• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 #include <linux/android_vendor.h>
25 
26 struct mem_cgroup;
27 struct obj_cgroup;
28 struct page;
29 struct mm_struct;
30 struct kmem_cache;
31 
32 /* Cgroup-specific page state, on top of universal node page state */
33 enum memcg_stat_item {
34 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
35 	MEMCG_SOCK,
36 	MEMCG_PERCPU_B,
37 	MEMCG_NR_STAT,
38 };
39 
40 enum memcg_memory_event {
41 	MEMCG_LOW,
42 	MEMCG_HIGH,
43 	MEMCG_MAX,
44 	MEMCG_OOM,
45 	MEMCG_OOM_KILL,
46 	MEMCG_SWAP_HIGH,
47 	MEMCG_SWAP_MAX,
48 	MEMCG_SWAP_FAIL,
49 	MEMCG_NR_MEMORY_EVENTS,
50 };
51 
52 struct mem_cgroup_reclaim_cookie {
53 	pg_data_t *pgdat;
54 	unsigned int generation;
55 };
56 
57 #ifdef CONFIG_MEMCG
58 
59 #define MEM_CGROUP_ID_SHIFT	16
60 #define MEM_CGROUP_ID_MAX	USHRT_MAX
61 
62 struct mem_cgroup_id {
63 	int id;
64 	refcount_t ref;
65 };
66 
67 /*
68  * Per memcg event counter is incremented at every pagein/pageout. With THP,
69  * it will be incremented by the number of pages. This counter is used
70  * to trigger some periodic events. This is straightforward and better
71  * than using jiffies etc. to handle periodic memcg event.
72  */
73 enum mem_cgroup_events_target {
74 	MEM_CGROUP_TARGET_THRESH,
75 	MEM_CGROUP_TARGET_SOFTLIMIT,
76 	MEM_CGROUP_NTARGETS,
77 };
78 
79 struct memcg_vmstats_percpu {
80 	/* Local (CPU and cgroup) page state & events */
81 	long			state[MEMCG_NR_STAT];
82 	unsigned long		events[NR_VM_EVENT_ITEMS];
83 
84 	/* Delta calculation for lockless upward propagation */
85 	long			state_prev[MEMCG_NR_STAT];
86 	unsigned long		events_prev[NR_VM_EVENT_ITEMS];
87 
88 	/* Cgroup1: threshold notifications & softlimit tree updates */
89 	unsigned long		nr_page_events;
90 	unsigned long		targets[MEM_CGROUP_NTARGETS];
91 };
92 
93 struct memcg_vmstats {
94 	/* Aggregated (CPU and subtree) page state & events */
95 	long			state[MEMCG_NR_STAT];
96 	unsigned long		events[NR_VM_EVENT_ITEMS];
97 
98 	/* Pending child counts during tree propagation */
99 	long			state_pending[MEMCG_NR_STAT];
100 	unsigned long		events_pending[NR_VM_EVENT_ITEMS];
101 };
102 
103 struct mem_cgroup_reclaim_iter {
104 	struct mem_cgroup *position;
105 	/* scan generation, increased every round-trip */
106 	unsigned int generation;
107 };
108 
109 /*
110  * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
111  * shrinkers, which have elements charged to this memcg.
112  */
113 struct shrinker_info {
114 	struct rcu_head rcu;
115 	atomic_long_t *nr_deferred;
116 	unsigned long *map;
117 };
118 
119 struct lruvec_stats_percpu {
120 	/* Local (CPU and cgroup) state */
121 	long state[NR_VM_NODE_STAT_ITEMS];
122 
123 	/* Delta calculation for lockless upward propagation */
124 	long state_prev[NR_VM_NODE_STAT_ITEMS];
125 };
126 
127 struct lruvec_stats {
128 	/* Aggregated (CPU and subtree) state */
129 	long state[NR_VM_NODE_STAT_ITEMS];
130 
131 	/* Pending child counts during tree propagation */
132 	long state_pending[NR_VM_NODE_STAT_ITEMS];
133 };
134 
135 /*
136  * per-node information in memory controller.
137  */
138 struct mem_cgroup_per_node {
139 	struct lruvec		lruvec;
140 
141 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
142 	struct lruvec_stats			lruvec_stats;
143 
144 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
145 
146 	struct mem_cgroup_reclaim_iter	iter;
147 
148 	struct shrinker_info __rcu	*shrinker_info;
149 
150 	struct rb_node		tree_node;	/* RB tree node */
151 	unsigned long		usage_in_excess;/* Set to the value by which */
152 						/* the soft limit is exceeded*/
153 	bool			on_tree;
154 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
155 						/* use container_of	   */
156 };
157 
158 struct mem_cgroup_threshold {
159 	struct eventfd_ctx *eventfd;
160 	unsigned long threshold;
161 };
162 
163 /* For threshold */
164 struct mem_cgroup_threshold_ary {
165 	/* An array index points to threshold just below or equal to usage. */
166 	int current_threshold;
167 	/* Size of entries[] */
168 	unsigned int size;
169 	/* Array of thresholds */
170 	struct mem_cgroup_threshold entries[];
171 };
172 
173 struct mem_cgroup_thresholds {
174 	/* Primary thresholds array */
175 	struct mem_cgroup_threshold_ary *primary;
176 	/*
177 	 * Spare threshold array.
178 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
179 	 * It must be able to store at least primary->size - 1 entries.
180 	 */
181 	struct mem_cgroup_threshold_ary *spare;
182 };
183 
184 enum memcg_kmem_state {
185 	KMEM_NONE,
186 	KMEM_ALLOCATED,
187 	KMEM_ONLINE,
188 };
189 
190 #if defined(CONFIG_SMP)
191 struct memcg_padding {
192 	char x[0];
193 } ____cacheline_internodealigned_in_smp;
194 #define MEMCG_PADDING(name)      struct memcg_padding name
195 #else
196 #define MEMCG_PADDING(name)
197 #endif
198 
199 /*
200  * Remember four most recent foreign writebacks with dirty pages in this
201  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
202  * one in a given round, we're likely to catch it later if it keeps
203  * foreign-dirtying, so a fairly low count should be enough.
204  *
205  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
206  */
207 #define MEMCG_CGWB_FRN_CNT	4
208 
209 struct memcg_cgwb_frn {
210 	u64 bdi_id;			/* bdi->id of the foreign inode */
211 	int memcg_id;			/* memcg->css.id of foreign inode */
212 	u64 at;				/* jiffies_64 at the time of dirtying */
213 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
214 };
215 
216 /*
217  * Bucket for arbitrarily byte-sized objects charged to a memory
218  * cgroup. The bucket can be reparented in one piece when the cgroup
219  * is destroyed, without having to round up the individual references
220  * of all live memory objects in the wild.
221  */
222 struct obj_cgroup {
223 	struct percpu_ref refcnt;
224 	struct mem_cgroup *memcg;
225 	atomic_t nr_charged_bytes;
226 	union {
227 		struct list_head list; /* protected by objcg_lock */
228 		struct rcu_head rcu;
229 	};
230 };
231 
232 /*
233  * The memory controller data structure. The memory controller controls both
234  * page cache and RSS per cgroup. We would eventually like to provide
235  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
236  * to help the administrator determine what knobs to tune.
237  */
238 struct mem_cgroup {
239 	struct cgroup_subsys_state css;
240 
241 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
242 	struct mem_cgroup_id id;
243 
244 	/* Accounted resources */
245 	struct page_counter memory;		/* Both v1 & v2 */
246 
247 	union {
248 		struct page_counter swap;	/* v2 only */
249 		struct page_counter memsw;	/* v1 only */
250 	};
251 
252 	/* Legacy consumer-oriented counters */
253 	struct page_counter kmem;		/* v1 only */
254 	struct page_counter tcpmem;		/* v1 only */
255 
256 	/* Range enforcement for interrupt charges */
257 	struct work_struct high_work;
258 
259 	unsigned long soft_limit;
260 
261 	/* vmpressure notifications */
262 	struct vmpressure vmpressure;
263 
264 	/*
265 	 * Should the OOM killer kill all belonging tasks, had it kill one?
266 	 */
267 	bool oom_group;
268 
269 	/* protected by memcg_oom_lock */
270 	bool		oom_lock;
271 	int		under_oom;
272 
273 	int	swappiness;
274 	/* OOM-Killer disable */
275 	int		oom_kill_disable;
276 
277 	/* memory.events and memory.events.local */
278 	struct cgroup_file events_file;
279 	struct cgroup_file events_local_file;
280 
281 	/* handle for "memory.swap.events" */
282 	struct cgroup_file swap_events_file;
283 
284 	/* protect arrays of thresholds */
285 	struct mutex thresholds_lock;
286 
287 	/* thresholds for memory usage. RCU-protected */
288 	struct mem_cgroup_thresholds thresholds;
289 
290 	/* thresholds for mem+swap usage. RCU-protected */
291 	struct mem_cgroup_thresholds memsw_thresholds;
292 
293 	/* For oom notifier event fd */
294 	struct list_head oom_notify;
295 
296 	/*
297 	 * Should we move charges of a task when a task is moved into this
298 	 * mem_cgroup ? And what type of charges should we move ?
299 	 */
300 	unsigned long move_charge_at_immigrate;
301 	/* taken only while moving_account > 0 */
302 	spinlock_t		move_lock;
303 	unsigned long		move_lock_flags;
304 
305 	MEMCG_PADDING(_pad1_);
306 
307 	/* memory.stat */
308 	struct memcg_vmstats	vmstats;
309 
310 	/* memory.events */
311 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
312 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
313 
314 	/*
315 	 * Hint of reclaim pressure for socket memroy management. Note
316 	 * that this indicator should NOT be used in legacy cgroup mode
317 	 * where socket memory is accounted/charged separately.
318 	 */
319 	unsigned long		socket_pressure;
320 
321 	/* Legacy tcp memory accounting */
322 	bool			tcpmem_active;
323 	int			tcpmem_pressure;
324 
325 #ifdef CONFIG_MEMCG_KMEM
326 	int kmemcg_id;
327 	enum memcg_kmem_state kmem_state;
328 	struct obj_cgroup __rcu *objcg;
329 	/* list of inherited objcgs, protected by objcg_lock */
330 	struct list_head objcg_list;
331 #endif
332 
333 	MEMCG_PADDING(_pad2_);
334 
335 	/*
336 	 * set > 0 if pages under this cgroup are moving to other cgroup.
337 	 */
338 	atomic_t		moving_account;
339 	struct task_struct	*move_lock_task;
340 
341 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
342 
343 #ifdef CONFIG_CGROUP_WRITEBACK
344 	struct list_head cgwb_list;
345 	struct wb_domain cgwb_domain;
346 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
347 #endif
348 
349 	/* List of events which userspace want to receive */
350 	struct list_head event_list;
351 	spinlock_t event_list_lock;
352 
353 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
354 	struct deferred_split deferred_split_queue;
355 #endif
356 
357 #ifdef CONFIG_LRU_GEN
358 	/* per-memcg mm_struct list */
359 	struct lru_gen_mm_list mm_list;
360 #endif
361 
362 	/* for dynamic low */
363 	ANDROID_VENDOR_DATA(1);
364 	ANDROID_OEM_DATA_ARRAY(1, 2);
365 
366 	struct mem_cgroup_per_node *nodeinfo[];
367 };
368 
369 /*
370  * size of first charge trial. "32" comes from vmscan.c's magic value.
371  * TODO: maybe necessary to use big numbers in big irons.
372  */
373 #define MEMCG_CHARGE_BATCH 32U
374 
375 extern struct mem_cgroup *root_mem_cgroup;
376 
377 enum page_memcg_data_flags {
378 	/* page->memcg_data is a pointer to an objcgs vector */
379 	MEMCG_DATA_OBJCGS = (1UL << 0),
380 	/* page has been accounted as a non-slab kernel page */
381 	MEMCG_DATA_KMEM = (1UL << 1),
382 	/* the next bit after the last actual flag */
383 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
384 };
385 
386 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
387 
388 static inline bool PageMemcgKmem(struct page *page);
389 
390 /*
391  * After the initialization objcg->memcg is always pointing at
392  * a valid memcg, but can be atomically swapped to the parent memcg.
393  *
394  * The caller must ensure that the returned memcg won't be released:
395  * e.g. acquire the rcu_read_lock or css_set_lock.
396  */
obj_cgroup_memcg(struct obj_cgroup * objcg)397 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
398 {
399 	return READ_ONCE(objcg->memcg);
400 }
401 
402 /*
403  * __page_memcg - get the memory cgroup associated with a non-kmem page
404  * @page: a pointer to the page struct
405  *
406  * Returns a pointer to the memory cgroup associated with the page,
407  * or NULL. This function assumes that the page is known to have a
408  * proper memory cgroup pointer. It's not safe to call this function
409  * against some type of pages, e.g. slab pages or ex-slab pages or
410  * kmem pages.
411  */
__page_memcg(struct page * page)412 static inline struct mem_cgroup *__page_memcg(struct page *page)
413 {
414 	unsigned long memcg_data = page->memcg_data;
415 
416 	VM_BUG_ON_PAGE(PageSlab(page), page);
417 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
418 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
419 
420 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
421 }
422 
423 /*
424  * __page_objcg - get the object cgroup associated with a kmem page
425  * @page: a pointer to the page struct
426  *
427  * Returns a pointer to the object cgroup associated with the page,
428  * or NULL. This function assumes that the page is known to have a
429  * proper object cgroup pointer. It's not safe to call this function
430  * against some type of pages, e.g. slab pages or ex-slab pages or
431  * LRU pages.
432  */
__page_objcg(struct page * page)433 static inline struct obj_cgroup *__page_objcg(struct page *page)
434 {
435 	unsigned long memcg_data = page->memcg_data;
436 
437 	VM_BUG_ON_PAGE(PageSlab(page), page);
438 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
439 	VM_BUG_ON_PAGE(!(memcg_data & MEMCG_DATA_KMEM), page);
440 
441 	return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
442 }
443 
444 /*
445  * page_memcg - get the memory cgroup associated with a page
446  * @page: a pointer to the page struct
447  *
448  * Returns a pointer to the memory cgroup associated with the page,
449  * or NULL. This function assumes that the page is known to have a
450  * proper memory cgroup pointer. It's not safe to call this function
451  * against some type of pages, e.g. slab pages or ex-slab pages.
452  *
453  * For a non-kmem page any of the following ensures page and memcg binding
454  * stability:
455  *
456  * - the page lock
457  * - LRU isolation
458  * - lock_page_memcg()
459  * - exclusive reference
460  * - mem_cgroup_trylock_pages()
461  *
462  * For a kmem page a caller should hold an rcu read lock to protect memcg
463  * associated with a kmem page from being released.
464  */
page_memcg(struct page * page)465 static inline struct mem_cgroup *page_memcg(struct page *page)
466 {
467 	if (PageMemcgKmem(page))
468 		return obj_cgroup_memcg(__page_objcg(page));
469 	else
470 		return __page_memcg(page);
471 }
472 
473 /*
474  * page_memcg_rcu - locklessly get the memory cgroup associated with a page
475  * @page: a pointer to the page struct
476  *
477  * Returns a pointer to the memory cgroup associated with the page,
478  * or NULL. This function assumes that the page is known to have a
479  * proper memory cgroup pointer. It's not safe to call this function
480  * against some type of pages, e.g. slab pages or ex-slab pages.
481  */
page_memcg_rcu(struct page * page)482 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
483 {
484 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
485 
486 	VM_BUG_ON_PAGE(PageSlab(page), page);
487 	WARN_ON_ONCE(!rcu_read_lock_held());
488 
489 	if (memcg_data & MEMCG_DATA_KMEM) {
490 		struct obj_cgroup *objcg;
491 
492 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
493 		return obj_cgroup_memcg(objcg);
494 	}
495 
496 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
497 }
498 
499 /*
500  * page_memcg_check - get the memory cgroup associated with a page
501  * @page: a pointer to the page struct
502  *
503  * Returns a pointer to the memory cgroup associated with the page,
504  * or NULL. This function unlike page_memcg() can take any page
505  * as an argument. It has to be used in cases when it's not known if a page
506  * has an associated memory cgroup pointer or an object cgroups vector or
507  * an object cgroup.
508  *
509  * For a non-kmem page any of the following ensures page and memcg binding
510  * stability:
511  *
512  * - the page lock
513  * - LRU isolation
514  * - lock_page_memcg()
515  * - exclusive reference
516  * - mem_cgroup_trylock_pages()
517  *
518  * For a kmem page a caller should hold an rcu read lock to protect memcg
519  * associated with a kmem page from being released.
520  */
page_memcg_check(struct page * page)521 static inline struct mem_cgroup *page_memcg_check(struct page *page)
522 {
523 	/*
524 	 * Because page->memcg_data might be changed asynchronously
525 	 * for slab pages, READ_ONCE() should be used here.
526 	 */
527 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
528 
529 	if (memcg_data & MEMCG_DATA_OBJCGS)
530 		return NULL;
531 
532 	if (memcg_data & MEMCG_DATA_KMEM) {
533 		struct obj_cgroup *objcg;
534 
535 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
536 		return obj_cgroup_memcg(objcg);
537 	}
538 
539 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
540 }
541 
542 #ifdef CONFIG_MEMCG_KMEM
543 /*
544  * PageMemcgKmem - check if the page has MemcgKmem flag set
545  * @page: a pointer to the page struct
546  *
547  * Checks if the page has MemcgKmem flag set. The caller must ensure that
548  * the page has an associated memory cgroup. It's not safe to call this function
549  * against some types of pages, e.g. slab pages.
550  */
PageMemcgKmem(struct page * page)551 static inline bool PageMemcgKmem(struct page *page)
552 {
553 	VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page);
554 	return page->memcg_data & MEMCG_DATA_KMEM;
555 }
556 
557 /*
558  * page_objcgs - get the object cgroups vector associated with a page
559  * @page: a pointer to the page struct
560  *
561  * Returns a pointer to the object cgroups vector associated with the page,
562  * or NULL. This function assumes that the page is known to have an
563  * associated object cgroups vector. It's not safe to call this function
564  * against pages, which might have an associated memory cgroup: e.g.
565  * kernel stack pages.
566  */
page_objcgs(struct page * page)567 static inline struct obj_cgroup **page_objcgs(struct page *page)
568 {
569 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
570 
571 	VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
572 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
573 
574 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
575 }
576 
577 /*
578  * page_objcgs_check - get the object cgroups vector associated with a page
579  * @page: a pointer to the page struct
580  *
581  * Returns a pointer to the object cgroups vector associated with the page,
582  * or NULL. This function is safe to use if the page can be directly associated
583  * with a memory cgroup.
584  */
page_objcgs_check(struct page * page)585 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
586 {
587 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
588 
589 	if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
590 		return NULL;
591 
592 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
593 
594 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
595 }
596 
597 #else
PageMemcgKmem(struct page * page)598 static inline bool PageMemcgKmem(struct page *page)
599 {
600 	return false;
601 }
602 
page_objcgs(struct page * page)603 static inline struct obj_cgroup **page_objcgs(struct page *page)
604 {
605 	return NULL;
606 }
607 
page_objcgs_check(struct page * page)608 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
609 {
610 	return NULL;
611 }
612 #endif
613 
mem_cgroup_is_root(struct mem_cgroup * memcg)614 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
615 {
616 	return (memcg == root_mem_cgroup);
617 }
618 
mem_cgroup_disabled(void)619 static inline bool mem_cgroup_disabled(void)
620 {
621 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
622 }
623 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)624 static inline void mem_cgroup_protection(struct mem_cgroup *root,
625 					 struct mem_cgroup *memcg,
626 					 unsigned long *min,
627 					 unsigned long *low)
628 {
629 	*min = *low = 0;
630 
631 	if (mem_cgroup_disabled())
632 		return;
633 
634 	/*
635 	 * There is no reclaim protection applied to a targeted reclaim.
636 	 * We are special casing this specific case here because
637 	 * mem_cgroup_protected calculation is not robust enough to keep
638 	 * the protection invariant for calculated effective values for
639 	 * parallel reclaimers with different reclaim target. This is
640 	 * especially a problem for tail memcgs (as they have pages on LRU)
641 	 * which would want to have effective values 0 for targeted reclaim
642 	 * but a different value for external reclaim.
643 	 *
644 	 * Example
645 	 * Let's have global and A's reclaim in parallel:
646 	 *  |
647 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
648 	 *  |\
649 	 *  | C (low = 1G, usage = 2.5G)
650 	 *  B (low = 1G, usage = 0.5G)
651 	 *
652 	 * For the global reclaim
653 	 * A.elow = A.low
654 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
655 	 * C.elow = min(C.usage, C.low)
656 	 *
657 	 * With the effective values resetting we have A reclaim
658 	 * A.elow = 0
659 	 * B.elow = B.low
660 	 * C.elow = C.low
661 	 *
662 	 * If the global reclaim races with A's reclaim then
663 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
664 	 * is possible and reclaiming B would be violating the protection.
665 	 *
666 	 */
667 	if (root == memcg)
668 		return;
669 
670 	*min = READ_ONCE(memcg->memory.emin);
671 	*low = READ_ONCE(memcg->memory.elow);
672 }
673 
674 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
675 				     struct mem_cgroup *memcg);
676 
mem_cgroup_supports_protection(struct mem_cgroup * memcg)677 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
678 {
679 	/*
680 	 * The root memcg doesn't account charges, and doesn't support
681 	 * protection.
682 	 */
683 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
684 
685 }
686 
mem_cgroup_below_low(struct mem_cgroup * memcg)687 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
688 {
689 	if (!mem_cgroup_supports_protection(memcg))
690 		return false;
691 
692 	return READ_ONCE(memcg->memory.elow) >=
693 		page_counter_read(&memcg->memory);
694 }
695 
mem_cgroup_below_min(struct mem_cgroup * memcg)696 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
697 {
698 	if (!mem_cgroup_supports_protection(memcg))
699 		return false;
700 
701 	return READ_ONCE(memcg->memory.emin) >=
702 		page_counter_read(&memcg->memory);
703 }
704 
705 int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
706 			gfp_t gfp_mask);
mem_cgroup_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)707 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
708 				    gfp_t gfp_mask)
709 {
710 	if (mem_cgroup_disabled())
711 		return 0;
712 	return __mem_cgroup_charge(page, mm, gfp_mask);
713 }
714 
715 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
716 				  gfp_t gfp, swp_entry_t entry);
717 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
718 
719 void __mem_cgroup_uncharge(struct page *page);
mem_cgroup_uncharge(struct page * page)720 static inline void mem_cgroup_uncharge(struct page *page)
721 {
722 	if (mem_cgroup_disabled())
723 		return;
724 	__mem_cgroup_uncharge(page);
725 }
726 
727 void __mem_cgroup_uncharge_list(struct list_head *page_list);
mem_cgroup_uncharge_list(struct list_head * page_list)728 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
729 {
730 	if (mem_cgroup_disabled())
731 		return;
732 	__mem_cgroup_uncharge_list(page_list);
733 }
734 
735 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
736 
737 /**
738  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
739  * @memcg: memcg of the wanted lruvec
740  * @pgdat: pglist_data
741  *
742  * Returns the lru list vector holding pages for a given @memcg &
743  * @pgdat combination. This can be the node lruvec, if the memory
744  * controller is disabled.
745  */
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)746 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
747 					       struct pglist_data *pgdat)
748 {
749 	struct mem_cgroup_per_node *mz;
750 	struct lruvec *lruvec;
751 
752 	if (mem_cgroup_disabled()) {
753 		lruvec = &pgdat->__lruvec;
754 		goto out;
755 	}
756 
757 	if (!memcg)
758 		memcg = root_mem_cgroup;
759 
760 	mz = memcg->nodeinfo[pgdat->node_id];
761 	lruvec = &mz->lruvec;
762 out:
763 	/*
764 	 * Since a node can be onlined after the mem_cgroup was created,
765 	 * we have to be prepared to initialize lruvec->pgdat here;
766 	 * and if offlined then reonlined, we need to reinitialize it.
767 	 */
768 	if (unlikely(lruvec->pgdat != pgdat))
769 		lruvec->pgdat = pgdat;
770 	return lruvec;
771 }
772 
773 /**
774  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
775  * @page: the page
776  *
777  * This function relies on page->mem_cgroup being stable.
778  */
mem_cgroup_page_lruvec(struct page * page)779 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page)
780 {
781 	pg_data_t *pgdat = page_pgdat(page);
782 	struct mem_cgroup *memcg = page_memcg(page);
783 
784 	VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page);
785 	return mem_cgroup_lruvec(memcg, pgdat);
786 }
787 
788 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
789 
790 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
791 
792 struct lruvec *lock_page_lruvec(struct page *page);
793 struct lruvec *lock_page_lruvec_irq(struct page *page);
794 struct lruvec *lock_page_lruvec_irqsave(struct page *page,
795 						unsigned long *flags);
796 
797 #ifdef CONFIG_DEBUG_VM
798 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page);
799 #else
lruvec_memcg_debug(struct lruvec * lruvec,struct page * page)800 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
801 {
802 }
803 #endif
804 
805 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)806 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
807 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
808 }
809 
obj_cgroup_tryget(struct obj_cgroup * objcg)810 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
811 {
812 	return percpu_ref_tryget(&objcg->refcnt);
813 }
814 
obj_cgroup_get(struct obj_cgroup * objcg)815 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
816 {
817 	percpu_ref_get(&objcg->refcnt);
818 }
819 
obj_cgroup_get_many(struct obj_cgroup * objcg,unsigned long nr)820 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
821 				       unsigned long nr)
822 {
823 	percpu_ref_get_many(&objcg->refcnt, nr);
824 }
825 
obj_cgroup_put(struct obj_cgroup * objcg)826 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
827 {
828 	percpu_ref_put(&objcg->refcnt);
829 }
830 
mem_cgroup_tryget(struct mem_cgroup * memcg)831 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
832 {
833 	return !memcg || css_tryget(&memcg->css);
834 }
835 
mem_cgroup_put(struct mem_cgroup * memcg)836 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
837 {
838 	if (memcg)
839 		css_put(&memcg->css);
840 }
841 
842 #define mem_cgroup_from_counter(counter, member)	\
843 	container_of(counter, struct mem_cgroup, member)
844 
845 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
846 				   struct mem_cgroup *,
847 				   struct mem_cgroup_reclaim_cookie *);
848 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
849 int mem_cgroup_scan_tasks(struct mem_cgroup *,
850 			  int (*)(struct task_struct *, void *), void *);
851 
mem_cgroup_id(struct mem_cgroup * memcg)852 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
853 {
854 	if (mem_cgroup_disabled())
855 		return 0;
856 
857 	return memcg->id.id;
858 }
859 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
860 
mem_cgroup_from_seq(struct seq_file * m)861 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
862 {
863 	return mem_cgroup_from_css(seq_css(m));
864 }
865 
lruvec_memcg(struct lruvec * lruvec)866 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
867 {
868 	struct mem_cgroup_per_node *mz;
869 
870 	if (mem_cgroup_disabled())
871 		return NULL;
872 
873 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
874 	return mz->memcg;
875 }
876 
877 /**
878  * parent_mem_cgroup - find the accounting parent of a memcg
879  * @memcg: memcg whose parent to find
880  *
881  * Returns the parent memcg, or NULL if this is the root or the memory
882  * controller is in legacy no-hierarchy mode.
883  */
parent_mem_cgroup(struct mem_cgroup * memcg)884 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
885 {
886 	if (!memcg->memory.parent)
887 		return NULL;
888 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
889 }
890 
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)891 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
892 			      struct mem_cgroup *root)
893 {
894 	if (root == memcg)
895 		return true;
896 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
897 }
898 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)899 static inline bool mm_match_cgroup(struct mm_struct *mm,
900 				   struct mem_cgroup *memcg)
901 {
902 	struct mem_cgroup *task_memcg;
903 	bool match = false;
904 
905 	rcu_read_lock();
906 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
907 	if (task_memcg)
908 		match = mem_cgroup_is_descendant(task_memcg, memcg);
909 	rcu_read_unlock();
910 	return match;
911 }
912 
913 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
914 ino_t page_cgroup_ino(struct page *page);
915 
mem_cgroup_online(struct mem_cgroup * memcg)916 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
917 {
918 	if (mem_cgroup_disabled())
919 		return true;
920 	return !!(memcg->css.flags & CSS_ONLINE);
921 }
922 
923 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
924 		int zid, int nr_pages);
925 
926 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)927 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
928 		enum lru_list lru, int zone_idx)
929 {
930 	struct mem_cgroup_per_node *mz;
931 
932 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
933 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
934 }
935 
936 void mem_cgroup_handle_over_high(void);
937 
938 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
939 
940 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
941 
942 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
943 				struct task_struct *p);
944 
945 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
946 
mem_cgroup_enter_user_fault(void)947 static inline void mem_cgroup_enter_user_fault(void)
948 {
949 	WARN_ON(current->in_user_fault);
950 	current->in_user_fault = 1;
951 }
952 
mem_cgroup_exit_user_fault(void)953 static inline void mem_cgroup_exit_user_fault(void)
954 {
955 	WARN_ON(!current->in_user_fault);
956 	current->in_user_fault = 0;
957 }
958 
task_in_memcg_oom(struct task_struct * p)959 static inline bool task_in_memcg_oom(struct task_struct *p)
960 {
961 	return p->memcg_in_oom;
962 }
963 
964 bool mem_cgroup_oom_synchronize(bool wait);
965 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
966 					    struct mem_cgroup *oom_domain);
967 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
968 
969 #ifdef CONFIG_MEMCG_SWAP
970 extern bool cgroup_memory_noswap;
971 #endif
972 
973 void lock_page_memcg(struct page *page);
974 void unlock_page_memcg(struct page *page);
975 
976 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
977 
978 /* try to stablize page_memcg() for all the pages in a memcg */
mem_cgroup_trylock_pages(struct mem_cgroup * memcg)979 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
980 {
981 	rcu_read_lock();
982 
983 	if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
984 		return true;
985 
986 	rcu_read_unlock();
987 	return false;
988 }
989 
mem_cgroup_unlock_pages(void)990 static inline void mem_cgroup_unlock_pages(void)
991 {
992 	rcu_read_unlock();
993 }
994 
995 /* idx can be of type enum memcg_stat_item or node_stat_item */
mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)996 static inline void mod_memcg_state(struct mem_cgroup *memcg,
997 				   int idx, int val)
998 {
999 	unsigned long flags;
1000 
1001 	local_irq_save(flags);
1002 	__mod_memcg_state(memcg, idx, val);
1003 	local_irq_restore(flags);
1004 }
1005 
memcg_page_state(struct mem_cgroup * memcg,int idx)1006 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1007 {
1008 	long x = READ_ONCE(memcg->vmstats.state[idx]);
1009 #ifdef CONFIG_SMP
1010 	if (x < 0)
1011 		x = 0;
1012 #endif
1013 	return x;
1014 }
1015 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1016 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1017 					      enum node_stat_item idx)
1018 {
1019 	struct mem_cgroup_per_node *pn;
1020 	long x;
1021 
1022 	if (mem_cgroup_disabled())
1023 		return node_page_state(lruvec_pgdat(lruvec), idx);
1024 
1025 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1026 	x = READ_ONCE(pn->lruvec_stats.state[idx]);
1027 #ifdef CONFIG_SMP
1028 	if (x < 0)
1029 		x = 0;
1030 #endif
1031 	return x;
1032 }
1033 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1034 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1035 						    enum node_stat_item idx)
1036 {
1037 	struct mem_cgroup_per_node *pn;
1038 	long x = 0;
1039 	int cpu;
1040 
1041 	if (mem_cgroup_disabled())
1042 		return node_page_state(lruvec_pgdat(lruvec), idx);
1043 
1044 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1045 	for_each_possible_cpu(cpu)
1046 		x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1047 #ifdef CONFIG_SMP
1048 	if (x < 0)
1049 		x = 0;
1050 #endif
1051 	return x;
1052 }
1053 
1054 void mem_cgroup_flush_stats(void);
1055 void mem_cgroup_flush_stats_delayed(void);
1056 
1057 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1058 			      int val);
1059 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1060 
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1061 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1062 					 int val)
1063 {
1064 	unsigned long flags;
1065 
1066 	local_irq_save(flags);
1067 	__mod_lruvec_kmem_state(p, idx, val);
1068 	local_irq_restore(flags);
1069 }
1070 
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1071 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1072 					  enum node_stat_item idx, int val)
1073 {
1074 	unsigned long flags;
1075 
1076 	local_irq_save(flags);
1077 	__mod_memcg_lruvec_state(lruvec, idx, val);
1078 	local_irq_restore(flags);
1079 }
1080 
1081 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1082 			  unsigned long count);
1083 
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1084 static inline void count_memcg_events(struct mem_cgroup *memcg,
1085 				      enum vm_event_item idx,
1086 				      unsigned long count)
1087 {
1088 	unsigned long flags;
1089 
1090 	local_irq_save(flags);
1091 	__count_memcg_events(memcg, idx, count);
1092 	local_irq_restore(flags);
1093 }
1094 
count_memcg_page_event(struct page * page,enum vm_event_item idx)1095 static inline void count_memcg_page_event(struct page *page,
1096 					  enum vm_event_item idx)
1097 {
1098 	struct mem_cgroup *memcg = page_memcg(page);
1099 
1100 	if (memcg)
1101 		count_memcg_events(memcg, idx, 1);
1102 }
1103 
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1104 static inline void count_memcg_event_mm(struct mm_struct *mm,
1105 					enum vm_event_item idx)
1106 {
1107 	struct mem_cgroup *memcg;
1108 
1109 	if (mem_cgroup_disabled())
1110 		return;
1111 
1112 	rcu_read_lock();
1113 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1114 	if (likely(memcg))
1115 		count_memcg_events(memcg, idx, 1);
1116 	rcu_read_unlock();
1117 }
1118 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1119 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1120 				      enum memcg_memory_event event)
1121 {
1122 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1123 			  event == MEMCG_SWAP_FAIL;
1124 
1125 	atomic_long_inc(&memcg->memory_events_local[event]);
1126 	if (!swap_event)
1127 		cgroup_file_notify(&memcg->events_local_file);
1128 
1129 	do {
1130 		atomic_long_inc(&memcg->memory_events[event]);
1131 		if (swap_event)
1132 			cgroup_file_notify(&memcg->swap_events_file);
1133 		else
1134 			cgroup_file_notify(&memcg->events_file);
1135 
1136 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1137 			break;
1138 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1139 			break;
1140 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1141 		 !mem_cgroup_is_root(memcg));
1142 }
1143 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1144 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1145 					 enum memcg_memory_event event)
1146 {
1147 	struct mem_cgroup *memcg;
1148 
1149 	if (mem_cgroup_disabled())
1150 		return;
1151 
1152 	rcu_read_lock();
1153 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1154 	if (likely(memcg))
1155 		memcg_memory_event(memcg, event);
1156 	rcu_read_unlock();
1157 }
1158 
1159 void split_page_memcg(struct page *head, unsigned int nr);
1160 
1161 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1162 						gfp_t gfp_mask,
1163 						unsigned long *total_scanned);
1164 
1165 #else /* CONFIG_MEMCG */
1166 
1167 #define MEM_CGROUP_ID_SHIFT	0
1168 #define MEM_CGROUP_ID_MAX	0
1169 
page_memcg(struct page * page)1170 static inline struct mem_cgroup *page_memcg(struct page *page)
1171 {
1172 	return NULL;
1173 }
1174 
page_memcg_rcu(struct page * page)1175 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1176 {
1177 	WARN_ON_ONCE(!rcu_read_lock_held());
1178 	return NULL;
1179 }
1180 
page_memcg_check(struct page * page)1181 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1182 {
1183 	return NULL;
1184 }
1185 
PageMemcgKmem(struct page * page)1186 static inline bool PageMemcgKmem(struct page *page)
1187 {
1188 	return false;
1189 }
1190 
mem_cgroup_is_root(struct mem_cgroup * memcg)1191 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1192 {
1193 	return true;
1194 }
1195 
mem_cgroup_disabled(void)1196 static inline bool mem_cgroup_disabled(void)
1197 {
1198 	return true;
1199 }
1200 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1201 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1202 				      enum memcg_memory_event event)
1203 {
1204 }
1205 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1206 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1207 					 enum memcg_memory_event event)
1208 {
1209 }
1210 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)1211 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1212 					 struct mem_cgroup *memcg,
1213 					 unsigned long *min,
1214 					 unsigned long *low)
1215 {
1216 	*min = *low = 0;
1217 }
1218 
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)1219 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1220 						   struct mem_cgroup *memcg)
1221 {
1222 }
1223 
mem_cgroup_below_low(struct mem_cgroup * memcg)1224 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1225 {
1226 	return false;
1227 }
1228 
mem_cgroup_below_min(struct mem_cgroup * memcg)1229 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1230 {
1231 	return false;
1232 }
1233 
mem_cgroup_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)1234 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
1235 				    gfp_t gfp_mask)
1236 {
1237 	return 0;
1238 }
1239 
mem_cgroup_swapin_charge_page(struct page * page,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)1240 static inline int mem_cgroup_swapin_charge_page(struct page *page,
1241 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1242 {
1243 	return 0;
1244 }
1245 
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)1246 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1247 {
1248 }
1249 
mem_cgroup_uncharge(struct page * page)1250 static inline void mem_cgroup_uncharge(struct page *page)
1251 {
1252 }
1253 
mem_cgroup_uncharge_list(struct list_head * page_list)1254 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1255 {
1256 }
1257 
mem_cgroup_migrate(struct page * old,struct page * new)1258 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
1259 {
1260 }
1261 
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)1262 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1263 					       struct pglist_data *pgdat)
1264 {
1265 	return &pgdat->__lruvec;
1266 }
1267 
mem_cgroup_page_lruvec(struct page * page)1268 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page)
1269 {
1270 	pg_data_t *pgdat = page_pgdat(page);
1271 
1272 	return &pgdat->__lruvec;
1273 }
1274 
lruvec_memcg_debug(struct lruvec * lruvec,struct page * page)1275 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1276 {
1277 }
1278 
parent_mem_cgroup(struct mem_cgroup * memcg)1279 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1280 {
1281 	return NULL;
1282 }
1283 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)1284 static inline bool mm_match_cgroup(struct mm_struct *mm,
1285 		struct mem_cgroup *memcg)
1286 {
1287 	return true;
1288 }
1289 
get_mem_cgroup_from_mm(struct mm_struct * mm)1290 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1291 {
1292 	return NULL;
1293 }
1294 
1295 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)1296 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1297 {
1298 	return NULL;
1299 }
1300 
mem_cgroup_tryget(struct mem_cgroup * memcg)1301 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1302 {
1303 	return true;
1304 }
1305 
mem_cgroup_put(struct mem_cgroup * memcg)1306 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1307 {
1308 }
1309 
lock_page_lruvec(struct page * page)1310 static inline struct lruvec *lock_page_lruvec(struct page *page)
1311 {
1312 	struct pglist_data *pgdat = page_pgdat(page);
1313 
1314 	spin_lock(&pgdat->__lruvec.lru_lock);
1315 	return &pgdat->__lruvec;
1316 }
1317 
lock_page_lruvec_irq(struct page * page)1318 static inline struct lruvec *lock_page_lruvec_irq(struct page *page)
1319 {
1320 	struct pglist_data *pgdat = page_pgdat(page);
1321 
1322 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1323 	return &pgdat->__lruvec;
1324 }
1325 
lock_page_lruvec_irqsave(struct page * page,unsigned long * flagsp)1326 static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page,
1327 		unsigned long *flagsp)
1328 {
1329 	struct pglist_data *pgdat = page_pgdat(page);
1330 
1331 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1332 	return &pgdat->__lruvec;
1333 }
1334 
1335 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1336 mem_cgroup_iter(struct mem_cgroup *root,
1337 		struct mem_cgroup *prev,
1338 		struct mem_cgroup_reclaim_cookie *reclaim)
1339 {
1340 	return NULL;
1341 }
1342 
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1343 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1344 					 struct mem_cgroup *prev)
1345 {
1346 }
1347 
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1348 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1349 		int (*fn)(struct task_struct *, void *), void *arg)
1350 {
1351 	return 0;
1352 }
1353 
mem_cgroup_id(struct mem_cgroup * memcg)1354 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1355 {
1356 	return 0;
1357 }
1358 
mem_cgroup_from_id(unsigned short id)1359 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1360 {
1361 	WARN_ON_ONCE(id);
1362 	/* XXX: This should always return root_mem_cgroup */
1363 	return NULL;
1364 }
1365 
mem_cgroup_from_seq(struct seq_file * m)1366 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1367 {
1368 	return NULL;
1369 }
1370 
lruvec_memcg(struct lruvec * lruvec)1371 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1372 {
1373 	return NULL;
1374 }
1375 
mem_cgroup_online(struct mem_cgroup * memcg)1376 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1377 {
1378 	return true;
1379 }
1380 
1381 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1382 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1383 		enum lru_list lru, int zone_idx)
1384 {
1385 	return 0;
1386 }
1387 
mem_cgroup_get_max(struct mem_cgroup * memcg)1388 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1389 {
1390 	return 0;
1391 }
1392 
mem_cgroup_size(struct mem_cgroup * memcg)1393 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1394 {
1395 	return 0;
1396 }
1397 
1398 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1399 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1400 {
1401 }
1402 
1403 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1404 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1405 {
1406 }
1407 
lock_page_memcg(struct page * page)1408 static inline void lock_page_memcg(struct page *page)
1409 {
1410 }
1411 
unlock_page_memcg(struct page * page)1412 static inline void unlock_page_memcg(struct page *page)
1413 {
1414 }
1415 
mem_cgroup_trylock_pages(struct mem_cgroup * memcg)1416 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1417 {
1418 	/* to match page_memcg_rcu() */
1419 	rcu_read_lock();
1420 	return true;
1421 }
1422 
mem_cgroup_unlock_pages(void)1423 static inline void mem_cgroup_unlock_pages(void)
1424 {
1425 	rcu_read_unlock();
1426 }
1427 
mem_cgroup_handle_over_high(void)1428 static inline void mem_cgroup_handle_over_high(void)
1429 {
1430 }
1431 
mem_cgroup_enter_user_fault(void)1432 static inline void mem_cgroup_enter_user_fault(void)
1433 {
1434 }
1435 
mem_cgroup_exit_user_fault(void)1436 static inline void mem_cgroup_exit_user_fault(void)
1437 {
1438 }
1439 
task_in_memcg_oom(struct task_struct * p)1440 static inline bool task_in_memcg_oom(struct task_struct *p)
1441 {
1442 	return false;
1443 }
1444 
mem_cgroup_oom_synchronize(bool wait)1445 static inline bool mem_cgroup_oom_synchronize(bool wait)
1446 {
1447 	return false;
1448 }
1449 
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1450 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1451 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1452 {
1453 	return NULL;
1454 }
1455 
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1456 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1457 {
1458 }
1459 
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1460 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1461 				     int idx,
1462 				     int nr)
1463 {
1464 }
1465 
mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1466 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1467 				   int idx,
1468 				   int nr)
1469 {
1470 }
1471 
memcg_page_state(struct mem_cgroup * memcg,int idx)1472 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1473 {
1474 	return 0;
1475 }
1476 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1477 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1478 					      enum node_stat_item idx)
1479 {
1480 	return node_page_state(lruvec_pgdat(lruvec), idx);
1481 }
1482 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1483 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1484 						    enum node_stat_item idx)
1485 {
1486 	return node_page_state(lruvec_pgdat(lruvec), idx);
1487 }
1488 
mem_cgroup_flush_stats(void)1489 static inline void mem_cgroup_flush_stats(void)
1490 {
1491 }
1492 
mem_cgroup_flush_stats_delayed(void)1493 static inline void mem_cgroup_flush_stats_delayed(void)
1494 {
1495 }
1496 
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1497 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1498 					    enum node_stat_item idx, int val)
1499 {
1500 }
1501 
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1502 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1503 					   int val)
1504 {
1505 	struct page *page = virt_to_head_page(p);
1506 
1507 	__mod_node_page_state(page_pgdat(page), idx, val);
1508 }
1509 
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1510 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1511 					 int val)
1512 {
1513 	struct page *page = virt_to_head_page(p);
1514 
1515 	mod_node_page_state(page_pgdat(page), idx, val);
1516 }
1517 
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1518 static inline void count_memcg_events(struct mem_cgroup *memcg,
1519 				      enum vm_event_item idx,
1520 				      unsigned long count)
1521 {
1522 }
1523 
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1524 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1525 					enum vm_event_item idx,
1526 					unsigned long count)
1527 {
1528 }
1529 
count_memcg_page_event(struct page * page,int idx)1530 static inline void count_memcg_page_event(struct page *page,
1531 					  int idx)
1532 {
1533 }
1534 
1535 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1536 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1537 {
1538 }
1539 
split_page_memcg(struct page * head,unsigned int nr)1540 static inline void split_page_memcg(struct page *head, unsigned int nr)
1541 {
1542 }
1543 
1544 static inline
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1545 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1546 					    gfp_t gfp_mask,
1547 					    unsigned long *total_scanned)
1548 {
1549 	return 0;
1550 }
1551 #endif /* CONFIG_MEMCG */
1552 
__inc_lruvec_kmem_state(void * p,enum node_stat_item idx)1553 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1554 {
1555 	__mod_lruvec_kmem_state(p, idx, 1);
1556 }
1557 
__dec_lruvec_kmem_state(void * p,enum node_stat_item idx)1558 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1559 {
1560 	__mod_lruvec_kmem_state(p, idx, -1);
1561 }
1562 
parent_lruvec(struct lruvec * lruvec)1563 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1564 {
1565 	struct mem_cgroup *memcg;
1566 
1567 	memcg = lruvec_memcg(lruvec);
1568 	if (!memcg)
1569 		return NULL;
1570 	memcg = parent_mem_cgroup(memcg);
1571 	if (!memcg)
1572 		return NULL;
1573 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1574 }
1575 
unlock_page_lruvec(struct lruvec * lruvec)1576 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1577 {
1578 	spin_unlock(&lruvec->lru_lock);
1579 }
1580 
unlock_page_lruvec_irq(struct lruvec * lruvec)1581 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1582 {
1583 	spin_unlock_irq(&lruvec->lru_lock);
1584 }
1585 
unlock_page_lruvec_irqrestore(struct lruvec * lruvec,unsigned long flags)1586 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1587 		unsigned long flags)
1588 {
1589 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1590 }
1591 
1592 /* Test requires a stable page->memcg binding, see page_memcg() */
page_matches_lruvec(struct page * page,struct lruvec * lruvec)1593 static inline bool page_matches_lruvec(struct page *page, struct lruvec *lruvec)
1594 {
1595 	return lruvec_pgdat(lruvec) == page_pgdat(page) &&
1596 	       lruvec_memcg(lruvec) == page_memcg(page);
1597 }
1598 
1599 /* Don't lock again iff page's lruvec locked */
relock_page_lruvec_irq(struct page * page,struct lruvec * locked_lruvec)1600 static inline struct lruvec *relock_page_lruvec_irq(struct page *page,
1601 		struct lruvec *locked_lruvec)
1602 {
1603 	if (locked_lruvec) {
1604 		if (page_matches_lruvec(page, locked_lruvec))
1605 			return locked_lruvec;
1606 
1607 		unlock_page_lruvec_irq(locked_lruvec);
1608 	}
1609 
1610 	return lock_page_lruvec_irq(page);
1611 }
1612 
1613 /* Don't lock again iff page's lruvec locked */
relock_page_lruvec_irqsave(struct page * page,struct lruvec * locked_lruvec,unsigned long * flags)1614 static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page,
1615 		struct lruvec *locked_lruvec, unsigned long *flags)
1616 {
1617 	if (locked_lruvec) {
1618 		if (page_matches_lruvec(page, locked_lruvec))
1619 			return locked_lruvec;
1620 
1621 		unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1622 	}
1623 
1624 	return lock_page_lruvec_irqsave(page, flags);
1625 }
1626 
1627 #ifdef CONFIG_CGROUP_WRITEBACK
1628 
1629 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1630 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1631 			 unsigned long *pheadroom, unsigned long *pdirty,
1632 			 unsigned long *pwriteback);
1633 
1634 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1635 					     struct bdi_writeback *wb);
1636 
mem_cgroup_track_foreign_dirty(struct page * page,struct bdi_writeback * wb)1637 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1638 						  struct bdi_writeback *wb)
1639 {
1640 	if (mem_cgroup_disabled())
1641 		return;
1642 
1643 	if (unlikely(&page_memcg(page)->css != wb->memcg_css))
1644 		mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1645 }
1646 
1647 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1648 
1649 #else	/* CONFIG_CGROUP_WRITEBACK */
1650 
mem_cgroup_wb_domain(struct bdi_writeback * wb)1651 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1652 {
1653 	return NULL;
1654 }
1655 
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1656 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1657 				       unsigned long *pfilepages,
1658 				       unsigned long *pheadroom,
1659 				       unsigned long *pdirty,
1660 				       unsigned long *pwriteback)
1661 {
1662 }
1663 
mem_cgroup_track_foreign_dirty(struct page * page,struct bdi_writeback * wb)1664 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1665 						  struct bdi_writeback *wb)
1666 {
1667 }
1668 
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1669 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1670 {
1671 }
1672 
1673 #endif	/* CONFIG_CGROUP_WRITEBACK */
1674 
1675 struct sock;
1676 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1677 			     gfp_t gfp_mask);
1678 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1679 #ifdef CONFIG_MEMCG
1680 extern struct static_key_false memcg_sockets_enabled_key;
1681 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1682 void mem_cgroup_sk_alloc(struct sock *sk);
1683 void mem_cgroup_sk_free(struct sock *sk);
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1684 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1685 {
1686 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1687 		return !!memcg->tcpmem_pressure;
1688 	do {
1689 		if (time_before(jiffies, memcg->socket_pressure))
1690 			return true;
1691 	} while ((memcg = parent_mem_cgroup(memcg)));
1692 	return false;
1693 }
1694 
1695 int alloc_shrinker_info(struct mem_cgroup *memcg);
1696 void free_shrinker_info(struct mem_cgroup *memcg);
1697 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1698 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1699 #else
1700 #define mem_cgroup_sockets_enabled 0
mem_cgroup_sk_alloc(struct sock * sk)1701 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
mem_cgroup_sk_free(struct sock * sk)1702 static inline void mem_cgroup_sk_free(struct sock *sk) { };
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1703 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1704 {
1705 	return false;
1706 }
1707 
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1708 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1709 				    int nid, int shrinker_id)
1710 {
1711 }
1712 #endif
1713 
1714 #ifdef CONFIG_MEMCG_KMEM
1715 bool mem_cgroup_kmem_disabled(void);
1716 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1717 void __memcg_kmem_uncharge_page(struct page *page, int order);
1718 
1719 struct obj_cgroup *get_obj_cgroup_from_current(void);
1720 
1721 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1722 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1723 
1724 extern struct static_key_false memcg_kmem_enabled_key;
1725 
1726 extern int memcg_nr_cache_ids;
1727 void memcg_get_cache_ids(void);
1728 void memcg_put_cache_ids(void);
1729 
1730 /*
1731  * Helper macro to loop through all memcg-specific caches. Callers must still
1732  * check if the cache is valid (it is either valid or NULL).
1733  * the slab_mutex must be held when looping through those caches
1734  */
1735 #define for_each_memcg_cache_index(_idx)	\
1736 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1737 
memcg_kmem_enabled(void)1738 static inline bool memcg_kmem_enabled(void)
1739 {
1740 	return static_branch_likely(&memcg_kmem_enabled_key);
1741 }
1742 
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1743 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1744 					 int order)
1745 {
1746 	if (memcg_kmem_enabled())
1747 		return __memcg_kmem_charge_page(page, gfp, order);
1748 	return 0;
1749 }
1750 
memcg_kmem_uncharge_page(struct page * page,int order)1751 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1752 {
1753 	if (memcg_kmem_enabled())
1754 		__memcg_kmem_uncharge_page(page, order);
1755 }
1756 
1757 /*
1758  * A helper for accessing memcg's kmem_id, used for getting
1759  * corresponding LRU lists.
1760  */
memcg_cache_id(struct mem_cgroup * memcg)1761 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1762 {
1763 	return memcg ? memcg->kmemcg_id : -1;
1764 }
1765 
1766 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1767 
1768 #else
mem_cgroup_kmem_disabled(void)1769 static inline bool mem_cgroup_kmem_disabled(void)
1770 {
1771 	return true;
1772 }
1773 
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1774 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1775 					 int order)
1776 {
1777 	return 0;
1778 }
1779 
memcg_kmem_uncharge_page(struct page * page,int order)1780 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1781 {
1782 }
1783 
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1784 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1785 					   int order)
1786 {
1787 	return 0;
1788 }
1789 
__memcg_kmem_uncharge_page(struct page * page,int order)1790 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1791 {
1792 }
1793 
1794 #define for_each_memcg_cache_index(_idx)	\
1795 	for (; NULL; )
1796 
memcg_kmem_enabled(void)1797 static inline bool memcg_kmem_enabled(void)
1798 {
1799 	return false;
1800 }
1801 
memcg_cache_id(struct mem_cgroup * memcg)1802 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1803 {
1804 	return -1;
1805 }
1806 
memcg_get_cache_ids(void)1807 static inline void memcg_get_cache_ids(void)
1808 {
1809 }
1810 
memcg_put_cache_ids(void)1811 static inline void memcg_put_cache_ids(void)
1812 {
1813 }
1814 
mem_cgroup_from_obj(void * p)1815 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1816 {
1817        return NULL;
1818 }
1819 
1820 #endif /* CONFIG_MEMCG_KMEM */
1821 
1822 #endif /* _LINUX_MEMCONTROL_H */
1823