• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Network filesystem high-level read support.
3  *
4  * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/export.h>
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/slab.h>
14 #include <linux/uio.h>
15 #include <linux/sched/mm.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/netfs.h>
18 #include "internal.h"
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/netfs.h>
21 
22 MODULE_DESCRIPTION("Network fs support");
23 MODULE_AUTHOR("Red Hat, Inc.");
24 MODULE_LICENSE("GPL");
25 
26 unsigned netfs_debug;
27 module_param_named(debug, netfs_debug, uint, S_IWUSR | S_IRUGO);
28 MODULE_PARM_DESC(netfs_debug, "Netfs support debugging mask");
29 
30 static void netfs_rreq_work(struct work_struct *);
31 static void __netfs_put_subrequest(struct netfs_read_subrequest *, bool);
32 
netfs_put_subrequest(struct netfs_read_subrequest * subreq,bool was_async)33 static void netfs_put_subrequest(struct netfs_read_subrequest *subreq,
34 				 bool was_async)
35 {
36 	if (refcount_dec_and_test(&subreq->usage))
37 		__netfs_put_subrequest(subreq, was_async);
38 }
39 
netfs_alloc_read_request(const struct netfs_read_request_ops * ops,void * netfs_priv,struct file * file)40 static struct netfs_read_request *netfs_alloc_read_request(
41 	const struct netfs_read_request_ops *ops, void *netfs_priv,
42 	struct file *file)
43 {
44 	static atomic_t debug_ids;
45 	struct netfs_read_request *rreq;
46 
47 	rreq = kzalloc(sizeof(struct netfs_read_request), GFP_KERNEL);
48 	if (rreq) {
49 		rreq->netfs_ops	= ops;
50 		rreq->netfs_priv = netfs_priv;
51 		rreq->inode	= file_inode(file);
52 		rreq->i_size	= i_size_read(rreq->inode);
53 		rreq->debug_id	= atomic_inc_return(&debug_ids);
54 		INIT_LIST_HEAD(&rreq->subrequests);
55 		INIT_WORK(&rreq->work, netfs_rreq_work);
56 		refcount_set(&rreq->usage, 1);
57 		__set_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
58 		ops->init_rreq(rreq, file);
59 		netfs_stat(&netfs_n_rh_rreq);
60 	}
61 
62 	return rreq;
63 }
64 
netfs_get_read_request(struct netfs_read_request * rreq)65 static void netfs_get_read_request(struct netfs_read_request *rreq)
66 {
67 	refcount_inc(&rreq->usage);
68 }
69 
netfs_rreq_clear_subreqs(struct netfs_read_request * rreq,bool was_async)70 static void netfs_rreq_clear_subreqs(struct netfs_read_request *rreq,
71 				     bool was_async)
72 {
73 	struct netfs_read_subrequest *subreq;
74 
75 	while (!list_empty(&rreq->subrequests)) {
76 		subreq = list_first_entry(&rreq->subrequests,
77 					  struct netfs_read_subrequest, rreq_link);
78 		list_del(&subreq->rreq_link);
79 		netfs_put_subrequest(subreq, was_async);
80 	}
81 }
82 
netfs_free_read_request(struct work_struct * work)83 static void netfs_free_read_request(struct work_struct *work)
84 {
85 	struct netfs_read_request *rreq =
86 		container_of(work, struct netfs_read_request, work);
87 	netfs_rreq_clear_subreqs(rreq, false);
88 	if (rreq->netfs_priv)
89 		rreq->netfs_ops->cleanup(rreq->mapping, rreq->netfs_priv);
90 	trace_netfs_rreq(rreq, netfs_rreq_trace_free);
91 	if (rreq->cache_resources.ops)
92 		rreq->cache_resources.ops->end_operation(&rreq->cache_resources);
93 	kfree(rreq);
94 	netfs_stat_d(&netfs_n_rh_rreq);
95 }
96 
netfs_put_read_request(struct netfs_read_request * rreq,bool was_async)97 static void netfs_put_read_request(struct netfs_read_request *rreq, bool was_async)
98 {
99 	if (refcount_dec_and_test(&rreq->usage)) {
100 		if (was_async) {
101 			rreq->work.func = netfs_free_read_request;
102 			if (!queue_work(system_unbound_wq, &rreq->work))
103 				BUG();
104 		} else {
105 			netfs_free_read_request(&rreq->work);
106 		}
107 	}
108 }
109 
110 /*
111  * Allocate and partially initialise an I/O request structure.
112  */
netfs_alloc_subrequest(struct netfs_read_request * rreq)113 static struct netfs_read_subrequest *netfs_alloc_subrequest(
114 	struct netfs_read_request *rreq)
115 {
116 	struct netfs_read_subrequest *subreq;
117 
118 	subreq = kzalloc(sizeof(struct netfs_read_subrequest), GFP_KERNEL);
119 	if (subreq) {
120 		INIT_LIST_HEAD(&subreq->rreq_link);
121 		refcount_set(&subreq->usage, 2);
122 		subreq->rreq = rreq;
123 		netfs_get_read_request(rreq);
124 		netfs_stat(&netfs_n_rh_sreq);
125 	}
126 
127 	return subreq;
128 }
129 
netfs_get_read_subrequest(struct netfs_read_subrequest * subreq)130 static void netfs_get_read_subrequest(struct netfs_read_subrequest *subreq)
131 {
132 	refcount_inc(&subreq->usage);
133 }
134 
__netfs_put_subrequest(struct netfs_read_subrequest * subreq,bool was_async)135 static void __netfs_put_subrequest(struct netfs_read_subrequest *subreq,
136 				   bool was_async)
137 {
138 	struct netfs_read_request *rreq = subreq->rreq;
139 
140 	trace_netfs_sreq(subreq, netfs_sreq_trace_free);
141 	kfree(subreq);
142 	netfs_stat_d(&netfs_n_rh_sreq);
143 	netfs_put_read_request(rreq, was_async);
144 }
145 
146 /*
147  * Clear the unread part of an I/O request.
148  */
netfs_clear_unread(struct netfs_read_subrequest * subreq)149 static void netfs_clear_unread(struct netfs_read_subrequest *subreq)
150 {
151 	struct iov_iter iter;
152 
153 	iov_iter_xarray(&iter, READ, &subreq->rreq->mapping->i_pages,
154 			subreq->start + subreq->transferred,
155 			subreq->len   - subreq->transferred);
156 	iov_iter_zero(iov_iter_count(&iter), &iter);
157 }
158 
netfs_cache_read_terminated(void * priv,ssize_t transferred_or_error,bool was_async)159 static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error,
160 					bool was_async)
161 {
162 	struct netfs_read_subrequest *subreq = priv;
163 
164 	netfs_subreq_terminated(subreq, transferred_or_error, was_async);
165 }
166 
167 /*
168  * Issue a read against the cache.
169  * - Eats the caller's ref on subreq.
170  */
netfs_read_from_cache(struct netfs_read_request * rreq,struct netfs_read_subrequest * subreq,bool seek_data)171 static void netfs_read_from_cache(struct netfs_read_request *rreq,
172 				  struct netfs_read_subrequest *subreq,
173 				  bool seek_data)
174 {
175 	struct netfs_cache_resources *cres = &rreq->cache_resources;
176 	struct iov_iter iter;
177 
178 	netfs_stat(&netfs_n_rh_read);
179 	iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages,
180 			subreq->start + subreq->transferred,
181 			subreq->len   - subreq->transferred);
182 
183 	cres->ops->read(cres, subreq->start, &iter, seek_data,
184 			netfs_cache_read_terminated, subreq);
185 }
186 
187 /*
188  * Fill a subrequest region with zeroes.
189  */
netfs_fill_with_zeroes(struct netfs_read_request * rreq,struct netfs_read_subrequest * subreq)190 static void netfs_fill_with_zeroes(struct netfs_read_request *rreq,
191 				   struct netfs_read_subrequest *subreq)
192 {
193 	netfs_stat(&netfs_n_rh_zero);
194 	__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
195 	netfs_subreq_terminated(subreq, 0, false);
196 }
197 
198 /*
199  * Ask the netfs to issue a read request to the server for us.
200  *
201  * The netfs is expected to read from subreq->pos + subreq->transferred to
202  * subreq->pos + subreq->len - 1.  It may not backtrack and write data into the
203  * buffer prior to the transferred point as it might clobber dirty data
204  * obtained from the cache.
205  *
206  * Alternatively, the netfs is allowed to indicate one of two things:
207  *
208  * - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and
209  *   make progress.
210  *
211  * - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be
212  *   cleared.
213  */
netfs_read_from_server(struct netfs_read_request * rreq,struct netfs_read_subrequest * subreq)214 static void netfs_read_from_server(struct netfs_read_request *rreq,
215 				   struct netfs_read_subrequest *subreq)
216 {
217 	netfs_stat(&netfs_n_rh_download);
218 	rreq->netfs_ops->issue_op(subreq);
219 }
220 
221 /*
222  * Release those waiting.
223  */
netfs_rreq_completed(struct netfs_read_request * rreq,bool was_async)224 static void netfs_rreq_completed(struct netfs_read_request *rreq, bool was_async)
225 {
226 	trace_netfs_rreq(rreq, netfs_rreq_trace_done);
227 	netfs_rreq_clear_subreqs(rreq, was_async);
228 	netfs_put_read_request(rreq, was_async);
229 }
230 
231 /*
232  * Deal with the completion of writing the data to the cache.  We have to clear
233  * the PG_fscache bits on the pages involved and release the caller's ref.
234  *
235  * May be called in softirq mode and we inherit a ref from the caller.
236  */
netfs_rreq_unmark_after_write(struct netfs_read_request * rreq,bool was_async)237 static void netfs_rreq_unmark_after_write(struct netfs_read_request *rreq,
238 					  bool was_async)
239 {
240 	struct netfs_read_subrequest *subreq;
241 	struct page *page;
242 	pgoff_t unlocked = 0;
243 	bool have_unlocked = false;
244 
245 	rcu_read_lock();
246 
247 	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
248 		XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE);
249 
250 		xas_for_each(&xas, page, (subreq->start + subreq->len - 1) / PAGE_SIZE) {
251 			/* We might have multiple writes from the same huge
252 			 * page, but we mustn't unlock a page more than once.
253 			 */
254 			if (have_unlocked && page->index <= unlocked)
255 				continue;
256 			unlocked = page->index;
257 			end_page_fscache(page);
258 			have_unlocked = true;
259 		}
260 	}
261 
262 	rcu_read_unlock();
263 	netfs_rreq_completed(rreq, was_async);
264 }
265 
netfs_rreq_copy_terminated(void * priv,ssize_t transferred_or_error,bool was_async)266 static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error,
267 				       bool was_async)
268 {
269 	struct netfs_read_subrequest *subreq = priv;
270 	struct netfs_read_request *rreq = subreq->rreq;
271 
272 	if (IS_ERR_VALUE(transferred_or_error)) {
273 		netfs_stat(&netfs_n_rh_write_failed);
274 		trace_netfs_failure(rreq, subreq, transferred_or_error,
275 				    netfs_fail_copy_to_cache);
276 	} else {
277 		netfs_stat(&netfs_n_rh_write_done);
278 	}
279 
280 	trace_netfs_sreq(subreq, netfs_sreq_trace_write_term);
281 
282 	/* If we decrement nr_wr_ops to 0, the ref belongs to us. */
283 	if (atomic_dec_and_test(&rreq->nr_wr_ops))
284 		netfs_rreq_unmark_after_write(rreq, was_async);
285 
286 	netfs_put_subrequest(subreq, was_async);
287 }
288 
289 /*
290  * Perform any outstanding writes to the cache.  We inherit a ref from the
291  * caller.
292  */
netfs_rreq_do_write_to_cache(struct netfs_read_request * rreq)293 static void netfs_rreq_do_write_to_cache(struct netfs_read_request *rreq)
294 {
295 	struct netfs_cache_resources *cres = &rreq->cache_resources;
296 	struct netfs_read_subrequest *subreq, *next, *p;
297 	struct iov_iter iter;
298 	int ret;
299 
300 	trace_netfs_rreq(rreq, netfs_rreq_trace_write);
301 
302 	/* We don't want terminating writes trying to wake us up whilst we're
303 	 * still going through the list.
304 	 */
305 	atomic_inc(&rreq->nr_wr_ops);
306 
307 	list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) {
308 		if (!test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags)) {
309 			list_del_init(&subreq->rreq_link);
310 			netfs_put_subrequest(subreq, false);
311 		}
312 	}
313 
314 	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
315 		/* Amalgamate adjacent writes */
316 		while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
317 			next = list_next_entry(subreq, rreq_link);
318 			if (next->start != subreq->start + subreq->len)
319 				break;
320 			subreq->len += next->len;
321 			list_del_init(&next->rreq_link);
322 			netfs_put_subrequest(next, false);
323 		}
324 
325 		ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len,
326 					       rreq->i_size);
327 		if (ret < 0) {
328 			trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write);
329 			trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip);
330 			continue;
331 		}
332 
333 		iov_iter_xarray(&iter, WRITE, &rreq->mapping->i_pages,
334 				subreq->start, subreq->len);
335 
336 		atomic_inc(&rreq->nr_wr_ops);
337 		netfs_stat(&netfs_n_rh_write);
338 		netfs_get_read_subrequest(subreq);
339 		trace_netfs_sreq(subreq, netfs_sreq_trace_write);
340 		cres->ops->write(cres, subreq->start, &iter,
341 				 netfs_rreq_copy_terminated, subreq);
342 	}
343 
344 	/* If we decrement nr_wr_ops to 0, the usage ref belongs to us. */
345 	if (atomic_dec_and_test(&rreq->nr_wr_ops))
346 		netfs_rreq_unmark_after_write(rreq, false);
347 }
348 
netfs_rreq_write_to_cache_work(struct work_struct * work)349 static void netfs_rreq_write_to_cache_work(struct work_struct *work)
350 {
351 	struct netfs_read_request *rreq =
352 		container_of(work, struct netfs_read_request, work);
353 
354 	netfs_rreq_do_write_to_cache(rreq);
355 }
356 
netfs_rreq_write_to_cache(struct netfs_read_request * rreq)357 static void netfs_rreq_write_to_cache(struct netfs_read_request *rreq)
358 {
359 	rreq->work.func = netfs_rreq_write_to_cache_work;
360 	if (!queue_work(system_unbound_wq, &rreq->work))
361 		BUG();
362 }
363 
364 /*
365  * Unlock the pages in a read operation.  We need to set PG_fscache on any
366  * pages we're going to write back before we unlock them.
367  */
netfs_rreq_unlock(struct netfs_read_request * rreq)368 static void netfs_rreq_unlock(struct netfs_read_request *rreq)
369 {
370 	struct netfs_read_subrequest *subreq;
371 	struct page *page;
372 	unsigned int iopos, account = 0;
373 	pgoff_t start_page = rreq->start / PAGE_SIZE;
374 	pgoff_t last_page = ((rreq->start + rreq->len) / PAGE_SIZE) - 1;
375 	bool subreq_failed = false;
376 	int i;
377 
378 	XA_STATE(xas, &rreq->mapping->i_pages, start_page);
379 
380 	if (test_bit(NETFS_RREQ_FAILED, &rreq->flags)) {
381 		__clear_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags);
382 		list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
383 			__clear_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags);
384 		}
385 	}
386 
387 	/* Walk through the pagecache and the I/O request lists simultaneously.
388 	 * We may have a mixture of cached and uncached sections and we only
389 	 * really want to write out the uncached sections.  This is slightly
390 	 * complicated by the possibility that we might have huge pages with a
391 	 * mixture inside.
392 	 */
393 	subreq = list_first_entry(&rreq->subrequests,
394 				  struct netfs_read_subrequest, rreq_link);
395 	iopos = 0;
396 	subreq_failed = (subreq->error < 0);
397 
398 	trace_netfs_rreq(rreq, netfs_rreq_trace_unlock);
399 
400 	rcu_read_lock();
401 	xas_for_each(&xas, page, last_page) {
402 		unsigned int pgpos = (page->index - start_page) * PAGE_SIZE;
403 		unsigned int pgend = pgpos + thp_size(page);
404 		bool pg_failed = false;
405 
406 		for (;;) {
407 			if (!subreq) {
408 				pg_failed = true;
409 				break;
410 			}
411 			if (test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags))
412 				set_page_fscache(page);
413 			pg_failed |= subreq_failed;
414 			if (pgend < iopos + subreq->len)
415 				break;
416 
417 			account += subreq->transferred;
418 			iopos += subreq->len;
419 			if (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
420 				subreq = list_next_entry(subreq, rreq_link);
421 				subreq_failed = (subreq->error < 0);
422 			} else {
423 				subreq = NULL;
424 				subreq_failed = false;
425 			}
426 			if (pgend == iopos)
427 				break;
428 		}
429 
430 		if (!pg_failed) {
431 			for (i = 0; i < thp_nr_pages(page); i++)
432 				flush_dcache_page(page);
433 			SetPageUptodate(page);
434 		}
435 
436 		if (!test_bit(NETFS_RREQ_DONT_UNLOCK_PAGES, &rreq->flags)) {
437 			if (page->index == rreq->no_unlock_page &&
438 			    test_bit(NETFS_RREQ_NO_UNLOCK_PAGE, &rreq->flags))
439 				_debug("no unlock");
440 			else
441 				unlock_page(page);
442 		}
443 	}
444 	rcu_read_unlock();
445 
446 	task_io_account_read(account);
447 	if (rreq->netfs_ops->done)
448 		rreq->netfs_ops->done(rreq);
449 }
450 
451 /*
452  * Handle a short read.
453  */
netfs_rreq_short_read(struct netfs_read_request * rreq,struct netfs_read_subrequest * subreq)454 static void netfs_rreq_short_read(struct netfs_read_request *rreq,
455 				  struct netfs_read_subrequest *subreq)
456 {
457 	__clear_bit(NETFS_SREQ_SHORT_READ, &subreq->flags);
458 	__set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags);
459 
460 	netfs_stat(&netfs_n_rh_short_read);
461 	trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short);
462 
463 	netfs_get_read_subrequest(subreq);
464 	atomic_inc(&rreq->nr_rd_ops);
465 	if (subreq->source == NETFS_READ_FROM_CACHE)
466 		netfs_read_from_cache(rreq, subreq, true);
467 	else
468 		netfs_read_from_server(rreq, subreq);
469 }
470 
471 /*
472  * Resubmit any short or failed operations.  Returns true if we got the rreq
473  * ref back.
474  */
netfs_rreq_perform_resubmissions(struct netfs_read_request * rreq)475 static bool netfs_rreq_perform_resubmissions(struct netfs_read_request *rreq)
476 {
477 	struct netfs_read_subrequest *subreq;
478 
479 	WARN_ON(in_interrupt());
480 
481 	trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit);
482 
483 	/* We don't want terminating submissions trying to wake us up whilst
484 	 * we're still going through the list.
485 	 */
486 	atomic_inc(&rreq->nr_rd_ops);
487 
488 	__clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
489 	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
490 		if (subreq->error) {
491 			if (subreq->source != NETFS_READ_FROM_CACHE)
492 				break;
493 			subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
494 			subreq->error = 0;
495 			netfs_stat(&netfs_n_rh_download_instead);
496 			trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead);
497 			netfs_get_read_subrequest(subreq);
498 			atomic_inc(&rreq->nr_rd_ops);
499 			netfs_read_from_server(rreq, subreq);
500 		} else if (test_bit(NETFS_SREQ_SHORT_READ, &subreq->flags)) {
501 			netfs_rreq_short_read(rreq, subreq);
502 		}
503 	}
504 
505 	/* If we decrement nr_rd_ops to 0, the usage ref belongs to us. */
506 	if (atomic_dec_and_test(&rreq->nr_rd_ops))
507 		return true;
508 
509 	wake_up_var(&rreq->nr_rd_ops);
510 	return false;
511 }
512 
513 /*
514  * Check to see if the data read is still valid.
515  */
netfs_rreq_is_still_valid(struct netfs_read_request * rreq)516 static void netfs_rreq_is_still_valid(struct netfs_read_request *rreq)
517 {
518 	struct netfs_read_subrequest *subreq;
519 
520 	if (!rreq->netfs_ops->is_still_valid ||
521 	    rreq->netfs_ops->is_still_valid(rreq))
522 		return;
523 
524 	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
525 		if (subreq->source == NETFS_READ_FROM_CACHE) {
526 			subreq->error = -ESTALE;
527 			__set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
528 		}
529 	}
530 }
531 
532 /*
533  * Assess the state of a read request and decide what to do next.
534  *
535  * Note that we could be in an ordinary kernel thread, on a workqueue or in
536  * softirq context at this point.  We inherit a ref from the caller.
537  */
netfs_rreq_assess(struct netfs_read_request * rreq,bool was_async)538 static void netfs_rreq_assess(struct netfs_read_request *rreq, bool was_async)
539 {
540 	trace_netfs_rreq(rreq, netfs_rreq_trace_assess);
541 
542 again:
543 	netfs_rreq_is_still_valid(rreq);
544 
545 	if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) &&
546 	    test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) {
547 		if (netfs_rreq_perform_resubmissions(rreq))
548 			goto again;
549 		return;
550 	}
551 
552 	netfs_rreq_unlock(rreq);
553 
554 	clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
555 	wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);
556 
557 	if (test_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags))
558 		return netfs_rreq_write_to_cache(rreq);
559 
560 	netfs_rreq_completed(rreq, was_async);
561 }
562 
netfs_rreq_work(struct work_struct * work)563 static void netfs_rreq_work(struct work_struct *work)
564 {
565 	struct netfs_read_request *rreq =
566 		container_of(work, struct netfs_read_request, work);
567 	netfs_rreq_assess(rreq, false);
568 }
569 
570 /*
571  * Handle the completion of all outstanding I/O operations on a read request.
572  * We inherit a ref from the caller.
573  */
netfs_rreq_terminated(struct netfs_read_request * rreq,bool was_async)574 static void netfs_rreq_terminated(struct netfs_read_request *rreq,
575 				  bool was_async)
576 {
577 	if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) &&
578 	    was_async) {
579 		if (!queue_work(system_unbound_wq, &rreq->work))
580 			BUG();
581 	} else {
582 		netfs_rreq_assess(rreq, was_async);
583 	}
584 }
585 
586 /**
587  * netfs_subreq_terminated - Note the termination of an I/O operation.
588  * @subreq: The I/O request that has terminated.
589  * @transferred_or_error: The amount of data transferred or an error code.
590  * @was_async: The termination was asynchronous
591  *
592  * This tells the read helper that a contributory I/O operation has terminated,
593  * one way or another, and that it should integrate the results.
594  *
595  * The caller indicates in @transferred_or_error the outcome of the operation,
596  * supplying a positive value to indicate the number of bytes transferred, 0 to
597  * indicate a failure to transfer anything that should be retried or a negative
598  * error code.  The helper will look after reissuing I/O operations as
599  * appropriate and writing downloaded data to the cache.
600  *
601  * If @was_async is true, the caller might be running in softirq or interrupt
602  * context and we can't sleep.
603  */
netfs_subreq_terminated(struct netfs_read_subrequest * subreq,ssize_t transferred_or_error,bool was_async)604 void netfs_subreq_terminated(struct netfs_read_subrequest *subreq,
605 			     ssize_t transferred_or_error,
606 			     bool was_async)
607 {
608 	struct netfs_read_request *rreq = subreq->rreq;
609 	int u;
610 
611 	_enter("[%u]{%llx,%lx},%zd",
612 	       subreq->debug_index, subreq->start, subreq->flags,
613 	       transferred_or_error);
614 
615 	switch (subreq->source) {
616 	case NETFS_READ_FROM_CACHE:
617 		netfs_stat(&netfs_n_rh_read_done);
618 		break;
619 	case NETFS_DOWNLOAD_FROM_SERVER:
620 		netfs_stat(&netfs_n_rh_download_done);
621 		break;
622 	default:
623 		break;
624 	}
625 
626 	if (IS_ERR_VALUE(transferred_or_error)) {
627 		subreq->error = transferred_or_error;
628 		trace_netfs_failure(rreq, subreq, transferred_or_error,
629 				    netfs_fail_read);
630 		goto failed;
631 	}
632 
633 	if (WARN(transferred_or_error > subreq->len - subreq->transferred,
634 		 "Subreq overread: R%x[%x] %zd > %zu - %zu",
635 		 rreq->debug_id, subreq->debug_index,
636 		 transferred_or_error, subreq->len, subreq->transferred))
637 		transferred_or_error = subreq->len - subreq->transferred;
638 
639 	subreq->error = 0;
640 	subreq->transferred += transferred_or_error;
641 	if (subreq->transferred < subreq->len)
642 		goto incomplete;
643 
644 complete:
645 	__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
646 	if (test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags))
647 		set_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags);
648 
649 out:
650 	trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
651 
652 	/* If we decrement nr_rd_ops to 0, the ref belongs to us. */
653 	u = atomic_dec_return(&rreq->nr_rd_ops);
654 	if (u == 0)
655 		netfs_rreq_terminated(rreq, was_async);
656 	else if (u == 1)
657 		wake_up_var(&rreq->nr_rd_ops);
658 
659 	netfs_put_subrequest(subreq, was_async);
660 	return;
661 
662 incomplete:
663 	if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) {
664 		netfs_clear_unread(subreq);
665 		subreq->transferred = subreq->len;
666 		goto complete;
667 	}
668 
669 	if (transferred_or_error == 0) {
670 		if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
671 			subreq->error = -ENODATA;
672 			goto failed;
673 		}
674 	} else {
675 		__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
676 	}
677 
678 	__set_bit(NETFS_SREQ_SHORT_READ, &subreq->flags);
679 	set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
680 	goto out;
681 
682 failed:
683 	if (subreq->source == NETFS_READ_FROM_CACHE) {
684 		netfs_stat(&netfs_n_rh_read_failed);
685 		set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
686 	} else {
687 		netfs_stat(&netfs_n_rh_download_failed);
688 		set_bit(NETFS_RREQ_FAILED, &rreq->flags);
689 		rreq->error = subreq->error;
690 	}
691 	goto out;
692 }
693 EXPORT_SYMBOL(netfs_subreq_terminated);
694 
netfs_cache_prepare_read(struct netfs_read_subrequest * subreq,loff_t i_size)695 static enum netfs_read_source netfs_cache_prepare_read(struct netfs_read_subrequest *subreq,
696 						       loff_t i_size)
697 {
698 	struct netfs_read_request *rreq = subreq->rreq;
699 	struct netfs_cache_resources *cres = &rreq->cache_resources;
700 
701 	if (cres->ops)
702 		return cres->ops->prepare_read(subreq, i_size);
703 	if (subreq->start >= rreq->i_size)
704 		return NETFS_FILL_WITH_ZEROES;
705 	return NETFS_DOWNLOAD_FROM_SERVER;
706 }
707 
708 /*
709  * Work out what sort of subrequest the next one will be.
710  */
711 static enum netfs_read_source
netfs_rreq_prepare_read(struct netfs_read_request * rreq,struct netfs_read_subrequest * subreq)712 netfs_rreq_prepare_read(struct netfs_read_request *rreq,
713 			struct netfs_read_subrequest *subreq)
714 {
715 	enum netfs_read_source source;
716 
717 	_enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size);
718 
719 	source = netfs_cache_prepare_read(subreq, rreq->i_size);
720 	if (source == NETFS_INVALID_READ)
721 		goto out;
722 
723 	if (source == NETFS_DOWNLOAD_FROM_SERVER) {
724 		/* Call out to the netfs to let it shrink the request to fit
725 		 * its own I/O sizes and boundaries.  If it shinks it here, it
726 		 * will be called again to make simultaneous calls; if it wants
727 		 * to make serial calls, it can indicate a short read and then
728 		 * we will call it again.
729 		 */
730 		if (subreq->len > rreq->i_size - subreq->start)
731 			subreq->len = rreq->i_size - subreq->start;
732 
733 		if (rreq->netfs_ops->clamp_length &&
734 		    !rreq->netfs_ops->clamp_length(subreq)) {
735 			source = NETFS_INVALID_READ;
736 			goto out;
737 		}
738 	}
739 
740 	if (WARN_ON(subreq->len == 0))
741 		source = NETFS_INVALID_READ;
742 
743 out:
744 	subreq->source = source;
745 	trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
746 	return source;
747 }
748 
749 /*
750  * Slice off a piece of a read request and submit an I/O request for it.
751  */
netfs_rreq_submit_slice(struct netfs_read_request * rreq,unsigned int * _debug_index)752 static bool netfs_rreq_submit_slice(struct netfs_read_request *rreq,
753 				    unsigned int *_debug_index)
754 {
755 	struct netfs_read_subrequest *subreq;
756 	enum netfs_read_source source;
757 
758 	subreq = netfs_alloc_subrequest(rreq);
759 	if (!subreq)
760 		return false;
761 
762 	subreq->debug_index	= (*_debug_index)++;
763 	subreq->start		= rreq->start + rreq->submitted;
764 	subreq->len		= rreq->len   - rreq->submitted;
765 
766 	_debug("slice %llx,%zx,%zx", subreq->start, subreq->len, rreq->submitted);
767 	list_add_tail(&subreq->rreq_link, &rreq->subrequests);
768 
769 	/* Call out to the cache to find out what it can do with the remaining
770 	 * subset.  It tells us in subreq->flags what it decided should be done
771 	 * and adjusts subreq->len down if the subset crosses a cache boundary.
772 	 *
773 	 * Then when we hand the subset, it can choose to take a subset of that
774 	 * (the starts must coincide), in which case, we go around the loop
775 	 * again and ask it to download the next piece.
776 	 */
777 	source = netfs_rreq_prepare_read(rreq, subreq);
778 	if (source == NETFS_INVALID_READ)
779 		goto subreq_failed;
780 
781 	atomic_inc(&rreq->nr_rd_ops);
782 
783 	rreq->submitted += subreq->len;
784 
785 	trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
786 	switch (source) {
787 	case NETFS_FILL_WITH_ZEROES:
788 		netfs_fill_with_zeroes(rreq, subreq);
789 		break;
790 	case NETFS_DOWNLOAD_FROM_SERVER:
791 		netfs_read_from_server(rreq, subreq);
792 		break;
793 	case NETFS_READ_FROM_CACHE:
794 		netfs_read_from_cache(rreq, subreq, false);
795 		break;
796 	default:
797 		BUG();
798 	}
799 
800 	return true;
801 
802 subreq_failed:
803 	rreq->error = subreq->error;
804 	netfs_put_subrequest(subreq, false);
805 	return false;
806 }
807 
netfs_cache_expand_readahead(struct netfs_read_request * rreq,loff_t * _start,size_t * _len,loff_t i_size)808 static void netfs_cache_expand_readahead(struct netfs_read_request *rreq,
809 					 loff_t *_start, size_t *_len, loff_t i_size)
810 {
811 	struct netfs_cache_resources *cres = &rreq->cache_resources;
812 
813 	if (cres->ops && cres->ops->expand_readahead)
814 		cres->ops->expand_readahead(cres, _start, _len, i_size);
815 }
816 
netfs_rreq_expand(struct netfs_read_request * rreq,struct readahead_control * ractl)817 static void netfs_rreq_expand(struct netfs_read_request *rreq,
818 			      struct readahead_control *ractl)
819 {
820 	/* Give the cache a chance to change the request parameters.  The
821 	 * resultant request must contain the original region.
822 	 */
823 	netfs_cache_expand_readahead(rreq, &rreq->start, &rreq->len, rreq->i_size);
824 
825 	/* Give the netfs a chance to change the request parameters.  The
826 	 * resultant request must contain the original region.
827 	 */
828 	if (rreq->netfs_ops->expand_readahead)
829 		rreq->netfs_ops->expand_readahead(rreq);
830 
831 	/* Expand the request if the cache wants it to start earlier.  Note
832 	 * that the expansion may get further extended if the VM wishes to
833 	 * insert THPs and the preferred start and/or end wind up in the middle
834 	 * of THPs.
835 	 *
836 	 * If this is the case, however, the THP size should be an integer
837 	 * multiple of the cache granule size, so we get a whole number of
838 	 * granules to deal with.
839 	 */
840 	if (rreq->start  != readahead_pos(ractl) ||
841 	    rreq->len != readahead_length(ractl)) {
842 		readahead_expand(ractl, rreq->start, rreq->len);
843 		rreq->start  = readahead_pos(ractl);
844 		rreq->len = readahead_length(ractl);
845 
846 		trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
847 				 netfs_read_trace_expanded);
848 	}
849 }
850 
851 /**
852  * netfs_readahead - Helper to manage a read request
853  * @ractl: The description of the readahead request
854  * @ops: The network filesystem's operations for the helper to use
855  * @netfs_priv: Private netfs data to be retained in the request
856  *
857  * Fulfil a readahead request by drawing data from the cache if possible, or
858  * the netfs if not.  Space beyond the EOF is zero-filled.  Multiple I/O
859  * requests from different sources will get munged together.  If necessary, the
860  * readahead window can be expanded in either direction to a more convenient
861  * alighment for RPC efficiency or to make storage in the cache feasible.
862  *
863  * The calling netfs must provide a table of operations, only one of which,
864  * issue_op, is mandatory.  It may also be passed a private token, which will
865  * be retained in rreq->netfs_priv and will be cleaned up by ops->cleanup().
866  *
867  * This is usable whether or not caching is enabled.
868  */
netfs_readahead(struct readahead_control * ractl,const struct netfs_read_request_ops * ops,void * netfs_priv)869 void netfs_readahead(struct readahead_control *ractl,
870 		     const struct netfs_read_request_ops *ops,
871 		     void *netfs_priv)
872 {
873 	struct netfs_read_request *rreq;
874 	struct page *page;
875 	unsigned int debug_index = 0;
876 	int ret;
877 
878 	_enter("%lx,%x", readahead_index(ractl), readahead_count(ractl));
879 
880 	if (readahead_count(ractl) == 0)
881 		goto cleanup;
882 
883 	rreq = netfs_alloc_read_request(ops, netfs_priv, ractl->file);
884 	if (!rreq)
885 		goto cleanup;
886 	rreq->mapping	= ractl->mapping;
887 	rreq->start	= readahead_pos(ractl);
888 	rreq->len	= readahead_length(ractl);
889 
890 	if (ops->begin_cache_operation) {
891 		ret = ops->begin_cache_operation(rreq);
892 		if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
893 			goto cleanup_free;
894 	}
895 
896 	netfs_stat(&netfs_n_rh_readahead);
897 	trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
898 			 netfs_read_trace_readahead);
899 
900 	netfs_rreq_expand(rreq, ractl);
901 
902 	atomic_set(&rreq->nr_rd_ops, 1);
903 	do {
904 		if (!netfs_rreq_submit_slice(rreq, &debug_index))
905 			break;
906 
907 	} while (rreq->submitted < rreq->len);
908 
909 	/* Drop the refs on the pages here rather than in the cache or
910 	 * filesystem.  The locks will be dropped in netfs_rreq_unlock().
911 	 */
912 	while ((page = readahead_page(ractl)))
913 		put_page(page);
914 
915 	/* If we decrement nr_rd_ops to 0, the ref belongs to us. */
916 	if (atomic_dec_and_test(&rreq->nr_rd_ops))
917 		netfs_rreq_assess(rreq, false);
918 	return;
919 
920 cleanup_free:
921 	netfs_put_read_request(rreq, false);
922 	return;
923 cleanup:
924 	if (netfs_priv)
925 		ops->cleanup(ractl->mapping, netfs_priv);
926 	return;
927 }
928 EXPORT_SYMBOL(netfs_readahead);
929 
930 /**
931  * netfs_readpage - Helper to manage a readpage request
932  * @file: The file to read from
933  * @page: The page to read
934  * @ops: The network filesystem's operations for the helper to use
935  * @netfs_priv: Private netfs data to be retained in the request
936  *
937  * Fulfil a readpage request by drawing data from the cache if possible, or the
938  * netfs if not.  Space beyond the EOF is zero-filled.  Multiple I/O requests
939  * from different sources will get munged together.
940  *
941  * The calling netfs must provide a table of operations, only one of which,
942  * issue_op, is mandatory.  It may also be passed a private token, which will
943  * be retained in rreq->netfs_priv and will be cleaned up by ops->cleanup().
944  *
945  * This is usable whether or not caching is enabled.
946  */
netfs_readpage(struct file * file,struct page * page,const struct netfs_read_request_ops * ops,void * netfs_priv)947 int netfs_readpage(struct file *file,
948 		   struct page *page,
949 		   const struct netfs_read_request_ops *ops,
950 		   void *netfs_priv)
951 {
952 	struct netfs_read_request *rreq;
953 	unsigned int debug_index = 0;
954 	int ret;
955 
956 	_enter("%lx", page_index(page));
957 
958 	rreq = netfs_alloc_read_request(ops, netfs_priv, file);
959 	if (!rreq) {
960 		if (netfs_priv)
961 			ops->cleanup(page_file_mapping(page), netfs_priv);
962 		unlock_page(page);
963 		return -ENOMEM;
964 	}
965 	rreq->mapping	= page_file_mapping(page);
966 	rreq->start	= page_file_offset(page);
967 	rreq->len	= thp_size(page);
968 
969 	if (ops->begin_cache_operation) {
970 		ret = ops->begin_cache_operation(rreq);
971 		if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS) {
972 			unlock_page(page);
973 			goto out;
974 		}
975 	}
976 
977 	netfs_stat(&netfs_n_rh_readpage);
978 	trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_readpage);
979 
980 	netfs_get_read_request(rreq);
981 
982 	atomic_set(&rreq->nr_rd_ops, 1);
983 	do {
984 		if (!netfs_rreq_submit_slice(rreq, &debug_index))
985 			break;
986 
987 	} while (rreq->submitted < rreq->len);
988 
989 	/* Keep nr_rd_ops incremented so that the ref always belongs to us, and
990 	 * the service code isn't punted off to a random thread pool to
991 	 * process.
992 	 */
993 	do {
994 		wait_var_event(&rreq->nr_rd_ops, atomic_read(&rreq->nr_rd_ops) == 1);
995 		netfs_rreq_assess(rreq, false);
996 	} while (test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags));
997 
998 	ret = rreq->error;
999 	if (ret == 0 && rreq->submitted < rreq->len) {
1000 		trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_readpage);
1001 		ret = -EIO;
1002 	}
1003 out:
1004 	netfs_put_read_request(rreq, false);
1005 	return ret;
1006 }
1007 EXPORT_SYMBOL(netfs_readpage);
1008 
1009 /**
1010  * netfs_skip_page_read - prep a page for writing without reading first
1011  * @page: page being prepared
1012  * @pos: starting position for the write
1013  * @len: length of write
1014  *
1015  * In some cases, write_begin doesn't need to read at all:
1016  * - full page write
1017  * - write that lies in a page that is completely beyond EOF
1018  * - write that covers the the page from start to EOF or beyond it
1019  *
1020  * If any of these criteria are met, then zero out the unwritten parts
1021  * of the page and return true. Otherwise, return false.
1022  */
netfs_skip_page_read(struct page * page,loff_t pos,size_t len)1023 static bool netfs_skip_page_read(struct page *page, loff_t pos, size_t len)
1024 {
1025 	struct inode *inode = page->mapping->host;
1026 	loff_t i_size = i_size_read(inode);
1027 	size_t offset = offset_in_thp(page, pos);
1028 
1029 	/* Full page write */
1030 	if (offset == 0 && len >= thp_size(page))
1031 		return true;
1032 
1033 	/* pos beyond last page in the file */
1034 	if (pos - offset >= i_size)
1035 		goto zero_out;
1036 
1037 	/* Write that covers from the start of the page to EOF or beyond */
1038 	if (offset == 0 && (pos + len) >= i_size)
1039 		goto zero_out;
1040 
1041 	return false;
1042 zero_out:
1043 	zero_user_segments(page, 0, offset, offset + len, thp_size(page));
1044 	return true;
1045 }
1046 
1047 /**
1048  * netfs_write_begin - Helper to prepare for writing
1049  * @file: The file to read from
1050  * @mapping: The mapping to read from
1051  * @pos: File position at which the write will begin
1052  * @len: The length of the write (may extend beyond the end of the page chosen)
1053  * @flags: AOP_* flags
1054  * @_page: Where to put the resultant page
1055  * @_fsdata: Place for the netfs to store a cookie
1056  * @ops: The network filesystem's operations for the helper to use
1057  * @netfs_priv: Private netfs data to be retained in the request
1058  *
1059  * Pre-read data for a write-begin request by drawing data from the cache if
1060  * possible, or the netfs if not.  Space beyond the EOF is zero-filled.
1061  * Multiple I/O requests from different sources will get munged together.  If
1062  * necessary, the readahead window can be expanded in either direction to a
1063  * more convenient alighment for RPC efficiency or to make storage in the cache
1064  * feasible.
1065  *
1066  * The calling netfs must provide a table of operations, only one of which,
1067  * issue_op, is mandatory.
1068  *
1069  * The check_write_begin() operation can be provided to check for and flush
1070  * conflicting writes once the page is grabbed and locked.  It is passed a
1071  * pointer to the fsdata cookie that gets returned to the VM to be passed to
1072  * write_end.  It is permitted to sleep.  It should return 0 if the request
1073  * should go ahead; unlock the page and return -EAGAIN to cause the page to be
1074  * regot; or return an error.
1075  *
1076  * This is usable whether or not caching is enabled.
1077  */
netfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned int len,unsigned int flags,struct page ** _page,void ** _fsdata,const struct netfs_read_request_ops * ops,void * netfs_priv)1078 int netfs_write_begin(struct file *file, struct address_space *mapping,
1079 		      loff_t pos, unsigned int len, unsigned int flags,
1080 		      struct page **_page, void **_fsdata,
1081 		      const struct netfs_read_request_ops *ops,
1082 		      void *netfs_priv)
1083 {
1084 	struct netfs_read_request *rreq;
1085 	struct page *page, *xpage;
1086 	struct inode *inode = file_inode(file);
1087 	unsigned int debug_index = 0;
1088 	pgoff_t index = pos >> PAGE_SHIFT;
1089 	int ret;
1090 
1091 	DEFINE_READAHEAD(ractl, file, NULL, mapping, index);
1092 
1093 retry:
1094 	page = grab_cache_page_write_begin(mapping, index, flags);
1095 	if (!page)
1096 		return -ENOMEM;
1097 
1098 	if (ops->check_write_begin) {
1099 		/* Allow the netfs (eg. ceph) to flush conflicts. */
1100 		ret = ops->check_write_begin(file, pos, len, page, _fsdata);
1101 		if (ret < 0) {
1102 			trace_netfs_failure(NULL, NULL, ret, netfs_fail_check_write_begin);
1103 			if (ret == -EAGAIN)
1104 				goto retry;
1105 			goto error;
1106 		}
1107 	}
1108 
1109 	if (PageUptodate(page))
1110 		goto have_page;
1111 
1112 	/* If the page is beyond the EOF, we want to clear it - unless it's
1113 	 * within the cache granule containing the EOF, in which case we need
1114 	 * to preload the granule.
1115 	 */
1116 	if (!ops->is_cache_enabled(inode) &&
1117 	    netfs_skip_page_read(page, pos, len)) {
1118 		netfs_stat(&netfs_n_rh_write_zskip);
1119 		goto have_page_no_wait;
1120 	}
1121 
1122 	ret = -ENOMEM;
1123 	rreq = netfs_alloc_read_request(ops, netfs_priv, file);
1124 	if (!rreq)
1125 		goto error;
1126 	rreq->mapping		= page->mapping;
1127 	rreq->start		= page_offset(page);
1128 	rreq->len		= thp_size(page);
1129 	rreq->no_unlock_page	= page->index;
1130 	__set_bit(NETFS_RREQ_NO_UNLOCK_PAGE, &rreq->flags);
1131 	netfs_priv = NULL;
1132 
1133 	if (ops->begin_cache_operation) {
1134 		ret = ops->begin_cache_operation(rreq);
1135 		if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
1136 			goto error_put;
1137 	}
1138 
1139 	netfs_stat(&netfs_n_rh_write_begin);
1140 	trace_netfs_read(rreq, pos, len, netfs_read_trace_write_begin);
1141 
1142 	/* Expand the request to meet caching requirements and download
1143 	 * preferences.
1144 	 */
1145 	ractl._nr_pages = thp_nr_pages(page);
1146 	netfs_rreq_expand(rreq, &ractl);
1147 	netfs_get_read_request(rreq);
1148 
1149 	/* We hold the page locks, so we can drop the references */
1150 	while ((xpage = readahead_page(&ractl)))
1151 		if (xpage != page)
1152 			put_page(xpage);
1153 
1154 	atomic_set(&rreq->nr_rd_ops, 1);
1155 	do {
1156 		if (!netfs_rreq_submit_slice(rreq, &debug_index))
1157 			break;
1158 
1159 	} while (rreq->submitted < rreq->len);
1160 
1161 	/* Keep nr_rd_ops incremented so that the ref always belongs to us, and
1162 	 * the service code isn't punted off to a random thread pool to
1163 	 * process.
1164 	 */
1165 	for (;;) {
1166 		wait_var_event(&rreq->nr_rd_ops, atomic_read(&rreq->nr_rd_ops) == 1);
1167 		netfs_rreq_assess(rreq, false);
1168 		if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags))
1169 			break;
1170 		cond_resched();
1171 	}
1172 
1173 	ret = rreq->error;
1174 	if (ret == 0 && rreq->submitted < rreq->len) {
1175 		trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_write_begin);
1176 		ret = -EIO;
1177 	}
1178 	netfs_put_read_request(rreq, false);
1179 	if (ret < 0)
1180 		goto error;
1181 
1182 have_page:
1183 	ret = wait_on_page_fscache_killable(page);
1184 	if (ret < 0)
1185 		goto error;
1186 have_page_no_wait:
1187 	if (netfs_priv)
1188 		ops->cleanup(mapping, netfs_priv);
1189 	*_page = page;
1190 	_leave(" = 0");
1191 	return 0;
1192 
1193 error_put:
1194 	netfs_put_read_request(rreq, false);
1195 error:
1196 	unlock_page(page);
1197 	put_page(page);
1198 	if (netfs_priv)
1199 		ops->cleanup(mapping, netfs_priv);
1200 	_leave(" = %d", ret);
1201 	return ret;
1202 }
1203 EXPORT_SYMBOL(netfs_write_begin);
1204