;
2417
2418 err = pagecache_write_begin(NULL, mapping, size, 0,
2419 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2420 if (err)
2421 goto out;
2422
2423 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2424 BUG_ON(err > 0);
2425
2426 out:
2427 return err;
2428 }
2429 EXPORT_SYMBOL_NS(generic_cont_expand_simple, ANDROID_GKI_VFS_EXPORT_ONLY);
2430
cont_expand_zero(struct file * file,struct address_space * mapping,loff_t pos,loff_t * bytes)2431 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2432 loff_t pos, loff_t *bytes)
2433 {
2434 struct inode *inode = mapping->host;
2435 unsigned int blocksize = i_blocksize(inode);
2436 struct page *page;
2437 void *fsdata = NULL;
2438 pgoff_t index, curidx;
2439 loff_t curpos;
2440 unsigned zerofrom, offset, len;
2441 int err = 0;
2442
2443 index = pos >> PAGE_SHIFT;
2444 offset = pos & ~PAGE_MASK;
2445
2446 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2447 zerofrom = curpos & ~PAGE_MASK;
2448 if (zerofrom & (blocksize-1)) {
2449 *bytes |= (blocksize-1);
2450 (*bytes)++;
2451 }
2452 len = PAGE_SIZE - zerofrom;
2453
2454 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2455 &page, &fsdata);
2456 if (err)
2457 goto out;
2458 zero_user(page, zerofrom, len);
2459 err = pagecache_write_end(file, mapping, curpos, len, len,
2460 page, fsdata);
2461 if (err < 0)
2462 goto out;
2463 BUG_ON(err != len);
2464 err = 0;
2465
2466 balance_dirty_pages_ratelimited(mapping);
2467
2468 if (fatal_signal_pending(current)) {
2469 err = -EINTR;
2470 goto out;
2471 }
2472 }
2473
2474 /* page covers the boundary, find the boundary offset */
2475 if (index == curidx) {
2476 zerofrom = curpos & ~PAGE_MASK;
2477 /* if we will expand the thing last block will be filled */
2478 if (offset <= zerofrom) {
2479 goto out;
2480 }
2481 if (zerofrom & (blocksize-1)) {
2482 *bytes |= (blocksize-1);
2483 (*bytes)++;
2484 }
2485 len = offset - zerofrom;
2486
2487 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2488 &page, &fsdata);
2489 if (err)
2490 goto out;
2491 zero_user(page, zerofrom, len);
2492 err = pagecache_write_end(file, mapping, curpos, len, len,
2493 page, fsdata);
2494 if (err < 0)
2495 goto out;
2496 BUG_ON(err != len);
2497 err = 0;
2498 }
2499 out:
2500 return err;
2501 }
2502
2503 /*
2504 * For moronic filesystems that do not allow holes in file.
2505 * We may have to extend the file.
2506 */
cont_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,get_block_t * get_block,loff_t * bytes)2507 int cont_write_begin(struct file *file, struct address_space *mapping,
2508 loff_t pos, unsigned len, unsigned flags,
2509 struct page **pagep, void **fsdata,
2510 get_block_t *get_block, loff_t *bytes)
2511 {
2512 struct inode *inode = mapping->host;
2513 unsigned int blocksize = i_blocksize(inode);
2514 unsigned int zerofrom;
2515 int err;
2516
2517 err = cont_expand_zero(file, mapping, pos, bytes);
2518 if (err)
2519 return err;
2520
2521 zerofrom = *bytes & ~PAGE_MASK;
2522 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2523 *bytes |= (blocksize-1);
2524 (*bytes)++;
2525 }
2526
2527 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2528 }
2529 EXPORT_SYMBOL(cont_write_begin);
2530
block_commit_write(struct page * page,unsigned from,unsigned to)2531 int block_commit_write(struct page *page, unsigned from, unsigned to)
2532 {
2533 struct inode *inode = page->mapping->host;
2534 __block_commit_write(inode,page,from,to);
2535 return 0;
2536 }
2537 EXPORT_SYMBOL(block_commit_write);
2538
2539 /*
2540 * block_page_mkwrite() is not allowed to change the file size as it gets
2541 * called from a page fault handler when a page is first dirtied. Hence we must
2542 * be careful to check for EOF conditions here. We set the page up correctly
2543 * for a written page which means we get ENOSPC checking when writing into
2544 * holes and correct delalloc and unwritten extent mapping on filesystems that
2545 * support these features.
2546 *
2547 * We are not allowed to take the i_mutex here so we have to play games to
2548 * protect against truncate races as the page could now be beyond EOF. Because
2549 * truncate writes the inode size before removing pages, once we have the
2550 * page lock we can determine safely if the page is beyond EOF. If it is not
2551 * beyond EOF, then the page is guaranteed safe against truncation until we
2552 * unlock the page.
2553 *
2554 * Direct callers of this function should protect against filesystem freezing
2555 * using sb_start_pagefault() - sb_end_pagefault() functions.
2556 */
block_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf,get_block_t get_block)2557 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2558 get_block_t get_block)
2559 {
2560 struct page *page = vmf->page;
2561 struct inode *inode = file_inode(vma->vm_file);
2562 unsigned long end;
2563 loff_t size;
2564 int ret;
2565
2566 lock_page(page);
2567 size = i_size_read(inode);
2568 if ((page->mapping != inode->i_mapping) ||
2569 (page_offset(page) > size)) {
2570 /* We overload EFAULT to mean page got truncated */
2571 ret = -EFAULT;
2572 goto out_unlock;
2573 }
2574
2575 /* page is wholly or partially inside EOF */
2576 if (((page->index + 1) << PAGE_SHIFT) > size)
2577 end = size & ~PAGE_MASK;
2578 else
2579 end = PAGE_SIZE;
2580
2581 ret = __block_write_begin(page, 0, end, get_block);
2582 if (!ret)
2583 ret = block_commit_write(page, 0, end);
2584
2585 if (unlikely(ret < 0))
2586 goto out_unlock;
2587 set_page_dirty(page);
2588 wait_for_stable_page(page);
2589 return 0;
2590 out_unlock:
2591 unlock_page(page);
2592 return ret;
2593 }
2594 EXPORT_SYMBOL(block_page_mkwrite);
2595
2596 /*
2597 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2598 * immediately, while under the page lock. So it needs a special end_io
2599 * handler which does not touch the bh after unlocking it.
2600 */
end_buffer_read_nobh(struct buffer_head * bh,int uptodate)2601 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2602 {
2603 __end_buffer_read_notouch(bh, uptodate);
2604 }
2605
2606 /*
2607 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2608 * the page (converting it to circular linked list and taking care of page
2609 * dirty races).
2610 */
attach_nobh_buffers(struct page * page,struct buffer_head * head)2611 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2612 {
2613 struct buffer_head *bh;
2614
2615 BUG_ON(!PageLocked(page));
2616
2617 spin_lock(&page->mapping->private_lock);
2618 bh = head;
2619 do {
2620 if (PageDirty(page))
2621 set_buffer_dirty(bh);
2622 if (!bh->b_this_page)
2623 bh->b_this_page = head;
2624 bh = bh->b_this_page;
2625 } while (bh != head);
2626 attach_page_private(page, head);
2627 spin_unlock(&page->mapping->private_lock);
2628 }
2629
2630 /*
2631 * On entry, the page is fully not uptodate.
2632 * On exit the page is fully uptodate in the areas outside (from,to)
2633 * The filesystem needs to handle block truncation upon failure.
2634 */
nobh_write_begin(struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,get_block_t * get_block)2635 int nobh_write_begin(struct address_space *mapping,
2636 loff_t pos, unsigned len, unsigned flags,
2637 struct page **pagep, void **fsdata,
2638 get_block_t *get_block)
2639 {
2640 struct inode *inode = mapping->host;
2641 const unsigned blkbits = inode->i_blkbits;
2642 const unsigned blocksize = 1 << blkbits;
2643 struct buffer_head *head, *bh;
2644 struct page *page;
2645 pgoff_t index;
2646 unsigned from, to;
2647 unsigned block_in_page;
2648 unsigned block_start, block_end;
2649 sector_t block_in_file;
2650 int nr_reads = 0;
2651 int ret = 0;
2652 int is_mapped_to_disk = 1;
2653
2654 index = pos >> PAGE_SHIFT;
2655 from = pos & (PAGE_SIZE - 1);
2656 to = from + len;
2657
2658 page = grab_cache_page_write_begin(mapping, index, flags);
2659 if (!page)
2660 return -ENOMEM;
2661 *pagep = page;
2662 *fsdata = NULL;
2663
2664 if (page_has_buffers(page)) {
2665 ret = __block_write_begin(page, pos, len, get_block);
2666 if (unlikely(ret))
2667 goto out_release;
2668 return ret;
2669 }
2670
2671 if (PageMappedToDisk(page))
2672 return 0;
2673
2674 /*
2675 * Allocate buffers so that we can keep track of state, and potentially
2676 * attach them to the page if an error occurs. In the common case of
2677 * no error, they will just be freed again without ever being attached
2678 * to the page (which is all OK, because we're under the page lock).
2679 *
2680 * Be careful: the buffer linked list is a NULL terminated one, rather
2681 * than the circular one we're used to.
2682 */
2683 head = alloc_page_buffers(page, blocksize, false);
2684 if (!head) {
2685 ret = -ENOMEM;
2686 goto out_release;
2687 }
2688
2689 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2690
2691 /*
2692 * We loop across all blocks in the page, whether or not they are
2693 * part of the affected region. This is so we can discover if the
2694 * page is fully mapped-to-disk.
2695 */
2696 for (block_start = 0, block_in_page = 0, bh = head;
2697 block_start < PAGE_SIZE;
2698 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2699 int create;
2700
2701 block_end = block_start + blocksize;
2702 bh->b_state = 0;
2703 create = 1;
2704 if (block_start >= to)
2705 create = 0;
2706 ret = get_block(inode, block_in_file + block_in_page,
2707 bh, create);
2708 if (ret)
2709 goto failed;
2710 if (!buffer_mapped(bh))
2711 is_mapped_to_disk = 0;
2712 if (buffer_new(bh))
2713 clean_bdev_bh_alias(bh);
2714 if (PageUptodate(page)) {
2715 set_buffer_uptodate(bh);
2716 continue;
2717 }
2718 if (buffer_new(bh) || !buffer_mapped(bh)) {
2719 zero_user_segments(page, block_start, from,
2720 to, block_end);
2721 continue;
2722 }
2723 if (buffer_uptodate(bh))
2724 continue; /* reiserfs does this */
2725 if (block_start < from || block_end > to) {
2726 lock_buffer(bh);
2727 bh->b_end_io = end_buffer_read_nobh;
2728 submit_bh(REQ_OP_READ, 0, bh);
2729 nr_reads++;
2730 }
2731 }
2732
2733 if (nr_reads) {
2734 /*
2735 * The page is locked, so these buffers are protected from
2736 * any VM or truncate activity. Hence we don't need to care
2737 * for the buffer_head refcounts.
2738 */
2739 for (bh = head; bh; bh = bh->b_this_page) {
2740 wait_on_buffer(bh);
2741 if (!buffer_uptodate(bh))
2742 ret = -EIO;
2743 }
2744 if (ret)
2745 goto failed;
2746 }
2747
2748 if (is_mapped_to_disk)
2749 SetPageMappedToDisk(page);
2750
2751 *fsdata = head; /* to be released by nobh_write_end */
2752
2753 return 0;
2754
2755 failed:
2756 BUG_ON(!ret);
2757 /*
2758 * Error recovery is a bit difficult. We need to zero out blocks that
2759 * were newly allocated, and dirty them to ensure they get written out.
2760 * Buffers need to be attached to the page at this point, otherwise
2761 * the handling of potential IO errors during writeout would be hard
2762 * (could try doing synchronous writeout, but what if that fails too?)
2763 */
2764 attach_nobh_buffers(page, head);
2765 page_zero_new_buffers(page, from, to);
2766
2767 out_release:
2768 unlock_page(page);
2769 put_page(page);
2770 *pagep = NULL;
2771
2772 return ret;
2773 }
2774 EXPORT_SYMBOL(nobh_write_begin);
2775
nobh_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2776 int nobh_write_end(struct file *file, struct address_space *mapping,
2777 loff_t pos, unsigned len, unsigned copied,
2778 struct page *page, void *fsdata)
2779 {
2780 struct inode *inode = page->mapping->host;
2781 struct buffer_head *head = fsdata;
2782 struct buffer_head *bh;
2783 BUG_ON(fsdata != NULL && page_has_buffers(page));
2784
2785 if (unlikely(copied < len) && head)
2786 attach_nobh_buffers(page, head);
2787 if (page_has_buffers(page))
2788 return generic_write_end(file, mapping, pos, len,
2789 copied, page, fsdata);
2790
2791 SetPageUptodate(page);
2792 set_page_dirty(page);
2793 if (pos+copied > inode->i_size) {
2794 i_size_write(inode, pos+copied);
2795 mark_inode_dirty(inode);
2796 }
2797
2798 unlock_page(page);
2799 put_page(page);
2800
2801 while (head) {
2802 bh = head;
2803 head = head->b_this_page;
2804 free_buffer_head(bh);
2805 }
2806
2807 return copied;
2808 }
2809 EXPORT_SYMBOL(nobh_write_end);
2810
2811 /*
2812 * nobh_writepage() - based on block_full_write_page() except
2813 * that it tries to operate without attaching bufferheads to
2814 * the page.
2815 */
nobh_writepage(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2816 int nobh_writepage(struct page *page, get_block_t *get_block,
2817 struct writeback_control *wbc)
2818 {
2819 struct inode * const inode = page->mapping->host;
2820 loff_t i_size = i_size_read(inode);
2821 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2822 unsigned offset;
2823 int ret;
2824
2825 /* Is the page fully inside i_size? */
2826 if (page->index < end_index)
2827 goto out;
2828
2829 /* Is the page fully outside i_size? (truncate in progress) */
2830 offset = i_size & (PAGE_SIZE-1);
2831 if (page->index >= end_index+1 || !offset) {
2832 unlock_page(page);
2833 return 0; /* don't care */
2834 }
2835
2836 /*
2837 * The page straddles i_size. It must be zeroed out on each and every
2838 * writepage invocation because it may be mmapped. "A file is mapped
2839 * in multiples of the page size. For a file that is not a multiple of
2840 * the page size, the remaining memory is zeroed when mapped, and
2841 * writes to that region are not written out to the file."
2842 */
2843 zero_user_segment(page, offset, PAGE_SIZE);
2844 out:
2845 ret = mpage_writepage(page, get_block, wbc);
2846 if (ret == -EAGAIN)
2847 ret = __block_write_full_page(inode, page, get_block, wbc,
2848 end_buffer_async_write);
2849 return ret;
2850 }
2851 EXPORT_SYMBOL(nobh_writepage);
2852
nobh_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2853 int nobh_truncate_page(struct address_space *mapping,
2854 loff_t from, get_block_t *get_block)
2855 {
2856 pgoff_t index = from >> PAGE_SHIFT;
2857 unsigned offset = from & (PAGE_SIZE-1);
2858 unsigned blocksize;
2859 sector_t iblock;
2860 unsigned length, pos;
2861 struct inode *inode = mapping->host;
2862 struct page *page;
2863 struct buffer_head map_bh;
2864 int err;
2865
2866 blocksize = i_blocksize(inode);
2867 length = offset & (blocksize - 1);
2868
2869 /* Block boundary? Nothing to do */
2870 if (!length)
2871 return 0;
2872
2873 length = blocksize - length;
2874 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2875
2876 page = grab_cache_page(mapping, index);
2877 err = -ENOMEM;
2878 if (!page)
2879 goto out;
2880
2881 if (page_has_buffers(page)) {
2882 has_buffers:
2883 unlock_page(page);
2884 put_page(page);
2885 return block_truncate_page(mapping, from, get_block);
2886 }
2887
2888 /* Find the buffer that contains "offset" */
2889 pos = blocksize;
2890 while (offset >= pos) {
2891 iblock++;
2892 pos += blocksize;
2893 }
2894
2895 map_bh.b_size = blocksize;
2896 map_bh.b_state = 0;
2897 err = get_block(inode, iblock, &map_bh, 0);
2898 if (err)
2899 goto unlock;
2900 /* unmapped? It's a hole - nothing to do */
2901 if (!buffer_mapped(&map_bh))
2902 goto unlock;
2903
2904 /* Ok, it's mapped. Make sure it's up-to-date */
2905 if (!PageUptodate(page)) {
2906 err = mapping->a_ops->readpage(NULL, page);
2907 if (err) {
2908 put_page(page);
2909 goto out;
2910 }
2911 lock_page(page);
2912 if (!PageUptodate(page)) {
2913 err = -EIO;
2914 goto unlock;
2915 }
2916 if (page_has_buffers(page))
2917 goto has_buffers;
2918 }
2919 zero_user(page, offset, length);
2920 set_page_dirty(page);
2921 err = 0;
2922
2923 unlock:
2924 unlock_page(page);
2925 put_page(page);
2926 out:
2927 return err;
2928 }
2929 EXPORT_SYMBOL(nobh_truncate_page);
2930
block_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2931 int block_truncate_page(struct address_space *mapping,
2932 loff_t from, get_block_t *get_block)
2933 {
2934 pgoff_t index = from >> PAGE_SHIFT;
2935 unsigned offset = from & (PAGE_SIZE-1);
2936 unsigned blocksize;
2937 sector_t iblock;
2938 unsigned length, pos;
2939 struct inode *inode = mapping->host;
2940 struct page *page;
2941 struct buffer_head *bh;
2942 int err;
2943
2944 blocksize = i_blocksize(inode);
2945 length = offset & (blocksize - 1);
2946
2947 /* Block boundary? Nothing to do */
2948 if (!length)
2949 return 0;
2950
2951 length = blocksize - length;
2952 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2953
2954 page = grab_cache_page(mapping, index);
2955 err = -ENOMEM;
2956 if (!page)
2957 goto out;
2958
2959 if (!page_has_buffers(page))
2960 create_empty_buffers(page, blocksize, 0);
2961
2962 /* Find the buffer that contains "offset" */
2963 bh = page_buffers(page);
2964 pos = blocksize;
2965 while (offset >= pos) {
2966 bh = bh->b_this_page;
2967 iblock++;
2968 pos += blocksize;
2969 }
2970
2971 err = 0;
2972 if (!buffer_mapped(bh)) {
2973 WARN_ON(bh->b_size != blocksize);
2974 err = get_block(inode, iblock, bh, 0);
2975 if (err)
2976 goto unlock;
2977 /* unmapped? It's a hole - nothing to do */
2978 if (!buffer_mapped(bh))
2979 goto unlock;
2980 }
2981
2982 /* Ok, it's mapped. Make sure it's up-to-date */
2983 if (PageUptodate(page))
2984 set_buffer_uptodate(bh);
2985
2986 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2987 err = -EIO;
2988 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2989 wait_on_buffer(bh);
2990 /* Uhhuh. Read error. Complain and punt. */
2991 if (!buffer_uptodate(bh))
2992 goto unlock;
2993 }
2994
2995 zero_user(page, offset, length);
2996 mark_buffer_dirty(bh);
2997 err = 0;
2998
2999 unlock:
3000 unlock_page(page);
3001 put_page(page);
3002 out:
3003 return err;
3004 }
3005 EXPORT_SYMBOL(block_truncate_page);
3006
3007 /*
3008 * The generic ->writepage function for buffer-backed address_spaces
3009 */
block_write_full_page(struct page * page,get_block_t * get_block,struct writeback_control * wbc)3010 int block_write_full_page(struct page *page, get_block_t *get_block,
3011 struct writeback_control *wbc)
3012 {
3013 struct inode * const inode = page->mapping->host;
3014 loff_t i_size = i_size_read(inode);
3015 const pgoff_t end_index = i_size >> PAGE_SHIFT;
3016 unsigned offset;
3017
3018 /* Is the page fully inside i_size? */
3019 if (page->index < end_index)
3020 return __block_write_full_page(inode, page, get_block, wbc,
3021 end_buffer_async_write);
3022
3023 /* Is the page fully outside i_size? (truncate in progress) */
3024 offset = i_size & (PAGE_SIZE-1);
3025 if (page->index >= end_index+1 || !offset) {
3026 unlock_page(page);
3027 return 0; /* don't care */
3028 }
3029
3030 /*
3031 * The page straddles i_size. It must be zeroed out on each and every
3032 * writepage invocation because it may be mmapped. "A file is mapped
3033 * in multiples of the page size. For a file that is not a multiple of
3034 * the page size, the remaining memory is zeroed when mapped, and
3035 * writes to that region are not written out to the file."
3036 */
3037 zero_user_segment(page, offset, PAGE_SIZE);
3038 return __block_write_full_page(inode, page, get_block, wbc,
3039 end_buffer_async_write);
3040 }
3041 EXPORT_SYMBOL(block_write_full_page);
3042
generic_block_bmap(struct address_space * mapping,sector_t block,get_block_t * get_block)3043 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3044 get_block_t *get_block)
3045 {
3046 struct inode *inode = mapping->host;
3047 struct buffer_head tmp = {
3048 .b_size = i_blocksize(inode),
3049 };
3050
3051 get_block(inode, block, &tmp, 0);
3052 return tmp.b_blocknr;
3053 }
3054 EXPORT_SYMBOL_NS(generic_block_bmap, ANDROID_GKI_VFS_EXPORT_ONLY);
3055
end_bio_bh_io_sync(struct bio * bio)3056 static void end_bio_bh_io_sync(struct bio *bio)
3057 {
3058 struct buffer_head *bh = bio->bi_private;
3059
3060 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3061 set_bit(BH_Quiet, &bh->b_state);
3062
3063 bh->b_end_io(bh, !bio->bi_status);
3064 bio_put(bio);
3065 }
3066
submit_bh_wbc(int op,int op_flags,struct buffer_head * bh,enum rw_hint write_hint,struct writeback_control * wbc)3067 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3068 enum rw_hint write_hint, struct writeback_control *wbc)
3069 {
3070 struct bio *bio;
3071
3072 BUG_ON(!buffer_locked(bh));
3073 BUG_ON(!buffer_mapped(bh));
3074 BUG_ON(!bh->b_end_io);
3075 BUG_ON(buffer_delay(bh));
3076 BUG_ON(buffer_unwritten(bh));
3077
3078 /*
3079 * Only clear out a write error when rewriting
3080 */
3081 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3082 clear_buffer_write_io_error(bh);
3083
3084 bio = bio_alloc(GFP_NOIO, 1);
3085
3086 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3087
3088 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3089 bio_set_dev(bio, bh->b_bdev);
3090 bio->bi_write_hint = write_hint;
3091
3092 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3093 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3094
3095 bio->bi_end_io = end_bio_bh_io_sync;
3096 bio->bi_private = bh;
3097
3098 if (buffer_meta(bh))
3099 op_flags |= REQ_META;
3100 if (buffer_prio(bh))
3101 op_flags |= REQ_PRIO;
3102 bio_set_op_attrs(bio, op, op_flags);
3103
3104 /* Take care of bh's that straddle the end of the device */
3105 guard_bio_eod(bio);
3106
3107 if (wbc) {
3108 wbc_init_bio(wbc, bio);
3109 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3110 }
3111
3112 submit_bio(bio);
3113 return 0;
3114 }
3115
submit_bh(int op,int op_flags,struct buffer_head * bh)3116 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3117 {
3118 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3119 }
3120 EXPORT_SYMBOL(submit_bh);
3121
3122 /**
3123 * ll_rw_block: low-level access to block devices (DEPRECATED)
3124 * @op: whether to %READ or %WRITE
3125 * @op_flags: req_flag_bits
3126 * @nr: number of &struct buffer_heads in the array
3127 * @bhs: array of pointers to &struct buffer_head
3128 *
3129 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3130 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3131 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3132 * %REQ_RAHEAD.
3133 *
3134 * This function drops any buffer that it cannot get a lock on (with the
3135 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3136 * request, and any buffer that appears to be up-to-date when doing read
3137 * request. Further it marks as clean buffers that are processed for
3138 * writing (the buffer cache won't assume that they are actually clean
3139 * until the buffer gets unlocked).
3140 *
3141 * ll_rw_block sets b_end_io to simple completion handler that marks
3142 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3143 * any waiters.
3144 *
3145 * All of the buffers must be for the same device, and must also be a
3146 * multiple of the current approved size for the device.
3147 */
ll_rw_block(int op,int op_flags,int nr,struct buffer_head * bhs[])3148 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3149 {
3150 int i;
3151
3152 for (i = 0; i < nr; i++) {
3153 struct buffer_head *bh = bhs[i];
3154
3155 if (!trylock_buffer(bh))
3156 continue;
3157 if (op == WRITE) {
3158 if (test_clear_buffer_dirty(bh)) {
3159 bh->b_end_io = end_buffer_write_sync;
3160 get_bh(bh);
3161 submit_bh(op, op_flags, bh);
3162 continue;
3163 }
3164 } else {
3165 if (!buffer_uptodate(bh)) {
3166 bh->b_end_io = end_buffer_read_sync;
3167 get_bh(bh);
3168 submit_bh(op, op_flags, bh);
3169 continue;
3170 }
3171 }
3172 unlock_buffer(bh);
3173 }
3174 }
3175 EXPORT_SYMBOL_NS(ll_rw_block, ANDROID_GKI_VFS_EXPORT_ONLY);
3176
write_dirty_buffer(struct buffer_head * bh,int op_flags)3177 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3178 {
3179 lock_buffer(bh);
3180 if (!test_clear_buffer_dirty(bh)) {
3181 unlock_buffer(bh);
3182 return;
3183 }
3184 bh->b_end_io = end_buffer_write_sync;
3185 get_bh(bh);
3186 submit_bh(REQ_OP_WRITE, op_flags, bh);
3187 }
3188 EXPORT_SYMBOL(write_dirty_buffer);
3189
3190 /*
3191 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3192 * and then start new I/O and then wait upon it. The caller must have a ref on
3193 * the buffer_head.
3194 */
__sync_dirty_buffer(struct buffer_head * bh,int op_flags)3195 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3196 {
3197 int ret = 0;
3198
3199 WARN_ON(atomic_read(&bh->b_count) < 1);
3200 lock_buffer(bh);
3201 if (test_clear_buffer_dirty(bh)) {
3202 /*
3203 * The bh should be mapped, but it might not be if the
3204 * device was hot-removed. Not much we can do but fail the I/O.
3205 */
3206 if (!buffer_mapped(bh)) {
3207 unlock_buffer(bh);
3208 return -EIO;
3209 }
3210
3211 get_bh(bh);
3212 bh->b_end_io = end_buffer_write_sync;
3213 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3214 wait_on_buffer(bh);
3215 if (!ret && !buffer_uptodate(bh))
3216 ret = -EIO;
3217 } else {
3218 unlock_buffer(bh);
3219 }
3220 return ret;
3221 }
3222 EXPORT_SYMBOL_NS(__sync_dirty_buffer, ANDROID_GKI_VFS_EXPORT_ONLY);
3223
sync_dirty_buffer(struct buffer_head * bh)3224 int sync_dirty_buffer(struct buffer_head *bh)
3225 {
3226 return __sync_dirty_buffer(bh, REQ_SYNC);
3227 }
3228 EXPORT_SYMBOL_NS(sync_dirty_buffer, ANDROID_GKI_VFS_EXPORT_ONLY);
3229
3230 /*
3231 * try_to_free_buffers() checks if all the buffers on this particular page
3232 * are unused, and releases them if so.
3233 *
3234 * Exclusion against try_to_free_buffers may be obtained by either
3235 * locking the page or by holding its mapping's private_lock.
3236 *
3237 * If the page is dirty but all the buffers are clean then we need to
3238 * be sure to mark the page clean as well. This is because the page
3239 * may be against a block device, and a later reattachment of buffers
3240 * to a dirty page will set *all* buffers dirty. Which would corrupt
3241 * filesystem data on the same device.
3242 *
3243 * The same applies to regular filesystem pages: if all the buffers are
3244 * clean then we set the page clean and proceed. To do that, we require
3245 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3246 * private_lock.
3247 *
3248 * try_to_free_buffers() is non-blocking.
3249 */
buffer_busy(struct buffer_head * bh)3250 static inline int buffer_busy(struct buffer_head *bh)
3251 {
3252 return atomic_read(&bh->b_count) |
3253 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3254 }
3255
3256 static int
drop_buffers(struct page * page,struct buffer_head ** buffers_to_free)3257 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3258 {
3259 struct buffer_head *head = page_buffers(page);
3260 struct buffer_head *bh;
3261
3262 bh = head;
3263 do {
3264 if (buffer_busy(bh))
3265 goto failed;
3266 bh = bh->b_this_page;
3267 } while (bh != head);
3268
3269 do {
3270 struct buffer_head *next = bh->b_this_page;
3271
3272 if (bh->b_assoc_map)
3273 __remove_assoc_queue(bh);
3274 bh = next;
3275 } while (bh != head);
3276 *buffers_to_free = head;
3277 detach_page_private(page);
3278 return 1;
3279 failed:
3280 return 0;
3281 }
3282
try_to_free_buffers(struct page * page)3283 int try_to_free_buffers(struct page *page)
3284 {
3285 struct address_space * const mapping = page->mapping;
3286 struct buffer_head *buffers_to_free = NULL;
3287 int ret = 0;
3288
3289 BUG_ON(!PageLocked(page));
3290 if (PageWriteback(page))
3291 return 0;
3292
3293 if (mapping == NULL) { /* can this still happen? */
3294 ret = drop_buffers(page, &buffers_to_free);
3295 goto out;
3296 }
3297
3298 spin_lock(&mapping->private_lock);
3299 ret = drop_buffers(page, &buffers_to_free);
3300
3301 /*
3302 * If the filesystem writes its buffers by hand (eg ext3)
3303 * then we can have clean buffers against a dirty page. We
3304 * clean the page here; otherwise the VM will never notice
3305 * that the filesystem did any IO at all.
3306 *
3307 * Also, during truncate, discard_buffer will have marked all
3308 * the page's buffers clean. We discover that here and clean
3309 * the page also.
3310 *
3311 * private_lock must be held over this entire operation in order
3312 * to synchronise against __set_page_dirty_buffers and prevent the
3313 * dirty bit from being lost.
3314 */
3315 if (ret)
3316 cancel_dirty_page(page);
3317 spin_unlock(&mapping->private_lock);
3318 out:
3319 if (buffers_to_free) {
3320 struct buffer_head *bh = buffers_to_free;
3321
3322 do {
3323 struct buffer_head *next = bh->b_this_page;
3324 free_buffer_head(bh);
3325 bh = next;
3326 } while (bh != buffers_to_free);
3327 }
3328 return ret;
3329 }
3330 EXPORT_SYMBOL(try_to_free_buffers);
3331
3332 /*
3333 * Buffer-head allocation
3334 */
3335 static struct kmem_cache *bh_cachep __read_mostly;
3336
3337 /*
3338 * Once the number of bh's in the machine exceeds this level, we start
3339 * stripping them in writeback.
3340 */
3341 static unsigned long max_buffer_heads;
3342
3343 int buffer_heads_over_limit;
3344
3345 struct bh_accounting {
3346 int nr; /* Number of live bh's */
3347 int ratelimit; /* Limit cacheline bouncing */
3348 };
3349
3350 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3351
recalc_bh_state(void)3352 static void recalc_bh_state(void)
3353 {
3354 int i;
3355 int tot = 0;
3356
3357 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3358 return;
3359 __this_cpu_write(bh_accounting.ratelimit, 0);
3360 for_each_online_cpu(i)
3361 tot += per_cpu(bh_accounting, i).nr;
3362 buffer_heads_over_limit = (tot > max_buffer_heads);
3363 }
3364
alloc_buffer_head(gfp_t gfp_flags)3365 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3366 {
3367 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3368 if (ret) {
3369 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3370 spin_lock_init(&ret->b_uptodate_lock);
3371 preempt_disable();
3372 __this_cpu_inc(bh_accounting.nr);
3373 recalc_bh_state();
3374 preempt_enable();
3375 }
3376 return ret;
3377 }
3378 EXPORT_SYMBOL(alloc_buffer_head);
3379
free_buffer_head(struct buffer_head * bh)3380 void free_buffer_head(struct buffer_head *bh)
3381 {
3382 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3383 kmem_cache_free(bh_cachep, bh);
3384 preempt_disable();
3385 __this_cpu_dec(bh_accounting.nr);
3386 recalc_bh_state();
3387 preempt_enable();
3388 }
3389 EXPORT_SYMBOL(free_buffer_head);
3390
buffer_exit_cpu_dead(unsigned int cpu)3391 static int buffer_exit_cpu_dead(unsigned int cpu)
3392 {
3393 int i;
3394 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3395
3396 for (i = 0; i < BH_LRU_SIZE; i++) {
3397 brelse(b->bhs[i]);
3398 b->bhs[i] = NULL;
3399 }
3400 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3401 per_cpu(bh_accounting, cpu).nr = 0;
3402 return 0;
3403 }
3404
3405 /**
3406 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3407 * @bh: struct buffer_head
3408 *
3409 * Return true if the buffer is up-to-date and false,
3410 * with the buffer locked, if not.
3411 */
bh_uptodate_or_lock(struct buffer_head * bh)3412 int bh_uptodate_or_lock(struct buffer_head *bh)
3413 {
3414 if (!buffer_uptodate(bh)) {
3415 lock_buffer(bh);
3416 if (!buffer_uptodate(bh))
3417 return 0;
3418 unlock_buffer(bh);
3419 }
3420 return 1;
3421 }
3422 EXPORT_SYMBOL(bh_uptodate_or_lock);
3423
3424 /**
3425 * bh_submit_read - Submit a locked buffer for reading
3426 * @bh: struct buffer_head
3427 *
3428 * Returns zero on success and -EIO on error.
3429 */
bh_submit_read(struct buffer_head * bh)3430 int bh_submit_read(struct buffer_head *bh)
3431 {
3432 BUG_ON(!buffer_locked(bh));
3433
3434 if (buffer_uptodate(bh)) {
3435 unlock_buffer(bh);
3436 return 0;
3437 }
3438
3439 get_bh(bh);
3440 bh->b_end_io = end_buffer_read_sync;
3441 submit_bh(REQ_OP_READ, 0, bh);
3442 wait_on_buffer(bh);
3443 if (buffer_uptodate(bh))
3444 return 0;
3445 return -EIO;
3446 }
3447 EXPORT_SYMBOL(bh_submit_read);
3448
buffer_init(void)3449 void __init buffer_init(void)
3450 {
3451 unsigned long nrpages;
3452 int ret;
3453
3454 bh_cachep = kmem_cache_create("buffer_head",
3455 sizeof(struct buffer_head), 0,
3456 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3457 SLAB_MEM_SPREAD),
3458 NULL);
3459
3460 /*
3461 * Limit the bh occupancy to 10% of ZONE_NORMAL
3462 */
3463 nrpages = (nr_free_buffer_pages() * 10) / 100;
3464 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3465 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3466 NULL, buffer_exit_cpu_dead);
3467 WARN_ON(ret < 0);
3468 }
3469