• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef __LINUX_PREEMPT_H
3  #define __LINUX_PREEMPT_H
4  
5  /*
6   * include/linux/preempt.h - macros for accessing and manipulating
7   * preempt_count (used for kernel preemption, interrupt count, etc.)
8   */
9  
10  #include <linux/linkage.h>
11  #include <linux/list.h>
12  
13  /*
14   * We put the hardirq and softirq counter into the preemption
15   * counter. The bitmask has the following meaning:
16   *
17   * - bits 0-7 are the preemption count (max preemption depth: 256)
18   * - bits 8-15 are the softirq count (max # of softirqs: 256)
19   *
20   * The hardirq count could in theory be the same as the number of
21   * interrupts in the system, but we run all interrupt handlers with
22   * interrupts disabled, so we cannot have nesting interrupts. Though
23   * there are a few palaeontologic drivers which reenable interrupts in
24   * the handler, so we need more than one bit here.
25   *
26   *         PREEMPT_MASK:	0x000000ff
27   *         SOFTIRQ_MASK:	0x0000ff00
28   *         HARDIRQ_MASK:	0x000f0000
29   *             NMI_MASK:	0x00f00000
30   * PREEMPT_NEED_RESCHED:	0x80000000
31   */
32  #define PREEMPT_BITS	8
33  #define SOFTIRQ_BITS	8
34  #define HARDIRQ_BITS	4
35  #define NMI_BITS	4
36  
37  #define PREEMPT_SHIFT	0
38  #define SOFTIRQ_SHIFT	(PREEMPT_SHIFT + PREEMPT_BITS)
39  #define HARDIRQ_SHIFT	(SOFTIRQ_SHIFT + SOFTIRQ_BITS)
40  #define NMI_SHIFT	(HARDIRQ_SHIFT + HARDIRQ_BITS)
41  
42  #define __IRQ_MASK(x)	((1UL << (x))-1)
43  
44  #define PREEMPT_MASK	(__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT)
45  #define SOFTIRQ_MASK	(__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT)
46  #define HARDIRQ_MASK	(__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT)
47  #define NMI_MASK	(__IRQ_MASK(NMI_BITS)     << NMI_SHIFT)
48  
49  #define PREEMPT_OFFSET	(1UL << PREEMPT_SHIFT)
50  #define SOFTIRQ_OFFSET	(1UL << SOFTIRQ_SHIFT)
51  #define HARDIRQ_OFFSET	(1UL << HARDIRQ_SHIFT)
52  #define NMI_OFFSET	(1UL << NMI_SHIFT)
53  
54  #define SOFTIRQ_DISABLE_OFFSET	(2 * SOFTIRQ_OFFSET)
55  
56  #define PREEMPT_DISABLED	(PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
57  
58  /*
59   * Disable preemption until the scheduler is running -- use an unconditional
60   * value so that it also works on !PREEMPT_COUNT kernels.
61   *
62   * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
63   */
64  #define INIT_PREEMPT_COUNT	PREEMPT_OFFSET
65  
66  /*
67   * Initial preempt_count value; reflects the preempt_count schedule invariant
68   * which states that during context switches:
69   *
70   *    preempt_count() == 2*PREEMPT_DISABLE_OFFSET
71   *
72   * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
73   * Note: See finish_task_switch().
74   */
75  #define FORK_PREEMPT_COUNT	(2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
76  
77  /* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */
78  #include <asm/preempt.h>
79  
80  /**
81   * interrupt_context_level - return interrupt context level
82   *
83   * Returns the current interrupt context level.
84   *  0 - normal context
85   *  1 - softirq context
86   *  2 - hardirq context
87   *  3 - NMI context
88   */
interrupt_context_level(void)89  static __always_inline unsigned char interrupt_context_level(void)
90  {
91  	unsigned long pc = preempt_count();
92  	unsigned char level = 0;
93  
94  	level += !!(pc & (NMI_MASK));
95  	level += !!(pc & (NMI_MASK | HARDIRQ_MASK));
96  	level += !!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET));
97  
98  	return level;
99  }
100  
101  /*
102   * These macro definitions avoid redundant invocations of preempt_count()
103   * because such invocations would result in redundant loads given that
104   * preempt_count() is commonly implemented with READ_ONCE().
105   */
106  
107  #define nmi_count()	(preempt_count() & NMI_MASK)
108  #define hardirq_count()	(preempt_count() & HARDIRQ_MASK)
109  #ifdef CONFIG_PREEMPT_RT
110  # define softirq_count()	(current->softirq_disable_cnt & SOFTIRQ_MASK)
111  # define irq_count()		((preempt_count() & (NMI_MASK | HARDIRQ_MASK)) | softirq_count())
112  #else
113  # define softirq_count()	(preempt_count() & SOFTIRQ_MASK)
114  # define irq_count()		(preempt_count() & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_MASK))
115  #endif
116  
117  /*
118   * Macros to retrieve the current execution context:
119   *
120   * in_nmi()		- We're in NMI context
121   * in_hardirq()		- We're in hard IRQ context
122   * in_serving_softirq()	- We're in softirq context
123   * in_task()		- We're in task context
124   */
125  #define in_nmi()		(nmi_count())
126  #define in_hardirq()		(hardirq_count())
127  #define in_serving_softirq()	(softirq_count() & SOFTIRQ_OFFSET)
128  #ifdef CONFIG_PREEMPT_RT
129  # define in_task()		(!((preempt_count() & (NMI_MASK | HARDIRQ_MASK)) | in_serving_softirq()))
130  #else
131  # define in_task()		(!(preempt_count() & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
132  #endif
133  
134  /*
135   * The following macros are deprecated and should not be used in new code:
136   * in_irq()       - Obsolete version of in_hardirq()
137   * in_softirq()   - We have BH disabled, or are processing softirqs
138   * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled
139   */
140  #define in_irq()		(hardirq_count())
141  #define in_softirq()		(softirq_count())
142  #define in_interrupt()		(irq_count())
143  
144  /*
145   * The preempt_count offset after preempt_disable();
146   */
147  #if defined(CONFIG_PREEMPT_COUNT)
148  # define PREEMPT_DISABLE_OFFSET	PREEMPT_OFFSET
149  #else
150  # define PREEMPT_DISABLE_OFFSET	0
151  #endif
152  
153  /*
154   * The preempt_count offset after spin_lock()
155   */
156  #if !defined(CONFIG_PREEMPT_RT)
157  #define PREEMPT_LOCK_OFFSET	PREEMPT_DISABLE_OFFSET
158  #else
159  #define PREEMPT_LOCK_OFFSET	0
160  #endif
161  
162  /*
163   * The preempt_count offset needed for things like:
164   *
165   *  spin_lock_bh()
166   *
167   * Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and
168   * softirqs, such that unlock sequences of:
169   *
170   *  spin_unlock();
171   *  local_bh_enable();
172   *
173   * Work as expected.
174   */
175  #define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET)
176  
177  /*
178   * Are we running in atomic context?  WARNING: this macro cannot
179   * always detect atomic context; in particular, it cannot know about
180   * held spinlocks in non-preemptible kernels.  Thus it should not be
181   * used in the general case to determine whether sleeping is possible.
182   * Do not use in_atomic() in driver code.
183   */
184  #define in_atomic()	(preempt_count() != 0)
185  
186  /*
187   * Check whether we were atomic before we did preempt_disable():
188   * (used by the scheduler)
189   */
190  #define in_atomic_preempt_off() (preempt_count() != PREEMPT_DISABLE_OFFSET)
191  
192  #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
193  extern void preempt_count_add(int val);
194  extern void preempt_count_sub(int val);
195  #define preempt_count_dec_and_test() \
196  	({ preempt_count_sub(1); should_resched(0); })
197  #else
198  #define preempt_count_add(val)	__preempt_count_add(val)
199  #define preempt_count_sub(val)	__preempt_count_sub(val)
200  #define preempt_count_dec_and_test() __preempt_count_dec_and_test()
201  #endif
202  
203  #define __preempt_count_inc() __preempt_count_add(1)
204  #define __preempt_count_dec() __preempt_count_sub(1)
205  
206  #define preempt_count_inc() preempt_count_add(1)
207  #define preempt_count_dec() preempt_count_sub(1)
208  
209  #ifdef CONFIG_PREEMPT_COUNT
210  
211  #define preempt_disable() \
212  do { \
213  	preempt_count_inc(); \
214  	barrier(); \
215  } while (0)
216  
217  #define sched_preempt_enable_no_resched() \
218  do { \
219  	barrier(); \
220  	preempt_count_dec(); \
221  } while (0)
222  
223  #define preempt_enable_no_resched() sched_preempt_enable_no_resched()
224  
225  #define preemptible()	(preempt_count() == 0 && !irqs_disabled())
226  
227  #ifdef CONFIG_PREEMPTION
228  #define preempt_enable() \
229  do { \
230  	barrier(); \
231  	if (unlikely(preempt_count_dec_and_test())) \
232  		__preempt_schedule(); \
233  } while (0)
234  
235  #define preempt_enable_notrace() \
236  do { \
237  	barrier(); \
238  	if (unlikely(__preempt_count_dec_and_test())) \
239  		__preempt_schedule_notrace(); \
240  } while (0)
241  
242  #define preempt_check_resched() \
243  do { \
244  	if (should_resched(0)) \
245  		__preempt_schedule(); \
246  } while (0)
247  
248  #else /* !CONFIG_PREEMPTION */
249  #define preempt_enable() \
250  do { \
251  	barrier(); \
252  	preempt_count_dec(); \
253  } while (0)
254  
255  #define preempt_enable_notrace() \
256  do { \
257  	barrier(); \
258  	__preempt_count_dec(); \
259  } while (0)
260  
261  #define preempt_check_resched() do { } while (0)
262  #endif /* CONFIG_PREEMPTION */
263  
264  #define preempt_disable_notrace() \
265  do { \
266  	__preempt_count_inc(); \
267  	barrier(); \
268  } while (0)
269  
270  #define preempt_enable_no_resched_notrace() \
271  do { \
272  	barrier(); \
273  	__preempt_count_dec(); \
274  } while (0)
275  
276  #else /* !CONFIG_PREEMPT_COUNT */
277  
278  /*
279   * Even if we don't have any preemption, we need preempt disable/enable
280   * to be barriers, so that we don't have things like get_user/put_user
281   * that can cause faults and scheduling migrate into our preempt-protected
282   * region.
283   */
284  #define preempt_disable()			barrier()
285  #define sched_preempt_enable_no_resched()	barrier()
286  #define preempt_enable_no_resched()		barrier()
287  #define preempt_enable()			barrier()
288  #define preempt_check_resched()			do { } while (0)
289  
290  #define preempt_disable_notrace()		barrier()
291  #define preempt_enable_no_resched_notrace()	barrier()
292  #define preempt_enable_notrace()		barrier()
293  #define preemptible()				0
294  
295  #endif /* CONFIG_PREEMPT_COUNT */
296  
297  #ifdef MODULE
298  /*
299   * Modules have no business playing preemption tricks.
300   */
301  #undef sched_preempt_enable_no_resched
302  #undef preempt_enable_no_resched
303  #undef preempt_enable_no_resched_notrace
304  #undef preempt_check_resched
305  #endif
306  
307  #define preempt_set_need_resched() \
308  do { \
309  	set_preempt_need_resched(); \
310  } while (0)
311  #define preempt_fold_need_resched() \
312  do { \
313  	if (tif_need_resched()) \
314  		set_preempt_need_resched(); \
315  } while (0)
316  
317  #ifdef CONFIG_PREEMPT_NOTIFIERS
318  
319  struct preempt_notifier;
320  
321  /**
322   * preempt_ops - notifiers called when a task is preempted and rescheduled
323   * @sched_in: we're about to be rescheduled:
324   *    notifier: struct preempt_notifier for the task being scheduled
325   *    cpu:  cpu we're scheduled on
326   * @sched_out: we've just been preempted
327   *    notifier: struct preempt_notifier for the task being preempted
328   *    next: the task that's kicking us out
329   *
330   * Please note that sched_in and out are called under different
331   * contexts.  sched_out is called with rq lock held and irq disabled
332   * while sched_in is called without rq lock and irq enabled.  This
333   * difference is intentional and depended upon by its users.
334   */
335  struct preempt_ops {
336  	void (*sched_in)(struct preempt_notifier *notifier, int cpu);
337  	void (*sched_out)(struct preempt_notifier *notifier,
338  			  struct task_struct *next);
339  };
340  
341  /**
342   * preempt_notifier - key for installing preemption notifiers
343   * @link: internal use
344   * @ops: defines the notifier functions to be called
345   *
346   * Usually used in conjunction with container_of().
347   */
348  struct preempt_notifier {
349  	struct hlist_node link;
350  	struct preempt_ops *ops;
351  };
352  
353  void preempt_notifier_inc(void);
354  void preempt_notifier_dec(void);
355  void preempt_notifier_register(struct preempt_notifier *notifier);
356  void preempt_notifier_unregister(struct preempt_notifier *notifier);
357  
preempt_notifier_init(struct preempt_notifier * notifier,struct preempt_ops * ops)358  static inline void preempt_notifier_init(struct preempt_notifier *notifier,
359  				     struct preempt_ops *ops)
360  {
361  	INIT_HLIST_NODE(&notifier->link);
362  	notifier->ops = ops;
363  }
364  
365  #endif
366  
367  #ifdef CONFIG_SMP
368  
369  /*
370   * Migrate-Disable and why it is undesired.
371   *
372   * When a preempted task becomes elegible to run under the ideal model (IOW it
373   * becomes one of the M highest priority tasks), it might still have to wait
374   * for the preemptee's migrate_disable() section to complete. Thereby suffering
375   * a reduction in bandwidth in the exact duration of the migrate_disable()
376   * section.
377   *
378   * Per this argument, the change from preempt_disable() to migrate_disable()
379   * gets us:
380   *
381   * - a higher priority tasks gains reduced wake-up latency; with preempt_disable()
382   *   it would have had to wait for the lower priority task.
383   *
384   * - a lower priority tasks; which under preempt_disable() could've instantly
385   *   migrated away when another CPU becomes available, is now constrained
386   *   by the ability to push the higher priority task away, which might itself be
387   *   in a migrate_disable() section, reducing it's available bandwidth.
388   *
389   * IOW it trades latency / moves the interference term, but it stays in the
390   * system, and as long as it remains unbounded, the system is not fully
391   * deterministic.
392   *
393   *
394   * The reason we have it anyway.
395   *
396   * PREEMPT_RT breaks a number of assumptions traditionally held. By forcing a
397   * number of primitives into becoming preemptible, they would also allow
398   * migration. This turns out to break a bunch of per-cpu usage. To this end,
399   * all these primitives employ migirate_disable() to restore this implicit
400   * assumption.
401   *
402   * This is a 'temporary' work-around at best. The correct solution is getting
403   * rid of the above assumptions and reworking the code to employ explicit
404   * per-cpu locking or short preempt-disable regions.
405   *
406   * The end goal must be to get rid of migrate_disable(), alternatively we need
407   * a schedulability theory that does not depend on abritrary migration.
408   *
409   *
410   * Notes on the implementation.
411   *
412   * The implementation is particularly tricky since existing code patterns
413   * dictate neither migrate_disable() nor migrate_enable() is allowed to block.
414   * This means that it cannot use cpus_read_lock() to serialize against hotplug,
415   * nor can it easily migrate itself into a pending affinity mask change on
416   * migrate_enable().
417   *
418   *
419   * Note: even non-work-conserving schedulers like semi-partitioned depends on
420   *       migration, so migrate_disable() is not only a problem for
421   *       work-conserving schedulers.
422   *
423   */
424  extern void migrate_disable(void);
425  extern void migrate_enable(void);
426  
427  #else
428  
migrate_disable(void)429  static inline void migrate_disable(void) { }
migrate_enable(void)430  static inline void migrate_enable(void) { }
431  
432  #endif /* CONFIG_SMP */
433  
434  #endif /* __LINUX_PREEMPT_H */
435