1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Network filesystem high-level read support.
3 *
4 * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/module.h>
9 #include <linux/export.h>
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/slab.h>
14 #include <linux/uio.h>
15 #include <linux/sched/mm.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/netfs.h>
18 #include "internal.h"
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/netfs.h>
21
22 MODULE_DESCRIPTION("Network fs support");
23 MODULE_AUTHOR("Red Hat, Inc.");
24 MODULE_LICENSE("GPL");
25
26 unsigned netfs_debug;
27 module_param_named(debug, netfs_debug, uint, S_IWUSR | S_IRUGO);
28 MODULE_PARM_DESC(netfs_debug, "Netfs support debugging mask");
29
30 static void netfs_rreq_work(struct work_struct *);
31 static void __netfs_put_subrequest(struct netfs_read_subrequest *, bool);
32
netfs_put_subrequest(struct netfs_read_subrequest * subreq,bool was_async)33 static void netfs_put_subrequest(struct netfs_read_subrequest *subreq,
34 bool was_async)
35 {
36 if (refcount_dec_and_test(&subreq->usage))
37 __netfs_put_subrequest(subreq, was_async);
38 }
39
netfs_alloc_read_request(const struct netfs_read_request_ops * ops,void * netfs_priv,struct file * file)40 static struct netfs_read_request *netfs_alloc_read_request(
41 const struct netfs_read_request_ops *ops, void *netfs_priv,
42 struct file *file)
43 {
44 static atomic_t debug_ids;
45 struct netfs_read_request *rreq;
46
47 rreq = kzalloc(sizeof(struct netfs_read_request), GFP_KERNEL);
48 if (rreq) {
49 rreq->netfs_ops = ops;
50 rreq->netfs_priv = netfs_priv;
51 rreq->inode = file_inode(file);
52 rreq->i_size = i_size_read(rreq->inode);
53 rreq->debug_id = atomic_inc_return(&debug_ids);
54 INIT_LIST_HEAD(&rreq->subrequests);
55 INIT_WORK(&rreq->work, netfs_rreq_work);
56 refcount_set(&rreq->usage, 1);
57 __set_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
58 ops->init_rreq(rreq, file);
59 netfs_stat(&netfs_n_rh_rreq);
60 }
61
62 return rreq;
63 }
64
netfs_get_read_request(struct netfs_read_request * rreq)65 static void netfs_get_read_request(struct netfs_read_request *rreq)
66 {
67 refcount_inc(&rreq->usage);
68 }
69
netfs_rreq_clear_subreqs(struct netfs_read_request * rreq,bool was_async)70 static void netfs_rreq_clear_subreqs(struct netfs_read_request *rreq,
71 bool was_async)
72 {
73 struct netfs_read_subrequest *subreq;
74
75 while (!list_empty(&rreq->subrequests)) {
76 subreq = list_first_entry(&rreq->subrequests,
77 struct netfs_read_subrequest, rreq_link);
78 list_del(&subreq->rreq_link);
79 netfs_put_subrequest(subreq, was_async);
80 }
81 }
82
netfs_free_read_request(struct work_struct * work)83 static void netfs_free_read_request(struct work_struct *work)
84 {
85 struct netfs_read_request *rreq =
86 container_of(work, struct netfs_read_request, work);
87 netfs_rreq_clear_subreqs(rreq, false);
88 if (rreq->netfs_priv)
89 rreq->netfs_ops->cleanup(rreq->mapping, rreq->netfs_priv);
90 trace_netfs_rreq(rreq, netfs_rreq_trace_free);
91 if (rreq->cache_resources.ops)
92 rreq->cache_resources.ops->end_operation(&rreq->cache_resources);
93 kfree(rreq);
94 netfs_stat_d(&netfs_n_rh_rreq);
95 }
96
netfs_put_read_request(struct netfs_read_request * rreq,bool was_async)97 static void netfs_put_read_request(struct netfs_read_request *rreq, bool was_async)
98 {
99 if (refcount_dec_and_test(&rreq->usage)) {
100 if (was_async) {
101 rreq->work.func = netfs_free_read_request;
102 if (!queue_work(system_unbound_wq, &rreq->work))
103 BUG();
104 } else {
105 netfs_free_read_request(&rreq->work);
106 }
107 }
108 }
109
110 /*
111 * Allocate and partially initialise an I/O request structure.
112 */
netfs_alloc_subrequest(struct netfs_read_request * rreq)113 static struct netfs_read_subrequest *netfs_alloc_subrequest(
114 struct netfs_read_request *rreq)
115 {
116 struct netfs_read_subrequest *subreq;
117
118 subreq = kzalloc(sizeof(struct netfs_read_subrequest), GFP_KERNEL);
119 if (subreq) {
120 INIT_LIST_HEAD(&subreq->rreq_link);
121 refcount_set(&subreq->usage, 2);
122 subreq->rreq = rreq;
123 netfs_get_read_request(rreq);
124 netfs_stat(&netfs_n_rh_sreq);
125 }
126
127 return subreq;
128 }
129
netfs_get_read_subrequest(struct netfs_read_subrequest * subreq)130 static void netfs_get_read_subrequest(struct netfs_read_subrequest *subreq)
131 {
132 refcount_inc(&subreq->usage);
133 }
134
__netfs_put_subrequest(struct netfs_read_subrequest * subreq,bool was_async)135 static void __netfs_put_subrequest(struct netfs_read_subrequest *subreq,
136 bool was_async)
137 {
138 struct netfs_read_request *rreq = subreq->rreq;
139
140 trace_netfs_sreq(subreq, netfs_sreq_trace_free);
141 kfree(subreq);
142 netfs_stat_d(&netfs_n_rh_sreq);
143 netfs_put_read_request(rreq, was_async);
144 }
145
146 /*
147 * Clear the unread part of an I/O request.
148 */
netfs_clear_unread(struct netfs_read_subrequest * subreq)149 static void netfs_clear_unread(struct netfs_read_subrequest *subreq)
150 {
151 struct iov_iter iter;
152
153 iov_iter_xarray(&iter, READ, &subreq->rreq->mapping->i_pages,
154 subreq->start + subreq->transferred,
155 subreq->len - subreq->transferred);
156 iov_iter_zero(iov_iter_count(&iter), &iter);
157 }
158
netfs_cache_read_terminated(void * priv,ssize_t transferred_or_error,bool was_async)159 static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error,
160 bool was_async)
161 {
162 struct netfs_read_subrequest *subreq = priv;
163
164 netfs_subreq_terminated(subreq, transferred_or_error, was_async);
165 }
166
167 /*
168 * Issue a read against the cache.
169 * - Eats the caller's ref on subreq.
170 */
netfs_read_from_cache(struct netfs_read_request * rreq,struct netfs_read_subrequest * subreq,bool seek_data)171 static void netfs_read_from_cache(struct netfs_read_request *rreq,
172 struct netfs_read_subrequest *subreq,
173 bool seek_data)
174 {
175 struct netfs_cache_resources *cres = &rreq->cache_resources;
176 struct iov_iter iter;
177
178 netfs_stat(&netfs_n_rh_read);
179 iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages,
180 subreq->start + subreq->transferred,
181 subreq->len - subreq->transferred);
182
183 cres->ops->read(cres, subreq->start, &iter, seek_data,
184 netfs_cache_read_terminated, subreq);
185 }
186
187 /*
188 * Fill a subrequest region with zeroes.
189 */
netfs_fill_with_zeroes(struct netfs_read_request * rreq,struct netfs_read_subrequest * subreq)190 static void netfs_fill_with_zeroes(struct netfs_read_request *rreq,
191 struct netfs_read_subrequest *subreq)
192 {
193 netfs_stat(&netfs_n_rh_zero);
194 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
195 netfs_subreq_terminated(subreq, 0, false);
196 }
197
198 /*
199 * Ask the netfs to issue a read request to the server for us.
200 *
201 * The netfs is expected to read from subreq->pos + subreq->transferred to
202 * subreq->pos + subreq->len - 1. It may not backtrack and write data into the
203 * buffer prior to the transferred point as it might clobber dirty data
204 * obtained from the cache.
205 *
206 * Alternatively, the netfs is allowed to indicate one of two things:
207 *
208 * - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and
209 * make progress.
210 *
211 * - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be
212 * cleared.
213 */
netfs_read_from_server(struct netfs_read_request * rreq,struct netfs_read_subrequest * subreq)214 static void netfs_read_from_server(struct netfs_read_request *rreq,
215 struct netfs_read_subrequest *subreq)
216 {
217 netfs_stat(&netfs_n_rh_download);
218 rreq->netfs_ops->issue_op(subreq);
219 }
220
221 /*
222 * Release those waiting.
223 */
netfs_rreq_completed(struct netfs_read_request * rreq,bool was_async)224 static void netfs_rreq_completed(struct netfs_read_request *rreq, bool was_async)
225 {
226 trace_netfs_rreq(rreq, netfs_rreq_trace_done);
227 netfs_rreq_clear_subreqs(rreq, was_async);
228 netfs_put_read_request(rreq, was_async);
229 }
230
231 /*
232 * Deal with the completion of writing the data to the cache. We have to clear
233 * the PG_fscache bits on the pages involved and release the caller's ref.
234 *
235 * May be called in softirq mode and we inherit a ref from the caller.
236 */
netfs_rreq_unmark_after_write(struct netfs_read_request * rreq,bool was_async)237 static void netfs_rreq_unmark_after_write(struct netfs_read_request *rreq,
238 bool was_async)
239 {
240 struct netfs_read_subrequest *subreq;
241 struct page *page;
242 pgoff_t unlocked = 0;
243 bool have_unlocked = false;
244
245 rcu_read_lock();
246
247 list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
248 XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE);
249
250 xas_for_each(&xas, page, (subreq->start + subreq->len - 1) / PAGE_SIZE) {
251 /* We might have multiple writes from the same huge
252 * page, but we mustn't unlock a page more than once.
253 */
254 if (have_unlocked && page->index <= unlocked)
255 continue;
256 unlocked = page->index;
257 end_page_fscache(page);
258 have_unlocked = true;
259 }
260 }
261
262 rcu_read_unlock();
263 netfs_rreq_completed(rreq, was_async);
264 }
265
netfs_rreq_copy_terminated(void * priv,ssize_t transferred_or_error,bool was_async)266 static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error,
267 bool was_async)
268 {
269 struct netfs_read_subrequest *subreq = priv;
270 struct netfs_read_request *rreq = subreq->rreq;
271
272 if (IS_ERR_VALUE(transferred_or_error)) {
273 netfs_stat(&netfs_n_rh_write_failed);
274 trace_netfs_failure(rreq, subreq, transferred_or_error,
275 netfs_fail_copy_to_cache);
276 } else {
277 netfs_stat(&netfs_n_rh_write_done);
278 }
279
280 trace_netfs_sreq(subreq, netfs_sreq_trace_write_term);
281
282 /* If we decrement nr_wr_ops to 0, the ref belongs to us. */
283 if (atomic_dec_and_test(&rreq->nr_wr_ops))
284 netfs_rreq_unmark_after_write(rreq, was_async);
285
286 netfs_put_subrequest(subreq, was_async);
287 }
288
289 /*
290 * Perform any outstanding writes to the cache. We inherit a ref from the
291 * caller.
292 */
netfs_rreq_do_write_to_cache(struct netfs_read_request * rreq)293 static void netfs_rreq_do_write_to_cache(struct netfs_read_request *rreq)
294 {
295 struct netfs_cache_resources *cres = &rreq->cache_resources;
296 struct netfs_read_subrequest *subreq, *next, *p;
297 struct iov_iter iter;
298 int ret;
299
300 trace_netfs_rreq(rreq, netfs_rreq_trace_write);
301
302 /* We don't want terminating writes trying to wake us up whilst we're
303 * still going through the list.
304 */
305 atomic_inc(&rreq->nr_wr_ops);
306
307 list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) {
308 if (!test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags)) {
309 list_del_init(&subreq->rreq_link);
310 netfs_put_subrequest(subreq, false);
311 }
312 }
313
314 list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
315 /* Amalgamate adjacent writes */
316 while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
317 next = list_next_entry(subreq, rreq_link);
318 if (next->start != subreq->start + subreq->len)
319 break;
320 subreq->len += next->len;
321 list_del_init(&next->rreq_link);
322 netfs_put_subrequest(next, false);
323 }
324
325 ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len,
326 rreq->i_size);
327 if (ret < 0) {
328 trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write);
329 trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip);
330 continue;
331 }
332
333 iov_iter_xarray(&iter, WRITE, &rreq->mapping->i_pages,
334 subreq->start, subreq->len);
335
336 atomic_inc(&rreq->nr_wr_ops);
337 netfs_stat(&netfs_n_rh_write);
338 netfs_get_read_subrequest(subreq);
339 trace_netfs_sreq(subreq, netfs_sreq_trace_write);
340 cres->ops->write(cres, subreq->start, &iter,
341 netfs_rreq_copy_terminated, subreq);
342 }
343
344 /* If we decrement nr_wr_ops to 0, the usage ref belongs to us. */
345 if (atomic_dec_and_test(&rreq->nr_wr_ops))
346 netfs_rreq_unmark_after_write(rreq, false);
347 }
348
netfs_rreq_write_to_cache_work(struct work_struct * work)349 static void netfs_rreq_write_to_cache_work(struct work_struct *work)
350 {
351 struct netfs_read_request *rreq =
352 container_of(work, struct netfs_read_request, work);
353
354 netfs_rreq_do_write_to_cache(rreq);
355 }
356
netfs_rreq_write_to_cache(struct netfs_read_request * rreq)357 static void netfs_rreq_write_to_cache(struct netfs_read_request *rreq)
358 {
359 rreq->work.func = netfs_rreq_write_to_cache_work;
360 if (!queue_work(system_unbound_wq, &rreq->work))
361 BUG();
362 }
363
364 /*
365 * Unlock the pages in a read operation. We need to set PG_fscache on any
366 * pages we're going to write back before we unlock them.
367 */
netfs_rreq_unlock(struct netfs_read_request * rreq)368 static void netfs_rreq_unlock(struct netfs_read_request *rreq)
369 {
370 struct netfs_read_subrequest *subreq;
371 struct page *page;
372 unsigned int iopos, account = 0;
373 pgoff_t start_page = rreq->start / PAGE_SIZE;
374 pgoff_t last_page = ((rreq->start + rreq->len) / PAGE_SIZE) - 1;
375 bool subreq_failed = false;
376 int i;
377
378 XA_STATE(xas, &rreq->mapping->i_pages, start_page);
379
380 if (test_bit(NETFS_RREQ_FAILED, &rreq->flags)) {
381 __clear_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags);
382 list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
383 __clear_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags);
384 }
385 }
386
387 /* Walk through the pagecache and the I/O request lists simultaneously.
388 * We may have a mixture of cached and uncached sections and we only
389 * really want to write out the uncached sections. This is slightly
390 * complicated by the possibility that we might have huge pages with a
391 * mixture inside.
392 */
393 subreq = list_first_entry(&rreq->subrequests,
394 struct netfs_read_subrequest, rreq_link);
395 iopos = 0;
396 subreq_failed = (subreq->error < 0);
397
398 trace_netfs_rreq(rreq, netfs_rreq_trace_unlock);
399
400 rcu_read_lock();
401 xas_for_each(&xas, page, last_page) {
402 unsigned int pgpos = (page->index - start_page) * PAGE_SIZE;
403 unsigned int pgend = pgpos + thp_size(page);
404 bool pg_failed = false;
405
406 for (;;) {
407 if (!subreq) {
408 pg_failed = true;
409 break;
410 }
411 if (test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags))
412 set_page_fscache(page);
413 pg_failed |= subreq_failed;
414 if (pgend < iopos + subreq->len)
415 break;
416
417 account += subreq->transferred;
418 iopos += subreq->len;
419 if (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
420 subreq = list_next_entry(subreq, rreq_link);
421 subreq_failed = (subreq->error < 0);
422 } else {
423 subreq = NULL;
424 subreq_failed = false;
425 }
426 if (pgend == iopos)
427 break;
428 }
429
430 if (!pg_failed) {
431 for (i = 0; i < thp_nr_pages(page); i++)
432 flush_dcache_page(page);
433 SetPageUptodate(page);
434 }
435
436 if (!test_bit(NETFS_RREQ_DONT_UNLOCK_PAGES, &rreq->flags)) {
437 if (page->index == rreq->no_unlock_page &&
438 test_bit(NETFS_RREQ_NO_UNLOCK_PAGE, &rreq->flags))
439 _debug("no unlock");
440 else
441 unlock_page(page);
442 }
443 }
444 rcu_read_unlock();
445
446 task_io_account_read(account);
447 if (rreq->netfs_ops->done)
448 rreq->netfs_ops->done(rreq);
449 }
450
451 /*
452 * Handle a short read.
453 */
netfs_rreq_short_read(struct netfs_read_request * rreq,struct netfs_read_subrequest * subreq)454 static void netfs_rreq_short_read(struct netfs_read_request *rreq,
455 struct netfs_read_subrequest *subreq)
456 {
457 __clear_bit(NETFS_SREQ_SHORT_READ, &subreq->flags);
458 __set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags);
459
460 netfs_stat(&netfs_n_rh_short_read);
461 trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short);
462
463 netfs_get_read_subrequest(subreq);
464 atomic_inc(&rreq->nr_rd_ops);
465 if (subreq->source == NETFS_READ_FROM_CACHE)
466 netfs_read_from_cache(rreq, subreq, true);
467 else
468 netfs_read_from_server(rreq, subreq);
469 }
470
471 /*
472 * Resubmit any short or failed operations. Returns true if we got the rreq
473 * ref back.
474 */
netfs_rreq_perform_resubmissions(struct netfs_read_request * rreq)475 static bool netfs_rreq_perform_resubmissions(struct netfs_read_request *rreq)
476 {
477 struct netfs_read_subrequest *subreq;
478
479 WARN_ON(in_interrupt());
480
481 trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit);
482
483 /* We don't want terminating submissions trying to wake us up whilst
484 * we're still going through the list.
485 */
486 atomic_inc(&rreq->nr_rd_ops);
487
488 __clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
489 list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
490 if (subreq->error) {
491 if (subreq->source != NETFS_READ_FROM_CACHE)
492 break;
493 subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
494 subreq->error = 0;
495 netfs_stat(&netfs_n_rh_download_instead);
496 trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead);
497 netfs_get_read_subrequest(subreq);
498 atomic_inc(&rreq->nr_rd_ops);
499 netfs_read_from_server(rreq, subreq);
500 } else if (test_bit(NETFS_SREQ_SHORT_READ, &subreq->flags)) {
501 netfs_rreq_short_read(rreq, subreq);
502 }
503 }
504
505 /* If we decrement nr_rd_ops to 0, the usage ref belongs to us. */
506 if (atomic_dec_and_test(&rreq->nr_rd_ops))
507 return true;
508
509 wake_up_var(&rreq->nr_rd_ops);
510 return false;
511 }
512
513 /*
514 * Check to see if the data read is still valid.
515 */
netfs_rreq_is_still_valid(struct netfs_read_request * rreq)516 static void netfs_rreq_is_still_valid(struct netfs_read_request *rreq)
517 {
518 struct netfs_read_subrequest *subreq;
519
520 if (!rreq->netfs_ops->is_still_valid ||
521 rreq->netfs_ops->is_still_valid(rreq))
522 return;
523
524 list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
525 if (subreq->source == NETFS_READ_FROM_CACHE) {
526 subreq->error = -ESTALE;
527 __set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
528 }
529 }
530 }
531
532 /*
533 * Assess the state of a read request and decide what to do next.
534 *
535 * Note that we could be in an ordinary kernel thread, on a workqueue or in
536 * softirq context at this point. We inherit a ref from the caller.
537 */
netfs_rreq_assess(struct netfs_read_request * rreq,bool was_async)538 static void netfs_rreq_assess(struct netfs_read_request *rreq, bool was_async)
539 {
540 trace_netfs_rreq(rreq, netfs_rreq_trace_assess);
541
542 again:
543 netfs_rreq_is_still_valid(rreq);
544
545 if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) &&
546 test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) {
547 if (netfs_rreq_perform_resubmissions(rreq))
548 goto again;
549 return;
550 }
551
552 netfs_rreq_unlock(rreq);
553
554 clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
555 wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);
556
557 if (test_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags))
558 return netfs_rreq_write_to_cache(rreq);
559
560 netfs_rreq_completed(rreq, was_async);
561 }
562
netfs_rreq_work(struct work_struct * work)563 static void netfs_rreq_work(struct work_struct *work)
564 {
565 struct netfs_read_request *rreq =
566 container_of(work, struct netfs_read_request, work);
567 netfs_rreq_assess(rreq, false);
568 }
569
570 /*
571 * Handle the completion of all outstanding I/O operations on a read request.
572 * We inherit a ref from the caller.
573 */
netfs_rreq_terminated(struct netfs_read_request * rreq,bool was_async)574 static void netfs_rreq_terminated(struct netfs_read_request *rreq,
575 bool was_async)
576 {
577 if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) &&
578 was_async) {
579 if (!queue_work(system_unbound_wq, &rreq->work))
580 BUG();
581 } else {
582 netfs_rreq_assess(rreq, was_async);
583 }
584 }
585
586 /**
587 * netfs_subreq_terminated - Note the termination of an I/O operation.
588 * @subreq: The I/O request that has terminated.
589 * @transferred_or_error: The amount of data transferred or an error code.
590 * @was_async: The termination was asynchronous
591 *
592 * This tells the read helper that a contributory I/O operation has terminated,
593 * one way or another, and that it should integrate the results.
594 *
595 * The caller indicates in @transferred_or_error the outcome of the operation,
596 * supplying a positive value to indicate the number of bytes transferred, 0 to
597 * indicate a failure to transfer anything that should be retried or a negative
598 * error code. The helper will look after reissuing I/O operations as
599 * appropriate and writing downloaded data to the cache.
600 *
601 * If @was_async is true, the caller might be running in softirq or interrupt
602 * context and we can't sleep.
603 */
netfs_subreq_terminated(struct netfs_read_subrequest * subreq,ssize_t transferred_or_error,bool was_async)604 void netfs_subreq_terminated(struct netfs_read_subrequest *subreq,
605 ssize_t transferred_or_error,
606 bool was_async)
607 {
608 struct netfs_read_request *rreq = subreq->rreq;
609 int u;
610
611 _enter("[%u]{%llx,%lx},%zd",
612 subreq->debug_index, subreq->start, subreq->flags,
613 transferred_or_error);
614
615 switch (subreq->source) {
616 case NETFS_READ_FROM_CACHE:
617 netfs_stat(&netfs_n_rh_read_done);
618 break;
619 case NETFS_DOWNLOAD_FROM_SERVER:
620 netfs_stat(&netfs_n_rh_download_done);
621 break;
622 default:
623 break;
624 }
625
626 if (IS_ERR_VALUE(transferred_or_error)) {
627 subreq->error = transferred_or_error;
628 trace_netfs_failure(rreq, subreq, transferred_or_error,
629 netfs_fail_read);
630 goto failed;
631 }
632
633 if (WARN(transferred_or_error > subreq->len - subreq->transferred,
634 "Subreq overread: R%x[%x] %zd > %zu - %zu",
635 rreq->debug_id, subreq->debug_index,
636 transferred_or_error, subreq->len, subreq->transferred))
637 transferred_or_error = subreq->len - subreq->transferred;
638
639 subreq->error = 0;
640 subreq->transferred += transferred_or_error;
641 if (subreq->transferred < subreq->len)
642 goto incomplete;
643
644 complete:
645 __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
646 if (test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags))
647 set_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags);
648
649 out:
650 trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
651
652 /* If we decrement nr_rd_ops to 0, the ref belongs to us. */
653 u = atomic_dec_return(&rreq->nr_rd_ops);
654 if (u == 0)
655 netfs_rreq_terminated(rreq, was_async);
656 else if (u == 1)
657 wake_up_var(&rreq->nr_rd_ops);
658
659 netfs_put_subrequest(subreq, was_async);
660 return;
661
662 incomplete:
663 if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) {
664 netfs_clear_unread(subreq);
665 subreq->transferred = subreq->len;
666 goto complete;
667 }
668
669 if (transferred_or_error == 0) {
670 if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
671 subreq->error = -ENODATA;
672 goto failed;
673 }
674 } else {
675 __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
676 }
677
678 __set_bit(NETFS_SREQ_SHORT_READ, &subreq->flags);
679 set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
680 goto out;
681
682 failed:
683 if (subreq->source == NETFS_READ_FROM_CACHE) {
684 netfs_stat(&netfs_n_rh_read_failed);
685 set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
686 } else {
687 netfs_stat(&netfs_n_rh_download_failed);
688 set_bit(NETFS_RREQ_FAILED, &rreq->flags);
689 rreq->error = subreq->error;
690 }
691 goto out;
692 }
693 EXPORT_SYMBOL(netfs_subreq_terminated);
694
netfs_cache_prepare_read(struct netfs_read_subrequest * subreq,loff_t i_size)695 static enum netfs_read_source netfs_cache_prepare_read(struct netfs_read_subrequest *subreq,
696 loff_t i_size)
697 {
698 struct netfs_read_request *rreq = subreq->rreq;
699 struct netfs_cache_resources *cres = &rreq->cache_resources;
700
701 if (cres->ops)
702 return cres->ops->prepare_read(subreq, i_size);
703 if (subreq->start >= rreq->i_size)
704 return NETFS_FILL_WITH_ZEROES;
705 return NETFS_DOWNLOAD_FROM_SERVER;
706 }
707
708 /*
709 * Work out what sort of subrequest the next one will be.
710 */
711 static enum netfs_read_source
netfs_rreq_prepare_read(struct netfs_read_request * rreq,struct netfs_read_subrequest * subreq)712 netfs_rreq_prepare_read(struct netfs_read_request *rreq,
713 struct netfs_read_subrequest *subreq)
714 {
715 enum netfs_read_source source;
716
717 _enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size);
718
719 source = netfs_cache_prepare_read(subreq, rreq->i_size);
720 if (source == NETFS_INVALID_READ)
721 goto out;
722
723 if (source == NETFS_DOWNLOAD_FROM_SERVER) {
724 /* Call out to the netfs to let it shrink the request to fit
725 * its own I/O sizes and boundaries. If it shinks it here, it
726 * will be called again to make simultaneous calls; if it wants
727 * to make serial calls, it can indicate a short read and then
728 * we will call it again.
729 */
730 if (subreq->len > rreq->i_size - subreq->start)
731 subreq->len = rreq->i_size - subreq->start;
732
733 if (rreq->netfs_ops->clamp_length &&
734 !rreq->netfs_ops->clamp_length(subreq)) {
735 source = NETFS_INVALID_READ;
736 goto out;
737 }
738 }
739
740 if (WARN_ON(subreq->len == 0))
741 source = NETFS_INVALID_READ;
742
743 out:
744 subreq->source = source;
745 trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
746 return source;
747 }
748
749 /*
750 * Slice off a piece of a read request and submit an I/O request for it.
751 */
netfs_rreq_submit_slice(struct netfs_read_request * rreq,unsigned int * _debug_index)752 static bool netfs_rreq_submit_slice(struct netfs_read_request *rreq,
753 unsigned int *_debug_index)
754 {
755 struct netfs_read_subrequest *subreq;
756 enum netfs_read_source source;
757
758 subreq = netfs_alloc_subrequest(rreq);
759 if (!subreq)
760 return false;
761
762 subreq->debug_index = (*_debug_index)++;
763 subreq->start = rreq->start + rreq->submitted;
764 subreq->len = rreq->len - rreq->submitted;
765
766 _debug("slice %llx,%zx,%zx", subreq->start, subreq->len, rreq->submitted);
767 list_add_tail(&subreq->rreq_link, &rreq->subrequests);
768
769 /* Call out to the cache to find out what it can do with the remaining
770 * subset. It tells us in subreq->flags what it decided should be done
771 * and adjusts subreq->len down if the subset crosses a cache boundary.
772 *
773 * Then when we hand the subset, it can choose to take a subset of that
774 * (the starts must coincide), in which case, we go around the loop
775 * again and ask it to download the next piece.
776 */
777 source = netfs_rreq_prepare_read(rreq, subreq);
778 if (source == NETFS_INVALID_READ)
779 goto subreq_failed;
780
781 atomic_inc(&rreq->nr_rd_ops);
782
783 rreq->submitted += subreq->len;
784
785 trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
786 switch (source) {
787 case NETFS_FILL_WITH_ZEROES:
788 netfs_fill_with_zeroes(rreq, subreq);
789 break;
790 case NETFS_DOWNLOAD_FROM_SERVER:
791 netfs_read_from_server(rreq, subreq);
792 break;
793 case NETFS_READ_FROM_CACHE:
794 netfs_read_from_cache(rreq, subreq, false);
795 break;
796 default:
797 BUG();
798 }
799
800 return true;
801
802 subreq_failed:
803 rreq->error = subreq->error;
804 netfs_put_subrequest(subreq, false);
805 return false;
806 }
807
netfs_cache_expand_readahead(struct netfs_read_request * rreq,loff_t * _start,size_t * _len,loff_t i_size)808 static void netfs_cache_expand_readahead(struct netfs_read_request *rreq,
809 loff_t *_start, size_t *_len, loff_t i_size)
810 {
811 struct netfs_cache_resources *cres = &rreq->cache_resources;
812
813 if (cres->ops && cres->ops->expand_readahead)
814 cres->ops->expand_readahead(cres, _start, _len, i_size);
815 }
816
netfs_rreq_expand(struct netfs_read_request * rreq,struct readahead_control * ractl)817 static void netfs_rreq_expand(struct netfs_read_request *rreq,
818 struct readahead_control *ractl)
819 {
820 /* Give the cache a chance to change the request parameters. The
821 * resultant request must contain the original region.
822 */
823 netfs_cache_expand_readahead(rreq, &rreq->start, &rreq->len, rreq->i_size);
824
825 /* Give the netfs a chance to change the request parameters. The
826 * resultant request must contain the original region.
827 */
828 if (rreq->netfs_ops->expand_readahead)
829 rreq->netfs_ops->expand_readahead(rreq);
830
831 /* Expand the request if the cache wants it to start earlier. Note
832 * that the expansion may get further extended if the VM wishes to
833 * insert THPs and the preferred start and/or end wind up in the middle
834 * of THPs.
835 *
836 * If this is the case, however, the THP size should be an integer
837 * multiple of the cache granule size, so we get a whole number of
838 * granules to deal with.
839 */
840 if (rreq->start != readahead_pos(ractl) ||
841 rreq->len != readahead_length(ractl)) {
842 readahead_expand(ractl, rreq->start, rreq->len);
843 rreq->start = readahead_pos(ractl);
844 rreq->len = readahead_length(ractl);
845
846 trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
847 netfs_read_trace_expanded);
848 }
849 }
850
851 /**
852 * netfs_readahead - Helper to manage a read request
853 * @ractl: The description of the readahead request
854 * @ops: The network filesystem's operations for the helper to use
855 * @netfs_priv: Private netfs data to be retained in the request
856 *
857 * Fulfil a readahead request by drawing data from the cache if possible, or
858 * the netfs if not. Space beyond the EOF is zero-filled. Multiple I/O
859 * requests from different sources will get munged together. If necessary, the
860 * readahead window can be expanded in either direction to a more convenient
861 * alighment for RPC efficiency or to make storage in the cache feasible.
862 *
863 * The calling netfs must provide a table of operations, only one of which,
864 * issue_op, is mandatory. It may also be passed a private token, which will
865 * be retained in rreq->netfs_priv and will be cleaned up by ops->cleanup().
866 *
867 * This is usable whether or not caching is enabled.
868 */
netfs_readahead(struct readahead_control * ractl,const struct netfs_read_request_ops * ops,void * netfs_priv)869 void netfs_readahead(struct readahead_control *ractl,
870 const struct netfs_read_request_ops *ops,
871 void *netfs_priv)
872 {
873 struct netfs_read_request *rreq;
874 struct page *page;
875 unsigned int debug_index = 0;
876 int ret;
877
878 _enter("%lx,%x", readahead_index(ractl), readahead_count(ractl));
879
880 if (readahead_count(ractl) == 0)
881 goto cleanup;
882
883 rreq = netfs_alloc_read_request(ops, netfs_priv, ractl->file);
884 if (!rreq)
885 goto cleanup;
886 rreq->mapping = ractl->mapping;
887 rreq->start = readahead_pos(ractl);
888 rreq->len = readahead_length(ractl);
889
890 if (ops->begin_cache_operation) {
891 ret = ops->begin_cache_operation(rreq);
892 if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
893 goto cleanup_free;
894 }
895
896 netfs_stat(&netfs_n_rh_readahead);
897 trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
898 netfs_read_trace_readahead);
899
900 netfs_rreq_expand(rreq, ractl);
901
902 atomic_set(&rreq->nr_rd_ops, 1);
903 do {
904 if (!netfs_rreq_submit_slice(rreq, &debug_index))
905 break;
906
907 } while (rreq->submitted < rreq->len);
908
909 /* Drop the refs on the pages here rather than in the cache or
910 * filesystem. The locks will be dropped in netfs_rreq_unlock().
911 */
912 while ((page = readahead_page(ractl)))
913 put_page(page);
914
915 /* If we decrement nr_rd_ops to 0, the ref belongs to us. */
916 if (atomic_dec_and_test(&rreq->nr_rd_ops))
917 netfs_rreq_assess(rreq, false);
918 return;
919
920 cleanup_free:
921 netfs_put_read_request(rreq, false);
922 return;
923 cleanup:
924 if (netfs_priv)
925 ops->cleanup(ractl->mapping, netfs_priv);
926 return;
927 }
928 EXPORT_SYMBOL(netfs_readahead);
929
930 /**
931 * netfs_readpage - Helper to manage a readpage request
932 * @file: The file to read from
933 * @page: The page to read
934 * @ops: The network filesystem's operations for the helper to use
935 * @netfs_priv: Private netfs data to be retained in the request
936 *
937 * Fulfil a readpage request by drawing data from the cache if possible, or the
938 * netfs if not. Space beyond the EOF is zero-filled. Multiple I/O requests
939 * from different sources will get munged together.
940 *
941 * The calling netfs must provide a table of operations, only one of which,
942 * issue_op, is mandatory. It may also be passed a private token, which will
943 * be retained in rreq->netfs_priv and will be cleaned up by ops->cleanup().
944 *
945 * This is usable whether or not caching is enabled.
946 */
netfs_readpage(struct file * file,struct page * page,const struct netfs_read_request_ops * ops,void * netfs_priv)947 int netfs_readpage(struct file *file,
948 struct page *page,
949 const struct netfs_read_request_ops *ops,
950 void *netfs_priv)
951 {
952 struct netfs_read_request *rreq;
953 unsigned int debug_index = 0;
954 int ret;
955
956 _enter("%lx", page_index(page));
957
958 rreq = netfs_alloc_read_request(ops, netfs_priv, file);
959 if (!rreq) {
960 if (netfs_priv)
961 ops->cleanup(page_file_mapping(page), netfs_priv);
962 unlock_page(page);
963 return -ENOMEM;
964 }
965 rreq->mapping = page_file_mapping(page);
966 rreq->start = page_file_offset(page);
967 rreq->len = thp_size(page);
968
969 if (ops->begin_cache_operation) {
970 ret = ops->begin_cache_operation(rreq);
971 if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS) {
972 unlock_page(page);
973 goto out;
974 }
975 }
976
977 netfs_stat(&netfs_n_rh_readpage);
978 trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_readpage);
979
980 netfs_get_read_request(rreq);
981
982 atomic_set(&rreq->nr_rd_ops, 1);
983 do {
984 if (!netfs_rreq_submit_slice(rreq, &debug_index))
985 break;
986
987 } while (rreq->submitted < rreq->len);
988
989 /* Keep nr_rd_ops incremented so that the ref always belongs to us, and
990 * the service code isn't punted off to a random thread pool to
991 * process.
992 */
993 do {
994 wait_var_event(&rreq->nr_rd_ops, atomic_read(&rreq->nr_rd_ops) == 1);
995 netfs_rreq_assess(rreq, false);
996 } while (test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags));
997
998 ret = rreq->error;
999 if (ret == 0 && rreq->submitted < rreq->len) {
1000 trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_readpage);
1001 ret = -EIO;
1002 }
1003 out:
1004 netfs_put_read_request(rreq, false);
1005 return ret;
1006 }
1007 EXPORT_SYMBOL(netfs_readpage);
1008
1009 /**
1010 * netfs_skip_page_read - prep a page for writing without reading first
1011 * @page: page being prepared
1012 * @pos: starting position for the write
1013 * @len: length of write
1014 *
1015 * In some cases, write_begin doesn't need to read at all:
1016 * - full page write
1017 * - write that lies in a page that is completely beyond EOF
1018 * - write that covers the the page from start to EOF or beyond it
1019 *
1020 * If any of these criteria are met, then zero out the unwritten parts
1021 * of the page and return true. Otherwise, return false.
1022 */
netfs_skip_page_read(struct page * page,loff_t pos,size_t len)1023 static bool netfs_skip_page_read(struct page *page, loff_t pos, size_t len)
1024 {
1025 struct inode *inode = page->mapping->host;
1026 loff_t i_size = i_size_read(inode);
1027 size_t offset = offset_in_thp(page, pos);
1028
1029 /* Full page write */
1030 if (offset == 0 && len >= thp_size(page))
1031 return true;
1032
1033 /* pos beyond last page in the file */
1034 if (pos - offset >= i_size)
1035 goto zero_out;
1036
1037 /* Write that covers from the start of the page to EOF or beyond */
1038 if (offset == 0 && (pos + len) >= i_size)
1039 goto zero_out;
1040
1041 return false;
1042 zero_out:
1043 zero_user_segments(page, 0, offset, offset + len, thp_size(page));
1044 return true;
1045 }
1046
1047 /**
1048 * netfs_write_begin - Helper to prepare for writing
1049 * @file: The file to read from
1050 * @mapping: The mapping to read from
1051 * @pos: File position at which the write will begin
1052 * @len: The length of the write (may extend beyond the end of the page chosen)
1053 * @flags: AOP_* flags
1054 * @_page: Where to put the resultant page
1055 * @_fsdata: Place for the netfs to store a cookie
1056 * @ops: The network filesystem's operations for the helper to use
1057 * @netfs_priv: Private netfs data to be retained in the request
1058 *
1059 * Pre-read data for a write-begin request by drawing data from the cache if
1060 * possible, or the netfs if not. Space beyond the EOF is zero-filled.
1061 * Multiple I/O requests from different sources will get munged together. If
1062 * necessary, the readahead window can be expanded in either direction to a
1063 * more convenient alighment for RPC efficiency or to make storage in the cache
1064 * feasible.
1065 *
1066 * The calling netfs must provide a table of operations, only one of which,
1067 * issue_op, is mandatory.
1068 *
1069 * The check_write_begin() operation can be provided to check for and flush
1070 * conflicting writes once the page is grabbed and locked. It is passed a
1071 * pointer to the fsdata cookie that gets returned to the VM to be passed to
1072 * write_end. It is permitted to sleep. It should return 0 if the request
1073 * should go ahead; unlock the page and return -EAGAIN to cause the page to be
1074 * regot; or return an error.
1075 *
1076 * This is usable whether or not caching is enabled.
1077 */
netfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned int len,unsigned int flags,struct page ** _page,void ** _fsdata,const struct netfs_read_request_ops * ops,void * netfs_priv)1078 int netfs_write_begin(struct file *file, struct address_space *mapping,
1079 loff_t pos, unsigned int len, unsigned int flags,
1080 struct page **_page, void **_fsdata,
1081 const struct netfs_read_request_ops *ops,
1082 void *netfs_priv)
1083 {
1084 struct netfs_read_request *rreq;
1085 struct page *page, *xpage;
1086 struct inode *inode = file_inode(file);
1087 unsigned int debug_index = 0;
1088 pgoff_t index = pos >> PAGE_SHIFT;
1089 int ret;
1090
1091 DEFINE_READAHEAD(ractl, file, NULL, mapping, index);
1092
1093 retry:
1094 page = grab_cache_page_write_begin(mapping, index, flags);
1095 if (!page)
1096 return -ENOMEM;
1097
1098 if (ops->check_write_begin) {
1099 /* Allow the netfs (eg. ceph) to flush conflicts. */
1100 ret = ops->check_write_begin(file, pos, len, page, _fsdata);
1101 if (ret < 0) {
1102 trace_netfs_failure(NULL, NULL, ret, netfs_fail_check_write_begin);
1103 if (ret == -EAGAIN)
1104 goto retry;
1105 goto error;
1106 }
1107 }
1108
1109 if (PageUptodate(page))
1110 goto have_page;
1111
1112 /* If the page is beyond the EOF, we want to clear it - unless it's
1113 * within the cache granule containing the EOF, in which case we need
1114 * to preload the granule.
1115 */
1116 if (!ops->is_cache_enabled(inode) &&
1117 netfs_skip_page_read(page, pos, len)) {
1118 netfs_stat(&netfs_n_rh_write_zskip);
1119 goto have_page_no_wait;
1120 }
1121
1122 ret = -ENOMEM;
1123 rreq = netfs_alloc_read_request(ops, netfs_priv, file);
1124 if (!rreq)
1125 goto error;
1126 rreq->mapping = page->mapping;
1127 rreq->start = page_offset(page);
1128 rreq->len = thp_size(page);
1129 rreq->no_unlock_page = page->index;
1130 __set_bit(NETFS_RREQ_NO_UNLOCK_PAGE, &rreq->flags);
1131 netfs_priv = NULL;
1132
1133 if (ops->begin_cache_operation) {
1134 ret = ops->begin_cache_operation(rreq);
1135 if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
1136 goto error_put;
1137 }
1138
1139 netfs_stat(&netfs_n_rh_write_begin);
1140 trace_netfs_read(rreq, pos, len, netfs_read_trace_write_begin);
1141
1142 /* Expand the request to meet caching requirements and download
1143 * preferences.
1144 */
1145 ractl._nr_pages = thp_nr_pages(page);
1146 netfs_rreq_expand(rreq, &ractl);
1147 netfs_get_read_request(rreq);
1148
1149 /* We hold the page locks, so we can drop the references */
1150 while ((xpage = readahead_page(&ractl)))
1151 if (xpage != page)
1152 put_page(xpage);
1153
1154 atomic_set(&rreq->nr_rd_ops, 1);
1155 do {
1156 if (!netfs_rreq_submit_slice(rreq, &debug_index))
1157 break;
1158
1159 } while (rreq->submitted < rreq->len);
1160
1161 /* Keep nr_rd_ops incremented so that the ref always belongs to us, and
1162 * the service code isn't punted off to a random thread pool to
1163 * process.
1164 */
1165 for (;;) {
1166 wait_var_event(&rreq->nr_rd_ops, atomic_read(&rreq->nr_rd_ops) == 1);
1167 netfs_rreq_assess(rreq, false);
1168 if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags))
1169 break;
1170 cond_resched();
1171 }
1172
1173 ret = rreq->error;
1174 if (ret == 0 && rreq->submitted < rreq->len) {
1175 trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_write_begin);
1176 ret = -EIO;
1177 }
1178 netfs_put_read_request(rreq, false);
1179 if (ret < 0)
1180 goto error;
1181
1182 have_page:
1183 ret = wait_on_page_fscache_killable(page);
1184 if (ret < 0)
1185 goto error;
1186 have_page_no_wait:
1187 if (netfs_priv)
1188 ops->cleanup(mapping, netfs_priv);
1189 *_page = page;
1190 _leave(" = 0");
1191 return 0;
1192
1193 error_put:
1194 netfs_put_read_request(rreq, false);
1195 error:
1196 unlock_page(page);
1197 put_page(page);
1198 if (netfs_priv)
1199 ops->cleanup(mapping, netfs_priv);
1200 _leave(" = %d", ret);
1201 return ret;
1202 }
1203 EXPORT_SYMBOL(netfs_write_begin);
1204