1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * f2fs compress support
4 *
5 * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6 */
7
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/writeback.h>
11 #include <linux/backing-dev.h>
12 #include <linux/lzo.h>
13 #include <linux/lz4.h>
14 #include <linux/zstd.h>
15 #include <linux/pagevec.h>
16
17 #include "f2fs.h"
18 #include "node.h"
19 #include "segment.h"
20 #include <trace/events/f2fs.h>
21
22 static struct kmem_cache *cic_entry_slab;
23 static struct kmem_cache *dic_entry_slab;
24
page_array_alloc(struct inode * inode,int nr)25 static void *page_array_alloc(struct inode *inode, int nr)
26 {
27 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
28 unsigned int size = sizeof(struct page *) * nr;
29
30 if (likely(size <= sbi->page_array_slab_size))
31 return f2fs_kmem_cache_alloc(sbi->page_array_slab,
32 GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
33 return f2fs_kzalloc(sbi, size, GFP_NOFS);
34 }
35
page_array_free(struct inode * inode,void * pages,int nr)36 static void page_array_free(struct inode *inode, void *pages, int nr)
37 {
38 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
39 unsigned int size = sizeof(struct page *) * nr;
40
41 if (!pages)
42 return;
43
44 if (likely(size <= sbi->page_array_slab_size))
45 kmem_cache_free(sbi->page_array_slab, pages);
46 else
47 kfree(pages);
48 }
49
50 struct f2fs_compress_ops {
51 int (*init_compress_ctx)(struct compress_ctx *cc);
52 void (*destroy_compress_ctx)(struct compress_ctx *cc);
53 int (*compress_pages)(struct compress_ctx *cc);
54 int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
55 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
56 int (*decompress_pages)(struct decompress_io_ctx *dic);
57 };
58
offset_in_cluster(struct compress_ctx * cc,pgoff_t index)59 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
60 {
61 return index & (cc->cluster_size - 1);
62 }
63
cluster_idx(struct compress_ctx * cc,pgoff_t index)64 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
65 {
66 return index >> cc->log_cluster_size;
67 }
68
start_idx_of_cluster(struct compress_ctx * cc)69 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
70 {
71 return cc->cluster_idx << cc->log_cluster_size;
72 }
73
f2fs_is_compressed_page(struct page * page)74 bool f2fs_is_compressed_page(struct page *page)
75 {
76 if (!PagePrivate(page))
77 return false;
78 if (!page_private(page))
79 return false;
80 if (page_private_nonpointer(page))
81 return false;
82
83 f2fs_bug_on(F2FS_M_SB(page->mapping),
84 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
85 return true;
86 }
87
f2fs_set_compressed_page(struct page * page,struct inode * inode,pgoff_t index,void * data)88 static void f2fs_set_compressed_page(struct page *page,
89 struct inode *inode, pgoff_t index, void *data)
90 {
91 attach_page_private(page, (void *)data);
92
93 /* i_crypto_info and iv index */
94 page->index = index;
95 page->mapping = inode->i_mapping;
96 }
97
f2fs_drop_rpages(struct compress_ctx * cc,int len,bool unlock)98 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
99 {
100 int i;
101
102 for (i = 0; i < len; i++) {
103 if (!cc->rpages[i])
104 continue;
105 if (unlock)
106 unlock_page(cc->rpages[i]);
107 else
108 put_page(cc->rpages[i]);
109 }
110 }
111
f2fs_put_rpages(struct compress_ctx * cc)112 static void f2fs_put_rpages(struct compress_ctx *cc)
113 {
114 f2fs_drop_rpages(cc, cc->cluster_size, false);
115 }
116
f2fs_unlock_rpages(struct compress_ctx * cc,int len)117 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
118 {
119 f2fs_drop_rpages(cc, len, true);
120 }
121
f2fs_put_rpages_wbc(struct compress_ctx * cc,struct writeback_control * wbc,bool redirty,int unlock)122 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
123 struct writeback_control *wbc, bool redirty, int unlock)
124 {
125 unsigned int i;
126
127 for (i = 0; i < cc->cluster_size; i++) {
128 if (!cc->rpages[i])
129 continue;
130 if (redirty)
131 redirty_page_for_writepage(wbc, cc->rpages[i]);
132 f2fs_put_page(cc->rpages[i], unlock);
133 }
134 }
135
f2fs_compress_control_page(struct page * page)136 struct page *f2fs_compress_control_page(struct page *page)
137 {
138 return ((struct compress_io_ctx *)page_private(page))->rpages[0];
139 }
140
f2fs_init_compress_ctx(struct compress_ctx * cc)141 int f2fs_init_compress_ctx(struct compress_ctx *cc)
142 {
143 if (cc->rpages)
144 return 0;
145
146 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
147 return cc->rpages ? 0 : -ENOMEM;
148 }
149
f2fs_destroy_compress_ctx(struct compress_ctx * cc,bool reuse)150 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
151 {
152 page_array_free(cc->inode, cc->rpages, cc->cluster_size);
153 cc->rpages = NULL;
154 cc->nr_rpages = 0;
155 cc->nr_cpages = 0;
156 cc->valid_nr_cpages = 0;
157 if (!reuse)
158 cc->cluster_idx = NULL_CLUSTER;
159 }
160
f2fs_compress_ctx_add_page(struct compress_ctx * cc,struct page * page)161 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
162 {
163 unsigned int cluster_ofs;
164
165 if (!f2fs_cluster_can_merge_page(cc, page->index))
166 f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
167
168 cluster_ofs = offset_in_cluster(cc, page->index);
169 cc->rpages[cluster_ofs] = page;
170 cc->nr_rpages++;
171 cc->cluster_idx = cluster_idx(cc, page->index);
172 }
173
174 #ifdef CONFIG_F2FS_FS_LZO
lzo_init_compress_ctx(struct compress_ctx * cc)175 static int lzo_init_compress_ctx(struct compress_ctx *cc)
176 {
177 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
178 LZO1X_MEM_COMPRESS, GFP_NOFS);
179 if (!cc->private)
180 return -ENOMEM;
181
182 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
183 return 0;
184 }
185
lzo_destroy_compress_ctx(struct compress_ctx * cc)186 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
187 {
188 kvfree(cc->private);
189 cc->private = NULL;
190 }
191
lzo_compress_pages(struct compress_ctx * cc)192 static int lzo_compress_pages(struct compress_ctx *cc)
193 {
194 int ret;
195
196 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
197 &cc->clen, cc->private);
198 if (ret != LZO_E_OK) {
199 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
200 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
201 return -EIO;
202 }
203 return 0;
204 }
205
lzo_decompress_pages(struct decompress_io_ctx * dic)206 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
207 {
208 int ret;
209
210 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
211 dic->rbuf, &dic->rlen);
212 if (ret != LZO_E_OK) {
213 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
214 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
215 return -EIO;
216 }
217
218 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
219 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
220 "expected:%lu\n", KERN_ERR,
221 F2FS_I_SB(dic->inode)->sb->s_id,
222 dic->rlen,
223 PAGE_SIZE << dic->log_cluster_size);
224 return -EIO;
225 }
226 return 0;
227 }
228
229 static const struct f2fs_compress_ops f2fs_lzo_ops = {
230 .init_compress_ctx = lzo_init_compress_ctx,
231 .destroy_compress_ctx = lzo_destroy_compress_ctx,
232 .compress_pages = lzo_compress_pages,
233 .decompress_pages = lzo_decompress_pages,
234 };
235 #endif
236
237 #ifdef CONFIG_F2FS_FS_LZ4
lz4_init_compress_ctx(struct compress_ctx * cc)238 static int lz4_init_compress_ctx(struct compress_ctx *cc)
239 {
240 unsigned int size = LZ4_MEM_COMPRESS;
241
242 #ifdef CONFIG_F2FS_FS_LZ4HC
243 if (F2FS_I(cc->inode)->i_compress_level)
244 size = LZ4HC_MEM_COMPRESS;
245 #endif
246
247 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
248 if (!cc->private)
249 return -ENOMEM;
250
251 /*
252 * we do not change cc->clen to LZ4_compressBound(inputsize) to
253 * adapt worst compress case, because lz4 compressor can handle
254 * output budget properly.
255 */
256 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
257 return 0;
258 }
259
lz4_destroy_compress_ctx(struct compress_ctx * cc)260 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
261 {
262 kvfree(cc->private);
263 cc->private = NULL;
264 }
265
lz4_compress_pages(struct compress_ctx * cc)266 static int lz4_compress_pages(struct compress_ctx *cc)
267 {
268 int len = -EINVAL;
269 unsigned char level = F2FS_I(cc->inode)->i_compress_level;
270
271 if (!level)
272 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
273 cc->clen, cc->private);
274 #ifdef CONFIG_F2FS_FS_LZ4HC
275 else
276 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
277 cc->clen, level, cc->private);
278 #endif
279 if (len < 0)
280 return len;
281 if (!len)
282 return -EAGAIN;
283
284 cc->clen = len;
285 return 0;
286 }
287
lz4_decompress_pages(struct decompress_io_ctx * dic)288 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
289 {
290 int ret;
291
292 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
293 dic->clen, dic->rlen);
294 if (ret < 0) {
295 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
296 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
297 return -EIO;
298 }
299
300 if (ret != PAGE_SIZE << dic->log_cluster_size) {
301 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
302 "expected:%lu\n", KERN_ERR,
303 F2FS_I_SB(dic->inode)->sb->s_id, ret,
304 PAGE_SIZE << dic->log_cluster_size);
305 return -EIO;
306 }
307 return 0;
308 }
309
310 static const struct f2fs_compress_ops f2fs_lz4_ops = {
311 .init_compress_ctx = lz4_init_compress_ctx,
312 .destroy_compress_ctx = lz4_destroy_compress_ctx,
313 .compress_pages = lz4_compress_pages,
314 .decompress_pages = lz4_decompress_pages,
315 };
316 #endif
317
318 #ifdef CONFIG_F2FS_FS_ZSTD
319 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
320
zstd_init_compress_ctx(struct compress_ctx * cc)321 static int zstd_init_compress_ctx(struct compress_ctx *cc)
322 {
323 ZSTD_parameters params;
324 ZSTD_CStream *stream;
325 void *workspace;
326 unsigned int workspace_size;
327 unsigned char level = F2FS_I(cc->inode)->i_compress_level;
328
329 if (!level)
330 level = F2FS_ZSTD_DEFAULT_CLEVEL;
331
332 params = ZSTD_getParams(level, cc->rlen, 0);
333 workspace_size = ZSTD_CStreamWorkspaceBound(params.cParams);
334
335 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
336 workspace_size, GFP_NOFS);
337 if (!workspace)
338 return -ENOMEM;
339
340 stream = ZSTD_initCStream(params, 0, workspace, workspace_size);
341 if (!stream) {
342 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initCStream failed\n",
343 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
344 __func__);
345 kvfree(workspace);
346 return -EIO;
347 }
348
349 cc->private = workspace;
350 cc->private2 = stream;
351
352 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
353 return 0;
354 }
355
zstd_destroy_compress_ctx(struct compress_ctx * cc)356 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
357 {
358 kvfree(cc->private);
359 cc->private = NULL;
360 cc->private2 = NULL;
361 }
362
zstd_compress_pages(struct compress_ctx * cc)363 static int zstd_compress_pages(struct compress_ctx *cc)
364 {
365 ZSTD_CStream *stream = cc->private2;
366 ZSTD_inBuffer inbuf;
367 ZSTD_outBuffer outbuf;
368 int src_size = cc->rlen;
369 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
370 int ret;
371
372 inbuf.pos = 0;
373 inbuf.src = cc->rbuf;
374 inbuf.size = src_size;
375
376 outbuf.pos = 0;
377 outbuf.dst = cc->cbuf->cdata;
378 outbuf.size = dst_size;
379
380 ret = ZSTD_compressStream(stream, &outbuf, &inbuf);
381 if (ZSTD_isError(ret)) {
382 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n",
383 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
384 __func__, ZSTD_getErrorCode(ret));
385 return -EIO;
386 }
387
388 ret = ZSTD_endStream(stream, &outbuf);
389 if (ZSTD_isError(ret)) {
390 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_endStream returned %d\n",
391 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
392 __func__, ZSTD_getErrorCode(ret));
393 return -EIO;
394 }
395
396 /*
397 * there is compressed data remained in intermediate buffer due to
398 * no more space in cbuf.cdata
399 */
400 if (ret)
401 return -EAGAIN;
402
403 cc->clen = outbuf.pos;
404 return 0;
405 }
406
zstd_init_decompress_ctx(struct decompress_io_ctx * dic)407 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
408 {
409 ZSTD_DStream *stream;
410 void *workspace;
411 unsigned int workspace_size;
412 unsigned int max_window_size =
413 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
414
415 workspace_size = ZSTD_DStreamWorkspaceBound(max_window_size);
416
417 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
418 workspace_size, GFP_NOFS);
419 if (!workspace)
420 return -ENOMEM;
421
422 stream = ZSTD_initDStream(max_window_size, workspace, workspace_size);
423 if (!stream) {
424 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initDStream failed\n",
425 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
426 __func__);
427 kvfree(workspace);
428 return -EIO;
429 }
430
431 dic->private = workspace;
432 dic->private2 = stream;
433
434 return 0;
435 }
436
zstd_destroy_decompress_ctx(struct decompress_io_ctx * dic)437 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
438 {
439 kvfree(dic->private);
440 dic->private = NULL;
441 dic->private2 = NULL;
442 }
443
zstd_decompress_pages(struct decompress_io_ctx * dic)444 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
445 {
446 ZSTD_DStream *stream = dic->private2;
447 ZSTD_inBuffer inbuf;
448 ZSTD_outBuffer outbuf;
449 int ret;
450
451 inbuf.pos = 0;
452 inbuf.src = dic->cbuf->cdata;
453 inbuf.size = dic->clen;
454
455 outbuf.pos = 0;
456 outbuf.dst = dic->rbuf;
457 outbuf.size = dic->rlen;
458
459 ret = ZSTD_decompressStream(stream, &outbuf, &inbuf);
460 if (ZSTD_isError(ret)) {
461 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n",
462 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
463 __func__, ZSTD_getErrorCode(ret));
464 return -EIO;
465 }
466
467 if (dic->rlen != outbuf.pos) {
468 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
469 "expected:%lu\n", KERN_ERR,
470 F2FS_I_SB(dic->inode)->sb->s_id,
471 __func__, dic->rlen,
472 PAGE_SIZE << dic->log_cluster_size);
473 return -EIO;
474 }
475
476 return 0;
477 }
478
479 static const struct f2fs_compress_ops f2fs_zstd_ops = {
480 .init_compress_ctx = zstd_init_compress_ctx,
481 .destroy_compress_ctx = zstd_destroy_compress_ctx,
482 .compress_pages = zstd_compress_pages,
483 .init_decompress_ctx = zstd_init_decompress_ctx,
484 .destroy_decompress_ctx = zstd_destroy_decompress_ctx,
485 .decompress_pages = zstd_decompress_pages,
486 };
487 #endif
488
489 #ifdef CONFIG_F2FS_FS_LZO
490 #ifdef CONFIG_F2FS_FS_LZORLE
lzorle_compress_pages(struct compress_ctx * cc)491 static int lzorle_compress_pages(struct compress_ctx *cc)
492 {
493 int ret;
494
495 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
496 &cc->clen, cc->private);
497 if (ret != LZO_E_OK) {
498 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
499 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
500 return -EIO;
501 }
502 return 0;
503 }
504
505 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
506 .init_compress_ctx = lzo_init_compress_ctx,
507 .destroy_compress_ctx = lzo_destroy_compress_ctx,
508 .compress_pages = lzorle_compress_pages,
509 .decompress_pages = lzo_decompress_pages,
510 };
511 #endif
512 #endif
513
514 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
515 #ifdef CONFIG_F2FS_FS_LZO
516 &f2fs_lzo_ops,
517 #else
518 NULL,
519 #endif
520 #ifdef CONFIG_F2FS_FS_LZ4
521 &f2fs_lz4_ops,
522 #else
523 NULL,
524 #endif
525 #ifdef CONFIG_F2FS_FS_ZSTD
526 &f2fs_zstd_ops,
527 #else
528 NULL,
529 #endif
530 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
531 &f2fs_lzorle_ops,
532 #else
533 NULL,
534 #endif
535 };
536
f2fs_is_compress_backend_ready(struct inode * inode)537 bool f2fs_is_compress_backend_ready(struct inode *inode)
538 {
539 if (!f2fs_compressed_file(inode))
540 return true;
541 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
542 }
543
544 static mempool_t *compress_page_pool;
545 static int num_compress_pages = 512;
546 module_param(num_compress_pages, uint, 0444);
547 MODULE_PARM_DESC(num_compress_pages,
548 "Number of intermediate compress pages to preallocate");
549
f2fs_init_compress_mempool(void)550 int __init f2fs_init_compress_mempool(void)
551 {
552 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
553 return compress_page_pool ? 0 : -ENOMEM;
554 }
555
f2fs_destroy_compress_mempool(void)556 void f2fs_destroy_compress_mempool(void)
557 {
558 mempool_destroy(compress_page_pool);
559 }
560
f2fs_compress_alloc_page(void)561 static struct page *f2fs_compress_alloc_page(void)
562 {
563 struct page *page;
564
565 page = mempool_alloc(compress_page_pool, GFP_NOFS);
566 lock_page(page);
567
568 return page;
569 }
570
f2fs_compress_free_page(struct page * page)571 static void f2fs_compress_free_page(struct page *page)
572 {
573 if (!page)
574 return;
575 detach_page_private(page);
576 page->mapping = NULL;
577 unlock_page(page);
578 mempool_free(page, compress_page_pool);
579 }
580
581 #define MAX_VMAP_RETRIES 3
582
f2fs_vmap(struct page ** pages,unsigned int count)583 static void *f2fs_vmap(struct page **pages, unsigned int count)
584 {
585 int i;
586 void *buf = NULL;
587
588 for (i = 0; i < MAX_VMAP_RETRIES; i++) {
589 buf = vm_map_ram(pages, count, -1);
590 if (buf)
591 break;
592 vm_unmap_aliases();
593 }
594 return buf;
595 }
596
f2fs_compress_pages(struct compress_ctx * cc)597 static int f2fs_compress_pages(struct compress_ctx *cc)
598 {
599 struct f2fs_inode_info *fi = F2FS_I(cc->inode);
600 const struct f2fs_compress_ops *cops =
601 f2fs_cops[fi->i_compress_algorithm];
602 unsigned int max_len, new_nr_cpages;
603 u32 chksum = 0;
604 int i, ret;
605
606 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
607 cc->cluster_size, fi->i_compress_algorithm);
608
609 if (cops->init_compress_ctx) {
610 ret = cops->init_compress_ctx(cc);
611 if (ret)
612 goto out;
613 }
614
615 max_len = COMPRESS_HEADER_SIZE + cc->clen;
616 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
617 cc->valid_nr_cpages = cc->nr_cpages;
618
619 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
620 if (!cc->cpages) {
621 ret = -ENOMEM;
622 goto destroy_compress_ctx;
623 }
624
625 for (i = 0; i < cc->nr_cpages; i++) {
626 cc->cpages[i] = f2fs_compress_alloc_page();
627 if (!cc->cpages[i]) {
628 ret = -ENOMEM;
629 goto out_free_cpages;
630 }
631 }
632
633 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
634 if (!cc->rbuf) {
635 ret = -ENOMEM;
636 goto out_free_cpages;
637 }
638
639 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
640 if (!cc->cbuf) {
641 ret = -ENOMEM;
642 goto out_vunmap_rbuf;
643 }
644
645 ret = cops->compress_pages(cc);
646 if (ret)
647 goto out_vunmap_cbuf;
648
649 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
650
651 if (cc->clen > max_len) {
652 ret = -EAGAIN;
653 goto out_vunmap_cbuf;
654 }
655
656 cc->cbuf->clen = cpu_to_le32(cc->clen);
657
658 if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))
659 chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
660 cc->cbuf->cdata, cc->clen);
661 cc->cbuf->chksum = cpu_to_le32(chksum);
662
663 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
664 cc->cbuf->reserved[i] = cpu_to_le32(0);
665
666 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
667
668 /* zero out any unused part of the last page */
669 memset(&cc->cbuf->cdata[cc->clen], 0,
670 (new_nr_cpages * PAGE_SIZE) -
671 (cc->clen + COMPRESS_HEADER_SIZE));
672
673 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
674 vm_unmap_ram(cc->rbuf, cc->cluster_size);
675
676 for (i = new_nr_cpages; i < cc->nr_cpages; i++) {
677 f2fs_compress_free_page(cc->cpages[i]);
678 cc->cpages[i] = NULL;
679 }
680
681 if (cops->destroy_compress_ctx)
682 cops->destroy_compress_ctx(cc);
683
684 cc->valid_nr_cpages = new_nr_cpages;
685
686 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
687 cc->clen, ret);
688 return 0;
689
690 out_vunmap_cbuf:
691 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
692 out_vunmap_rbuf:
693 vm_unmap_ram(cc->rbuf, cc->cluster_size);
694 out_free_cpages:
695 for (i = 0; i < cc->nr_cpages; i++) {
696 if (cc->cpages[i])
697 f2fs_compress_free_page(cc->cpages[i]);
698 }
699 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
700 cc->cpages = NULL;
701 destroy_compress_ctx:
702 if (cops->destroy_compress_ctx)
703 cops->destroy_compress_ctx(cc);
704 out:
705 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
706 cc->clen, ret);
707 return ret;
708 }
709
710 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
711 bool pre_alloc);
712 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
713 bool bypass_destroy_callback, bool pre_alloc);
714
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)715 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
716 {
717 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
718 struct f2fs_inode_info *fi = F2FS_I(dic->inode);
719 const struct f2fs_compress_ops *cops =
720 f2fs_cops[fi->i_compress_algorithm];
721 bool bypass_callback = false;
722 int ret;
723
724 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
725 dic->cluster_size, fi->i_compress_algorithm);
726
727 if (dic->failed) {
728 ret = -EIO;
729 goto out_end_io;
730 }
731
732 ret = f2fs_prepare_decomp_mem(dic, false);
733 if (ret) {
734 bypass_callback = true;
735 goto out_release;
736 }
737
738 dic->clen = le32_to_cpu(dic->cbuf->clen);
739 dic->rlen = PAGE_SIZE << dic->log_cluster_size;
740
741 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
742 ret = -EFSCORRUPTED;
743
744 /* Avoid f2fs_commit_super in irq context */
745 if (!in_task)
746 f2fs_save_errors(sbi, ERROR_FAIL_DECOMPRESSION);
747 else
748 f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
749 goto out_release;
750 }
751
752 ret = cops->decompress_pages(dic);
753
754 if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) {
755 u32 provided = le32_to_cpu(dic->cbuf->chksum);
756 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
757
758 if (provided != calculated) {
759 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
760 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
761 printk_ratelimited(
762 "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
763 KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
764 provided, calculated);
765 }
766 set_sbi_flag(sbi, SBI_NEED_FSCK);
767 }
768 }
769
770 out_release:
771 f2fs_release_decomp_mem(dic, bypass_callback, false);
772
773 out_end_io:
774 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
775 dic->clen, ret);
776 f2fs_decompress_end_io(dic, ret, in_task);
777 }
778
779 /*
780 * This is called when a page of a compressed cluster has been read from disk
781 * (or failed to be read from disk). It checks whether this page was the last
782 * page being waited on in the cluster, and if so, it decompresses the cluster
783 * (or in the case of a failure, cleans up without actually decompressing).
784 */
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)785 void f2fs_end_read_compressed_page(struct page *page, bool failed,
786 block_t blkaddr, bool in_task)
787 {
788 struct decompress_io_ctx *dic =
789 (struct decompress_io_ctx *)page_private(page);
790 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
791
792 dec_page_count(sbi, F2FS_RD_DATA);
793
794 if (failed)
795 WRITE_ONCE(dic->failed, true);
796 else if (blkaddr && in_task)
797 f2fs_cache_compressed_page(sbi, page,
798 dic->inode->i_ino, blkaddr);
799
800 if (atomic_dec_and_test(&dic->remaining_pages))
801 f2fs_decompress_cluster(dic, in_task);
802 }
803
is_page_in_cluster(struct compress_ctx * cc,pgoff_t index)804 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
805 {
806 if (cc->cluster_idx == NULL_CLUSTER)
807 return true;
808 return cc->cluster_idx == cluster_idx(cc, index);
809 }
810
f2fs_cluster_is_empty(struct compress_ctx * cc)811 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
812 {
813 return cc->nr_rpages == 0;
814 }
815
f2fs_cluster_is_full(struct compress_ctx * cc)816 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
817 {
818 return cc->cluster_size == cc->nr_rpages;
819 }
820
f2fs_cluster_can_merge_page(struct compress_ctx * cc,pgoff_t index)821 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
822 {
823 if (f2fs_cluster_is_empty(cc))
824 return true;
825 return is_page_in_cluster(cc, index);
826 }
827
f2fs_all_cluster_page_ready(struct compress_ctx * cc,struct page ** pages,int index,int nr_pages,bool uptodate)828 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
829 int index, int nr_pages, bool uptodate)
830 {
831 unsigned long pgidx = pages[index]->index;
832 int i = uptodate ? 0 : 1;
833
834 /*
835 * when uptodate set to true, try to check all pages in cluster is
836 * uptodate or not.
837 */
838 if (uptodate && (pgidx % cc->cluster_size))
839 return false;
840
841 if (nr_pages - index < cc->cluster_size)
842 return false;
843
844 for (; i < cc->cluster_size; i++) {
845 if (pages[index + i]->index != pgidx + i)
846 return false;
847 if (uptodate && !PageUptodate(pages[index + i]))
848 return false;
849 }
850
851 return true;
852 }
853
cluster_has_invalid_data(struct compress_ctx * cc)854 static bool cluster_has_invalid_data(struct compress_ctx *cc)
855 {
856 loff_t i_size = i_size_read(cc->inode);
857 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
858 int i;
859
860 for (i = 0; i < cc->cluster_size; i++) {
861 struct page *page = cc->rpages[i];
862
863 f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
864
865 /* beyond EOF */
866 if (page->index >= nr_pages)
867 return true;
868 }
869 return false;
870 }
871
f2fs_sanity_check_cluster(struct dnode_of_data * dn)872 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
873 {
874 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
875 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
876 bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
877 int cluster_end = 0;
878 int i;
879 char *reason = "";
880
881 if (!compressed)
882 return false;
883
884 /* [..., COMPR_ADDR, ...] */
885 if (dn->ofs_in_node % cluster_size) {
886 reason = "[*|C|*|*]";
887 goto out;
888 }
889
890 for (i = 1; i < cluster_size; i++) {
891 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
892 dn->ofs_in_node + i);
893
894 /* [COMPR_ADDR, ..., COMPR_ADDR] */
895 if (blkaddr == COMPRESS_ADDR) {
896 reason = "[C|*|C|*]";
897 goto out;
898 }
899 if (!__is_valid_data_blkaddr(blkaddr)) {
900 if (!cluster_end)
901 cluster_end = i;
902 continue;
903 }
904 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
905 if (cluster_end) {
906 reason = "[C|N|N|V]";
907 goto out;
908 }
909 }
910 return false;
911 out:
912 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
913 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
914 set_sbi_flag(sbi, SBI_NEED_FSCK);
915 return true;
916 }
917
__f2fs_cluster_blocks(struct inode * inode,unsigned int cluster_idx,bool compr)918 static int __f2fs_cluster_blocks(struct inode *inode,
919 unsigned int cluster_idx, bool compr)
920 {
921 struct dnode_of_data dn;
922 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
923 unsigned int start_idx = cluster_idx <<
924 F2FS_I(inode)->i_log_cluster_size;
925 int ret;
926
927 set_new_dnode(&dn, inode, NULL, NULL, 0);
928 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
929 if (ret) {
930 if (ret == -ENOENT)
931 ret = 0;
932 goto fail;
933 }
934
935 if (f2fs_sanity_check_cluster(&dn)) {
936 ret = -EFSCORRUPTED;
937 f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER);
938 goto fail;
939 }
940
941 if (dn.data_blkaddr == COMPRESS_ADDR) {
942 int i;
943
944 ret = 1;
945 for (i = 1; i < cluster_size; i++) {
946 block_t blkaddr;
947
948 blkaddr = data_blkaddr(dn.inode,
949 dn.node_page, dn.ofs_in_node + i);
950 if (compr) {
951 if (__is_valid_data_blkaddr(blkaddr))
952 ret++;
953 } else {
954 if (blkaddr != NULL_ADDR)
955 ret++;
956 }
957 }
958
959 f2fs_bug_on(F2FS_I_SB(inode),
960 !compr && ret != cluster_size &&
961 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
962 }
963 fail:
964 f2fs_put_dnode(&dn);
965 return ret;
966 }
967
968 /* return # of compressed blocks in compressed cluster */
f2fs_compressed_blocks(struct compress_ctx * cc)969 static int f2fs_compressed_blocks(struct compress_ctx *cc)
970 {
971 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
972 }
973
974 /* return # of valid blocks in compressed cluster */
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)975 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
976 {
977 return __f2fs_cluster_blocks(inode,
978 index >> F2FS_I(inode)->i_log_cluster_size,
979 false);
980 }
981
cluster_may_compress(struct compress_ctx * cc)982 static bool cluster_may_compress(struct compress_ctx *cc)
983 {
984 if (!f2fs_need_compress_data(cc->inode))
985 return false;
986 if (f2fs_is_atomic_file(cc->inode))
987 return false;
988 if (!f2fs_cluster_is_full(cc))
989 return false;
990 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
991 return false;
992 return !cluster_has_invalid_data(cc);
993 }
994
set_cluster_writeback(struct compress_ctx * cc)995 static void set_cluster_writeback(struct compress_ctx *cc)
996 {
997 int i;
998
999 for (i = 0; i < cc->cluster_size; i++) {
1000 if (cc->rpages[i])
1001 set_page_writeback(cc->rpages[i]);
1002 }
1003 }
1004
set_cluster_dirty(struct compress_ctx * cc)1005 static void set_cluster_dirty(struct compress_ctx *cc)
1006 {
1007 int i;
1008
1009 for (i = 0; i < cc->cluster_size; i++)
1010 if (cc->rpages[i]) {
1011 set_page_dirty(cc->rpages[i]);
1012 set_page_private_gcing(cc->rpages[i]);
1013 }
1014 }
1015
prepare_compress_overwrite(struct compress_ctx * cc,struct page ** pagep,pgoff_t index,void ** fsdata)1016 static int prepare_compress_overwrite(struct compress_ctx *cc,
1017 struct page **pagep, pgoff_t index, void **fsdata)
1018 {
1019 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1020 struct address_space *mapping = cc->inode->i_mapping;
1021 struct page *page;
1022 sector_t last_block_in_bio;
1023 unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1024 pgoff_t start_idx = start_idx_of_cluster(cc);
1025 int i, ret;
1026
1027 retry:
1028 ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1029 if (ret <= 0)
1030 return ret;
1031
1032 ret = f2fs_init_compress_ctx(cc);
1033 if (ret)
1034 return ret;
1035
1036 /* keep page reference to avoid page reclaim */
1037 for (i = 0; i < cc->cluster_size; i++) {
1038 page = f2fs_pagecache_get_page(mapping, start_idx + i,
1039 fgp_flag, GFP_NOFS);
1040 if (!page) {
1041 ret = -ENOMEM;
1042 goto unlock_pages;
1043 }
1044
1045 if (PageUptodate(page))
1046 f2fs_put_page(page, 1);
1047 else
1048 f2fs_compress_ctx_add_page(cc, page);
1049 }
1050
1051 if (!f2fs_cluster_is_empty(cc)) {
1052 struct bio *bio = NULL;
1053
1054 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1055 &last_block_in_bio, false, true);
1056 f2fs_put_rpages(cc);
1057 f2fs_destroy_compress_ctx(cc, true);
1058 if (ret)
1059 goto out;
1060 if (bio)
1061 f2fs_submit_read_bio(sbi, bio, DATA);
1062
1063 ret = f2fs_init_compress_ctx(cc);
1064 if (ret)
1065 goto out;
1066 }
1067
1068 for (i = 0; i < cc->cluster_size; i++) {
1069 f2fs_bug_on(sbi, cc->rpages[i]);
1070
1071 page = find_lock_page(mapping, start_idx + i);
1072 if (!page) {
1073 /* page can be truncated */
1074 goto release_and_retry;
1075 }
1076
1077 f2fs_wait_on_page_writeback(page, DATA, true, true);
1078 f2fs_compress_ctx_add_page(cc, page);
1079
1080 if (!PageUptodate(page)) {
1081 release_and_retry:
1082 f2fs_put_rpages(cc);
1083 f2fs_unlock_rpages(cc, i + 1);
1084 f2fs_destroy_compress_ctx(cc, true);
1085 goto retry;
1086 }
1087 }
1088
1089 if (likely(!ret)) {
1090 *fsdata = cc->rpages;
1091 *pagep = cc->rpages[offset_in_cluster(cc, index)];
1092 return cc->cluster_size;
1093 }
1094
1095 unlock_pages:
1096 f2fs_put_rpages(cc);
1097 f2fs_unlock_rpages(cc, i);
1098 f2fs_destroy_compress_ctx(cc, true);
1099 out:
1100 return ret;
1101 }
1102
f2fs_prepare_compress_overwrite(struct inode * inode,struct page ** pagep,pgoff_t index,void ** fsdata)1103 int f2fs_prepare_compress_overwrite(struct inode *inode,
1104 struct page **pagep, pgoff_t index, void **fsdata)
1105 {
1106 struct compress_ctx cc = {
1107 .inode = inode,
1108 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1109 .cluster_size = F2FS_I(inode)->i_cluster_size,
1110 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1111 .rpages = NULL,
1112 .nr_rpages = 0,
1113 };
1114
1115 return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1116 }
1117
f2fs_compress_write_end(struct inode * inode,void * fsdata,pgoff_t index,unsigned copied)1118 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1119 pgoff_t index, unsigned copied)
1120
1121 {
1122 struct compress_ctx cc = {
1123 .inode = inode,
1124 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1125 .cluster_size = F2FS_I(inode)->i_cluster_size,
1126 .rpages = fsdata,
1127 };
1128 bool first_index = (index == cc.rpages[0]->index);
1129
1130 if (copied)
1131 set_cluster_dirty(&cc);
1132
1133 f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1134 f2fs_destroy_compress_ctx(&cc, false);
1135
1136 return first_index;
1137 }
1138
f2fs_truncate_partial_cluster(struct inode * inode,u64 from,bool lock)1139 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1140 {
1141 void *fsdata = NULL;
1142 struct page *pagep;
1143 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1144 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1145 log_cluster_size;
1146 int err;
1147
1148 err = f2fs_is_compressed_cluster(inode, start_idx);
1149 if (err < 0)
1150 return err;
1151
1152 /* truncate normal cluster */
1153 if (!err)
1154 return f2fs_do_truncate_blocks(inode, from, lock);
1155
1156 /* truncate compressed cluster */
1157 err = f2fs_prepare_compress_overwrite(inode, &pagep,
1158 start_idx, &fsdata);
1159
1160 /* should not be a normal cluster */
1161 f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1162
1163 if (err <= 0)
1164 return err;
1165
1166 if (err > 0) {
1167 struct page **rpages = fsdata;
1168 int cluster_size = F2FS_I(inode)->i_cluster_size;
1169 int i;
1170
1171 for (i = cluster_size - 1; i >= 0; i--) {
1172 loff_t start = rpages[i]->index << PAGE_SHIFT;
1173
1174 if (from <= start) {
1175 zero_user_segment(rpages[i], 0, PAGE_SIZE);
1176 } else {
1177 zero_user_segment(rpages[i], from - start,
1178 PAGE_SIZE);
1179 break;
1180 }
1181 }
1182
1183 f2fs_compress_write_end(inode, fsdata, start_idx, true);
1184 }
1185 return 0;
1186 }
1187
f2fs_write_compressed_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1188 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1189 int *submitted,
1190 struct writeback_control *wbc,
1191 enum iostat_type io_type)
1192 {
1193 struct inode *inode = cc->inode;
1194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1195 struct f2fs_inode_info *fi = F2FS_I(inode);
1196 struct f2fs_io_info fio = {
1197 .sbi = sbi,
1198 .ino = cc->inode->i_ino,
1199 .type = DATA,
1200 .op = REQ_OP_WRITE,
1201 .op_flags = wbc_to_write_flags(wbc),
1202 .old_blkaddr = NEW_ADDR,
1203 .page = NULL,
1204 .encrypted_page = NULL,
1205 .compressed_page = NULL,
1206 .submitted = 0,
1207 .io_type = io_type,
1208 .io_wbc = wbc,
1209 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ?
1210 1 : 0,
1211 };
1212 struct dnode_of_data dn;
1213 struct node_info ni;
1214 struct compress_io_ctx *cic;
1215 pgoff_t start_idx = start_idx_of_cluster(cc);
1216 unsigned int last_index = cc->cluster_size - 1;
1217 loff_t psize;
1218 int i, err;
1219
1220 /* we should bypass data pages to proceed the kworker jobs */
1221 if (unlikely(f2fs_cp_error(sbi))) {
1222 mapping_set_error(cc->rpages[0]->mapping, -EIO);
1223 goto out_free;
1224 }
1225
1226 if (IS_NOQUOTA(inode)) {
1227 /*
1228 * We need to wait for node_write to avoid block allocation during
1229 * checkpoint. This can only happen to quota writes which can cause
1230 * the below discard race condition.
1231 */
1232 f2fs_down_read(&sbi->node_write);
1233 } else if (!f2fs_trylock_op(sbi)) {
1234 goto out_free;
1235 }
1236
1237 set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1238
1239 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1240 if (err)
1241 goto out_unlock_op;
1242
1243 for (i = 0; i < cc->cluster_size; i++) {
1244 if (data_blkaddr(dn.inode, dn.node_page,
1245 dn.ofs_in_node + i) == NULL_ADDR)
1246 goto out_put_dnode;
1247 }
1248
1249 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1250
1251 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1252 if (err)
1253 goto out_put_dnode;
1254
1255 fio.version = ni.version;
1256
1257 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1258 if (!cic)
1259 goto out_put_dnode;
1260
1261 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1262 cic->inode = inode;
1263 atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1264 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1265 if (!cic->rpages)
1266 goto out_put_cic;
1267
1268 cic->nr_rpages = cc->cluster_size;
1269
1270 for (i = 0; i < cc->valid_nr_cpages; i++) {
1271 f2fs_set_compressed_page(cc->cpages[i], inode,
1272 cc->rpages[i + 1]->index, cic);
1273 fio.compressed_page = cc->cpages[i];
1274
1275 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1276 dn.ofs_in_node + i + 1);
1277
1278 /* wait for GCed page writeback via META_MAPPING */
1279 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1280
1281 if (fio.encrypted) {
1282 fio.page = cc->rpages[i + 1];
1283 err = f2fs_encrypt_one_page(&fio);
1284 if (err)
1285 goto out_destroy_crypt;
1286 cc->cpages[i] = fio.encrypted_page;
1287 }
1288 }
1289
1290 set_cluster_writeback(cc);
1291
1292 for (i = 0; i < cc->cluster_size; i++)
1293 cic->rpages[i] = cc->rpages[i];
1294
1295 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1296 block_t blkaddr;
1297
1298 blkaddr = f2fs_data_blkaddr(&dn);
1299 fio.page = cc->rpages[i];
1300 fio.old_blkaddr = blkaddr;
1301
1302 /* cluster header */
1303 if (i == 0) {
1304 if (blkaddr == COMPRESS_ADDR)
1305 fio.compr_blocks++;
1306 if (__is_valid_data_blkaddr(blkaddr))
1307 f2fs_invalidate_blocks(sbi, blkaddr);
1308 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1309 goto unlock_continue;
1310 }
1311
1312 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1313 fio.compr_blocks++;
1314
1315 if (i > cc->valid_nr_cpages) {
1316 if (__is_valid_data_blkaddr(blkaddr)) {
1317 f2fs_invalidate_blocks(sbi, blkaddr);
1318 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1319 }
1320 goto unlock_continue;
1321 }
1322
1323 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1324
1325 if (fio.encrypted)
1326 fio.encrypted_page = cc->cpages[i - 1];
1327 else
1328 fio.compressed_page = cc->cpages[i - 1];
1329
1330 cc->cpages[i - 1] = NULL;
1331 f2fs_outplace_write_data(&dn, &fio);
1332 (*submitted)++;
1333 unlock_continue:
1334 inode_dec_dirty_pages(cc->inode);
1335 unlock_page(fio.page);
1336 }
1337
1338 if (fio.compr_blocks)
1339 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1340 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1341 add_compr_block_stat(inode, cc->valid_nr_cpages);
1342
1343 set_inode_flag(cc->inode, FI_APPEND_WRITE);
1344 if (cc->cluster_idx == 0)
1345 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1346
1347 f2fs_put_dnode(&dn);
1348 if (IS_NOQUOTA(inode))
1349 f2fs_up_read(&sbi->node_write);
1350 else
1351 f2fs_unlock_op(sbi);
1352
1353 spin_lock(&fi->i_size_lock);
1354 if (fi->last_disk_size < psize)
1355 fi->last_disk_size = psize;
1356 spin_unlock(&fi->i_size_lock);
1357
1358 f2fs_put_rpages(cc);
1359 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1360 cc->cpages = NULL;
1361 f2fs_destroy_compress_ctx(cc, false);
1362 return 0;
1363
1364 out_destroy_crypt:
1365 page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1366
1367 for (--i; i >= 0; i--)
1368 fscrypt_finalize_bounce_page(&cc->cpages[i]);
1369 out_put_cic:
1370 kmem_cache_free(cic_entry_slab, cic);
1371 out_put_dnode:
1372 f2fs_put_dnode(&dn);
1373 out_unlock_op:
1374 if (IS_NOQUOTA(inode))
1375 f2fs_up_read(&sbi->node_write);
1376 else
1377 f2fs_unlock_op(sbi);
1378 out_free:
1379 for (i = 0; i < cc->valid_nr_cpages; i++) {
1380 f2fs_compress_free_page(cc->cpages[i]);
1381 cc->cpages[i] = NULL;
1382 }
1383 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1384 cc->cpages = NULL;
1385 return -EAGAIN;
1386 }
1387
f2fs_compress_write_end_io(struct bio * bio,struct page * page)1388 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1389 {
1390 struct f2fs_sb_info *sbi = bio->bi_private;
1391 struct compress_io_ctx *cic =
1392 (struct compress_io_ctx *)page_private(page);
1393 int i;
1394
1395 if (unlikely(bio->bi_status))
1396 mapping_set_error(cic->inode->i_mapping, -EIO);
1397
1398 f2fs_compress_free_page(page);
1399
1400 dec_page_count(sbi, F2FS_WB_DATA);
1401
1402 if (atomic_dec_return(&cic->pending_pages))
1403 return;
1404
1405 for (i = 0; i < cic->nr_rpages; i++) {
1406 WARN_ON(!cic->rpages[i]);
1407 clear_page_private_gcing(cic->rpages[i]);
1408 end_page_writeback(cic->rpages[i]);
1409 }
1410
1411 page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1412 kmem_cache_free(cic_entry_slab, cic);
1413 }
1414
f2fs_write_raw_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1415 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1416 int *submitted,
1417 struct writeback_control *wbc,
1418 enum iostat_type io_type)
1419 {
1420 struct address_space *mapping = cc->inode->i_mapping;
1421 int _submitted, compr_blocks, ret, i;
1422
1423 compr_blocks = f2fs_compressed_blocks(cc);
1424
1425 for (i = 0; i < cc->cluster_size; i++) {
1426 if (!cc->rpages[i])
1427 continue;
1428
1429 redirty_page_for_writepage(wbc, cc->rpages[i]);
1430 unlock_page(cc->rpages[i]);
1431 }
1432
1433 if (compr_blocks < 0)
1434 return compr_blocks;
1435
1436 for (i = 0; i < cc->cluster_size; i++) {
1437 if (!cc->rpages[i])
1438 continue;
1439 retry_write:
1440 lock_page(cc->rpages[i]);
1441
1442 if (cc->rpages[i]->mapping != mapping) {
1443 continue_unlock:
1444 unlock_page(cc->rpages[i]);
1445 continue;
1446 }
1447
1448 if (!PageDirty(cc->rpages[i]))
1449 goto continue_unlock;
1450
1451 if (PageWriteback(cc->rpages[i])) {
1452 if (wbc->sync_mode == WB_SYNC_NONE)
1453 goto continue_unlock;
1454 f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
1455 }
1456
1457 if (!clear_page_dirty_for_io(cc->rpages[i]))
1458 goto continue_unlock;
1459
1460 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1461 NULL, NULL, wbc, io_type,
1462 compr_blocks, false);
1463 if (ret) {
1464 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1465 unlock_page(cc->rpages[i]);
1466 ret = 0;
1467 } else if (ret == -EAGAIN) {
1468 /*
1469 * for quota file, just redirty left pages to
1470 * avoid deadlock caused by cluster update race
1471 * from foreground operation.
1472 */
1473 if (IS_NOQUOTA(cc->inode))
1474 return 0;
1475 ret = 0;
1476 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1477 goto retry_write;
1478 }
1479 return ret;
1480 }
1481
1482 *submitted += _submitted;
1483 }
1484
1485 f2fs_balance_fs(F2FS_M_SB(mapping), true);
1486
1487 return 0;
1488 }
1489
f2fs_write_multi_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1490 int f2fs_write_multi_pages(struct compress_ctx *cc,
1491 int *submitted,
1492 struct writeback_control *wbc,
1493 enum iostat_type io_type)
1494 {
1495 int err;
1496
1497 *submitted = 0;
1498 if (cluster_may_compress(cc)) {
1499 err = f2fs_compress_pages(cc);
1500 if (err == -EAGAIN) {
1501 add_compr_block_stat(cc->inode, cc->cluster_size);
1502 goto write;
1503 } else if (err) {
1504 f2fs_put_rpages_wbc(cc, wbc, true, 1);
1505 goto destroy_out;
1506 }
1507
1508 err = f2fs_write_compressed_pages(cc, submitted,
1509 wbc, io_type);
1510 if (!err)
1511 return 0;
1512 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1513 }
1514 write:
1515 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1516
1517 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1518 f2fs_put_rpages_wbc(cc, wbc, false, 0);
1519 destroy_out:
1520 f2fs_destroy_compress_ctx(cc, false);
1521 return err;
1522 }
1523
allow_memalloc_for_decomp(struct f2fs_sb_info * sbi,bool pre_alloc)1524 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1525 bool pre_alloc)
1526 {
1527 return pre_alloc ^ f2fs_low_mem_mode(sbi);
1528 }
1529
f2fs_prepare_decomp_mem(struct decompress_io_ctx * dic,bool pre_alloc)1530 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1531 bool pre_alloc)
1532 {
1533 const struct f2fs_compress_ops *cops =
1534 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1535 int i;
1536
1537 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1538 return 0;
1539
1540 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1541 if (!dic->tpages)
1542 return -ENOMEM;
1543
1544 for (i = 0; i < dic->cluster_size; i++) {
1545 if (dic->rpages[i]) {
1546 dic->tpages[i] = dic->rpages[i];
1547 continue;
1548 }
1549
1550 dic->tpages[i] = f2fs_compress_alloc_page();
1551 if (!dic->tpages[i])
1552 return -ENOMEM;
1553 }
1554
1555 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1556 if (!dic->rbuf)
1557 return -ENOMEM;
1558
1559 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1560 if (!dic->cbuf)
1561 return -ENOMEM;
1562
1563 if (cops->init_decompress_ctx)
1564 return cops->init_decompress_ctx(dic);
1565
1566 return 0;
1567 }
1568
f2fs_release_decomp_mem(struct decompress_io_ctx * dic,bool bypass_destroy_callback,bool pre_alloc)1569 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1570 bool bypass_destroy_callback, bool pre_alloc)
1571 {
1572 const struct f2fs_compress_ops *cops =
1573 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1574
1575 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1576 return;
1577
1578 if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1579 cops->destroy_decompress_ctx(dic);
1580
1581 if (dic->cbuf)
1582 vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1583
1584 if (dic->rbuf)
1585 vm_unmap_ram(dic->rbuf, dic->cluster_size);
1586 }
1587
1588 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1589 bool bypass_destroy_callback);
1590
f2fs_alloc_dic(struct compress_ctx * cc)1591 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1592 {
1593 struct decompress_io_ctx *dic;
1594 pgoff_t start_idx = start_idx_of_cluster(cc);
1595 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1596 int i, ret;
1597
1598 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1599 if (!dic)
1600 return ERR_PTR(-ENOMEM);
1601
1602 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1603 if (!dic->rpages) {
1604 kmem_cache_free(dic_entry_slab, dic);
1605 return ERR_PTR(-ENOMEM);
1606 }
1607
1608 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1609 dic->inode = cc->inode;
1610 atomic_set(&dic->remaining_pages, cc->nr_cpages);
1611 dic->cluster_idx = cc->cluster_idx;
1612 dic->cluster_size = cc->cluster_size;
1613 dic->log_cluster_size = cc->log_cluster_size;
1614 dic->nr_cpages = cc->nr_cpages;
1615 refcount_set(&dic->refcnt, 1);
1616 dic->failed = false;
1617 dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1618
1619 for (i = 0; i < dic->cluster_size; i++)
1620 dic->rpages[i] = cc->rpages[i];
1621 dic->nr_rpages = cc->cluster_size;
1622
1623 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1624 if (!dic->cpages) {
1625 ret = -ENOMEM;
1626 goto out_free;
1627 }
1628
1629 for (i = 0; i < dic->nr_cpages; i++) {
1630 struct page *page;
1631
1632 page = f2fs_compress_alloc_page();
1633 if (!page) {
1634 ret = -ENOMEM;
1635 goto out_free;
1636 }
1637
1638 f2fs_set_compressed_page(page, cc->inode,
1639 start_idx + i + 1, dic);
1640 dic->cpages[i] = page;
1641 }
1642
1643 ret = f2fs_prepare_decomp_mem(dic, true);
1644 if (ret)
1645 goto out_free;
1646
1647 return dic;
1648
1649 out_free:
1650 f2fs_free_dic(dic, true);
1651 return ERR_PTR(ret);
1652 }
1653
f2fs_free_dic(struct decompress_io_ctx * dic,bool bypass_destroy_callback)1654 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1655 bool bypass_destroy_callback)
1656 {
1657 int i;
1658
1659 f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1660
1661 if (dic->tpages) {
1662 for (i = 0; i < dic->cluster_size; i++) {
1663 if (dic->rpages[i])
1664 continue;
1665 if (!dic->tpages[i])
1666 continue;
1667 f2fs_compress_free_page(dic->tpages[i]);
1668 }
1669 page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1670 }
1671
1672 if (dic->cpages) {
1673 for (i = 0; i < dic->nr_cpages; i++) {
1674 if (!dic->cpages[i])
1675 continue;
1676 f2fs_compress_free_page(dic->cpages[i]);
1677 }
1678 page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1679 }
1680
1681 page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1682 kmem_cache_free(dic_entry_slab, dic);
1683 }
1684
f2fs_late_free_dic(struct work_struct * work)1685 static void f2fs_late_free_dic(struct work_struct *work)
1686 {
1687 struct decompress_io_ctx *dic =
1688 container_of(work, struct decompress_io_ctx, free_work);
1689
1690 f2fs_free_dic(dic, false);
1691 }
1692
f2fs_put_dic(struct decompress_io_ctx * dic,bool in_task)1693 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1694 {
1695 if (refcount_dec_and_test(&dic->refcnt)) {
1696 if (in_task) {
1697 f2fs_free_dic(dic, false);
1698 } else {
1699 INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1700 queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1701 &dic->free_work);
1702 }
1703 }
1704 }
1705
f2fs_verify_cluster(struct work_struct * work)1706 static void f2fs_verify_cluster(struct work_struct *work)
1707 {
1708 struct decompress_io_ctx *dic =
1709 container_of(work, struct decompress_io_ctx, verity_work);
1710 int i;
1711
1712 /* Verify, update, and unlock the decompressed pages. */
1713 for (i = 0; i < dic->cluster_size; i++) {
1714 struct page *rpage = dic->rpages[i];
1715
1716 if (!rpage)
1717 continue;
1718
1719 if (fsverity_verify_page(rpage))
1720 SetPageUptodate(rpage);
1721 else
1722 ClearPageUptodate(rpage);
1723 unlock_page(rpage);
1724 }
1725
1726 f2fs_put_dic(dic, true);
1727 }
1728
1729 /*
1730 * This is called when a compressed cluster has been decompressed
1731 * (or failed to be read and/or decompressed).
1732 */
f2fs_decompress_end_io(struct decompress_io_ctx * dic,bool failed,bool in_task)1733 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1734 bool in_task)
1735 {
1736 int i;
1737
1738 if (!failed && dic->need_verity) {
1739 /*
1740 * Note that to avoid deadlocks, the verity work can't be done
1741 * on the decompression workqueue. This is because verifying
1742 * the data pages can involve reading metadata pages from the
1743 * file, and these metadata pages may be compressed.
1744 */
1745 INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1746 fsverity_enqueue_verify_work(&dic->verity_work);
1747 return;
1748 }
1749
1750 /* Update and unlock the cluster's pagecache pages. */
1751 for (i = 0; i < dic->cluster_size; i++) {
1752 struct page *rpage = dic->rpages[i];
1753
1754 if (!rpage)
1755 continue;
1756
1757 if (failed)
1758 ClearPageUptodate(rpage);
1759 else
1760 SetPageUptodate(rpage);
1761 unlock_page(rpage);
1762 }
1763
1764 /*
1765 * Release the reference to the decompress_io_ctx that was being held
1766 * for I/O completion.
1767 */
1768 f2fs_put_dic(dic, in_task);
1769 }
1770
1771 /*
1772 * Put a reference to a compressed page's decompress_io_ctx.
1773 *
1774 * This is called when the page is no longer needed and can be freed.
1775 */
f2fs_put_page_dic(struct page * page,bool in_task)1776 void f2fs_put_page_dic(struct page *page, bool in_task)
1777 {
1778 struct decompress_io_ctx *dic =
1779 (struct decompress_io_ctx *)page_private(page);
1780
1781 f2fs_put_dic(dic, in_task);
1782 }
1783
1784 /*
1785 * check whether cluster blocks are contiguous, and add extent cache entry
1786 * only if cluster blocks are logically and physically contiguous.
1787 */
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)1788 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1789 {
1790 bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1791 int i = compressed ? 1 : 0;
1792 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1793 dn->ofs_in_node + i);
1794
1795 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1796 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1797 dn->ofs_in_node + i);
1798
1799 if (!__is_valid_data_blkaddr(blkaddr))
1800 break;
1801 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1802 return 0;
1803 }
1804
1805 return compressed ? i - 1 : i;
1806 }
1807
1808 const struct address_space_operations f2fs_compress_aops = {
1809 .releasepage = f2fs_release_page,
1810 .invalidatepage = f2fs_invalidate_page,
1811 };
1812
COMPRESS_MAPPING(struct f2fs_sb_info * sbi)1813 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1814 {
1815 return sbi->compress_inode->i_mapping;
1816 }
1817
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)1818 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1819 {
1820 if (!sbi->compress_inode)
1821 return;
1822 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1823 }
1824
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)1825 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1826 nid_t ino, block_t blkaddr)
1827 {
1828 struct page *cpage;
1829 int ret;
1830
1831 if (!test_opt(sbi, COMPRESS_CACHE))
1832 return;
1833
1834 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1835 return;
1836
1837 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1838 return;
1839
1840 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1841 if (cpage) {
1842 f2fs_put_page(cpage, 0);
1843 return;
1844 }
1845
1846 cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1847 if (!cpage)
1848 return;
1849
1850 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1851 blkaddr, GFP_NOFS);
1852 if (ret) {
1853 f2fs_put_page(cpage, 0);
1854 return;
1855 }
1856
1857 set_page_private_data(cpage, ino);
1858
1859 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1860 goto out;
1861
1862 memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1863 SetPageUptodate(cpage);
1864 out:
1865 f2fs_put_page(cpage, 1);
1866 }
1867
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)1868 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1869 block_t blkaddr)
1870 {
1871 struct page *cpage;
1872 bool hitted = false;
1873
1874 if (!test_opt(sbi, COMPRESS_CACHE))
1875 return false;
1876
1877 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1878 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1879 if (cpage) {
1880 if (PageUptodate(cpage)) {
1881 atomic_inc(&sbi->compress_page_hit);
1882 memcpy(page_address(page),
1883 page_address(cpage), PAGE_SIZE);
1884 hitted = true;
1885 }
1886 f2fs_put_page(cpage, 1);
1887 }
1888
1889 return hitted;
1890 }
1891
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)1892 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1893 {
1894 struct address_space *mapping = COMPRESS_MAPPING(sbi);
1895 struct pagevec pvec;
1896 pgoff_t index = 0;
1897 pgoff_t end = MAX_BLKADDR(sbi);
1898
1899 if (!mapping->nrpages)
1900 return;
1901
1902 pagevec_init(&pvec);
1903
1904 do {
1905 unsigned int nr_pages;
1906 int i;
1907
1908 nr_pages = pagevec_lookup_range(&pvec, mapping,
1909 &index, end - 1);
1910 if (!nr_pages)
1911 break;
1912
1913 for (i = 0; i < nr_pages; i++) {
1914 struct page *page = pvec.pages[i];
1915
1916 if (page->index > end)
1917 break;
1918
1919 lock_page(page);
1920 if (page->mapping != mapping) {
1921 unlock_page(page);
1922 continue;
1923 }
1924
1925 if (ino != get_page_private_data(page)) {
1926 unlock_page(page);
1927 continue;
1928 }
1929
1930 generic_error_remove_page(mapping, page);
1931 unlock_page(page);
1932 }
1933 pagevec_release(&pvec);
1934 cond_resched();
1935 } while (index < end);
1936 }
1937
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)1938 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1939 {
1940 struct inode *inode;
1941
1942 if (!test_opt(sbi, COMPRESS_CACHE))
1943 return 0;
1944
1945 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1946 if (IS_ERR(inode))
1947 return PTR_ERR(inode);
1948 sbi->compress_inode = inode;
1949
1950 sbi->compress_percent = COMPRESS_PERCENT;
1951 sbi->compress_watermark = COMPRESS_WATERMARK;
1952
1953 atomic_set(&sbi->compress_page_hit, 0);
1954
1955 return 0;
1956 }
1957
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)1958 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1959 {
1960 if (!sbi->compress_inode)
1961 return;
1962 iput(sbi->compress_inode);
1963 sbi->compress_inode = NULL;
1964 }
1965
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)1966 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1967 {
1968 dev_t dev = sbi->sb->s_bdev->bd_dev;
1969 char slab_name[35];
1970
1971 if (!f2fs_sb_has_compression(sbi))
1972 return 0;
1973
1974 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1975
1976 sbi->page_array_slab_size = sizeof(struct page *) <<
1977 F2FS_OPTION(sbi).compress_log_size;
1978
1979 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1980 sbi->page_array_slab_size);
1981 return sbi->page_array_slab ? 0 : -ENOMEM;
1982 }
1983
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)1984 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1985 {
1986 kmem_cache_destroy(sbi->page_array_slab);
1987 }
1988
f2fs_init_compress_cache(void)1989 int __init f2fs_init_compress_cache(void)
1990 {
1991 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
1992 sizeof(struct compress_io_ctx));
1993 if (!cic_entry_slab)
1994 return -ENOMEM;
1995 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
1996 sizeof(struct decompress_io_ctx));
1997 if (!dic_entry_slab)
1998 goto free_cic;
1999 return 0;
2000 free_cic:
2001 kmem_cache_destroy(cic_entry_slab);
2002 return -ENOMEM;
2003 }
2004
f2fs_destroy_compress_cache(void)2005 void f2fs_destroy_compress_cache(void)
2006 {
2007 kmem_cache_destroy(dic_entry_slab);
2008 kmem_cache_destroy(cic_entry_slab);
2009 }
2010