1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 int sysctl_unprivileged_userfaultfd __read_mostly;
34
35 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
36
37 /*
38 * Start with fault_pending_wqh and fault_wqh so they're more likely
39 * to be in the same cacheline.
40 *
41 * Locking order:
42 * fd_wqh.lock
43 * fault_pending_wqh.lock
44 * fault_wqh.lock
45 * event_wqh.lock
46 *
47 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
48 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
49 * also taken in IRQ context.
50 */
51 struct userfaultfd_ctx {
52 /* waitqueue head for the pending (i.e. not read) userfaults */
53 wait_queue_head_t fault_pending_wqh;
54 /* waitqueue head for the userfaults */
55 wait_queue_head_t fault_wqh;
56 /* waitqueue head for the pseudo fd to wakeup poll/read */
57 wait_queue_head_t fd_wqh;
58 /* waitqueue head for events */
59 wait_queue_head_t event_wqh;
60 /* a refile sequence protected by fault_pending_wqh lock */
61 seqcount_spinlock_t refile_seq;
62 /* pseudo fd refcounting */
63 refcount_t refcount;
64 /* userfaultfd syscall flags */
65 unsigned int flags;
66 /* features requested from the userspace */
67 unsigned int features;
68 /* released */
69 bool released;
70 /* memory mappings are changing because of non-cooperative event */
71 atomic_t mmap_changing;
72 /* mm with one ore more vmas attached to this userfaultfd_ctx */
73 struct mm_struct *mm;
74 struct rcu_head rcu_head;
75 };
76
77 struct userfaultfd_fork_ctx {
78 struct userfaultfd_ctx *orig;
79 struct userfaultfd_ctx *new;
80 struct list_head list;
81 };
82
83 struct userfaultfd_unmap_ctx {
84 struct userfaultfd_ctx *ctx;
85 unsigned long start;
86 unsigned long end;
87 struct list_head list;
88 };
89
90 struct userfaultfd_wait_queue {
91 struct uffd_msg msg;
92 wait_queue_entry_t wq;
93 struct userfaultfd_ctx *ctx;
94 bool waken;
95 };
96
97 struct userfaultfd_wake_range {
98 unsigned long start;
99 unsigned long len;
100 };
101
102 /* internal indication that UFFD_API ioctl was successfully executed */
103 #define UFFD_FEATURE_INITIALIZED (1u << 31)
104
userfaultfd_is_initialized(struct userfaultfd_ctx * ctx)105 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
106 {
107 return ctx->features & UFFD_FEATURE_INITIALIZED;
108 }
109
userfaultfd_wake_function(wait_queue_entry_t * wq,unsigned mode,int wake_flags,void * key)110 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
111 int wake_flags, void *key)
112 {
113 struct userfaultfd_wake_range *range = key;
114 int ret;
115 struct userfaultfd_wait_queue *uwq;
116 unsigned long start, len;
117
118 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
119 ret = 0;
120 /* len == 0 means wake all */
121 start = range->start;
122 len = range->len;
123 if (len && (start > uwq->msg.arg.pagefault.address ||
124 start + len <= uwq->msg.arg.pagefault.address))
125 goto out;
126 WRITE_ONCE(uwq->waken, true);
127 /*
128 * The Program-Order guarantees provided by the scheduler
129 * ensure uwq->waken is visible before the task is woken.
130 */
131 ret = wake_up_state(wq->private, mode);
132 if (ret) {
133 /*
134 * Wake only once, autoremove behavior.
135 *
136 * After the effect of list_del_init is visible to the other
137 * CPUs, the waitqueue may disappear from under us, see the
138 * !list_empty_careful() in handle_userfault().
139 *
140 * try_to_wake_up() has an implicit smp_mb(), and the
141 * wq->private is read before calling the extern function
142 * "wake_up_state" (which in turns calls try_to_wake_up).
143 */
144 list_del_init(&wq->entry);
145 }
146 out:
147 return ret;
148 }
149
150 /**
151 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
152 * context.
153 * @ctx: [in] Pointer to the userfaultfd context.
154 */
userfaultfd_ctx_get(struct userfaultfd_ctx * ctx)155 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
156 {
157 refcount_inc(&ctx->refcount);
158 }
159
__free_userfaultfd_ctx(struct rcu_head * head)160 static void __free_userfaultfd_ctx(struct rcu_head *head)
161 {
162 struct userfaultfd_ctx *ctx = container_of(head, struct userfaultfd_ctx,
163 rcu_head);
164 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
165 }
166
167 /**
168 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
169 * context.
170 * @ctx: [in] Pointer to userfaultfd context.
171 *
172 * The userfaultfd context reference must have been previously acquired either
173 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
174 */
userfaultfd_ctx_put(struct userfaultfd_ctx * ctx)175 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
176 {
177 if (refcount_dec_and_test(&ctx->refcount)) {
178 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
179 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
180 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
181 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
182 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
183 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
184 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
185 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
186 mmdrop(ctx->mm);
187 call_rcu(&ctx->rcu_head, __free_userfaultfd_ctx);
188 }
189 }
190
msg_init(struct uffd_msg * msg)191 static inline void msg_init(struct uffd_msg *msg)
192 {
193 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
194 /*
195 * Must use memset to zero out the paddings or kernel data is
196 * leaked to userland.
197 */
198 memset(msg, 0, sizeof(struct uffd_msg));
199 }
200
userfault_msg(unsigned long address,unsigned int flags,unsigned long reason,unsigned int features)201 static inline struct uffd_msg userfault_msg(unsigned long address,
202 unsigned int flags,
203 unsigned long reason,
204 unsigned int features)
205 {
206 struct uffd_msg msg;
207 msg_init(&msg);
208 msg.event = UFFD_EVENT_PAGEFAULT;
209 msg.arg.pagefault.address = address;
210 /*
211 * These flags indicate why the userfault occurred:
212 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
213 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
214 * - Neither of these flags being set indicates a MISSING fault.
215 *
216 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
217 * fault. Otherwise, it was a read fault.
218 */
219 if (flags & FAULT_FLAG_WRITE)
220 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
221 if (reason & VM_UFFD_WP)
222 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
223 if (reason & VM_UFFD_MINOR)
224 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
225 if (features & UFFD_FEATURE_THREAD_ID)
226 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
227 return msg;
228 }
229
230 #ifdef CONFIG_HUGETLB_PAGE
231 /*
232 * Same functionality as userfaultfd_must_wait below with modifications for
233 * hugepmd ranges.
234 */
userfaultfd_huge_must_wait(struct userfaultfd_ctx * ctx,struct vm_area_struct * vma,unsigned long address,unsigned long flags,unsigned long reason)235 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
236 struct vm_area_struct *vma,
237 unsigned long address,
238 unsigned long flags,
239 unsigned long reason)
240 {
241 struct mm_struct *mm = ctx->mm;
242 pte_t *ptep, pte;
243 bool ret = true;
244
245 mmap_assert_locked(mm);
246
247 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
248
249 if (!ptep)
250 goto out;
251
252 ret = false;
253 pte = huge_ptep_get(ptep);
254
255 /*
256 * Lockless access: we're in a wait_event so it's ok if it
257 * changes under us.
258 */
259 if (huge_pte_none(pte))
260 ret = true;
261 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
262 ret = true;
263 out:
264 return ret;
265 }
266 #else
userfaultfd_huge_must_wait(struct userfaultfd_ctx * ctx,struct vm_area_struct * vma,unsigned long address,unsigned long flags,unsigned long reason)267 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
268 struct vm_area_struct *vma,
269 unsigned long address,
270 unsigned long flags,
271 unsigned long reason)
272 {
273 return false; /* should never get here */
274 }
275 #endif /* CONFIG_HUGETLB_PAGE */
276
277 /*
278 * Verify the pagetables are still not ok after having reigstered into
279 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
280 * userfault that has already been resolved, if userfaultfd_read and
281 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
282 * threads.
283 */
userfaultfd_must_wait(struct userfaultfd_ctx * ctx,unsigned long address,unsigned long flags,unsigned long reason)284 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
285 unsigned long address,
286 unsigned long flags,
287 unsigned long reason)
288 {
289 struct mm_struct *mm = ctx->mm;
290 pgd_t *pgd;
291 p4d_t *p4d;
292 pud_t *pud;
293 pmd_t *pmd, _pmd;
294 pte_t *pte;
295 bool ret = true;
296
297 mmap_assert_locked(mm);
298
299 pgd = pgd_offset(mm, address);
300 if (!pgd_present(*pgd))
301 goto out;
302 p4d = p4d_offset(pgd, address);
303 if (!p4d_present(*p4d))
304 goto out;
305 pud = pud_offset(p4d, address);
306 if (!pud_present(*pud))
307 goto out;
308 pmd = pmd_offset(pud, address);
309 /*
310 * READ_ONCE must function as a barrier with narrower scope
311 * and it must be equivalent to:
312 * _pmd = *pmd; barrier();
313 *
314 * This is to deal with the instability (as in
315 * pmd_trans_unstable) of the pmd.
316 */
317 _pmd = READ_ONCE(*pmd);
318 if (pmd_none(_pmd))
319 goto out;
320
321 ret = false;
322 if (!pmd_present(_pmd))
323 goto out;
324
325 if (pmd_trans_huge(_pmd)) {
326 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
327 ret = true;
328 goto out;
329 }
330
331 /*
332 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
333 * and use the standard pte_offset_map() instead of parsing _pmd.
334 */
335 pte = pte_offset_map(pmd, address);
336 /*
337 * Lockless access: we're in a wait_event so it's ok if it
338 * changes under us.
339 */
340 if (pte_none(*pte))
341 ret = true;
342 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
343 ret = true;
344 pte_unmap(pte);
345
346 out:
347 return ret;
348 }
349
userfaultfd_get_blocking_state(unsigned int flags)350 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
351 {
352 if (flags & FAULT_FLAG_INTERRUPTIBLE)
353 return TASK_INTERRUPTIBLE;
354
355 if (flags & FAULT_FLAG_KILLABLE)
356 return TASK_KILLABLE;
357
358 return TASK_UNINTERRUPTIBLE;
359 }
360
361 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
userfaultfd_using_sigbus(struct vm_area_struct * vma)362 bool userfaultfd_using_sigbus(struct vm_area_struct *vma)
363 {
364 struct userfaultfd_ctx *ctx;
365 bool ret;
366
367 /*
368 * Do it inside RCU section to ensure that the ctx doesn't
369 * disappear under us.
370 */
371 rcu_read_lock();
372 ctx = rcu_dereference(vma->vm_userfaultfd_ctx.ctx);
373 ret = ctx && (ctx->features & UFFD_FEATURE_SIGBUS);
374 rcu_read_unlock();
375 return ret;
376 }
377 #endif
378
379 /*
380 * The locking rules involved in returning VM_FAULT_RETRY depending on
381 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
382 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
383 * recommendation in __lock_page_or_retry is not an understatement.
384 *
385 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
386 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
387 * not set.
388 *
389 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
390 * set, VM_FAULT_RETRY can still be returned if and only if there are
391 * fatal_signal_pending()s, and the mmap_lock must be released before
392 * returning it.
393 */
handle_userfault(struct vm_fault * vmf,unsigned long reason)394 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
395 {
396 struct mm_struct *mm = vmf->vma->vm_mm;
397 struct userfaultfd_ctx *ctx;
398 struct userfaultfd_wait_queue uwq;
399 vm_fault_t ret = VM_FAULT_SIGBUS;
400 bool must_wait;
401 unsigned int blocking_state;
402
403 /*
404 * We don't do userfault handling for the final child pid update.
405 *
406 * We also don't do userfault handling during
407 * coredumping. hugetlbfs has the special
408 * follow_hugetlb_page() to skip missing pages in the
409 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
410 * the no_page_table() helper in follow_page_mask(), but the
411 * shmem_vm_ops->fault method is invoked even during
412 * coredumping without mmap_lock and it ends up here.
413 */
414 if (current->flags & (PF_EXITING|PF_DUMPCORE))
415 goto out;
416
417 /*
418 * Coredumping runs without mmap_lock so we can only check that
419 * the mmap_lock is held, if PF_DUMPCORE was not set.
420 */
421 mmap_assert_locked(mm);
422
423 ctx = rcu_dereference_protected(vmf->vma->vm_userfaultfd_ctx.ctx,
424 lockdep_is_held(&mm->mmap_lock));
425 if (!ctx)
426 goto out;
427
428 BUG_ON(ctx->mm != mm);
429
430 /* Any unrecognized flag is a bug. */
431 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
432 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
433 VM_BUG_ON(!reason || (reason & (reason - 1)));
434
435 if (ctx->features & UFFD_FEATURE_SIGBUS)
436 goto out;
437 if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
438 ctx->flags & UFFD_USER_MODE_ONLY) {
439 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
440 "sysctl knob to 1 if kernel faults must be handled "
441 "without obtaining CAP_SYS_PTRACE capability\n");
442 goto out;
443 }
444
445 /*
446 * If it's already released don't get it. This avoids to loop
447 * in __get_user_pages if userfaultfd_release waits on the
448 * caller of handle_userfault to release the mmap_lock.
449 */
450 if (unlikely(READ_ONCE(ctx->released))) {
451 /*
452 * Don't return VM_FAULT_SIGBUS in this case, so a non
453 * cooperative manager can close the uffd after the
454 * last UFFDIO_COPY, without risking to trigger an
455 * involuntary SIGBUS if the process was starting the
456 * userfaultfd while the userfaultfd was still armed
457 * (but after the last UFFDIO_COPY). If the uffd
458 * wasn't already closed when the userfault reached
459 * this point, that would normally be solved by
460 * userfaultfd_must_wait returning 'false'.
461 *
462 * If we were to return VM_FAULT_SIGBUS here, the non
463 * cooperative manager would be instead forced to
464 * always call UFFDIO_UNREGISTER before it can safely
465 * close the uffd.
466 */
467 ret = VM_FAULT_NOPAGE;
468 goto out;
469 }
470
471 /*
472 * Check that we can return VM_FAULT_RETRY.
473 *
474 * NOTE: it should become possible to return VM_FAULT_RETRY
475 * even if FAULT_FLAG_TRIED is set without leading to gup()
476 * -EBUSY failures, if the userfaultfd is to be extended for
477 * VM_UFFD_WP tracking and we intend to arm the userfault
478 * without first stopping userland access to the memory. For
479 * VM_UFFD_MISSING userfaults this is enough for now.
480 */
481 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
482 /*
483 * Validate the invariant that nowait must allow retry
484 * to be sure not to return SIGBUS erroneously on
485 * nowait invocations.
486 */
487 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
488 #ifdef CONFIG_DEBUG_VM
489 if (printk_ratelimit()) {
490 printk(KERN_WARNING
491 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
492 vmf->flags);
493 dump_stack();
494 }
495 #endif
496 goto out;
497 }
498
499 /*
500 * Handle nowait, not much to do other than tell it to retry
501 * and wait.
502 */
503 ret = VM_FAULT_RETRY;
504 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
505 goto out;
506
507 /* take the reference before dropping the mmap_lock */
508 userfaultfd_ctx_get(ctx);
509
510 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
511 uwq.wq.private = current;
512 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
513 ctx->features);
514 uwq.ctx = ctx;
515 uwq.waken = false;
516
517 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
518
519 spin_lock_irq(&ctx->fault_pending_wqh.lock);
520 /*
521 * After the __add_wait_queue the uwq is visible to userland
522 * through poll/read().
523 */
524 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
525 /*
526 * The smp_mb() after __set_current_state prevents the reads
527 * following the spin_unlock to happen before the list_add in
528 * __add_wait_queue.
529 */
530 set_current_state(blocking_state);
531 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
532
533 if (!is_vm_hugetlb_page(vmf->vma))
534 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
535 reason);
536 else
537 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
538 vmf->address,
539 vmf->flags, reason);
540 mmap_read_unlock(mm);
541
542 if (likely(must_wait && !READ_ONCE(ctx->released))) {
543 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
544 schedule();
545 }
546
547 __set_current_state(TASK_RUNNING);
548
549 /*
550 * Here we race with the list_del; list_add in
551 * userfaultfd_ctx_read(), however because we don't ever run
552 * list_del_init() to refile across the two lists, the prev
553 * and next pointers will never point to self. list_add also
554 * would never let any of the two pointers to point to
555 * self. So list_empty_careful won't risk to see both pointers
556 * pointing to self at any time during the list refile. The
557 * only case where list_del_init() is called is the full
558 * removal in the wake function and there we don't re-list_add
559 * and it's fine not to block on the spinlock. The uwq on this
560 * kernel stack can be released after the list_del_init.
561 */
562 if (!list_empty_careful(&uwq.wq.entry)) {
563 spin_lock_irq(&ctx->fault_pending_wqh.lock);
564 /*
565 * No need of list_del_init(), the uwq on the stack
566 * will be freed shortly anyway.
567 */
568 list_del(&uwq.wq.entry);
569 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
570 }
571
572 /*
573 * ctx may go away after this if the userfault pseudo fd is
574 * already released.
575 */
576 userfaultfd_ctx_put(ctx);
577
578 out:
579 return ret;
580 }
581
userfaultfd_event_wait_completion(struct userfaultfd_ctx * ctx,struct userfaultfd_wait_queue * ewq)582 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
583 struct userfaultfd_wait_queue *ewq)
584 {
585 struct userfaultfd_ctx *release_new_ctx;
586
587 if (WARN_ON_ONCE(current->flags & PF_EXITING))
588 goto out;
589
590 ewq->ctx = ctx;
591 init_waitqueue_entry(&ewq->wq, current);
592 release_new_ctx = NULL;
593
594 spin_lock_irq(&ctx->event_wqh.lock);
595 /*
596 * After the __add_wait_queue the uwq is visible to userland
597 * through poll/read().
598 */
599 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
600 for (;;) {
601 set_current_state(TASK_KILLABLE);
602 if (ewq->msg.event == 0)
603 break;
604 if (READ_ONCE(ctx->released) ||
605 fatal_signal_pending(current)) {
606 /*
607 * &ewq->wq may be queued in fork_event, but
608 * __remove_wait_queue ignores the head
609 * parameter. It would be a problem if it
610 * didn't.
611 */
612 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
613 if (ewq->msg.event == UFFD_EVENT_FORK) {
614 struct userfaultfd_ctx *new;
615
616 new = (struct userfaultfd_ctx *)
617 (unsigned long)
618 ewq->msg.arg.reserved.reserved1;
619 release_new_ctx = new;
620 }
621 break;
622 }
623
624 spin_unlock_irq(&ctx->event_wqh.lock);
625
626 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
627 schedule();
628
629 spin_lock_irq(&ctx->event_wqh.lock);
630 }
631 __set_current_state(TASK_RUNNING);
632 spin_unlock_irq(&ctx->event_wqh.lock);
633
634 if (release_new_ctx) {
635 struct vm_area_struct *vma;
636 struct mm_struct *mm = release_new_ctx->mm;
637
638 /* the various vma->vm_userfaultfd_ctx still points to it */
639 mmap_write_lock(mm);
640 for (vma = mm->mmap; vma; vma = vma->vm_next)
641 if (rcu_access_pointer(vma->vm_userfaultfd_ctx.ctx) ==
642 release_new_ctx) {
643 rcu_assign_pointer(vma->vm_userfaultfd_ctx.ctx,
644 NULL);
645 vma->vm_flags &= ~__VM_UFFD_FLAGS;
646 }
647 mmap_write_unlock(mm);
648
649 userfaultfd_ctx_put(release_new_ctx);
650 }
651
652 /*
653 * ctx may go away after this if the userfault pseudo fd is
654 * already released.
655 */
656 out:
657 atomic_dec(&ctx->mmap_changing);
658 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
659 userfaultfd_ctx_put(ctx);
660 }
661
userfaultfd_event_complete(struct userfaultfd_ctx * ctx,struct userfaultfd_wait_queue * ewq)662 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
663 struct userfaultfd_wait_queue *ewq)
664 {
665 ewq->msg.event = 0;
666 wake_up_locked(&ctx->event_wqh);
667 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
668 }
669
dup_userfaultfd(struct vm_area_struct * vma,struct list_head * fcs)670 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
671 {
672 struct userfaultfd_ctx *ctx = NULL, *octx;
673 struct userfaultfd_fork_ctx *fctx;
674
675 octx = rcu_dereference_protected(
676 vma->vm_userfaultfd_ctx.ctx,
677 lockdep_is_held(&vma->vm_mm->mmap_lock));
678
679 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
680 rcu_assign_pointer(vma->vm_userfaultfd_ctx.ctx, NULL);
681 vma->vm_flags &= ~__VM_UFFD_FLAGS;
682 return 0;
683 }
684
685 list_for_each_entry(fctx, fcs, list)
686 if (fctx->orig == octx) {
687 ctx = fctx->new;
688 break;
689 }
690
691 if (!ctx) {
692 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
693 if (!fctx)
694 return -ENOMEM;
695
696 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
697 if (!ctx) {
698 kfree(fctx);
699 return -ENOMEM;
700 }
701
702 refcount_set(&ctx->refcount, 1);
703 ctx->flags = octx->flags;
704 ctx->features = octx->features;
705 ctx->released = false;
706 atomic_set(&ctx->mmap_changing, 0);
707 ctx->mm = vma->vm_mm;
708 mmgrab(ctx->mm);
709
710 userfaultfd_ctx_get(octx);
711 atomic_inc(&octx->mmap_changing);
712 fctx->orig = octx;
713 fctx->new = ctx;
714 list_add_tail(&fctx->list, fcs);
715 }
716
717 rcu_assign_pointer(vma->vm_userfaultfd_ctx.ctx, ctx);
718 return 0;
719 }
720
dup_fctx(struct userfaultfd_fork_ctx * fctx)721 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
722 {
723 struct userfaultfd_ctx *ctx = fctx->orig;
724 struct userfaultfd_wait_queue ewq;
725
726 msg_init(&ewq.msg);
727
728 ewq.msg.event = UFFD_EVENT_FORK;
729 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
730
731 userfaultfd_event_wait_completion(ctx, &ewq);
732 }
733
dup_userfaultfd_complete(struct list_head * fcs)734 void dup_userfaultfd_complete(struct list_head *fcs)
735 {
736 struct userfaultfd_fork_ctx *fctx, *n;
737
738 list_for_each_entry_safe(fctx, n, fcs, list) {
739 dup_fctx(fctx);
740 list_del(&fctx->list);
741 kfree(fctx);
742 }
743 }
744
mremap_userfaultfd_prep(struct vm_area_struct * vma,struct vm_userfaultfd_ctx * vm_ctx)745 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
746 struct vm_userfaultfd_ctx *vm_ctx)
747 {
748 struct userfaultfd_ctx *ctx;
749
750 ctx = rcu_dereference_protected(vma->vm_userfaultfd_ctx.ctx,
751 lockdep_is_held(&vma->vm_mm->mmap_lock));
752
753 if (!ctx)
754 return;
755
756 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
757 vm_ctx->ctx = ctx;
758 userfaultfd_ctx_get(ctx);
759 atomic_inc(&ctx->mmap_changing);
760 } else {
761 /* Drop uffd context if remap feature not enabled */
762 rcu_assign_pointer(vma->vm_userfaultfd_ctx.ctx, NULL);
763 vma->vm_flags &= ~__VM_UFFD_FLAGS;
764 }
765 }
766
mremap_userfaultfd_complete(struct vm_userfaultfd_ctx * vm_ctx,unsigned long from,unsigned long to,unsigned long len)767 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
768 unsigned long from, unsigned long to,
769 unsigned long len)
770 {
771 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
772 struct userfaultfd_wait_queue ewq;
773
774 if (!ctx)
775 return;
776
777 if (to & ~PAGE_MASK) {
778 userfaultfd_ctx_put(ctx);
779 return;
780 }
781
782 msg_init(&ewq.msg);
783
784 ewq.msg.event = UFFD_EVENT_REMAP;
785 ewq.msg.arg.remap.from = from;
786 ewq.msg.arg.remap.to = to;
787 ewq.msg.arg.remap.len = len;
788
789 userfaultfd_event_wait_completion(ctx, &ewq);
790 }
791
userfaultfd_remove(struct vm_area_struct * vma,unsigned long start,unsigned long end)792 bool userfaultfd_remove(struct vm_area_struct *vma,
793 unsigned long start, unsigned long end)
794 {
795 struct mm_struct *mm = vma->vm_mm;
796 struct userfaultfd_ctx *ctx;
797 struct userfaultfd_wait_queue ewq;
798
799 ctx = rcu_dereference_protected(vma->vm_userfaultfd_ctx.ctx,
800 lockdep_is_held(&mm->mmap_lock));
801 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
802 return true;
803
804 userfaultfd_ctx_get(ctx);
805 atomic_inc(&ctx->mmap_changing);
806 mmap_read_unlock(mm);
807
808 msg_init(&ewq.msg);
809
810 ewq.msg.event = UFFD_EVENT_REMOVE;
811 ewq.msg.arg.remove.start = start;
812 ewq.msg.arg.remove.end = end;
813
814 userfaultfd_event_wait_completion(ctx, &ewq);
815
816 return false;
817 }
818
has_unmap_ctx(struct userfaultfd_ctx * ctx,struct list_head * unmaps,unsigned long start,unsigned long end)819 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
820 unsigned long start, unsigned long end)
821 {
822 struct userfaultfd_unmap_ctx *unmap_ctx;
823
824 list_for_each_entry(unmap_ctx, unmaps, list)
825 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
826 unmap_ctx->end == end)
827 return true;
828
829 return false;
830 }
831
userfaultfd_unmap_prep(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * unmaps)832 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
833 unsigned long start, unsigned long end,
834 struct list_head *unmaps)
835 {
836 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
837 struct userfaultfd_unmap_ctx *unmap_ctx;
838 struct userfaultfd_ctx *ctx =
839 rcu_dereference_protected(vma->vm_userfaultfd_ctx.ctx,
840 lockdep_is_held(&vma->vm_mm->mmap_lock));
841
842 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
843 has_unmap_ctx(ctx, unmaps, start, end))
844 continue;
845
846 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
847 if (!unmap_ctx)
848 return -ENOMEM;
849
850 userfaultfd_ctx_get(ctx);
851 atomic_inc(&ctx->mmap_changing);
852 unmap_ctx->ctx = ctx;
853 unmap_ctx->start = start;
854 unmap_ctx->end = end;
855 list_add_tail(&unmap_ctx->list, unmaps);
856 }
857
858 return 0;
859 }
860
userfaultfd_unmap_complete(struct mm_struct * mm,struct list_head * uf)861 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
862 {
863 struct userfaultfd_unmap_ctx *ctx, *n;
864 struct userfaultfd_wait_queue ewq;
865
866 list_for_each_entry_safe(ctx, n, uf, list) {
867 msg_init(&ewq.msg);
868
869 ewq.msg.event = UFFD_EVENT_UNMAP;
870 ewq.msg.arg.remove.start = ctx->start;
871 ewq.msg.arg.remove.end = ctx->end;
872
873 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
874
875 list_del(&ctx->list);
876 kfree(ctx);
877 }
878 }
879
userfaultfd_release(struct inode * inode,struct file * file)880 static int userfaultfd_release(struct inode *inode, struct file *file)
881 {
882 struct userfaultfd_ctx *ctx = file->private_data;
883 struct mm_struct *mm = ctx->mm;
884 struct vm_area_struct *vma, *prev;
885 /* len == 0 means wake all */
886 struct userfaultfd_wake_range range = { .len = 0, };
887 unsigned long new_flags;
888
889 WRITE_ONCE(ctx->released, true);
890
891 if (!mmget_not_zero(mm))
892 goto wakeup;
893
894 /*
895 * Flush page faults out of all CPUs. NOTE: all page faults
896 * must be retried without returning VM_FAULT_SIGBUS if
897 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
898 * changes while handle_userfault released the mmap_lock. So
899 * it's critical that released is set to true (above), before
900 * taking the mmap_lock for writing.
901 */
902 mmap_write_lock(mm);
903 prev = NULL;
904 for (vma = mm->mmap; vma; vma = vma->vm_next) {
905 struct userfaultfd_ctx *cur_uffd_ctx =
906 rcu_dereference_protected(vma->vm_userfaultfd_ctx.ctx,
907 lockdep_is_held(&mm->mmap_lock));
908 cond_resched();
909 BUG_ON(!!cur_uffd_ctx ^
910 !!(vma->vm_flags & __VM_UFFD_FLAGS));
911 if (cur_uffd_ctx != ctx) {
912 prev = vma;
913 continue;
914 }
915 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
916 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
917 new_flags, vma->anon_vma,
918 vma->vm_file, vma->vm_pgoff,
919 vma_policy(vma),
920 NULL_VM_UFFD_CTX, anon_vma_name(vma));
921 if (prev)
922 vma = prev;
923 else
924 prev = vma;
925 vma->vm_flags = new_flags;
926 rcu_assign_pointer(vma->vm_userfaultfd_ctx.ctx, NULL);
927 }
928 mmap_write_unlock(mm);
929 mmput(mm);
930 wakeup:
931 /*
932 * After no new page faults can wait on this fault_*wqh, flush
933 * the last page faults that may have been already waiting on
934 * the fault_*wqh.
935 */
936 spin_lock_irq(&ctx->fault_pending_wqh.lock);
937 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
938 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
939 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
940
941 /* Flush pending events that may still wait on event_wqh */
942 wake_up_all(&ctx->event_wqh);
943
944 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
945 userfaultfd_ctx_put(ctx);
946 return 0;
947 }
948
949 /* fault_pending_wqh.lock must be hold by the caller */
find_userfault_in(wait_queue_head_t * wqh)950 static inline struct userfaultfd_wait_queue *find_userfault_in(
951 wait_queue_head_t *wqh)
952 {
953 wait_queue_entry_t *wq;
954 struct userfaultfd_wait_queue *uwq;
955
956 lockdep_assert_held(&wqh->lock);
957
958 uwq = NULL;
959 if (!waitqueue_active(wqh))
960 goto out;
961 /* walk in reverse to provide FIFO behavior to read userfaults */
962 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
963 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
964 out:
965 return uwq;
966 }
967
find_userfault(struct userfaultfd_ctx * ctx)968 static inline struct userfaultfd_wait_queue *find_userfault(
969 struct userfaultfd_ctx *ctx)
970 {
971 return find_userfault_in(&ctx->fault_pending_wqh);
972 }
973
find_userfault_evt(struct userfaultfd_ctx * ctx)974 static inline struct userfaultfd_wait_queue *find_userfault_evt(
975 struct userfaultfd_ctx *ctx)
976 {
977 return find_userfault_in(&ctx->event_wqh);
978 }
979
userfaultfd_poll(struct file * file,poll_table * wait)980 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
981 {
982 struct userfaultfd_ctx *ctx = file->private_data;
983 __poll_t ret;
984
985 poll_wait(file, &ctx->fd_wqh, wait);
986
987 if (!userfaultfd_is_initialized(ctx))
988 return EPOLLERR;
989
990 /*
991 * poll() never guarantees that read won't block.
992 * userfaults can be waken before they're read().
993 */
994 if (unlikely(!(file->f_flags & O_NONBLOCK)))
995 return EPOLLERR;
996 /*
997 * lockless access to see if there are pending faults
998 * __pollwait last action is the add_wait_queue but
999 * the spin_unlock would allow the waitqueue_active to
1000 * pass above the actual list_add inside
1001 * add_wait_queue critical section. So use a full
1002 * memory barrier to serialize the list_add write of
1003 * add_wait_queue() with the waitqueue_active read
1004 * below.
1005 */
1006 ret = 0;
1007 smp_mb();
1008 if (waitqueue_active(&ctx->fault_pending_wqh))
1009 ret = EPOLLIN;
1010 else if (waitqueue_active(&ctx->event_wqh))
1011 ret = EPOLLIN;
1012
1013 return ret;
1014 }
1015
1016 static const struct file_operations userfaultfd_fops;
1017
resolve_userfault_fork(struct userfaultfd_ctx * new,struct inode * inode,struct uffd_msg * msg)1018 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1019 struct inode *inode,
1020 struct uffd_msg *msg)
1021 {
1022 int fd;
1023
1024 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
1025 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1026 if (fd < 0)
1027 return fd;
1028
1029 msg->arg.reserved.reserved1 = 0;
1030 msg->arg.fork.ufd = fd;
1031 return 0;
1032 }
1033
userfaultfd_ctx_read(struct userfaultfd_ctx * ctx,int no_wait,struct uffd_msg * msg,struct inode * inode)1034 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1035 struct uffd_msg *msg, struct inode *inode)
1036 {
1037 ssize_t ret;
1038 DECLARE_WAITQUEUE(wait, current);
1039 struct userfaultfd_wait_queue *uwq;
1040 /*
1041 * Handling fork event requires sleeping operations, so
1042 * we drop the event_wqh lock, then do these ops, then
1043 * lock it back and wake up the waiter. While the lock is
1044 * dropped the ewq may go away so we keep track of it
1045 * carefully.
1046 */
1047 LIST_HEAD(fork_event);
1048 struct userfaultfd_ctx *fork_nctx = NULL;
1049
1050 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1051 spin_lock_irq(&ctx->fd_wqh.lock);
1052 __add_wait_queue(&ctx->fd_wqh, &wait);
1053 for (;;) {
1054 set_current_state(TASK_INTERRUPTIBLE);
1055 spin_lock(&ctx->fault_pending_wqh.lock);
1056 uwq = find_userfault(ctx);
1057 if (uwq) {
1058 /*
1059 * Use a seqcount to repeat the lockless check
1060 * in wake_userfault() to avoid missing
1061 * wakeups because during the refile both
1062 * waitqueue could become empty if this is the
1063 * only userfault.
1064 */
1065 write_seqcount_begin(&ctx->refile_seq);
1066
1067 /*
1068 * The fault_pending_wqh.lock prevents the uwq
1069 * to disappear from under us.
1070 *
1071 * Refile this userfault from
1072 * fault_pending_wqh to fault_wqh, it's not
1073 * pending anymore after we read it.
1074 *
1075 * Use list_del() by hand (as
1076 * userfaultfd_wake_function also uses
1077 * list_del_init() by hand) to be sure nobody
1078 * changes __remove_wait_queue() to use
1079 * list_del_init() in turn breaking the
1080 * !list_empty_careful() check in
1081 * handle_userfault(). The uwq->wq.head list
1082 * must never be empty at any time during the
1083 * refile, or the waitqueue could disappear
1084 * from under us. The "wait_queue_head_t"
1085 * parameter of __remove_wait_queue() is unused
1086 * anyway.
1087 */
1088 list_del(&uwq->wq.entry);
1089 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1090
1091 write_seqcount_end(&ctx->refile_seq);
1092
1093 /* careful to always initialize msg if ret == 0 */
1094 *msg = uwq->msg;
1095 spin_unlock(&ctx->fault_pending_wqh.lock);
1096 ret = 0;
1097 break;
1098 }
1099 spin_unlock(&ctx->fault_pending_wqh.lock);
1100
1101 spin_lock(&ctx->event_wqh.lock);
1102 uwq = find_userfault_evt(ctx);
1103 if (uwq) {
1104 *msg = uwq->msg;
1105
1106 if (uwq->msg.event == UFFD_EVENT_FORK) {
1107 fork_nctx = (struct userfaultfd_ctx *)
1108 (unsigned long)
1109 uwq->msg.arg.reserved.reserved1;
1110 list_move(&uwq->wq.entry, &fork_event);
1111 /*
1112 * fork_nctx can be freed as soon as
1113 * we drop the lock, unless we take a
1114 * reference on it.
1115 */
1116 userfaultfd_ctx_get(fork_nctx);
1117 spin_unlock(&ctx->event_wqh.lock);
1118 ret = 0;
1119 break;
1120 }
1121
1122 userfaultfd_event_complete(ctx, uwq);
1123 spin_unlock(&ctx->event_wqh.lock);
1124 ret = 0;
1125 break;
1126 }
1127 spin_unlock(&ctx->event_wqh.lock);
1128
1129 if (signal_pending(current)) {
1130 ret = -ERESTARTSYS;
1131 break;
1132 }
1133 if (no_wait) {
1134 ret = -EAGAIN;
1135 break;
1136 }
1137 spin_unlock_irq(&ctx->fd_wqh.lock);
1138 schedule();
1139 spin_lock_irq(&ctx->fd_wqh.lock);
1140 }
1141 __remove_wait_queue(&ctx->fd_wqh, &wait);
1142 __set_current_state(TASK_RUNNING);
1143 spin_unlock_irq(&ctx->fd_wqh.lock);
1144
1145 if (!ret && msg->event == UFFD_EVENT_FORK) {
1146 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1147 spin_lock_irq(&ctx->event_wqh.lock);
1148 if (!list_empty(&fork_event)) {
1149 /*
1150 * The fork thread didn't abort, so we can
1151 * drop the temporary refcount.
1152 */
1153 userfaultfd_ctx_put(fork_nctx);
1154
1155 uwq = list_first_entry(&fork_event,
1156 typeof(*uwq),
1157 wq.entry);
1158 /*
1159 * If fork_event list wasn't empty and in turn
1160 * the event wasn't already released by fork
1161 * (the event is allocated on fork kernel
1162 * stack), put the event back to its place in
1163 * the event_wq. fork_event head will be freed
1164 * as soon as we return so the event cannot
1165 * stay queued there no matter the current
1166 * "ret" value.
1167 */
1168 list_del(&uwq->wq.entry);
1169 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1170
1171 /*
1172 * Leave the event in the waitqueue and report
1173 * error to userland if we failed to resolve
1174 * the userfault fork.
1175 */
1176 if (likely(!ret))
1177 userfaultfd_event_complete(ctx, uwq);
1178 } else {
1179 /*
1180 * Here the fork thread aborted and the
1181 * refcount from the fork thread on fork_nctx
1182 * has already been released. We still hold
1183 * the reference we took before releasing the
1184 * lock above. If resolve_userfault_fork
1185 * failed we've to drop it because the
1186 * fork_nctx has to be freed in such case. If
1187 * it succeeded we'll hold it because the new
1188 * uffd references it.
1189 */
1190 if (ret)
1191 userfaultfd_ctx_put(fork_nctx);
1192 }
1193 spin_unlock_irq(&ctx->event_wqh.lock);
1194 }
1195
1196 return ret;
1197 }
1198
userfaultfd_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1199 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1200 size_t count, loff_t *ppos)
1201 {
1202 struct userfaultfd_ctx *ctx = file->private_data;
1203 ssize_t _ret, ret = 0;
1204 struct uffd_msg msg;
1205 int no_wait = file->f_flags & O_NONBLOCK;
1206 struct inode *inode = file_inode(file);
1207
1208 if (!userfaultfd_is_initialized(ctx))
1209 return -EINVAL;
1210
1211 for (;;) {
1212 if (count < sizeof(msg))
1213 return ret ? ret : -EINVAL;
1214 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1215 if (_ret < 0)
1216 return ret ? ret : _ret;
1217 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1218 return ret ? ret : -EFAULT;
1219 ret += sizeof(msg);
1220 buf += sizeof(msg);
1221 count -= sizeof(msg);
1222 /*
1223 * Allow to read more than one fault at time but only
1224 * block if waiting for the very first one.
1225 */
1226 no_wait = O_NONBLOCK;
1227 }
1228 }
1229
__wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)1230 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1231 struct userfaultfd_wake_range *range)
1232 {
1233 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1234 /* wake all in the range and autoremove */
1235 if (waitqueue_active(&ctx->fault_pending_wqh))
1236 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1237 range);
1238 if (waitqueue_active(&ctx->fault_wqh))
1239 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1240 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1241 }
1242
wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)1243 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1244 struct userfaultfd_wake_range *range)
1245 {
1246 unsigned seq;
1247 bool need_wakeup;
1248
1249 /*
1250 * To be sure waitqueue_active() is not reordered by the CPU
1251 * before the pagetable update, use an explicit SMP memory
1252 * barrier here. PT lock release or mmap_read_unlock(mm) still
1253 * have release semantics that can allow the
1254 * waitqueue_active() to be reordered before the pte update.
1255 */
1256 smp_mb();
1257
1258 /*
1259 * Use waitqueue_active because it's very frequent to
1260 * change the address space atomically even if there are no
1261 * userfaults yet. So we take the spinlock only when we're
1262 * sure we've userfaults to wake.
1263 */
1264 do {
1265 seq = read_seqcount_begin(&ctx->refile_seq);
1266 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1267 waitqueue_active(&ctx->fault_wqh);
1268 cond_resched();
1269 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1270 if (need_wakeup)
1271 __wake_userfault(ctx, range);
1272 }
1273
validate_range(struct mm_struct * mm,__u64 start,__u64 len)1274 static __always_inline int validate_range(struct mm_struct *mm,
1275 __u64 start, __u64 len)
1276 {
1277 __u64 task_size = mm->task_size;
1278
1279 if (start & ~PAGE_MASK)
1280 return -EINVAL;
1281 if (len & ~PAGE_MASK)
1282 return -EINVAL;
1283 if (!len)
1284 return -EINVAL;
1285 if (start < mmap_min_addr)
1286 return -EINVAL;
1287 if (start >= task_size)
1288 return -EINVAL;
1289 if (len > task_size - start)
1290 return -EINVAL;
1291 return 0;
1292 }
1293
vma_can_userfault(struct vm_area_struct * vma,unsigned long vm_flags)1294 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1295 unsigned long vm_flags)
1296 {
1297 /* FIXME: add WP support to hugetlbfs and shmem */
1298 if (vm_flags & VM_UFFD_WP) {
1299 if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma))
1300 return false;
1301 }
1302
1303 if (vm_flags & VM_UFFD_MINOR) {
1304 if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma)))
1305 return false;
1306 }
1307
1308 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1309 vma_is_shmem(vma);
1310 }
1311
userfaultfd_register(struct userfaultfd_ctx * ctx,unsigned long arg)1312 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1313 unsigned long arg)
1314 {
1315 struct mm_struct *mm = ctx->mm;
1316 struct vm_area_struct *vma, *prev, *cur;
1317 int ret;
1318 struct uffdio_register uffdio_register;
1319 struct uffdio_register __user *user_uffdio_register;
1320 unsigned long vm_flags, new_flags;
1321 bool found;
1322 bool basic_ioctls;
1323 unsigned long start, end, vma_end;
1324
1325 user_uffdio_register = (struct uffdio_register __user *) arg;
1326
1327 ret = -EFAULT;
1328 if (copy_from_user(&uffdio_register, user_uffdio_register,
1329 sizeof(uffdio_register)-sizeof(__u64)))
1330 goto out;
1331
1332 ret = -EINVAL;
1333 if (!uffdio_register.mode)
1334 goto out;
1335 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1336 goto out;
1337 vm_flags = 0;
1338 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1339 vm_flags |= VM_UFFD_MISSING;
1340 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1341 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1342 goto out;
1343 #endif
1344 vm_flags |= VM_UFFD_WP;
1345 }
1346 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1347 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1348 goto out;
1349 #endif
1350 vm_flags |= VM_UFFD_MINOR;
1351 }
1352
1353 ret = validate_range(mm, uffdio_register.range.start,
1354 uffdio_register.range.len);
1355 if (ret)
1356 goto out;
1357
1358 start = uffdio_register.range.start;
1359 end = start + uffdio_register.range.len;
1360
1361 ret = -ENOMEM;
1362 if (!mmget_not_zero(mm))
1363 goto out;
1364
1365 mmap_write_lock(mm);
1366 vma = find_vma_prev(mm, start, &prev);
1367 if (!vma)
1368 goto out_unlock;
1369
1370 /* check that there's at least one vma in the range */
1371 ret = -EINVAL;
1372 if (vma->vm_start >= end)
1373 goto out_unlock;
1374
1375 /*
1376 * If the first vma contains huge pages, make sure start address
1377 * is aligned to huge page size.
1378 */
1379 if (is_vm_hugetlb_page(vma)) {
1380 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1381
1382 if (start & (vma_hpagesize - 1))
1383 goto out_unlock;
1384 }
1385
1386 /*
1387 * Search for not compatible vmas.
1388 */
1389 found = false;
1390 basic_ioctls = false;
1391 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1392 struct userfaultfd_ctx *cur_uffd_ctx =
1393 rcu_dereference_protected(cur->vm_userfaultfd_ctx.ctx,
1394 lockdep_is_held(&mm->mmap_lock));
1395 cond_resched();
1396
1397 BUG_ON(!!cur_uffd_ctx ^
1398 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1399
1400 /* check not compatible vmas */
1401 ret = -EINVAL;
1402 if (!vma_can_userfault(cur, vm_flags))
1403 goto out_unlock;
1404
1405 /*
1406 * UFFDIO_COPY will fill file holes even without
1407 * PROT_WRITE. This check enforces that if this is a
1408 * MAP_SHARED, the process has write permission to the backing
1409 * file. If VM_MAYWRITE is set it also enforces that on a
1410 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1411 * F_WRITE_SEAL can be taken until the vma is destroyed.
1412 */
1413 ret = -EPERM;
1414 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1415 goto out_unlock;
1416
1417 /*
1418 * If this vma contains ending address, and huge pages
1419 * check alignment.
1420 */
1421 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1422 end > cur->vm_start) {
1423 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1424
1425 ret = -EINVAL;
1426
1427 if (end & (vma_hpagesize - 1))
1428 goto out_unlock;
1429 }
1430 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1431 goto out_unlock;
1432
1433 /*
1434 * Check that this vma isn't already owned by a
1435 * different userfaultfd. We can't allow more than one
1436 * userfaultfd to own a single vma simultaneously or we
1437 * wouldn't know which one to deliver the userfaults to.
1438 */
1439 ret = -EBUSY;
1440 if (cur_uffd_ctx && cur_uffd_ctx != ctx)
1441 goto out_unlock;
1442
1443 /*
1444 * Note vmas containing huge pages
1445 */
1446 if (is_vm_hugetlb_page(cur))
1447 basic_ioctls = true;
1448
1449 found = true;
1450 }
1451 BUG_ON(!found);
1452
1453 if (vma->vm_start < start)
1454 prev = vma;
1455
1456 ret = 0;
1457 do {
1458 struct userfaultfd_ctx *cur_uffd_ctx =
1459 rcu_dereference_protected(vma->vm_userfaultfd_ctx.ctx,
1460 lockdep_is_held(&mm->mmap_lock));
1461 cond_resched();
1462
1463 BUG_ON(!vma_can_userfault(vma, vm_flags));
1464 BUG_ON(cur_uffd_ctx && cur_uffd_ctx != ctx);
1465 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1466
1467 /*
1468 * Nothing to do: this vma is already registered into this
1469 * userfaultfd and with the right tracking mode too.
1470 */
1471 if (cur_uffd_ctx == ctx &&
1472 (vma->vm_flags & vm_flags) == vm_flags)
1473 goto skip;
1474
1475 if (vma->vm_start > start)
1476 start = vma->vm_start;
1477 vma_end = min(end, vma->vm_end);
1478
1479 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1480 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1481 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1482 vma_policy(vma),
1483 ((struct vm_userfaultfd_ctx){ ctx }),
1484 anon_vma_name(vma));
1485 if (prev) {
1486 vma = prev;
1487 goto next;
1488 }
1489 if (vma->vm_start < start) {
1490 ret = split_vma(mm, vma, start, 1);
1491 if (ret)
1492 break;
1493 }
1494 if (vma->vm_end > end) {
1495 ret = split_vma(mm, vma, end, 0);
1496 if (ret)
1497 break;
1498 }
1499 next:
1500 /*
1501 * In the vma_merge() successful mprotect-like case 8:
1502 * the next vma was merged into the current one and
1503 * the current one has not been updated yet.
1504 */
1505 vma->vm_flags = new_flags;
1506 rcu_assign_pointer(vma->vm_userfaultfd_ctx.ctx, ctx);
1507
1508 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1509 hugetlb_unshare_all_pmds(vma);
1510
1511 skip:
1512 prev = vma;
1513 start = vma->vm_end;
1514 vma = vma->vm_next;
1515 } while (vma && vma->vm_start < end);
1516 out_unlock:
1517 mmap_write_unlock(mm);
1518 mmput(mm);
1519 if (!ret) {
1520 __u64 ioctls_out;
1521
1522 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1523 UFFD_API_RANGE_IOCTLS;
1524
1525 /*
1526 * Declare the WP ioctl only if the WP mode is
1527 * specified and all checks passed with the range
1528 */
1529 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1530 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1531
1532 /* CONTINUE ioctl is only supported for MINOR ranges. */
1533 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1534 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1535
1536 /*
1537 * Now that we scanned all vmas we can already tell
1538 * userland which ioctls methods are guaranteed to
1539 * succeed on this range.
1540 */
1541 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1542 ret = -EFAULT;
1543 }
1544 out:
1545 return ret;
1546 }
1547
userfaultfd_unregister(struct userfaultfd_ctx * ctx,unsigned long arg)1548 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1549 unsigned long arg)
1550 {
1551 struct mm_struct *mm = ctx->mm;
1552 struct vm_area_struct *vma, *prev, *cur;
1553 int ret;
1554 struct uffdio_range uffdio_unregister;
1555 unsigned long new_flags;
1556 bool found;
1557 unsigned long start, end, vma_end;
1558 const void __user *buf = (void __user *)arg;
1559
1560 ret = -EFAULT;
1561 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1562 goto out;
1563
1564 ret = validate_range(mm, uffdio_unregister.start,
1565 uffdio_unregister.len);
1566 if (ret)
1567 goto out;
1568
1569 start = uffdio_unregister.start;
1570 end = start + uffdio_unregister.len;
1571
1572 ret = -ENOMEM;
1573 if (!mmget_not_zero(mm))
1574 goto out;
1575
1576 mmap_write_lock(mm);
1577 vma = find_vma_prev(mm, start, &prev);
1578 if (!vma)
1579 goto out_unlock;
1580
1581 /* check that there's at least one vma in the range */
1582 ret = -EINVAL;
1583 if (vma->vm_start >= end)
1584 goto out_unlock;
1585
1586 /*
1587 * If the first vma contains huge pages, make sure start address
1588 * is aligned to huge page size.
1589 */
1590 if (is_vm_hugetlb_page(vma)) {
1591 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1592
1593 if (start & (vma_hpagesize - 1))
1594 goto out_unlock;
1595 }
1596
1597 /*
1598 * Search for not compatible vmas.
1599 */
1600 found = false;
1601 ret = -EINVAL;
1602 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1603 cond_resched();
1604
1605 BUG_ON(!!rcu_access_pointer(cur->vm_userfaultfd_ctx.ctx) ^
1606 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1607
1608 /*
1609 * Check not compatible vmas, not strictly required
1610 * here as not compatible vmas cannot have an
1611 * userfaultfd_ctx registered on them, but this
1612 * provides for more strict behavior to notice
1613 * unregistration errors.
1614 */
1615 if (!vma_can_userfault(cur, cur->vm_flags))
1616 goto out_unlock;
1617
1618 found = true;
1619 }
1620 BUG_ON(!found);
1621
1622 if (vma->vm_start < start)
1623 prev = vma;
1624
1625 ret = 0;
1626 do {
1627 struct userfaultfd_ctx *cur_uffd_ctx =
1628 rcu_dereference_protected(vma->vm_userfaultfd_ctx.ctx,
1629 lockdep_is_held(&mm->mmap_lock));
1630 cond_resched();
1631
1632 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1633
1634 /*
1635 * Nothing to do: this vma is already registered into this
1636 * userfaultfd and with the right tracking mode too.
1637 */
1638 if (!cur_uffd_ctx)
1639 goto skip;
1640
1641 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1642
1643 if (vma->vm_start > start)
1644 start = vma->vm_start;
1645 vma_end = min(end, vma->vm_end);
1646
1647 if (userfaultfd_missing(vma)) {
1648 /*
1649 * Wake any concurrent pending userfault while
1650 * we unregister, so they will not hang
1651 * permanently and it avoids userland to call
1652 * UFFDIO_WAKE explicitly.
1653 */
1654 struct userfaultfd_wake_range range;
1655 range.start = start;
1656 range.len = vma_end - start;
1657 wake_userfault(cur_uffd_ctx, &range);
1658 }
1659
1660 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1661 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1662 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1663 vma_policy(vma),
1664 NULL_VM_UFFD_CTX, anon_vma_name(vma));
1665 if (prev) {
1666 vma = prev;
1667 goto next;
1668 }
1669 if (vma->vm_start < start) {
1670 ret = split_vma(mm, vma, start, 1);
1671 if (ret)
1672 break;
1673 }
1674 if (vma->vm_end > end) {
1675 ret = split_vma(mm, vma, end, 0);
1676 if (ret)
1677 break;
1678 }
1679 next:
1680 /*
1681 * In the vma_merge() successful mprotect-like case 8:
1682 * the next vma was merged into the current one and
1683 * the current one has not been updated yet.
1684 */
1685 vma->vm_flags = new_flags;
1686 rcu_assign_pointer(vma->vm_userfaultfd_ctx.ctx, NULL);
1687
1688 skip:
1689 prev = vma;
1690 start = vma->vm_end;
1691 vma = vma->vm_next;
1692 } while (vma && vma->vm_start < end);
1693 out_unlock:
1694 mmap_write_unlock(mm);
1695 mmput(mm);
1696 out:
1697 return ret;
1698 }
1699
1700 /*
1701 * userfaultfd_wake may be used in combination with the
1702 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1703 */
userfaultfd_wake(struct userfaultfd_ctx * ctx,unsigned long arg)1704 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1705 unsigned long arg)
1706 {
1707 int ret;
1708 struct uffdio_range uffdio_wake;
1709 struct userfaultfd_wake_range range;
1710 const void __user *buf = (void __user *)arg;
1711
1712 ret = -EFAULT;
1713 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1714 goto out;
1715
1716 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1717 if (ret)
1718 goto out;
1719
1720 range.start = uffdio_wake.start;
1721 range.len = uffdio_wake.len;
1722
1723 /*
1724 * len == 0 means wake all and we don't want to wake all here,
1725 * so check it again to be sure.
1726 */
1727 VM_BUG_ON(!range.len);
1728
1729 wake_userfault(ctx, &range);
1730 ret = 0;
1731
1732 out:
1733 return ret;
1734 }
1735
userfaultfd_copy(struct userfaultfd_ctx * ctx,unsigned long arg)1736 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1737 unsigned long arg)
1738 {
1739 __s64 ret;
1740 struct uffdio_copy uffdio_copy;
1741 struct uffdio_copy __user *user_uffdio_copy;
1742 struct userfaultfd_wake_range range;
1743
1744 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1745
1746 ret = -EAGAIN;
1747 if (atomic_read(&ctx->mmap_changing))
1748 goto out;
1749
1750 ret = -EFAULT;
1751 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1752 /* don't copy "copy" last field */
1753 sizeof(uffdio_copy)-sizeof(__s64)))
1754 goto out;
1755
1756 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1757 if (ret)
1758 goto out;
1759 /*
1760 * double check for wraparound just in case. copy_from_user()
1761 * will later check uffdio_copy.src + uffdio_copy.len to fit
1762 * in the userland range.
1763 */
1764 ret = -EINVAL;
1765 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1766 goto out;
1767 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|
1768 UFFDIO_COPY_MODE_WP|
1769 UFFDIO_COPY_MODE_MMAP_TRYLOCK))
1770 goto out;
1771 if (mmget_not_zero(ctx->mm)) {
1772 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1773 uffdio_copy.len, &ctx->mmap_changing,
1774 uffdio_copy.mode);
1775 mmput(ctx->mm);
1776 } else {
1777 return -ESRCH;
1778 }
1779 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1780 return -EFAULT;
1781 if (ret < 0)
1782 goto out;
1783 BUG_ON(!ret);
1784 /* len == 0 would wake all */
1785 range.len = ret;
1786 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1787 range.start = uffdio_copy.dst;
1788 wake_userfault(ctx, &range);
1789 }
1790 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1791 out:
1792 return ret;
1793 }
1794
userfaultfd_zeropage(struct userfaultfd_ctx * ctx,unsigned long arg)1795 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1796 unsigned long arg)
1797 {
1798 __s64 ret;
1799 struct uffdio_zeropage uffdio_zeropage;
1800 struct uffdio_zeropage __user *user_uffdio_zeropage;
1801 struct userfaultfd_wake_range range;
1802
1803 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1804
1805 ret = -EAGAIN;
1806 if (atomic_read(&ctx->mmap_changing))
1807 goto out;
1808
1809 ret = -EFAULT;
1810 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1811 /* don't copy "zeropage" last field */
1812 sizeof(uffdio_zeropage)-sizeof(__s64)))
1813 goto out;
1814
1815 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1816 uffdio_zeropage.range.len);
1817 if (ret)
1818 goto out;
1819 ret = -EINVAL;
1820 if (uffdio_zeropage.mode & ~(UFFDIO_ZEROPAGE_MODE_DONTWAKE|
1821 UFFDIO_ZEROPAGE_MODE_MMAP_TRYLOCK))
1822 goto out;
1823
1824 if (mmget_not_zero(ctx->mm)) {
1825 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1826 uffdio_zeropage.range.len,
1827 &ctx->mmap_changing, uffdio_zeropage.mode);
1828 mmput(ctx->mm);
1829 } else {
1830 return -ESRCH;
1831 }
1832 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1833 return -EFAULT;
1834 if (ret < 0)
1835 goto out;
1836 /* len == 0 would wake all */
1837 BUG_ON(!ret);
1838 range.len = ret;
1839 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1840 range.start = uffdio_zeropage.range.start;
1841 wake_userfault(ctx, &range);
1842 }
1843 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1844 out:
1845 return ret;
1846 }
1847
userfaultfd_writeprotect(struct userfaultfd_ctx * ctx,unsigned long arg)1848 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1849 unsigned long arg)
1850 {
1851 int ret;
1852 struct uffdio_writeprotect uffdio_wp;
1853 struct uffdio_writeprotect __user *user_uffdio_wp;
1854 struct userfaultfd_wake_range range;
1855 bool mode_wp, mode_dontwake;
1856
1857 if (atomic_read(&ctx->mmap_changing))
1858 return -EAGAIN;
1859
1860 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1861
1862 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1863 sizeof(struct uffdio_writeprotect)))
1864 return -EFAULT;
1865
1866 ret = validate_range(ctx->mm, uffdio_wp.range.start,
1867 uffdio_wp.range.len);
1868 if (ret)
1869 return ret;
1870
1871 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1872 UFFDIO_WRITEPROTECT_MODE_WP))
1873 return -EINVAL;
1874
1875 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1876 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1877
1878 if (mode_wp && mode_dontwake)
1879 return -EINVAL;
1880
1881 if (mmget_not_zero(ctx->mm)) {
1882 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1883 uffdio_wp.range.len, mode_wp,
1884 &ctx->mmap_changing);
1885 mmput(ctx->mm);
1886 } else {
1887 return -ESRCH;
1888 }
1889
1890 if (ret)
1891 return ret;
1892
1893 if (!mode_wp && !mode_dontwake) {
1894 range.start = uffdio_wp.range.start;
1895 range.len = uffdio_wp.range.len;
1896 wake_userfault(ctx, &range);
1897 }
1898 return ret;
1899 }
1900
userfaultfd_continue(struct userfaultfd_ctx * ctx,unsigned long arg)1901 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1902 {
1903 __s64 ret;
1904 struct uffdio_continue uffdio_continue;
1905 struct uffdio_continue __user *user_uffdio_continue;
1906 struct userfaultfd_wake_range range;
1907
1908 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1909
1910 ret = -EAGAIN;
1911 if (atomic_read(&ctx->mmap_changing))
1912 goto out;
1913
1914 ret = -EFAULT;
1915 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1916 /* don't copy the output fields */
1917 sizeof(uffdio_continue) - (sizeof(__s64))))
1918 goto out;
1919
1920 ret = validate_range(ctx->mm, uffdio_continue.range.start,
1921 uffdio_continue.range.len);
1922 if (ret)
1923 goto out;
1924
1925 ret = -EINVAL;
1926 /* double check for wraparound just in case. */
1927 if (uffdio_continue.range.start + uffdio_continue.range.len <=
1928 uffdio_continue.range.start) {
1929 goto out;
1930 }
1931 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1932 goto out;
1933
1934 if (mmget_not_zero(ctx->mm)) {
1935 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1936 uffdio_continue.range.len,
1937 &ctx->mmap_changing);
1938 mmput(ctx->mm);
1939 } else {
1940 return -ESRCH;
1941 }
1942
1943 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1944 return -EFAULT;
1945 if (ret < 0)
1946 goto out;
1947
1948 /* len == 0 would wake all */
1949 BUG_ON(!ret);
1950 range.len = ret;
1951 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1952 range.start = uffdio_continue.range.start;
1953 wake_userfault(ctx, &range);
1954 }
1955 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1956
1957 out:
1958 return ret;
1959 }
1960
uffd_ctx_features(__u64 user_features)1961 static inline unsigned int uffd_ctx_features(__u64 user_features)
1962 {
1963 /*
1964 * For the current set of features the bits just coincide. Set
1965 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1966 */
1967 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1968 }
1969
1970 /*
1971 * userland asks for a certain API version and we return which bits
1972 * and ioctl commands are implemented in this kernel for such API
1973 * version or -EINVAL if unknown.
1974 */
userfaultfd_api(struct userfaultfd_ctx * ctx,unsigned long arg)1975 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1976 unsigned long arg)
1977 {
1978 struct uffdio_api uffdio_api;
1979 void __user *buf = (void __user *)arg;
1980 unsigned int ctx_features;
1981 int ret;
1982 __u64 features;
1983
1984 ret = -EFAULT;
1985 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1986 goto out;
1987 features = uffdio_api.features;
1988 ret = -EINVAL;
1989 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1990 goto err_out;
1991 ret = -EPERM;
1992 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1993 goto err_out;
1994 /* report all available features and ioctls to userland */
1995 uffdio_api.features = UFFD_API_FEATURES;
1996 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1997 uffdio_api.features &=
1998 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1999 #endif
2000 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2001 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2002 #endif
2003 uffdio_api.ioctls = UFFD_API_IOCTLS;
2004 ret = -EFAULT;
2005 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2006 goto out;
2007
2008 /* only enable the requested features for this uffd context */
2009 ctx_features = uffd_ctx_features(features);
2010 ret = -EINVAL;
2011 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2012 goto err_out;
2013
2014 ret = 0;
2015 out:
2016 return ret;
2017 err_out:
2018 memset(&uffdio_api, 0, sizeof(uffdio_api));
2019 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2020 ret = -EFAULT;
2021 goto out;
2022 }
2023
userfaultfd_ioctl(struct file * file,unsigned cmd,unsigned long arg)2024 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2025 unsigned long arg)
2026 {
2027 int ret = -EINVAL;
2028 struct userfaultfd_ctx *ctx = file->private_data;
2029
2030 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2031 return -EINVAL;
2032
2033 switch(cmd) {
2034 case UFFDIO_API:
2035 ret = userfaultfd_api(ctx, arg);
2036 break;
2037 case UFFDIO_REGISTER:
2038 ret = userfaultfd_register(ctx, arg);
2039 break;
2040 case UFFDIO_UNREGISTER:
2041 ret = userfaultfd_unregister(ctx, arg);
2042 break;
2043 case UFFDIO_WAKE:
2044 ret = userfaultfd_wake(ctx, arg);
2045 break;
2046 case UFFDIO_COPY:
2047 ret = userfaultfd_copy(ctx, arg);
2048 break;
2049 case UFFDIO_ZEROPAGE:
2050 ret = userfaultfd_zeropage(ctx, arg);
2051 break;
2052 case UFFDIO_WRITEPROTECT:
2053 ret = userfaultfd_writeprotect(ctx, arg);
2054 break;
2055 case UFFDIO_CONTINUE:
2056 ret = userfaultfd_continue(ctx, arg);
2057 break;
2058 }
2059 return ret;
2060 }
2061
2062 #ifdef CONFIG_PROC_FS
userfaultfd_show_fdinfo(struct seq_file * m,struct file * f)2063 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2064 {
2065 struct userfaultfd_ctx *ctx = f->private_data;
2066 wait_queue_entry_t *wq;
2067 unsigned long pending = 0, total = 0;
2068
2069 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2070 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2071 pending++;
2072 total++;
2073 }
2074 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2075 total++;
2076 }
2077 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2078
2079 /*
2080 * If more protocols will be added, there will be all shown
2081 * separated by a space. Like this:
2082 * protocols: aa:... bb:...
2083 */
2084 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2085 pending, total, UFFD_API, ctx->features,
2086 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2087 }
2088 #endif
2089
2090 static const struct file_operations userfaultfd_fops = {
2091 #ifdef CONFIG_PROC_FS
2092 .show_fdinfo = userfaultfd_show_fdinfo,
2093 #endif
2094 .release = userfaultfd_release,
2095 .poll = userfaultfd_poll,
2096 .read = userfaultfd_read,
2097 .unlocked_ioctl = userfaultfd_ioctl,
2098 .compat_ioctl = compat_ptr_ioctl,
2099 .llseek = noop_llseek,
2100 };
2101
init_once_userfaultfd_ctx(void * mem)2102 static void init_once_userfaultfd_ctx(void *mem)
2103 {
2104 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2105
2106 init_waitqueue_head(&ctx->fault_pending_wqh);
2107 init_waitqueue_head(&ctx->fault_wqh);
2108 init_waitqueue_head(&ctx->event_wqh);
2109 init_waitqueue_head(&ctx->fd_wqh);
2110 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2111 }
2112
SYSCALL_DEFINE1(userfaultfd,int,flags)2113 SYSCALL_DEFINE1(userfaultfd, int, flags)
2114 {
2115 struct userfaultfd_ctx *ctx;
2116 int fd;
2117
2118 if (!sysctl_unprivileged_userfaultfd &&
2119 (flags & UFFD_USER_MODE_ONLY) == 0 &&
2120 !capable(CAP_SYS_PTRACE)) {
2121 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2122 "sysctl knob to 1 if kernel faults must be handled "
2123 "without obtaining CAP_SYS_PTRACE capability\n");
2124 return -EPERM;
2125 }
2126
2127 BUG_ON(!current->mm);
2128
2129 /* Check the UFFD_* constants for consistency. */
2130 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2131 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2132 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2133
2134 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2135 return -EINVAL;
2136
2137 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2138 if (!ctx)
2139 return -ENOMEM;
2140
2141 refcount_set(&ctx->refcount, 1);
2142 ctx->flags = flags;
2143 ctx->features = 0;
2144 ctx->released = false;
2145 atomic_set(&ctx->mmap_changing, 0);
2146 ctx->mm = current->mm;
2147 /* prevent the mm struct to be freed */
2148 mmgrab(ctx->mm);
2149
2150 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2151 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2152 if (fd < 0) {
2153 mmdrop(ctx->mm);
2154 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2155 }
2156 return fd;
2157 }
2158
userfaultfd_init(void)2159 static int __init userfaultfd_init(void)
2160 {
2161 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2162 sizeof(struct userfaultfd_ctx),
2163 0,
2164 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2165 init_once_userfaultfd_ctx);
2166 return 0;
2167 }
2168 __initcall(userfaultfd_init);
2169