• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67 #include <linux/syscall_user_dispatch.h>
68 
69 #include <linux/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/tlb.h>
72 
73 #include <trace/events/task.h>
74 #include "internal.h"
75 
76 #include <trace/events/sched.h>
77 
78 EXPORT_TRACEPOINT_SYMBOL_GPL(task_rename);
79 
80 static int bprm_creds_from_file(struct linux_binprm *bprm);
81 
82 int suid_dumpable = 0;
83 
84 static LIST_HEAD(formats);
85 static DEFINE_RWLOCK(binfmt_lock);
86 
__register_binfmt(struct linux_binfmt * fmt,int insert)87 void __register_binfmt(struct linux_binfmt * fmt, int insert)
88 {
89 	write_lock(&binfmt_lock);
90 	insert ? list_add(&fmt->lh, &formats) :
91 		 list_add_tail(&fmt->lh, &formats);
92 	write_unlock(&binfmt_lock);
93 }
94 
95 EXPORT_SYMBOL(__register_binfmt);
96 
unregister_binfmt(struct linux_binfmt * fmt)97 void unregister_binfmt(struct linux_binfmt * fmt)
98 {
99 	write_lock(&binfmt_lock);
100 	list_del(&fmt->lh);
101 	write_unlock(&binfmt_lock);
102 }
103 
104 EXPORT_SYMBOL(unregister_binfmt);
105 
put_binfmt(struct linux_binfmt * fmt)106 static inline void put_binfmt(struct linux_binfmt * fmt)
107 {
108 	module_put(fmt->module);
109 }
110 
path_noexec(const struct path * path)111 bool path_noexec(const struct path *path)
112 {
113 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
114 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
115 }
116 
117 #ifdef CONFIG_USELIB
118 /*
119  * Note that a shared library must be both readable and executable due to
120  * security reasons.
121  *
122  * Also note that we take the address to load from from the file itself.
123  */
SYSCALL_DEFINE1(uselib,const char __user *,library)124 SYSCALL_DEFINE1(uselib, const char __user *, library)
125 {
126 	struct linux_binfmt *fmt;
127 	struct file *file;
128 	struct filename *tmp = getname(library);
129 	int error = PTR_ERR(tmp);
130 	static const struct open_flags uselib_flags = {
131 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
132 		.acc_mode = MAY_READ | MAY_EXEC,
133 		.intent = LOOKUP_OPEN,
134 		.lookup_flags = LOOKUP_FOLLOW,
135 	};
136 
137 	if (IS_ERR(tmp))
138 		goto out;
139 
140 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
141 	putname(tmp);
142 	error = PTR_ERR(file);
143 	if (IS_ERR(file))
144 		goto out;
145 
146 	/*
147 	 * may_open() has already checked for this, so it should be
148 	 * impossible to trip now. But we need to be extra cautious
149 	 * and check again at the very end too.
150 	 */
151 	error = -EACCES;
152 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
153 			 path_noexec(&file->f_path)))
154 		goto exit;
155 
156 	fsnotify_open(file);
157 
158 	error = -ENOEXEC;
159 
160 	read_lock(&binfmt_lock);
161 	list_for_each_entry(fmt, &formats, lh) {
162 		if (!fmt->load_shlib)
163 			continue;
164 		if (!try_module_get(fmt->module))
165 			continue;
166 		read_unlock(&binfmt_lock);
167 		error = fmt->load_shlib(file);
168 		read_lock(&binfmt_lock);
169 		put_binfmt(fmt);
170 		if (error != -ENOEXEC)
171 			break;
172 	}
173 	read_unlock(&binfmt_lock);
174 exit:
175 	fput(file);
176 out:
177   	return error;
178 }
179 #endif /* #ifdef CONFIG_USELIB */
180 
181 #ifdef CONFIG_MMU
182 /*
183  * The nascent bprm->mm is not visible until exec_mmap() but it can
184  * use a lot of memory, account these pages in current->mm temporary
185  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
186  * change the counter back via acct_arg_size(0).
187  */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)188 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
189 {
190 	struct mm_struct *mm = current->mm;
191 	long diff = (long)(pages - bprm->vma_pages);
192 
193 	if (!mm || !diff)
194 		return;
195 
196 	bprm->vma_pages = pages;
197 	add_mm_counter(mm, MM_ANONPAGES, diff);
198 }
199 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)200 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
201 		int write)
202 {
203 	struct page *page;
204 	int ret;
205 	unsigned int gup_flags = FOLL_FORCE;
206 
207 #ifdef CONFIG_STACK_GROWSUP
208 	if (write) {
209 		ret = expand_downwards(bprm->vma, pos);
210 		if (ret < 0)
211 			return NULL;
212 	}
213 #endif
214 
215 	if (write)
216 		gup_flags |= FOLL_WRITE;
217 
218 	/*
219 	 * We are doing an exec().  'current' is the process
220 	 * doing the exec and bprm->mm is the new process's mm.
221 	 */
222 	mmap_read_lock(bprm->mm);
223 	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
224 			&page, NULL, NULL);
225 	mmap_read_unlock(bprm->mm);
226 	if (ret <= 0)
227 		return NULL;
228 
229 	if (write)
230 		acct_arg_size(bprm, vma_pages(bprm->vma));
231 
232 	return page;
233 }
234 
put_arg_page(struct page * page)235 static void put_arg_page(struct page *page)
236 {
237 	put_page(page);
238 }
239 
free_arg_pages(struct linux_binprm * bprm)240 static void free_arg_pages(struct linux_binprm *bprm)
241 {
242 }
243 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)244 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
245 		struct page *page)
246 {
247 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
248 }
249 
__bprm_mm_init(struct linux_binprm * bprm)250 static int __bprm_mm_init(struct linux_binprm *bprm)
251 {
252 	int err;
253 	struct vm_area_struct *vma = NULL;
254 	struct mm_struct *mm = bprm->mm;
255 
256 	bprm->vma = vma = vm_area_alloc(mm);
257 	if (!vma)
258 		return -ENOMEM;
259 	vma_set_anonymous(vma);
260 
261 	if (mmap_write_lock_killable(mm)) {
262 		err = -EINTR;
263 		goto err_free;
264 	}
265 
266 	/*
267 	 * Place the stack at the largest stack address the architecture
268 	 * supports. Later, we'll move this to an appropriate place. We don't
269 	 * use STACK_TOP because that can depend on attributes which aren't
270 	 * configured yet.
271 	 */
272 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
273 	vma->vm_end = STACK_TOP_MAX;
274 	vma->vm_start = vma->vm_end - PAGE_SIZE;
275 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
276 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
277 
278 	err = insert_vm_struct(mm, vma);
279 	if (err)
280 		goto err;
281 
282 	mm->stack_vm = mm->total_vm = 1;
283 	mmap_write_unlock(mm);
284 	bprm->p = vma->vm_end - sizeof(void *);
285 	return 0;
286 err:
287 	mmap_write_unlock(mm);
288 err_free:
289 	bprm->vma = NULL;
290 	VM_BUG_ON(vma->vm_file);
291 	vm_area_free(vma);
292 	return err;
293 }
294 
valid_arg_len(struct linux_binprm * bprm,long len)295 static bool valid_arg_len(struct linux_binprm *bprm, long len)
296 {
297 	return len <= MAX_ARG_STRLEN;
298 }
299 
300 #else
301 
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)302 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
303 {
304 }
305 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)306 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
307 		int write)
308 {
309 	struct page *page;
310 
311 	page = bprm->page[pos / PAGE_SIZE];
312 	if (!page && write) {
313 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
314 		if (!page)
315 			return NULL;
316 		bprm->page[pos / PAGE_SIZE] = page;
317 	}
318 
319 	return page;
320 }
321 
put_arg_page(struct page * page)322 static void put_arg_page(struct page *page)
323 {
324 }
325 
free_arg_page(struct linux_binprm * bprm,int i)326 static void free_arg_page(struct linux_binprm *bprm, int i)
327 {
328 	if (bprm->page[i]) {
329 		__free_page(bprm->page[i]);
330 		bprm->page[i] = NULL;
331 	}
332 }
333 
free_arg_pages(struct linux_binprm * bprm)334 static void free_arg_pages(struct linux_binprm *bprm)
335 {
336 	int i;
337 
338 	for (i = 0; i < MAX_ARG_PAGES; i++)
339 		free_arg_page(bprm, i);
340 }
341 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)342 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
343 		struct page *page)
344 {
345 }
346 
__bprm_mm_init(struct linux_binprm * bprm)347 static int __bprm_mm_init(struct linux_binprm *bprm)
348 {
349 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
350 	return 0;
351 }
352 
valid_arg_len(struct linux_binprm * bprm,long len)353 static bool valid_arg_len(struct linux_binprm *bprm, long len)
354 {
355 	return len <= bprm->p;
356 }
357 
358 #endif /* CONFIG_MMU */
359 
360 /*
361  * Create a new mm_struct and populate it with a temporary stack
362  * vm_area_struct.  We don't have enough context at this point to set the stack
363  * flags, permissions, and offset, so we use temporary values.  We'll update
364  * them later in setup_arg_pages().
365  */
bprm_mm_init(struct linux_binprm * bprm)366 static int bprm_mm_init(struct linux_binprm *bprm)
367 {
368 	int err;
369 	struct mm_struct *mm = NULL;
370 
371 	bprm->mm = mm = mm_alloc();
372 	err = -ENOMEM;
373 	if (!mm)
374 		goto err;
375 
376 	/* Save current stack limit for all calculations made during exec. */
377 	task_lock(current->group_leader);
378 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
379 	task_unlock(current->group_leader);
380 
381 	err = __bprm_mm_init(bprm);
382 	if (err)
383 		goto err;
384 
385 	return 0;
386 
387 err:
388 	if (mm) {
389 		bprm->mm = NULL;
390 		mmdrop(mm);
391 	}
392 
393 	return err;
394 }
395 
396 struct user_arg_ptr {
397 #ifdef CONFIG_COMPAT
398 	bool is_compat;
399 #endif
400 	union {
401 		const char __user *const __user *native;
402 #ifdef CONFIG_COMPAT
403 		const compat_uptr_t __user *compat;
404 #endif
405 	} ptr;
406 };
407 
get_user_arg_ptr(struct user_arg_ptr argv,int nr)408 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
409 {
410 	const char __user *native;
411 
412 #ifdef CONFIG_COMPAT
413 	if (unlikely(argv.is_compat)) {
414 		compat_uptr_t compat;
415 
416 		if (get_user(compat, argv.ptr.compat + nr))
417 			return ERR_PTR(-EFAULT);
418 
419 		return compat_ptr(compat);
420 	}
421 #endif
422 
423 	if (get_user(native, argv.ptr.native + nr))
424 		return ERR_PTR(-EFAULT);
425 
426 	return native;
427 }
428 
429 /*
430  * count() counts the number of strings in array ARGV.
431  */
count(struct user_arg_ptr argv,int max)432 static int count(struct user_arg_ptr argv, int max)
433 {
434 	int i = 0;
435 
436 	if (argv.ptr.native != NULL) {
437 		for (;;) {
438 			const char __user *p = get_user_arg_ptr(argv, i);
439 
440 			if (!p)
441 				break;
442 
443 			if (IS_ERR(p))
444 				return -EFAULT;
445 
446 			if (i >= max)
447 				return -E2BIG;
448 			++i;
449 
450 			if (fatal_signal_pending(current))
451 				return -ERESTARTNOHAND;
452 			cond_resched();
453 		}
454 	}
455 	return i;
456 }
457 
count_strings_kernel(const char * const * argv)458 static int count_strings_kernel(const char *const *argv)
459 {
460 	int i;
461 
462 	if (!argv)
463 		return 0;
464 
465 	for (i = 0; argv[i]; ++i) {
466 		if (i >= MAX_ARG_STRINGS)
467 			return -E2BIG;
468 		if (fatal_signal_pending(current))
469 			return -ERESTARTNOHAND;
470 		cond_resched();
471 	}
472 	return i;
473 }
474 
bprm_stack_limits(struct linux_binprm * bprm)475 static int bprm_stack_limits(struct linux_binprm *bprm)
476 {
477 	unsigned long limit, ptr_size;
478 
479 	/*
480 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
481 	 * (whichever is smaller) for the argv+env strings.
482 	 * This ensures that:
483 	 *  - the remaining binfmt code will not run out of stack space,
484 	 *  - the program will have a reasonable amount of stack left
485 	 *    to work from.
486 	 */
487 	limit = _STK_LIM / 4 * 3;
488 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
489 	/*
490 	 * We've historically supported up to 32 pages (ARG_MAX)
491 	 * of argument strings even with small stacks
492 	 */
493 	limit = max_t(unsigned long, limit, ARG_MAX);
494 	/*
495 	 * We must account for the size of all the argv and envp pointers to
496 	 * the argv and envp strings, since they will also take up space in
497 	 * the stack. They aren't stored until much later when we can't
498 	 * signal to the parent that the child has run out of stack space.
499 	 * Instead, calculate it here so it's possible to fail gracefully.
500 	 *
501 	 * In the case of argc = 0, make sure there is space for adding a
502 	 * empty string (which will bump argc to 1), to ensure confused
503 	 * userspace programs don't start processing from argv[1], thinking
504 	 * argc can never be 0, to keep them from walking envp by accident.
505 	 * See do_execveat_common().
506 	 */
507 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
508 	if (limit <= ptr_size)
509 		return -E2BIG;
510 	limit -= ptr_size;
511 
512 	bprm->argmin = bprm->p - limit;
513 	return 0;
514 }
515 
516 /*
517  * 'copy_strings()' copies argument/environment strings from the old
518  * processes's memory to the new process's stack.  The call to get_user_pages()
519  * ensures the destination page is created and not swapped out.
520  */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)521 static int copy_strings(int argc, struct user_arg_ptr argv,
522 			struct linux_binprm *bprm)
523 {
524 	struct page *kmapped_page = NULL;
525 	char *kaddr = NULL;
526 	unsigned long kpos = 0;
527 	int ret;
528 
529 	while (argc-- > 0) {
530 		const char __user *str;
531 		int len;
532 		unsigned long pos;
533 
534 		ret = -EFAULT;
535 		str = get_user_arg_ptr(argv, argc);
536 		if (IS_ERR(str))
537 			goto out;
538 
539 		len = strnlen_user(str, MAX_ARG_STRLEN);
540 		if (!len)
541 			goto out;
542 
543 		ret = -E2BIG;
544 		if (!valid_arg_len(bprm, len))
545 			goto out;
546 
547 		/* We're going to work our way backwords. */
548 		pos = bprm->p;
549 		str += len;
550 		bprm->p -= len;
551 #ifdef CONFIG_MMU
552 		if (bprm->p < bprm->argmin)
553 			goto out;
554 #endif
555 
556 		while (len > 0) {
557 			int offset, bytes_to_copy;
558 
559 			if (fatal_signal_pending(current)) {
560 				ret = -ERESTARTNOHAND;
561 				goto out;
562 			}
563 			cond_resched();
564 
565 			offset = pos % PAGE_SIZE;
566 			if (offset == 0)
567 				offset = PAGE_SIZE;
568 
569 			bytes_to_copy = offset;
570 			if (bytes_to_copy > len)
571 				bytes_to_copy = len;
572 
573 			offset -= bytes_to_copy;
574 			pos -= bytes_to_copy;
575 			str -= bytes_to_copy;
576 			len -= bytes_to_copy;
577 
578 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
579 				struct page *page;
580 
581 				page = get_arg_page(bprm, pos, 1);
582 				if (!page) {
583 					ret = -E2BIG;
584 					goto out;
585 				}
586 
587 				if (kmapped_page) {
588 					flush_dcache_page(kmapped_page);
589 					kunmap(kmapped_page);
590 					put_arg_page(kmapped_page);
591 				}
592 				kmapped_page = page;
593 				kaddr = kmap(kmapped_page);
594 				kpos = pos & PAGE_MASK;
595 				flush_arg_page(bprm, kpos, kmapped_page);
596 			}
597 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
598 				ret = -EFAULT;
599 				goto out;
600 			}
601 		}
602 	}
603 	ret = 0;
604 out:
605 	if (kmapped_page) {
606 		flush_dcache_page(kmapped_page);
607 		kunmap(kmapped_page);
608 		put_arg_page(kmapped_page);
609 	}
610 	return ret;
611 }
612 
613 /*
614  * Copy and argument/environment string from the kernel to the processes stack.
615  */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)616 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
617 {
618 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
619 	unsigned long pos = bprm->p;
620 
621 	if (len == 0)
622 		return -EFAULT;
623 	if (!valid_arg_len(bprm, len))
624 		return -E2BIG;
625 
626 	/* We're going to work our way backwards. */
627 	arg += len;
628 	bprm->p -= len;
629 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
630 		return -E2BIG;
631 
632 	while (len > 0) {
633 		unsigned int bytes_to_copy = min_t(unsigned int, len,
634 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
635 		struct page *page;
636 		char *kaddr;
637 
638 		pos -= bytes_to_copy;
639 		arg -= bytes_to_copy;
640 		len -= bytes_to_copy;
641 
642 		page = get_arg_page(bprm, pos, 1);
643 		if (!page)
644 			return -E2BIG;
645 		kaddr = kmap_atomic(page);
646 		flush_arg_page(bprm, pos & PAGE_MASK, page);
647 		memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
648 		flush_dcache_page(page);
649 		kunmap_atomic(kaddr);
650 		put_arg_page(page);
651 	}
652 
653 	return 0;
654 }
655 EXPORT_SYMBOL(copy_string_kernel);
656 
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)657 static int copy_strings_kernel(int argc, const char *const *argv,
658 			       struct linux_binprm *bprm)
659 {
660 	while (argc-- > 0) {
661 		int ret = copy_string_kernel(argv[argc], bprm);
662 		if (ret < 0)
663 			return ret;
664 		if (fatal_signal_pending(current))
665 			return -ERESTARTNOHAND;
666 		cond_resched();
667 	}
668 	return 0;
669 }
670 
671 #ifdef CONFIG_MMU
672 
673 /*
674  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
675  * the binfmt code determines where the new stack should reside, we shift it to
676  * its final location.  The process proceeds as follows:
677  *
678  * 1) Use shift to calculate the new vma endpoints.
679  * 2) Extend vma to cover both the old and new ranges.  This ensures the
680  *    arguments passed to subsequent functions are consistent.
681  * 3) Move vma's page tables to the new range.
682  * 4) Free up any cleared pgd range.
683  * 5) Shrink the vma to cover only the new range.
684  */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)685 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
686 {
687 	struct mm_struct *mm = vma->vm_mm;
688 	unsigned long old_start = vma->vm_start;
689 	unsigned long old_end = vma->vm_end;
690 	unsigned long length = old_end - old_start;
691 	unsigned long new_start = old_start - shift;
692 	unsigned long new_end = old_end - shift;
693 	struct mmu_gather tlb;
694 
695 	BUG_ON(new_start > new_end);
696 
697 	/*
698 	 * ensure there are no vmas between where we want to go
699 	 * and where we are
700 	 */
701 	if (vma != find_vma(mm, new_start))
702 		return -EFAULT;
703 
704 	/*
705 	 * cover the whole range: [new_start, old_end)
706 	 */
707 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
708 		return -ENOMEM;
709 
710 	/*
711 	 * move the page tables downwards, on failure we rely on
712 	 * process cleanup to remove whatever mess we made.
713 	 */
714 	if (length != move_page_tables(vma, old_start,
715 				       vma, new_start, length, false))
716 		return -ENOMEM;
717 
718 	lru_add_drain();
719 	tlb_gather_mmu(&tlb, mm);
720 	if (new_end > old_start) {
721 		/*
722 		 * when the old and new regions overlap clear from new_end.
723 		 */
724 		free_pgd_range(&tlb, new_end, old_end, new_end,
725 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
726 	} else {
727 		/*
728 		 * otherwise, clean from old_start; this is done to not touch
729 		 * the address space in [new_end, old_start) some architectures
730 		 * have constraints on va-space that make this illegal (IA64) -
731 		 * for the others its just a little faster.
732 		 */
733 		free_pgd_range(&tlb, old_start, old_end, new_end,
734 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
735 	}
736 	tlb_finish_mmu(&tlb);
737 
738 	/*
739 	 * Shrink the vma to just the new range.  Always succeeds.
740 	 */
741 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
742 
743 	return 0;
744 }
745 
746 /*
747  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
748  * the stack is optionally relocated, and some extra space is added.
749  */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)750 int setup_arg_pages(struct linux_binprm *bprm,
751 		    unsigned long stack_top,
752 		    int executable_stack)
753 {
754 	unsigned long ret;
755 	unsigned long stack_shift;
756 	struct mm_struct *mm = current->mm;
757 	struct vm_area_struct *vma = bprm->vma;
758 	struct vm_area_struct *prev = NULL;
759 	unsigned long vm_flags;
760 	unsigned long stack_base;
761 	unsigned long stack_size;
762 	unsigned long stack_expand;
763 	unsigned long rlim_stack;
764 
765 #ifdef CONFIG_STACK_GROWSUP
766 	/* Limit stack size */
767 	stack_base = bprm->rlim_stack.rlim_max;
768 
769 	stack_base = calc_max_stack_size(stack_base);
770 
771 	/* Add space for stack randomization. */
772 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
773 
774 	/* Make sure we didn't let the argument array grow too large. */
775 	if (vma->vm_end - vma->vm_start > stack_base)
776 		return -ENOMEM;
777 
778 	stack_base = PAGE_ALIGN(stack_top - stack_base);
779 
780 	stack_shift = vma->vm_start - stack_base;
781 	mm->arg_start = bprm->p - stack_shift;
782 	bprm->p = vma->vm_end - stack_shift;
783 #else
784 	stack_top = arch_align_stack(stack_top);
785 	stack_top = PAGE_ALIGN(stack_top);
786 
787 	if (unlikely(stack_top < mmap_min_addr) ||
788 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
789 		return -ENOMEM;
790 
791 	stack_shift = vma->vm_end - stack_top;
792 
793 	bprm->p -= stack_shift;
794 	mm->arg_start = bprm->p;
795 #endif
796 
797 	if (bprm->loader)
798 		bprm->loader -= stack_shift;
799 	bprm->exec -= stack_shift;
800 
801 	if (mmap_write_lock_killable(mm))
802 		return -EINTR;
803 
804 	vm_flags = VM_STACK_FLAGS;
805 
806 	/*
807 	 * Adjust stack execute permissions; explicitly enable for
808 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
809 	 * (arch default) otherwise.
810 	 */
811 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
812 		vm_flags |= VM_EXEC;
813 	else if (executable_stack == EXSTACK_DISABLE_X)
814 		vm_flags &= ~VM_EXEC;
815 	vm_flags |= mm->def_flags;
816 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
817 
818 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
819 			vm_flags);
820 	if (ret)
821 		goto out_unlock;
822 	BUG_ON(prev != vma);
823 
824 	if (unlikely(vm_flags & VM_EXEC)) {
825 		pr_warn_once("process '%pD4' started with executable stack\n",
826 			     bprm->file);
827 	}
828 
829 	/* Move stack pages down in memory. */
830 	if (stack_shift) {
831 		ret = shift_arg_pages(vma, stack_shift);
832 		if (ret)
833 			goto out_unlock;
834 	}
835 
836 	/* mprotect_fixup is overkill to remove the temporary stack flags */
837 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
838 
839 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
840 	stack_size = vma->vm_end - vma->vm_start;
841 	/*
842 	 * Align this down to a page boundary as expand_stack
843 	 * will align it up.
844 	 */
845 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
846 #ifdef CONFIG_STACK_GROWSUP
847 	if (stack_size + stack_expand > rlim_stack)
848 		stack_base = vma->vm_start + rlim_stack;
849 	else
850 		stack_base = vma->vm_end + stack_expand;
851 #else
852 	if (stack_size + stack_expand > rlim_stack)
853 		stack_base = vma->vm_end - rlim_stack;
854 	else
855 		stack_base = vma->vm_start - stack_expand;
856 #endif
857 	current->mm->start_stack = bprm->p;
858 	ret = expand_stack(vma, stack_base);
859 	if (ret)
860 		ret = -EFAULT;
861 
862 out_unlock:
863 	mmap_write_unlock(mm);
864 	return ret;
865 }
866 EXPORT_SYMBOL(setup_arg_pages);
867 
868 #else
869 
870 /*
871  * Transfer the program arguments and environment from the holding pages
872  * onto the stack. The provided stack pointer is adjusted accordingly.
873  */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)874 int transfer_args_to_stack(struct linux_binprm *bprm,
875 			   unsigned long *sp_location)
876 {
877 	unsigned long index, stop, sp;
878 	int ret = 0;
879 
880 	stop = bprm->p >> PAGE_SHIFT;
881 	sp = *sp_location;
882 
883 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
884 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
885 		char *src = kmap(bprm->page[index]) + offset;
886 		sp -= PAGE_SIZE - offset;
887 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
888 			ret = -EFAULT;
889 		kunmap(bprm->page[index]);
890 		if (ret)
891 			goto out;
892 	}
893 
894 	*sp_location = sp;
895 
896 out:
897 	return ret;
898 }
899 EXPORT_SYMBOL(transfer_args_to_stack);
900 
901 #endif /* CONFIG_MMU */
902 
do_open_execat(int fd,struct filename * name,int flags)903 static struct file *do_open_execat(int fd, struct filename *name, int flags)
904 {
905 	struct file *file;
906 	int err;
907 	struct open_flags open_exec_flags = {
908 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
909 		.acc_mode = MAY_EXEC,
910 		.intent = LOOKUP_OPEN,
911 		.lookup_flags = LOOKUP_FOLLOW,
912 	};
913 
914 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
915 		return ERR_PTR(-EINVAL);
916 	if (flags & AT_SYMLINK_NOFOLLOW)
917 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
918 	if (flags & AT_EMPTY_PATH)
919 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
920 
921 	file = do_filp_open(fd, name, &open_exec_flags);
922 	if (IS_ERR(file))
923 		goto out;
924 
925 	/*
926 	 * may_open() has already checked for this, so it should be
927 	 * impossible to trip now. But we need to be extra cautious
928 	 * and check again at the very end too.
929 	 */
930 	err = -EACCES;
931 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
932 			 path_noexec(&file->f_path)))
933 		goto exit;
934 
935 	err = deny_write_access(file);
936 	if (err)
937 		goto exit;
938 
939 	if (name->name[0] != '\0')
940 		fsnotify_open(file);
941 
942 out:
943 	return file;
944 
945 exit:
946 	fput(file);
947 	return ERR_PTR(err);
948 }
949 
open_exec(const char * name)950 struct file *open_exec(const char *name)
951 {
952 	struct filename *filename = getname_kernel(name);
953 	struct file *f = ERR_CAST(filename);
954 
955 	if (!IS_ERR(filename)) {
956 		f = do_open_execat(AT_FDCWD, filename, 0);
957 		putname(filename);
958 	}
959 	return f;
960 }
961 EXPORT_SYMBOL(open_exec);
962 
963 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
964     defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)965 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
966 {
967 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
968 	if (res > 0)
969 		flush_icache_user_range(addr, addr + len);
970 	return res;
971 }
972 EXPORT_SYMBOL(read_code);
973 #endif
974 
975 /*
976  * Maps the mm_struct mm into the current task struct.
977  * On success, this function returns with exec_update_lock
978  * held for writing.
979  */
exec_mmap(struct mm_struct * mm)980 static int exec_mmap(struct mm_struct *mm)
981 {
982 	struct task_struct *tsk;
983 	struct mm_struct *old_mm, *active_mm;
984 	int ret;
985 
986 	/* Notify parent that we're no longer interested in the old VM */
987 	tsk = current;
988 	old_mm = current->mm;
989 	exec_mm_release(tsk, old_mm);
990 	if (old_mm)
991 		sync_mm_rss(old_mm);
992 
993 	ret = down_write_killable(&tsk->signal->exec_update_lock);
994 	if (ret)
995 		return ret;
996 
997 	if (old_mm) {
998 		/*
999 		 * Make sure that if there is a core dump in progress
1000 		 * for the old mm, we get out and die instead of going
1001 		 * through with the exec.  We must hold mmap_lock around
1002 		 * checking core_state and changing tsk->mm.
1003 		 */
1004 		mmap_read_lock(old_mm);
1005 		if (unlikely(old_mm->core_state)) {
1006 			mmap_read_unlock(old_mm);
1007 			up_write(&tsk->signal->exec_update_lock);
1008 			return -EINTR;
1009 		}
1010 	}
1011 
1012 	task_lock(tsk);
1013 	membarrier_exec_mmap(mm);
1014 
1015 	local_irq_disable();
1016 	active_mm = tsk->active_mm;
1017 	tsk->active_mm = mm;
1018 	tsk->mm = mm;
1019 	/*
1020 	 * This prevents preemption while active_mm is being loaded and
1021 	 * it and mm are being updated, which could cause problems for
1022 	 * lazy tlb mm refcounting when these are updated by context
1023 	 * switches. Not all architectures can handle irqs off over
1024 	 * activate_mm yet.
1025 	 */
1026 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1027 		local_irq_enable();
1028 	activate_mm(active_mm, mm);
1029 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1030 		local_irq_enable();
1031 	tsk->mm->vmacache_seqnum = 0;
1032 	lru_gen_add_mm(mm);
1033 	vmacache_flush(tsk);
1034 	task_unlock(tsk);
1035 	lru_gen_use_mm(mm);
1036 	if (old_mm) {
1037 		mmap_read_unlock(old_mm);
1038 		BUG_ON(active_mm != old_mm);
1039 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1040 		mm_update_next_owner(old_mm);
1041 		mmput(old_mm);
1042 		return 0;
1043 	}
1044 	mmdrop(active_mm);
1045 	return 0;
1046 }
1047 
de_thread(struct task_struct * tsk)1048 static int de_thread(struct task_struct *tsk)
1049 {
1050 	struct signal_struct *sig = tsk->signal;
1051 	struct sighand_struct *oldsighand = tsk->sighand;
1052 	spinlock_t *lock = &oldsighand->siglock;
1053 
1054 	if (thread_group_empty(tsk))
1055 		goto no_thread_group;
1056 
1057 	/*
1058 	 * Kill all other threads in the thread group.
1059 	 */
1060 	spin_lock_irq(lock);
1061 	if (signal_group_exit(sig)) {
1062 		/*
1063 		 * Another group action in progress, just
1064 		 * return so that the signal is processed.
1065 		 */
1066 		spin_unlock_irq(lock);
1067 		return -EAGAIN;
1068 	}
1069 
1070 	sig->group_exit_task = tsk;
1071 	sig->notify_count = zap_other_threads(tsk);
1072 	if (!thread_group_leader(tsk))
1073 		sig->notify_count--;
1074 
1075 	while (sig->notify_count) {
1076 		__set_current_state(TASK_KILLABLE);
1077 		spin_unlock_irq(lock);
1078 		schedule();
1079 		if (__fatal_signal_pending(tsk))
1080 			goto killed;
1081 		spin_lock_irq(lock);
1082 	}
1083 	spin_unlock_irq(lock);
1084 
1085 	/*
1086 	 * At this point all other threads have exited, all we have to
1087 	 * do is to wait for the thread group leader to become inactive,
1088 	 * and to assume its PID:
1089 	 */
1090 	if (!thread_group_leader(tsk)) {
1091 		struct task_struct *leader = tsk->group_leader;
1092 
1093 		for (;;) {
1094 			cgroup_threadgroup_change_begin(tsk);
1095 			write_lock_irq(&tasklist_lock);
1096 			/*
1097 			 * Do this under tasklist_lock to ensure that
1098 			 * exit_notify() can't miss ->group_exit_task
1099 			 */
1100 			sig->notify_count = -1;
1101 			if (likely(leader->exit_state))
1102 				break;
1103 			__set_current_state(TASK_KILLABLE);
1104 			write_unlock_irq(&tasklist_lock);
1105 			cgroup_threadgroup_change_end(tsk);
1106 			schedule();
1107 			if (__fatal_signal_pending(tsk))
1108 				goto killed;
1109 		}
1110 
1111 		/*
1112 		 * The only record we have of the real-time age of a
1113 		 * process, regardless of execs it's done, is start_time.
1114 		 * All the past CPU time is accumulated in signal_struct
1115 		 * from sister threads now dead.  But in this non-leader
1116 		 * exec, nothing survives from the original leader thread,
1117 		 * whose birth marks the true age of this process now.
1118 		 * When we take on its identity by switching to its PID, we
1119 		 * also take its birthdate (always earlier than our own).
1120 		 */
1121 		tsk->start_time = leader->start_time;
1122 		tsk->start_boottime = leader->start_boottime;
1123 
1124 		BUG_ON(!same_thread_group(leader, tsk));
1125 		/*
1126 		 * An exec() starts a new thread group with the
1127 		 * TGID of the previous thread group. Rehash the
1128 		 * two threads with a switched PID, and release
1129 		 * the former thread group leader:
1130 		 */
1131 
1132 		/* Become a process group leader with the old leader's pid.
1133 		 * The old leader becomes a thread of the this thread group.
1134 		 */
1135 		exchange_tids(tsk, leader);
1136 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1137 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1138 		transfer_pid(leader, tsk, PIDTYPE_SID);
1139 
1140 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1141 		list_replace_init(&leader->sibling, &tsk->sibling);
1142 
1143 		tsk->group_leader = tsk;
1144 		leader->group_leader = tsk;
1145 
1146 		tsk->exit_signal = SIGCHLD;
1147 		leader->exit_signal = -1;
1148 
1149 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1150 		leader->exit_state = EXIT_DEAD;
1151 
1152 		/*
1153 		 * We are going to release_task()->ptrace_unlink() silently,
1154 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1155 		 * the tracer wont't block again waiting for this thread.
1156 		 */
1157 		if (unlikely(leader->ptrace))
1158 			__wake_up_parent(leader, leader->parent);
1159 		write_unlock_irq(&tasklist_lock);
1160 		cgroup_threadgroup_change_end(tsk);
1161 
1162 		release_task(leader);
1163 	}
1164 
1165 	sig->group_exit_task = NULL;
1166 	sig->notify_count = 0;
1167 
1168 no_thread_group:
1169 	/* we have changed execution domain */
1170 	tsk->exit_signal = SIGCHLD;
1171 
1172 	BUG_ON(!thread_group_leader(tsk));
1173 	return 0;
1174 
1175 killed:
1176 	/* protects against exit_notify() and __exit_signal() */
1177 	read_lock(&tasklist_lock);
1178 	sig->group_exit_task = NULL;
1179 	sig->notify_count = 0;
1180 	read_unlock(&tasklist_lock);
1181 	return -EAGAIN;
1182 }
1183 
1184 
1185 /*
1186  * This function makes sure the current process has its own signal table,
1187  * so that flush_signal_handlers can later reset the handlers without
1188  * disturbing other processes.  (Other processes might share the signal
1189  * table via the CLONE_SIGHAND option to clone().)
1190  */
unshare_sighand(struct task_struct * me)1191 static int unshare_sighand(struct task_struct *me)
1192 {
1193 	struct sighand_struct *oldsighand = me->sighand;
1194 
1195 	if (refcount_read(&oldsighand->count) != 1) {
1196 		struct sighand_struct *newsighand;
1197 		/*
1198 		 * This ->sighand is shared with the CLONE_SIGHAND
1199 		 * but not CLONE_THREAD task, switch to the new one.
1200 		 */
1201 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1202 		if (!newsighand)
1203 			return -ENOMEM;
1204 
1205 		refcount_set(&newsighand->count, 1);
1206 
1207 		write_lock_irq(&tasklist_lock);
1208 		spin_lock(&oldsighand->siglock);
1209 		memcpy(newsighand->action, oldsighand->action,
1210 		       sizeof(newsighand->action));
1211 		rcu_assign_pointer(me->sighand, newsighand);
1212 		spin_unlock(&oldsighand->siglock);
1213 		write_unlock_irq(&tasklist_lock);
1214 
1215 		__cleanup_sighand(oldsighand);
1216 	}
1217 	return 0;
1218 }
1219 
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1220 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1221 {
1222 	task_lock(tsk);
1223 	strncpy(buf, tsk->comm, buf_size);
1224 	task_unlock(tsk);
1225 	return buf;
1226 }
1227 EXPORT_SYMBOL_GPL(__get_task_comm);
1228 
1229 /*
1230  * These functions flushes out all traces of the currently running executable
1231  * so that a new one can be started
1232  */
1233 
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1234 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1235 {
1236 	task_lock(tsk);
1237 	trace_task_rename(tsk, buf);
1238 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1239 	task_unlock(tsk);
1240 	perf_event_comm(tsk, exec);
1241 }
1242 
1243 /*
1244  * Calling this is the point of no return. None of the failures will be
1245  * seen by userspace since either the process is already taking a fatal
1246  * signal (via de_thread() or coredump), or will have SEGV raised
1247  * (after exec_mmap()) by search_binary_handler (see below).
1248  */
begin_new_exec(struct linux_binprm * bprm)1249 int begin_new_exec(struct linux_binprm * bprm)
1250 {
1251 	struct task_struct *me = current;
1252 	int retval;
1253 
1254 	/* Once we are committed compute the creds */
1255 	retval = bprm_creds_from_file(bprm);
1256 	if (retval)
1257 		return retval;
1258 
1259 	/*
1260 	 * Ensure all future errors are fatal.
1261 	 */
1262 	bprm->point_of_no_return = true;
1263 
1264 	/*
1265 	 * Make this the only thread in the thread group.
1266 	 */
1267 	retval = de_thread(me);
1268 	if (retval)
1269 		goto out;
1270 
1271 	/*
1272 	 * Cancel any io_uring activity across execve
1273 	 */
1274 	io_uring_task_cancel();
1275 
1276 	/* Ensure the files table is not shared. */
1277 	retval = unshare_files();
1278 	if (retval)
1279 		goto out;
1280 
1281 	/*
1282 	 * Must be called _before_ exec_mmap() as bprm->mm is
1283 	 * not visibile until then. This also enables the update
1284 	 * to be lockless.
1285 	 */
1286 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1287 	if (retval)
1288 		goto out;
1289 
1290 	/* If the binary is not readable then enforce mm->dumpable=0 */
1291 	would_dump(bprm, bprm->file);
1292 	if (bprm->have_execfd)
1293 		would_dump(bprm, bprm->executable);
1294 
1295 	/*
1296 	 * Release all of the old mmap stuff
1297 	 */
1298 	acct_arg_size(bprm, 0);
1299 	retval = exec_mmap(bprm->mm);
1300 	if (retval)
1301 		goto out;
1302 
1303 	bprm->mm = NULL;
1304 
1305 #ifdef CONFIG_POSIX_TIMERS
1306 	spin_lock_irq(&me->sighand->siglock);
1307 	posix_cpu_timers_exit(me);
1308 	spin_unlock_irq(&me->sighand->siglock);
1309 	exit_itimers(me);
1310 	flush_itimer_signals();
1311 #endif
1312 
1313 	/*
1314 	 * Make the signal table private.
1315 	 */
1316 	retval = unshare_sighand(me);
1317 	if (retval)
1318 		goto out_unlock;
1319 
1320 	/*
1321 	 * Ensure that the uaccess routines can actually operate on userspace
1322 	 * pointers:
1323 	 */
1324 	force_uaccess_begin();
1325 
1326 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1327 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1328 	flush_thread();
1329 	me->personality &= ~bprm->per_clear;
1330 
1331 	clear_syscall_work_syscall_user_dispatch(me);
1332 
1333 	/*
1334 	 * We have to apply CLOEXEC before we change whether the process is
1335 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1336 	 * trying to access the should-be-closed file descriptors of a process
1337 	 * undergoing exec(2).
1338 	 */
1339 	do_close_on_exec(me->files);
1340 
1341 	if (bprm->secureexec) {
1342 		/* Make sure parent cannot signal privileged process. */
1343 		me->pdeath_signal = 0;
1344 
1345 		/*
1346 		 * For secureexec, reset the stack limit to sane default to
1347 		 * avoid bad behavior from the prior rlimits. This has to
1348 		 * happen before arch_pick_mmap_layout(), which examines
1349 		 * RLIMIT_STACK, but after the point of no return to avoid
1350 		 * needing to clean up the change on failure.
1351 		 */
1352 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1353 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1354 	}
1355 
1356 	me->sas_ss_sp = me->sas_ss_size = 0;
1357 
1358 	/*
1359 	 * Figure out dumpability. Note that this checking only of current
1360 	 * is wrong, but userspace depends on it. This should be testing
1361 	 * bprm->secureexec instead.
1362 	 */
1363 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1364 	    !(uid_eq(current_euid(), current_uid()) &&
1365 	      gid_eq(current_egid(), current_gid())))
1366 		set_dumpable(current->mm, suid_dumpable);
1367 	else
1368 		set_dumpable(current->mm, SUID_DUMP_USER);
1369 
1370 	perf_event_exec();
1371 	__set_task_comm(me, kbasename(bprm->filename), true);
1372 
1373 	/* An exec changes our domain. We are no longer part of the thread
1374 	   group */
1375 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1376 	flush_signal_handlers(me, 0);
1377 
1378 	retval = set_cred_ucounts(bprm->cred);
1379 	if (retval < 0)
1380 		goto out_unlock;
1381 
1382 	/*
1383 	 * install the new credentials for this executable
1384 	 */
1385 	security_bprm_committing_creds(bprm);
1386 
1387 	commit_creds(bprm->cred);
1388 	bprm->cred = NULL;
1389 
1390 	/*
1391 	 * Disable monitoring for regular users
1392 	 * when executing setuid binaries. Must
1393 	 * wait until new credentials are committed
1394 	 * by commit_creds() above
1395 	 */
1396 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1397 		perf_event_exit_task(me);
1398 	/*
1399 	 * cred_guard_mutex must be held at least to this point to prevent
1400 	 * ptrace_attach() from altering our determination of the task's
1401 	 * credentials; any time after this it may be unlocked.
1402 	 */
1403 	security_bprm_committed_creds(bprm);
1404 
1405 	/* Pass the opened binary to the interpreter. */
1406 	if (bprm->have_execfd) {
1407 		retval = get_unused_fd_flags(0);
1408 		if (retval < 0)
1409 			goto out_unlock;
1410 		fd_install(retval, bprm->executable);
1411 		bprm->executable = NULL;
1412 		bprm->execfd = retval;
1413 	}
1414 	return 0;
1415 
1416 out_unlock:
1417 	up_write(&me->signal->exec_update_lock);
1418 	if (!bprm->cred)
1419 		mutex_unlock(&me->signal->cred_guard_mutex);
1420 
1421 out:
1422 	return retval;
1423 }
1424 EXPORT_SYMBOL(begin_new_exec);
1425 
would_dump(struct linux_binprm * bprm,struct file * file)1426 void would_dump(struct linux_binprm *bprm, struct file *file)
1427 {
1428 	struct inode *inode = file_inode(file);
1429 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1430 	if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1431 		struct user_namespace *old, *user_ns;
1432 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1433 
1434 		/* Ensure mm->user_ns contains the executable */
1435 		user_ns = old = bprm->mm->user_ns;
1436 		while ((user_ns != &init_user_ns) &&
1437 		       !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1438 			user_ns = user_ns->parent;
1439 
1440 		if (old != user_ns) {
1441 			bprm->mm->user_ns = get_user_ns(user_ns);
1442 			put_user_ns(old);
1443 		}
1444 	}
1445 }
1446 EXPORT_SYMBOL(would_dump);
1447 
setup_new_exec(struct linux_binprm * bprm)1448 void setup_new_exec(struct linux_binprm * bprm)
1449 {
1450 	/* Setup things that can depend upon the personality */
1451 	struct task_struct *me = current;
1452 
1453 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1454 
1455 	arch_setup_new_exec();
1456 
1457 	/* Set the new mm task size. We have to do that late because it may
1458 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1459 	 * some architectures like powerpc
1460 	 */
1461 	me->mm->task_size = TASK_SIZE;
1462 	up_write(&me->signal->exec_update_lock);
1463 	mutex_unlock(&me->signal->cred_guard_mutex);
1464 }
1465 EXPORT_SYMBOL(setup_new_exec);
1466 
1467 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1468 void finalize_exec(struct linux_binprm *bprm)
1469 {
1470 	/* Store any stack rlimit changes before starting thread. */
1471 	task_lock(current->group_leader);
1472 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1473 	task_unlock(current->group_leader);
1474 }
1475 EXPORT_SYMBOL(finalize_exec);
1476 
1477 /*
1478  * Prepare credentials and lock ->cred_guard_mutex.
1479  * setup_new_exec() commits the new creds and drops the lock.
1480  * Or, if exec fails before, free_bprm() should release ->cred
1481  * and unlock.
1482  */
prepare_bprm_creds(struct linux_binprm * bprm)1483 static int prepare_bprm_creds(struct linux_binprm *bprm)
1484 {
1485 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1486 		return -ERESTARTNOINTR;
1487 
1488 	bprm->cred = prepare_exec_creds();
1489 	if (likely(bprm->cred))
1490 		return 0;
1491 
1492 	mutex_unlock(&current->signal->cred_guard_mutex);
1493 	return -ENOMEM;
1494 }
1495 
free_bprm(struct linux_binprm * bprm)1496 static void free_bprm(struct linux_binprm *bprm)
1497 {
1498 	if (bprm->mm) {
1499 		acct_arg_size(bprm, 0);
1500 		mmput(bprm->mm);
1501 	}
1502 	free_arg_pages(bprm);
1503 	if (bprm->cred) {
1504 		mutex_unlock(&current->signal->cred_guard_mutex);
1505 		abort_creds(bprm->cred);
1506 	}
1507 	if (bprm->file) {
1508 		allow_write_access(bprm->file);
1509 		fput(bprm->file);
1510 	}
1511 	if (bprm->executable)
1512 		fput(bprm->executable);
1513 	/* If a binfmt changed the interp, free it. */
1514 	if (bprm->interp != bprm->filename)
1515 		kfree(bprm->interp);
1516 	kfree(bprm->fdpath);
1517 	kfree(bprm);
1518 }
1519 
alloc_bprm(int fd,struct filename * filename)1520 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1521 {
1522 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1523 	int retval = -ENOMEM;
1524 	if (!bprm)
1525 		goto out;
1526 
1527 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1528 		bprm->filename = filename->name;
1529 	} else {
1530 		if (filename->name[0] == '\0')
1531 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1532 		else
1533 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1534 						  fd, filename->name);
1535 		if (!bprm->fdpath)
1536 			goto out_free;
1537 
1538 		bprm->filename = bprm->fdpath;
1539 	}
1540 	bprm->interp = bprm->filename;
1541 
1542 	retval = bprm_mm_init(bprm);
1543 	if (retval)
1544 		goto out_free;
1545 	return bprm;
1546 
1547 out_free:
1548 	free_bprm(bprm);
1549 out:
1550 	return ERR_PTR(retval);
1551 }
1552 
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1553 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1554 {
1555 	/* If a binfmt changed the interp, free it first. */
1556 	if (bprm->interp != bprm->filename)
1557 		kfree(bprm->interp);
1558 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1559 	if (!bprm->interp)
1560 		return -ENOMEM;
1561 	return 0;
1562 }
1563 EXPORT_SYMBOL(bprm_change_interp);
1564 
1565 /*
1566  * determine how safe it is to execute the proposed program
1567  * - the caller must hold ->cred_guard_mutex to protect against
1568  *   PTRACE_ATTACH or seccomp thread-sync
1569  */
check_unsafe_exec(struct linux_binprm * bprm)1570 static void check_unsafe_exec(struct linux_binprm *bprm)
1571 {
1572 	struct task_struct *p = current, *t;
1573 	unsigned n_fs;
1574 
1575 	if (p->ptrace)
1576 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1577 
1578 	/*
1579 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1580 	 * mess up.
1581 	 */
1582 	if (task_no_new_privs(current))
1583 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1584 
1585 	t = p;
1586 	n_fs = 1;
1587 	spin_lock(&p->fs->lock);
1588 	rcu_read_lock();
1589 	while_each_thread(p, t) {
1590 		if (t->fs == p->fs)
1591 			n_fs++;
1592 	}
1593 	rcu_read_unlock();
1594 
1595 	if (p->fs->users > n_fs)
1596 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1597 	else
1598 		p->fs->in_exec = 1;
1599 	spin_unlock(&p->fs->lock);
1600 }
1601 
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1602 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1603 {
1604 	/* Handle suid and sgid on files */
1605 	struct user_namespace *mnt_userns;
1606 	struct inode *inode;
1607 	unsigned int mode;
1608 	kuid_t uid;
1609 	kgid_t gid;
1610 
1611 	if (!mnt_may_suid(file->f_path.mnt))
1612 		return;
1613 
1614 	if (task_no_new_privs(current))
1615 		return;
1616 
1617 	inode = file->f_path.dentry->d_inode;
1618 	mode = READ_ONCE(inode->i_mode);
1619 	if (!(mode & (S_ISUID|S_ISGID)))
1620 		return;
1621 
1622 	mnt_userns = file_mnt_user_ns(file);
1623 
1624 	/* Be careful if suid/sgid is set */
1625 	inode_lock(inode);
1626 
1627 	/* reload atomically mode/uid/gid now that lock held */
1628 	mode = inode->i_mode;
1629 	uid = i_uid_into_mnt(mnt_userns, inode);
1630 	gid = i_gid_into_mnt(mnt_userns, inode);
1631 	inode_unlock(inode);
1632 
1633 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1634 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1635 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1636 		return;
1637 
1638 	if (mode & S_ISUID) {
1639 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1640 		bprm->cred->euid = uid;
1641 	}
1642 
1643 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1644 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1645 		bprm->cred->egid = gid;
1646 	}
1647 }
1648 
1649 /*
1650  * Compute brpm->cred based upon the final binary.
1651  */
bprm_creds_from_file(struct linux_binprm * bprm)1652 static int bprm_creds_from_file(struct linux_binprm *bprm)
1653 {
1654 	/* Compute creds based on which file? */
1655 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1656 
1657 	bprm_fill_uid(bprm, file);
1658 	return security_bprm_creds_from_file(bprm, file);
1659 }
1660 
1661 /*
1662  * Fill the binprm structure from the inode.
1663  * Read the first BINPRM_BUF_SIZE bytes
1664  *
1665  * This may be called multiple times for binary chains (scripts for example).
1666  */
prepare_binprm(struct linux_binprm * bprm)1667 static int prepare_binprm(struct linux_binprm *bprm)
1668 {
1669 	loff_t pos = 0;
1670 
1671 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1672 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1673 }
1674 
1675 /*
1676  * Arguments are '\0' separated strings found at the location bprm->p
1677  * points to; chop off the first by relocating brpm->p to right after
1678  * the first '\0' encountered.
1679  */
remove_arg_zero(struct linux_binprm * bprm)1680 int remove_arg_zero(struct linux_binprm *bprm)
1681 {
1682 	int ret = 0;
1683 	unsigned long offset;
1684 	char *kaddr;
1685 	struct page *page;
1686 
1687 	if (!bprm->argc)
1688 		return 0;
1689 
1690 	do {
1691 		offset = bprm->p & ~PAGE_MASK;
1692 		page = get_arg_page(bprm, bprm->p, 0);
1693 		if (!page) {
1694 			ret = -EFAULT;
1695 			goto out;
1696 		}
1697 		kaddr = kmap_atomic(page);
1698 
1699 		for (; offset < PAGE_SIZE && kaddr[offset];
1700 				offset++, bprm->p++)
1701 			;
1702 
1703 		kunmap_atomic(kaddr);
1704 		put_arg_page(page);
1705 	} while (offset == PAGE_SIZE);
1706 
1707 	bprm->p++;
1708 	bprm->argc--;
1709 	ret = 0;
1710 
1711 out:
1712 	return ret;
1713 }
1714 EXPORT_SYMBOL(remove_arg_zero);
1715 
1716 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1717 /*
1718  * cycle the list of binary formats handler, until one recognizes the image
1719  */
search_binary_handler(struct linux_binprm * bprm)1720 static int search_binary_handler(struct linux_binprm *bprm)
1721 {
1722 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1723 	struct linux_binfmt *fmt;
1724 	int retval;
1725 
1726 	retval = prepare_binprm(bprm);
1727 	if (retval < 0)
1728 		return retval;
1729 
1730 	retval = security_bprm_check(bprm);
1731 	if (retval)
1732 		return retval;
1733 
1734 	retval = -ENOENT;
1735  retry:
1736 	read_lock(&binfmt_lock);
1737 	list_for_each_entry(fmt, &formats, lh) {
1738 		if (!try_module_get(fmt->module))
1739 			continue;
1740 		read_unlock(&binfmt_lock);
1741 
1742 		retval = fmt->load_binary(bprm);
1743 
1744 		read_lock(&binfmt_lock);
1745 		put_binfmt(fmt);
1746 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1747 			read_unlock(&binfmt_lock);
1748 			return retval;
1749 		}
1750 	}
1751 	read_unlock(&binfmt_lock);
1752 
1753 	if (need_retry) {
1754 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1755 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1756 			return retval;
1757 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1758 			return retval;
1759 		need_retry = false;
1760 		goto retry;
1761 	}
1762 
1763 	return retval;
1764 }
1765 
exec_binprm(struct linux_binprm * bprm)1766 static int exec_binprm(struct linux_binprm *bprm)
1767 {
1768 	pid_t old_pid, old_vpid;
1769 	int ret, depth;
1770 
1771 	/* Need to fetch pid before load_binary changes it */
1772 	old_pid = current->pid;
1773 	rcu_read_lock();
1774 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1775 	rcu_read_unlock();
1776 
1777 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1778 	for (depth = 0;; depth++) {
1779 		struct file *exec;
1780 		if (depth > 5)
1781 			return -ELOOP;
1782 
1783 		ret = search_binary_handler(bprm);
1784 		if (ret < 0)
1785 			return ret;
1786 		if (!bprm->interpreter)
1787 			break;
1788 
1789 		exec = bprm->file;
1790 		bprm->file = bprm->interpreter;
1791 		bprm->interpreter = NULL;
1792 
1793 		allow_write_access(exec);
1794 		if (unlikely(bprm->have_execfd)) {
1795 			if (bprm->executable) {
1796 				fput(exec);
1797 				return -ENOEXEC;
1798 			}
1799 			bprm->executable = exec;
1800 		} else
1801 			fput(exec);
1802 	}
1803 
1804 	audit_bprm(bprm);
1805 	trace_sched_process_exec(current, old_pid, bprm);
1806 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1807 	proc_exec_connector(current);
1808 	return 0;
1809 }
1810 
1811 /*
1812  * sys_execve() executes a new program.
1813  */
bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1814 static int bprm_execve(struct linux_binprm *bprm,
1815 		       int fd, struct filename *filename, int flags)
1816 {
1817 	struct file *file;
1818 	int retval;
1819 
1820 	retval = prepare_bprm_creds(bprm);
1821 	if (retval)
1822 		return retval;
1823 
1824 	check_unsafe_exec(bprm);
1825 	current->in_execve = 1;
1826 
1827 	file = do_open_execat(fd, filename, flags);
1828 	retval = PTR_ERR(file);
1829 	if (IS_ERR(file))
1830 		goto out_unmark;
1831 
1832 	sched_exec();
1833 
1834 	bprm->file = file;
1835 	/*
1836 	 * Record that a name derived from an O_CLOEXEC fd will be
1837 	 * inaccessible after exec.  This allows the code in exec to
1838 	 * choose to fail when the executable is not mmaped into the
1839 	 * interpreter and an open file descriptor is not passed to
1840 	 * the interpreter.  This makes for a better user experience
1841 	 * than having the interpreter start and then immediately fail
1842 	 * when it finds the executable is inaccessible.
1843 	 */
1844 	if (bprm->fdpath && get_close_on_exec(fd))
1845 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1846 
1847 	/* Set the unchanging part of bprm->cred */
1848 	retval = security_bprm_creds_for_exec(bprm);
1849 	if (retval)
1850 		goto out;
1851 
1852 	retval = exec_binprm(bprm);
1853 	if (retval < 0)
1854 		goto out;
1855 
1856 	/* execve succeeded */
1857 	current->fs->in_exec = 0;
1858 	current->in_execve = 0;
1859 	rseq_execve(current);
1860 	acct_update_integrals(current);
1861 	task_numa_free(current, false);
1862 	return retval;
1863 
1864 out:
1865 	/*
1866 	 * If past the point of no return ensure the code never
1867 	 * returns to the userspace process.  Use an existing fatal
1868 	 * signal if present otherwise terminate the process with
1869 	 * SIGSEGV.
1870 	 */
1871 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1872 		force_fatal_sig(SIGSEGV);
1873 
1874 out_unmark:
1875 	current->fs->in_exec = 0;
1876 	current->in_execve = 0;
1877 
1878 	return retval;
1879 }
1880 
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1881 static int do_execveat_common(int fd, struct filename *filename,
1882 			      struct user_arg_ptr argv,
1883 			      struct user_arg_ptr envp,
1884 			      int flags)
1885 {
1886 	struct linux_binprm *bprm;
1887 	int retval;
1888 
1889 	if (IS_ERR(filename))
1890 		return PTR_ERR(filename);
1891 
1892 	/*
1893 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1894 	 * set*uid() to execve() because too many poorly written programs
1895 	 * don't check setuid() return code.  Here we additionally recheck
1896 	 * whether NPROC limit is still exceeded.
1897 	 */
1898 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1899 	    is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1900 		retval = -EAGAIN;
1901 		goto out_ret;
1902 	}
1903 
1904 	/* We're below the limit (still or again), so we don't want to make
1905 	 * further execve() calls fail. */
1906 	current->flags &= ~PF_NPROC_EXCEEDED;
1907 
1908 	bprm = alloc_bprm(fd, filename);
1909 	if (IS_ERR(bprm)) {
1910 		retval = PTR_ERR(bprm);
1911 		goto out_ret;
1912 	}
1913 
1914 	retval = count(argv, MAX_ARG_STRINGS);
1915 	if (retval == 0)
1916 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1917 			     current->comm, bprm->filename);
1918 	if (retval < 0)
1919 		goto out_free;
1920 	bprm->argc = retval;
1921 
1922 	retval = count(envp, MAX_ARG_STRINGS);
1923 	if (retval < 0)
1924 		goto out_free;
1925 	bprm->envc = retval;
1926 
1927 	retval = bprm_stack_limits(bprm);
1928 	if (retval < 0)
1929 		goto out_free;
1930 
1931 	retval = copy_string_kernel(bprm->filename, bprm);
1932 	if (retval < 0)
1933 		goto out_free;
1934 	bprm->exec = bprm->p;
1935 
1936 	retval = copy_strings(bprm->envc, envp, bprm);
1937 	if (retval < 0)
1938 		goto out_free;
1939 
1940 	retval = copy_strings(bprm->argc, argv, bprm);
1941 	if (retval < 0)
1942 		goto out_free;
1943 
1944 	/*
1945 	 * When argv is empty, add an empty string ("") as argv[0] to
1946 	 * ensure confused userspace programs that start processing
1947 	 * from argv[1] won't end up walking envp. See also
1948 	 * bprm_stack_limits().
1949 	 */
1950 	if (bprm->argc == 0) {
1951 		retval = copy_string_kernel("", bprm);
1952 		if (retval < 0)
1953 			goto out_free;
1954 		bprm->argc = 1;
1955 	}
1956 
1957 	retval = bprm_execve(bprm, fd, filename, flags);
1958 out_free:
1959 	free_bprm(bprm);
1960 
1961 out_ret:
1962 	putname(filename);
1963 	return retval;
1964 }
1965 
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1966 int kernel_execve(const char *kernel_filename,
1967 		  const char *const *argv, const char *const *envp)
1968 {
1969 	struct filename *filename;
1970 	struct linux_binprm *bprm;
1971 	int fd = AT_FDCWD;
1972 	int retval;
1973 
1974 	filename = getname_kernel(kernel_filename);
1975 	if (IS_ERR(filename))
1976 		return PTR_ERR(filename);
1977 
1978 	bprm = alloc_bprm(fd, filename);
1979 	if (IS_ERR(bprm)) {
1980 		retval = PTR_ERR(bprm);
1981 		goto out_ret;
1982 	}
1983 
1984 	retval = count_strings_kernel(argv);
1985 	if (WARN_ON_ONCE(retval == 0))
1986 		retval = -EINVAL;
1987 	if (retval < 0)
1988 		goto out_free;
1989 	bprm->argc = retval;
1990 
1991 	retval = count_strings_kernel(envp);
1992 	if (retval < 0)
1993 		goto out_free;
1994 	bprm->envc = retval;
1995 
1996 	retval = bprm_stack_limits(bprm);
1997 	if (retval < 0)
1998 		goto out_free;
1999 
2000 	retval = copy_string_kernel(bprm->filename, bprm);
2001 	if (retval < 0)
2002 		goto out_free;
2003 	bprm->exec = bprm->p;
2004 
2005 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2006 	if (retval < 0)
2007 		goto out_free;
2008 
2009 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2010 	if (retval < 0)
2011 		goto out_free;
2012 
2013 	retval = bprm_execve(bprm, fd, filename, 0);
2014 out_free:
2015 	free_bprm(bprm);
2016 out_ret:
2017 	putname(filename);
2018 	return retval;
2019 }
2020 
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2021 static int do_execve(struct filename *filename,
2022 	const char __user *const __user *__argv,
2023 	const char __user *const __user *__envp)
2024 {
2025 	struct user_arg_ptr argv = { .ptr.native = __argv };
2026 	struct user_arg_ptr envp = { .ptr.native = __envp };
2027 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2028 }
2029 
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2030 static int do_execveat(int fd, struct filename *filename,
2031 		const char __user *const __user *__argv,
2032 		const char __user *const __user *__envp,
2033 		int flags)
2034 {
2035 	struct user_arg_ptr argv = { .ptr.native = __argv };
2036 	struct user_arg_ptr envp = { .ptr.native = __envp };
2037 
2038 	return do_execveat_common(fd, filename, argv, envp, flags);
2039 }
2040 
2041 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2042 static int compat_do_execve(struct filename *filename,
2043 	const compat_uptr_t __user *__argv,
2044 	const compat_uptr_t __user *__envp)
2045 {
2046 	struct user_arg_ptr argv = {
2047 		.is_compat = true,
2048 		.ptr.compat = __argv,
2049 	};
2050 	struct user_arg_ptr envp = {
2051 		.is_compat = true,
2052 		.ptr.compat = __envp,
2053 	};
2054 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2055 }
2056 
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2057 static int compat_do_execveat(int fd, struct filename *filename,
2058 			      const compat_uptr_t __user *__argv,
2059 			      const compat_uptr_t __user *__envp,
2060 			      int flags)
2061 {
2062 	struct user_arg_ptr argv = {
2063 		.is_compat = true,
2064 		.ptr.compat = __argv,
2065 	};
2066 	struct user_arg_ptr envp = {
2067 		.is_compat = true,
2068 		.ptr.compat = __envp,
2069 	};
2070 	return do_execveat_common(fd, filename, argv, envp, flags);
2071 }
2072 #endif
2073 
set_binfmt(struct linux_binfmt * new)2074 void set_binfmt(struct linux_binfmt *new)
2075 {
2076 	struct mm_struct *mm = current->mm;
2077 
2078 	if (mm->binfmt)
2079 		module_put(mm->binfmt->module);
2080 
2081 	mm->binfmt = new;
2082 	if (new)
2083 		__module_get(new->module);
2084 }
2085 EXPORT_SYMBOL(set_binfmt);
2086 
2087 /*
2088  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2089  */
set_dumpable(struct mm_struct * mm,int value)2090 void set_dumpable(struct mm_struct *mm, int value)
2091 {
2092 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2093 		return;
2094 
2095 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2096 }
2097 
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2098 SYSCALL_DEFINE3(execve,
2099 		const char __user *, filename,
2100 		const char __user *const __user *, argv,
2101 		const char __user *const __user *, envp)
2102 {
2103 	return do_execve(getname(filename), argv, envp);
2104 }
2105 
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2106 SYSCALL_DEFINE5(execveat,
2107 		int, fd, const char __user *, filename,
2108 		const char __user *const __user *, argv,
2109 		const char __user *const __user *, envp,
2110 		int, flags)
2111 {
2112 	return do_execveat(fd,
2113 			   getname_uflags(filename, flags),
2114 			   argv, envp, flags);
2115 }
2116 
2117 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2118 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2119 	const compat_uptr_t __user *, argv,
2120 	const compat_uptr_t __user *, envp)
2121 {
2122 	return compat_do_execve(getname(filename), argv, envp);
2123 }
2124 
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2125 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2126 		       const char __user *, filename,
2127 		       const compat_uptr_t __user *, argv,
2128 		       const compat_uptr_t __user *, envp,
2129 		       int,  flags)
2130 {
2131 	return compat_do_execveat(fd,
2132 				  getname_uflags(filename, flags),
2133 				  argv, envp, flags);
2134 }
2135 #endif
2136