1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/major.h>
8 #include <linux/genhd.h>
9 #include <linux/list.h>
10 #include <linux/llist.h>
11 #include <linux/minmax.h>
12 #include <linux/timer.h>
13 #include <linux/workqueue.h>
14 #include <linux/wait.h>
15 #include <linux/mempool.h>
16 #include <linux/pfn.h>
17 #include <linux/bio.h>
18 #include <linux/stringify.h>
19 #include <linux/gfp.h>
20 #include <linux/smp.h>
21 #include <linux/rcupdate.h>
22 #include <linux/percpu-refcount.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blkzoned.h>
25 #include <linux/pm.h>
26 #include <linux/sbitmap.h>
27 #include <linux/android_kabi.h>
28 #include <linux/android_vendor.h>
29
30 struct module;
31 struct request_queue;
32 struct elevator_queue;
33 struct blk_trace;
34 struct request;
35 struct sg_io_hdr;
36 struct blkcg_gq;
37 struct blk_flush_queue;
38 struct pr_ops;
39 struct rq_qos;
40 struct blk_queue_stats;
41 struct blk_stat_callback;
42 struct blk_crypto_profile;
43
44 #define BLKDEV_MIN_RQ 4
45 #define BLKDEV_MAX_RQ 128 /* Default maximum */
46
47 /* Must be consistent with blk_mq_poll_stats_bkt() */
48 #define BLK_MQ_POLL_STATS_BKTS 16
49
50 /* Doing classic polling */
51 #define BLK_MQ_POLL_CLASSIC -1
52
53 /*
54 * Maximum number of blkcg policies allowed to be registered concurrently.
55 * Defined here to simplify include dependency.
56 */
57 #define BLKCG_MAX_POLS 6
58
59 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
60
61 /*
62 * request flags */
63 typedef __u32 __bitwise req_flags_t;
64
65 /* drive already may have started this one */
66 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
67 /* may not be passed by ioscheduler */
68 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
69 /* request for flush sequence */
70 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
71 /* merge of different types, fail separately */
72 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
73 /* track inflight for MQ */
74 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
75 /* don't call prep for this one */
76 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
77 /* vaguely specified driver internal error. Ignored by the block layer */
78 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
79 /* don't warn about errors */
80 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
81 /* elevator private data attached */
82 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
83 /* account into disk and partition IO statistics */
84 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
85 /* runtime pm request */
86 #define RQF_PM ((__force req_flags_t)(1 << 15))
87 /* on IO scheduler merge hash */
88 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
89 /* track IO completion time */
90 #define RQF_STATS ((__force req_flags_t)(1 << 17))
91 /* Look at ->special_vec for the actual data payload instead of the
92 bio chain. */
93 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
94 /* The per-zone write lock is held for this request */
95 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
96 /* already slept for hybrid poll */
97 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
98 /* ->timeout has been called, don't expire again */
99 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
100
101 /* flags that prevent us from merging requests: */
102 #define RQF_NOMERGE_FLAGS \
103 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
104
105 /*
106 * Request state for blk-mq.
107 */
108 enum mq_rq_state {
109 MQ_RQ_IDLE = 0,
110 MQ_RQ_IN_FLIGHT = 1,
111 MQ_RQ_COMPLETE = 2,
112 };
113
114 /*
115 * Try to put the fields that are referenced together in the same cacheline.
116 *
117 * If you modify this structure, make sure to update blk_rq_init() and
118 * especially blk_mq_rq_ctx_init() to take care of the added fields.
119 */
120 struct request {
121 struct request_queue *q;
122 struct blk_mq_ctx *mq_ctx;
123 struct blk_mq_hw_ctx *mq_hctx;
124
125 unsigned int cmd_flags; /* op and common flags */
126 req_flags_t rq_flags;
127
128 int tag;
129 int internal_tag;
130
131 /* the following two fields are internal, NEVER access directly */
132 unsigned int __data_len; /* total data len */
133 sector_t __sector; /* sector cursor */
134
135 struct bio *bio;
136 struct bio *biotail;
137
138 struct list_head queuelist;
139
140 /*
141 * The hash is used inside the scheduler, and killed once the
142 * request reaches the dispatch list. The ipi_list is only used
143 * to queue the request for softirq completion, which is long
144 * after the request has been unhashed (and even removed from
145 * the dispatch list).
146 */
147 union {
148 struct hlist_node hash; /* merge hash */
149 struct llist_node ipi_list;
150 };
151
152 /*
153 * The rb_node is only used inside the io scheduler, requests
154 * are pruned when moved to the dispatch queue. So let the
155 * completion_data share space with the rb_node.
156 */
157 union {
158 struct rb_node rb_node; /* sort/lookup */
159 struct bio_vec special_vec;
160 void *completion_data;
161 int error_count; /* for legacy drivers, don't use */
162 };
163
164 /*
165 * Three pointers are available for IO schedulers. If they need
166 * more private data they have to allocate it dynamically.
167 */
168 struct {
169 struct io_cq *icq;
170 void *priv[2];
171 } elv;
172
173 struct {
174 unsigned int seq;
175 struct list_head list;
176 rq_end_io_fn *saved_end_io;
177 } flush;
178
179 struct gendisk *rq_disk;
180 struct block_device *part;
181 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
182 /* Time that the first bio started allocating this request. */
183 u64 alloc_time_ns;
184 #endif
185 /* Time that this request was allocated for this IO. */
186 u64 start_time_ns;
187 /* Time that I/O was submitted to the device. */
188 u64 io_start_time_ns;
189
190 #ifdef CONFIG_BLK_WBT
191 unsigned short wbt_flags;
192 #endif
193 /*
194 * rq sectors used for blk stats. It has the same value
195 * with blk_rq_sectors(rq), except that it never be zeroed
196 * by completion.
197 */
198 unsigned short stats_sectors;
199
200 /*
201 * Number of scatter-gather DMA addr+len pairs after
202 * physical address coalescing is performed.
203 */
204 unsigned short nr_phys_segments;
205
206 #if defined(CONFIG_BLK_DEV_INTEGRITY)
207 unsigned short nr_integrity_segments;
208 #endif
209
210 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
211 struct bio_crypt_ctx *crypt_ctx;
212 struct blk_crypto_keyslot *crypt_keyslot;
213 #endif
214
215 unsigned short write_hint;
216 unsigned short ioprio;
217
218 enum mq_rq_state state;
219 refcount_t ref;
220
221 unsigned int timeout;
222 unsigned long deadline;
223
224 union {
225 struct __call_single_data csd;
226 u64 fifo_time;
227 };
228
229 /*
230 * completion callback.
231 */
232 rq_end_io_fn *end_io;
233 void *end_io_data;
234
235 ANDROID_KABI_RESERVE(1);
236 };
237
blk_validate_block_size(unsigned int bsize)238 static inline int blk_validate_block_size(unsigned int bsize)
239 {
240 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
241 return -EINVAL;
242
243 return 0;
244 }
245
blk_op_is_passthrough(unsigned int op)246 static inline bool blk_op_is_passthrough(unsigned int op)
247 {
248 op &= REQ_OP_MASK;
249 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
250 }
251
blk_rq_is_passthrough(struct request * rq)252 static inline bool blk_rq_is_passthrough(struct request *rq)
253 {
254 return blk_op_is_passthrough(req_op(rq));
255 }
256
req_get_ioprio(struct request * req)257 static inline unsigned short req_get_ioprio(struct request *req)
258 {
259 return req->ioprio;
260 }
261
262 #include <linux/elevator.h>
263
264 struct bio_vec;
265
266 enum blk_eh_timer_return {
267 BLK_EH_DONE, /* drivers has completed the command */
268 BLK_EH_RESET_TIMER, /* reset timer and try again */
269 };
270
271 enum blk_queue_state {
272 Queue_down,
273 Queue_up,
274 };
275
276 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
277 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
278
279 /*
280 * Zoned block device models (zoned limit).
281 *
282 * Note: This needs to be ordered from the least to the most severe
283 * restrictions for the inheritance in blk_stack_limits() to work.
284 */
285 enum blk_zoned_model {
286 BLK_ZONED_NONE = 0, /* Regular block device */
287 BLK_ZONED_HA, /* Host-aware zoned block device */
288 BLK_ZONED_HM, /* Host-managed zoned block device */
289 };
290
291 /*
292 * BLK_BOUNCE_NONE: never bounce (default)
293 * BLK_BOUNCE_HIGH: bounce all highmem pages
294 */
295 enum blk_bounce {
296 BLK_BOUNCE_NONE,
297 BLK_BOUNCE_HIGH,
298 };
299
300 struct queue_limits {
301 enum blk_bounce bounce;
302 unsigned long seg_boundary_mask;
303 unsigned long virt_boundary_mask;
304
305 unsigned int max_hw_sectors;
306 unsigned int max_dev_sectors;
307 unsigned int chunk_sectors;
308 unsigned int max_sectors;
309 unsigned int max_segment_size;
310 unsigned int physical_block_size;
311 unsigned int logical_block_size;
312 unsigned int alignment_offset;
313 unsigned int io_min;
314 unsigned int io_opt;
315 unsigned int max_discard_sectors;
316 unsigned int max_hw_discard_sectors;
317 unsigned int max_write_same_sectors;
318 unsigned int max_write_zeroes_sectors;
319 unsigned int max_zone_append_sectors;
320 unsigned int discard_granularity;
321 unsigned int discard_alignment;
322 unsigned int zone_write_granularity;
323
324 unsigned short max_segments;
325 unsigned short max_integrity_segments;
326 unsigned short max_discard_segments;
327
328 unsigned char misaligned;
329 unsigned char discard_misaligned;
330 unsigned char raid_partial_stripes_expensive;
331
332 #ifndef __GENKSYMS__
333 bool sub_page_limits;
334 #endif
335
336 enum blk_zoned_model zoned;
337
338 ANDROID_KABI_RESERVE(1);
339
340 ANDROID_OEM_DATA(1);
341 };
342
343 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
344 void *data);
345
346 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
347
348 #ifdef CONFIG_BLK_DEV_ZONED
349
350 #define BLK_ALL_ZONES ((unsigned int)-1)
351 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
352 unsigned int nr_zones, report_zones_cb cb, void *data);
353 unsigned int blkdev_nr_zones(struct gendisk *disk);
354 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
355 sector_t sectors, sector_t nr_sectors,
356 gfp_t gfp_mask);
357 int blk_revalidate_disk_zones(struct gendisk *disk,
358 void (*update_driver_data)(struct gendisk *disk));
359
360 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
361 unsigned int cmd, unsigned long arg);
362 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
363 unsigned int cmd, unsigned long arg);
364
365 #else /* CONFIG_BLK_DEV_ZONED */
366
blkdev_nr_zones(struct gendisk * disk)367 static inline unsigned int blkdev_nr_zones(struct gendisk *disk)
368 {
369 return 0;
370 }
371
blkdev_report_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)372 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
373 fmode_t mode, unsigned int cmd,
374 unsigned long arg)
375 {
376 return -ENOTTY;
377 }
378
blkdev_zone_mgmt_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)379 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
380 fmode_t mode, unsigned int cmd,
381 unsigned long arg)
382 {
383 return -ENOTTY;
384 }
385
386 #endif /* CONFIG_BLK_DEV_ZONED */
387
388 struct request_queue {
389 struct request *last_merge;
390 struct elevator_queue *elevator;
391
392 struct percpu_ref q_usage_counter;
393
394 struct blk_queue_stats *stats;
395 struct rq_qos *rq_qos;
396
397 const struct blk_mq_ops *mq_ops;
398
399 /* sw queues */
400 struct blk_mq_ctx __percpu *queue_ctx;
401
402 unsigned int queue_depth;
403
404 /* hw dispatch queues */
405 struct blk_mq_hw_ctx **queue_hw_ctx;
406 unsigned int nr_hw_queues;
407
408 /*
409 * The queue owner gets to use this for whatever they like.
410 * ll_rw_blk doesn't touch it.
411 */
412 void *queuedata;
413
414 /*
415 * various queue flags, see QUEUE_* below
416 */
417 unsigned long queue_flags;
418 /*
419 * Number of contexts that have called blk_set_pm_only(). If this
420 * counter is above zero then only RQF_PM requests are processed.
421 */
422 atomic_t pm_only;
423
424 /*
425 * ida allocated id for this queue. Used to index queues from
426 * ioctx.
427 */
428 int id;
429
430 spinlock_t queue_lock;
431
432 struct gendisk *disk;
433
434 /*
435 * queue kobject
436 */
437 struct kobject kobj;
438
439 /*
440 * mq queue kobject
441 */
442 struct kobject *mq_kobj;
443
444 #ifdef CONFIG_BLK_DEV_INTEGRITY
445 struct blk_integrity integrity;
446 #endif /* CONFIG_BLK_DEV_INTEGRITY */
447
448 #ifdef CONFIG_PM
449 struct device *dev;
450 enum rpm_status rpm_status;
451 #endif
452
453 /*
454 * queue settings
455 */
456 unsigned long nr_requests; /* Max # of requests */
457
458 unsigned int dma_pad_mask;
459 unsigned int dma_alignment;
460
461 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
462 struct blk_crypto_profile *crypto_profile;
463 struct kobject *crypto_kobject;
464 #endif
465
466 unsigned int rq_timeout;
467 int poll_nsec;
468
469 struct blk_stat_callback *poll_cb;
470 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
471
472 struct timer_list timeout;
473 struct work_struct timeout_work;
474
475 atomic_t nr_active_requests_shared_sbitmap;
476
477 struct sbitmap_queue sched_bitmap_tags;
478 struct sbitmap_queue sched_breserved_tags;
479
480 struct list_head icq_list;
481 #ifdef CONFIG_BLK_CGROUP
482 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
483 struct blkcg_gq *root_blkg;
484 struct list_head blkg_list;
485 #endif
486
487 struct queue_limits limits;
488
489 unsigned int required_elevator_features;
490
491 #ifdef CONFIG_BLK_DEV_ZONED
492 /*
493 * Zoned block device information for request dispatch control.
494 * nr_zones is the total number of zones of the device. This is always
495 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
496 * bits which indicates if a zone is conventional (bit set) or
497 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
498 * bits which indicates if a zone is write locked, that is, if a write
499 * request targeting the zone was dispatched. All three fields are
500 * initialized by the low level device driver (e.g. scsi/sd.c).
501 * Stacking drivers (device mappers) may or may not initialize
502 * these fields.
503 *
504 * Reads of this information must be protected with blk_queue_enter() /
505 * blk_queue_exit(). Modifying this information is only allowed while
506 * no requests are being processed. See also blk_mq_freeze_queue() and
507 * blk_mq_unfreeze_queue().
508 */
509 unsigned int nr_zones;
510 unsigned long *conv_zones_bitmap;
511 unsigned long *seq_zones_wlock;
512 unsigned int max_open_zones;
513 unsigned int max_active_zones;
514 #endif /* CONFIG_BLK_DEV_ZONED */
515
516 int node;
517 struct mutex debugfs_mutex;
518 #ifdef CONFIG_BLK_DEV_IO_TRACE
519 struct blk_trace __rcu *blk_trace;
520 #endif
521 /*
522 * for flush operations
523 */
524 struct blk_flush_queue *fq;
525
526 struct list_head requeue_list;
527 spinlock_t requeue_lock;
528
529 struct mutex sysfs_lock;
530 struct mutex sysfs_dir_lock;
531
532 /*
533 * for reusing dead hctx instance in case of updating
534 * nr_hw_queues
535 */
536 struct list_head unused_hctx_list;
537 spinlock_t unused_hctx_lock;
538
539 int mq_freeze_depth;
540
541 #ifdef CONFIG_BLK_DEV_THROTTLING
542 /* Throttle data */
543 struct throtl_data *td;
544 #endif
545 struct rcu_head rcu_head;
546 wait_queue_head_t mq_freeze_wq;
547 /*
548 * Protect concurrent access to q_usage_counter by
549 * percpu_ref_kill() and percpu_ref_reinit().
550 */
551 struct mutex mq_freeze_lock;
552
553 struct blk_mq_tag_set *tag_set;
554 struct list_head tag_set_list;
555 struct bio_set bio_split;
556
557 struct dentry *debugfs_dir;
558
559 #ifdef CONFIG_BLK_DEBUG_FS
560 struct dentry *sched_debugfs_dir;
561 struct dentry *rqos_debugfs_dir;
562 #endif
563
564 bool mq_sysfs_init_done;
565
566 size_t cmd_size;
567
568 #define BLK_MAX_WRITE_HINTS 5
569 u64 write_hints[BLK_MAX_WRITE_HINTS];
570
571 ANDROID_KABI_RESERVE(1);
572 ANDROID_KABI_RESERVE(2);
573 ANDROID_KABI_RESERVE(3);
574 ANDROID_KABI_RESERVE(4);
575
576 ANDROID_OEM_DATA(1);
577 };
578
579 /* Keep blk_queue_flag_name[] in sync with the definitions below */
580 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */
581 #define QUEUE_FLAG_DYING 1 /* queue being torn down */
582 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */
583 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */
584 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */
585 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */
586 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
587 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */
588 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */
589 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */
590 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */
591 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */
592 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */
593 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */
594 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */
595 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */
596 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */
597 #define QUEUE_FLAG_WC 17 /* Write back caching */
598 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */
599 #define QUEUE_FLAG_DAX 19 /* device supports DAX */
600 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */
601 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */
602 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */
603 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */
604 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */
605 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */
606 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */
607 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */
608 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */
609 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */
610 /*
611 * The device supports not using the zone write locking mechanism to serialize
612 * write operations (REQ_OP_WRITE, REQ_OP_WRITE_ZEROES) issued to a sequential
613 * write required zone (BLK_ZONE_TYPE_SEQWRITE_REQ).
614 */
615 #define QUEUE_FLAG_NO_ZONE_WRITE_LOCK 30
616
617 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
618 (1 << QUEUE_FLAG_SAME_COMP) | \
619 (1 << QUEUE_FLAG_NOWAIT))
620
621 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
622 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
623 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
624
625 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
626 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
627 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
628 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
629 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
630 #define blk_queue_noxmerges(q) \
631 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
632 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
633 #define blk_queue_stable_writes(q) \
634 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
635 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
636 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
637 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
638 #define blk_queue_zone_resetall(q) \
639 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
640 #define blk_queue_secure_erase(q) \
641 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
642 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
643 #define blk_queue_scsi_passthrough(q) \
644 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
645 #define blk_queue_pci_p2pdma(q) \
646 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
647 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
648 #define blk_queue_rq_alloc_time(q) \
649 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
650 #else
651 #define blk_queue_rq_alloc_time(q) false
652 #endif
653
654 #define blk_noretry_request(rq) \
655 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
656 REQ_FAILFAST_DRIVER))
657 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
658 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
659 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
660 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
661 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags)
662
blk_queue_no_zone_write_lock(struct request_queue * q)663 static inline bool blk_queue_no_zone_write_lock(struct request_queue *q)
664 {
665 return test_bit(QUEUE_FLAG_NO_ZONE_WRITE_LOCK, &q->queue_flags);
666 }
667
668 extern void blk_set_pm_only(struct request_queue *q);
669 extern void blk_clear_pm_only(struct request_queue *q);
670
671 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
672
673 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
674
675 #define rq_dma_dir(rq) \
676 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
677
678 #define dma_map_bvec(dev, bv, dir, attrs) \
679 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
680 (dir), (attrs))
681
queue_is_mq(struct request_queue * q)682 static inline bool queue_is_mq(struct request_queue *q)
683 {
684 return q->mq_ops;
685 }
686
687 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)688 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
689 {
690 return q->rpm_status;
691 }
692 #else
queue_rpm_status(struct request_queue * q)693 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
694 {
695 return RPM_ACTIVE;
696 }
697 #endif
698
699 static inline enum blk_zoned_model
blk_queue_zoned_model(struct request_queue * q)700 blk_queue_zoned_model(struct request_queue *q)
701 {
702 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
703 return q->limits.zoned;
704 return BLK_ZONED_NONE;
705 }
706
blk_queue_is_zoned(struct request_queue * q)707 static inline bool blk_queue_is_zoned(struct request_queue *q)
708 {
709 switch (blk_queue_zoned_model(q)) {
710 case BLK_ZONED_HA:
711 case BLK_ZONED_HM:
712 return true;
713 default:
714 return false;
715 }
716 }
717
blk_queue_zone_sectors(struct request_queue * q)718 static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
719 {
720 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
721 }
722
723 #ifdef CONFIG_BLK_DEV_ZONED
blk_queue_nr_zones(struct request_queue * q)724 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
725 {
726 return blk_queue_is_zoned(q) ? q->nr_zones : 0;
727 }
728
blk_queue_zone_no(struct request_queue * q,sector_t sector)729 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
730 sector_t sector)
731 {
732 sector_t zone_sectors = q->limits.chunk_sectors;
733
734 if (!blk_queue_is_zoned(q))
735 return 0;
736
737 if (is_power_of_2(zone_sectors))
738 return sector >> ilog2(zone_sectors);
739
740 return div64_u64(sector, zone_sectors);
741 }
742
743 /**
744 * blk_queue_zone_is_seq() - Whether a logical block is in a sequential zone.
745 * @q: Request queue pointer.
746 * @sector: Offset from start of block device in 512 byte units.
747 *
748 * Return: true if and only if @q refers to a zoned block device and
749 * @sector refers either to a sequential write required or a sequential
750 * write preferred zone.
751 */
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)752 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
753 sector_t sector)
754 {
755 if (!blk_queue_is_zoned(q))
756 return false;
757 if (!q->conv_zones_bitmap)
758 return true;
759 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap);
760 }
761
blk_queue_max_open_zones(struct request_queue * q,unsigned int max_open_zones)762 static inline void blk_queue_max_open_zones(struct request_queue *q,
763 unsigned int max_open_zones)
764 {
765 q->max_open_zones = max_open_zones;
766 }
767
queue_max_open_zones(const struct request_queue * q)768 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
769 {
770 return q->max_open_zones;
771 }
772
blk_queue_max_active_zones(struct request_queue * q,unsigned int max_active_zones)773 static inline void blk_queue_max_active_zones(struct request_queue *q,
774 unsigned int max_active_zones)
775 {
776 q->max_active_zones = max_active_zones;
777 }
778
queue_max_active_zones(const struct request_queue * q)779 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
780 {
781 return q->max_active_zones;
782 }
783 #else /* CONFIG_BLK_DEV_ZONED */
blk_queue_nr_zones(struct request_queue * q)784 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
785 {
786 return 0;
787 }
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)788 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
789 sector_t sector)
790 {
791 return false;
792 }
blk_queue_zone_no(struct request_queue * q,sector_t sector)793 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
794 sector_t sector)
795 {
796 return 0;
797 }
queue_max_open_zones(const struct request_queue * q)798 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
799 {
800 return 0;
801 }
queue_max_active_zones(const struct request_queue * q)802 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
803 {
804 return 0;
805 }
806 #endif /* CONFIG_BLK_DEV_ZONED */
807
rq_is_sync(struct request * rq)808 static inline bool rq_is_sync(struct request *rq)
809 {
810 return op_is_sync(rq->cmd_flags);
811 }
812
rq_mergeable(struct request * rq)813 static inline bool rq_mergeable(struct request *rq)
814 {
815 if (blk_rq_is_passthrough(rq))
816 return false;
817
818 if (req_op(rq) == REQ_OP_FLUSH)
819 return false;
820
821 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
822 return false;
823
824 if (req_op(rq) == REQ_OP_ZONE_APPEND)
825 return false;
826
827 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
828 return false;
829 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
830 return false;
831
832 return true;
833 }
834
blk_write_same_mergeable(struct bio * a,struct bio * b)835 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
836 {
837 if (bio_page(a) == bio_page(b) &&
838 bio_offset(a) == bio_offset(b))
839 return true;
840
841 return false;
842 }
843
blk_queue_depth(struct request_queue * q)844 static inline unsigned int blk_queue_depth(struct request_queue *q)
845 {
846 if (q->queue_depth)
847 return q->queue_depth;
848
849 return q->nr_requests;
850 }
851
852 /*
853 * default timeout for SG_IO if none specified
854 */
855 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
856 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
857
858 struct rq_map_data {
859 struct page **pages;
860 int page_order;
861 int nr_entries;
862 unsigned long offset;
863 int null_mapped;
864 int from_user;
865 };
866
867 struct req_iterator {
868 struct bvec_iter iter;
869 struct bio *bio;
870 };
871
872 /* This should not be used directly - use rq_for_each_segment */
873 #define for_each_bio(_bio) \
874 for (; _bio; _bio = _bio->bi_next)
875 #define __rq_for_each_bio(_bio, rq) \
876 if ((rq->bio)) \
877 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
878
879 #define rq_for_each_segment(bvl, _rq, _iter) \
880 __rq_for_each_bio(_iter.bio, _rq) \
881 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
882
883 #define rq_for_each_bvec(bvl, _rq, _iter) \
884 __rq_for_each_bio(_iter.bio, _rq) \
885 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
886
887 #define rq_iter_last(bvec, _iter) \
888 (_iter.bio->bi_next == NULL && \
889 bio_iter_last(bvec, _iter.iter))
890
891 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
892 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
893 #endif
894 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
895 extern void rq_flush_dcache_pages(struct request *rq);
896 #else
rq_flush_dcache_pages(struct request * rq)897 static inline void rq_flush_dcache_pages(struct request *rq)
898 {
899 }
900 #endif
901
902 extern int blk_register_queue(struct gendisk *disk);
903 extern void blk_unregister_queue(struct gendisk *disk);
904 blk_qc_t submit_bio_noacct(struct bio *bio);
905 extern void blk_rq_init(struct request_queue *q, struct request *rq);
906 extern void blk_put_request(struct request *);
907 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
908 blk_mq_req_flags_t flags);
909 extern int blk_lld_busy(struct request_queue *q);
910 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
911 struct bio_set *bs, gfp_t gfp_mask,
912 int (*bio_ctr)(struct bio *, struct bio *, void *),
913 void *data);
914 extern void blk_rq_unprep_clone(struct request *rq);
915 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
916 struct request *rq);
917 int blk_rq_append_bio(struct request *rq, struct bio *bio);
918 extern void blk_queue_split(struct bio **);
919 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
920 extern void blk_queue_exit(struct request_queue *q);
921 extern void blk_sync_queue(struct request_queue *q);
922 extern int blk_rq_map_user(struct request_queue *, struct request *,
923 struct rq_map_data *, void __user *, unsigned long,
924 gfp_t);
925 extern int blk_rq_unmap_user(struct bio *);
926 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
927 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
928 struct rq_map_data *, const struct iov_iter *,
929 gfp_t);
930 extern void blk_execute_rq_nowait(struct gendisk *,
931 struct request *, int, rq_end_io_fn *);
932
933 blk_status_t blk_execute_rq(struct gendisk *bd_disk, struct request *rq,
934 int at_head);
935
936 /* Helper to convert REQ_OP_XXX to its string format XXX */
937 extern const char *blk_op_str(unsigned int op);
938
939 int blk_status_to_errno(blk_status_t status);
940 blk_status_t errno_to_blk_status(int errno);
941
942 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
943
bdev_get_queue(struct block_device * bdev)944 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
945 {
946 return bdev->bd_disk->queue; /* this is never NULL */
947 }
948
949 /*
950 * The basic unit of block I/O is a sector. It is used in a number of contexts
951 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
952 * bytes. Variables of type sector_t represent an offset or size that is a
953 * multiple of 512 bytes. Hence these two constants.
954 */
955 #ifndef SECTOR_SHIFT
956 #define SECTOR_SHIFT 9
957 #endif
958 #ifndef SECTOR_SIZE
959 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
960 #endif
961
962 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
963 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
964 #define SECTOR_MASK (PAGE_SECTORS - 1)
965
966 /*
967 * blk_rq_pos() : the current sector
968 * blk_rq_bytes() : bytes left in the entire request
969 * blk_rq_cur_bytes() : bytes left in the current segment
970 * blk_rq_err_bytes() : bytes left till the next error boundary
971 * blk_rq_sectors() : sectors left in the entire request
972 * blk_rq_cur_sectors() : sectors left in the current segment
973 * blk_rq_stats_sectors() : sectors of the entire request used for stats
974 */
blk_rq_pos(const struct request * rq)975 static inline sector_t blk_rq_pos(const struct request *rq)
976 {
977 return rq->__sector;
978 }
979
blk_rq_bytes(const struct request * rq)980 static inline unsigned int blk_rq_bytes(const struct request *rq)
981 {
982 return rq->__data_len;
983 }
984
blk_rq_cur_bytes(const struct request * rq)985 static inline int blk_rq_cur_bytes(const struct request *rq)
986 {
987 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
988 }
989
990 extern unsigned int blk_rq_err_bytes(const struct request *rq);
991
blk_rq_sectors(const struct request * rq)992 static inline unsigned int blk_rq_sectors(const struct request *rq)
993 {
994 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
995 }
996
blk_rq_cur_sectors(const struct request * rq)997 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
998 {
999 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1000 }
1001
blk_rq_stats_sectors(const struct request * rq)1002 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1003 {
1004 return rq->stats_sectors;
1005 }
1006
1007 #ifdef CONFIG_BLK_DEV_ZONED
1008
1009 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
1010 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
1011
bio_zone_no(struct bio * bio)1012 static inline unsigned int bio_zone_no(struct bio *bio)
1013 {
1014 return blk_queue_zone_no(bdev_get_queue(bio->bi_bdev),
1015 bio->bi_iter.bi_sector);
1016 }
1017
bio_zone_is_seq(struct bio * bio)1018 static inline unsigned int bio_zone_is_seq(struct bio *bio)
1019 {
1020 return blk_queue_zone_is_seq(bdev_get_queue(bio->bi_bdev),
1021 bio->bi_iter.bi_sector);
1022 }
1023
blk_rq_zone_no(struct request * rq)1024 static inline unsigned int blk_rq_zone_no(struct request *rq)
1025 {
1026 return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
1027 }
1028
1029 /**
1030 * blk_rq_zone_is_seq() - Whether a request is for a sequential zone.
1031 * @rq: Request pointer.
1032 *
1033 * Return: true if and only if blk_rq_pos(@rq) refers either to a sequential
1034 * write required or a sequential write preferred zone.
1035 */
blk_rq_zone_is_seq(struct request * rq)1036 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1037 {
1038 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
1039 }
1040
1041 /**
1042 * blk_rq_is_seq_zoned_write() - Whether @rq needs write serialization.
1043 * @rq: Request to examine.
1044 *
1045 * In this context sequential zone means either a sequential write required or
1046 * to a sequential write preferred zone.
1047 */
blk_rq_is_seq_zoned_write(struct request * rq)1048 static inline bool blk_rq_is_seq_zoned_write(struct request *rq)
1049 {
1050 switch (req_op(rq)) {
1051 case REQ_OP_WRITE_ZEROES:
1052 case REQ_OP_WRITE_SAME:
1053 case REQ_OP_WRITE:
1054 return blk_rq_zone_is_seq(rq);
1055 default:
1056 return false;
1057 }
1058 }
1059 #else /* CONFIG_BLK_DEV_ZONED */
blk_rq_is_seq_zoned_write(struct request * rq)1060 static inline bool blk_rq_is_seq_zoned_write(struct request *rq)
1061 {
1062 return false;
1063 }
1064 #endif /* CONFIG_BLK_DEV_ZONED */
1065
1066 /*
1067 * Some commands like WRITE SAME have a payload or data transfer size which
1068 * is different from the size of the request. Any driver that supports such
1069 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1070 * calculate the data transfer size.
1071 */
blk_rq_payload_bytes(struct request * rq)1072 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1073 {
1074 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1075 return rq->special_vec.bv_len;
1076 return blk_rq_bytes(rq);
1077 }
1078
1079 /*
1080 * Return the first full biovec in the request. The caller needs to check that
1081 * there are any bvecs before calling this helper.
1082 */
req_bvec(struct request * rq)1083 static inline struct bio_vec req_bvec(struct request *rq)
1084 {
1085 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1086 return rq->special_vec;
1087 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1088 }
1089
blk_queue_get_max_sectors(struct request_queue * q,int op)1090 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1091 int op)
1092 {
1093 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1094 return min(q->limits.max_discard_sectors,
1095 UINT_MAX >> SECTOR_SHIFT);
1096
1097 if (unlikely(op == REQ_OP_WRITE_SAME))
1098 return q->limits.max_write_same_sectors;
1099
1100 if (unlikely(op == REQ_OP_WRITE_ZEROES))
1101 return q->limits.max_write_zeroes_sectors;
1102
1103 return q->limits.max_sectors;
1104 }
1105
1106 /*
1107 * Return maximum size of a request at given offset. Only valid for
1108 * file system requests.
1109 */
blk_max_size_offset(struct request_queue * q,sector_t offset,unsigned int chunk_sectors)1110 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1111 sector_t offset,
1112 unsigned int chunk_sectors)
1113 {
1114 if (!chunk_sectors) {
1115 if (q->limits.chunk_sectors)
1116 chunk_sectors = q->limits.chunk_sectors;
1117 else
1118 return q->limits.max_sectors;
1119 }
1120
1121 if (likely(is_power_of_2(chunk_sectors)))
1122 chunk_sectors -= offset & (chunk_sectors - 1);
1123 else
1124 chunk_sectors -= sector_div(offset, chunk_sectors);
1125
1126 return min(q->limits.max_sectors, chunk_sectors);
1127 }
1128
blk_rq_get_max_sectors(struct request * rq,sector_t offset)1129 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1130 sector_t offset)
1131 {
1132 struct request_queue *q = rq->q;
1133
1134 if (blk_rq_is_passthrough(rq))
1135 return q->limits.max_hw_sectors;
1136
1137 if (!q->limits.chunk_sectors ||
1138 req_op(rq) == REQ_OP_DISCARD ||
1139 req_op(rq) == REQ_OP_SECURE_ERASE)
1140 return blk_queue_get_max_sectors(q, req_op(rq));
1141
1142 return min(blk_max_size_offset(q, offset, 0),
1143 blk_queue_get_max_sectors(q, req_op(rq)));
1144 }
1145
blk_rq_count_bios(struct request * rq)1146 static inline unsigned int blk_rq_count_bios(struct request *rq)
1147 {
1148 unsigned int nr_bios = 0;
1149 struct bio *bio;
1150
1151 __rq_for_each_bio(bio, rq)
1152 nr_bios++;
1153
1154 return nr_bios;
1155 }
1156
1157 void blk_steal_bios(struct bio_list *list, struct request *rq);
1158
1159 /*
1160 * Request completion related functions.
1161 *
1162 * blk_update_request() completes given number of bytes and updates
1163 * the request without completing it.
1164 */
1165 extern bool blk_update_request(struct request *rq, blk_status_t error,
1166 unsigned int nr_bytes);
1167
1168 extern void blk_abort_request(struct request *);
1169
1170 /*
1171 * Access functions for manipulating queue properties
1172 */
1173 extern void blk_cleanup_queue(struct request_queue *);
1174 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit);
1175 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1176 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1177 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1178 extern void blk_queue_max_discard_segments(struct request_queue *,
1179 unsigned short);
1180 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1181 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1182 unsigned int max_discard_sectors);
1183 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1184 unsigned int max_write_same_sectors);
1185 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1186 unsigned int max_write_same_sectors);
1187 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
1188 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
1189 unsigned int max_zone_append_sectors);
1190 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1191 void blk_queue_zone_write_granularity(struct request_queue *q,
1192 unsigned int size);
1193 extern void blk_queue_alignment_offset(struct request_queue *q,
1194 unsigned int alignment);
1195 void disk_update_readahead(struct gendisk *disk);
1196 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1197 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1198 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1199 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1200 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1201 extern void blk_set_default_limits(struct queue_limits *lim);
1202 extern void blk_set_stacking_limits(struct queue_limits *lim);
1203 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1204 sector_t offset);
1205 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1206 sector_t offset);
1207 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1208 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1209 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1210 extern void blk_queue_dma_alignment(struct request_queue *, int);
1211 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1212 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1213 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1214 extern void blk_queue_required_elevator_features(struct request_queue *q,
1215 unsigned int features);
1216 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1217 struct device *dev);
1218
1219 /*
1220 * Number of physical segments as sent to the device.
1221 *
1222 * Normally this is the number of discontiguous data segments sent by the
1223 * submitter. But for data-less command like discard we might have no
1224 * actual data segments submitted, but the driver might have to add it's
1225 * own special payload. In that case we still return 1 here so that this
1226 * special payload will be mapped.
1227 */
blk_rq_nr_phys_segments(struct request * rq)1228 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1229 {
1230 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1231 return 1;
1232 return rq->nr_phys_segments;
1233 }
1234
1235 /*
1236 * Number of discard segments (or ranges) the driver needs to fill in.
1237 * Each discard bio merged into a request is counted as one segment.
1238 */
blk_rq_nr_discard_segments(struct request * rq)1239 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1240 {
1241 return max_t(unsigned short, rq->nr_phys_segments, 1);
1242 }
1243
1244 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1245 struct scatterlist *sglist, struct scatterlist **last_sg);
blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist)1246 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1247 struct scatterlist *sglist)
1248 {
1249 struct scatterlist *last_sg = NULL;
1250
1251 return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1252 }
1253 extern void blk_dump_rq_flags(struct request *, char *);
1254
1255 bool __must_check blk_get_queue(struct request_queue *);
1256 extern void blk_put_queue(struct request_queue *);
1257
1258 void blk_mark_disk_dead(struct gendisk *disk);
1259
1260 #ifdef CONFIG_BLOCK
1261 /*
1262 * blk_plug permits building a queue of related requests by holding the I/O
1263 * fragments for a short period. This allows merging of sequential requests
1264 * into single larger request. As the requests are moved from a per-task list to
1265 * the device's request_queue in a batch, this results in improved scalability
1266 * as the lock contention for request_queue lock is reduced.
1267 *
1268 * It is ok not to disable preemption when adding the request to the plug list
1269 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1270 * the plug list when the task sleeps by itself. For details, please see
1271 * schedule() where blk_schedule_flush_plug() is called.
1272 */
1273 struct blk_plug {
1274 struct list_head mq_list; /* blk-mq requests */
1275 struct list_head cb_list; /* md requires an unplug callback */
1276 unsigned short rq_count;
1277 bool multiple_queues;
1278 bool nowait;
1279 };
1280
1281 struct blk_plug_cb;
1282 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1283 struct blk_plug_cb {
1284 struct list_head list;
1285 blk_plug_cb_fn callback;
1286 void *data;
1287 };
1288 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1289 void *data, int size);
1290 extern void blk_start_plug(struct blk_plug *);
1291 extern void blk_finish_plug(struct blk_plug *);
1292 extern void blk_flush_plug_list(struct blk_plug *, bool);
1293
blk_flush_plug(struct task_struct * tsk)1294 static inline void blk_flush_plug(struct task_struct *tsk)
1295 {
1296 struct blk_plug *plug = tsk->plug;
1297
1298 if (plug)
1299 blk_flush_plug_list(plug, false);
1300 }
1301
blk_schedule_flush_plug(struct task_struct * tsk)1302 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1303 {
1304 struct blk_plug *plug = tsk->plug;
1305
1306 if (plug)
1307 blk_flush_plug_list(plug, true);
1308 }
1309
blk_needs_flush_plug(struct task_struct * tsk)1310 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1311 {
1312 struct blk_plug *plug = tsk->plug;
1313
1314 return plug &&
1315 (!list_empty(&plug->mq_list) ||
1316 !list_empty(&plug->cb_list));
1317 }
1318
1319 int blkdev_issue_flush(struct block_device *bdev);
1320 long nr_blockdev_pages(void);
1321 #else /* CONFIG_BLOCK */
1322 struct blk_plug {
1323 };
1324
blk_start_plug(struct blk_plug * plug)1325 static inline void blk_start_plug(struct blk_plug *plug)
1326 {
1327 }
1328
blk_finish_plug(struct blk_plug * plug)1329 static inline void blk_finish_plug(struct blk_plug *plug)
1330 {
1331 }
1332
blk_flush_plug(struct task_struct * task)1333 static inline void blk_flush_plug(struct task_struct *task)
1334 {
1335 }
1336
blk_schedule_flush_plug(struct task_struct * task)1337 static inline void blk_schedule_flush_plug(struct task_struct *task)
1338 {
1339 }
1340
1341
blk_needs_flush_plug(struct task_struct * tsk)1342 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1343 {
1344 return false;
1345 }
1346
blkdev_issue_flush(struct block_device * bdev)1347 static inline int blkdev_issue_flush(struct block_device *bdev)
1348 {
1349 return 0;
1350 }
1351
nr_blockdev_pages(void)1352 static inline long nr_blockdev_pages(void)
1353 {
1354 return 0;
1355 }
1356 #endif /* CONFIG_BLOCK */
1357
1358 extern void blk_io_schedule(void);
1359
1360 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1361 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1362
1363 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1364
1365 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1366 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1367 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1368 sector_t nr_sects, gfp_t gfp_mask, int flags,
1369 struct bio **biop);
1370
1371 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1372 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1373
1374 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1375 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1376 unsigned flags);
1377 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1378 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1379
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1380 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1381 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1382 {
1383 return blkdev_issue_discard(sb->s_bdev,
1384 block << (sb->s_blocksize_bits -
1385 SECTOR_SHIFT),
1386 nr_blocks << (sb->s_blocksize_bits -
1387 SECTOR_SHIFT),
1388 gfp_mask, flags);
1389 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1390 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1391 sector_t nr_blocks, gfp_t gfp_mask)
1392 {
1393 return blkdev_issue_zeroout(sb->s_bdev,
1394 block << (sb->s_blocksize_bits -
1395 SECTOR_SHIFT),
1396 nr_blocks << (sb->s_blocksize_bits -
1397 SECTOR_SHIFT),
1398 gfp_mask, 0);
1399 }
1400
bdev_is_partition(struct block_device * bdev)1401 static inline bool bdev_is_partition(struct block_device *bdev)
1402 {
1403 return bdev->bd_partno;
1404 }
1405
1406 enum blk_default_limits {
1407 BLK_MAX_SEGMENTS = 128,
1408 BLK_SAFE_MAX_SECTORS = 255,
1409 BLK_MAX_SEGMENT_SIZE = 65536,
1410 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1411 };
1412
1413 #define BLK_DEF_MAX_SECTORS 2560u
1414
queue_segment_boundary(const struct request_queue * q)1415 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1416 {
1417 return q->limits.seg_boundary_mask;
1418 }
1419
queue_virt_boundary(const struct request_queue * q)1420 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1421 {
1422 return q->limits.virt_boundary_mask;
1423 }
1424
queue_max_sectors(const struct request_queue * q)1425 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1426 {
1427 return q->limits.max_sectors;
1428 }
1429
queue_max_bytes(struct request_queue * q)1430 static inline unsigned int queue_max_bytes(struct request_queue *q)
1431 {
1432 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1433 }
1434
queue_max_hw_sectors(const struct request_queue * q)1435 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1436 {
1437 return q->limits.max_hw_sectors;
1438 }
1439
queue_max_segments(const struct request_queue * q)1440 static inline unsigned short queue_max_segments(const struct request_queue *q)
1441 {
1442 return q->limits.max_segments;
1443 }
1444
queue_max_discard_segments(const struct request_queue * q)1445 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1446 {
1447 return q->limits.max_discard_segments;
1448 }
1449
queue_max_segment_size(const struct request_queue * q)1450 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1451 {
1452 return q->limits.max_segment_size;
1453 }
1454
queue_max_zone_append_sectors(const struct request_queue * q)1455 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1456 {
1457
1458 const struct queue_limits *l = &q->limits;
1459
1460 return min(l->max_zone_append_sectors, l->max_sectors);
1461 }
1462
1463 static inline unsigned int
bdev_max_zone_append_sectors(struct block_device * bdev)1464 bdev_max_zone_append_sectors(struct block_device *bdev)
1465 {
1466 return queue_max_zone_append_sectors(bdev_get_queue(bdev));
1467 }
1468
bdev_max_segments(struct block_device * bdev)1469 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1470 {
1471 return queue_max_segments(bdev_get_queue(bdev));
1472 }
1473
queue_logical_block_size(const struct request_queue * q)1474 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1475 {
1476 int retval = 512;
1477
1478 if (q && q->limits.logical_block_size)
1479 retval = q->limits.logical_block_size;
1480
1481 return retval;
1482 }
1483
bdev_logical_block_size(struct block_device * bdev)1484 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1485 {
1486 return queue_logical_block_size(bdev_get_queue(bdev));
1487 }
1488
queue_physical_block_size(const struct request_queue * q)1489 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1490 {
1491 return q->limits.physical_block_size;
1492 }
1493
bdev_physical_block_size(struct block_device * bdev)1494 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1495 {
1496 return queue_physical_block_size(bdev_get_queue(bdev));
1497 }
1498
queue_io_min(const struct request_queue * q)1499 static inline unsigned int queue_io_min(const struct request_queue *q)
1500 {
1501 return q->limits.io_min;
1502 }
1503
bdev_io_min(struct block_device * bdev)1504 static inline int bdev_io_min(struct block_device *bdev)
1505 {
1506 return queue_io_min(bdev_get_queue(bdev));
1507 }
1508
queue_io_opt(const struct request_queue * q)1509 static inline unsigned int queue_io_opt(const struct request_queue *q)
1510 {
1511 return q->limits.io_opt;
1512 }
1513
bdev_io_opt(struct block_device * bdev)1514 static inline int bdev_io_opt(struct block_device *bdev)
1515 {
1516 return queue_io_opt(bdev_get_queue(bdev));
1517 }
1518
1519 static inline unsigned int
queue_zone_write_granularity(const struct request_queue * q)1520 queue_zone_write_granularity(const struct request_queue *q)
1521 {
1522 return q->limits.zone_write_granularity;
1523 }
1524
1525 static inline unsigned int
bdev_zone_write_granularity(struct block_device * bdev)1526 bdev_zone_write_granularity(struct block_device *bdev)
1527 {
1528 return queue_zone_write_granularity(bdev_get_queue(bdev));
1529 }
1530
queue_alignment_offset(const struct request_queue * q)1531 static inline int queue_alignment_offset(const struct request_queue *q)
1532 {
1533 if (q->limits.misaligned)
1534 return -1;
1535
1536 return q->limits.alignment_offset;
1537 }
1538
queue_limit_alignment_offset(struct queue_limits * lim,sector_t sector)1539 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1540 {
1541 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1542 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1543 << SECTOR_SHIFT;
1544
1545 return (granularity + lim->alignment_offset - alignment) % granularity;
1546 }
1547
bdev_alignment_offset(struct block_device * bdev)1548 static inline int bdev_alignment_offset(struct block_device *bdev)
1549 {
1550 struct request_queue *q = bdev_get_queue(bdev);
1551
1552 if (q->limits.misaligned)
1553 return -1;
1554 if (bdev_is_partition(bdev))
1555 return queue_limit_alignment_offset(&q->limits,
1556 bdev->bd_start_sect);
1557 return q->limits.alignment_offset;
1558 }
1559
queue_discard_alignment(const struct request_queue * q)1560 static inline int queue_discard_alignment(const struct request_queue *q)
1561 {
1562 if (q->limits.discard_misaligned)
1563 return -1;
1564
1565 return q->limits.discard_alignment;
1566 }
1567
queue_limit_discard_alignment(struct queue_limits * lim,sector_t sector)1568 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1569 {
1570 unsigned int alignment, granularity, offset;
1571
1572 if (!lim->max_discard_sectors)
1573 return 0;
1574
1575 /* Why are these in bytes, not sectors? */
1576 alignment = lim->discard_alignment >> SECTOR_SHIFT;
1577 granularity = lim->discard_granularity >> SECTOR_SHIFT;
1578 if (!granularity)
1579 return 0;
1580
1581 /* Offset of the partition start in 'granularity' sectors */
1582 offset = sector_div(sector, granularity);
1583
1584 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1585 offset = (granularity + alignment - offset) % granularity;
1586
1587 /* Turn it back into bytes, gaah */
1588 return offset << SECTOR_SHIFT;
1589 }
1590
1591 /*
1592 * Two cases of handling DISCARD merge:
1593 * If max_discard_segments > 1, the driver takes every bio
1594 * as a range and send them to controller together. The ranges
1595 * needn't to be contiguous.
1596 * Otherwise, the bios/requests will be handled as same as
1597 * others which should be contiguous.
1598 */
blk_discard_mergable(struct request * req)1599 static inline bool blk_discard_mergable(struct request *req)
1600 {
1601 if (req_op(req) == REQ_OP_DISCARD &&
1602 queue_max_discard_segments(req->q) > 1)
1603 return true;
1604 return false;
1605 }
1606
bdev_discard_alignment(struct block_device * bdev)1607 static inline int bdev_discard_alignment(struct block_device *bdev)
1608 {
1609 struct request_queue *q = bdev_get_queue(bdev);
1610
1611 if (bdev_is_partition(bdev))
1612 return queue_limit_discard_alignment(&q->limits,
1613 bdev->bd_start_sect);
1614 return q->limits.discard_alignment;
1615 }
1616
bdev_write_same(struct block_device * bdev)1617 static inline unsigned int bdev_write_same(struct block_device *bdev)
1618 {
1619 struct request_queue *q = bdev_get_queue(bdev);
1620
1621 if (q)
1622 return q->limits.max_write_same_sectors;
1623
1624 return 0;
1625 }
1626
bdev_write_zeroes_sectors(struct block_device * bdev)1627 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1628 {
1629 struct request_queue *q = bdev_get_queue(bdev);
1630
1631 if (q)
1632 return q->limits.max_write_zeroes_sectors;
1633
1634 return 0;
1635 }
1636
bdev_zoned_model(struct block_device * bdev)1637 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1638 {
1639 struct request_queue *q = bdev_get_queue(bdev);
1640
1641 if (q)
1642 return blk_queue_zoned_model(q);
1643
1644 return BLK_ZONED_NONE;
1645 }
1646
bdev_is_zoned(struct block_device * bdev)1647 static inline bool bdev_is_zoned(struct block_device *bdev)
1648 {
1649 return blk_queue_is_zoned(bdev_get_queue(bdev));
1650 }
1651
bdev_zone_no(struct block_device * bdev,sector_t sec)1652 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1653 {
1654 return blk_queue_zone_no(bdev->bd_disk->queue, sec);
1655 }
1656
bdev_zone_sectors(struct block_device * bdev)1657 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1658 {
1659 struct request_queue *q = bdev_get_queue(bdev);
1660
1661 if (q)
1662 return blk_queue_zone_sectors(q);
1663 return 0;
1664 }
1665
bdev_max_open_zones(struct block_device * bdev)1666 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
1667 {
1668 struct request_queue *q = bdev_get_queue(bdev);
1669
1670 if (q)
1671 return queue_max_open_zones(q);
1672 return 0;
1673 }
1674
bdev_max_active_zones(struct block_device * bdev)1675 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
1676 {
1677 struct request_queue *q = bdev_get_queue(bdev);
1678
1679 if (q)
1680 return queue_max_active_zones(q);
1681 return 0;
1682 }
1683
bdev_offset_from_zone_start(struct block_device * bdev,sector_t sector)1684 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1685 sector_t sector)
1686 {
1687 sector_t zone_sectors = bdev_zone_sectors(bdev);
1688 u64 remainder = 0;
1689
1690 if (!bdev_is_zoned(bdev))
1691 return 0;
1692
1693 if (is_power_of_2(zone_sectors))
1694 return sector & (zone_sectors - 1);
1695
1696 div64_u64_rem(sector, zone_sectors, &remainder);
1697 return remainder;
1698 }
1699
bdev_is_zone_start(struct block_device * bdev,sector_t sector)1700 static inline bool bdev_is_zone_start(struct block_device *bdev,
1701 sector_t sector)
1702 {
1703 if (!bdev_is_zoned(bdev))
1704 return false;
1705
1706 return bdev_offset_from_zone_start(bdev, sector) == 0;
1707 }
1708
queue_dma_alignment(const struct request_queue * q)1709 static inline int queue_dma_alignment(const struct request_queue *q)
1710 {
1711 return q ? q->dma_alignment : 511;
1712 }
1713
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1714 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1715 unsigned int len)
1716 {
1717 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1718 return !(addr & alignment) && !(len & alignment);
1719 }
1720
1721 /* assumes size > 256 */
blksize_bits(unsigned int size)1722 static inline unsigned int blksize_bits(unsigned int size)
1723 {
1724 unsigned int bits = 8;
1725 do {
1726 bits++;
1727 size >>= 1;
1728 } while (size > 256);
1729 return bits;
1730 }
1731
block_size(struct block_device * bdev)1732 static inline unsigned int block_size(struct block_device *bdev)
1733 {
1734 return 1 << bdev->bd_inode->i_blkbits;
1735 }
1736
1737 int kblockd_schedule_work(struct work_struct *work);
1738 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1739
1740 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1741 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1742 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1743 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1744
1745 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1746
1747 enum blk_integrity_flags {
1748 BLK_INTEGRITY_VERIFY = 1 << 0,
1749 BLK_INTEGRITY_GENERATE = 1 << 1,
1750 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1751 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1752 };
1753
1754 struct blk_integrity_iter {
1755 void *prot_buf;
1756 void *data_buf;
1757 sector_t seed;
1758 unsigned int data_size;
1759 unsigned short interval;
1760 const char *disk_name;
1761 };
1762
1763 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1764 typedef void (integrity_prepare_fn) (struct request *);
1765 typedef void (integrity_complete_fn) (struct request *, unsigned int);
1766
1767 struct blk_integrity_profile {
1768 integrity_processing_fn *generate_fn;
1769 integrity_processing_fn *verify_fn;
1770 integrity_prepare_fn *prepare_fn;
1771 integrity_complete_fn *complete_fn;
1772 const char *name;
1773 };
1774
1775 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1776 extern void blk_integrity_unregister(struct gendisk *);
1777 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1778 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1779 struct scatterlist *);
1780 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1781
blk_get_integrity(struct gendisk * disk)1782 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1783 {
1784 struct blk_integrity *bi = &disk->queue->integrity;
1785
1786 if (!bi->profile)
1787 return NULL;
1788
1789 return bi;
1790 }
1791
1792 static inline
bdev_get_integrity(struct block_device * bdev)1793 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1794 {
1795 return blk_get_integrity(bdev->bd_disk);
1796 }
1797
1798 static inline bool
blk_integrity_queue_supports_integrity(struct request_queue * q)1799 blk_integrity_queue_supports_integrity(struct request_queue *q)
1800 {
1801 return q->integrity.profile;
1802 }
1803
blk_integrity_rq(struct request * rq)1804 static inline bool blk_integrity_rq(struct request *rq)
1805 {
1806 return rq->cmd_flags & REQ_INTEGRITY;
1807 }
1808
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1809 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1810 unsigned int segs)
1811 {
1812 q->limits.max_integrity_segments = segs;
1813 }
1814
1815 static inline unsigned short
queue_max_integrity_segments(const struct request_queue * q)1816 queue_max_integrity_segments(const struct request_queue *q)
1817 {
1818 return q->limits.max_integrity_segments;
1819 }
1820
1821 /**
1822 * bio_integrity_intervals - Return number of integrity intervals for a bio
1823 * @bi: blk_integrity profile for device
1824 * @sectors: Size of the bio in 512-byte sectors
1825 *
1826 * Description: The block layer calculates everything in 512 byte
1827 * sectors but integrity metadata is done in terms of the data integrity
1828 * interval size of the storage device. Convert the block layer sectors
1829 * to the appropriate number of integrity intervals.
1830 */
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1831 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1832 unsigned int sectors)
1833 {
1834 return sectors >> (bi->interval_exp - 9);
1835 }
1836
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1837 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1838 unsigned int sectors)
1839 {
1840 return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1841 }
1842
1843 /*
1844 * Return the first bvec that contains integrity data. Only drivers that are
1845 * limited to a single integrity segment should use this helper.
1846 */
rq_integrity_vec(struct request * rq)1847 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1848 {
1849 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1850 return NULL;
1851 return rq->bio->bi_integrity->bip_vec;
1852 }
1853
1854 #else /* CONFIG_BLK_DEV_INTEGRITY */
1855
1856 struct bio;
1857 struct block_device;
1858 struct gendisk;
1859 struct blk_integrity;
1860
blk_integrity_rq(struct request * rq)1861 static inline int blk_integrity_rq(struct request *rq)
1862 {
1863 return 0;
1864 }
blk_rq_count_integrity_sg(struct request_queue * q,struct bio * b)1865 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1866 struct bio *b)
1867 {
1868 return 0;
1869 }
blk_rq_map_integrity_sg(struct request_queue * q,struct bio * b,struct scatterlist * s)1870 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1871 struct bio *b,
1872 struct scatterlist *s)
1873 {
1874 return 0;
1875 }
bdev_get_integrity(struct block_device * b)1876 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1877 {
1878 return NULL;
1879 }
blk_get_integrity(struct gendisk * disk)1880 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1881 {
1882 return NULL;
1883 }
1884 static inline bool
blk_integrity_queue_supports_integrity(struct request_queue * q)1885 blk_integrity_queue_supports_integrity(struct request_queue *q)
1886 {
1887 return false;
1888 }
blk_integrity_compare(struct gendisk * a,struct gendisk * b)1889 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1890 {
1891 return 0;
1892 }
blk_integrity_register(struct gendisk * d,struct blk_integrity * b)1893 static inline void blk_integrity_register(struct gendisk *d,
1894 struct blk_integrity *b)
1895 {
1896 }
blk_integrity_unregister(struct gendisk * d)1897 static inline void blk_integrity_unregister(struct gendisk *d)
1898 {
1899 }
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1900 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1901 unsigned int segs)
1902 {
1903 }
queue_max_integrity_segments(const struct request_queue * q)1904 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q)
1905 {
1906 return 0;
1907 }
1908
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1909 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1910 unsigned int sectors)
1911 {
1912 return 0;
1913 }
1914
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1915 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1916 unsigned int sectors)
1917 {
1918 return 0;
1919 }
1920
rq_integrity_vec(struct request * rq)1921 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1922 {
1923 return NULL;
1924 }
1925
1926 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1927
1928 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1929
1930 bool blk_crypto_register(struct blk_crypto_profile *profile,
1931 struct request_queue *q);
1932
1933 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1934
blk_crypto_register(struct blk_crypto_profile * profile,struct request_queue * q)1935 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1936 struct request_queue *q)
1937 {
1938 return true;
1939 }
1940
1941 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1942
1943
1944 struct block_device_operations {
1945 blk_qc_t (*submit_bio) (struct bio *bio);
1946 int (*open) (struct block_device *, fmode_t);
1947 void (*release) (struct gendisk *, fmode_t);
1948 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1949 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1950 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1951 unsigned int (*check_events) (struct gendisk *disk,
1952 unsigned int clearing);
1953 void (*unlock_native_capacity) (struct gendisk *);
1954 int (*getgeo)(struct block_device *, struct hd_geometry *);
1955 int (*set_read_only)(struct block_device *bdev, bool ro);
1956 /* this callback is with swap_lock and sometimes page table lock held */
1957 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1958 int (*report_zones)(struct gendisk *, sector_t sector,
1959 unsigned int nr_zones, report_zones_cb cb, void *data);
1960 char *(*devnode)(struct gendisk *disk, umode_t *mode);
1961 struct module *owner;
1962 const struct pr_ops *pr_ops;
1963
1964 /*
1965 * Special callback for probing GPT entry at a given sector.
1966 * Needed by Android devices, used by GPT scanner and MMC blk
1967 * driver.
1968 */
1969 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1970
1971 ANDROID_KABI_RESERVE(1);
1972 ANDROID_KABI_RESERVE(2);
1973 ANDROID_OEM_DATA(1);
1974 };
1975
1976 #ifdef CONFIG_COMPAT
1977 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1978 unsigned int, unsigned long);
1979 #else
1980 #define blkdev_compat_ptr_ioctl NULL
1981 #endif
1982
1983 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1984 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1985 struct writeback_control *);
1986
1987 #ifdef CONFIG_BLK_DEV_ZONED
1988 bool blk_req_needs_zone_write_lock(struct request *rq);
1989 bool blk_req_zone_write_trylock(struct request *rq);
1990 void __blk_req_zone_write_lock(struct request *rq);
1991 void __blk_req_zone_write_unlock(struct request *rq);
1992
blk_req_zone_write_lock(struct request * rq)1993 static inline void blk_req_zone_write_lock(struct request *rq)
1994 {
1995 if (blk_req_needs_zone_write_lock(rq))
1996 __blk_req_zone_write_lock(rq);
1997 }
1998
blk_req_zone_write_unlock(struct request * rq)1999 static inline void blk_req_zone_write_unlock(struct request *rq)
2000 {
2001 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
2002 __blk_req_zone_write_unlock(rq);
2003 }
2004
blk_req_zone_is_write_locked(struct request * rq)2005 static inline bool blk_req_zone_is_write_locked(struct request *rq)
2006 {
2007 return rq->q->seq_zones_wlock &&
2008 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
2009 }
2010
blk_req_can_dispatch_to_zone(struct request * rq)2011 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
2012 {
2013 if (!blk_req_needs_zone_write_lock(rq))
2014 return true;
2015 return !blk_req_zone_is_write_locked(rq);
2016 }
2017 #else
blk_req_needs_zone_write_lock(struct request * rq)2018 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
2019 {
2020 return false;
2021 }
2022
blk_req_zone_write_lock(struct request * rq)2023 static inline void blk_req_zone_write_lock(struct request *rq)
2024 {
2025 }
2026
blk_req_zone_write_unlock(struct request * rq)2027 static inline void blk_req_zone_write_unlock(struct request *rq)
2028 {
2029 }
blk_req_zone_is_write_locked(struct request * rq)2030 static inline bool blk_req_zone_is_write_locked(struct request *rq)
2031 {
2032 return false;
2033 }
2034
blk_req_can_dispatch_to_zone(struct request * rq)2035 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
2036 {
2037 return true;
2038 }
2039 #endif /* CONFIG_BLK_DEV_ZONED */
2040
blk_wake_io_task(struct task_struct * waiter)2041 static inline void blk_wake_io_task(struct task_struct *waiter)
2042 {
2043 /*
2044 * If we're polling, the task itself is doing the completions. For
2045 * that case, we don't need to signal a wakeup, it's enough to just
2046 * mark us as RUNNING.
2047 */
2048 if (waiter == current)
2049 __set_current_state(TASK_RUNNING);
2050 else
2051 wake_up_process(waiter);
2052 }
2053
2054 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
2055 unsigned int op);
2056 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
2057 unsigned long start_time);
2058
2059 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time);
2060 unsigned long bio_start_io_acct(struct bio *bio);
2061 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
2062 struct block_device *orig_bdev);
2063
2064 /**
2065 * bio_end_io_acct - end I/O accounting for bio based drivers
2066 * @bio: bio to end account for
2067 * @start: start time returned by bio_start_io_acct()
2068 */
bio_end_io_acct(struct bio * bio,unsigned long start_time)2069 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
2070 {
2071 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
2072 }
2073
2074 int bdev_read_only(struct block_device *bdev);
2075 int set_blocksize(struct block_device *bdev, int size);
2076
2077 const char *bdevname(struct block_device *bdev, char *buffer);
2078 int lookup_bdev(const char *pathname, dev_t *dev);
2079
2080 void blkdev_show(struct seq_file *seqf, off_t offset);
2081
2082 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
2083 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */
2084 #ifdef CONFIG_BLOCK
2085 #define BLKDEV_MAJOR_MAX 512
2086 #else
2087 #define BLKDEV_MAJOR_MAX 0
2088 #endif
2089
2090 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
2091 void *holder);
2092 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
2093 int bd_prepare_to_claim(struct block_device *bdev, void *holder);
2094 void bd_abort_claiming(struct block_device *bdev, void *holder);
2095 void blkdev_put(struct block_device *bdev, fmode_t mode);
2096
2097 /* just for blk-cgroup, don't use elsewhere */
2098 struct block_device *blkdev_get_no_open(dev_t dev);
2099 void blkdev_put_no_open(struct block_device *bdev);
2100
2101 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
2102 void bdev_add(struct block_device *bdev, dev_t dev);
2103 struct block_device *I_BDEV(struct inode *inode);
2104 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart,
2105 loff_t lend);
2106
2107 #ifdef CONFIG_BLOCK
2108 void invalidate_bdev(struct block_device *bdev);
2109 int sync_blockdev(struct block_device *bdev);
2110 int sync_blockdev_nowait(struct block_device *bdev);
2111 void sync_bdevs(bool wait);
2112 #else
invalidate_bdev(struct block_device * bdev)2113 static inline void invalidate_bdev(struct block_device *bdev)
2114 {
2115 }
sync_blockdev(struct block_device * bdev)2116 static inline int sync_blockdev(struct block_device *bdev)
2117 {
2118 return 0;
2119 }
sync_blockdev_nowait(struct block_device * bdev)2120 static inline int sync_blockdev_nowait(struct block_device *bdev)
2121 {
2122 return 0;
2123 }
sync_bdevs(bool wait)2124 static inline void sync_bdevs(bool wait)
2125 {
2126 }
2127 #endif
2128 int fsync_bdev(struct block_device *bdev);
2129
2130 int freeze_bdev(struct block_device *bdev);
2131 int thaw_bdev(struct block_device *bdev);
2132
2133 #endif /* _LINUX_BLKDEV_H */
2134