1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67 #include <linux/syscall_user_dispatch.h>
68
69 #include <linux/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/tlb.h>
72
73 #include <trace/events/task.h>
74 #include "internal.h"
75
76 #include <trace/events/sched.h>
77
78 EXPORT_TRACEPOINT_SYMBOL_GPL(task_rename);
79
80 static int bprm_creds_from_file(struct linux_binprm *bprm);
81
82 int suid_dumpable = 0;
83
84 static LIST_HEAD(formats);
85 static DEFINE_RWLOCK(binfmt_lock);
86
__register_binfmt(struct linux_binfmt * fmt,int insert)87 void __register_binfmt(struct linux_binfmt * fmt, int insert)
88 {
89 write_lock(&binfmt_lock);
90 insert ? list_add(&fmt->lh, &formats) :
91 list_add_tail(&fmt->lh, &formats);
92 write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(__register_binfmt);
96
unregister_binfmt(struct linux_binfmt * fmt)97 void unregister_binfmt(struct linux_binfmt * fmt)
98 {
99 write_lock(&binfmt_lock);
100 list_del(&fmt->lh);
101 write_unlock(&binfmt_lock);
102 }
103
104 EXPORT_SYMBOL(unregister_binfmt);
105
put_binfmt(struct linux_binfmt * fmt)106 static inline void put_binfmt(struct linux_binfmt * fmt)
107 {
108 module_put(fmt->module);
109 }
110
path_noexec(const struct path * path)111 bool path_noexec(const struct path *path)
112 {
113 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
114 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
115 }
116
117 #ifdef CONFIG_USELIB
118 /*
119 * Note that a shared library must be both readable and executable due to
120 * security reasons.
121 *
122 * Also note that we take the address to load from from the file itself.
123 */
SYSCALL_DEFINE1(uselib,const char __user *,library)124 SYSCALL_DEFINE1(uselib, const char __user *, library)
125 {
126 struct linux_binfmt *fmt;
127 struct file *file;
128 struct filename *tmp = getname(library);
129 int error = PTR_ERR(tmp);
130 static const struct open_flags uselib_flags = {
131 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
132 .acc_mode = MAY_READ | MAY_EXEC,
133 .intent = LOOKUP_OPEN,
134 .lookup_flags = LOOKUP_FOLLOW,
135 };
136
137 if (IS_ERR(tmp))
138 goto out;
139
140 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
141 putname(tmp);
142 error = PTR_ERR(file);
143 if (IS_ERR(file))
144 goto out;
145
146 /*
147 * may_open() has already checked for this, so it should be
148 * impossible to trip now. But we need to be extra cautious
149 * and check again at the very end too.
150 */
151 error = -EACCES;
152 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
153 path_noexec(&file->f_path)))
154 goto exit;
155
156 fsnotify_open(file);
157
158 error = -ENOEXEC;
159
160 read_lock(&binfmt_lock);
161 list_for_each_entry(fmt, &formats, lh) {
162 if (!fmt->load_shlib)
163 continue;
164 if (!try_module_get(fmt->module))
165 continue;
166 read_unlock(&binfmt_lock);
167 error = fmt->load_shlib(file);
168 read_lock(&binfmt_lock);
169 put_binfmt(fmt);
170 if (error != -ENOEXEC)
171 break;
172 }
173 read_unlock(&binfmt_lock);
174 exit:
175 fput(file);
176 out:
177 return error;
178 }
179 #endif /* #ifdef CONFIG_USELIB */
180
181 #ifdef CONFIG_MMU
182 /*
183 * The nascent bprm->mm is not visible until exec_mmap() but it can
184 * use a lot of memory, account these pages in current->mm temporary
185 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
186 * change the counter back via acct_arg_size(0).
187 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)188 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
189 {
190 struct mm_struct *mm = current->mm;
191 long diff = (long)(pages - bprm->vma_pages);
192
193 if (!mm || !diff)
194 return;
195
196 bprm->vma_pages = pages;
197 add_mm_counter(mm, MM_ANONPAGES, diff);
198 }
199
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)200 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
201 int write)
202 {
203 struct page *page;
204 int ret;
205 unsigned int gup_flags = FOLL_FORCE;
206
207 #ifdef CONFIG_STACK_GROWSUP
208 if (write) {
209 ret = expand_downwards(bprm->vma, pos);
210 if (ret < 0)
211 return NULL;
212 }
213 #endif
214
215 if (write)
216 gup_flags |= FOLL_WRITE;
217
218 /*
219 * We are doing an exec(). 'current' is the process
220 * doing the exec and bprm->mm is the new process's mm.
221 */
222 mmap_read_lock(bprm->mm);
223 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
224 &page, NULL, NULL);
225 mmap_read_unlock(bprm->mm);
226 if (ret <= 0)
227 return NULL;
228
229 if (write)
230 acct_arg_size(bprm, vma_pages(bprm->vma));
231
232 return page;
233 }
234
put_arg_page(struct page * page)235 static void put_arg_page(struct page *page)
236 {
237 put_page(page);
238 }
239
free_arg_pages(struct linux_binprm * bprm)240 static void free_arg_pages(struct linux_binprm *bprm)
241 {
242 }
243
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)244 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
245 struct page *page)
246 {
247 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
248 }
249
__bprm_mm_init(struct linux_binprm * bprm)250 static int __bprm_mm_init(struct linux_binprm *bprm)
251 {
252 int err;
253 struct vm_area_struct *vma = NULL;
254 struct mm_struct *mm = bprm->mm;
255
256 bprm->vma = vma = vm_area_alloc(mm);
257 if (!vma)
258 return -ENOMEM;
259 vma_set_anonymous(vma);
260
261 if (mmap_write_lock_killable(mm)) {
262 err = -EINTR;
263 goto err_free;
264 }
265
266 /*
267 * Place the stack at the largest stack address the architecture
268 * supports. Later, we'll move this to an appropriate place. We don't
269 * use STACK_TOP because that can depend on attributes which aren't
270 * configured yet.
271 */
272 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
273 vma->vm_end = STACK_TOP_MAX;
274 vma->vm_start = vma->vm_end - PAGE_SIZE;
275 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
276 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
277
278 err = insert_vm_struct(mm, vma);
279 if (err)
280 goto err;
281
282 mm->stack_vm = mm->total_vm = 1;
283 mmap_write_unlock(mm);
284 bprm->p = vma->vm_end - sizeof(void *);
285 return 0;
286 err:
287 mmap_write_unlock(mm);
288 err_free:
289 bprm->vma = NULL;
290 VM_BUG_ON(vma->vm_file);
291 vm_area_free(vma);
292 return err;
293 }
294
valid_arg_len(struct linux_binprm * bprm,long len)295 static bool valid_arg_len(struct linux_binprm *bprm, long len)
296 {
297 return len <= MAX_ARG_STRLEN;
298 }
299
300 #else
301
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)302 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
303 {
304 }
305
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)306 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
307 int write)
308 {
309 struct page *page;
310
311 page = bprm->page[pos / PAGE_SIZE];
312 if (!page && write) {
313 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
314 if (!page)
315 return NULL;
316 bprm->page[pos / PAGE_SIZE] = page;
317 }
318
319 return page;
320 }
321
put_arg_page(struct page * page)322 static void put_arg_page(struct page *page)
323 {
324 }
325
free_arg_page(struct linux_binprm * bprm,int i)326 static void free_arg_page(struct linux_binprm *bprm, int i)
327 {
328 if (bprm->page[i]) {
329 __free_page(bprm->page[i]);
330 bprm->page[i] = NULL;
331 }
332 }
333
free_arg_pages(struct linux_binprm * bprm)334 static void free_arg_pages(struct linux_binprm *bprm)
335 {
336 int i;
337
338 for (i = 0; i < MAX_ARG_PAGES; i++)
339 free_arg_page(bprm, i);
340 }
341
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)342 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
343 struct page *page)
344 {
345 }
346
__bprm_mm_init(struct linux_binprm * bprm)347 static int __bprm_mm_init(struct linux_binprm *bprm)
348 {
349 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
350 return 0;
351 }
352
valid_arg_len(struct linux_binprm * bprm,long len)353 static bool valid_arg_len(struct linux_binprm *bprm, long len)
354 {
355 return len <= bprm->p;
356 }
357
358 #endif /* CONFIG_MMU */
359
360 /*
361 * Create a new mm_struct and populate it with a temporary stack
362 * vm_area_struct. We don't have enough context at this point to set the stack
363 * flags, permissions, and offset, so we use temporary values. We'll update
364 * them later in setup_arg_pages().
365 */
bprm_mm_init(struct linux_binprm * bprm)366 static int bprm_mm_init(struct linux_binprm *bprm)
367 {
368 int err;
369 struct mm_struct *mm = NULL;
370
371 bprm->mm = mm = mm_alloc();
372 err = -ENOMEM;
373 if (!mm)
374 goto err;
375
376 /* Save current stack limit for all calculations made during exec. */
377 task_lock(current->group_leader);
378 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
379 task_unlock(current->group_leader);
380
381 err = __bprm_mm_init(bprm);
382 if (err)
383 goto err;
384
385 return 0;
386
387 err:
388 if (mm) {
389 bprm->mm = NULL;
390 mmdrop(mm);
391 }
392
393 return err;
394 }
395
396 struct user_arg_ptr {
397 #ifdef CONFIG_COMPAT
398 bool is_compat;
399 #endif
400 union {
401 const char __user *const __user *native;
402 #ifdef CONFIG_COMPAT
403 const compat_uptr_t __user *compat;
404 #endif
405 } ptr;
406 };
407
get_user_arg_ptr(struct user_arg_ptr argv,int nr)408 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
409 {
410 const char __user *native;
411
412 #ifdef CONFIG_COMPAT
413 if (unlikely(argv.is_compat)) {
414 compat_uptr_t compat;
415
416 if (get_user(compat, argv.ptr.compat + nr))
417 return ERR_PTR(-EFAULT);
418
419 return compat_ptr(compat);
420 }
421 #endif
422
423 if (get_user(native, argv.ptr.native + nr))
424 return ERR_PTR(-EFAULT);
425
426 return native;
427 }
428
429 /*
430 * count() counts the number of strings in array ARGV.
431 */
count(struct user_arg_ptr argv,int max)432 static int count(struct user_arg_ptr argv, int max)
433 {
434 int i = 0;
435
436 if (argv.ptr.native != NULL) {
437 for (;;) {
438 const char __user *p = get_user_arg_ptr(argv, i);
439
440 if (!p)
441 break;
442
443 if (IS_ERR(p))
444 return -EFAULT;
445
446 if (i >= max)
447 return -E2BIG;
448 ++i;
449
450 if (fatal_signal_pending(current))
451 return -ERESTARTNOHAND;
452 cond_resched();
453 }
454 }
455 return i;
456 }
457
count_strings_kernel(const char * const * argv)458 static int count_strings_kernel(const char *const *argv)
459 {
460 int i;
461
462 if (!argv)
463 return 0;
464
465 for (i = 0; argv[i]; ++i) {
466 if (i >= MAX_ARG_STRINGS)
467 return -E2BIG;
468 if (fatal_signal_pending(current))
469 return -ERESTARTNOHAND;
470 cond_resched();
471 }
472 return i;
473 }
474
bprm_stack_limits(struct linux_binprm * bprm)475 static int bprm_stack_limits(struct linux_binprm *bprm)
476 {
477 unsigned long limit, ptr_size;
478
479 /*
480 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
481 * (whichever is smaller) for the argv+env strings.
482 * This ensures that:
483 * - the remaining binfmt code will not run out of stack space,
484 * - the program will have a reasonable amount of stack left
485 * to work from.
486 */
487 limit = _STK_LIM / 4 * 3;
488 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
489 /*
490 * We've historically supported up to 32 pages (ARG_MAX)
491 * of argument strings even with small stacks
492 */
493 limit = max_t(unsigned long, limit, ARG_MAX);
494 /*
495 * We must account for the size of all the argv and envp pointers to
496 * the argv and envp strings, since they will also take up space in
497 * the stack. They aren't stored until much later when we can't
498 * signal to the parent that the child has run out of stack space.
499 * Instead, calculate it here so it's possible to fail gracefully.
500 *
501 * In the case of argc = 0, make sure there is space for adding a
502 * empty string (which will bump argc to 1), to ensure confused
503 * userspace programs don't start processing from argv[1], thinking
504 * argc can never be 0, to keep them from walking envp by accident.
505 * See do_execveat_common().
506 */
507 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
508 if (limit <= ptr_size)
509 return -E2BIG;
510 limit -= ptr_size;
511
512 bprm->argmin = bprm->p - limit;
513 return 0;
514 }
515
516 /*
517 * 'copy_strings()' copies argument/environment strings from the old
518 * processes's memory to the new process's stack. The call to get_user_pages()
519 * ensures the destination page is created and not swapped out.
520 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)521 static int copy_strings(int argc, struct user_arg_ptr argv,
522 struct linux_binprm *bprm)
523 {
524 struct page *kmapped_page = NULL;
525 char *kaddr = NULL;
526 unsigned long kpos = 0;
527 int ret;
528
529 while (argc-- > 0) {
530 const char __user *str;
531 int len;
532 unsigned long pos;
533
534 ret = -EFAULT;
535 str = get_user_arg_ptr(argv, argc);
536 if (IS_ERR(str))
537 goto out;
538
539 len = strnlen_user(str, MAX_ARG_STRLEN);
540 if (!len)
541 goto out;
542
543 ret = -E2BIG;
544 if (!valid_arg_len(bprm, len))
545 goto out;
546
547 /* We're going to work our way backwords. */
548 pos = bprm->p;
549 str += len;
550 bprm->p -= len;
551 #ifdef CONFIG_MMU
552 if (bprm->p < bprm->argmin)
553 goto out;
554 #endif
555
556 while (len > 0) {
557 int offset, bytes_to_copy;
558
559 if (fatal_signal_pending(current)) {
560 ret = -ERESTARTNOHAND;
561 goto out;
562 }
563 cond_resched();
564
565 offset = pos % PAGE_SIZE;
566 if (offset == 0)
567 offset = PAGE_SIZE;
568
569 bytes_to_copy = offset;
570 if (bytes_to_copy > len)
571 bytes_to_copy = len;
572
573 offset -= bytes_to_copy;
574 pos -= bytes_to_copy;
575 str -= bytes_to_copy;
576 len -= bytes_to_copy;
577
578 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
579 struct page *page;
580
581 page = get_arg_page(bprm, pos, 1);
582 if (!page) {
583 ret = -E2BIG;
584 goto out;
585 }
586
587 if (kmapped_page) {
588 flush_dcache_page(kmapped_page);
589 kunmap(kmapped_page);
590 put_arg_page(kmapped_page);
591 }
592 kmapped_page = page;
593 kaddr = kmap(kmapped_page);
594 kpos = pos & PAGE_MASK;
595 flush_arg_page(bprm, kpos, kmapped_page);
596 }
597 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
598 ret = -EFAULT;
599 goto out;
600 }
601 }
602 }
603 ret = 0;
604 out:
605 if (kmapped_page) {
606 flush_dcache_page(kmapped_page);
607 kunmap(kmapped_page);
608 put_arg_page(kmapped_page);
609 }
610 return ret;
611 }
612
613 /*
614 * Copy and argument/environment string from the kernel to the processes stack.
615 */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)616 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
617 {
618 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
619 unsigned long pos = bprm->p;
620
621 if (len == 0)
622 return -EFAULT;
623 if (!valid_arg_len(bprm, len))
624 return -E2BIG;
625
626 /* We're going to work our way backwards. */
627 arg += len;
628 bprm->p -= len;
629 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
630 return -E2BIG;
631
632 while (len > 0) {
633 unsigned int bytes_to_copy = min_t(unsigned int, len,
634 min_not_zero(offset_in_page(pos), PAGE_SIZE));
635 struct page *page;
636 char *kaddr;
637
638 pos -= bytes_to_copy;
639 arg -= bytes_to_copy;
640 len -= bytes_to_copy;
641
642 page = get_arg_page(bprm, pos, 1);
643 if (!page)
644 return -E2BIG;
645 kaddr = kmap_atomic(page);
646 flush_arg_page(bprm, pos & PAGE_MASK, page);
647 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
648 flush_dcache_page(page);
649 kunmap_atomic(kaddr);
650 put_arg_page(page);
651 }
652
653 return 0;
654 }
655 EXPORT_SYMBOL(copy_string_kernel);
656
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)657 static int copy_strings_kernel(int argc, const char *const *argv,
658 struct linux_binprm *bprm)
659 {
660 while (argc-- > 0) {
661 int ret = copy_string_kernel(argv[argc], bprm);
662 if (ret < 0)
663 return ret;
664 if (fatal_signal_pending(current))
665 return -ERESTARTNOHAND;
666 cond_resched();
667 }
668 return 0;
669 }
670
671 #ifdef CONFIG_MMU
672
673 /*
674 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
675 * the binfmt code determines where the new stack should reside, we shift it to
676 * its final location. The process proceeds as follows:
677 *
678 * 1) Use shift to calculate the new vma endpoints.
679 * 2) Extend vma to cover both the old and new ranges. This ensures the
680 * arguments passed to subsequent functions are consistent.
681 * 3) Move vma's page tables to the new range.
682 * 4) Free up any cleared pgd range.
683 * 5) Shrink the vma to cover only the new range.
684 */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)685 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
686 {
687 struct mm_struct *mm = vma->vm_mm;
688 unsigned long old_start = vma->vm_start;
689 unsigned long old_end = vma->vm_end;
690 unsigned long length = old_end - old_start;
691 unsigned long new_start = old_start - shift;
692 unsigned long new_end = old_end - shift;
693 struct mmu_gather tlb;
694
695 BUG_ON(new_start > new_end);
696
697 /*
698 * ensure there are no vmas between where we want to go
699 * and where we are
700 */
701 if (vma != find_vma(mm, new_start))
702 return -EFAULT;
703
704 /*
705 * cover the whole range: [new_start, old_end)
706 */
707 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
708 return -ENOMEM;
709
710 /*
711 * move the page tables downwards, on failure we rely on
712 * process cleanup to remove whatever mess we made.
713 */
714 if (length != move_page_tables(vma, old_start,
715 vma, new_start, length, false))
716 return -ENOMEM;
717
718 lru_add_drain();
719 tlb_gather_mmu(&tlb, mm);
720 if (new_end > old_start) {
721 /*
722 * when the old and new regions overlap clear from new_end.
723 */
724 free_pgd_range(&tlb, new_end, old_end, new_end,
725 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
726 } else {
727 /*
728 * otherwise, clean from old_start; this is done to not touch
729 * the address space in [new_end, old_start) some architectures
730 * have constraints on va-space that make this illegal (IA64) -
731 * for the others its just a little faster.
732 */
733 free_pgd_range(&tlb, old_start, old_end, new_end,
734 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
735 }
736 tlb_finish_mmu(&tlb);
737
738 /*
739 * Shrink the vma to just the new range. Always succeeds.
740 */
741 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
742
743 return 0;
744 }
745
746 /*
747 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
748 * the stack is optionally relocated, and some extra space is added.
749 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)750 int setup_arg_pages(struct linux_binprm *bprm,
751 unsigned long stack_top,
752 int executable_stack)
753 {
754 unsigned long ret;
755 unsigned long stack_shift;
756 struct mm_struct *mm = current->mm;
757 struct vm_area_struct *vma = bprm->vma;
758 struct vm_area_struct *prev = NULL;
759 unsigned long vm_flags;
760 unsigned long stack_base;
761 unsigned long stack_size;
762 unsigned long stack_expand;
763 unsigned long rlim_stack;
764
765 #ifdef CONFIG_STACK_GROWSUP
766 /* Limit stack size */
767 stack_base = bprm->rlim_stack.rlim_max;
768
769 stack_base = calc_max_stack_size(stack_base);
770
771 /* Add space for stack randomization. */
772 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
773
774 /* Make sure we didn't let the argument array grow too large. */
775 if (vma->vm_end - vma->vm_start > stack_base)
776 return -ENOMEM;
777
778 stack_base = PAGE_ALIGN(stack_top - stack_base);
779
780 stack_shift = vma->vm_start - stack_base;
781 mm->arg_start = bprm->p - stack_shift;
782 bprm->p = vma->vm_end - stack_shift;
783 #else
784 stack_top = arch_align_stack(stack_top);
785 stack_top = PAGE_ALIGN(stack_top);
786
787 if (unlikely(stack_top < mmap_min_addr) ||
788 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
789 return -ENOMEM;
790
791 stack_shift = vma->vm_end - stack_top;
792
793 bprm->p -= stack_shift;
794 mm->arg_start = bprm->p;
795 #endif
796
797 if (bprm->loader)
798 bprm->loader -= stack_shift;
799 bprm->exec -= stack_shift;
800
801 if (mmap_write_lock_killable(mm))
802 return -EINTR;
803
804 vm_flags = VM_STACK_FLAGS;
805
806 /*
807 * Adjust stack execute permissions; explicitly enable for
808 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
809 * (arch default) otherwise.
810 */
811 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
812 vm_flags |= VM_EXEC;
813 else if (executable_stack == EXSTACK_DISABLE_X)
814 vm_flags &= ~VM_EXEC;
815 vm_flags |= mm->def_flags;
816 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
817
818 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
819 vm_flags);
820 if (ret)
821 goto out_unlock;
822 BUG_ON(prev != vma);
823
824 if (unlikely(vm_flags & VM_EXEC)) {
825 pr_warn_once("process '%pD4' started with executable stack\n",
826 bprm->file);
827 }
828
829 /* Move stack pages down in memory. */
830 if (stack_shift) {
831 ret = shift_arg_pages(vma, stack_shift);
832 if (ret)
833 goto out_unlock;
834 }
835
836 /* mprotect_fixup is overkill to remove the temporary stack flags */
837 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
838
839 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
840 stack_size = vma->vm_end - vma->vm_start;
841 /*
842 * Align this down to a page boundary as expand_stack
843 * will align it up.
844 */
845 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
846 #ifdef CONFIG_STACK_GROWSUP
847 if (stack_size + stack_expand > rlim_stack)
848 stack_base = vma->vm_start + rlim_stack;
849 else
850 stack_base = vma->vm_end + stack_expand;
851 #else
852 if (stack_size + stack_expand > rlim_stack)
853 stack_base = vma->vm_end - rlim_stack;
854 else
855 stack_base = vma->vm_start - stack_expand;
856 #endif
857 current->mm->start_stack = bprm->p;
858 ret = expand_stack(vma, stack_base);
859 if (ret)
860 ret = -EFAULT;
861
862 out_unlock:
863 mmap_write_unlock(mm);
864 return ret;
865 }
866 EXPORT_SYMBOL(setup_arg_pages);
867
868 #else
869
870 /*
871 * Transfer the program arguments and environment from the holding pages
872 * onto the stack. The provided stack pointer is adjusted accordingly.
873 */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)874 int transfer_args_to_stack(struct linux_binprm *bprm,
875 unsigned long *sp_location)
876 {
877 unsigned long index, stop, sp;
878 int ret = 0;
879
880 stop = bprm->p >> PAGE_SHIFT;
881 sp = *sp_location;
882
883 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
884 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
885 char *src = kmap(bprm->page[index]) + offset;
886 sp -= PAGE_SIZE - offset;
887 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
888 ret = -EFAULT;
889 kunmap(bprm->page[index]);
890 if (ret)
891 goto out;
892 }
893
894 *sp_location = sp;
895
896 out:
897 return ret;
898 }
899 EXPORT_SYMBOL(transfer_args_to_stack);
900
901 #endif /* CONFIG_MMU */
902
do_open_execat(int fd,struct filename * name,int flags)903 static struct file *do_open_execat(int fd, struct filename *name, int flags)
904 {
905 struct file *file;
906 int err;
907 struct open_flags open_exec_flags = {
908 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
909 .acc_mode = MAY_EXEC,
910 .intent = LOOKUP_OPEN,
911 .lookup_flags = LOOKUP_FOLLOW,
912 };
913
914 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
915 return ERR_PTR(-EINVAL);
916 if (flags & AT_SYMLINK_NOFOLLOW)
917 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
918 if (flags & AT_EMPTY_PATH)
919 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
920
921 file = do_filp_open(fd, name, &open_exec_flags);
922 if (IS_ERR(file))
923 goto out;
924
925 /*
926 * may_open() has already checked for this, so it should be
927 * impossible to trip now. But we need to be extra cautious
928 * and check again at the very end too.
929 */
930 err = -EACCES;
931 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
932 path_noexec(&file->f_path)))
933 goto exit;
934
935 err = deny_write_access(file);
936 if (err)
937 goto exit;
938
939 if (name->name[0] != '\0')
940 fsnotify_open(file);
941
942 out:
943 return file;
944
945 exit:
946 fput(file);
947 return ERR_PTR(err);
948 }
949
open_exec(const char * name)950 struct file *open_exec(const char *name)
951 {
952 struct filename *filename = getname_kernel(name);
953 struct file *f = ERR_CAST(filename);
954
955 if (!IS_ERR(filename)) {
956 f = do_open_execat(AT_FDCWD, filename, 0);
957 putname(filename);
958 }
959 return f;
960 }
961 EXPORT_SYMBOL(open_exec);
962
963 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
964 defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)965 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
966 {
967 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
968 if (res > 0)
969 flush_icache_user_range(addr, addr + len);
970 return res;
971 }
972 EXPORT_SYMBOL(read_code);
973 #endif
974
975 /*
976 * Maps the mm_struct mm into the current task struct.
977 * On success, this function returns with exec_update_lock
978 * held for writing.
979 */
exec_mmap(struct mm_struct * mm)980 static int exec_mmap(struct mm_struct *mm)
981 {
982 struct task_struct *tsk;
983 struct mm_struct *old_mm, *active_mm;
984 int ret;
985
986 /* Notify parent that we're no longer interested in the old VM */
987 tsk = current;
988 old_mm = current->mm;
989 exec_mm_release(tsk, old_mm);
990 if (old_mm)
991 sync_mm_rss(old_mm);
992
993 ret = down_write_killable(&tsk->signal->exec_update_lock);
994 if (ret)
995 return ret;
996
997 if (old_mm) {
998 /*
999 * Make sure that if there is a core dump in progress
1000 * for the old mm, we get out and die instead of going
1001 * through with the exec. We must hold mmap_lock around
1002 * checking core_state and changing tsk->mm.
1003 */
1004 mmap_read_lock(old_mm);
1005 if (unlikely(old_mm->core_state)) {
1006 mmap_read_unlock(old_mm);
1007 up_write(&tsk->signal->exec_update_lock);
1008 return -EINTR;
1009 }
1010 }
1011
1012 task_lock(tsk);
1013 membarrier_exec_mmap(mm);
1014
1015 local_irq_disable();
1016 active_mm = tsk->active_mm;
1017 tsk->active_mm = mm;
1018 tsk->mm = mm;
1019 /*
1020 * This prevents preemption while active_mm is being loaded and
1021 * it and mm are being updated, which could cause problems for
1022 * lazy tlb mm refcounting when these are updated by context
1023 * switches. Not all architectures can handle irqs off over
1024 * activate_mm yet.
1025 */
1026 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1027 local_irq_enable();
1028 activate_mm(active_mm, mm);
1029 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1030 local_irq_enable();
1031 tsk->mm->vmacache_seqnum = 0;
1032 lru_gen_add_mm(mm);
1033 vmacache_flush(tsk);
1034 task_unlock(tsk);
1035 lru_gen_use_mm(mm);
1036 if (old_mm) {
1037 mmap_read_unlock(old_mm);
1038 BUG_ON(active_mm != old_mm);
1039 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1040 mm_update_next_owner(old_mm);
1041 mmput(old_mm);
1042 return 0;
1043 }
1044 mmdrop(active_mm);
1045 return 0;
1046 }
1047
de_thread(struct task_struct * tsk)1048 static int de_thread(struct task_struct *tsk)
1049 {
1050 struct signal_struct *sig = tsk->signal;
1051 struct sighand_struct *oldsighand = tsk->sighand;
1052 spinlock_t *lock = &oldsighand->siglock;
1053
1054 if (thread_group_empty(tsk))
1055 goto no_thread_group;
1056
1057 /*
1058 * Kill all other threads in the thread group.
1059 */
1060 spin_lock_irq(lock);
1061 if (signal_group_exit(sig)) {
1062 /*
1063 * Another group action in progress, just
1064 * return so that the signal is processed.
1065 */
1066 spin_unlock_irq(lock);
1067 return -EAGAIN;
1068 }
1069
1070 sig->group_exit_task = tsk;
1071 sig->notify_count = zap_other_threads(tsk);
1072 if (!thread_group_leader(tsk))
1073 sig->notify_count--;
1074
1075 while (sig->notify_count) {
1076 __set_current_state(TASK_KILLABLE);
1077 spin_unlock_irq(lock);
1078 schedule();
1079 if (__fatal_signal_pending(tsk))
1080 goto killed;
1081 spin_lock_irq(lock);
1082 }
1083 spin_unlock_irq(lock);
1084
1085 /*
1086 * At this point all other threads have exited, all we have to
1087 * do is to wait for the thread group leader to become inactive,
1088 * and to assume its PID:
1089 */
1090 if (!thread_group_leader(tsk)) {
1091 struct task_struct *leader = tsk->group_leader;
1092
1093 for (;;) {
1094 cgroup_threadgroup_change_begin(tsk);
1095 write_lock_irq(&tasklist_lock);
1096 /*
1097 * Do this under tasklist_lock to ensure that
1098 * exit_notify() can't miss ->group_exit_task
1099 */
1100 sig->notify_count = -1;
1101 if (likely(leader->exit_state))
1102 break;
1103 __set_current_state(TASK_KILLABLE);
1104 write_unlock_irq(&tasklist_lock);
1105 cgroup_threadgroup_change_end(tsk);
1106 schedule();
1107 if (__fatal_signal_pending(tsk))
1108 goto killed;
1109 }
1110
1111 /*
1112 * The only record we have of the real-time age of a
1113 * process, regardless of execs it's done, is start_time.
1114 * All the past CPU time is accumulated in signal_struct
1115 * from sister threads now dead. But in this non-leader
1116 * exec, nothing survives from the original leader thread,
1117 * whose birth marks the true age of this process now.
1118 * When we take on its identity by switching to its PID, we
1119 * also take its birthdate (always earlier than our own).
1120 */
1121 tsk->start_time = leader->start_time;
1122 tsk->start_boottime = leader->start_boottime;
1123
1124 BUG_ON(!same_thread_group(leader, tsk));
1125 /*
1126 * An exec() starts a new thread group with the
1127 * TGID of the previous thread group. Rehash the
1128 * two threads with a switched PID, and release
1129 * the former thread group leader:
1130 */
1131
1132 /* Become a process group leader with the old leader's pid.
1133 * The old leader becomes a thread of the this thread group.
1134 */
1135 exchange_tids(tsk, leader);
1136 transfer_pid(leader, tsk, PIDTYPE_TGID);
1137 transfer_pid(leader, tsk, PIDTYPE_PGID);
1138 transfer_pid(leader, tsk, PIDTYPE_SID);
1139
1140 list_replace_rcu(&leader->tasks, &tsk->tasks);
1141 list_replace_init(&leader->sibling, &tsk->sibling);
1142
1143 tsk->group_leader = tsk;
1144 leader->group_leader = tsk;
1145
1146 tsk->exit_signal = SIGCHLD;
1147 leader->exit_signal = -1;
1148
1149 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1150 leader->exit_state = EXIT_DEAD;
1151
1152 /*
1153 * We are going to release_task()->ptrace_unlink() silently,
1154 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1155 * the tracer wont't block again waiting for this thread.
1156 */
1157 if (unlikely(leader->ptrace))
1158 __wake_up_parent(leader, leader->parent);
1159 write_unlock_irq(&tasklist_lock);
1160 cgroup_threadgroup_change_end(tsk);
1161
1162 release_task(leader);
1163 }
1164
1165 sig->group_exit_task = NULL;
1166 sig->notify_count = 0;
1167
1168 no_thread_group:
1169 /* we have changed execution domain */
1170 tsk->exit_signal = SIGCHLD;
1171
1172 BUG_ON(!thread_group_leader(tsk));
1173 return 0;
1174
1175 killed:
1176 /* protects against exit_notify() and __exit_signal() */
1177 read_lock(&tasklist_lock);
1178 sig->group_exit_task = NULL;
1179 sig->notify_count = 0;
1180 read_unlock(&tasklist_lock);
1181 return -EAGAIN;
1182 }
1183
1184
1185 /*
1186 * This function makes sure the current process has its own signal table,
1187 * so that flush_signal_handlers can later reset the handlers without
1188 * disturbing other processes. (Other processes might share the signal
1189 * table via the CLONE_SIGHAND option to clone().)
1190 */
unshare_sighand(struct task_struct * me)1191 static int unshare_sighand(struct task_struct *me)
1192 {
1193 struct sighand_struct *oldsighand = me->sighand;
1194
1195 if (refcount_read(&oldsighand->count) != 1) {
1196 struct sighand_struct *newsighand;
1197 /*
1198 * This ->sighand is shared with the CLONE_SIGHAND
1199 * but not CLONE_THREAD task, switch to the new one.
1200 */
1201 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1202 if (!newsighand)
1203 return -ENOMEM;
1204
1205 refcount_set(&newsighand->count, 1);
1206
1207 write_lock_irq(&tasklist_lock);
1208 spin_lock(&oldsighand->siglock);
1209 memcpy(newsighand->action, oldsighand->action,
1210 sizeof(newsighand->action));
1211 rcu_assign_pointer(me->sighand, newsighand);
1212 spin_unlock(&oldsighand->siglock);
1213 write_unlock_irq(&tasklist_lock);
1214
1215 __cleanup_sighand(oldsighand);
1216 }
1217 return 0;
1218 }
1219
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1220 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1221 {
1222 task_lock(tsk);
1223 strncpy(buf, tsk->comm, buf_size);
1224 task_unlock(tsk);
1225 return buf;
1226 }
1227 EXPORT_SYMBOL_GPL(__get_task_comm);
1228
1229 /*
1230 * These functions flushes out all traces of the currently running executable
1231 * so that a new one can be started
1232 */
1233
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1234 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1235 {
1236 task_lock(tsk);
1237 trace_task_rename(tsk, buf);
1238 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1239 task_unlock(tsk);
1240 perf_event_comm(tsk, exec);
1241 }
1242
1243 /*
1244 * Calling this is the point of no return. None of the failures will be
1245 * seen by userspace since either the process is already taking a fatal
1246 * signal (via de_thread() or coredump), or will have SEGV raised
1247 * (after exec_mmap()) by search_binary_handler (see below).
1248 */
begin_new_exec(struct linux_binprm * bprm)1249 int begin_new_exec(struct linux_binprm * bprm)
1250 {
1251 struct task_struct *me = current;
1252 int retval;
1253
1254 /* Once we are committed compute the creds */
1255 retval = bprm_creds_from_file(bprm);
1256 if (retval)
1257 return retval;
1258
1259 /*
1260 * Ensure all future errors are fatal.
1261 */
1262 bprm->point_of_no_return = true;
1263
1264 /*
1265 * Make this the only thread in the thread group.
1266 */
1267 retval = de_thread(me);
1268 if (retval)
1269 goto out;
1270
1271 /*
1272 * Cancel any io_uring activity across execve
1273 */
1274 io_uring_task_cancel();
1275
1276 /* Ensure the files table is not shared. */
1277 retval = unshare_files();
1278 if (retval)
1279 goto out;
1280
1281 /*
1282 * Must be called _before_ exec_mmap() as bprm->mm is
1283 * not visibile until then. This also enables the update
1284 * to be lockless.
1285 */
1286 retval = set_mm_exe_file(bprm->mm, bprm->file);
1287 if (retval)
1288 goto out;
1289
1290 /* If the binary is not readable then enforce mm->dumpable=0 */
1291 would_dump(bprm, bprm->file);
1292 if (bprm->have_execfd)
1293 would_dump(bprm, bprm->executable);
1294
1295 /*
1296 * Release all of the old mmap stuff
1297 */
1298 acct_arg_size(bprm, 0);
1299 retval = exec_mmap(bprm->mm);
1300 if (retval)
1301 goto out;
1302
1303 bprm->mm = NULL;
1304
1305 #ifdef CONFIG_POSIX_TIMERS
1306 spin_lock_irq(&me->sighand->siglock);
1307 posix_cpu_timers_exit(me);
1308 spin_unlock_irq(&me->sighand->siglock);
1309 exit_itimers(me);
1310 flush_itimer_signals();
1311 #endif
1312
1313 /*
1314 * Make the signal table private.
1315 */
1316 retval = unshare_sighand(me);
1317 if (retval)
1318 goto out_unlock;
1319
1320 /*
1321 * Ensure that the uaccess routines can actually operate on userspace
1322 * pointers:
1323 */
1324 force_uaccess_begin();
1325
1326 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1327 PF_NOFREEZE | PF_NO_SETAFFINITY);
1328 flush_thread();
1329 me->personality &= ~bprm->per_clear;
1330
1331 clear_syscall_work_syscall_user_dispatch(me);
1332
1333 /*
1334 * We have to apply CLOEXEC before we change whether the process is
1335 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1336 * trying to access the should-be-closed file descriptors of a process
1337 * undergoing exec(2).
1338 */
1339 do_close_on_exec(me->files);
1340
1341 if (bprm->secureexec) {
1342 /* Make sure parent cannot signal privileged process. */
1343 me->pdeath_signal = 0;
1344
1345 /*
1346 * For secureexec, reset the stack limit to sane default to
1347 * avoid bad behavior from the prior rlimits. This has to
1348 * happen before arch_pick_mmap_layout(), which examines
1349 * RLIMIT_STACK, but after the point of no return to avoid
1350 * needing to clean up the change on failure.
1351 */
1352 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1353 bprm->rlim_stack.rlim_cur = _STK_LIM;
1354 }
1355
1356 me->sas_ss_sp = me->sas_ss_size = 0;
1357
1358 /*
1359 * Figure out dumpability. Note that this checking only of current
1360 * is wrong, but userspace depends on it. This should be testing
1361 * bprm->secureexec instead.
1362 */
1363 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1364 !(uid_eq(current_euid(), current_uid()) &&
1365 gid_eq(current_egid(), current_gid())))
1366 set_dumpable(current->mm, suid_dumpable);
1367 else
1368 set_dumpable(current->mm, SUID_DUMP_USER);
1369
1370 perf_event_exec();
1371 __set_task_comm(me, kbasename(bprm->filename), true);
1372
1373 /* An exec changes our domain. We are no longer part of the thread
1374 group */
1375 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1376 flush_signal_handlers(me, 0);
1377
1378 retval = set_cred_ucounts(bprm->cred);
1379 if (retval < 0)
1380 goto out_unlock;
1381
1382 /*
1383 * install the new credentials for this executable
1384 */
1385 security_bprm_committing_creds(bprm);
1386
1387 commit_creds(bprm->cred);
1388 bprm->cred = NULL;
1389
1390 /*
1391 * Disable monitoring for regular users
1392 * when executing setuid binaries. Must
1393 * wait until new credentials are committed
1394 * by commit_creds() above
1395 */
1396 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1397 perf_event_exit_task(me);
1398 /*
1399 * cred_guard_mutex must be held at least to this point to prevent
1400 * ptrace_attach() from altering our determination of the task's
1401 * credentials; any time after this it may be unlocked.
1402 */
1403 security_bprm_committed_creds(bprm);
1404
1405 /* Pass the opened binary to the interpreter. */
1406 if (bprm->have_execfd) {
1407 retval = get_unused_fd_flags(0);
1408 if (retval < 0)
1409 goto out_unlock;
1410 fd_install(retval, bprm->executable);
1411 bprm->executable = NULL;
1412 bprm->execfd = retval;
1413 }
1414 return 0;
1415
1416 out_unlock:
1417 up_write(&me->signal->exec_update_lock);
1418 if (!bprm->cred)
1419 mutex_unlock(&me->signal->cred_guard_mutex);
1420
1421 out:
1422 return retval;
1423 }
1424 EXPORT_SYMBOL(begin_new_exec);
1425
would_dump(struct linux_binprm * bprm,struct file * file)1426 void would_dump(struct linux_binprm *bprm, struct file *file)
1427 {
1428 struct inode *inode = file_inode(file);
1429 struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1430 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1431 struct user_namespace *old, *user_ns;
1432 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1433
1434 /* Ensure mm->user_ns contains the executable */
1435 user_ns = old = bprm->mm->user_ns;
1436 while ((user_ns != &init_user_ns) &&
1437 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1438 user_ns = user_ns->parent;
1439
1440 if (old != user_ns) {
1441 bprm->mm->user_ns = get_user_ns(user_ns);
1442 put_user_ns(old);
1443 }
1444 }
1445 }
1446 EXPORT_SYMBOL(would_dump);
1447
setup_new_exec(struct linux_binprm * bprm)1448 void setup_new_exec(struct linux_binprm * bprm)
1449 {
1450 /* Setup things that can depend upon the personality */
1451 struct task_struct *me = current;
1452
1453 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1454
1455 arch_setup_new_exec();
1456
1457 /* Set the new mm task size. We have to do that late because it may
1458 * depend on TIF_32BIT which is only updated in flush_thread() on
1459 * some architectures like powerpc
1460 */
1461 me->mm->task_size = TASK_SIZE;
1462 up_write(&me->signal->exec_update_lock);
1463 mutex_unlock(&me->signal->cred_guard_mutex);
1464 }
1465 EXPORT_SYMBOL(setup_new_exec);
1466
1467 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1468 void finalize_exec(struct linux_binprm *bprm)
1469 {
1470 /* Store any stack rlimit changes before starting thread. */
1471 task_lock(current->group_leader);
1472 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1473 task_unlock(current->group_leader);
1474 }
1475 EXPORT_SYMBOL(finalize_exec);
1476
1477 /*
1478 * Prepare credentials and lock ->cred_guard_mutex.
1479 * setup_new_exec() commits the new creds and drops the lock.
1480 * Or, if exec fails before, free_bprm() should release ->cred
1481 * and unlock.
1482 */
prepare_bprm_creds(struct linux_binprm * bprm)1483 static int prepare_bprm_creds(struct linux_binprm *bprm)
1484 {
1485 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1486 return -ERESTARTNOINTR;
1487
1488 bprm->cred = prepare_exec_creds();
1489 if (likely(bprm->cred))
1490 return 0;
1491
1492 mutex_unlock(¤t->signal->cred_guard_mutex);
1493 return -ENOMEM;
1494 }
1495
free_bprm(struct linux_binprm * bprm)1496 static void free_bprm(struct linux_binprm *bprm)
1497 {
1498 if (bprm->mm) {
1499 acct_arg_size(bprm, 0);
1500 mmput(bprm->mm);
1501 }
1502 free_arg_pages(bprm);
1503 if (bprm->cred) {
1504 mutex_unlock(¤t->signal->cred_guard_mutex);
1505 abort_creds(bprm->cred);
1506 }
1507 if (bprm->file) {
1508 allow_write_access(bprm->file);
1509 fput(bprm->file);
1510 }
1511 if (bprm->executable)
1512 fput(bprm->executable);
1513 /* If a binfmt changed the interp, free it. */
1514 if (bprm->interp != bprm->filename)
1515 kfree(bprm->interp);
1516 kfree(bprm->fdpath);
1517 kfree(bprm);
1518 }
1519
alloc_bprm(int fd,struct filename * filename)1520 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1521 {
1522 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1523 int retval = -ENOMEM;
1524 if (!bprm)
1525 goto out;
1526
1527 if (fd == AT_FDCWD || filename->name[0] == '/') {
1528 bprm->filename = filename->name;
1529 } else {
1530 if (filename->name[0] == '\0')
1531 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1532 else
1533 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1534 fd, filename->name);
1535 if (!bprm->fdpath)
1536 goto out_free;
1537
1538 bprm->filename = bprm->fdpath;
1539 }
1540 bprm->interp = bprm->filename;
1541
1542 retval = bprm_mm_init(bprm);
1543 if (retval)
1544 goto out_free;
1545 return bprm;
1546
1547 out_free:
1548 free_bprm(bprm);
1549 out:
1550 return ERR_PTR(retval);
1551 }
1552
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1553 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1554 {
1555 /* If a binfmt changed the interp, free it first. */
1556 if (bprm->interp != bprm->filename)
1557 kfree(bprm->interp);
1558 bprm->interp = kstrdup(interp, GFP_KERNEL);
1559 if (!bprm->interp)
1560 return -ENOMEM;
1561 return 0;
1562 }
1563 EXPORT_SYMBOL(bprm_change_interp);
1564
1565 /*
1566 * determine how safe it is to execute the proposed program
1567 * - the caller must hold ->cred_guard_mutex to protect against
1568 * PTRACE_ATTACH or seccomp thread-sync
1569 */
check_unsafe_exec(struct linux_binprm * bprm)1570 static void check_unsafe_exec(struct linux_binprm *bprm)
1571 {
1572 struct task_struct *p = current, *t;
1573 unsigned n_fs;
1574
1575 if (p->ptrace)
1576 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1577
1578 /*
1579 * This isn't strictly necessary, but it makes it harder for LSMs to
1580 * mess up.
1581 */
1582 if (task_no_new_privs(current))
1583 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1584
1585 t = p;
1586 n_fs = 1;
1587 spin_lock(&p->fs->lock);
1588 rcu_read_lock();
1589 while_each_thread(p, t) {
1590 if (t->fs == p->fs)
1591 n_fs++;
1592 }
1593 rcu_read_unlock();
1594
1595 if (p->fs->users > n_fs)
1596 bprm->unsafe |= LSM_UNSAFE_SHARE;
1597 else
1598 p->fs->in_exec = 1;
1599 spin_unlock(&p->fs->lock);
1600 }
1601
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1602 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1603 {
1604 /* Handle suid and sgid on files */
1605 struct user_namespace *mnt_userns;
1606 struct inode *inode;
1607 unsigned int mode;
1608 kuid_t uid;
1609 kgid_t gid;
1610
1611 if (!mnt_may_suid(file->f_path.mnt))
1612 return;
1613
1614 if (task_no_new_privs(current))
1615 return;
1616
1617 inode = file->f_path.dentry->d_inode;
1618 mode = READ_ONCE(inode->i_mode);
1619 if (!(mode & (S_ISUID|S_ISGID)))
1620 return;
1621
1622 mnt_userns = file_mnt_user_ns(file);
1623
1624 /* Be careful if suid/sgid is set */
1625 inode_lock(inode);
1626
1627 /* reload atomically mode/uid/gid now that lock held */
1628 mode = inode->i_mode;
1629 uid = i_uid_into_mnt(mnt_userns, inode);
1630 gid = i_gid_into_mnt(mnt_userns, inode);
1631 inode_unlock(inode);
1632
1633 /* We ignore suid/sgid if there are no mappings for them in the ns */
1634 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1635 !kgid_has_mapping(bprm->cred->user_ns, gid))
1636 return;
1637
1638 if (mode & S_ISUID) {
1639 bprm->per_clear |= PER_CLEAR_ON_SETID;
1640 bprm->cred->euid = uid;
1641 }
1642
1643 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1644 bprm->per_clear |= PER_CLEAR_ON_SETID;
1645 bprm->cred->egid = gid;
1646 }
1647 }
1648
1649 /*
1650 * Compute brpm->cred based upon the final binary.
1651 */
bprm_creds_from_file(struct linux_binprm * bprm)1652 static int bprm_creds_from_file(struct linux_binprm *bprm)
1653 {
1654 /* Compute creds based on which file? */
1655 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1656
1657 bprm_fill_uid(bprm, file);
1658 return security_bprm_creds_from_file(bprm, file);
1659 }
1660
1661 /*
1662 * Fill the binprm structure from the inode.
1663 * Read the first BINPRM_BUF_SIZE bytes
1664 *
1665 * This may be called multiple times for binary chains (scripts for example).
1666 */
prepare_binprm(struct linux_binprm * bprm)1667 static int prepare_binprm(struct linux_binprm *bprm)
1668 {
1669 loff_t pos = 0;
1670
1671 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1672 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1673 }
1674
1675 /*
1676 * Arguments are '\0' separated strings found at the location bprm->p
1677 * points to; chop off the first by relocating brpm->p to right after
1678 * the first '\0' encountered.
1679 */
remove_arg_zero(struct linux_binprm * bprm)1680 int remove_arg_zero(struct linux_binprm *bprm)
1681 {
1682 int ret = 0;
1683 unsigned long offset;
1684 char *kaddr;
1685 struct page *page;
1686
1687 if (!bprm->argc)
1688 return 0;
1689
1690 do {
1691 offset = bprm->p & ~PAGE_MASK;
1692 page = get_arg_page(bprm, bprm->p, 0);
1693 if (!page) {
1694 ret = -EFAULT;
1695 goto out;
1696 }
1697 kaddr = kmap_atomic(page);
1698
1699 for (; offset < PAGE_SIZE && kaddr[offset];
1700 offset++, bprm->p++)
1701 ;
1702
1703 kunmap_atomic(kaddr);
1704 put_arg_page(page);
1705 } while (offset == PAGE_SIZE);
1706
1707 bprm->p++;
1708 bprm->argc--;
1709 ret = 0;
1710
1711 out:
1712 return ret;
1713 }
1714 EXPORT_SYMBOL(remove_arg_zero);
1715
1716 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1717 /*
1718 * cycle the list of binary formats handler, until one recognizes the image
1719 */
search_binary_handler(struct linux_binprm * bprm)1720 static int search_binary_handler(struct linux_binprm *bprm)
1721 {
1722 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1723 struct linux_binfmt *fmt;
1724 int retval;
1725
1726 retval = prepare_binprm(bprm);
1727 if (retval < 0)
1728 return retval;
1729
1730 retval = security_bprm_check(bprm);
1731 if (retval)
1732 return retval;
1733
1734 retval = -ENOENT;
1735 retry:
1736 read_lock(&binfmt_lock);
1737 list_for_each_entry(fmt, &formats, lh) {
1738 if (!try_module_get(fmt->module))
1739 continue;
1740 read_unlock(&binfmt_lock);
1741
1742 retval = fmt->load_binary(bprm);
1743
1744 read_lock(&binfmt_lock);
1745 put_binfmt(fmt);
1746 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1747 read_unlock(&binfmt_lock);
1748 return retval;
1749 }
1750 }
1751 read_unlock(&binfmt_lock);
1752
1753 if (need_retry) {
1754 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1755 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1756 return retval;
1757 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1758 return retval;
1759 need_retry = false;
1760 goto retry;
1761 }
1762
1763 return retval;
1764 }
1765
exec_binprm(struct linux_binprm * bprm)1766 static int exec_binprm(struct linux_binprm *bprm)
1767 {
1768 pid_t old_pid, old_vpid;
1769 int ret, depth;
1770
1771 /* Need to fetch pid before load_binary changes it */
1772 old_pid = current->pid;
1773 rcu_read_lock();
1774 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1775 rcu_read_unlock();
1776
1777 /* This allows 4 levels of binfmt rewrites before failing hard. */
1778 for (depth = 0;; depth++) {
1779 struct file *exec;
1780 if (depth > 5)
1781 return -ELOOP;
1782
1783 ret = search_binary_handler(bprm);
1784 if (ret < 0)
1785 return ret;
1786 if (!bprm->interpreter)
1787 break;
1788
1789 exec = bprm->file;
1790 bprm->file = bprm->interpreter;
1791 bprm->interpreter = NULL;
1792
1793 allow_write_access(exec);
1794 if (unlikely(bprm->have_execfd)) {
1795 if (bprm->executable) {
1796 fput(exec);
1797 return -ENOEXEC;
1798 }
1799 bprm->executable = exec;
1800 } else
1801 fput(exec);
1802 }
1803
1804 audit_bprm(bprm);
1805 trace_sched_process_exec(current, old_pid, bprm);
1806 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1807 proc_exec_connector(current);
1808 return 0;
1809 }
1810
1811 /*
1812 * sys_execve() executes a new program.
1813 */
bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1814 static int bprm_execve(struct linux_binprm *bprm,
1815 int fd, struct filename *filename, int flags)
1816 {
1817 struct file *file;
1818 int retval;
1819
1820 retval = prepare_bprm_creds(bprm);
1821 if (retval)
1822 return retval;
1823
1824 check_unsafe_exec(bprm);
1825 current->in_execve = 1;
1826
1827 file = do_open_execat(fd, filename, flags);
1828 retval = PTR_ERR(file);
1829 if (IS_ERR(file))
1830 goto out_unmark;
1831
1832 sched_exec();
1833
1834 bprm->file = file;
1835 /*
1836 * Record that a name derived from an O_CLOEXEC fd will be
1837 * inaccessible after exec. This allows the code in exec to
1838 * choose to fail when the executable is not mmaped into the
1839 * interpreter and an open file descriptor is not passed to
1840 * the interpreter. This makes for a better user experience
1841 * than having the interpreter start and then immediately fail
1842 * when it finds the executable is inaccessible.
1843 */
1844 if (bprm->fdpath && get_close_on_exec(fd))
1845 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1846
1847 /* Set the unchanging part of bprm->cred */
1848 retval = security_bprm_creds_for_exec(bprm);
1849 if (retval)
1850 goto out;
1851
1852 retval = exec_binprm(bprm);
1853 if (retval < 0)
1854 goto out;
1855
1856 /* execve succeeded */
1857 current->fs->in_exec = 0;
1858 current->in_execve = 0;
1859 rseq_execve(current);
1860 acct_update_integrals(current);
1861 task_numa_free(current, false);
1862 return retval;
1863
1864 out:
1865 /*
1866 * If past the point of no return ensure the code never
1867 * returns to the userspace process. Use an existing fatal
1868 * signal if present otherwise terminate the process with
1869 * SIGSEGV.
1870 */
1871 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1872 force_fatal_sig(SIGSEGV);
1873
1874 out_unmark:
1875 current->fs->in_exec = 0;
1876 current->in_execve = 0;
1877
1878 return retval;
1879 }
1880
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1881 static int do_execveat_common(int fd, struct filename *filename,
1882 struct user_arg_ptr argv,
1883 struct user_arg_ptr envp,
1884 int flags)
1885 {
1886 struct linux_binprm *bprm;
1887 int retval;
1888
1889 if (IS_ERR(filename))
1890 return PTR_ERR(filename);
1891
1892 /*
1893 * We move the actual failure in case of RLIMIT_NPROC excess from
1894 * set*uid() to execve() because too many poorly written programs
1895 * don't check setuid() return code. Here we additionally recheck
1896 * whether NPROC limit is still exceeded.
1897 */
1898 if ((current->flags & PF_NPROC_EXCEEDED) &&
1899 is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1900 retval = -EAGAIN;
1901 goto out_ret;
1902 }
1903
1904 /* We're below the limit (still or again), so we don't want to make
1905 * further execve() calls fail. */
1906 current->flags &= ~PF_NPROC_EXCEEDED;
1907
1908 bprm = alloc_bprm(fd, filename);
1909 if (IS_ERR(bprm)) {
1910 retval = PTR_ERR(bprm);
1911 goto out_ret;
1912 }
1913
1914 retval = count(argv, MAX_ARG_STRINGS);
1915 if (retval == 0)
1916 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1917 current->comm, bprm->filename);
1918 if (retval < 0)
1919 goto out_free;
1920 bprm->argc = retval;
1921
1922 retval = count(envp, MAX_ARG_STRINGS);
1923 if (retval < 0)
1924 goto out_free;
1925 bprm->envc = retval;
1926
1927 retval = bprm_stack_limits(bprm);
1928 if (retval < 0)
1929 goto out_free;
1930
1931 retval = copy_string_kernel(bprm->filename, bprm);
1932 if (retval < 0)
1933 goto out_free;
1934 bprm->exec = bprm->p;
1935
1936 retval = copy_strings(bprm->envc, envp, bprm);
1937 if (retval < 0)
1938 goto out_free;
1939
1940 retval = copy_strings(bprm->argc, argv, bprm);
1941 if (retval < 0)
1942 goto out_free;
1943
1944 /*
1945 * When argv is empty, add an empty string ("") as argv[0] to
1946 * ensure confused userspace programs that start processing
1947 * from argv[1] won't end up walking envp. See also
1948 * bprm_stack_limits().
1949 */
1950 if (bprm->argc == 0) {
1951 retval = copy_string_kernel("", bprm);
1952 if (retval < 0)
1953 goto out_free;
1954 bprm->argc = 1;
1955 }
1956
1957 retval = bprm_execve(bprm, fd, filename, flags);
1958 out_free:
1959 free_bprm(bprm);
1960
1961 out_ret:
1962 putname(filename);
1963 return retval;
1964 }
1965
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1966 int kernel_execve(const char *kernel_filename,
1967 const char *const *argv, const char *const *envp)
1968 {
1969 struct filename *filename;
1970 struct linux_binprm *bprm;
1971 int fd = AT_FDCWD;
1972 int retval;
1973
1974 filename = getname_kernel(kernel_filename);
1975 if (IS_ERR(filename))
1976 return PTR_ERR(filename);
1977
1978 bprm = alloc_bprm(fd, filename);
1979 if (IS_ERR(bprm)) {
1980 retval = PTR_ERR(bprm);
1981 goto out_ret;
1982 }
1983
1984 retval = count_strings_kernel(argv);
1985 if (WARN_ON_ONCE(retval == 0))
1986 retval = -EINVAL;
1987 if (retval < 0)
1988 goto out_free;
1989 bprm->argc = retval;
1990
1991 retval = count_strings_kernel(envp);
1992 if (retval < 0)
1993 goto out_free;
1994 bprm->envc = retval;
1995
1996 retval = bprm_stack_limits(bprm);
1997 if (retval < 0)
1998 goto out_free;
1999
2000 retval = copy_string_kernel(bprm->filename, bprm);
2001 if (retval < 0)
2002 goto out_free;
2003 bprm->exec = bprm->p;
2004
2005 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2006 if (retval < 0)
2007 goto out_free;
2008
2009 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2010 if (retval < 0)
2011 goto out_free;
2012
2013 retval = bprm_execve(bprm, fd, filename, 0);
2014 out_free:
2015 free_bprm(bprm);
2016 out_ret:
2017 putname(filename);
2018 return retval;
2019 }
2020
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2021 static int do_execve(struct filename *filename,
2022 const char __user *const __user *__argv,
2023 const char __user *const __user *__envp)
2024 {
2025 struct user_arg_ptr argv = { .ptr.native = __argv };
2026 struct user_arg_ptr envp = { .ptr.native = __envp };
2027 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2028 }
2029
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2030 static int do_execveat(int fd, struct filename *filename,
2031 const char __user *const __user *__argv,
2032 const char __user *const __user *__envp,
2033 int flags)
2034 {
2035 struct user_arg_ptr argv = { .ptr.native = __argv };
2036 struct user_arg_ptr envp = { .ptr.native = __envp };
2037
2038 return do_execveat_common(fd, filename, argv, envp, flags);
2039 }
2040
2041 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2042 static int compat_do_execve(struct filename *filename,
2043 const compat_uptr_t __user *__argv,
2044 const compat_uptr_t __user *__envp)
2045 {
2046 struct user_arg_ptr argv = {
2047 .is_compat = true,
2048 .ptr.compat = __argv,
2049 };
2050 struct user_arg_ptr envp = {
2051 .is_compat = true,
2052 .ptr.compat = __envp,
2053 };
2054 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2055 }
2056
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2057 static int compat_do_execveat(int fd, struct filename *filename,
2058 const compat_uptr_t __user *__argv,
2059 const compat_uptr_t __user *__envp,
2060 int flags)
2061 {
2062 struct user_arg_ptr argv = {
2063 .is_compat = true,
2064 .ptr.compat = __argv,
2065 };
2066 struct user_arg_ptr envp = {
2067 .is_compat = true,
2068 .ptr.compat = __envp,
2069 };
2070 return do_execveat_common(fd, filename, argv, envp, flags);
2071 }
2072 #endif
2073
set_binfmt(struct linux_binfmt * new)2074 void set_binfmt(struct linux_binfmt *new)
2075 {
2076 struct mm_struct *mm = current->mm;
2077
2078 if (mm->binfmt)
2079 module_put(mm->binfmt->module);
2080
2081 mm->binfmt = new;
2082 if (new)
2083 __module_get(new->module);
2084 }
2085 EXPORT_SYMBOL(set_binfmt);
2086
2087 /*
2088 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2089 */
set_dumpable(struct mm_struct * mm,int value)2090 void set_dumpable(struct mm_struct *mm, int value)
2091 {
2092 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2093 return;
2094
2095 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2096 }
2097
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2098 SYSCALL_DEFINE3(execve,
2099 const char __user *, filename,
2100 const char __user *const __user *, argv,
2101 const char __user *const __user *, envp)
2102 {
2103 return do_execve(getname(filename), argv, envp);
2104 }
2105
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2106 SYSCALL_DEFINE5(execveat,
2107 int, fd, const char __user *, filename,
2108 const char __user *const __user *, argv,
2109 const char __user *const __user *, envp,
2110 int, flags)
2111 {
2112 return do_execveat(fd,
2113 getname_uflags(filename, flags),
2114 argv, envp, flags);
2115 }
2116
2117 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2118 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2119 const compat_uptr_t __user *, argv,
2120 const compat_uptr_t __user *, envp)
2121 {
2122 return compat_do_execve(getname(filename), argv, envp);
2123 }
2124
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2125 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2126 const char __user *, filename,
2127 const compat_uptr_t __user *, argv,
2128 const compat_uptr_t __user *, envp,
2129 int, flags)
2130 {
2131 return compat_do_execveat(fd,
2132 getname_uflags(filename, flags),
2133 argv, envp, flags);
2134 }
2135 #endif
2136