1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19
20 /*
21 * Kernel-internal data types and definitions:
22 */
23
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28
29 #define PERF_GUEST_ACTIVE 0x01
30 #define PERF_GUEST_USER 0x02
31
32 struct perf_guest_info_callbacks {
33 unsigned int (*state)(void);
34 unsigned long (*get_ip)(void);
35 unsigned int (*handle_intel_pt_intr)(void);
36 };
37
38 #ifdef CONFIG_HAVE_HW_BREAKPOINT
39 #include <asm/hw_breakpoint.h>
40 #endif
41
42 #include <linux/list.h>
43 #include <linux/mutex.h>
44 #include <linux/rculist.h>
45 #include <linux/rcupdate.h>
46 #include <linux/spinlock.h>
47 #include <linux/hrtimer.h>
48 #include <linux/fs.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/workqueue.h>
51 #include <linux/ftrace.h>
52 #include <linux/cpu.h>
53 #include <linux/irq_work.h>
54 #include <linux/static_key.h>
55 #include <linux/jump_label_ratelimit.h>
56 #include <linux/atomic.h>
57 #include <linux/sysfs.h>
58 #include <linux/perf_regs.h>
59 #include <linux/cgroup.h>
60 #include <linux/refcount.h>
61 #include <linux/security.h>
62 #include <asm/local.h>
63
64 struct perf_callchain_entry {
65 __u64 nr;
66 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
67 };
68
69 struct perf_callchain_entry_ctx {
70 struct perf_callchain_entry *entry;
71 u32 max_stack;
72 u32 nr;
73 short contexts;
74 bool contexts_maxed;
75 };
76
77 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
78 unsigned long off, unsigned long len);
79
80 struct perf_raw_frag {
81 union {
82 struct perf_raw_frag *next;
83 unsigned long pad;
84 };
85 perf_copy_f copy;
86 void *data;
87 u32 size;
88 } __packed;
89
90 struct perf_raw_record {
91 struct perf_raw_frag frag;
92 u32 size;
93 };
94
95 /*
96 * branch stack layout:
97 * nr: number of taken branches stored in entries[]
98 * hw_idx: The low level index of raw branch records
99 * for the most recent branch.
100 * -1ULL means invalid/unknown.
101 *
102 * Note that nr can vary from sample to sample
103 * branches (to, from) are stored from most recent
104 * to least recent, i.e., entries[0] contains the most
105 * recent branch.
106 * The entries[] is an abstraction of raw branch records,
107 * which may not be stored in age order in HW, e.g. Intel LBR.
108 * The hw_idx is to expose the low level index of raw
109 * branch record for the most recent branch aka entries[0].
110 * The hw_idx index is between -1 (unknown) and max depth,
111 * which can be retrieved in /sys/devices/cpu/caps/branches.
112 * For the architectures whose raw branch records are
113 * already stored in age order, the hw_idx should be 0.
114 */
115 struct perf_branch_stack {
116 __u64 nr;
117 __u64 hw_idx;
118 struct perf_branch_entry entries[];
119 };
120
121 struct task_struct;
122
123 /*
124 * extra PMU register associated with an event
125 */
126 struct hw_perf_event_extra {
127 u64 config; /* register value */
128 unsigned int reg; /* register address or index */
129 int alloc; /* extra register already allocated */
130 int idx; /* index in shared_regs->regs[] */
131 };
132
133 /**
134 * struct hw_perf_event - performance event hardware details:
135 */
136 struct hw_perf_event {
137 #ifdef CONFIG_PERF_EVENTS
138 union {
139 struct { /* hardware */
140 u64 config;
141 u64 last_tag;
142 unsigned long config_base;
143 unsigned long event_base;
144 int event_base_rdpmc;
145 int idx;
146 int last_cpu;
147 int flags;
148
149 struct hw_perf_event_extra extra_reg;
150 struct hw_perf_event_extra branch_reg;
151 };
152 struct { /* software */
153 struct hrtimer hrtimer;
154 };
155 struct { /* tracepoint */
156 /* for tp_event->class */
157 struct list_head tp_list;
158 };
159 struct { /* amd_power */
160 u64 pwr_acc;
161 u64 ptsc;
162 };
163 #ifdef CONFIG_HAVE_HW_BREAKPOINT
164 struct { /* breakpoint */
165 /*
166 * Crufty hack to avoid the chicken and egg
167 * problem hw_breakpoint has with context
168 * creation and event initalization.
169 */
170 struct arch_hw_breakpoint info;
171 struct list_head bp_list;
172 };
173 #endif
174 struct { /* amd_iommu */
175 u8 iommu_bank;
176 u8 iommu_cntr;
177 u16 padding;
178 u64 conf;
179 u64 conf1;
180 };
181 };
182 /*
183 * If the event is a per task event, this will point to the task in
184 * question. See the comment in perf_event_alloc().
185 */
186 struct task_struct *target;
187
188 /*
189 * PMU would store hardware filter configuration
190 * here.
191 */
192 void *addr_filters;
193
194 /* Last sync'ed generation of filters */
195 unsigned long addr_filters_gen;
196
197 /*
198 * hw_perf_event::state flags; used to track the PERF_EF_* state.
199 */
200 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
201 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
202 #define PERF_HES_ARCH 0x04
203
204 int state;
205
206 /*
207 * The last observed hardware counter value, updated with a
208 * local64_cmpxchg() such that pmu::read() can be called nested.
209 */
210 local64_t prev_count;
211
212 /*
213 * The period to start the next sample with.
214 */
215 u64 sample_period;
216
217 union {
218 struct { /* Sampling */
219 /*
220 * The period we started this sample with.
221 */
222 u64 last_period;
223
224 /*
225 * However much is left of the current period;
226 * note that this is a full 64bit value and
227 * allows for generation of periods longer
228 * than hardware might allow.
229 */
230 local64_t period_left;
231 };
232 struct { /* Topdown events counting for context switch */
233 u64 saved_metric;
234 u64 saved_slots;
235 };
236 };
237
238 /*
239 * State for throttling the event, see __perf_event_overflow() and
240 * perf_adjust_freq_unthr_context().
241 */
242 u64 interrupts_seq;
243 u64 interrupts;
244
245 /*
246 * State for freq target events, see __perf_event_overflow() and
247 * perf_adjust_freq_unthr_context().
248 */
249 u64 freq_time_stamp;
250 u64 freq_count_stamp;
251 #endif
252 };
253
254 struct perf_event;
255
256 /*
257 * Common implementation detail of pmu::{start,commit,cancel}_txn
258 */
259 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
260 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
261
262 /**
263 * pmu::capabilities flags
264 */
265 #define PERF_PMU_CAP_NO_INTERRUPT 0x0001
266 #define PERF_PMU_CAP_NO_NMI 0x0002
267 #define PERF_PMU_CAP_AUX_NO_SG 0x0004
268 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008
269 #define PERF_PMU_CAP_EXCLUSIVE 0x0010
270 #define PERF_PMU_CAP_ITRACE 0x0020
271 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x0040
272 #define PERF_PMU_CAP_NO_EXCLUDE 0x0080
273 #define PERF_PMU_CAP_AUX_OUTPUT 0x0100
274 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0200
275
276 struct perf_output_handle;
277
278 /**
279 * struct pmu - generic performance monitoring unit
280 */
281 struct pmu {
282 struct list_head entry;
283
284 struct module *module;
285 struct device *dev;
286 const struct attribute_group **attr_groups;
287 const struct attribute_group **attr_update;
288 const char *name;
289 int type;
290
291 /*
292 * various common per-pmu feature flags
293 */
294 int capabilities;
295
296 int __percpu *pmu_disable_count;
297 struct perf_cpu_context __percpu *pmu_cpu_context;
298 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
299 int task_ctx_nr;
300 int hrtimer_interval_ms;
301
302 /* number of address filters this PMU can do */
303 unsigned int nr_addr_filters;
304
305 /*
306 * Fully disable/enable this PMU, can be used to protect from the PMI
307 * as well as for lazy/batch writing of the MSRs.
308 */
309 void (*pmu_enable) (struct pmu *pmu); /* optional */
310 void (*pmu_disable) (struct pmu *pmu); /* optional */
311
312 /*
313 * Try and initialize the event for this PMU.
314 *
315 * Returns:
316 * -ENOENT -- @event is not for this PMU
317 *
318 * -ENODEV -- @event is for this PMU but PMU not present
319 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
320 * -EINVAL -- @event is for this PMU but @event is not valid
321 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
322 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
323 *
324 * 0 -- @event is for this PMU and valid
325 *
326 * Other error return values are allowed.
327 */
328 int (*event_init) (struct perf_event *event);
329
330 /*
331 * Notification that the event was mapped or unmapped. Called
332 * in the context of the mapping task.
333 */
334 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
335 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
336
337 /*
338 * Flags for ->add()/->del()/ ->start()/->stop(). There are
339 * matching hw_perf_event::state flags.
340 */
341 #define PERF_EF_START 0x01 /* start the counter when adding */
342 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
343 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
344
345 /*
346 * Adds/Removes a counter to/from the PMU, can be done inside a
347 * transaction, see the ->*_txn() methods.
348 *
349 * The add/del callbacks will reserve all hardware resources required
350 * to service the event, this includes any counter constraint
351 * scheduling etc.
352 *
353 * Called with IRQs disabled and the PMU disabled on the CPU the event
354 * is on.
355 *
356 * ->add() called without PERF_EF_START should result in the same state
357 * as ->add() followed by ->stop().
358 *
359 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
360 * ->stop() that must deal with already being stopped without
361 * PERF_EF_UPDATE.
362 */
363 int (*add) (struct perf_event *event, int flags);
364 void (*del) (struct perf_event *event, int flags);
365
366 /*
367 * Starts/Stops a counter present on the PMU.
368 *
369 * The PMI handler should stop the counter when perf_event_overflow()
370 * returns !0. ->start() will be used to continue.
371 *
372 * Also used to change the sample period.
373 *
374 * Called with IRQs disabled and the PMU disabled on the CPU the event
375 * is on -- will be called from NMI context with the PMU generates
376 * NMIs.
377 *
378 * ->stop() with PERF_EF_UPDATE will read the counter and update
379 * period/count values like ->read() would.
380 *
381 * ->start() with PERF_EF_RELOAD will reprogram the counter
382 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
383 */
384 void (*start) (struct perf_event *event, int flags);
385 void (*stop) (struct perf_event *event, int flags);
386
387 /*
388 * Updates the counter value of the event.
389 *
390 * For sampling capable PMUs this will also update the software period
391 * hw_perf_event::period_left field.
392 */
393 void (*read) (struct perf_event *event);
394
395 /*
396 * Group events scheduling is treated as a transaction, add
397 * group events as a whole and perform one schedulability test.
398 * If the test fails, roll back the whole group
399 *
400 * Start the transaction, after this ->add() doesn't need to
401 * do schedulability tests.
402 *
403 * Optional.
404 */
405 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
406 /*
407 * If ->start_txn() disabled the ->add() schedulability test
408 * then ->commit_txn() is required to perform one. On success
409 * the transaction is closed. On error the transaction is kept
410 * open until ->cancel_txn() is called.
411 *
412 * Optional.
413 */
414 int (*commit_txn) (struct pmu *pmu);
415 /*
416 * Will cancel the transaction, assumes ->del() is called
417 * for each successful ->add() during the transaction.
418 *
419 * Optional.
420 */
421 void (*cancel_txn) (struct pmu *pmu);
422
423 /*
424 * Will return the value for perf_event_mmap_page::index for this event,
425 * if no implementation is provided it will default to: event->hw.idx + 1.
426 */
427 int (*event_idx) (struct perf_event *event); /*optional */
428
429 /*
430 * context-switches callback
431 */
432 void (*sched_task) (struct perf_event_context *ctx,
433 bool sched_in);
434
435 /*
436 * Kmem cache of PMU specific data
437 */
438 struct kmem_cache *task_ctx_cache;
439
440 /*
441 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
442 * can be synchronized using this function. See Intel LBR callstack support
443 * implementation and Perf core context switch handling callbacks for usage
444 * examples.
445 */
446 void (*swap_task_ctx) (struct perf_event_context *prev,
447 struct perf_event_context *next);
448 /* optional */
449
450 /*
451 * Set up pmu-private data structures for an AUX area
452 */
453 void *(*setup_aux) (struct perf_event *event, void **pages,
454 int nr_pages, bool overwrite);
455 /* optional */
456
457 /*
458 * Free pmu-private AUX data structures
459 */
460 void (*free_aux) (void *aux); /* optional */
461
462 /*
463 * Take a snapshot of the AUX buffer without touching the event
464 * state, so that preempting ->start()/->stop() callbacks does
465 * not interfere with their logic. Called in PMI context.
466 *
467 * Returns the size of AUX data copied to the output handle.
468 *
469 * Optional.
470 */
471 long (*snapshot_aux) (struct perf_event *event,
472 struct perf_output_handle *handle,
473 unsigned long size);
474
475 /*
476 * Validate address range filters: make sure the HW supports the
477 * requested configuration and number of filters; return 0 if the
478 * supplied filters are valid, -errno otherwise.
479 *
480 * Runs in the context of the ioctl()ing process and is not serialized
481 * with the rest of the PMU callbacks.
482 */
483 int (*addr_filters_validate) (struct list_head *filters);
484 /* optional */
485
486 /*
487 * Synchronize address range filter configuration:
488 * translate hw-agnostic filters into hardware configuration in
489 * event::hw::addr_filters.
490 *
491 * Runs as a part of filter sync sequence that is done in ->start()
492 * callback by calling perf_event_addr_filters_sync().
493 *
494 * May (and should) traverse event::addr_filters::list, for which its
495 * caller provides necessary serialization.
496 */
497 void (*addr_filters_sync) (struct perf_event *event);
498 /* optional */
499
500 /*
501 * Check if event can be used for aux_output purposes for
502 * events of this PMU.
503 *
504 * Runs from perf_event_open(). Should return 0 for "no match"
505 * or non-zero for "match".
506 */
507 int (*aux_output_match) (struct perf_event *event);
508 /* optional */
509
510 /*
511 * Filter events for PMU-specific reasons.
512 */
513 int (*filter_match) (struct perf_event *event); /* optional */
514
515 /*
516 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
517 */
518 int (*check_period) (struct perf_event *event, u64 value); /* optional */
519 };
520
521 enum perf_addr_filter_action_t {
522 PERF_ADDR_FILTER_ACTION_STOP = 0,
523 PERF_ADDR_FILTER_ACTION_START,
524 PERF_ADDR_FILTER_ACTION_FILTER,
525 };
526
527 /**
528 * struct perf_addr_filter - address range filter definition
529 * @entry: event's filter list linkage
530 * @path: object file's path for file-based filters
531 * @offset: filter range offset
532 * @size: filter range size (size==0 means single address trigger)
533 * @action: filter/start/stop
534 *
535 * This is a hardware-agnostic filter configuration as specified by the user.
536 */
537 struct perf_addr_filter {
538 struct list_head entry;
539 struct path path;
540 unsigned long offset;
541 unsigned long size;
542 enum perf_addr_filter_action_t action;
543 };
544
545 /**
546 * struct perf_addr_filters_head - container for address range filters
547 * @list: list of filters for this event
548 * @lock: spinlock that serializes accesses to the @list and event's
549 * (and its children's) filter generations.
550 * @nr_file_filters: number of file-based filters
551 *
552 * A child event will use parent's @list (and therefore @lock), so they are
553 * bundled together; see perf_event_addr_filters().
554 */
555 struct perf_addr_filters_head {
556 struct list_head list;
557 raw_spinlock_t lock;
558 unsigned int nr_file_filters;
559 };
560
561 struct perf_addr_filter_range {
562 unsigned long start;
563 unsigned long size;
564 };
565
566 /**
567 * enum perf_event_state - the states of an event:
568 */
569 enum perf_event_state {
570 PERF_EVENT_STATE_DEAD = -4,
571 PERF_EVENT_STATE_EXIT = -3,
572 PERF_EVENT_STATE_ERROR = -2,
573 PERF_EVENT_STATE_OFF = -1,
574 PERF_EVENT_STATE_INACTIVE = 0,
575 PERF_EVENT_STATE_ACTIVE = 1,
576 };
577
578 struct file;
579 struct perf_sample_data;
580
581 typedef void (*perf_overflow_handler_t)(struct perf_event *,
582 struct perf_sample_data *,
583 struct pt_regs *regs);
584
585 /*
586 * Event capabilities. For event_caps and groups caps.
587 *
588 * PERF_EV_CAP_SOFTWARE: Is a software event.
589 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
590 * from any CPU in the package where it is active.
591 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
592 * cannot be a group leader. If an event with this flag is detached from the
593 * group it is scheduled out and moved into an unrecoverable ERROR state.
594 */
595 #define PERF_EV_CAP_SOFTWARE BIT(0)
596 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
597 #define PERF_EV_CAP_SIBLING BIT(2)
598
599 #define SWEVENT_HLIST_BITS 8
600 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
601
602 struct swevent_hlist {
603 struct hlist_head heads[SWEVENT_HLIST_SIZE];
604 struct rcu_head rcu_head;
605 };
606
607 #define PERF_ATTACH_CONTEXT 0x01
608 #define PERF_ATTACH_GROUP 0x02
609 #define PERF_ATTACH_TASK 0x04
610 #define PERF_ATTACH_TASK_DATA 0x08
611 #define PERF_ATTACH_ITRACE 0x10
612 #define PERF_ATTACH_SCHED_CB 0x20
613 #define PERF_ATTACH_CHILD 0x40
614
615 struct perf_cgroup;
616 struct perf_buffer;
617
618 struct pmu_event_list {
619 raw_spinlock_t lock;
620 struct list_head list;
621 };
622
623 #define for_each_sibling_event(sibling, event) \
624 if ((event)->group_leader == (event)) \
625 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
626
627 /**
628 * struct perf_event - performance event kernel representation:
629 */
630 struct perf_event {
631 #ifdef CONFIG_PERF_EVENTS
632 /*
633 * entry onto perf_event_context::event_list;
634 * modifications require ctx->lock
635 * RCU safe iterations.
636 */
637 struct list_head event_entry;
638
639 /*
640 * Locked for modification by both ctx->mutex and ctx->lock; holding
641 * either sufficies for read.
642 */
643 struct list_head sibling_list;
644 struct list_head active_list;
645 /*
646 * Node on the pinned or flexible tree located at the event context;
647 */
648 struct rb_node group_node;
649 u64 group_index;
650 /*
651 * We need storage to track the entries in perf_pmu_migrate_context; we
652 * cannot use the event_entry because of RCU and we want to keep the
653 * group in tact which avoids us using the other two entries.
654 */
655 struct list_head migrate_entry;
656
657 struct hlist_node hlist_entry;
658 struct list_head active_entry;
659 int nr_siblings;
660
661 /* Not serialized. Only written during event initialization. */
662 int event_caps;
663 /* The cumulative AND of all event_caps for events in this group. */
664 int group_caps;
665
666 #ifndef __GENKSYMS__
667 unsigned int group_generation;
668 #endif
669 struct perf_event *group_leader;
670 struct pmu *pmu;
671 void *pmu_private;
672
673 enum perf_event_state state;
674 unsigned int attach_state;
675 local64_t count;
676 atomic64_t child_count;
677
678 /*
679 * These are the total time in nanoseconds that the event
680 * has been enabled (i.e. eligible to run, and the task has
681 * been scheduled in, if this is a per-task event)
682 * and running (scheduled onto the CPU), respectively.
683 */
684 u64 total_time_enabled;
685 u64 total_time_running;
686 u64 tstamp;
687
688 struct perf_event_attr attr;
689 u16 header_size;
690 u16 id_header_size;
691 u16 read_size;
692 struct hw_perf_event hw;
693
694 struct perf_event_context *ctx;
695 atomic_long_t refcount;
696
697 /*
698 * These accumulate total time (in nanoseconds) that children
699 * events have been enabled and running, respectively.
700 */
701 atomic64_t child_total_time_enabled;
702 atomic64_t child_total_time_running;
703
704 /*
705 * Protect attach/detach and child_list:
706 */
707 struct mutex child_mutex;
708 struct list_head child_list;
709 struct perf_event *parent;
710
711 int oncpu;
712 int cpu;
713
714 struct list_head owner_entry;
715 struct task_struct *owner;
716
717 /* mmap bits */
718 struct mutex mmap_mutex;
719 atomic_t mmap_count;
720
721 struct perf_buffer *rb;
722 struct list_head rb_entry;
723 unsigned long rcu_batches;
724 int rcu_pending;
725
726 /* poll related */
727 wait_queue_head_t waitq;
728 struct fasync_struct *fasync;
729
730 /* delayed work for NMIs and such */
731 unsigned int pending_wakeup;
732 unsigned int pending_kill;
733 unsigned int pending_disable;
734 unsigned int pending_sigtrap;
735 unsigned long pending_addr; /* SIGTRAP */
736 struct irq_work pending_irq;
737 struct callback_head pending_task;
738 unsigned int pending_work;
739
740 atomic_t event_limit;
741
742 /* address range filters */
743 struct perf_addr_filters_head addr_filters;
744 /* vma address array for file-based filders */
745 struct perf_addr_filter_range *addr_filter_ranges;
746 unsigned long addr_filters_gen;
747
748 /* for aux_output events */
749 struct perf_event *aux_event;
750
751 void (*destroy)(struct perf_event *);
752 struct rcu_head rcu_head;
753
754 struct pid_namespace *ns;
755 u64 id;
756
757 u64 (*clock)(void);
758 perf_overflow_handler_t overflow_handler;
759 void *overflow_handler_context;
760 #ifdef CONFIG_BPF_SYSCALL
761 perf_overflow_handler_t orig_overflow_handler;
762 struct bpf_prog *prog;
763 u64 bpf_cookie;
764 #endif
765
766 #ifdef CONFIG_EVENT_TRACING
767 struct trace_event_call *tp_event;
768 struct event_filter *filter;
769 #ifdef CONFIG_FUNCTION_TRACER
770 struct ftrace_ops ftrace_ops;
771 #endif
772 #endif
773
774 #ifdef CONFIG_CGROUP_PERF
775 struct perf_cgroup *cgrp; /* cgroup event is attach to */
776 #endif
777
778 #ifdef CONFIG_SECURITY
779 void *security;
780 #endif
781 struct list_head sb_list;
782 #endif /* CONFIG_PERF_EVENTS */
783 };
784
785
786 struct perf_event_groups {
787 struct rb_root tree;
788 u64 index;
789 };
790
791 /**
792 * struct perf_event_context - event context structure
793 *
794 * Used as a container for task events and CPU events as well:
795 */
796 struct perf_event_context {
797 struct pmu *pmu;
798 /*
799 * Protect the states of the events in the list,
800 * nr_active, and the list:
801 */
802 raw_spinlock_t lock;
803 /*
804 * Protect the list of events. Locking either mutex or lock
805 * is sufficient to ensure the list doesn't change; to change
806 * the list you need to lock both the mutex and the spinlock.
807 */
808 struct mutex mutex;
809
810 struct list_head active_ctx_list;
811 struct perf_event_groups pinned_groups;
812 struct perf_event_groups flexible_groups;
813 struct list_head event_list;
814
815 struct list_head pinned_active;
816 struct list_head flexible_active;
817
818 int nr_events;
819 int nr_active;
820 int is_active;
821 int nr_stat;
822 int nr_freq;
823 int rotate_disable;
824 /*
825 * Set when nr_events != nr_active, except tolerant to events not
826 * necessary to be active due to scheduling constraints, such as cgroups.
827 */
828 int rotate_necessary;
829 refcount_t refcount;
830 struct task_struct *task;
831
832 /*
833 * Context clock, runs when context enabled.
834 */
835 u64 time;
836 u64 timestamp;
837 u64 timeoffset;
838
839 /*
840 * These fields let us detect when two contexts have both
841 * been cloned (inherited) from a common ancestor.
842 */
843 struct perf_event_context *parent_ctx;
844 u64 parent_gen;
845 u64 generation;
846 int pin_count;
847 #ifdef CONFIG_CGROUP_PERF
848 int nr_cgroups; /* cgroup evts */
849 #endif
850 void *task_ctx_data; /* pmu specific data */
851 struct rcu_head rcu_head;
852
853 /*
854 * Sum (event->pending_sigtrap + event->pending_work)
855 *
856 * The SIGTRAP is targeted at ctx->task, as such it won't do changing
857 * that until the signal is delivered.
858 */
859 local_t nr_pending;
860 };
861
862 /*
863 * Number of contexts where an event can trigger:
864 * task, softirq, hardirq, nmi.
865 */
866 #define PERF_NR_CONTEXTS 4
867
868 /**
869 * struct perf_cpu_context - per cpu event context structure
870 */
871 struct perf_cpu_context {
872 struct perf_event_context ctx;
873 struct perf_event_context *task_ctx;
874 int active_oncpu;
875 int exclusive;
876
877 raw_spinlock_t hrtimer_lock;
878 struct hrtimer hrtimer;
879 ktime_t hrtimer_interval;
880 unsigned int hrtimer_active;
881
882 #ifdef CONFIG_CGROUP_PERF
883 struct perf_cgroup *cgrp;
884 struct list_head cgrp_cpuctx_entry;
885 #endif
886
887 struct list_head sched_cb_entry;
888 int sched_cb_usage;
889
890 int online;
891 /*
892 * Per-CPU storage for iterators used in visit_groups_merge. The default
893 * storage is of size 2 to hold the CPU and any CPU event iterators.
894 */
895 int heap_size;
896 struct perf_event **heap;
897 struct perf_event *heap_default[2];
898 };
899
900 struct perf_output_handle {
901 struct perf_event *event;
902 struct perf_buffer *rb;
903 unsigned long wakeup;
904 unsigned long size;
905 u64 aux_flags;
906 union {
907 void *addr;
908 unsigned long head;
909 };
910 int page;
911 };
912
913 struct bpf_perf_event_data_kern {
914 bpf_user_pt_regs_t *regs;
915 struct perf_sample_data *data;
916 struct perf_event *event;
917 };
918
919 #ifdef CONFIG_CGROUP_PERF
920
921 /*
922 * perf_cgroup_info keeps track of time_enabled for a cgroup.
923 * This is a per-cpu dynamically allocated data structure.
924 */
925 struct perf_cgroup_info {
926 u64 time;
927 u64 timestamp;
928 u64 timeoffset;
929 int active;
930 };
931
932 struct perf_cgroup {
933 struct cgroup_subsys_state css;
934 struct perf_cgroup_info __percpu *info;
935 };
936
937 /*
938 * Must ensure cgroup is pinned (css_get) before calling
939 * this function. In other words, we cannot call this function
940 * if there is no cgroup event for the current CPU context.
941 */
942 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)943 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
944 {
945 return container_of(task_css_check(task, perf_event_cgrp_id,
946 ctx ? lockdep_is_held(&ctx->lock)
947 : true),
948 struct perf_cgroup, css);
949 }
950 #endif /* CONFIG_CGROUP_PERF */
951
952 #ifdef CONFIG_PERF_EVENTS
953
954 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
955 struct perf_event *event);
956 extern void perf_aux_output_end(struct perf_output_handle *handle,
957 unsigned long size);
958 extern int perf_aux_output_skip(struct perf_output_handle *handle,
959 unsigned long size);
960 extern void *perf_get_aux(struct perf_output_handle *handle);
961 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
962 extern void perf_event_itrace_started(struct perf_event *event);
963
964 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
965 extern void perf_pmu_unregister(struct pmu *pmu);
966
967 extern void __perf_event_task_sched_in(struct task_struct *prev,
968 struct task_struct *task);
969 extern void __perf_event_task_sched_out(struct task_struct *prev,
970 struct task_struct *next);
971 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
972 extern void perf_event_exit_task(struct task_struct *child);
973 extern void perf_event_free_task(struct task_struct *task);
974 extern void perf_event_delayed_put(struct task_struct *task);
975 extern struct file *perf_event_get(unsigned int fd);
976 extern const struct perf_event *perf_get_event(struct file *file);
977 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
978 extern void perf_event_print_debug(void);
979 extern void perf_pmu_disable(struct pmu *pmu);
980 extern void perf_pmu_enable(struct pmu *pmu);
981 extern void perf_sched_cb_dec(struct pmu *pmu);
982 extern void perf_sched_cb_inc(struct pmu *pmu);
983 extern int perf_event_task_disable(void);
984 extern int perf_event_task_enable(void);
985
986 extern void perf_pmu_resched(struct pmu *pmu);
987
988 extern int perf_event_refresh(struct perf_event *event, int refresh);
989 extern void perf_event_update_userpage(struct perf_event *event);
990 extern int perf_event_release_kernel(struct perf_event *event);
991 extern struct perf_event *
992 perf_event_create_kernel_counter(struct perf_event_attr *attr,
993 int cpu,
994 struct task_struct *task,
995 perf_overflow_handler_t callback,
996 void *context);
997 extern void perf_pmu_migrate_context(struct pmu *pmu,
998 int src_cpu, int dst_cpu);
999 int perf_event_read_local(struct perf_event *event, u64 *value,
1000 u64 *enabled, u64 *running);
1001 extern u64 perf_event_read_value(struct perf_event *event,
1002 u64 *enabled, u64 *running);
1003
1004
1005 struct perf_sample_data {
1006 /*
1007 * Fields set by perf_sample_data_init(), group so as to
1008 * minimize the cachelines touched.
1009 */
1010 u64 addr;
1011 struct perf_raw_record *raw;
1012 struct perf_branch_stack *br_stack;
1013 u64 period;
1014 union perf_sample_weight weight;
1015 u64 txn;
1016 union perf_mem_data_src data_src;
1017
1018 /*
1019 * The other fields, optionally {set,used} by
1020 * perf_{prepare,output}_sample().
1021 */
1022 u64 type;
1023 u64 ip;
1024 struct {
1025 u32 pid;
1026 u32 tid;
1027 } tid_entry;
1028 u64 time;
1029 u64 id;
1030 u64 stream_id;
1031 struct {
1032 u32 cpu;
1033 u32 reserved;
1034 } cpu_entry;
1035 struct perf_callchain_entry *callchain;
1036 u64 aux_size;
1037
1038 struct perf_regs regs_user;
1039 struct perf_regs regs_intr;
1040 u64 stack_user_size;
1041
1042 u64 phys_addr;
1043 u64 cgroup;
1044 u64 data_page_size;
1045 u64 code_page_size;
1046 } ____cacheline_aligned;
1047
1048 /* default value for data source */
1049 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1050 PERF_MEM_S(LVL, NA) |\
1051 PERF_MEM_S(SNOOP, NA) |\
1052 PERF_MEM_S(LOCK, NA) |\
1053 PERF_MEM_S(TLB, NA))
1054
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)1055 static inline void perf_sample_data_init(struct perf_sample_data *data,
1056 u64 addr, u64 period)
1057 {
1058 /* remaining struct members initialized in perf_prepare_sample() */
1059 data->addr = addr;
1060 data->raw = NULL;
1061 data->br_stack = NULL;
1062 data->period = period;
1063 data->weight.full = 0;
1064 data->data_src.val = PERF_MEM_NA;
1065 data->txn = 0;
1066 }
1067
1068 extern void perf_output_sample(struct perf_output_handle *handle,
1069 struct perf_event_header *header,
1070 struct perf_sample_data *data,
1071 struct perf_event *event);
1072 extern void perf_prepare_sample(struct perf_event_header *header,
1073 struct perf_sample_data *data,
1074 struct perf_event *event,
1075 struct pt_regs *regs);
1076
1077 extern int perf_event_overflow(struct perf_event *event,
1078 struct perf_sample_data *data,
1079 struct pt_regs *regs);
1080
1081 extern void perf_event_output_forward(struct perf_event *event,
1082 struct perf_sample_data *data,
1083 struct pt_regs *regs);
1084 extern void perf_event_output_backward(struct perf_event *event,
1085 struct perf_sample_data *data,
1086 struct pt_regs *regs);
1087 extern int perf_event_output(struct perf_event *event,
1088 struct perf_sample_data *data,
1089 struct pt_regs *regs);
1090
1091 static inline bool
__is_default_overflow_handler(perf_overflow_handler_t overflow_handler)1092 __is_default_overflow_handler(perf_overflow_handler_t overflow_handler)
1093 {
1094 if (likely(overflow_handler == perf_event_output_forward))
1095 return true;
1096 if (unlikely(overflow_handler == perf_event_output_backward))
1097 return true;
1098 return false;
1099 }
1100
1101 #define is_default_overflow_handler(event) \
1102 __is_default_overflow_handler((event)->overflow_handler)
1103
1104 #ifdef CONFIG_BPF_SYSCALL
uses_default_overflow_handler(struct perf_event * event)1105 static inline bool uses_default_overflow_handler(struct perf_event *event)
1106 {
1107 if (likely(is_default_overflow_handler(event)))
1108 return true;
1109
1110 return __is_default_overflow_handler(event->orig_overflow_handler);
1111 }
1112 #else
1113 #define uses_default_overflow_handler(event) \
1114 is_default_overflow_handler(event)
1115 #endif
1116
1117 extern void
1118 perf_event_header__init_id(struct perf_event_header *header,
1119 struct perf_sample_data *data,
1120 struct perf_event *event);
1121 extern void
1122 perf_event__output_id_sample(struct perf_event *event,
1123 struct perf_output_handle *handle,
1124 struct perf_sample_data *sample);
1125
1126 extern void
1127 perf_log_lost_samples(struct perf_event *event, u64 lost);
1128
event_has_any_exclude_flag(struct perf_event * event)1129 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1130 {
1131 struct perf_event_attr *attr = &event->attr;
1132
1133 return attr->exclude_idle || attr->exclude_user ||
1134 attr->exclude_kernel || attr->exclude_hv ||
1135 attr->exclude_guest || attr->exclude_host;
1136 }
1137
is_sampling_event(struct perf_event * event)1138 static inline bool is_sampling_event(struct perf_event *event)
1139 {
1140 return event->attr.sample_period != 0;
1141 }
1142
1143 /*
1144 * Return 1 for a software event, 0 for a hardware event
1145 */
is_software_event(struct perf_event * event)1146 static inline int is_software_event(struct perf_event *event)
1147 {
1148 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1149 }
1150
1151 /*
1152 * Return 1 for event in sw context, 0 for event in hw context
1153 */
in_software_context(struct perf_event * event)1154 static inline int in_software_context(struct perf_event *event)
1155 {
1156 return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1157 }
1158
is_exclusive_pmu(struct pmu * pmu)1159 static inline int is_exclusive_pmu(struct pmu *pmu)
1160 {
1161 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1162 }
1163
1164 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1165
1166 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1167 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1168
1169 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1170 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1171 #endif
1172
1173 /*
1174 * When generating a perf sample in-line, instead of from an interrupt /
1175 * exception, we lack a pt_regs. This is typically used from software events
1176 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1177 *
1178 * We typically don't need a full set, but (for x86) do require:
1179 * - ip for PERF_SAMPLE_IP
1180 * - cs for user_mode() tests
1181 * - sp for PERF_SAMPLE_CALLCHAIN
1182 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1183 *
1184 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1185 * things like PERF_SAMPLE_REGS_INTR.
1186 */
perf_fetch_caller_regs(struct pt_regs * regs)1187 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1188 {
1189 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1190 }
1191
1192 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1193 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1194 {
1195 if (static_key_false(&perf_swevent_enabled[event_id]))
1196 __perf_sw_event(event_id, nr, regs, addr);
1197 }
1198
1199 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1200
1201 /*
1202 * 'Special' version for the scheduler, it hard assumes no recursion,
1203 * which is guaranteed by us not actually scheduling inside other swevents
1204 * because those disable preemption.
1205 */
__perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1206 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1207 {
1208 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1209
1210 perf_fetch_caller_regs(regs);
1211 ___perf_sw_event(event_id, nr, regs, addr);
1212 }
1213
1214 extern struct static_key_false perf_sched_events;
1215
__perf_sw_enabled(int swevt)1216 static __always_inline bool __perf_sw_enabled(int swevt)
1217 {
1218 return static_key_false(&perf_swevent_enabled[swevt]);
1219 }
1220
perf_event_task_migrate(struct task_struct * task)1221 static inline void perf_event_task_migrate(struct task_struct *task)
1222 {
1223 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1224 task->sched_migrated = 1;
1225 }
1226
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1227 static inline void perf_event_task_sched_in(struct task_struct *prev,
1228 struct task_struct *task)
1229 {
1230 if (static_branch_unlikely(&perf_sched_events))
1231 __perf_event_task_sched_in(prev, task);
1232
1233 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1234 task->sched_migrated) {
1235 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1236 task->sched_migrated = 0;
1237 }
1238 }
1239
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1240 static inline void perf_event_task_sched_out(struct task_struct *prev,
1241 struct task_struct *next)
1242 {
1243 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1244 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1245
1246 #ifdef CONFIG_CGROUP_PERF
1247 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1248 perf_cgroup_from_task(prev, NULL) !=
1249 perf_cgroup_from_task(next, NULL))
1250 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1251 #endif
1252
1253 if (static_branch_unlikely(&perf_sched_events))
1254 __perf_event_task_sched_out(prev, next);
1255 }
1256
1257 extern void perf_event_mmap(struct vm_area_struct *vma);
1258
1259 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1260 bool unregister, const char *sym);
1261 extern void perf_event_bpf_event(struct bpf_prog *prog,
1262 enum perf_bpf_event_type type,
1263 u16 flags);
1264
1265 #ifdef CONFIG_GUEST_PERF_EVENTS
1266 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
perf_get_guest_cbs(void)1267 static inline struct perf_guest_info_callbacks *perf_get_guest_cbs(void)
1268 {
1269 /*
1270 * Callbacks are RCU-protected and must be READ_ONCE to avoid reloading
1271 * the callbacks between a !NULL check and dereferences, to ensure
1272 * pending stores/changes to the callback pointers are visible before a
1273 * non-NULL perf_guest_cbs is visible to readers, and to prevent a
1274 * module from unloading callbacks while readers are active.
1275 */
1276 return rcu_dereference(perf_guest_cbs);
1277 }
perf_guest_state(void)1278 static inline unsigned int perf_guest_state(void)
1279 {
1280 struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
1281
1282 return guest_cbs ? guest_cbs->state() : 0;
1283 }
perf_guest_get_ip(void)1284 static inline unsigned long perf_guest_get_ip(void)
1285 {
1286 struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
1287
1288 /*
1289 * Arbitrarily return '0' in the unlikely scenario that the callbacks
1290 * are unregistered between checking guest state and getting the IP.
1291 */
1292 return guest_cbs ? guest_cbs->get_ip() : 0;
1293 }
perf_guest_handle_intel_pt_intr(void)1294 static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1295 {
1296 struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
1297
1298 if (guest_cbs && guest_cbs->handle_intel_pt_intr)
1299 return guest_cbs->handle_intel_pt_intr();
1300 return 0;
1301 }
1302 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1303 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1304 #else
perf_guest_state(void)1305 static inline unsigned int perf_guest_state(void) { return 0; }
perf_guest_get_ip(void)1306 static inline unsigned long perf_guest_get_ip(void) { return 0; }
perf_guest_handle_intel_pt_intr(void)1307 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1308 #endif /* CONFIG_GUEST_PERF_EVENTS */
1309
1310 extern void perf_event_exec(void);
1311 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1312 extern void perf_event_namespaces(struct task_struct *tsk);
1313 extern void perf_event_fork(struct task_struct *tsk);
1314 extern void perf_event_text_poke(const void *addr,
1315 const void *old_bytes, size_t old_len,
1316 const void *new_bytes, size_t new_len);
1317
1318 /* Callchains */
1319 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1320
1321 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1322 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1323 extern struct perf_callchain_entry *
1324 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1325 u32 max_stack, bool crosstask, bool add_mark);
1326 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1327 extern int get_callchain_buffers(int max_stack);
1328 extern void put_callchain_buffers(void);
1329 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1330 extern void put_callchain_entry(int rctx);
1331
1332 extern int sysctl_perf_event_max_stack;
1333 extern int sysctl_perf_event_max_contexts_per_stack;
1334
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1335 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1336 {
1337 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1338 struct perf_callchain_entry *entry = ctx->entry;
1339 entry->ip[entry->nr++] = ip;
1340 ++ctx->contexts;
1341 return 0;
1342 } else {
1343 ctx->contexts_maxed = true;
1344 return -1; /* no more room, stop walking the stack */
1345 }
1346 }
1347
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1348 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1349 {
1350 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1351 struct perf_callchain_entry *entry = ctx->entry;
1352 entry->ip[entry->nr++] = ip;
1353 ++ctx->nr;
1354 return 0;
1355 } else {
1356 return -1; /* no more room, stop walking the stack */
1357 }
1358 }
1359
1360 extern int sysctl_perf_event_paranoid;
1361 extern int sysctl_perf_event_mlock;
1362 extern int sysctl_perf_event_sample_rate;
1363 extern int sysctl_perf_cpu_time_max_percent;
1364
1365 extern void perf_sample_event_took(u64 sample_len_ns);
1366
1367 int perf_proc_update_handler(struct ctl_table *table, int write,
1368 void *buffer, size_t *lenp, loff_t *ppos);
1369 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1370 void *buffer, size_t *lenp, loff_t *ppos);
1371 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1372 void *buffer, size_t *lenp, loff_t *ppos);
1373
1374 /* Access to perf_event_open(2) syscall. */
1375 #define PERF_SECURITY_OPEN 0
1376
1377 /* Finer grained perf_event_open(2) access control. */
1378 #define PERF_SECURITY_CPU 1
1379 #define PERF_SECURITY_KERNEL 2
1380 #define PERF_SECURITY_TRACEPOINT 3
1381
perf_is_paranoid(void)1382 static inline int perf_is_paranoid(void)
1383 {
1384 return sysctl_perf_event_paranoid > -1;
1385 }
1386
perf_allow_kernel(struct perf_event_attr * attr)1387 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1388 {
1389 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1390 return -EACCES;
1391
1392 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1393 }
1394
perf_allow_cpu(struct perf_event_attr * attr)1395 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1396 {
1397 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1398 return -EACCES;
1399
1400 return security_perf_event_open(attr, PERF_SECURITY_CPU);
1401 }
1402
perf_allow_tracepoint(struct perf_event_attr * attr)1403 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1404 {
1405 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1406 return -EPERM;
1407
1408 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1409 }
1410
1411 extern void perf_event_init(void);
1412 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1413 int entry_size, struct pt_regs *regs,
1414 struct hlist_head *head, int rctx,
1415 struct task_struct *task);
1416 extern void perf_bp_event(struct perf_event *event, void *data);
1417
1418 #ifndef perf_misc_flags
1419 # define perf_misc_flags(regs) \
1420 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1421 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1422 #endif
1423 #ifndef perf_arch_bpf_user_pt_regs
1424 # define perf_arch_bpf_user_pt_regs(regs) regs
1425 #endif
1426
has_branch_stack(struct perf_event * event)1427 static inline bool has_branch_stack(struct perf_event *event)
1428 {
1429 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1430 }
1431
needs_branch_stack(struct perf_event * event)1432 static inline bool needs_branch_stack(struct perf_event *event)
1433 {
1434 return event->attr.branch_sample_type != 0;
1435 }
1436
has_aux(struct perf_event * event)1437 static inline bool has_aux(struct perf_event *event)
1438 {
1439 return event->pmu->setup_aux;
1440 }
1441
is_write_backward(struct perf_event * event)1442 static inline bool is_write_backward(struct perf_event *event)
1443 {
1444 return !!event->attr.write_backward;
1445 }
1446
has_addr_filter(struct perf_event * event)1447 static inline bool has_addr_filter(struct perf_event *event)
1448 {
1449 return event->pmu->nr_addr_filters;
1450 }
1451
1452 /*
1453 * An inherited event uses parent's filters
1454 */
1455 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1456 perf_event_addr_filters(struct perf_event *event)
1457 {
1458 struct perf_addr_filters_head *ifh = &event->addr_filters;
1459
1460 if (event->parent)
1461 ifh = &event->parent->addr_filters;
1462
1463 return ifh;
1464 }
1465
1466 extern void perf_event_addr_filters_sync(struct perf_event *event);
1467
1468 extern int perf_output_begin(struct perf_output_handle *handle,
1469 struct perf_sample_data *data,
1470 struct perf_event *event, unsigned int size);
1471 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1472 struct perf_sample_data *data,
1473 struct perf_event *event,
1474 unsigned int size);
1475 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1476 struct perf_sample_data *data,
1477 struct perf_event *event,
1478 unsigned int size);
1479
1480 extern void perf_output_end(struct perf_output_handle *handle);
1481 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1482 const void *buf, unsigned int len);
1483 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1484 unsigned int len);
1485 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1486 struct perf_output_handle *handle,
1487 unsigned long from, unsigned long to);
1488 extern int perf_swevent_get_recursion_context(void);
1489 extern void perf_swevent_put_recursion_context(int rctx);
1490 extern u64 perf_swevent_set_period(struct perf_event *event);
1491 extern void perf_event_enable(struct perf_event *event);
1492 extern void perf_event_disable(struct perf_event *event);
1493 extern void perf_event_disable_local(struct perf_event *event);
1494 extern void perf_event_disable_inatomic(struct perf_event *event);
1495 extern void perf_event_task_tick(void);
1496 extern int perf_event_account_interrupt(struct perf_event *event);
1497 extern int perf_event_period(struct perf_event *event, u64 value);
1498 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1499 #else /* !CONFIG_PERF_EVENTS: */
1500 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1501 perf_aux_output_begin(struct perf_output_handle *handle,
1502 struct perf_event *event) { return NULL; }
1503 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1504 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1505 { }
1506 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1507 perf_aux_output_skip(struct perf_output_handle *handle,
1508 unsigned long size) { return -EINVAL; }
1509 static inline void *
perf_get_aux(struct perf_output_handle * handle)1510 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1511 static inline void
perf_event_task_migrate(struct task_struct * task)1512 perf_event_task_migrate(struct task_struct *task) { }
1513 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1514 perf_event_task_sched_in(struct task_struct *prev,
1515 struct task_struct *task) { }
1516 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1517 perf_event_task_sched_out(struct task_struct *prev,
1518 struct task_struct *next) { }
perf_event_init_task(struct task_struct * child,u64 clone_flags)1519 static inline int perf_event_init_task(struct task_struct *child,
1520 u64 clone_flags) { return 0; }
perf_event_exit_task(struct task_struct * child)1521 static inline void perf_event_exit_task(struct task_struct *child) { }
perf_event_free_task(struct task_struct * task)1522 static inline void perf_event_free_task(struct task_struct *task) { }
perf_event_delayed_put(struct task_struct * task)1523 static inline void perf_event_delayed_put(struct task_struct *task) { }
perf_event_get(unsigned int fd)1524 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1525 static inline const struct perf_event *perf_get_event(struct file *file)
1526 {
1527 return ERR_PTR(-EINVAL);
1528 }
perf_event_attrs(struct perf_event * event)1529 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1530 {
1531 return ERR_PTR(-EINVAL);
1532 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1533 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1534 u64 *enabled, u64 *running)
1535 {
1536 return -EINVAL;
1537 }
perf_event_print_debug(void)1538 static inline void perf_event_print_debug(void) { }
perf_event_task_disable(void)1539 static inline int perf_event_task_disable(void) { return -EINVAL; }
perf_event_task_enable(void)1540 static inline int perf_event_task_enable(void) { return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1541 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1542 {
1543 return -EINVAL;
1544 }
1545
1546 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1547 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1548 static inline void
perf_bp_event(struct perf_event * event,void * data)1549 perf_bp_event(struct perf_event *event, void *data) { }
1550
perf_event_mmap(struct vm_area_struct * vma)1551 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1552
1553 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)1554 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1555 bool unregister, const char *sym) { }
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)1556 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1557 enum perf_bpf_event_type type,
1558 u16 flags) { }
perf_event_exec(void)1559 static inline void perf_event_exec(void) { }
perf_event_comm(struct task_struct * tsk,bool exec)1560 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
perf_event_namespaces(struct task_struct * tsk)1561 static inline void perf_event_namespaces(struct task_struct *tsk) { }
perf_event_fork(struct task_struct * tsk)1562 static inline void perf_event_fork(struct task_struct *tsk) { }
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)1563 static inline void perf_event_text_poke(const void *addr,
1564 const void *old_bytes,
1565 size_t old_len,
1566 const void *new_bytes,
1567 size_t new_len) { }
perf_event_init(void)1568 static inline void perf_event_init(void) { }
perf_swevent_get_recursion_context(void)1569 static inline int perf_swevent_get_recursion_context(void) { return -1; }
perf_swevent_put_recursion_context(int rctx)1570 static inline void perf_swevent_put_recursion_context(int rctx) { }
perf_swevent_set_period(struct perf_event * event)1571 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
perf_event_enable(struct perf_event * event)1572 static inline void perf_event_enable(struct perf_event *event) { }
perf_event_disable(struct perf_event * event)1573 static inline void perf_event_disable(struct perf_event *event) { }
__perf_event_disable(void * info)1574 static inline int __perf_event_disable(void *info) { return -1; }
perf_event_task_tick(void)1575 static inline void perf_event_task_tick(void) { }
perf_event_release_kernel(struct perf_event * event)1576 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
perf_event_period(struct perf_event * event,u64 value)1577 static inline int perf_event_period(struct perf_event *event, u64 value)
1578 {
1579 return -EINVAL;
1580 }
perf_event_pause(struct perf_event * event,bool reset)1581 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1582 {
1583 return 0;
1584 }
1585 #endif
1586
1587 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1588 extern void perf_restore_debug_store(void);
1589 #else
perf_restore_debug_store(void)1590 static inline void perf_restore_debug_store(void) { }
1591 #endif
1592
perf_raw_frag_last(const struct perf_raw_frag * frag)1593 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1594 {
1595 return frag->pad < sizeof(u64);
1596 }
1597
1598 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1599
1600 struct perf_pmu_events_attr {
1601 struct device_attribute attr;
1602 u64 id;
1603 const char *event_str;
1604 };
1605
1606 struct perf_pmu_events_ht_attr {
1607 struct device_attribute attr;
1608 u64 id;
1609 const char *event_str_ht;
1610 const char *event_str_noht;
1611 };
1612
1613 struct perf_pmu_events_hybrid_attr {
1614 struct device_attribute attr;
1615 u64 id;
1616 const char *event_str;
1617 u64 pmu_type;
1618 };
1619
1620 struct perf_pmu_format_hybrid_attr {
1621 struct device_attribute attr;
1622 u64 pmu_type;
1623 };
1624
1625 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1626 char *page);
1627
1628 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1629 static struct perf_pmu_events_attr _var = { \
1630 .attr = __ATTR(_name, 0444, _show, NULL), \
1631 .id = _id, \
1632 };
1633
1634 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1635 static struct perf_pmu_events_attr _var = { \
1636 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1637 .id = 0, \
1638 .event_str = _str, \
1639 };
1640
1641 #define PMU_EVENT_ATTR_ID(_name, _show, _id) \
1642 (&((struct perf_pmu_events_attr[]) { \
1643 { .attr = __ATTR(_name, 0444, _show, NULL), \
1644 .id = _id, } \
1645 })[0].attr.attr)
1646
1647 #define PMU_FORMAT_ATTR(_name, _format) \
1648 static ssize_t \
1649 _name##_show(struct device *dev, \
1650 struct device_attribute *attr, \
1651 char *page) \
1652 { \
1653 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1654 return sprintf(page, _format "\n"); \
1655 } \
1656 \
1657 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1658
1659 /* Performance counter hotplug functions */
1660 #ifdef CONFIG_PERF_EVENTS
1661 int perf_event_init_cpu(unsigned int cpu);
1662 int perf_event_exit_cpu(unsigned int cpu);
1663 #else
1664 #define perf_event_init_cpu NULL
1665 #define perf_event_exit_cpu NULL
1666 #endif
1667
1668 extern void __weak arch_perf_update_userpage(struct perf_event *event,
1669 struct perf_event_mmap_page *userpg,
1670 u64 now);
1671
1672 #ifdef CONFIG_MMU
1673 extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr);
1674 #endif
1675
1676 #endif /* _LINUX_PERF_EVENT_H */
1677