1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* include/asm-generic/tlb.h
3 *
4 * Generic TLB shootdown code
5 *
6 * Copyright 2001 Red Hat, Inc.
7 * Based on code from mm/memory.c Copyright Linus Torvalds and others.
8 *
9 * Copyright 2011 Red Hat, Inc., Peter Zijlstra
10 */
11 #ifndef _ASM_GENERIC__TLB_H
12 #define _ASM_GENERIC__TLB_H
13
14 #include <linux/mmu_notifier.h>
15 #include <linux/swap.h>
16 #include <linux/hugetlb_inline.h>
17 #include <asm/tlbflush.h>
18 #include <asm/cacheflush.h>
19
20 /*
21 * Blindly accessing user memory from NMI context can be dangerous
22 * if we're in the middle of switching the current user task or switching
23 * the loaded mm.
24 */
25 #ifndef nmi_uaccess_okay
26 # define nmi_uaccess_okay() true
27 #endif
28
29 #ifdef CONFIG_MMU
30
31 /*
32 * Generic MMU-gather implementation.
33 *
34 * The mmu_gather data structure is used by the mm code to implement the
35 * correct and efficient ordering of freeing pages and TLB invalidations.
36 *
37 * This correct ordering is:
38 *
39 * 1) unhook page
40 * 2) TLB invalidate page
41 * 3) free page
42 *
43 * That is, we must never free a page before we have ensured there are no live
44 * translations left to it. Otherwise it might be possible to observe (or
45 * worse, change) the page content after it has been reused.
46 *
47 * The mmu_gather API consists of:
48 *
49 * - tlb_gather_mmu() / tlb_gather_mmu_fullmm() / tlb_finish_mmu()
50 *
51 * start and finish a mmu_gather
52 *
53 * Finish in particular will issue a (final) TLB invalidate and free
54 * all (remaining) queued pages.
55 *
56 * - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA
57 *
58 * Defaults to flushing at tlb_end_vma() to reset the range; helps when
59 * there's large holes between the VMAs.
60 *
61 * - tlb_remove_table()
62 *
63 * tlb_remove_table() is the basic primitive to free page-table directories
64 * (__p*_free_tlb()). In it's most primitive form it is an alias for
65 * tlb_remove_page() below, for when page directories are pages and have no
66 * additional constraints.
67 *
68 * See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE.
69 *
70 * - tlb_remove_page() / __tlb_remove_page()
71 * - tlb_remove_page_size() / __tlb_remove_page_size()
72 *
73 * __tlb_remove_page_size() is the basic primitive that queues a page for
74 * freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a
75 * boolean indicating if the queue is (now) full and a call to
76 * tlb_flush_mmu() is required.
77 *
78 * tlb_remove_page() and tlb_remove_page_size() imply the call to
79 * tlb_flush_mmu() when required and has no return value.
80 *
81 * - tlb_change_page_size()
82 *
83 * call before __tlb_remove_page*() to set the current page-size; implies a
84 * possible tlb_flush_mmu() call.
85 *
86 * - tlb_flush_mmu() / tlb_flush_mmu_tlbonly()
87 *
88 * tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets
89 * related state, like the range)
90 *
91 * tlb_flush_mmu() - in addition to the above TLB invalidate, also frees
92 * whatever pages are still batched.
93 *
94 * - mmu_gather::fullmm
95 *
96 * A flag set by tlb_gather_mmu_fullmm() to indicate we're going to free
97 * the entire mm; this allows a number of optimizations.
98 *
99 * - We can ignore tlb_{start,end}_vma(); because we don't
100 * care about ranges. Everything will be shot down.
101 *
102 * - (RISC) architectures that use ASIDs can cycle to a new ASID
103 * and delay the invalidation until ASID space runs out.
104 *
105 * - mmu_gather::need_flush_all
106 *
107 * A flag that can be set by the arch code if it wants to force
108 * flush the entire TLB irrespective of the range. For instance
109 * x86-PAE needs this when changing top-level entries.
110 *
111 * And allows the architecture to provide and implement tlb_flush():
112 *
113 * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make
114 * use of:
115 *
116 * - mmu_gather::start / mmu_gather::end
117 *
118 * which provides the range that needs to be flushed to cover the pages to
119 * be freed.
120 *
121 * - mmu_gather::freed_tables
122 *
123 * set when we freed page table pages
124 *
125 * - tlb_get_unmap_shift() / tlb_get_unmap_size()
126 *
127 * returns the smallest TLB entry size unmapped in this range.
128 *
129 * If an architecture does not provide tlb_flush() a default implementation
130 * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is
131 * specified, in which case we'll default to flush_tlb_mm().
132 *
133 * Additionally there are a few opt-in features:
134 *
135 * MMU_GATHER_PAGE_SIZE
136 *
137 * This ensures we call tlb_flush() every time tlb_change_page_size() actually
138 * changes the size and provides mmu_gather::page_size to tlb_flush().
139 *
140 * This might be useful if your architecture has size specific TLB
141 * invalidation instructions.
142 *
143 * MMU_GATHER_TABLE_FREE
144 *
145 * This provides tlb_remove_table(), to be used instead of tlb_remove_page()
146 * for page directores (__p*_free_tlb()).
147 *
148 * Useful if your architecture has non-page page directories.
149 *
150 * When used, an architecture is expected to provide __tlb_remove_table()
151 * which does the actual freeing of these pages.
152 *
153 * MMU_GATHER_RCU_TABLE_FREE
154 *
155 * Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see
156 * comment below).
157 *
158 * Useful if your architecture doesn't use IPIs for remote TLB invalidates
159 * and therefore doesn't naturally serialize with software page-table walkers.
160 *
161 * MMU_GATHER_NO_RANGE
162 *
163 * Use this if your architecture lacks an efficient flush_tlb_range().
164 *
165 * MMU_GATHER_NO_GATHER
166 *
167 * If the option is set the mmu_gather will not track individual pages for
168 * delayed page free anymore. A platform that enables the option needs to
169 * provide its own implementation of the __tlb_remove_page_size() function to
170 * free pages.
171 *
172 * This is useful if your architecture already flushes TLB entries in the
173 * various ptep_get_and_clear() functions.
174 */
175
176 #ifdef CONFIG_MMU_GATHER_TABLE_FREE
177
178 struct mmu_table_batch {
179 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
180 struct rcu_head rcu;
181 #endif
182 unsigned int nr;
183 void *tables[0];
184 };
185
186 #define MAX_TABLE_BATCH \
187 ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
188
189 extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
190
191 #else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */
192
193 /*
194 * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based
195 * page directories and we can use the normal page batching to free them.
196 */
197 #define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page))
198
199 #endif /* CONFIG_MMU_GATHER_TABLE_FREE */
200
201 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
202 /*
203 * This allows an architecture that does not use the linux page-tables for
204 * hardware to skip the TLBI when freeing page tables.
205 */
206 #ifndef tlb_needs_table_invalidate
207 #define tlb_needs_table_invalidate() (true)
208 #endif
209
210 void tlb_remove_table_sync_one(void);
211
212 #else
213
214 #ifdef tlb_needs_table_invalidate
215 #error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE
216 #endif
217
tlb_remove_table_sync_one(void)218 static inline void tlb_remove_table_sync_one(void) { }
219
220 #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
221
222
223 #ifndef CONFIG_MMU_GATHER_NO_GATHER
224 /*
225 * If we can't allocate a page to make a big batch of page pointers
226 * to work on, then just handle a few from the on-stack structure.
227 */
228 #define MMU_GATHER_BUNDLE 8
229
230 struct mmu_gather_batch {
231 struct mmu_gather_batch *next;
232 unsigned int nr;
233 unsigned int max;
234 struct page *pages[0];
235 };
236
237 #define MAX_GATHER_BATCH \
238 ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
239
240 /*
241 * Limit the maximum number of mmu_gather batches to reduce a risk of soft
242 * lockups for non-preemptible kernels on huge machines when a lot of memory
243 * is zapped during unmapping.
244 * 10K pages freed at once should be safe even without a preemption point.
245 */
246 #define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH)
247
248 extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
249 int page_size);
250 #endif
251
252 /*
253 * struct mmu_gather is an opaque type used by the mm code for passing around
254 * any data needed by arch specific code for tlb_remove_page.
255 */
256 struct mmu_gather {
257 struct mm_struct *mm;
258
259 #ifdef CONFIG_MMU_GATHER_TABLE_FREE
260 struct mmu_table_batch *batch;
261 #endif
262
263 unsigned long start;
264 unsigned long end;
265 /*
266 * we are in the middle of an operation to clear
267 * a full mm and can make some optimizations
268 */
269 unsigned int fullmm : 1;
270
271 /*
272 * we have performed an operation which
273 * requires a complete flush of the tlb
274 */
275 unsigned int need_flush_all : 1;
276
277 /*
278 * we have removed page directories
279 */
280 unsigned int freed_tables : 1;
281
282 /*
283 * at which levels have we cleared entries?
284 */
285 unsigned int cleared_ptes : 1;
286 unsigned int cleared_pmds : 1;
287 unsigned int cleared_puds : 1;
288 unsigned int cleared_p4ds : 1;
289
290 /*
291 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma
292 */
293 unsigned int vma_exec : 1;
294 unsigned int vma_huge : 1;
295
296 unsigned int batch_count;
297
298 #ifndef CONFIG_MMU_GATHER_NO_GATHER
299 struct mmu_gather_batch *active;
300 struct mmu_gather_batch local;
301 struct page *__pages[MMU_GATHER_BUNDLE];
302
303 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
304 unsigned int page_size;
305 #endif
306 #endif
307 };
308
309 void tlb_flush_mmu(struct mmu_gather *tlb);
310
__tlb_adjust_range(struct mmu_gather * tlb,unsigned long address,unsigned int range_size)311 static inline void __tlb_adjust_range(struct mmu_gather *tlb,
312 unsigned long address,
313 unsigned int range_size)
314 {
315 tlb->start = min(tlb->start, address);
316 tlb->end = max(tlb->end, address + range_size);
317 }
318
__tlb_reset_range(struct mmu_gather * tlb)319 static inline void __tlb_reset_range(struct mmu_gather *tlb)
320 {
321 if (tlb->fullmm) {
322 tlb->start = tlb->end = ~0;
323 } else {
324 tlb->start = TASK_SIZE;
325 tlb->end = 0;
326 }
327 tlb->freed_tables = 0;
328 tlb->cleared_ptes = 0;
329 tlb->cleared_pmds = 0;
330 tlb->cleared_puds = 0;
331 tlb->cleared_p4ds = 0;
332 /*
333 * Do not reset mmu_gather::vma_* fields here, we do not
334 * call into tlb_start_vma() again to set them if there is an
335 * intermediate flush.
336 */
337 }
338
339 #ifdef CONFIG_MMU_GATHER_NO_RANGE
340
341 #if defined(tlb_flush) || defined(tlb_start_vma) || defined(tlb_end_vma)
342 #error MMU_GATHER_NO_RANGE relies on default tlb_flush(), tlb_start_vma() and tlb_end_vma()
343 #endif
344
345 /*
346 * When an architecture does not have efficient means of range flushing TLBs
347 * there is no point in doing intermediate flushes on tlb_end_vma() to keep the
348 * range small. We equally don't have to worry about page granularity or other
349 * things.
350 *
351 * All we need to do is issue a full flush for any !0 range.
352 */
tlb_flush(struct mmu_gather * tlb)353 static inline void tlb_flush(struct mmu_gather *tlb)
354 {
355 if (tlb->end)
356 flush_tlb_mm(tlb->mm);
357 }
358
359 static inline void
tlb_update_vma_flags(struct mmu_gather * tlb,struct vm_area_struct * vma)360 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
361
362 #define tlb_end_vma tlb_end_vma
tlb_end_vma(struct mmu_gather * tlb,struct vm_area_struct * vma)363 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
364
365 #else /* CONFIG_MMU_GATHER_NO_RANGE */
366
367 #ifndef tlb_flush
368
369 #if defined(tlb_start_vma) || defined(tlb_end_vma)
370 #error Default tlb_flush() relies on default tlb_start_vma() and tlb_end_vma()
371 #endif
372
373 /*
374 * When an architecture does not provide its own tlb_flush() implementation
375 * but does have a reasonably efficient flush_vma_range() implementation
376 * use that.
377 */
tlb_flush(struct mmu_gather * tlb)378 static inline void tlb_flush(struct mmu_gather *tlb)
379 {
380 if (tlb->fullmm || tlb->need_flush_all) {
381 flush_tlb_mm(tlb->mm);
382 } else if (tlb->end) {
383 struct vm_area_struct vma = {
384 .vm_mm = tlb->mm,
385 .vm_flags = (tlb->vma_exec ? VM_EXEC : 0) |
386 (tlb->vma_huge ? VM_HUGETLB : 0),
387 };
388
389 flush_tlb_range(&vma, tlb->start, tlb->end);
390 }
391 }
392
393 static inline void
tlb_update_vma_flags(struct mmu_gather * tlb,struct vm_area_struct * vma)394 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma)
395 {
396 /*
397 * flush_tlb_range() implementations that look at VM_HUGETLB (tile,
398 * mips-4k) flush only large pages.
399 *
400 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB
401 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing
402 * range.
403 *
404 * We rely on tlb_end_vma() to issue a flush, such that when we reset
405 * these values the batch is empty.
406 */
407 tlb->vma_huge = is_vm_hugetlb_page(vma);
408 tlb->vma_exec = !!(vma->vm_flags & VM_EXEC);
409 }
410
411 #else
412
413 static inline void
tlb_update_vma_flags(struct mmu_gather * tlb,struct vm_area_struct * vma)414 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
415
416 #endif
417
418 #endif /* CONFIG_MMU_GATHER_NO_RANGE */
419
tlb_flush_mmu_tlbonly(struct mmu_gather * tlb)420 static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
421 {
422 /*
423 * Anything calling __tlb_adjust_range() also sets at least one of
424 * these bits.
425 */
426 if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds ||
427 tlb->cleared_puds || tlb->cleared_p4ds))
428 return;
429
430 tlb_flush(tlb);
431 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
432 __tlb_reset_range(tlb);
433 }
434
tlb_remove_page_size(struct mmu_gather * tlb,struct page * page,int page_size)435 static inline void tlb_remove_page_size(struct mmu_gather *tlb,
436 struct page *page, int page_size)
437 {
438 if (__tlb_remove_page_size(tlb, page, page_size))
439 tlb_flush_mmu(tlb);
440 }
441
__tlb_remove_page(struct mmu_gather * tlb,struct page * page)442 static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
443 {
444 return __tlb_remove_page_size(tlb, page, PAGE_SIZE);
445 }
446
447 /* tlb_remove_page
448 * Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
449 * required.
450 */
tlb_remove_page(struct mmu_gather * tlb,struct page * page)451 static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
452 {
453 return tlb_remove_page_size(tlb, page, PAGE_SIZE);
454 }
455
tlb_change_page_size(struct mmu_gather * tlb,unsigned int page_size)456 static inline void tlb_change_page_size(struct mmu_gather *tlb,
457 unsigned int page_size)
458 {
459 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
460 if (tlb->page_size && tlb->page_size != page_size) {
461 if (!tlb->fullmm && !tlb->need_flush_all)
462 tlb_flush_mmu(tlb);
463 }
464
465 tlb->page_size = page_size;
466 #endif
467 }
468
tlb_get_unmap_shift(struct mmu_gather * tlb)469 static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb)
470 {
471 if (tlb->cleared_ptes)
472 return PAGE_SHIFT;
473 if (tlb->cleared_pmds)
474 return PMD_SHIFT;
475 if (tlb->cleared_puds)
476 return PUD_SHIFT;
477 if (tlb->cleared_p4ds)
478 return P4D_SHIFT;
479
480 return PAGE_SHIFT;
481 }
482
tlb_get_unmap_size(struct mmu_gather * tlb)483 static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb)
484 {
485 return 1UL << tlb_get_unmap_shift(tlb);
486 }
487
488 /*
489 * In the case of tlb vma handling, we can optimise these away in the
490 * case where we're doing a full MM flush. When we're doing a munmap,
491 * the vmas are adjusted to only cover the region to be torn down.
492 */
493 #ifndef tlb_start_vma
tlb_start_vma(struct mmu_gather * tlb,struct vm_area_struct * vma)494 static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
495 {
496 if (tlb->fullmm)
497 return;
498
499 tlb_update_vma_flags(tlb, vma);
500 flush_cache_range(vma, vma->vm_start, vma->vm_end);
501 }
502 #endif
503
504 #ifndef tlb_end_vma
tlb_end_vma(struct mmu_gather * tlb,struct vm_area_struct * vma)505 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
506 {
507 if (tlb->fullmm)
508 return;
509
510 /*
511 * Do a TLB flush and reset the range at VMA boundaries; this avoids
512 * the ranges growing with the unused space between consecutive VMAs,
513 * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on
514 * this.
515 */
516 tlb_flush_mmu_tlbonly(tlb);
517 }
518 #endif
519
520 /*
521 * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end,
522 * and set corresponding cleared_*.
523 */
tlb_flush_pte_range(struct mmu_gather * tlb,unsigned long address,unsigned long size)524 static inline void tlb_flush_pte_range(struct mmu_gather *tlb,
525 unsigned long address, unsigned long size)
526 {
527 __tlb_adjust_range(tlb, address, size);
528 tlb->cleared_ptes = 1;
529 }
530
tlb_flush_pmd_range(struct mmu_gather * tlb,unsigned long address,unsigned long size)531 static inline void tlb_flush_pmd_range(struct mmu_gather *tlb,
532 unsigned long address, unsigned long size)
533 {
534 __tlb_adjust_range(tlb, address, size);
535 tlb->cleared_pmds = 1;
536 }
537
tlb_flush_pud_range(struct mmu_gather * tlb,unsigned long address,unsigned long size)538 static inline void tlb_flush_pud_range(struct mmu_gather *tlb,
539 unsigned long address, unsigned long size)
540 {
541 __tlb_adjust_range(tlb, address, size);
542 tlb->cleared_puds = 1;
543 }
544
tlb_flush_p4d_range(struct mmu_gather * tlb,unsigned long address,unsigned long size)545 static inline void tlb_flush_p4d_range(struct mmu_gather *tlb,
546 unsigned long address, unsigned long size)
547 {
548 __tlb_adjust_range(tlb, address, size);
549 tlb->cleared_p4ds = 1;
550 }
551
552 #ifndef __tlb_remove_tlb_entry
553 #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
554 #endif
555
556 /**
557 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
558 *
559 * Record the fact that pte's were really unmapped by updating the range,
560 * so we can later optimise away the tlb invalidate. This helps when
561 * userspace is unmapping already-unmapped pages, which happens quite a lot.
562 */
563 #define tlb_remove_tlb_entry(tlb, ptep, address) \
564 do { \
565 tlb_flush_pte_range(tlb, address, PAGE_SIZE); \
566 __tlb_remove_tlb_entry(tlb, ptep, address); \
567 } while (0)
568
569 #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \
570 do { \
571 unsigned long _sz = huge_page_size(h); \
572 if (_sz >= P4D_SIZE) \
573 tlb_flush_p4d_range(tlb, address, _sz); \
574 else if (_sz >= PUD_SIZE) \
575 tlb_flush_pud_range(tlb, address, _sz); \
576 else if (_sz >= PMD_SIZE) \
577 tlb_flush_pmd_range(tlb, address, _sz); \
578 else \
579 tlb_flush_pte_range(tlb, address, _sz); \
580 __tlb_remove_tlb_entry(tlb, ptep, address); \
581 } while (0)
582
583 /**
584 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
585 * This is a nop so far, because only x86 needs it.
586 */
587 #ifndef __tlb_remove_pmd_tlb_entry
588 #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
589 #endif
590
591 #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \
592 do { \
593 tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE); \
594 __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \
595 } while (0)
596
597 /**
598 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
599 * invalidation. This is a nop so far, because only x86 needs it.
600 */
601 #ifndef __tlb_remove_pud_tlb_entry
602 #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
603 #endif
604
605 #define tlb_remove_pud_tlb_entry(tlb, pudp, address) \
606 do { \
607 tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE); \
608 __tlb_remove_pud_tlb_entry(tlb, pudp, address); \
609 } while (0)
610
611 /*
612 * For things like page tables caches (ie caching addresses "inside" the
613 * page tables, like x86 does), for legacy reasons, flushing an
614 * individual page had better flush the page table caches behind it. This
615 * is definitely how x86 works, for example. And if you have an
616 * architected non-legacy page table cache (which I'm not aware of
617 * anybody actually doing), you're going to have some architecturally
618 * explicit flushing for that, likely *separate* from a regular TLB entry
619 * flush, and thus you'd need more than just some range expansion..
620 *
621 * So if we ever find an architecture
622 * that would want something that odd, I think it is up to that
623 * architecture to do its own odd thing, not cause pain for others
624 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
625 *
626 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
627 */
628
629 #ifndef pte_free_tlb
630 #define pte_free_tlb(tlb, ptep, address) \
631 do { \
632 tlb_flush_pmd_range(tlb, address, PAGE_SIZE); \
633 tlb->freed_tables = 1; \
634 __pte_free_tlb(tlb, ptep, address); \
635 } while (0)
636 #endif
637
638 #ifndef pmd_free_tlb
639 #define pmd_free_tlb(tlb, pmdp, address) \
640 do { \
641 tlb_flush_pud_range(tlb, address, PAGE_SIZE); \
642 tlb->freed_tables = 1; \
643 __pmd_free_tlb(tlb, pmdp, address); \
644 } while (0)
645 #endif
646
647 #ifndef pud_free_tlb
648 #define pud_free_tlb(tlb, pudp, address) \
649 do { \
650 tlb_flush_p4d_range(tlb, address, PAGE_SIZE); \
651 tlb->freed_tables = 1; \
652 __pud_free_tlb(tlb, pudp, address); \
653 } while (0)
654 #endif
655
656 #ifndef p4d_free_tlb
657 #define p4d_free_tlb(tlb, pudp, address) \
658 do { \
659 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
660 tlb->freed_tables = 1; \
661 __p4d_free_tlb(tlb, pudp, address); \
662 } while (0)
663 #endif
664
665 #endif /* CONFIG_MMU */
666
667 #endif /* _ASM_GENERIC__TLB_H */
668