1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 #include <linux/android_vendor.h>
25
26 struct mem_cgroup;
27 struct obj_cgroup;
28 struct page;
29 struct mm_struct;
30 struct kmem_cache;
31
32 /* Cgroup-specific page state, on top of universal node page state */
33 enum memcg_stat_item {
34 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
35 MEMCG_SOCK,
36 MEMCG_PERCPU_B,
37 MEMCG_NR_STAT,
38 };
39
40 enum memcg_memory_event {
41 MEMCG_LOW,
42 MEMCG_HIGH,
43 MEMCG_MAX,
44 MEMCG_OOM,
45 MEMCG_OOM_KILL,
46 MEMCG_SWAP_HIGH,
47 MEMCG_SWAP_MAX,
48 MEMCG_SWAP_FAIL,
49 MEMCG_NR_MEMORY_EVENTS,
50 };
51
52 struct mem_cgroup_reclaim_cookie {
53 pg_data_t *pgdat;
54 unsigned int generation;
55 };
56
57 #ifdef CONFIG_MEMCG
58
59 #define MEM_CGROUP_ID_SHIFT 16
60 #define MEM_CGROUP_ID_MAX USHRT_MAX
61
62 struct mem_cgroup_id {
63 int id;
64 refcount_t ref;
65 };
66
67 /*
68 * Per memcg event counter is incremented at every pagein/pageout. With THP,
69 * it will be incremented by the number of pages. This counter is used
70 * to trigger some periodic events. This is straightforward and better
71 * than using jiffies etc. to handle periodic memcg event.
72 */
73 enum mem_cgroup_events_target {
74 MEM_CGROUP_TARGET_THRESH,
75 MEM_CGROUP_TARGET_SOFTLIMIT,
76 MEM_CGROUP_NTARGETS,
77 };
78
79 struct memcg_vmstats_percpu {
80 /* Local (CPU and cgroup) page state & events */
81 long state[MEMCG_NR_STAT];
82 unsigned long events[NR_VM_EVENT_ITEMS];
83
84 /* Delta calculation for lockless upward propagation */
85 long state_prev[MEMCG_NR_STAT];
86 unsigned long events_prev[NR_VM_EVENT_ITEMS];
87
88 /* Cgroup1: threshold notifications & softlimit tree updates */
89 unsigned long nr_page_events;
90 unsigned long targets[MEM_CGROUP_NTARGETS];
91 };
92
93 struct memcg_vmstats {
94 /* Aggregated (CPU and subtree) page state & events */
95 long state[MEMCG_NR_STAT];
96 unsigned long events[NR_VM_EVENT_ITEMS];
97
98 /* Pending child counts during tree propagation */
99 long state_pending[MEMCG_NR_STAT];
100 unsigned long events_pending[NR_VM_EVENT_ITEMS];
101 };
102
103 struct mem_cgroup_reclaim_iter {
104 struct mem_cgroup *position;
105 /* scan generation, increased every round-trip */
106 unsigned int generation;
107 };
108
109 /*
110 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
111 * shrinkers, which have elements charged to this memcg.
112 */
113 struct shrinker_info {
114 struct rcu_head rcu;
115 atomic_long_t *nr_deferred;
116 unsigned long *map;
117 };
118
119 struct lruvec_stats_percpu {
120 /* Local (CPU and cgroup) state */
121 long state[NR_VM_NODE_STAT_ITEMS];
122
123 /* Delta calculation for lockless upward propagation */
124 long state_prev[NR_VM_NODE_STAT_ITEMS];
125 };
126
127 struct lruvec_stats {
128 /* Aggregated (CPU and subtree) state */
129 long state[NR_VM_NODE_STAT_ITEMS];
130
131 /* Pending child counts during tree propagation */
132 long state_pending[NR_VM_NODE_STAT_ITEMS];
133 };
134
135 /*
136 * per-node information in memory controller.
137 */
138 struct mem_cgroup_per_node {
139 struct lruvec lruvec;
140
141 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
142 struct lruvec_stats lruvec_stats;
143
144 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
145
146 struct mem_cgroup_reclaim_iter iter;
147
148 struct shrinker_info __rcu *shrinker_info;
149
150 struct rb_node tree_node; /* RB tree node */
151 unsigned long usage_in_excess;/* Set to the value by which */
152 /* the soft limit is exceeded*/
153 bool on_tree;
154 struct mem_cgroup *memcg; /* Back pointer, we cannot */
155 /* use container_of */
156 };
157
158 struct mem_cgroup_threshold {
159 struct eventfd_ctx *eventfd;
160 unsigned long threshold;
161 };
162
163 /* For threshold */
164 struct mem_cgroup_threshold_ary {
165 /* An array index points to threshold just below or equal to usage. */
166 int current_threshold;
167 /* Size of entries[] */
168 unsigned int size;
169 /* Array of thresholds */
170 struct mem_cgroup_threshold entries[];
171 };
172
173 struct mem_cgroup_thresholds {
174 /* Primary thresholds array */
175 struct mem_cgroup_threshold_ary *primary;
176 /*
177 * Spare threshold array.
178 * This is needed to make mem_cgroup_unregister_event() "never fail".
179 * It must be able to store at least primary->size - 1 entries.
180 */
181 struct mem_cgroup_threshold_ary *spare;
182 };
183
184 enum memcg_kmem_state {
185 KMEM_NONE,
186 KMEM_ALLOCATED,
187 KMEM_ONLINE,
188 };
189
190 #if defined(CONFIG_SMP)
191 struct memcg_padding {
192 char x[0];
193 } ____cacheline_internodealigned_in_smp;
194 #define MEMCG_PADDING(name) struct memcg_padding name
195 #else
196 #define MEMCG_PADDING(name)
197 #endif
198
199 /*
200 * Remember four most recent foreign writebacks with dirty pages in this
201 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
202 * one in a given round, we're likely to catch it later if it keeps
203 * foreign-dirtying, so a fairly low count should be enough.
204 *
205 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
206 */
207 #define MEMCG_CGWB_FRN_CNT 4
208
209 struct memcg_cgwb_frn {
210 u64 bdi_id; /* bdi->id of the foreign inode */
211 int memcg_id; /* memcg->css.id of foreign inode */
212 u64 at; /* jiffies_64 at the time of dirtying */
213 struct wb_completion done; /* tracks in-flight foreign writebacks */
214 };
215
216 /*
217 * Bucket for arbitrarily byte-sized objects charged to a memory
218 * cgroup. The bucket can be reparented in one piece when the cgroup
219 * is destroyed, without having to round up the individual references
220 * of all live memory objects in the wild.
221 */
222 struct obj_cgroup {
223 struct percpu_ref refcnt;
224 struct mem_cgroup *memcg;
225 atomic_t nr_charged_bytes;
226 union {
227 struct list_head list; /* protected by objcg_lock */
228 struct rcu_head rcu;
229 };
230 };
231
232 /*
233 * The memory controller data structure. The memory controller controls both
234 * page cache and RSS per cgroup. We would eventually like to provide
235 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
236 * to help the administrator determine what knobs to tune.
237 */
238 struct mem_cgroup {
239 struct cgroup_subsys_state css;
240
241 /* Private memcg ID. Used to ID objects that outlive the cgroup */
242 struct mem_cgroup_id id;
243
244 /* Accounted resources */
245 struct page_counter memory; /* Both v1 & v2 */
246
247 union {
248 struct page_counter swap; /* v2 only */
249 struct page_counter memsw; /* v1 only */
250 };
251
252 /* Legacy consumer-oriented counters */
253 struct page_counter kmem; /* v1 only */
254 struct page_counter tcpmem; /* v1 only */
255
256 /* Range enforcement for interrupt charges */
257 struct work_struct high_work;
258
259 unsigned long soft_limit;
260
261 /* vmpressure notifications */
262 struct vmpressure vmpressure;
263
264 /*
265 * Should the OOM killer kill all belonging tasks, had it kill one?
266 */
267 bool oom_group;
268
269 /* protected by memcg_oom_lock */
270 bool oom_lock;
271 int under_oom;
272
273 int swappiness;
274 /* OOM-Killer disable */
275 int oom_kill_disable;
276
277 /* memory.events and memory.events.local */
278 struct cgroup_file events_file;
279 struct cgroup_file events_local_file;
280
281 /* handle for "memory.swap.events" */
282 struct cgroup_file swap_events_file;
283
284 /* protect arrays of thresholds */
285 struct mutex thresholds_lock;
286
287 /* thresholds for memory usage. RCU-protected */
288 struct mem_cgroup_thresholds thresholds;
289
290 /* thresholds for mem+swap usage. RCU-protected */
291 struct mem_cgroup_thresholds memsw_thresholds;
292
293 /* For oom notifier event fd */
294 struct list_head oom_notify;
295
296 /*
297 * Should we move charges of a task when a task is moved into this
298 * mem_cgroup ? And what type of charges should we move ?
299 */
300 unsigned long move_charge_at_immigrate;
301 /* taken only while moving_account > 0 */
302 spinlock_t move_lock;
303 unsigned long move_lock_flags;
304
305 MEMCG_PADDING(_pad1_);
306
307 /* memory.stat */
308 struct memcg_vmstats vmstats;
309
310 /* memory.events */
311 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
312 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
313
314 /*
315 * Hint of reclaim pressure for socket memroy management. Note
316 * that this indicator should NOT be used in legacy cgroup mode
317 * where socket memory is accounted/charged separately.
318 */
319 unsigned long socket_pressure;
320
321 /* Legacy tcp memory accounting */
322 bool tcpmem_active;
323 int tcpmem_pressure;
324
325 #ifdef CONFIG_MEMCG_KMEM
326 int kmemcg_id;
327 enum memcg_kmem_state kmem_state;
328 struct obj_cgroup __rcu *objcg;
329 /* list of inherited objcgs, protected by objcg_lock */
330 struct list_head objcg_list;
331 #endif
332
333 MEMCG_PADDING(_pad2_);
334
335 /*
336 * set > 0 if pages under this cgroup are moving to other cgroup.
337 */
338 atomic_t moving_account;
339 struct task_struct *move_lock_task;
340
341 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
342
343 #ifdef CONFIG_CGROUP_WRITEBACK
344 struct list_head cgwb_list;
345 struct wb_domain cgwb_domain;
346 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
347 #endif
348
349 /* List of events which userspace want to receive */
350 struct list_head event_list;
351 spinlock_t event_list_lock;
352
353 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
354 struct deferred_split deferred_split_queue;
355 #endif
356
357 #ifdef CONFIG_LRU_GEN
358 /* per-memcg mm_struct list */
359 struct lru_gen_mm_list mm_list;
360 #endif
361
362 /* for dynamic low */
363 ANDROID_VENDOR_DATA(1);
364 ANDROID_OEM_DATA_ARRAY(1, 2);
365
366 struct mem_cgroup_per_node *nodeinfo[];
367 };
368
369 /*
370 * size of first charge trial. "32" comes from vmscan.c's magic value.
371 * TODO: maybe necessary to use big numbers in big irons.
372 */
373 #define MEMCG_CHARGE_BATCH 32U
374
375 extern struct mem_cgroup *root_mem_cgroup;
376
377 enum page_memcg_data_flags {
378 /* page->memcg_data is a pointer to an objcgs vector */
379 MEMCG_DATA_OBJCGS = (1UL << 0),
380 /* page has been accounted as a non-slab kernel page */
381 MEMCG_DATA_KMEM = (1UL << 1),
382 /* the next bit after the last actual flag */
383 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
384 };
385
386 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
387
388 static inline bool PageMemcgKmem(struct page *page);
389
390 /*
391 * After the initialization objcg->memcg is always pointing at
392 * a valid memcg, but can be atomically swapped to the parent memcg.
393 *
394 * The caller must ensure that the returned memcg won't be released:
395 * e.g. acquire the rcu_read_lock or css_set_lock.
396 */
obj_cgroup_memcg(struct obj_cgroup * objcg)397 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
398 {
399 return READ_ONCE(objcg->memcg);
400 }
401
402 /*
403 * __page_memcg - get the memory cgroup associated with a non-kmem page
404 * @page: a pointer to the page struct
405 *
406 * Returns a pointer to the memory cgroup associated with the page,
407 * or NULL. This function assumes that the page is known to have a
408 * proper memory cgroup pointer. It's not safe to call this function
409 * against some type of pages, e.g. slab pages or ex-slab pages or
410 * kmem pages.
411 */
__page_memcg(struct page * page)412 static inline struct mem_cgroup *__page_memcg(struct page *page)
413 {
414 unsigned long memcg_data = page->memcg_data;
415
416 VM_BUG_ON_PAGE(PageSlab(page), page);
417 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
418 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
419
420 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
421 }
422
423 /*
424 * __page_objcg - get the object cgroup associated with a kmem page
425 * @page: a pointer to the page struct
426 *
427 * Returns a pointer to the object cgroup associated with the page,
428 * or NULL. This function assumes that the page is known to have a
429 * proper object cgroup pointer. It's not safe to call this function
430 * against some type of pages, e.g. slab pages or ex-slab pages or
431 * LRU pages.
432 */
__page_objcg(struct page * page)433 static inline struct obj_cgroup *__page_objcg(struct page *page)
434 {
435 unsigned long memcg_data = page->memcg_data;
436
437 VM_BUG_ON_PAGE(PageSlab(page), page);
438 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
439 VM_BUG_ON_PAGE(!(memcg_data & MEMCG_DATA_KMEM), page);
440
441 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
442 }
443
444 /*
445 * page_memcg - get the memory cgroup associated with a page
446 * @page: a pointer to the page struct
447 *
448 * Returns a pointer to the memory cgroup associated with the page,
449 * or NULL. This function assumes that the page is known to have a
450 * proper memory cgroup pointer. It's not safe to call this function
451 * against some type of pages, e.g. slab pages or ex-slab pages.
452 *
453 * For a non-kmem page any of the following ensures page and memcg binding
454 * stability:
455 *
456 * - the page lock
457 * - LRU isolation
458 * - lock_page_memcg()
459 * - exclusive reference
460 * - mem_cgroup_trylock_pages()
461 *
462 * For a kmem page a caller should hold an rcu read lock to protect memcg
463 * associated with a kmem page from being released.
464 */
page_memcg(struct page * page)465 static inline struct mem_cgroup *page_memcg(struct page *page)
466 {
467 if (PageMemcgKmem(page))
468 return obj_cgroup_memcg(__page_objcg(page));
469 else
470 return __page_memcg(page);
471 }
472
473 /*
474 * page_memcg_rcu - locklessly get the memory cgroup associated with a page
475 * @page: a pointer to the page struct
476 *
477 * Returns a pointer to the memory cgroup associated with the page,
478 * or NULL. This function assumes that the page is known to have a
479 * proper memory cgroup pointer. It's not safe to call this function
480 * against some type of pages, e.g. slab pages or ex-slab pages.
481 */
page_memcg_rcu(struct page * page)482 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
483 {
484 unsigned long memcg_data = READ_ONCE(page->memcg_data);
485
486 VM_BUG_ON_PAGE(PageSlab(page), page);
487 WARN_ON_ONCE(!rcu_read_lock_held());
488
489 if (memcg_data & MEMCG_DATA_KMEM) {
490 struct obj_cgroup *objcg;
491
492 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
493 return obj_cgroup_memcg(objcg);
494 }
495
496 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
497 }
498
499 /*
500 * page_memcg_check - get the memory cgroup associated with a page
501 * @page: a pointer to the page struct
502 *
503 * Returns a pointer to the memory cgroup associated with the page,
504 * or NULL. This function unlike page_memcg() can take any page
505 * as an argument. It has to be used in cases when it's not known if a page
506 * has an associated memory cgroup pointer or an object cgroups vector or
507 * an object cgroup.
508 *
509 * For a non-kmem page any of the following ensures page and memcg binding
510 * stability:
511 *
512 * - the page lock
513 * - LRU isolation
514 * - lock_page_memcg()
515 * - exclusive reference
516 * - mem_cgroup_trylock_pages()
517 *
518 * For a kmem page a caller should hold an rcu read lock to protect memcg
519 * associated with a kmem page from being released.
520 */
page_memcg_check(struct page * page)521 static inline struct mem_cgroup *page_memcg_check(struct page *page)
522 {
523 /*
524 * Because page->memcg_data might be changed asynchronously
525 * for slab pages, READ_ONCE() should be used here.
526 */
527 unsigned long memcg_data = READ_ONCE(page->memcg_data);
528
529 if (memcg_data & MEMCG_DATA_OBJCGS)
530 return NULL;
531
532 if (memcg_data & MEMCG_DATA_KMEM) {
533 struct obj_cgroup *objcg;
534
535 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
536 return obj_cgroup_memcg(objcg);
537 }
538
539 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
540 }
541
542 #ifdef CONFIG_MEMCG_KMEM
543 /*
544 * PageMemcgKmem - check if the page has MemcgKmem flag set
545 * @page: a pointer to the page struct
546 *
547 * Checks if the page has MemcgKmem flag set. The caller must ensure that
548 * the page has an associated memory cgroup. It's not safe to call this function
549 * against some types of pages, e.g. slab pages.
550 */
PageMemcgKmem(struct page * page)551 static inline bool PageMemcgKmem(struct page *page)
552 {
553 VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page);
554 return page->memcg_data & MEMCG_DATA_KMEM;
555 }
556
557 /*
558 * page_objcgs - get the object cgroups vector associated with a page
559 * @page: a pointer to the page struct
560 *
561 * Returns a pointer to the object cgroups vector associated with the page,
562 * or NULL. This function assumes that the page is known to have an
563 * associated object cgroups vector. It's not safe to call this function
564 * against pages, which might have an associated memory cgroup: e.g.
565 * kernel stack pages.
566 */
page_objcgs(struct page * page)567 static inline struct obj_cgroup **page_objcgs(struct page *page)
568 {
569 unsigned long memcg_data = READ_ONCE(page->memcg_data);
570
571 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
572 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
573
574 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
575 }
576
577 /*
578 * page_objcgs_check - get the object cgroups vector associated with a page
579 * @page: a pointer to the page struct
580 *
581 * Returns a pointer to the object cgroups vector associated with the page,
582 * or NULL. This function is safe to use if the page can be directly associated
583 * with a memory cgroup.
584 */
page_objcgs_check(struct page * page)585 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
586 {
587 unsigned long memcg_data = READ_ONCE(page->memcg_data);
588
589 if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
590 return NULL;
591
592 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
593
594 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
595 }
596
597 #else
PageMemcgKmem(struct page * page)598 static inline bool PageMemcgKmem(struct page *page)
599 {
600 return false;
601 }
602
page_objcgs(struct page * page)603 static inline struct obj_cgroup **page_objcgs(struct page *page)
604 {
605 return NULL;
606 }
607
page_objcgs_check(struct page * page)608 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
609 {
610 return NULL;
611 }
612 #endif
613
mem_cgroup_is_root(struct mem_cgroup * memcg)614 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
615 {
616 return (memcg == root_mem_cgroup);
617 }
618
mem_cgroup_disabled(void)619 static inline bool mem_cgroup_disabled(void)
620 {
621 return !cgroup_subsys_enabled(memory_cgrp_subsys);
622 }
623
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)624 static inline void mem_cgroup_protection(struct mem_cgroup *root,
625 struct mem_cgroup *memcg,
626 unsigned long *min,
627 unsigned long *low)
628 {
629 *min = *low = 0;
630
631 if (mem_cgroup_disabled())
632 return;
633
634 /*
635 * There is no reclaim protection applied to a targeted reclaim.
636 * We are special casing this specific case here because
637 * mem_cgroup_protected calculation is not robust enough to keep
638 * the protection invariant for calculated effective values for
639 * parallel reclaimers with different reclaim target. This is
640 * especially a problem for tail memcgs (as they have pages on LRU)
641 * which would want to have effective values 0 for targeted reclaim
642 * but a different value for external reclaim.
643 *
644 * Example
645 * Let's have global and A's reclaim in parallel:
646 * |
647 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
648 * |\
649 * | C (low = 1G, usage = 2.5G)
650 * B (low = 1G, usage = 0.5G)
651 *
652 * For the global reclaim
653 * A.elow = A.low
654 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
655 * C.elow = min(C.usage, C.low)
656 *
657 * With the effective values resetting we have A reclaim
658 * A.elow = 0
659 * B.elow = B.low
660 * C.elow = C.low
661 *
662 * If the global reclaim races with A's reclaim then
663 * B.elow = C.elow = 0 because children_low_usage > A.elow)
664 * is possible and reclaiming B would be violating the protection.
665 *
666 */
667 if (root == memcg)
668 return;
669
670 *min = READ_ONCE(memcg->memory.emin);
671 *low = READ_ONCE(memcg->memory.elow);
672 }
673
674 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
675 struct mem_cgroup *memcg);
676
mem_cgroup_supports_protection(struct mem_cgroup * memcg)677 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
678 {
679 /*
680 * The root memcg doesn't account charges, and doesn't support
681 * protection.
682 */
683 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
684
685 }
686
mem_cgroup_below_low(struct mem_cgroup * memcg)687 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
688 {
689 if (!mem_cgroup_supports_protection(memcg))
690 return false;
691
692 return READ_ONCE(memcg->memory.elow) >=
693 page_counter_read(&memcg->memory);
694 }
695
mem_cgroup_below_min(struct mem_cgroup * memcg)696 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
697 {
698 if (!mem_cgroup_supports_protection(memcg))
699 return false;
700
701 return READ_ONCE(memcg->memory.emin) >=
702 page_counter_read(&memcg->memory);
703 }
704
705 int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
706 gfp_t gfp_mask);
mem_cgroup_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)707 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
708 gfp_t gfp_mask)
709 {
710 if (mem_cgroup_disabled())
711 return 0;
712 return __mem_cgroup_charge(page, mm, gfp_mask);
713 }
714
715 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
716 gfp_t gfp, swp_entry_t entry);
717 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
718
719 void __mem_cgroup_uncharge(struct page *page);
mem_cgroup_uncharge(struct page * page)720 static inline void mem_cgroup_uncharge(struct page *page)
721 {
722 if (mem_cgroup_disabled())
723 return;
724 __mem_cgroup_uncharge(page);
725 }
726
727 void __mem_cgroup_uncharge_list(struct list_head *page_list);
mem_cgroup_uncharge_list(struct list_head * page_list)728 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
729 {
730 if (mem_cgroup_disabled())
731 return;
732 __mem_cgroup_uncharge_list(page_list);
733 }
734
735 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
736
737 /**
738 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
739 * @memcg: memcg of the wanted lruvec
740 * @pgdat: pglist_data
741 *
742 * Returns the lru list vector holding pages for a given @memcg &
743 * @pgdat combination. This can be the node lruvec, if the memory
744 * controller is disabled.
745 */
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)746 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
747 struct pglist_data *pgdat)
748 {
749 struct mem_cgroup_per_node *mz;
750 struct lruvec *lruvec;
751
752 if (mem_cgroup_disabled()) {
753 lruvec = &pgdat->__lruvec;
754 goto out;
755 }
756
757 if (!memcg)
758 memcg = root_mem_cgroup;
759
760 mz = memcg->nodeinfo[pgdat->node_id];
761 lruvec = &mz->lruvec;
762 out:
763 /*
764 * Since a node can be onlined after the mem_cgroup was created,
765 * we have to be prepared to initialize lruvec->pgdat here;
766 * and if offlined then reonlined, we need to reinitialize it.
767 */
768 if (unlikely(lruvec->pgdat != pgdat))
769 lruvec->pgdat = pgdat;
770 return lruvec;
771 }
772
773 /**
774 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
775 * @page: the page
776 *
777 * This function relies on page->mem_cgroup being stable.
778 */
mem_cgroup_page_lruvec(struct page * page)779 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page)
780 {
781 pg_data_t *pgdat = page_pgdat(page);
782 struct mem_cgroup *memcg = page_memcg(page);
783
784 VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page);
785 return mem_cgroup_lruvec(memcg, pgdat);
786 }
787
788 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
789
790 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
791
792 struct lruvec *lock_page_lruvec(struct page *page);
793 struct lruvec *lock_page_lruvec_irq(struct page *page);
794 struct lruvec *lock_page_lruvec_irqsave(struct page *page,
795 unsigned long *flags);
796
797 #ifdef CONFIG_DEBUG_VM
798 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page);
799 #else
lruvec_memcg_debug(struct lruvec * lruvec,struct page * page)800 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
801 {
802 }
803 #endif
804
805 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)806 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
807 return css ? container_of(css, struct mem_cgroup, css) : NULL;
808 }
809
obj_cgroup_tryget(struct obj_cgroup * objcg)810 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
811 {
812 return percpu_ref_tryget(&objcg->refcnt);
813 }
814
obj_cgroup_get(struct obj_cgroup * objcg)815 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
816 {
817 percpu_ref_get(&objcg->refcnt);
818 }
819
obj_cgroup_get_many(struct obj_cgroup * objcg,unsigned long nr)820 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
821 unsigned long nr)
822 {
823 percpu_ref_get_many(&objcg->refcnt, nr);
824 }
825
obj_cgroup_put(struct obj_cgroup * objcg)826 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
827 {
828 percpu_ref_put(&objcg->refcnt);
829 }
830
mem_cgroup_tryget(struct mem_cgroup * memcg)831 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
832 {
833 return !memcg || css_tryget(&memcg->css);
834 }
835
mem_cgroup_put(struct mem_cgroup * memcg)836 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
837 {
838 if (memcg)
839 css_put(&memcg->css);
840 }
841
842 #define mem_cgroup_from_counter(counter, member) \
843 container_of(counter, struct mem_cgroup, member)
844
845 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
846 struct mem_cgroup *,
847 struct mem_cgroup_reclaim_cookie *);
848 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
849 int mem_cgroup_scan_tasks(struct mem_cgroup *,
850 int (*)(struct task_struct *, void *), void *);
851
mem_cgroup_id(struct mem_cgroup * memcg)852 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
853 {
854 if (mem_cgroup_disabled())
855 return 0;
856
857 return memcg->id.id;
858 }
859 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
860
mem_cgroup_from_seq(struct seq_file * m)861 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
862 {
863 return mem_cgroup_from_css(seq_css(m));
864 }
865
lruvec_memcg(struct lruvec * lruvec)866 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
867 {
868 struct mem_cgroup_per_node *mz;
869
870 if (mem_cgroup_disabled())
871 return NULL;
872
873 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
874 return mz->memcg;
875 }
876
877 /**
878 * parent_mem_cgroup - find the accounting parent of a memcg
879 * @memcg: memcg whose parent to find
880 *
881 * Returns the parent memcg, or NULL if this is the root or the memory
882 * controller is in legacy no-hierarchy mode.
883 */
parent_mem_cgroup(struct mem_cgroup * memcg)884 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
885 {
886 if (!memcg->memory.parent)
887 return NULL;
888 return mem_cgroup_from_counter(memcg->memory.parent, memory);
889 }
890
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)891 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
892 struct mem_cgroup *root)
893 {
894 if (root == memcg)
895 return true;
896 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
897 }
898
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)899 static inline bool mm_match_cgroup(struct mm_struct *mm,
900 struct mem_cgroup *memcg)
901 {
902 struct mem_cgroup *task_memcg;
903 bool match = false;
904
905 rcu_read_lock();
906 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
907 if (task_memcg)
908 match = mem_cgroup_is_descendant(task_memcg, memcg);
909 rcu_read_unlock();
910 return match;
911 }
912
913 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
914 ino_t page_cgroup_ino(struct page *page);
915
mem_cgroup_online(struct mem_cgroup * memcg)916 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
917 {
918 if (mem_cgroup_disabled())
919 return true;
920 return !!(memcg->css.flags & CSS_ONLINE);
921 }
922
923 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
924 int zid, int nr_pages);
925
926 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)927 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
928 enum lru_list lru, int zone_idx)
929 {
930 struct mem_cgroup_per_node *mz;
931
932 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
933 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
934 }
935
936 void mem_cgroup_handle_over_high(void);
937
938 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
939
940 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
941
942 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
943 struct task_struct *p);
944
945 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
946
mem_cgroup_enter_user_fault(void)947 static inline void mem_cgroup_enter_user_fault(void)
948 {
949 WARN_ON(current->in_user_fault);
950 current->in_user_fault = 1;
951 }
952
mem_cgroup_exit_user_fault(void)953 static inline void mem_cgroup_exit_user_fault(void)
954 {
955 WARN_ON(!current->in_user_fault);
956 current->in_user_fault = 0;
957 }
958
task_in_memcg_oom(struct task_struct * p)959 static inline bool task_in_memcg_oom(struct task_struct *p)
960 {
961 return p->memcg_in_oom;
962 }
963
964 bool mem_cgroup_oom_synchronize(bool wait);
965 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
966 struct mem_cgroup *oom_domain);
967 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
968
969 #ifdef CONFIG_MEMCG_SWAP
970 extern bool cgroup_memory_noswap;
971 #endif
972
973 void lock_page_memcg(struct page *page);
974 void unlock_page_memcg(struct page *page);
975
976 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
977
978 /* try to stablize page_memcg() for all the pages in a memcg */
mem_cgroup_trylock_pages(struct mem_cgroup * memcg)979 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
980 {
981 rcu_read_lock();
982
983 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
984 return true;
985
986 rcu_read_unlock();
987 return false;
988 }
989
mem_cgroup_unlock_pages(void)990 static inline void mem_cgroup_unlock_pages(void)
991 {
992 rcu_read_unlock();
993 }
994
995 /* idx can be of type enum memcg_stat_item or node_stat_item */
mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)996 static inline void mod_memcg_state(struct mem_cgroup *memcg,
997 int idx, int val)
998 {
999 unsigned long flags;
1000
1001 local_irq_save(flags);
1002 __mod_memcg_state(memcg, idx, val);
1003 local_irq_restore(flags);
1004 }
1005
memcg_page_state(struct mem_cgroup * memcg,int idx)1006 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1007 {
1008 long x = READ_ONCE(memcg->vmstats.state[idx]);
1009 #ifdef CONFIG_SMP
1010 if (x < 0)
1011 x = 0;
1012 #endif
1013 return x;
1014 }
1015
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1016 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1017 enum node_stat_item idx)
1018 {
1019 struct mem_cgroup_per_node *pn;
1020 long x;
1021
1022 if (mem_cgroup_disabled())
1023 return node_page_state(lruvec_pgdat(lruvec), idx);
1024
1025 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1026 x = READ_ONCE(pn->lruvec_stats.state[idx]);
1027 #ifdef CONFIG_SMP
1028 if (x < 0)
1029 x = 0;
1030 #endif
1031 return x;
1032 }
1033
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1034 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1035 enum node_stat_item idx)
1036 {
1037 struct mem_cgroup_per_node *pn;
1038 long x = 0;
1039 int cpu;
1040
1041 if (mem_cgroup_disabled())
1042 return node_page_state(lruvec_pgdat(lruvec), idx);
1043
1044 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1045 for_each_possible_cpu(cpu)
1046 x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1047 #ifdef CONFIG_SMP
1048 if (x < 0)
1049 x = 0;
1050 #endif
1051 return x;
1052 }
1053
1054 void mem_cgroup_flush_stats(void);
1055 void mem_cgroup_flush_stats_delayed(void);
1056
1057 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1058 int val);
1059 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1060
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1061 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1062 int val)
1063 {
1064 unsigned long flags;
1065
1066 local_irq_save(flags);
1067 __mod_lruvec_kmem_state(p, idx, val);
1068 local_irq_restore(flags);
1069 }
1070
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1071 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1072 enum node_stat_item idx, int val)
1073 {
1074 unsigned long flags;
1075
1076 local_irq_save(flags);
1077 __mod_memcg_lruvec_state(lruvec, idx, val);
1078 local_irq_restore(flags);
1079 }
1080
1081 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1082 unsigned long count);
1083
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1084 static inline void count_memcg_events(struct mem_cgroup *memcg,
1085 enum vm_event_item idx,
1086 unsigned long count)
1087 {
1088 unsigned long flags;
1089
1090 local_irq_save(flags);
1091 __count_memcg_events(memcg, idx, count);
1092 local_irq_restore(flags);
1093 }
1094
count_memcg_page_event(struct page * page,enum vm_event_item idx)1095 static inline void count_memcg_page_event(struct page *page,
1096 enum vm_event_item idx)
1097 {
1098 struct mem_cgroup *memcg = page_memcg(page);
1099
1100 if (memcg)
1101 count_memcg_events(memcg, idx, 1);
1102 }
1103
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1104 static inline void count_memcg_event_mm(struct mm_struct *mm,
1105 enum vm_event_item idx)
1106 {
1107 struct mem_cgroup *memcg;
1108
1109 if (mem_cgroup_disabled())
1110 return;
1111
1112 rcu_read_lock();
1113 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1114 if (likely(memcg))
1115 count_memcg_events(memcg, idx, 1);
1116 rcu_read_unlock();
1117 }
1118
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1119 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1120 enum memcg_memory_event event)
1121 {
1122 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1123 event == MEMCG_SWAP_FAIL;
1124
1125 atomic_long_inc(&memcg->memory_events_local[event]);
1126 if (!swap_event)
1127 cgroup_file_notify(&memcg->events_local_file);
1128
1129 do {
1130 atomic_long_inc(&memcg->memory_events[event]);
1131 if (swap_event)
1132 cgroup_file_notify(&memcg->swap_events_file);
1133 else
1134 cgroup_file_notify(&memcg->events_file);
1135
1136 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1137 break;
1138 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1139 break;
1140 } while ((memcg = parent_mem_cgroup(memcg)) &&
1141 !mem_cgroup_is_root(memcg));
1142 }
1143
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1144 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1145 enum memcg_memory_event event)
1146 {
1147 struct mem_cgroup *memcg;
1148
1149 if (mem_cgroup_disabled())
1150 return;
1151
1152 rcu_read_lock();
1153 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1154 if (likely(memcg))
1155 memcg_memory_event(memcg, event);
1156 rcu_read_unlock();
1157 }
1158
1159 void split_page_memcg(struct page *head, unsigned int nr);
1160
1161 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1162 gfp_t gfp_mask,
1163 unsigned long *total_scanned);
1164
1165 #else /* CONFIG_MEMCG */
1166
1167 #define MEM_CGROUP_ID_SHIFT 0
1168 #define MEM_CGROUP_ID_MAX 0
1169
page_memcg(struct page * page)1170 static inline struct mem_cgroup *page_memcg(struct page *page)
1171 {
1172 return NULL;
1173 }
1174
page_memcg_rcu(struct page * page)1175 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1176 {
1177 WARN_ON_ONCE(!rcu_read_lock_held());
1178 return NULL;
1179 }
1180
page_memcg_check(struct page * page)1181 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1182 {
1183 return NULL;
1184 }
1185
PageMemcgKmem(struct page * page)1186 static inline bool PageMemcgKmem(struct page *page)
1187 {
1188 return false;
1189 }
1190
mem_cgroup_is_root(struct mem_cgroup * memcg)1191 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1192 {
1193 return true;
1194 }
1195
mem_cgroup_disabled(void)1196 static inline bool mem_cgroup_disabled(void)
1197 {
1198 return true;
1199 }
1200
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1201 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1202 enum memcg_memory_event event)
1203 {
1204 }
1205
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1206 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1207 enum memcg_memory_event event)
1208 {
1209 }
1210
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)1211 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1212 struct mem_cgroup *memcg,
1213 unsigned long *min,
1214 unsigned long *low)
1215 {
1216 *min = *low = 0;
1217 }
1218
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)1219 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1220 struct mem_cgroup *memcg)
1221 {
1222 }
1223
mem_cgroup_below_low(struct mem_cgroup * memcg)1224 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1225 {
1226 return false;
1227 }
1228
mem_cgroup_below_min(struct mem_cgroup * memcg)1229 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1230 {
1231 return false;
1232 }
1233
mem_cgroup_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)1234 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
1235 gfp_t gfp_mask)
1236 {
1237 return 0;
1238 }
1239
mem_cgroup_swapin_charge_page(struct page * page,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)1240 static inline int mem_cgroup_swapin_charge_page(struct page *page,
1241 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1242 {
1243 return 0;
1244 }
1245
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)1246 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1247 {
1248 }
1249
mem_cgroup_uncharge(struct page * page)1250 static inline void mem_cgroup_uncharge(struct page *page)
1251 {
1252 }
1253
mem_cgroup_uncharge_list(struct list_head * page_list)1254 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1255 {
1256 }
1257
mem_cgroup_migrate(struct page * old,struct page * new)1258 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
1259 {
1260 }
1261
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)1262 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1263 struct pglist_data *pgdat)
1264 {
1265 return &pgdat->__lruvec;
1266 }
1267
mem_cgroup_page_lruvec(struct page * page)1268 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page)
1269 {
1270 pg_data_t *pgdat = page_pgdat(page);
1271
1272 return &pgdat->__lruvec;
1273 }
1274
lruvec_memcg_debug(struct lruvec * lruvec,struct page * page)1275 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1276 {
1277 }
1278
parent_mem_cgroup(struct mem_cgroup * memcg)1279 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1280 {
1281 return NULL;
1282 }
1283
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)1284 static inline bool mm_match_cgroup(struct mm_struct *mm,
1285 struct mem_cgroup *memcg)
1286 {
1287 return true;
1288 }
1289
get_mem_cgroup_from_mm(struct mm_struct * mm)1290 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1291 {
1292 return NULL;
1293 }
1294
1295 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)1296 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1297 {
1298 return NULL;
1299 }
1300
mem_cgroup_tryget(struct mem_cgroup * memcg)1301 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1302 {
1303 return true;
1304 }
1305
mem_cgroup_put(struct mem_cgroup * memcg)1306 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1307 {
1308 }
1309
lock_page_lruvec(struct page * page)1310 static inline struct lruvec *lock_page_lruvec(struct page *page)
1311 {
1312 struct pglist_data *pgdat = page_pgdat(page);
1313
1314 spin_lock(&pgdat->__lruvec.lru_lock);
1315 return &pgdat->__lruvec;
1316 }
1317
lock_page_lruvec_irq(struct page * page)1318 static inline struct lruvec *lock_page_lruvec_irq(struct page *page)
1319 {
1320 struct pglist_data *pgdat = page_pgdat(page);
1321
1322 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1323 return &pgdat->__lruvec;
1324 }
1325
lock_page_lruvec_irqsave(struct page * page,unsigned long * flagsp)1326 static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page,
1327 unsigned long *flagsp)
1328 {
1329 struct pglist_data *pgdat = page_pgdat(page);
1330
1331 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1332 return &pgdat->__lruvec;
1333 }
1334
1335 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1336 mem_cgroup_iter(struct mem_cgroup *root,
1337 struct mem_cgroup *prev,
1338 struct mem_cgroup_reclaim_cookie *reclaim)
1339 {
1340 return NULL;
1341 }
1342
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1343 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1344 struct mem_cgroup *prev)
1345 {
1346 }
1347
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1348 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1349 int (*fn)(struct task_struct *, void *), void *arg)
1350 {
1351 return 0;
1352 }
1353
mem_cgroup_id(struct mem_cgroup * memcg)1354 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1355 {
1356 return 0;
1357 }
1358
mem_cgroup_from_id(unsigned short id)1359 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1360 {
1361 WARN_ON_ONCE(id);
1362 /* XXX: This should always return root_mem_cgroup */
1363 return NULL;
1364 }
1365
mem_cgroup_from_seq(struct seq_file * m)1366 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1367 {
1368 return NULL;
1369 }
1370
lruvec_memcg(struct lruvec * lruvec)1371 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1372 {
1373 return NULL;
1374 }
1375
mem_cgroup_online(struct mem_cgroup * memcg)1376 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1377 {
1378 return true;
1379 }
1380
1381 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1382 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1383 enum lru_list lru, int zone_idx)
1384 {
1385 return 0;
1386 }
1387
mem_cgroup_get_max(struct mem_cgroup * memcg)1388 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1389 {
1390 return 0;
1391 }
1392
mem_cgroup_size(struct mem_cgroup * memcg)1393 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1394 {
1395 return 0;
1396 }
1397
1398 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1399 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1400 {
1401 }
1402
1403 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1404 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1405 {
1406 }
1407
lock_page_memcg(struct page * page)1408 static inline void lock_page_memcg(struct page *page)
1409 {
1410 }
1411
unlock_page_memcg(struct page * page)1412 static inline void unlock_page_memcg(struct page *page)
1413 {
1414 }
1415
mem_cgroup_trylock_pages(struct mem_cgroup * memcg)1416 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1417 {
1418 /* to match page_memcg_rcu() */
1419 rcu_read_lock();
1420 return true;
1421 }
1422
mem_cgroup_unlock_pages(void)1423 static inline void mem_cgroup_unlock_pages(void)
1424 {
1425 rcu_read_unlock();
1426 }
1427
mem_cgroup_handle_over_high(void)1428 static inline void mem_cgroup_handle_over_high(void)
1429 {
1430 }
1431
mem_cgroup_enter_user_fault(void)1432 static inline void mem_cgroup_enter_user_fault(void)
1433 {
1434 }
1435
mem_cgroup_exit_user_fault(void)1436 static inline void mem_cgroup_exit_user_fault(void)
1437 {
1438 }
1439
task_in_memcg_oom(struct task_struct * p)1440 static inline bool task_in_memcg_oom(struct task_struct *p)
1441 {
1442 return false;
1443 }
1444
mem_cgroup_oom_synchronize(bool wait)1445 static inline bool mem_cgroup_oom_synchronize(bool wait)
1446 {
1447 return false;
1448 }
1449
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1450 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1451 struct task_struct *victim, struct mem_cgroup *oom_domain)
1452 {
1453 return NULL;
1454 }
1455
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1456 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1457 {
1458 }
1459
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1460 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1461 int idx,
1462 int nr)
1463 {
1464 }
1465
mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1466 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1467 int idx,
1468 int nr)
1469 {
1470 }
1471
memcg_page_state(struct mem_cgroup * memcg,int idx)1472 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1473 {
1474 return 0;
1475 }
1476
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1477 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1478 enum node_stat_item idx)
1479 {
1480 return node_page_state(lruvec_pgdat(lruvec), idx);
1481 }
1482
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1483 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1484 enum node_stat_item idx)
1485 {
1486 return node_page_state(lruvec_pgdat(lruvec), idx);
1487 }
1488
mem_cgroup_flush_stats(void)1489 static inline void mem_cgroup_flush_stats(void)
1490 {
1491 }
1492
mem_cgroup_flush_stats_delayed(void)1493 static inline void mem_cgroup_flush_stats_delayed(void)
1494 {
1495 }
1496
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1497 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1498 enum node_stat_item idx, int val)
1499 {
1500 }
1501
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1502 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1503 int val)
1504 {
1505 struct page *page = virt_to_head_page(p);
1506
1507 __mod_node_page_state(page_pgdat(page), idx, val);
1508 }
1509
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1510 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1511 int val)
1512 {
1513 struct page *page = virt_to_head_page(p);
1514
1515 mod_node_page_state(page_pgdat(page), idx, val);
1516 }
1517
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1518 static inline void count_memcg_events(struct mem_cgroup *memcg,
1519 enum vm_event_item idx,
1520 unsigned long count)
1521 {
1522 }
1523
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1524 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1525 enum vm_event_item idx,
1526 unsigned long count)
1527 {
1528 }
1529
count_memcg_page_event(struct page * page,int idx)1530 static inline void count_memcg_page_event(struct page *page,
1531 int idx)
1532 {
1533 }
1534
1535 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1536 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1537 {
1538 }
1539
split_page_memcg(struct page * head,unsigned int nr)1540 static inline void split_page_memcg(struct page *head, unsigned int nr)
1541 {
1542 }
1543
1544 static inline
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1545 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1546 gfp_t gfp_mask,
1547 unsigned long *total_scanned)
1548 {
1549 return 0;
1550 }
1551 #endif /* CONFIG_MEMCG */
1552
__inc_lruvec_kmem_state(void * p,enum node_stat_item idx)1553 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1554 {
1555 __mod_lruvec_kmem_state(p, idx, 1);
1556 }
1557
__dec_lruvec_kmem_state(void * p,enum node_stat_item idx)1558 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1559 {
1560 __mod_lruvec_kmem_state(p, idx, -1);
1561 }
1562
parent_lruvec(struct lruvec * lruvec)1563 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1564 {
1565 struct mem_cgroup *memcg;
1566
1567 memcg = lruvec_memcg(lruvec);
1568 if (!memcg)
1569 return NULL;
1570 memcg = parent_mem_cgroup(memcg);
1571 if (!memcg)
1572 return NULL;
1573 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1574 }
1575
unlock_page_lruvec(struct lruvec * lruvec)1576 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1577 {
1578 spin_unlock(&lruvec->lru_lock);
1579 }
1580
unlock_page_lruvec_irq(struct lruvec * lruvec)1581 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1582 {
1583 spin_unlock_irq(&lruvec->lru_lock);
1584 }
1585
unlock_page_lruvec_irqrestore(struct lruvec * lruvec,unsigned long flags)1586 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1587 unsigned long flags)
1588 {
1589 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1590 }
1591
1592 /* Test requires a stable page->memcg binding, see page_memcg() */
page_matches_lruvec(struct page * page,struct lruvec * lruvec)1593 static inline bool page_matches_lruvec(struct page *page, struct lruvec *lruvec)
1594 {
1595 return lruvec_pgdat(lruvec) == page_pgdat(page) &&
1596 lruvec_memcg(lruvec) == page_memcg(page);
1597 }
1598
1599 /* Don't lock again iff page's lruvec locked */
relock_page_lruvec_irq(struct page * page,struct lruvec * locked_lruvec)1600 static inline struct lruvec *relock_page_lruvec_irq(struct page *page,
1601 struct lruvec *locked_lruvec)
1602 {
1603 if (locked_lruvec) {
1604 if (page_matches_lruvec(page, locked_lruvec))
1605 return locked_lruvec;
1606
1607 unlock_page_lruvec_irq(locked_lruvec);
1608 }
1609
1610 return lock_page_lruvec_irq(page);
1611 }
1612
1613 /* Don't lock again iff page's lruvec locked */
relock_page_lruvec_irqsave(struct page * page,struct lruvec * locked_lruvec,unsigned long * flags)1614 static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page,
1615 struct lruvec *locked_lruvec, unsigned long *flags)
1616 {
1617 if (locked_lruvec) {
1618 if (page_matches_lruvec(page, locked_lruvec))
1619 return locked_lruvec;
1620
1621 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1622 }
1623
1624 return lock_page_lruvec_irqsave(page, flags);
1625 }
1626
1627 #ifdef CONFIG_CGROUP_WRITEBACK
1628
1629 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1630 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1631 unsigned long *pheadroom, unsigned long *pdirty,
1632 unsigned long *pwriteback);
1633
1634 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1635 struct bdi_writeback *wb);
1636
mem_cgroup_track_foreign_dirty(struct page * page,struct bdi_writeback * wb)1637 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1638 struct bdi_writeback *wb)
1639 {
1640 if (mem_cgroup_disabled())
1641 return;
1642
1643 if (unlikely(&page_memcg(page)->css != wb->memcg_css))
1644 mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1645 }
1646
1647 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1648
1649 #else /* CONFIG_CGROUP_WRITEBACK */
1650
mem_cgroup_wb_domain(struct bdi_writeback * wb)1651 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1652 {
1653 return NULL;
1654 }
1655
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1656 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1657 unsigned long *pfilepages,
1658 unsigned long *pheadroom,
1659 unsigned long *pdirty,
1660 unsigned long *pwriteback)
1661 {
1662 }
1663
mem_cgroup_track_foreign_dirty(struct page * page,struct bdi_writeback * wb)1664 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1665 struct bdi_writeback *wb)
1666 {
1667 }
1668
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1669 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1670 {
1671 }
1672
1673 #endif /* CONFIG_CGROUP_WRITEBACK */
1674
1675 struct sock;
1676 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1677 gfp_t gfp_mask);
1678 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1679 #ifdef CONFIG_MEMCG
1680 extern struct static_key_false memcg_sockets_enabled_key;
1681 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1682 void mem_cgroup_sk_alloc(struct sock *sk);
1683 void mem_cgroup_sk_free(struct sock *sk);
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1684 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1685 {
1686 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1687 return !!memcg->tcpmem_pressure;
1688 do {
1689 if (time_before(jiffies, memcg->socket_pressure))
1690 return true;
1691 } while ((memcg = parent_mem_cgroup(memcg)));
1692 return false;
1693 }
1694
1695 int alloc_shrinker_info(struct mem_cgroup *memcg);
1696 void free_shrinker_info(struct mem_cgroup *memcg);
1697 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1698 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1699 #else
1700 #define mem_cgroup_sockets_enabled 0
mem_cgroup_sk_alloc(struct sock * sk)1701 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
mem_cgroup_sk_free(struct sock * sk)1702 static inline void mem_cgroup_sk_free(struct sock *sk) { };
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1703 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1704 {
1705 return false;
1706 }
1707
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1708 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1709 int nid, int shrinker_id)
1710 {
1711 }
1712 #endif
1713
1714 #ifdef CONFIG_MEMCG_KMEM
1715 bool mem_cgroup_kmem_disabled(void);
1716 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1717 void __memcg_kmem_uncharge_page(struct page *page, int order);
1718
1719 struct obj_cgroup *get_obj_cgroup_from_current(void);
1720
1721 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1722 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1723
1724 extern struct static_key_false memcg_kmem_enabled_key;
1725
1726 extern int memcg_nr_cache_ids;
1727 void memcg_get_cache_ids(void);
1728 void memcg_put_cache_ids(void);
1729
1730 /*
1731 * Helper macro to loop through all memcg-specific caches. Callers must still
1732 * check if the cache is valid (it is either valid or NULL).
1733 * the slab_mutex must be held when looping through those caches
1734 */
1735 #define for_each_memcg_cache_index(_idx) \
1736 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1737
memcg_kmem_enabled(void)1738 static inline bool memcg_kmem_enabled(void)
1739 {
1740 return static_branch_likely(&memcg_kmem_enabled_key);
1741 }
1742
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1743 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1744 int order)
1745 {
1746 if (memcg_kmem_enabled())
1747 return __memcg_kmem_charge_page(page, gfp, order);
1748 return 0;
1749 }
1750
memcg_kmem_uncharge_page(struct page * page,int order)1751 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1752 {
1753 if (memcg_kmem_enabled())
1754 __memcg_kmem_uncharge_page(page, order);
1755 }
1756
1757 /*
1758 * A helper for accessing memcg's kmem_id, used for getting
1759 * corresponding LRU lists.
1760 */
memcg_cache_id(struct mem_cgroup * memcg)1761 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1762 {
1763 return memcg ? memcg->kmemcg_id : -1;
1764 }
1765
1766 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1767
1768 #else
mem_cgroup_kmem_disabled(void)1769 static inline bool mem_cgroup_kmem_disabled(void)
1770 {
1771 return true;
1772 }
1773
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1774 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1775 int order)
1776 {
1777 return 0;
1778 }
1779
memcg_kmem_uncharge_page(struct page * page,int order)1780 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1781 {
1782 }
1783
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1784 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1785 int order)
1786 {
1787 return 0;
1788 }
1789
__memcg_kmem_uncharge_page(struct page * page,int order)1790 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1791 {
1792 }
1793
1794 #define for_each_memcg_cache_index(_idx) \
1795 for (; NULL; )
1796
memcg_kmem_enabled(void)1797 static inline bool memcg_kmem_enabled(void)
1798 {
1799 return false;
1800 }
1801
memcg_cache_id(struct mem_cgroup * memcg)1802 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1803 {
1804 return -1;
1805 }
1806
memcg_get_cache_ids(void)1807 static inline void memcg_get_cache_ids(void)
1808 {
1809 }
1810
memcg_put_cache_ids(void)1811 static inline void memcg_put_cache_ids(void)
1812 {
1813 }
1814
mem_cgroup_from_obj(void * p)1815 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1816 {
1817 return NULL;
1818 }
1819
1820 #endif /* CONFIG_MEMCG_KMEM */
1821
1822 #endif /* _LINUX_MEMCONTROL_H */
1823