• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * <linux/usb/gadget.h>
4  *
5  * We call the USB code inside a Linux-based peripheral device a "gadget"
6  * driver, except for the hardware-specific bus glue.  One USB host can
7  * talk to many USB gadgets, but the gadgets are only able to communicate
8  * to one host.
9  *
10  *
11  * (C) Copyright 2002-2004 by David Brownell
12  * All Rights Reserved.
13  *
14  * This software is licensed under the GNU GPL version 2.
15  */
16 
17 #ifndef __LINUX_USB_GADGET_H
18 #define __LINUX_USB_GADGET_H
19 
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/list.h>
24 #include <linux/slab.h>
25 #include <linux/scatterlist.h>
26 #include <linux/types.h>
27 #include <linux/workqueue.h>
28 #include <linux/usb/ch9.h>
29 
30 #define UDC_TRACE_STR_MAX	512
31 
32 struct usb_ep;
33 
34 /**
35  * struct usb_request - describes one i/o request
36  * @buf: Buffer used for data.  Always provide this; some controllers
37  *	only use PIO, or don't use DMA for some endpoints.
38  * @dma: DMA address corresponding to 'buf'.  If you don't set this
39  *	field, and the usb controller needs one, it is responsible
40  *	for mapping and unmapping the buffer.
41  * @sg: a scatterlist for SG-capable controllers.
42  * @num_sgs: number of SG entries
43  * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
44  * @length: Length of that data
45  * @stream_id: The stream id, when USB3.0 bulk streams are being used
46  * @is_last: Indicates if this is the last request of a stream_id before
47  *	switching to a different stream (required for DWC3 controllers).
48  * @no_interrupt: If true, hints that no completion irq is needed.
49  *	Helpful sometimes with deep request queues that are handled
50  *	directly by DMA controllers.
51  * @zero: If true, when writing data, makes the last packet be "short"
52  *     by adding a zero length packet as needed;
53  * @short_not_ok: When reading data, makes short packets be
54  *     treated as errors (queue stops advancing till cleanup).
55  * @dma_mapped: Indicates if request has been mapped to DMA (internal)
56  * @complete: Function called when request completes, so this request and
57  *	its buffer may be re-used.  The function will always be called with
58  *	interrupts disabled, and it must not sleep.
59  *	Reads terminate with a short packet, or when the buffer fills,
60  *	whichever comes first.  When writes terminate, some data bytes
61  *	will usually still be in flight (often in a hardware fifo).
62  *	Errors (for reads or writes) stop the queue from advancing
63  *	until the completion function returns, so that any transfers
64  *	invalidated by the error may first be dequeued.
65  * @context: For use by the completion callback
66  * @list: For use by the gadget driver.
67  * @frame_number: Reports the interval number in (micro)frame in which the
68  *	isochronous transfer was transmitted or received.
69  * @status: Reports completion code, zero or a negative errno.
70  *	Normally, faults block the transfer queue from advancing until
71  *	the completion callback returns.
72  *	Code "-ESHUTDOWN" indicates completion caused by device disconnect,
73  *	or when the driver disabled the endpoint.
74  * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
75  *	transfers) this may be less than the requested length.  If the
76  *	short_not_ok flag is set, short reads are treated as errors
77  *	even when status otherwise indicates successful completion.
78  *	Note that for writes (IN transfers) some data bytes may still
79  *	reside in a device-side FIFO when the request is reported as
80  *	complete.
81  *
82  * These are allocated/freed through the endpoint they're used with.  The
83  * hardware's driver can add extra per-request data to the memory it returns,
84  * which often avoids separate memory allocations (potential failures),
85  * later when the request is queued.
86  *
87  * Request flags affect request handling, such as whether a zero length
88  * packet is written (the "zero" flag), whether a short read should be
89  * treated as an error (blocking request queue advance, the "short_not_ok"
90  * flag), or hinting that an interrupt is not required (the "no_interrupt"
91  * flag, for use with deep request queues).
92  *
93  * Bulk endpoints can use any size buffers, and can also be used for interrupt
94  * transfers. interrupt-only endpoints can be much less functional.
95  *
96  * NOTE:  this is analogous to 'struct urb' on the host side, except that
97  * it's thinner and promotes more pre-allocation.
98  */
99 
100 struct usb_request {
101 	void			*buf;
102 	unsigned		length;
103 	dma_addr_t		dma;
104 
105 	struct scatterlist	*sg;
106 	unsigned		num_sgs;
107 	unsigned		num_mapped_sgs;
108 
109 	unsigned		stream_id:16;
110 	unsigned		is_last:1;
111 	unsigned		no_interrupt:1;
112 	unsigned		zero:1;
113 	unsigned		short_not_ok:1;
114 	unsigned		dma_mapped:1;
115 
116 	void			(*complete)(struct usb_ep *ep,
117 					struct usb_request *req);
118 	void			*context;
119 	struct list_head	list;
120 
121 	unsigned		frame_number;		/* ISO ONLY */
122 
123 	int			status;
124 	unsigned		actual;
125 
126 	ANDROID_KABI_RESERVE(1);
127 };
128 
129 /*-------------------------------------------------------------------------*/
130 
131 /* endpoint-specific parts of the api to the usb controller hardware.
132  * unlike the urb model, (de)multiplexing layers are not required.
133  * (so this api could slash overhead if used on the host side...)
134  *
135  * note that device side usb controllers commonly differ in how many
136  * endpoints they support, as well as their capabilities.
137  */
138 struct usb_ep_ops {
139 	int (*enable) (struct usb_ep *ep,
140 		const struct usb_endpoint_descriptor *desc);
141 	int (*disable) (struct usb_ep *ep);
142 	void (*dispose) (struct usb_ep *ep);
143 
144 	struct usb_request *(*alloc_request) (struct usb_ep *ep,
145 		gfp_t gfp_flags);
146 	void (*free_request) (struct usb_ep *ep, struct usb_request *req);
147 
148 	int (*queue) (struct usb_ep *ep, struct usb_request *req,
149 		gfp_t gfp_flags);
150 	int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
151 
152 	int (*set_halt) (struct usb_ep *ep, int value);
153 	int (*set_wedge) (struct usb_ep *ep);
154 
155 	int (*fifo_status) (struct usb_ep *ep);
156 	void (*fifo_flush) (struct usb_ep *ep);
157 
158 	ANDROID_KABI_RESERVE(1);
159 };
160 
161 /**
162  * struct usb_ep_caps - endpoint capabilities description
163  * @type_control:Endpoint supports control type (reserved for ep0).
164  * @type_iso:Endpoint supports isochronous transfers.
165  * @type_bulk:Endpoint supports bulk transfers.
166  * @type_int:Endpoint supports interrupt transfers.
167  * @dir_in:Endpoint supports IN direction.
168  * @dir_out:Endpoint supports OUT direction.
169  */
170 struct usb_ep_caps {
171 	unsigned type_control:1;
172 	unsigned type_iso:1;
173 	unsigned type_bulk:1;
174 	unsigned type_int:1;
175 	unsigned dir_in:1;
176 	unsigned dir_out:1;
177 };
178 
179 #define USB_EP_CAPS_TYPE_CONTROL     0x01
180 #define USB_EP_CAPS_TYPE_ISO         0x02
181 #define USB_EP_CAPS_TYPE_BULK        0x04
182 #define USB_EP_CAPS_TYPE_INT         0x08
183 #define USB_EP_CAPS_TYPE_ALL \
184 	(USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT)
185 #define USB_EP_CAPS_DIR_IN           0x01
186 #define USB_EP_CAPS_DIR_OUT          0x02
187 #define USB_EP_CAPS_DIR_ALL  (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT)
188 
189 #define USB_EP_CAPS(_type, _dir) \
190 	{ \
191 		.type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \
192 		.type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \
193 		.type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \
194 		.type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \
195 		.dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \
196 		.dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \
197 	}
198 
199 /**
200  * struct usb_ep - device side representation of USB endpoint
201  * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
202  * @ops: Function pointers used to access hardware-specific operations.
203  * @ep_list:the gadget's ep_list holds all of its endpoints
204  * @caps:The structure describing types and directions supported by endpoint.
205  * @enabled: The current endpoint enabled/disabled state.
206  * @claimed: True if this endpoint is claimed by a function.
207  * @maxpacket:The maximum packet size used on this endpoint.  The initial
208  *	value can sometimes be reduced (hardware allowing), according to
209  *	the endpoint descriptor used to configure the endpoint.
210  * @maxpacket_limit:The maximum packet size value which can be handled by this
211  *	endpoint. It's set once by UDC driver when endpoint is initialized, and
212  *	should not be changed. Should not be confused with maxpacket.
213  * @max_streams: The maximum number of streams supported
214  *	by this EP (0 - 16, actual number is 2^n)
215  * @mult: multiplier, 'mult' value for SS Isoc EPs
216  * @maxburst: the maximum number of bursts supported by this EP (for usb3)
217  * @driver_data:for use by the gadget driver.
218  * @address: used to identify the endpoint when finding descriptor that
219  *	matches connection speed
220  * @desc: endpoint descriptor.  This pointer is set before the endpoint is
221  *	enabled and remains valid until the endpoint is disabled.
222  * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
223  *	descriptor that is used to configure the endpoint
224  *
225  * the bus controller driver lists all the general purpose endpoints in
226  * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
227  * and is accessed only in response to a driver setup() callback.
228  */
229 
230 struct usb_ep {
231 	void			*driver_data;
232 
233 	const char		*name;
234 	const struct usb_ep_ops	*ops;
235 	struct list_head	ep_list;
236 	struct usb_ep_caps	caps;
237 	bool			claimed;
238 	bool			enabled;
239 	unsigned		maxpacket:16;
240 	unsigned		maxpacket_limit:16;
241 	unsigned		max_streams:16;
242 	unsigned		mult:2;
243 	unsigned		maxburst:5;
244 	u8			address;
245 	const struct usb_endpoint_descriptor	*desc;
246 	const struct usb_ss_ep_comp_descriptor	*comp_desc;
247 
248 	ANDROID_KABI_RESERVE(1);
249 };
250 
251 /*-------------------------------------------------------------------------*/
252 
253 #if IS_ENABLED(CONFIG_USB_GADGET)
254 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, unsigned maxpacket_limit);
255 int usb_ep_enable(struct usb_ep *ep);
256 int usb_ep_disable(struct usb_ep *ep);
257 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags);
258 void usb_ep_free_request(struct usb_ep *ep, struct usb_request *req);
259 int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags);
260 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req);
261 int usb_ep_set_halt(struct usb_ep *ep);
262 int usb_ep_clear_halt(struct usb_ep *ep);
263 int usb_ep_set_wedge(struct usb_ep *ep);
264 int usb_ep_fifo_status(struct usb_ep *ep);
265 void usb_ep_fifo_flush(struct usb_ep *ep);
266 #else
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)267 static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
268 		unsigned maxpacket_limit)
269 { }
usb_ep_enable(struct usb_ep * ep)270 static inline int usb_ep_enable(struct usb_ep *ep)
271 { return 0; }
usb_ep_disable(struct usb_ep * ep)272 static inline int usb_ep_disable(struct usb_ep *ep)
273 { return 0; }
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)274 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
275 		gfp_t gfp_flags)
276 { return NULL; }
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)277 static inline void usb_ep_free_request(struct usb_ep *ep,
278 		struct usb_request *req)
279 { }
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)280 static inline int usb_ep_queue(struct usb_ep *ep, struct usb_request *req,
281 		gfp_t gfp_flags)
282 { return 0; }
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)283 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
284 { return 0; }
usb_ep_set_halt(struct usb_ep * ep)285 static inline int usb_ep_set_halt(struct usb_ep *ep)
286 { return 0; }
usb_ep_clear_halt(struct usb_ep * ep)287 static inline int usb_ep_clear_halt(struct usb_ep *ep)
288 { return 0; }
usb_ep_set_wedge(struct usb_ep * ep)289 static inline int usb_ep_set_wedge(struct usb_ep *ep)
290 { return 0; }
usb_ep_fifo_status(struct usb_ep * ep)291 static inline int usb_ep_fifo_status(struct usb_ep *ep)
292 { return 0; }
usb_ep_fifo_flush(struct usb_ep * ep)293 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
294 { }
295 #endif /* USB_GADGET */
296 
297 /*-------------------------------------------------------------------------*/
298 
299 struct usb_dcd_config_params {
300 	__u8  bU1devExitLat;	/* U1 Device exit Latency */
301 #define USB_DEFAULT_U1_DEV_EXIT_LAT	0x01	/* Less then 1 microsec */
302 	__le16 bU2DevExitLat;	/* U2 Device exit Latency */
303 #define USB_DEFAULT_U2_DEV_EXIT_LAT	0x1F4	/* Less then 500 microsec */
304 	__u8 besl_baseline;	/* Recommended baseline BESL (0-15) */
305 	__u8 besl_deep;		/* Recommended deep BESL (0-15) */
306 #define USB_DEFAULT_BESL_UNSPECIFIED	0xFF	/* No recommended value */
307 };
308 
309 
310 struct usb_gadget;
311 struct usb_gadget_driver;
312 struct usb_udc;
313 
314 /* the rest of the api to the controller hardware: device operations,
315  * which don't involve endpoints (or i/o).
316  */
317 struct usb_gadget_ops {
318 	int	(*get_frame)(struct usb_gadget *);
319 	int	(*wakeup)(struct usb_gadget *);
320 	int	(*set_remote_wakeup)(struct usb_gadget *, int set);
321 	int	(*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
322 	int	(*vbus_session) (struct usb_gadget *, int is_active);
323 	int	(*vbus_draw) (struct usb_gadget *, unsigned mA);
324 	int	(*pullup) (struct usb_gadget *, int is_on);
325 	int	(*ioctl)(struct usb_gadget *,
326 				unsigned code, unsigned long param);
327 	void	(*get_config_params)(struct usb_gadget *,
328 				     struct usb_dcd_config_params *);
329 	int	(*udc_start)(struct usb_gadget *,
330 			struct usb_gadget_driver *);
331 	int	(*udc_stop)(struct usb_gadget *);
332 	void	(*udc_set_speed)(struct usb_gadget *, enum usb_device_speed);
333 	void	(*udc_set_ssp_rate)(struct usb_gadget *gadget,
334 			enum usb_ssp_rate rate);
335 	void	(*udc_async_callbacks)(struct usb_gadget *gadget, bool enable);
336 	struct usb_ep *(*match_ep)(struct usb_gadget *,
337 			struct usb_endpoint_descriptor *,
338 			struct usb_ss_ep_comp_descriptor *);
339 	int	(*check_config)(struct usb_gadget *gadget);
340 
341 	ANDROID_KABI_RESERVE(1);
342 	ANDROID_KABI_RESERVE(2);
343 	ANDROID_KABI_RESERVE(3);
344 	ANDROID_KABI_RESERVE(4);
345 };
346 
347 /**
348  * struct usb_gadget - represents a usb device
349  * @work: (internal use) Workqueue to be used for sysfs_notify()
350  * @udc: struct usb_udc pointer for this gadget
351  * @ops: Function pointers used to access hardware-specific operations.
352  * @ep0: Endpoint zero, used when reading or writing responses to
353  *	driver setup() requests
354  * @ep_list: List of other endpoints supported by the device.
355  * @speed: Speed of current connection to USB host.
356  * @max_speed: Maximal speed the UDC can handle.  UDC must support this
357  *      and all slower speeds.
358  * @ssp_rate: Current connected SuperSpeed Plus signaling rate and lane count.
359  * @max_ssp_rate: Maximum SuperSpeed Plus signaling rate and lane count the UDC
360  *	can handle. The UDC must support this and all slower speeds and lower
361  *	number of lanes.
362  * @state: the state we are now (attached, suspended, configured, etc)
363  * @name: Identifies the controller hardware type.  Used in diagnostics
364  *	and sometimes configuration.
365  * @dev: Driver model state for this abstract device.
366  * @isoch_delay: value from Set Isoch Delay request. Only valid on SS/SSP
367  * @out_epnum: last used out ep number
368  * @in_epnum: last used in ep number
369  * @mA: last set mA value
370  * @otg_caps: OTG capabilities of this gadget.
371  * @sg_supported: true if we can handle scatter-gather
372  * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
373  *	gadget driver must provide a USB OTG descriptor.
374  * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
375  *	is in the Mini-AB jack, and HNP has been used to switch roles
376  *	so that the "A" device currently acts as A-Peripheral, not A-Host.
377  * @a_hnp_support: OTG device feature flag, indicating that the A-Host
378  *	supports HNP at this port.
379  * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
380  *	only supports HNP on a different root port.
381  * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
382  *	enabled HNP support.
383  * @hnp_polling_support: OTG device feature flag, indicating if the OTG device
384  *	in peripheral mode can support HNP polling.
385  * @host_request_flag: OTG device feature flag, indicating if A-Peripheral
386  *	or B-Peripheral wants to take host role.
387  * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
388  *	MaxPacketSize.
389  * @quirk_altset_not_supp: UDC controller doesn't support alt settings.
390  * @quirk_stall_not_supp: UDC controller doesn't support stalling.
391  * @quirk_zlp_not_supp: UDC controller doesn't support ZLP.
392  * @quirk_avoids_skb_reserve: udc/platform wants to avoid skb_reserve() in
393  *	u_ether.c to improve performance.
394  * @is_selfpowered: if the gadget is self-powered.
395  * @deactivated: True if gadget is deactivated - in deactivated state it cannot
396  *	be connected.
397  * @connected: True if gadget is connected.
398  * @lpm_capable: If the gadget max_speed is FULL or HIGH, this flag
399  *	indicates that it supports LPM as per the LPM ECN & errata.
400  * @wakeup_capable: True if gadget is capable of sending remote wakeup.
401  * @wakeup_armed: True if gadget is armed by the host for remote wakeup.
402  * @irq: the interrupt number for device controller.
403  *
404  * Gadgets have a mostly-portable "gadget driver" implementing device
405  * functions, handling all usb configurations and interfaces.  Gadget
406  * drivers talk to hardware-specific code indirectly, through ops vectors.
407  * That insulates the gadget driver from hardware details, and packages
408  * the hardware endpoints through generic i/o queues.  The "usb_gadget"
409  * and "usb_ep" interfaces provide that insulation from the hardware.
410  *
411  * Except for the driver data, all fields in this structure are
412  * read-only to the gadget driver.  That driver data is part of the
413  * "driver model" infrastructure in 2.6 (and later) kernels, and for
414  * earlier systems is grouped in a similar structure that's not known
415  * to the rest of the kernel.
416  *
417  * Values of the three OTG device feature flags are updated before the
418  * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
419  * driver suspend() calls.  They are valid only when is_otg, and when the
420  * device is acting as a B-Peripheral (so is_a_peripheral is false).
421  */
422 struct usb_gadget {
423 	struct work_struct		work;
424 	struct usb_udc			*udc;
425 	/* readonly to gadget driver */
426 	const struct usb_gadget_ops	*ops;
427 	struct usb_ep			*ep0;
428 	struct list_head		ep_list;	/* of usb_ep */
429 	enum usb_device_speed		speed;
430 	enum usb_device_speed		max_speed;
431 
432 	/* USB SuperSpeed Plus only */
433 	enum usb_ssp_rate		ssp_rate;
434 	enum usb_ssp_rate		max_ssp_rate;
435 
436 	enum usb_device_state		state;
437 	const char			*name;
438 	struct device			dev;
439 	unsigned			isoch_delay;
440 	unsigned			out_epnum;
441 	unsigned			in_epnum;
442 	unsigned			mA;
443 	struct usb_otg_caps		*otg_caps;
444 
445 	unsigned			sg_supported:1;
446 	unsigned			is_otg:1;
447 	unsigned			is_a_peripheral:1;
448 	unsigned			b_hnp_enable:1;
449 	unsigned			a_hnp_support:1;
450 	unsigned			a_alt_hnp_support:1;
451 	unsigned			hnp_polling_support:1;
452 	unsigned			host_request_flag:1;
453 	unsigned			quirk_ep_out_aligned_size:1;
454 	unsigned			quirk_altset_not_supp:1;
455 	unsigned			quirk_stall_not_supp:1;
456 	unsigned			quirk_zlp_not_supp:1;
457 	unsigned			quirk_avoids_skb_reserve:1;
458 	unsigned			is_selfpowered:1;
459 	unsigned			deactivated:1;
460 	unsigned			connected:1;
461 	unsigned			lpm_capable:1;
462 	unsigned			wakeup_capable:1;
463 	unsigned			wakeup_armed:1;
464 	int				irq;
465 };
466 #define work_to_gadget(w)	(container_of((w), struct usb_gadget, work))
467 
468 /* Interface to the device model */
set_gadget_data(struct usb_gadget * gadget,void * data)469 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
470 	{ dev_set_drvdata(&gadget->dev, data); }
get_gadget_data(struct usb_gadget * gadget)471 static inline void *get_gadget_data(struct usb_gadget *gadget)
472 	{ return dev_get_drvdata(&gadget->dev); }
dev_to_usb_gadget(struct device * dev)473 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
474 {
475 	return container_of(dev, struct usb_gadget, dev);
476 }
usb_get_gadget(struct usb_gadget * gadget)477 static inline struct usb_gadget *usb_get_gadget(struct usb_gadget *gadget)
478 {
479 	get_device(&gadget->dev);
480 	return gadget;
481 }
usb_put_gadget(struct usb_gadget * gadget)482 static inline void usb_put_gadget(struct usb_gadget *gadget)
483 {
484 	put_device(&gadget->dev);
485 }
486 extern void usb_initialize_gadget(struct device *parent,
487 		struct usb_gadget *gadget, void (*release)(struct device *dev));
488 extern int usb_add_gadget(struct usb_gadget *gadget);
489 extern void usb_del_gadget(struct usb_gadget *gadget);
490 
491 /* Legacy device-model interface */
492 extern int usb_add_gadget_udc_release(struct device *parent,
493 		struct usb_gadget *gadget, void (*release)(struct device *dev));
494 extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
495 extern void usb_del_gadget_udc(struct usb_gadget *gadget);
496 extern char *usb_get_gadget_udc_name(void);
497 
498 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
499 #define gadget_for_each_ep(tmp, gadget) \
500 	list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
501 
502 /**
503  * usb_ep_align - returns @len aligned to ep's maxpacketsize.
504  * @ep: the endpoint whose maxpacketsize is used to align @len
505  * @len: buffer size's length to align to @ep's maxpacketsize
506  *
507  * This helper is used to align buffer's size to an ep's maxpacketsize.
508  */
usb_ep_align(struct usb_ep * ep,size_t len)509 static inline size_t usb_ep_align(struct usb_ep *ep, size_t len)
510 {
511 	int max_packet_size = (size_t)usb_endpoint_maxp(ep->desc);
512 
513 	return round_up(len, max_packet_size);
514 }
515 
516 /**
517  * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget
518  *	requires quirk_ep_out_aligned_size, otherwise returns len.
519  * @g: controller to check for quirk
520  * @ep: the endpoint whose maxpacketsize is used to align @len
521  * @len: buffer size's length to align to @ep's maxpacketsize
522  *
523  * This helper is used in case it's required for any reason to check and maybe
524  * align buffer's size to an ep's maxpacketsize.
525  */
526 static inline size_t
usb_ep_align_maybe(struct usb_gadget * g,struct usb_ep * ep,size_t len)527 usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len)
528 {
529 	return g->quirk_ep_out_aligned_size ? usb_ep_align(ep, len) : len;
530 }
531 
532 /**
533  * gadget_is_altset_supported - return true iff the hardware supports
534  *	altsettings
535  * @g: controller to check for quirk
536  */
gadget_is_altset_supported(struct usb_gadget * g)537 static inline int gadget_is_altset_supported(struct usb_gadget *g)
538 {
539 	return !g->quirk_altset_not_supp;
540 }
541 
542 /**
543  * gadget_is_stall_supported - return true iff the hardware supports stalling
544  * @g: controller to check for quirk
545  */
gadget_is_stall_supported(struct usb_gadget * g)546 static inline int gadget_is_stall_supported(struct usb_gadget *g)
547 {
548 	return !g->quirk_stall_not_supp;
549 }
550 
551 /**
552  * gadget_is_zlp_supported - return true iff the hardware supports zlp
553  * @g: controller to check for quirk
554  */
gadget_is_zlp_supported(struct usb_gadget * g)555 static inline int gadget_is_zlp_supported(struct usb_gadget *g)
556 {
557 	return !g->quirk_zlp_not_supp;
558 }
559 
560 /**
561  * gadget_avoids_skb_reserve - return true iff the hardware would like to avoid
562  *	skb_reserve to improve performance.
563  * @g: controller to check for quirk
564  */
gadget_avoids_skb_reserve(struct usb_gadget * g)565 static inline int gadget_avoids_skb_reserve(struct usb_gadget *g)
566 {
567 	return g->quirk_avoids_skb_reserve;
568 }
569 
570 /**
571  * gadget_is_dualspeed - return true iff the hardware handles high speed
572  * @g: controller that might support both high and full speeds
573  */
gadget_is_dualspeed(struct usb_gadget * g)574 static inline int gadget_is_dualspeed(struct usb_gadget *g)
575 {
576 	return g->max_speed >= USB_SPEED_HIGH;
577 }
578 
579 /**
580  * gadget_is_superspeed() - return true if the hardware handles superspeed
581  * @g: controller that might support superspeed
582  */
gadget_is_superspeed(struct usb_gadget * g)583 static inline int gadget_is_superspeed(struct usb_gadget *g)
584 {
585 	return g->max_speed >= USB_SPEED_SUPER;
586 }
587 
588 /**
589  * gadget_is_superspeed_plus() - return true if the hardware handles
590  *	superspeed plus
591  * @g: controller that might support superspeed plus
592  */
gadget_is_superspeed_plus(struct usb_gadget * g)593 static inline int gadget_is_superspeed_plus(struct usb_gadget *g)
594 {
595 	return g->max_speed >= USB_SPEED_SUPER_PLUS;
596 }
597 
598 /**
599  * gadget_is_otg - return true iff the hardware is OTG-ready
600  * @g: controller that might have a Mini-AB connector
601  *
602  * This is a runtime test, since kernels with a USB-OTG stack sometimes
603  * run on boards which only have a Mini-B (or Mini-A) connector.
604  */
gadget_is_otg(struct usb_gadget * g)605 static inline int gadget_is_otg(struct usb_gadget *g)
606 {
607 #ifdef CONFIG_USB_OTG
608 	return g->is_otg;
609 #else
610 	return 0;
611 #endif
612 }
613 
614 /*-------------------------------------------------------------------------*/
615 
616 #if IS_ENABLED(CONFIG_USB_GADGET)
617 int usb_gadget_frame_number(struct usb_gadget *gadget);
618 int usb_gadget_wakeup(struct usb_gadget *gadget);
619 int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set);
620 int usb_gadget_set_selfpowered(struct usb_gadget *gadget);
621 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget);
622 int usb_gadget_vbus_connect(struct usb_gadget *gadget);
623 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA);
624 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget);
625 int usb_gadget_connect(struct usb_gadget *gadget);
626 int usb_gadget_disconnect(struct usb_gadget *gadget);
627 int usb_gadget_deactivate(struct usb_gadget *gadget);
628 int usb_gadget_activate(struct usb_gadget *gadget);
629 int usb_gadget_check_config(struct usb_gadget *gadget);
630 #else
usb_gadget_frame_number(struct usb_gadget * gadget)631 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
632 { return 0; }
usb_gadget_wakeup(struct usb_gadget * gadget)633 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
634 { return 0; }
usb_gadget_set_remote_wakeup(struct usb_gadget * gadget,int set)635 static inline int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set)
636 { return 0; }
usb_gadget_set_selfpowered(struct usb_gadget * gadget)637 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
638 { return 0; }
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)639 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
640 { return 0; }
usb_gadget_vbus_connect(struct usb_gadget * gadget)641 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
642 { return 0; }
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)643 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
644 { return 0; }
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)645 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
646 { return 0; }
usb_gadget_connect(struct usb_gadget * gadget)647 static inline int usb_gadget_connect(struct usb_gadget *gadget)
648 { return 0; }
usb_gadget_disconnect(struct usb_gadget * gadget)649 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
650 { return 0; }
usb_gadget_deactivate(struct usb_gadget * gadget)651 static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
652 { return 0; }
usb_gadget_activate(struct usb_gadget * gadget)653 static inline int usb_gadget_activate(struct usb_gadget *gadget)
654 { return 0; }
usb_gadget_check_config(struct usb_gadget * gadget)655 static inline int usb_gadget_check_config(struct usb_gadget *gadget)
656 { return 0; }
657 #endif /* CONFIG_USB_GADGET */
658 
659 /*-------------------------------------------------------------------------*/
660 
661 /**
662  * struct usb_gadget_driver - driver for usb gadget devices
663  * @function: String describing the gadget's function
664  * @max_speed: Highest speed the driver handles.
665  * @setup: Invoked for ep0 control requests that aren't handled by
666  *	the hardware level driver. Most calls must be handled by
667  *	the gadget driver, including descriptor and configuration
668  *	management.  The 16 bit members of the setup data are in
669  *	USB byte order. Called in_interrupt; this may not sleep.  Driver
670  *	queues a response to ep0, or returns negative to stall.
671  * @disconnect: Invoked after all transfers have been stopped,
672  *	when the host is disconnected.  May be called in_interrupt; this
673  *	may not sleep.  Some devices can't detect disconnect, so this might
674  *	not be called except as part of controller shutdown.
675  * @bind: the driver's bind callback
676  * @unbind: Invoked when the driver is unbound from a gadget,
677  *	usually from rmmod (after a disconnect is reported).
678  *	Called in a context that permits sleeping.
679  * @suspend: Invoked on USB suspend.  May be called in_interrupt.
680  * @resume: Invoked on USB resume.  May be called in_interrupt.
681  * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
682  *	and should be called in_interrupt.
683  * @driver: Driver model state for this driver.
684  * @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL,
685  *	this driver will be bound to any available UDC.
686  * @pending: UDC core private data used for deferred probe of this driver.
687  * @match_existing_only: If udc is not found, return an error and don't add this
688  *      gadget driver to list of pending driver
689  *
690  * Devices are disabled till a gadget driver successfully bind()s, which
691  * means the driver will handle setup() requests needed to enumerate (and
692  * meet "chapter 9" requirements) then do some useful work.
693  *
694  * If gadget->is_otg is true, the gadget driver must provide an OTG
695  * descriptor during enumeration, or else fail the bind() call.  In such
696  * cases, no USB traffic may flow until both bind() returns without
697  * having called usb_gadget_disconnect(), and the USB host stack has
698  * initialized.
699  *
700  * Drivers use hardware-specific knowledge to configure the usb hardware.
701  * endpoint addressing is only one of several hardware characteristics that
702  * are in descriptors the ep0 implementation returns from setup() calls.
703  *
704  * Except for ep0 implementation, most driver code shouldn't need change to
705  * run on top of different usb controllers.  It'll use endpoints set up by
706  * that ep0 implementation.
707  *
708  * The usb controller driver handles a few standard usb requests.  Those
709  * include set_address, and feature flags for devices, interfaces, and
710  * endpoints (the get_status, set_feature, and clear_feature requests).
711  *
712  * Accordingly, the driver's setup() callback must always implement all
713  * get_descriptor requests, returning at least a device descriptor and
714  * a configuration descriptor.  Drivers must make sure the endpoint
715  * descriptors match any hardware constraints. Some hardware also constrains
716  * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
717  *
718  * The driver's setup() callback must also implement set_configuration,
719  * and should also implement set_interface, get_configuration, and
720  * get_interface.  Setting a configuration (or interface) is where
721  * endpoints should be activated or (config 0) shut down.
722  *
723  * (Note that only the default control endpoint is supported.  Neither
724  * hosts nor devices generally support control traffic except to ep0.)
725  *
726  * Most devices will ignore USB suspend/resume operations, and so will
727  * not provide those callbacks.  However, some may need to change modes
728  * when the host is not longer directing those activities.  For example,
729  * local controls (buttons, dials, etc) may need to be re-enabled since
730  * the (remote) host can't do that any longer; or an error state might
731  * be cleared, to make the device behave identically whether or not
732  * power is maintained.
733  */
734 struct usb_gadget_driver {
735 	char			*function;
736 	enum usb_device_speed	max_speed;
737 	int			(*bind)(struct usb_gadget *gadget,
738 					struct usb_gadget_driver *driver);
739 	void			(*unbind)(struct usb_gadget *);
740 	int			(*setup)(struct usb_gadget *,
741 					const struct usb_ctrlrequest *);
742 	void			(*disconnect)(struct usb_gadget *);
743 	void			(*suspend)(struct usb_gadget *);
744 	void			(*resume)(struct usb_gadget *);
745 	void			(*reset)(struct usb_gadget *);
746 
747 	/* FIXME support safe rmmod */
748 	struct device_driver	driver;
749 
750 	char			*udc_name;
751 	struct list_head	pending;
752 	unsigned                match_existing_only:1;
753 };
754 
755 
756 
757 /*-------------------------------------------------------------------------*/
758 
759 /* driver modules register and unregister, as usual.
760  * these calls must be made in a context that can sleep.
761  *
762  * these will usually be implemented directly by the hardware-dependent
763  * usb bus interface driver, which will only support a single driver.
764  */
765 
766 /**
767  * usb_gadget_probe_driver - probe a gadget driver
768  * @driver: the driver being registered
769  * Context: can sleep
770  *
771  * Call this in your gadget driver's module initialization function,
772  * to tell the underlying usb controller driver about your driver.
773  * The @bind() function will be called to bind it to a gadget before this
774  * registration call returns.  It's expected that the @bind() function will
775  * be in init sections.
776  */
777 int usb_gadget_probe_driver(struct usb_gadget_driver *driver);
778 
779 /**
780  * usb_gadget_unregister_driver - unregister a gadget driver
781  * @driver:the driver being unregistered
782  * Context: can sleep
783  *
784  * Call this in your gadget driver's module cleanup function,
785  * to tell the underlying usb controller that your driver is
786  * going away.  If the controller is connected to a USB host,
787  * it will first disconnect().  The driver is also requested
788  * to unbind() and clean up any device state, before this procedure
789  * finally returns.  It's expected that the unbind() functions
790  * will be in exit sections, so may not be linked in some kernels.
791  */
792 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
793 
794 /*-------------------------------------------------------------------------*/
795 
796 /* utility to simplify dealing with string descriptors */
797 
798 /**
799  * struct usb_string - wraps a C string and its USB id
800  * @id:the (nonzero) ID for this string
801  * @s:the string, in UTF-8 encoding
802  *
803  * If you're using usb_gadget_get_string(), use this to wrap a string
804  * together with its ID.
805  */
806 struct usb_string {
807 	u8			id;
808 	const char		*s;
809 };
810 
811 /**
812  * struct usb_gadget_strings - a set of USB strings in a given language
813  * @language:identifies the strings' language (0x0409 for en-us)
814  * @strings:array of strings with their ids
815  *
816  * If you're using usb_gadget_get_string(), use this to wrap all the
817  * strings for a given language.
818  */
819 struct usb_gadget_strings {
820 	u16			language;	/* 0x0409 for en-us */
821 	struct usb_string	*strings;
822 };
823 
824 struct usb_gadget_string_container {
825 	struct list_head        list;
826 	u8                      *stash[];
827 };
828 
829 /* put descriptor for string with that id into buf (buflen >= 256) */
830 int usb_gadget_get_string(const struct usb_gadget_strings *table, int id, u8 *buf);
831 
832 /* check if the given language identifier is valid */
833 bool usb_validate_langid(u16 langid);
834 
835 /*-------------------------------------------------------------------------*/
836 
837 /* utility to simplify managing config descriptors */
838 
839 /* write vector of descriptors into buffer */
840 int usb_descriptor_fillbuf(void *, unsigned,
841 		const struct usb_descriptor_header **);
842 
843 /* build config descriptor from single descriptor vector */
844 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
845 	void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
846 
847 /* copy a NULL-terminated vector of descriptors */
848 struct usb_descriptor_header **usb_copy_descriptors(
849 		struct usb_descriptor_header **);
850 
851 /**
852  * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
853  * @v: vector of descriptors
854  */
usb_free_descriptors(struct usb_descriptor_header ** v)855 static inline void usb_free_descriptors(struct usb_descriptor_header **v)
856 {
857 	kfree(v);
858 }
859 
860 struct usb_function;
861 int usb_assign_descriptors(struct usb_function *f,
862 		struct usb_descriptor_header **fs,
863 		struct usb_descriptor_header **hs,
864 		struct usb_descriptor_header **ss,
865 		struct usb_descriptor_header **ssp);
866 void usb_free_all_descriptors(struct usb_function *f);
867 
868 struct usb_descriptor_header *usb_otg_descriptor_alloc(
869 				struct usb_gadget *gadget);
870 int usb_otg_descriptor_init(struct usb_gadget *gadget,
871 		struct usb_descriptor_header *otg_desc);
872 /*-------------------------------------------------------------------------*/
873 
874 /* utility to simplify map/unmap of usb_requests to/from DMA */
875 
876 #ifdef	CONFIG_HAS_DMA
877 extern int usb_gadget_map_request_by_dev(struct device *dev,
878 		struct usb_request *req, int is_in);
879 extern int usb_gadget_map_request(struct usb_gadget *gadget,
880 		struct usb_request *req, int is_in);
881 
882 extern void usb_gadget_unmap_request_by_dev(struct device *dev,
883 		struct usb_request *req, int is_in);
884 extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
885 		struct usb_request *req, int is_in);
886 #else /* !CONFIG_HAS_DMA */
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)887 static inline int usb_gadget_map_request_by_dev(struct device *dev,
888 		struct usb_request *req, int is_in) { return -ENOSYS; }
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)889 static inline int usb_gadget_map_request(struct usb_gadget *gadget,
890 		struct usb_request *req, int is_in) { return -ENOSYS; }
891 
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)892 static inline void usb_gadget_unmap_request_by_dev(struct device *dev,
893 		struct usb_request *req, int is_in) { }
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)894 static inline void usb_gadget_unmap_request(struct usb_gadget *gadget,
895 		struct usb_request *req, int is_in) { }
896 #endif /* !CONFIG_HAS_DMA */
897 
898 /*-------------------------------------------------------------------------*/
899 
900 /* utility to set gadget state properly */
901 
902 extern void usb_gadget_set_state(struct usb_gadget *gadget,
903 		enum usb_device_state state);
904 
905 /*-------------------------------------------------------------------------*/
906 
907 /* utility to tell udc core that the bus reset occurs */
908 extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
909 		struct usb_gadget_driver *driver);
910 
911 /*-------------------------------------------------------------------------*/
912 
913 /* utility to give requests back to the gadget layer */
914 
915 extern void usb_gadget_giveback_request(struct usb_ep *ep,
916 		struct usb_request *req);
917 
918 /*-------------------------------------------------------------------------*/
919 
920 /* utility to find endpoint by name */
921 
922 extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g,
923 		const char *name);
924 
925 /*-------------------------------------------------------------------------*/
926 
927 /* utility to check if endpoint caps match descriptor needs */
928 
929 extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
930 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
931 		struct usb_ss_ep_comp_descriptor *ep_comp);
932 
933 /*-------------------------------------------------------------------------*/
934 
935 /* utility to update vbus status for udc core, it may be scheduled */
936 extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status);
937 
938 /*-------------------------------------------------------------------------*/
939 
940 /* utility wrapping a simple endpoint selection policy */
941 
942 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
943 			struct usb_endpoint_descriptor *);
944 
945 
946 extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
947 			struct usb_endpoint_descriptor *,
948 			struct usb_ss_ep_comp_descriptor *);
949 
950 extern void usb_ep_autoconfig_release(struct usb_ep *);
951 
952 extern void usb_ep_autoconfig_reset(struct usb_gadget *);
953 
954 #endif /* __LINUX_USB_GADGET_H */
955