• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN	((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN	4U
139 #define TCP_ATO_MIN	4U
140 #endif
141 #define TCP_RTO_MAX	((unsigned)(120*HZ))
142 #define TCP_RTO_MIN	((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144 
145 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
146 
147 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
148 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
149 						 * used as a fallback RTO for the
150 						 * initial data transmission if no
151 						 * valid RTT sample has been acquired,
152 						 * most likely due to retrans in 3WHS.
153 						 */
154 
155 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
156 					                 * for local resources.
157 					                 */
158 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
159 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
160 #define TCP_KEEPALIVE_INTVL	(75*HZ)
161 
162 #define MAX_TCP_KEEPIDLE	32767
163 #define MAX_TCP_KEEPINTVL	32767
164 #define MAX_TCP_KEEPCNT		127
165 #define MAX_TCP_SYNCNT		127
166 
167 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
168 
169 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
170 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
171 					 * after this time. It should be equal
172 					 * (or greater than) TCP_TIMEWAIT_LEN
173 					 * to provide reliability equal to one
174 					 * provided by timewait state.
175 					 */
176 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
177 					 * timestamps. It must be less than
178 					 * minimal timewait lifetime.
179 					 */
180 /*
181  *	TCP option
182  */
183 
184 #define TCPOPT_NOP		1	/* Padding */
185 #define TCPOPT_EOL		0	/* End of options */
186 #define TCPOPT_MSS		2	/* Segment size negotiating */
187 #define TCPOPT_WINDOW		3	/* Window scaling */
188 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
189 #define TCPOPT_SACK             5       /* SACK Block */
190 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
191 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
192 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
193 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
194 #define TCPOPT_EXP		254	/* Experimental */
195 /* Magic number to be after the option value for sharing TCP
196  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
197  */
198 #define TCPOPT_FASTOPEN_MAGIC	0xF989
199 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
200 
201 /*
202  *     TCP option lengths
203  */
204 
205 #define TCPOLEN_MSS            4
206 #define TCPOLEN_WINDOW         3
207 #define TCPOLEN_SACK_PERM      2
208 #define TCPOLEN_TIMESTAMP      10
209 #define TCPOLEN_MD5SIG         18
210 #define TCPOLEN_FASTOPEN_BASE  2
211 #define TCPOLEN_EXP_FASTOPEN_BASE  4
212 #define TCPOLEN_EXP_SMC_BASE   6
213 
214 /* But this is what stacks really send out. */
215 #define TCPOLEN_TSTAMP_ALIGNED		12
216 #define TCPOLEN_WSCALE_ALIGNED		4
217 #define TCPOLEN_SACKPERM_ALIGNED	4
218 #define TCPOLEN_SACK_BASE		2
219 #define TCPOLEN_SACK_BASE_ALIGNED	4
220 #define TCPOLEN_SACK_PERBLOCK		8
221 #define TCPOLEN_MD5SIG_ALIGNED		20
222 #define TCPOLEN_MSS_ALIGNED		4
223 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
224 
225 /* Flags in tp->nonagle */
226 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
227 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
228 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
229 
230 /* TCP thin-stream limits */
231 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
232 
233 /* TCP initial congestion window as per rfc6928 */
234 #define TCP_INIT_CWND		10
235 
236 /* Bit Flags for sysctl_tcp_fastopen */
237 #define	TFO_CLIENT_ENABLE	1
238 #define	TFO_SERVER_ENABLE	2
239 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
240 
241 /* Accept SYN data w/o any cookie option */
242 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
243 
244 /* Force enable TFO on all listeners, i.e., not requiring the
245  * TCP_FASTOPEN socket option.
246  */
247 #define	TFO_SERVER_WO_SOCKOPT1	0x400
248 
249 
250 /* sysctl variables for tcp */
251 extern int sysctl_tcp_max_orphans;
252 extern long sysctl_tcp_mem[3];
253 
254 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
255 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
256 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
257 
258 extern atomic_long_t tcp_memory_allocated;
259 extern struct percpu_counter tcp_sockets_allocated;
260 extern unsigned long tcp_memory_pressure;
261 
262 /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)263 static inline bool tcp_under_memory_pressure(const struct sock *sk)
264 {
265 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
266 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
267 		return true;
268 
269 	return READ_ONCE(tcp_memory_pressure);
270 }
271 /*
272  * The next routines deal with comparing 32 bit unsigned ints
273  * and worry about wraparound (automatic with unsigned arithmetic).
274  */
275 
before(__u32 seq1,__u32 seq2)276 static inline bool before(__u32 seq1, __u32 seq2)
277 {
278         return (__s32)(seq1-seq2) < 0;
279 }
280 #define after(seq2, seq1) 	before(seq1, seq2)
281 
282 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)283 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
284 {
285 	return seq3 - seq2 >= seq1 - seq2;
286 }
287 
tcp_out_of_memory(struct sock * sk)288 static inline bool tcp_out_of_memory(struct sock *sk)
289 {
290 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
291 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
292 		return true;
293 	return false;
294 }
295 
296 void sk_forced_mem_schedule(struct sock *sk, int size);
297 
298 bool tcp_check_oom(struct sock *sk, int shift);
299 
300 
301 extern struct proto tcp_prot;
302 
303 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
304 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
305 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
306 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
307 
308 void tcp_tasklet_init(void);
309 
310 int tcp_v4_err(struct sk_buff *skb, u32);
311 
312 void tcp_shutdown(struct sock *sk, int how);
313 
314 int tcp_v4_early_demux(struct sk_buff *skb);
315 int tcp_v4_rcv(struct sk_buff *skb);
316 
317 void tcp_remove_empty_skb(struct sock *sk);
318 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
319 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
320 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
321 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
322 		 int flags);
323 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
324 			size_t size, int flags);
325 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
326 			       struct page *page, int offset, size_t *size);
327 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
328 		 size_t size, int flags);
329 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
330 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
331 	      int size_goal);
332 void tcp_release_cb(struct sock *sk);
333 void tcp_wfree(struct sk_buff *skb);
334 void tcp_write_timer_handler(struct sock *sk);
335 void tcp_delack_timer_handler(struct sock *sk);
336 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
337 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
338 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
339 void tcp_rcv_space_adjust(struct sock *sk);
340 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
341 void tcp_twsk_destructor(struct sock *sk);
342 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
343 			struct pipe_inode_info *pipe, size_t len,
344 			unsigned int flags);
345 
tcp_dec_quickack_mode(struct sock * sk)346 static inline void tcp_dec_quickack_mode(struct sock *sk)
347 {
348 	struct inet_connection_sock *icsk = inet_csk(sk);
349 
350 	if (icsk->icsk_ack.quick) {
351 		/* How many ACKs S/ACKing new data have we sent? */
352 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
353 
354 		if (pkts >= icsk->icsk_ack.quick) {
355 			icsk->icsk_ack.quick = 0;
356 			/* Leaving quickack mode we deflate ATO. */
357 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
358 		} else
359 			icsk->icsk_ack.quick -= pkts;
360 	}
361 }
362 
363 #define	TCP_ECN_OK		1
364 #define	TCP_ECN_QUEUE_CWR	2
365 #define	TCP_ECN_DEMAND_CWR	4
366 #define	TCP_ECN_SEEN		8
367 
368 enum tcp_tw_status {
369 	TCP_TW_SUCCESS = 0,
370 	TCP_TW_RST = 1,
371 	TCP_TW_ACK = 2,
372 	TCP_TW_SYN = 3
373 };
374 
375 
376 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
377 					      struct sk_buff *skb,
378 					      const struct tcphdr *th);
379 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
380 			   struct request_sock *req, bool fastopen,
381 			   bool *lost_race);
382 int tcp_child_process(struct sock *parent, struct sock *child,
383 		      struct sk_buff *skb);
384 void tcp_enter_loss(struct sock *sk);
385 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
386 void tcp_clear_retrans(struct tcp_sock *tp);
387 void tcp_update_metrics(struct sock *sk);
388 void tcp_init_metrics(struct sock *sk);
389 void tcp_metrics_init(void);
390 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
391 void __tcp_close(struct sock *sk, long timeout);
392 void tcp_close(struct sock *sk, long timeout);
393 void tcp_init_sock(struct sock *sk);
394 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
395 __poll_t tcp_poll(struct file *file, struct socket *sock,
396 		      struct poll_table_struct *wait);
397 int tcp_getsockopt(struct sock *sk, int level, int optname,
398 		   char __user *optval, int __user *optlen);
399 bool tcp_bpf_bypass_getsockopt(int level, int optname);
400 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
401 		   unsigned int optlen);
402 void tcp_set_keepalive(struct sock *sk, int val);
403 void tcp_syn_ack_timeout(const struct request_sock *req);
404 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
405 		int flags, int *addr_len);
406 int tcp_set_rcvlowat(struct sock *sk, int val);
407 int tcp_set_window_clamp(struct sock *sk, int val);
408 void tcp_update_recv_tstamps(struct sk_buff *skb,
409 			     struct scm_timestamping_internal *tss);
410 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
411 			struct scm_timestamping_internal *tss);
412 void tcp_data_ready(struct sock *sk);
413 #ifdef CONFIG_MMU
414 int tcp_mmap(struct file *file, struct socket *sock,
415 	     struct vm_area_struct *vma);
416 #endif
417 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
418 		       struct tcp_options_received *opt_rx,
419 		       int estab, struct tcp_fastopen_cookie *foc);
420 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
421 
422 /*
423  *	BPF SKB-less helpers
424  */
425 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
426 			 struct tcphdr *th, u32 *cookie);
427 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
428 			 struct tcphdr *th, u32 *cookie);
429 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
430 			  const struct tcp_request_sock_ops *af_ops,
431 			  struct sock *sk, struct tcphdr *th);
432 /*
433  *	TCP v4 functions exported for the inet6 API
434  */
435 
436 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
437 void tcp_v4_mtu_reduced(struct sock *sk);
438 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
439 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
440 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
441 struct sock *tcp_create_openreq_child(const struct sock *sk,
442 				      struct request_sock *req,
443 				      struct sk_buff *skb);
444 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
445 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
446 				  struct request_sock *req,
447 				  struct dst_entry *dst,
448 				  struct request_sock *req_unhash,
449 				  bool *own_req);
450 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
451 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
452 int tcp_connect(struct sock *sk);
453 enum tcp_synack_type {
454 	TCP_SYNACK_NORMAL,
455 	TCP_SYNACK_FASTOPEN,
456 	TCP_SYNACK_COOKIE,
457 };
458 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
459 				struct request_sock *req,
460 				struct tcp_fastopen_cookie *foc,
461 				enum tcp_synack_type synack_type,
462 				struct sk_buff *syn_skb);
463 int tcp_disconnect(struct sock *sk, int flags);
464 
465 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
466 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
467 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
468 
469 /* From syncookies.c */
470 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
471 				 struct request_sock *req,
472 				 struct dst_entry *dst, u32 tsoff);
473 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
474 		      u32 cookie);
475 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
476 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
477 					    const struct tcp_request_sock_ops *af_ops,
478 					    struct sock *sk, struct sk_buff *skb);
479 #ifdef CONFIG_SYN_COOKIES
480 
481 /* Syncookies use a monotonic timer which increments every 60 seconds.
482  * This counter is used both as a hash input and partially encoded into
483  * the cookie value.  A cookie is only validated further if the delta
484  * between the current counter value and the encoded one is less than this,
485  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
486  * the counter advances immediately after a cookie is generated).
487  */
488 #define MAX_SYNCOOKIE_AGE	2
489 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
490 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
491 
492 /* syncookies: remember time of last synqueue overflow
493  * But do not dirty this field too often (once per second is enough)
494  * It is racy as we do not hold a lock, but race is very minor.
495  */
tcp_synq_overflow(const struct sock * sk)496 static inline void tcp_synq_overflow(const struct sock *sk)
497 {
498 	unsigned int last_overflow;
499 	unsigned int now = jiffies;
500 
501 	if (sk->sk_reuseport) {
502 		struct sock_reuseport *reuse;
503 
504 		reuse = rcu_dereference(sk->sk_reuseport_cb);
505 		if (likely(reuse)) {
506 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
507 			if (!time_between32(now, last_overflow,
508 					    last_overflow + HZ))
509 				WRITE_ONCE(reuse->synq_overflow_ts, now);
510 			return;
511 		}
512 	}
513 
514 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
515 	if (!time_between32(now, last_overflow, last_overflow + HZ))
516 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
517 }
518 
519 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)520 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
521 {
522 	unsigned int last_overflow;
523 	unsigned int now = jiffies;
524 
525 	if (sk->sk_reuseport) {
526 		struct sock_reuseport *reuse;
527 
528 		reuse = rcu_dereference(sk->sk_reuseport_cb);
529 		if (likely(reuse)) {
530 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
531 			return !time_between32(now, last_overflow - HZ,
532 					       last_overflow +
533 					       TCP_SYNCOOKIE_VALID);
534 		}
535 	}
536 
537 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
538 
539 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
540 	 * then we're under synflood. However, we have to use
541 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
542 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
543 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
544 	 * which could lead to rejecting a valid syncookie.
545 	 */
546 	return !time_between32(now, last_overflow - HZ,
547 			       last_overflow + TCP_SYNCOOKIE_VALID);
548 }
549 
tcp_cookie_time(void)550 static inline u32 tcp_cookie_time(void)
551 {
552 	u64 val = get_jiffies_64();
553 
554 	do_div(val, TCP_SYNCOOKIE_PERIOD);
555 	return val;
556 }
557 
558 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
559 			      u16 *mssp);
560 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
561 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
562 bool cookie_timestamp_decode(const struct net *net,
563 			     struct tcp_options_received *opt);
564 bool cookie_ecn_ok(const struct tcp_options_received *opt,
565 		   const struct net *net, const struct dst_entry *dst);
566 
567 /* From net/ipv6/syncookies.c */
568 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
569 		      u32 cookie);
570 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
571 
572 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
573 			      const struct tcphdr *th, u16 *mssp);
574 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
575 #endif
576 /* tcp_output.c */
577 
578 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
579 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
580 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
581 			       int nonagle);
582 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
583 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
584 void tcp_retransmit_timer(struct sock *sk);
585 void tcp_xmit_retransmit_queue(struct sock *);
586 void tcp_simple_retransmit(struct sock *);
587 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
588 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
589 enum tcp_queue {
590 	TCP_FRAG_IN_WRITE_QUEUE,
591 	TCP_FRAG_IN_RTX_QUEUE,
592 };
593 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
594 		 struct sk_buff *skb, u32 len,
595 		 unsigned int mss_now, gfp_t gfp);
596 
597 void tcp_send_probe0(struct sock *);
598 void tcp_send_partial(struct sock *);
599 int tcp_write_wakeup(struct sock *, int mib);
600 void tcp_send_fin(struct sock *sk);
601 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
602 int tcp_send_synack(struct sock *);
603 void tcp_push_one(struct sock *, unsigned int mss_now);
604 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
605 void tcp_send_ack(struct sock *sk);
606 void tcp_send_delayed_ack(struct sock *sk);
607 void tcp_send_loss_probe(struct sock *sk);
608 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
609 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
610 			     const struct sk_buff *next_skb);
611 
612 /* tcp_input.c */
613 void tcp_rearm_rto(struct sock *sk);
614 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
615 void tcp_reset(struct sock *sk, struct sk_buff *skb);
616 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
617 void tcp_fin(struct sock *sk);
618 void tcp_check_space(struct sock *sk);
619 
620 /* tcp_timer.c */
621 void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)622 static inline void tcp_clear_xmit_timers(struct sock *sk)
623 {
624 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
625 		__sock_put(sk);
626 
627 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
628 		__sock_put(sk);
629 
630 	inet_csk_clear_xmit_timers(sk);
631 }
632 
633 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
634 unsigned int tcp_current_mss(struct sock *sk);
635 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
636 
637 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)638 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
639 {
640 	int cutoff;
641 
642 	/* When peer uses tiny windows, there is no use in packetizing
643 	 * to sub-MSS pieces for the sake of SWS or making sure there
644 	 * are enough packets in the pipe for fast recovery.
645 	 *
646 	 * On the other hand, for extremely large MSS devices, handling
647 	 * smaller than MSS windows in this way does make sense.
648 	 */
649 	if (tp->max_window > TCP_MSS_DEFAULT)
650 		cutoff = (tp->max_window >> 1);
651 	else
652 		cutoff = tp->max_window;
653 
654 	if (cutoff && pktsize > cutoff)
655 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
656 	else
657 		return pktsize;
658 }
659 
660 /* tcp.c */
661 void tcp_get_info(struct sock *, struct tcp_info *);
662 
663 /* Read 'sendfile()'-style from a TCP socket */
664 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
665 		  sk_read_actor_t recv_actor);
666 
667 void tcp_initialize_rcv_mss(struct sock *sk);
668 
669 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
670 int tcp_mss_to_mtu(struct sock *sk, int mss);
671 void tcp_mtup_init(struct sock *sk);
672 
tcp_bound_rto(const struct sock * sk)673 static inline void tcp_bound_rto(const struct sock *sk)
674 {
675 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
676 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
677 }
678 
__tcp_set_rto(const struct tcp_sock * tp)679 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
680 {
681 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
682 }
683 
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)684 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
685 {
686 	/* mptcp hooks are only on the slow path */
687 	if (sk_is_mptcp((struct sock *)tp))
688 		return;
689 
690 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
691 			       ntohl(TCP_FLAG_ACK) |
692 			       snd_wnd);
693 }
694 
tcp_fast_path_on(struct tcp_sock * tp)695 static inline void tcp_fast_path_on(struct tcp_sock *tp)
696 {
697 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
698 }
699 
tcp_fast_path_check(struct sock * sk)700 static inline void tcp_fast_path_check(struct sock *sk)
701 {
702 	struct tcp_sock *tp = tcp_sk(sk);
703 
704 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
705 	    tp->rcv_wnd &&
706 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
707 	    !tp->urg_data)
708 		tcp_fast_path_on(tp);
709 }
710 
711 /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)712 static inline u32 tcp_rto_min(struct sock *sk)
713 {
714 	const struct dst_entry *dst = __sk_dst_get(sk);
715 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
716 
717 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
718 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
719 	return rto_min;
720 }
721 
tcp_rto_min_us(struct sock * sk)722 static inline u32 tcp_rto_min_us(struct sock *sk)
723 {
724 	return jiffies_to_usecs(tcp_rto_min(sk));
725 }
726 
tcp_ca_dst_locked(const struct dst_entry * dst)727 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
728 {
729 	return dst_metric_locked(dst, RTAX_CC_ALGO);
730 }
731 
732 /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)733 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
734 {
735 	return minmax_get(&tp->rtt_min);
736 }
737 
738 /* Compute the actual receive window we are currently advertising.
739  * Rcv_nxt can be after the window if our peer push more data
740  * than the offered window.
741  */
tcp_receive_window(const struct tcp_sock * tp)742 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
743 {
744 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
745 
746 	if (win < 0)
747 		win = 0;
748 	return (u32) win;
749 }
750 
751 /* Choose a new window, without checks for shrinking, and without
752  * scaling applied to the result.  The caller does these things
753  * if necessary.  This is a "raw" window selection.
754  */
755 u32 __tcp_select_window(struct sock *sk);
756 
757 void tcp_send_window_probe(struct sock *sk);
758 
759 /* TCP uses 32bit jiffies to save some space.
760  * Note that this is different from tcp_time_stamp, which
761  * historically has been the same until linux-4.13.
762  */
763 #define tcp_jiffies32 ((u32)jiffies)
764 
765 /*
766  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
767  * It is no longer tied to jiffies, but to 1 ms clock.
768  * Note: double check if you want to use tcp_jiffies32 instead of this.
769  */
770 #define TCP_TS_HZ	1000
771 
tcp_clock_ns(void)772 static inline u64 tcp_clock_ns(void)
773 {
774 	return ktime_get_ns();
775 }
776 
tcp_clock_us(void)777 static inline u64 tcp_clock_us(void)
778 {
779 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
780 }
781 
782 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
tcp_time_stamp(const struct tcp_sock * tp)783 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
784 {
785 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
786 }
787 
788 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
tcp_ns_to_ts(u64 ns)789 static inline u64 tcp_ns_to_ts(u64 ns)
790 {
791 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
792 }
793 
794 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
tcp_time_stamp_raw(void)795 static inline u32 tcp_time_stamp_raw(void)
796 {
797 	return tcp_ns_to_ts(tcp_clock_ns());
798 }
799 
800 void tcp_mstamp_refresh(struct tcp_sock *tp);
801 
tcp_stamp_us_delta(u64 t1,u64 t0)802 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
803 {
804 	return max_t(s64, t1 - t0, 0);
805 }
806 
tcp_skb_timestamp(const struct sk_buff * skb)807 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
808 {
809 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
810 }
811 
812 /* provide the departure time in us unit */
tcp_skb_timestamp_us(const struct sk_buff * skb)813 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
814 {
815 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
816 }
817 
818 
819 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
820 
821 #define TCPHDR_FIN 0x01
822 #define TCPHDR_SYN 0x02
823 #define TCPHDR_RST 0x04
824 #define TCPHDR_PSH 0x08
825 #define TCPHDR_ACK 0x10
826 #define TCPHDR_URG 0x20
827 #define TCPHDR_ECE 0x40
828 #define TCPHDR_CWR 0x80
829 
830 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
831 
832 /* This is what the send packet queuing engine uses to pass
833  * TCP per-packet control information to the transmission code.
834  * We also store the host-order sequence numbers in here too.
835  * This is 44 bytes if IPV6 is enabled.
836  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
837  */
838 struct tcp_skb_cb {
839 	__u32		seq;		/* Starting sequence number	*/
840 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
841 	union {
842 		/* Note : tcp_tw_isn is used in input path only
843 		 *	  (isn chosen by tcp_timewait_state_process())
844 		 *
845 		 * 	  tcp_gso_segs/size are used in write queue only,
846 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
847 		 */
848 		__u32		tcp_tw_isn;
849 		struct {
850 			u16	tcp_gso_segs;
851 			u16	tcp_gso_size;
852 		};
853 	};
854 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
855 
856 	__u8		sacked;		/* State flags for SACK.	*/
857 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
858 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
859 #define TCPCB_LOST		0x04	/* SKB is lost			*/
860 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
861 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
862 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
863 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
864 				TCPCB_REPAIRED)
865 
866 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
867 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
868 			eor:1,		/* Is skb MSG_EOR marked? */
869 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
870 			unused:5;
871 	__u32		ack_seq;	/* Sequence number ACK'd	*/
872 	union {
873 		struct {
874 			/* There is space for up to 24 bytes */
875 			__u32 in_flight:30,/* Bytes in flight at transmit */
876 			      is_app_limited:1, /* cwnd not fully used? */
877 			      unused:1;
878 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
879 			__u32 delivered;
880 			/* start of send pipeline phase */
881 			u64 first_tx_mstamp;
882 			/* when we reached the "delivered" count */
883 			u64 delivered_mstamp;
884 		} tx;   /* only used for outgoing skbs */
885 		union {
886 			struct inet_skb_parm	h4;
887 #if IS_ENABLED(CONFIG_IPV6)
888 			struct inet6_skb_parm	h6;
889 #endif
890 		} header;	/* For incoming skbs */
891 	};
892 };
893 
894 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
895 
896 extern const struct inet_connection_sock_af_ops ipv4_specific;
897 
898 #if IS_ENABLED(CONFIG_IPV6)
899 /* This is the variant of inet6_iif() that must be used by TCP,
900  * as TCP moves IP6CB into a different location in skb->cb[]
901  */
tcp_v6_iif(const struct sk_buff * skb)902 static inline int tcp_v6_iif(const struct sk_buff *skb)
903 {
904 	return TCP_SKB_CB(skb)->header.h6.iif;
905 }
906 
tcp_v6_iif_l3_slave(const struct sk_buff * skb)907 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
908 {
909 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
910 
911 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
912 }
913 
914 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)915 static inline int tcp_v6_sdif(const struct sk_buff *skb)
916 {
917 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
918 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
919 		return TCP_SKB_CB(skb)->header.h6.iif;
920 #endif
921 	return 0;
922 }
923 
924 extern const struct inet_connection_sock_af_ops ipv6_specific;
925 
926 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
927 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
928 void tcp_v6_early_demux(struct sk_buff *skb);
929 
930 #endif
931 
932 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)933 static inline int tcp_v4_sdif(struct sk_buff *skb)
934 {
935 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
936 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
937 		return TCP_SKB_CB(skb)->header.h4.iif;
938 #endif
939 	return 0;
940 }
941 
942 /* Due to TSO, an SKB can be composed of multiple actual
943  * packets.  To keep these tracked properly, we use this.
944  */
tcp_skb_pcount(const struct sk_buff * skb)945 static inline int tcp_skb_pcount(const struct sk_buff *skb)
946 {
947 	return TCP_SKB_CB(skb)->tcp_gso_segs;
948 }
949 
tcp_skb_pcount_set(struct sk_buff * skb,int segs)950 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
951 {
952 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
953 }
954 
tcp_skb_pcount_add(struct sk_buff * skb,int segs)955 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
956 {
957 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
958 }
959 
960 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)961 static inline int tcp_skb_mss(const struct sk_buff *skb)
962 {
963 	return TCP_SKB_CB(skb)->tcp_gso_size;
964 }
965 
tcp_skb_can_collapse_to(const struct sk_buff * skb)966 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
967 {
968 	return likely(!TCP_SKB_CB(skb)->eor);
969 }
970 
tcp_skb_can_collapse(const struct sk_buff * to,const struct sk_buff * from)971 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
972 					const struct sk_buff *from)
973 {
974 	return likely(tcp_skb_can_collapse_to(to) &&
975 		      mptcp_skb_can_collapse(to, from));
976 }
977 
978 /* Events passed to congestion control interface */
979 enum tcp_ca_event {
980 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
981 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
982 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
983 	CA_EVENT_LOSS,		/* loss timeout */
984 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
985 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
986 };
987 
988 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
989 enum tcp_ca_ack_event_flags {
990 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
991 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
992 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
993 };
994 
995 /*
996  * Interface for adding new TCP congestion control handlers
997  */
998 #define TCP_CA_NAME_MAX	16
999 #define TCP_CA_MAX	128
1000 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1001 
1002 #define TCP_CA_UNSPEC	0
1003 
1004 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1005 #define TCP_CONG_NON_RESTRICTED 0x1
1006 /* Requires ECN/ECT set on all packets */
1007 #define TCP_CONG_NEEDS_ECN	0x2
1008 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1009 
1010 union tcp_cc_info;
1011 
1012 struct ack_sample {
1013 	u32 pkts_acked;
1014 	s32 rtt_us;
1015 	u32 in_flight;
1016 };
1017 
1018 /* A rate sample measures the number of (original/retransmitted) data
1019  * packets delivered "delivered" over an interval of time "interval_us".
1020  * The tcp_rate.c code fills in the rate sample, and congestion
1021  * control modules that define a cong_control function to run at the end
1022  * of ACK processing can optionally chose to consult this sample when
1023  * setting cwnd and pacing rate.
1024  * A sample is invalid if "delivered" or "interval_us" is negative.
1025  */
1026 struct rate_sample {
1027 	u64  prior_mstamp; /* starting timestamp for interval */
1028 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1029 	s32  delivered;		/* number of packets delivered over interval */
1030 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1031 	u32 snd_interval_us;	/* snd interval for delivered packets */
1032 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1033 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1034 	int  losses;		/* number of packets marked lost upon ACK */
1035 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1036 	u32  prior_in_flight;	/* in flight before this ACK */
1037 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1038 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1039 	bool is_retrans;	/* is sample from retransmission? */
1040 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1041 };
1042 
1043 struct tcp_congestion_ops {
1044 /* fast path fields are put first to fill one cache line */
1045 
1046 	/* return slow start threshold (required) */
1047 	u32 (*ssthresh)(struct sock *sk);
1048 
1049 	/* do new cwnd calculation (required) */
1050 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1051 
1052 	/* call before changing ca_state (optional) */
1053 	void (*set_state)(struct sock *sk, u8 new_state);
1054 
1055 	/* call when cwnd event occurs (optional) */
1056 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1057 
1058 	/* call when ack arrives (optional) */
1059 	void (*in_ack_event)(struct sock *sk, u32 flags);
1060 
1061 	/* hook for packet ack accounting (optional) */
1062 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1063 
1064 	/* override sysctl_tcp_min_tso_segs */
1065 	u32 (*min_tso_segs)(struct sock *sk);
1066 
1067 	/* call when packets are delivered to update cwnd and pacing rate,
1068 	 * after all the ca_state processing. (optional)
1069 	 */
1070 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1071 
1072 
1073 	/* new value of cwnd after loss (required) */
1074 	u32  (*undo_cwnd)(struct sock *sk);
1075 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1076 	u32 (*sndbuf_expand)(struct sock *sk);
1077 
1078 /* control/slow paths put last */
1079 	/* get info for inet_diag (optional) */
1080 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1081 			   union tcp_cc_info *info);
1082 
1083 	char 			name[TCP_CA_NAME_MAX];
1084 	struct module		*owner;
1085 	struct list_head	list;
1086 	u32			key;
1087 	u32			flags;
1088 
1089 	/* initialize private data (optional) */
1090 	void (*init)(struct sock *sk);
1091 	/* cleanup private data  (optional) */
1092 	void (*release)(struct sock *sk);
1093 } ____cacheline_aligned_in_smp;
1094 
1095 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1096 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1097 
1098 void tcp_assign_congestion_control(struct sock *sk);
1099 void tcp_init_congestion_control(struct sock *sk);
1100 void tcp_cleanup_congestion_control(struct sock *sk);
1101 int tcp_set_default_congestion_control(struct net *net, const char *name);
1102 void tcp_get_default_congestion_control(struct net *net, char *name);
1103 void tcp_get_available_congestion_control(char *buf, size_t len);
1104 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1105 int tcp_set_allowed_congestion_control(char *allowed);
1106 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1107 			       bool cap_net_admin);
1108 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1109 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1110 
1111 u32 tcp_reno_ssthresh(struct sock *sk);
1112 u32 tcp_reno_undo_cwnd(struct sock *sk);
1113 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1114 extern struct tcp_congestion_ops tcp_reno;
1115 
1116 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1117 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1118 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1119 #ifdef CONFIG_INET
1120 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1121 #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1122 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1123 {
1124 	return NULL;
1125 }
1126 #endif
1127 
tcp_ca_needs_ecn(const struct sock * sk)1128 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1129 {
1130 	const struct inet_connection_sock *icsk = inet_csk(sk);
1131 
1132 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1133 }
1134 
tcp_set_ca_state(struct sock * sk,const u8 ca_state)1135 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1136 {
1137 	struct inet_connection_sock *icsk = inet_csk(sk);
1138 
1139 	if (icsk->icsk_ca_ops->set_state)
1140 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1141 	icsk->icsk_ca_state = ca_state;
1142 }
1143 
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1144 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1145 {
1146 	const struct inet_connection_sock *icsk = inet_csk(sk);
1147 
1148 	if (icsk->icsk_ca_ops->cwnd_event)
1149 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1150 }
1151 
1152 /* From tcp_rate.c */
1153 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1154 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1155 			    struct rate_sample *rs);
1156 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1157 		  bool is_sack_reneg, struct rate_sample *rs);
1158 void tcp_rate_check_app_limited(struct sock *sk);
1159 
tcp_skb_sent_after(u64 t1,u64 t2,u32 seq1,u32 seq2)1160 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1161 {
1162 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1163 }
1164 
1165 /* These functions determine how the current flow behaves in respect of SACK
1166  * handling. SACK is negotiated with the peer, and therefore it can vary
1167  * between different flows.
1168  *
1169  * tcp_is_sack - SACK enabled
1170  * tcp_is_reno - No SACK
1171  */
tcp_is_sack(const struct tcp_sock * tp)1172 static inline int tcp_is_sack(const struct tcp_sock *tp)
1173 {
1174 	return likely(tp->rx_opt.sack_ok);
1175 }
1176 
tcp_is_reno(const struct tcp_sock * tp)1177 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1178 {
1179 	return !tcp_is_sack(tp);
1180 }
1181 
tcp_left_out(const struct tcp_sock * tp)1182 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1183 {
1184 	return tp->sacked_out + tp->lost_out;
1185 }
1186 
1187 /* This determines how many packets are "in the network" to the best
1188  * of our knowledge.  In many cases it is conservative, but where
1189  * detailed information is available from the receiver (via SACK
1190  * blocks etc.) we can make more aggressive calculations.
1191  *
1192  * Use this for decisions involving congestion control, use just
1193  * tp->packets_out to determine if the send queue is empty or not.
1194  *
1195  * Read this equation as:
1196  *
1197  *	"Packets sent once on transmission queue" MINUS
1198  *	"Packets left network, but not honestly ACKed yet" PLUS
1199  *	"Packets fast retransmitted"
1200  */
tcp_packets_in_flight(const struct tcp_sock * tp)1201 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1202 {
1203 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1204 }
1205 
1206 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1207 
tcp_snd_cwnd(const struct tcp_sock * tp)1208 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1209 {
1210 	return tp->snd_cwnd;
1211 }
1212 
tcp_snd_cwnd_set(struct tcp_sock * tp,u32 val)1213 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1214 {
1215 	WARN_ON_ONCE((int)val <= 0);
1216 	tp->snd_cwnd = val;
1217 }
1218 
tcp_in_slow_start(const struct tcp_sock * tp)1219 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1220 {
1221 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1222 }
1223 
tcp_in_initial_slowstart(const struct tcp_sock * tp)1224 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1225 {
1226 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1227 }
1228 
tcp_in_cwnd_reduction(const struct sock * sk)1229 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1230 {
1231 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1232 	       (1 << inet_csk(sk)->icsk_ca_state);
1233 }
1234 
1235 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1236  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1237  * ssthresh.
1238  */
tcp_current_ssthresh(const struct sock * sk)1239 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1240 {
1241 	const struct tcp_sock *tp = tcp_sk(sk);
1242 
1243 	if (tcp_in_cwnd_reduction(sk))
1244 		return tp->snd_ssthresh;
1245 	else
1246 		return max(tp->snd_ssthresh,
1247 			   ((tcp_snd_cwnd(tp) >> 1) +
1248 			    (tcp_snd_cwnd(tp) >> 2)));
1249 }
1250 
1251 /* Use define here intentionally to get WARN_ON location shown at the caller */
1252 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1253 
1254 void tcp_enter_cwr(struct sock *sk);
1255 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1256 
1257 /* The maximum number of MSS of available cwnd for which TSO defers
1258  * sending if not using sysctl_tcp_tso_win_divisor.
1259  */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1260 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1261 {
1262 	return 3;
1263 }
1264 
1265 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1266 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1267 {
1268 	return tp->snd_una + tp->snd_wnd;
1269 }
1270 
1271 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1272  * flexible approach. The RFC suggests cwnd should not be raised unless
1273  * it was fully used previously. And that's exactly what we do in
1274  * congestion avoidance mode. But in slow start we allow cwnd to grow
1275  * as long as the application has used half the cwnd.
1276  * Example :
1277  *    cwnd is 10 (IW10), but application sends 9 frames.
1278  *    We allow cwnd to reach 18 when all frames are ACKed.
1279  * This check is safe because it's as aggressive as slow start which already
1280  * risks 100% overshoot. The advantage is that we discourage application to
1281  * either send more filler packets or data to artificially blow up the cwnd
1282  * usage, and allow application-limited process to probe bw more aggressively.
1283  */
tcp_is_cwnd_limited(const struct sock * sk)1284 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1285 {
1286 	const struct tcp_sock *tp = tcp_sk(sk);
1287 
1288 	if (tp->is_cwnd_limited)
1289 		return true;
1290 
1291 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1292 	if (tcp_in_slow_start(tp))
1293 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1294 
1295 	return false;
1296 }
1297 
1298 /* BBR congestion control needs pacing.
1299  * Same remark for SO_MAX_PACING_RATE.
1300  * sch_fq packet scheduler is efficiently handling pacing,
1301  * but is not always installed/used.
1302  * Return true if TCP stack should pace packets itself.
1303  */
tcp_needs_internal_pacing(const struct sock * sk)1304 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1305 {
1306 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1307 }
1308 
1309 /* Estimates in how many jiffies next packet for this flow can be sent.
1310  * Scheduling a retransmit timer too early would be silly.
1311  */
tcp_pacing_delay(const struct sock * sk)1312 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1313 {
1314 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1315 
1316 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1317 }
1318 
tcp_reset_xmit_timer(struct sock * sk,const int what,unsigned long when,const unsigned long max_when)1319 static inline void tcp_reset_xmit_timer(struct sock *sk,
1320 					const int what,
1321 					unsigned long when,
1322 					const unsigned long max_when)
1323 {
1324 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1325 				  max_when);
1326 }
1327 
1328 /* Something is really bad, we could not queue an additional packet,
1329  * because qdisc is full or receiver sent a 0 window, or we are paced.
1330  * We do not want to add fuel to the fire, or abort too early,
1331  * so make sure the timer we arm now is at least 200ms in the future,
1332  * regardless of current icsk_rto value (as it could be ~2ms)
1333  */
tcp_probe0_base(const struct sock * sk)1334 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1335 {
1336 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1337 }
1338 
1339 /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1340 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1341 					    unsigned long max_when)
1342 {
1343 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1344 			   inet_csk(sk)->icsk_backoff);
1345 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1346 
1347 	return (unsigned long)min_t(u64, when, max_when);
1348 }
1349 
tcp_check_probe_timer(struct sock * sk)1350 static inline void tcp_check_probe_timer(struct sock *sk)
1351 {
1352 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1353 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1354 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1355 }
1356 
tcp_init_wl(struct tcp_sock * tp,u32 seq)1357 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1358 {
1359 	tp->snd_wl1 = seq;
1360 }
1361 
tcp_update_wl(struct tcp_sock * tp,u32 seq)1362 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1363 {
1364 	tp->snd_wl1 = seq;
1365 }
1366 
1367 /*
1368  * Calculate(/check) TCP checksum
1369  */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1370 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1371 				   __be32 daddr, __wsum base)
1372 {
1373 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1374 }
1375 
tcp_checksum_complete(struct sk_buff * skb)1376 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1377 {
1378 	return !skb_csum_unnecessary(skb) &&
1379 		__skb_checksum_complete(skb);
1380 }
1381 
1382 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1383 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1384 void tcp_set_state(struct sock *sk, int state);
1385 void tcp_done(struct sock *sk);
1386 int tcp_abort(struct sock *sk, int err);
1387 
tcp_sack_reset(struct tcp_options_received * rx_opt)1388 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1389 {
1390 	rx_opt->dsack = 0;
1391 	rx_opt->num_sacks = 0;
1392 }
1393 
1394 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1395 
tcp_slow_start_after_idle_check(struct sock * sk)1396 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1397 {
1398 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1399 	struct tcp_sock *tp = tcp_sk(sk);
1400 	s32 delta;
1401 
1402 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1403 	    tp->packets_out || ca_ops->cong_control)
1404 		return;
1405 	delta = tcp_jiffies32 - tp->lsndtime;
1406 	if (delta > inet_csk(sk)->icsk_rto)
1407 		tcp_cwnd_restart(sk, delta);
1408 }
1409 
1410 /* Determine a window scaling and initial window to offer. */
1411 void tcp_select_initial_window(const struct sock *sk, int __space,
1412 			       __u32 mss, __u32 *rcv_wnd,
1413 			       __u32 *window_clamp, int wscale_ok,
1414 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1415 
tcp_win_from_space(const struct sock * sk,int space)1416 static inline int tcp_win_from_space(const struct sock *sk, int space)
1417 {
1418 	int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1419 
1420 	return tcp_adv_win_scale <= 0 ?
1421 		(space>>(-tcp_adv_win_scale)) :
1422 		space - (space>>tcp_adv_win_scale);
1423 }
1424 
1425 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1426 static inline int tcp_space(const struct sock *sk)
1427 {
1428 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1429 				  READ_ONCE(sk->sk_backlog.len) -
1430 				  atomic_read(&sk->sk_rmem_alloc));
1431 }
1432 
tcp_full_space(const struct sock * sk)1433 static inline int tcp_full_space(const struct sock *sk)
1434 {
1435 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1436 }
1437 
1438 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1439 
1440 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1441  * If 87.5 % (7/8) of the space has been consumed, we want to override
1442  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1443  * len/truesize ratio.
1444  */
tcp_rmem_pressure(const struct sock * sk)1445 static inline bool tcp_rmem_pressure(const struct sock *sk)
1446 {
1447 	int rcvbuf, threshold;
1448 
1449 	if (tcp_under_memory_pressure(sk))
1450 		return true;
1451 
1452 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1453 	threshold = rcvbuf - (rcvbuf >> 3);
1454 
1455 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1456 }
1457 
tcp_epollin_ready(const struct sock * sk,int target)1458 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1459 {
1460 	const struct tcp_sock *tp = tcp_sk(sk);
1461 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1462 
1463 	if (avail <= 0)
1464 		return false;
1465 
1466 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1467 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1468 }
1469 
1470 extern void tcp_openreq_init_rwin(struct request_sock *req,
1471 				  const struct sock *sk_listener,
1472 				  const struct dst_entry *dst);
1473 
1474 void tcp_enter_memory_pressure(struct sock *sk);
1475 void tcp_leave_memory_pressure(struct sock *sk);
1476 
keepalive_intvl_when(const struct tcp_sock * tp)1477 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1478 {
1479 	struct net *net = sock_net((struct sock *)tp);
1480 	int val;
1481 
1482 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1483 	 * and do_tcp_setsockopt().
1484 	 */
1485 	val = READ_ONCE(tp->keepalive_intvl);
1486 
1487 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1488 }
1489 
keepalive_time_when(const struct tcp_sock * tp)1490 static inline int keepalive_time_when(const struct tcp_sock *tp)
1491 {
1492 	struct net *net = sock_net((struct sock *)tp);
1493 	int val;
1494 
1495 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1496 	val = READ_ONCE(tp->keepalive_time);
1497 
1498 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1499 }
1500 
keepalive_probes(const struct tcp_sock * tp)1501 static inline int keepalive_probes(const struct tcp_sock *tp)
1502 {
1503 	struct net *net = sock_net((struct sock *)tp);
1504 	int val;
1505 
1506 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1507 	 * and do_tcp_setsockopt().
1508 	 */
1509 	val = READ_ONCE(tp->keepalive_probes);
1510 
1511 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1512 }
1513 
keepalive_time_elapsed(const struct tcp_sock * tp)1514 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1515 {
1516 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1517 
1518 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1519 			  tcp_jiffies32 - tp->rcv_tstamp);
1520 }
1521 
tcp_fin_time(const struct sock * sk)1522 static inline int tcp_fin_time(const struct sock *sk)
1523 {
1524 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1525 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1526 	const int rto = inet_csk(sk)->icsk_rto;
1527 
1528 	if (fin_timeout < (rto << 2) - (rto >> 1))
1529 		fin_timeout = (rto << 2) - (rto >> 1);
1530 
1531 	return fin_timeout;
1532 }
1533 
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1534 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1535 				  int paws_win)
1536 {
1537 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1538 		return true;
1539 	if (unlikely(!time_before32(ktime_get_seconds(),
1540 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1541 		return true;
1542 	/*
1543 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1544 	 * then following tcp messages have valid values. Ignore 0 value,
1545 	 * or else 'negative' tsval might forbid us to accept their packets.
1546 	 */
1547 	if (!rx_opt->ts_recent)
1548 		return true;
1549 	return false;
1550 }
1551 
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1552 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1553 				   int rst)
1554 {
1555 	if (tcp_paws_check(rx_opt, 0))
1556 		return false;
1557 
1558 	/* RST segments are not recommended to carry timestamp,
1559 	   and, if they do, it is recommended to ignore PAWS because
1560 	   "their cleanup function should take precedence over timestamps."
1561 	   Certainly, it is mistake. It is necessary to understand the reasons
1562 	   of this constraint to relax it: if peer reboots, clock may go
1563 	   out-of-sync and half-open connections will not be reset.
1564 	   Actually, the problem would be not existing if all
1565 	   the implementations followed draft about maintaining clock
1566 	   via reboots. Linux-2.2 DOES NOT!
1567 
1568 	   However, we can relax time bounds for RST segments to MSL.
1569 	 */
1570 	if (rst && !time_before32(ktime_get_seconds(),
1571 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1572 		return false;
1573 	return true;
1574 }
1575 
1576 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1577 			  int mib_idx, u32 *last_oow_ack_time);
1578 
tcp_mib_init(struct net * net)1579 static inline void tcp_mib_init(struct net *net)
1580 {
1581 	/* See RFC 2012 */
1582 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1583 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1584 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1585 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1586 }
1587 
1588 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1589 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1590 {
1591 	tp->lost_skb_hint = NULL;
1592 }
1593 
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1594 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1595 {
1596 	tcp_clear_retrans_hints_partial(tp);
1597 	tp->retransmit_skb_hint = NULL;
1598 }
1599 
1600 union tcp_md5_addr {
1601 	struct in_addr  a4;
1602 #if IS_ENABLED(CONFIG_IPV6)
1603 	struct in6_addr	a6;
1604 #endif
1605 };
1606 
1607 /* - key database */
1608 struct tcp_md5sig_key {
1609 	struct hlist_node	node;
1610 	u8			keylen;
1611 	u8			family; /* AF_INET or AF_INET6 */
1612 	u8			prefixlen;
1613 	u8			flags;
1614 	union tcp_md5_addr	addr;
1615 	int			l3index; /* set if key added with L3 scope */
1616 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1617 	struct rcu_head		rcu;
1618 };
1619 
1620 /* - sock block */
1621 struct tcp_md5sig_info {
1622 	struct hlist_head	head;
1623 	struct rcu_head		rcu;
1624 };
1625 
1626 /* - pseudo header */
1627 struct tcp4_pseudohdr {
1628 	__be32		saddr;
1629 	__be32		daddr;
1630 	__u8		pad;
1631 	__u8		protocol;
1632 	__be16		len;
1633 };
1634 
1635 struct tcp6_pseudohdr {
1636 	struct in6_addr	saddr;
1637 	struct in6_addr daddr;
1638 	__be32		len;
1639 	__be32		protocol;	/* including padding */
1640 };
1641 
1642 union tcp_md5sum_block {
1643 	struct tcp4_pseudohdr ip4;
1644 #if IS_ENABLED(CONFIG_IPV6)
1645 	struct tcp6_pseudohdr ip6;
1646 #endif
1647 };
1648 
1649 /* - pool: digest algorithm, hash description and scratch buffer */
1650 struct tcp_md5sig_pool {
1651 	struct ahash_request	*md5_req;
1652 	void			*scratch;
1653 };
1654 
1655 /* - functions */
1656 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1657 			const struct sock *sk, const struct sk_buff *skb);
1658 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1659 		   int family, u8 prefixlen, int l3index, u8 flags,
1660 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1661 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1662 		   int family, u8 prefixlen, int l3index, u8 flags);
1663 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1664 					 const struct sock *addr_sk);
1665 
1666 #ifdef CONFIG_TCP_MD5SIG
1667 #include <linux/jump_label.h>
1668 extern struct static_key_false tcp_md5_needed;
1669 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1670 					   const union tcp_md5_addr *addr,
1671 					   int family);
1672 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1673 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1674 		  const union tcp_md5_addr *addr, int family)
1675 {
1676 	if (!static_branch_unlikely(&tcp_md5_needed))
1677 		return NULL;
1678 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1679 }
1680 
1681 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1682 #else
1683 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1684 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1685 		  const union tcp_md5_addr *addr, int family)
1686 {
1687 	return NULL;
1688 }
1689 #define tcp_twsk_md5_key(twsk)	NULL
1690 #endif
1691 
1692 bool tcp_alloc_md5sig_pool(void);
1693 
1694 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
tcp_put_md5sig_pool(void)1695 static inline void tcp_put_md5sig_pool(void)
1696 {
1697 	local_bh_enable();
1698 }
1699 
1700 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1701 			  unsigned int header_len);
1702 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1703 		     const struct tcp_md5sig_key *key);
1704 
1705 /* From tcp_fastopen.c */
1706 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1707 			    struct tcp_fastopen_cookie *cookie);
1708 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1709 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1710 			    u16 try_exp);
1711 struct tcp_fastopen_request {
1712 	/* Fast Open cookie. Size 0 means a cookie request */
1713 	struct tcp_fastopen_cookie	cookie;
1714 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1715 	size_t				size;
1716 	int				copied;	/* queued in tcp_connect() */
1717 	struct ubuf_info		*uarg;
1718 };
1719 void tcp_free_fastopen_req(struct tcp_sock *tp);
1720 void tcp_fastopen_destroy_cipher(struct sock *sk);
1721 void tcp_fastopen_ctx_destroy(struct net *net);
1722 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1723 			      void *primary_key, void *backup_key);
1724 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1725 			    u64 *key);
1726 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1727 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1728 			      struct request_sock *req,
1729 			      struct tcp_fastopen_cookie *foc,
1730 			      const struct dst_entry *dst);
1731 void tcp_fastopen_init_key_once(struct net *net);
1732 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1733 			     struct tcp_fastopen_cookie *cookie);
1734 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1735 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1736 #define TCP_FASTOPEN_KEY_MAX 2
1737 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1738 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1739 
1740 /* Fastopen key context */
1741 struct tcp_fastopen_context {
1742 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1743 	int		num;
1744 	struct rcu_head	rcu;
1745 };
1746 
1747 void tcp_fastopen_active_disable(struct sock *sk);
1748 bool tcp_fastopen_active_should_disable(struct sock *sk);
1749 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1750 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1751 
1752 /* Caller needs to wrap with rcu_read_(un)lock() */
1753 static inline
tcp_fastopen_get_ctx(const struct sock * sk)1754 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1755 {
1756 	struct tcp_fastopen_context *ctx;
1757 
1758 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1759 	if (!ctx)
1760 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1761 	return ctx;
1762 }
1763 
1764 static inline
tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie * foc,const struct tcp_fastopen_cookie * orig)1765 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1766 			       const struct tcp_fastopen_cookie *orig)
1767 {
1768 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1769 	    orig->len == foc->len &&
1770 	    !memcmp(orig->val, foc->val, foc->len))
1771 		return true;
1772 	return false;
1773 }
1774 
1775 static inline
tcp_fastopen_context_len(const struct tcp_fastopen_context * ctx)1776 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1777 {
1778 	return ctx->num;
1779 }
1780 
1781 /* Latencies incurred by various limits for a sender. They are
1782  * chronograph-like stats that are mutually exclusive.
1783  */
1784 enum tcp_chrono {
1785 	TCP_CHRONO_UNSPEC,
1786 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1787 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1788 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1789 	__TCP_CHRONO_MAX,
1790 };
1791 
1792 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1793 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1794 
1795 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1796  * the same memory storage than skb->destructor/_skb_refdst
1797  */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)1798 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1799 {
1800 	skb->destructor = NULL;
1801 	skb->_skb_refdst = 0UL;
1802 }
1803 
1804 #define tcp_skb_tsorted_save(skb) {		\
1805 	unsigned long _save = skb->_skb_refdst;	\
1806 	skb->_skb_refdst = 0UL;
1807 
1808 #define tcp_skb_tsorted_restore(skb)		\
1809 	skb->_skb_refdst = _save;		\
1810 }
1811 
1812 void tcp_write_queue_purge(struct sock *sk);
1813 
tcp_rtx_queue_head(const struct sock * sk)1814 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1815 {
1816 	return skb_rb_first(&sk->tcp_rtx_queue);
1817 }
1818 
tcp_rtx_queue_tail(const struct sock * sk)1819 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1820 {
1821 	return skb_rb_last(&sk->tcp_rtx_queue);
1822 }
1823 
tcp_write_queue_head(const struct sock * sk)1824 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1825 {
1826 	return skb_peek(&sk->sk_write_queue);
1827 }
1828 
tcp_write_queue_tail(const struct sock * sk)1829 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1830 {
1831 	return skb_peek_tail(&sk->sk_write_queue);
1832 }
1833 
1834 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1835 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1836 
tcp_send_head(const struct sock * sk)1837 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1838 {
1839 	return skb_peek(&sk->sk_write_queue);
1840 }
1841 
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1842 static inline bool tcp_skb_is_last(const struct sock *sk,
1843 				   const struct sk_buff *skb)
1844 {
1845 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1846 }
1847 
1848 /**
1849  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1850  * @sk: socket
1851  *
1852  * Since the write queue can have a temporary empty skb in it,
1853  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1854  */
tcp_write_queue_empty(const struct sock * sk)1855 static inline bool tcp_write_queue_empty(const struct sock *sk)
1856 {
1857 	const struct tcp_sock *tp = tcp_sk(sk);
1858 
1859 	return tp->write_seq == tp->snd_nxt;
1860 }
1861 
tcp_rtx_queue_empty(const struct sock * sk)1862 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1863 {
1864 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1865 }
1866 
tcp_rtx_and_write_queues_empty(const struct sock * sk)1867 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1868 {
1869 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1870 }
1871 
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1872 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1873 {
1874 	__skb_queue_tail(&sk->sk_write_queue, skb);
1875 
1876 	/* Queue it, remembering where we must start sending. */
1877 	if (sk->sk_write_queue.next == skb)
1878 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1879 }
1880 
1881 /* Insert new before skb on the write queue of sk.  */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1882 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1883 						  struct sk_buff *skb,
1884 						  struct sock *sk)
1885 {
1886 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1887 }
1888 
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1889 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1890 {
1891 	tcp_skb_tsorted_anchor_cleanup(skb);
1892 	__skb_unlink(skb, &sk->sk_write_queue);
1893 }
1894 
1895 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1896 
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)1897 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1898 {
1899 	tcp_skb_tsorted_anchor_cleanup(skb);
1900 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1901 }
1902 
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)1903 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1904 {
1905 	list_del(&skb->tcp_tsorted_anchor);
1906 	tcp_rtx_queue_unlink(skb, sk);
1907 	sk_wmem_free_skb(sk, skb);
1908 }
1909 
tcp_push_pending_frames(struct sock * sk)1910 static inline void tcp_push_pending_frames(struct sock *sk)
1911 {
1912 	if (tcp_send_head(sk)) {
1913 		struct tcp_sock *tp = tcp_sk(sk);
1914 
1915 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1916 	}
1917 }
1918 
1919 /* Start sequence of the skb just after the highest skb with SACKed
1920  * bit, valid only if sacked_out > 0 or when the caller has ensured
1921  * validity by itself.
1922  */
tcp_highest_sack_seq(struct tcp_sock * tp)1923 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1924 {
1925 	if (!tp->sacked_out)
1926 		return tp->snd_una;
1927 
1928 	if (tp->highest_sack == NULL)
1929 		return tp->snd_nxt;
1930 
1931 	return TCP_SKB_CB(tp->highest_sack)->seq;
1932 }
1933 
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)1934 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1935 {
1936 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1937 }
1938 
tcp_highest_sack(struct sock * sk)1939 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1940 {
1941 	return tcp_sk(sk)->highest_sack;
1942 }
1943 
tcp_highest_sack_reset(struct sock * sk)1944 static inline void tcp_highest_sack_reset(struct sock *sk)
1945 {
1946 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1947 }
1948 
1949 /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)1950 static inline void tcp_highest_sack_replace(struct sock *sk,
1951 					    struct sk_buff *old,
1952 					    struct sk_buff *new)
1953 {
1954 	if (old == tcp_highest_sack(sk))
1955 		tcp_sk(sk)->highest_sack = new;
1956 }
1957 
1958 /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)1959 static inline bool inet_sk_transparent(const struct sock *sk)
1960 {
1961 	switch (sk->sk_state) {
1962 	case TCP_TIME_WAIT:
1963 		return inet_twsk(sk)->tw_transparent;
1964 	case TCP_NEW_SYN_RECV:
1965 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1966 	}
1967 	return inet_sk(sk)->transparent;
1968 }
1969 
1970 /* Determines whether this is a thin stream (which may suffer from
1971  * increased latency). Used to trigger latency-reducing mechanisms.
1972  */
tcp_stream_is_thin(struct tcp_sock * tp)1973 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1974 {
1975 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1976 }
1977 
1978 /* /proc */
1979 enum tcp_seq_states {
1980 	TCP_SEQ_STATE_LISTENING,
1981 	TCP_SEQ_STATE_ESTABLISHED,
1982 };
1983 
1984 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1985 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1986 void tcp_seq_stop(struct seq_file *seq, void *v);
1987 
1988 struct tcp_seq_afinfo {
1989 	sa_family_t			family;
1990 };
1991 
1992 struct tcp_iter_state {
1993 	struct seq_net_private	p;
1994 	enum tcp_seq_states	state;
1995 	struct sock		*syn_wait_sk;
1996 	int			bucket, offset, sbucket, num;
1997 	loff_t			last_pos;
1998 };
1999 
2000 extern struct request_sock_ops tcp_request_sock_ops;
2001 extern struct request_sock_ops tcp6_request_sock_ops;
2002 
2003 void tcp_v4_destroy_sock(struct sock *sk);
2004 
2005 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2006 				netdev_features_t features);
2007 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2008 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2009 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2010 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2011 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2012 int tcp_gro_complete(struct sk_buff *skb);
2013 
2014 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2015 
tcp_notsent_lowat(const struct tcp_sock * tp)2016 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2017 {
2018 	struct net *net = sock_net((struct sock *)tp);
2019 	u32 val;
2020 
2021 	val = READ_ONCE(tp->notsent_lowat);
2022 
2023 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2024 }
2025 
2026 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2027 
2028 #ifdef CONFIG_PROC_FS
2029 int tcp4_proc_init(void);
2030 void tcp4_proc_exit(void);
2031 #endif
2032 
2033 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2034 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2035 		     const struct tcp_request_sock_ops *af_ops,
2036 		     struct sock *sk, struct sk_buff *skb);
2037 
2038 /* TCP af-specific functions */
2039 struct tcp_sock_af_ops {
2040 #ifdef CONFIG_TCP_MD5SIG
2041 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2042 						const struct sock *addr_sk);
2043 	int		(*calc_md5_hash)(char *location,
2044 					 const struct tcp_md5sig_key *md5,
2045 					 const struct sock *sk,
2046 					 const struct sk_buff *skb);
2047 	int		(*md5_parse)(struct sock *sk,
2048 				     int optname,
2049 				     sockptr_t optval,
2050 				     int optlen);
2051 #endif
2052 };
2053 
2054 struct tcp_request_sock_ops {
2055 	u16 mss_clamp;
2056 #ifdef CONFIG_TCP_MD5SIG
2057 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2058 						 const struct sock *addr_sk);
2059 	int		(*calc_md5_hash) (char *location,
2060 					  const struct tcp_md5sig_key *md5,
2061 					  const struct sock *sk,
2062 					  const struct sk_buff *skb);
2063 #endif
2064 #ifdef CONFIG_SYN_COOKIES
2065 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2066 				 __u16 *mss);
2067 #endif
2068 	struct dst_entry *(*route_req)(const struct sock *sk,
2069 				       struct sk_buff *skb,
2070 				       struct flowi *fl,
2071 				       struct request_sock *req);
2072 	u32 (*init_seq)(const struct sk_buff *skb);
2073 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2074 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2075 			   struct flowi *fl, struct request_sock *req,
2076 			   struct tcp_fastopen_cookie *foc,
2077 			   enum tcp_synack_type synack_type,
2078 			   struct sk_buff *syn_skb);
2079 };
2080 
2081 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2082 #if IS_ENABLED(CONFIG_IPV6)
2083 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2084 #endif
2085 
2086 #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2087 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2088 					 const struct sock *sk, struct sk_buff *skb,
2089 					 __u16 *mss)
2090 {
2091 	tcp_synq_overflow(sk);
2092 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2093 	return ops->cookie_init_seq(skb, mss);
2094 }
2095 #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2096 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2097 					 const struct sock *sk, struct sk_buff *skb,
2098 					 __u16 *mss)
2099 {
2100 	return 0;
2101 }
2102 #endif
2103 
2104 int tcpv4_offload_init(void);
2105 
2106 void tcp_v4_init(void);
2107 void tcp_init(void);
2108 
2109 /* tcp_recovery.c */
2110 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2111 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2112 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2113 				u32 reo_wnd);
2114 extern bool tcp_rack_mark_lost(struct sock *sk);
2115 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2116 			     u64 xmit_time);
2117 extern void tcp_rack_reo_timeout(struct sock *sk);
2118 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2119 
2120 /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)2121 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2122 {
2123 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2124 	u32 rto = inet_csk(sk)->icsk_rto;
2125 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2126 
2127 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2128 }
2129 
2130 /*
2131  * Save and compile IPv4 options, return a pointer to it
2132  */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)2133 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2134 							 struct sk_buff *skb)
2135 {
2136 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2137 	struct ip_options_rcu *dopt = NULL;
2138 
2139 	if (opt->optlen) {
2140 		int opt_size = sizeof(*dopt) + opt->optlen;
2141 
2142 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2143 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2144 			kfree(dopt);
2145 			dopt = NULL;
2146 		}
2147 	}
2148 	return dopt;
2149 }
2150 
2151 /* locally generated TCP pure ACKs have skb->truesize == 2
2152  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2153  * This is much faster than dissecting the packet to find out.
2154  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2155  */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2156 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2157 {
2158 	return skb->truesize == 2;
2159 }
2160 
skb_set_tcp_pure_ack(struct sk_buff * skb)2161 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2162 {
2163 	skb->truesize = 2;
2164 }
2165 
tcp_inq(struct sock * sk)2166 static inline int tcp_inq(struct sock *sk)
2167 {
2168 	struct tcp_sock *tp = tcp_sk(sk);
2169 	int answ;
2170 
2171 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2172 		answ = 0;
2173 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2174 		   !tp->urg_data ||
2175 		   before(tp->urg_seq, tp->copied_seq) ||
2176 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2177 
2178 		answ = tp->rcv_nxt - tp->copied_seq;
2179 
2180 		/* Subtract 1, if FIN was received */
2181 		if (answ && sock_flag(sk, SOCK_DONE))
2182 			answ--;
2183 	} else {
2184 		answ = tp->urg_seq - tp->copied_seq;
2185 	}
2186 
2187 	return answ;
2188 }
2189 
2190 int tcp_peek_len(struct socket *sock);
2191 
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2192 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2193 {
2194 	u16 segs_in;
2195 
2196 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2197 	tp->segs_in += segs_in;
2198 	if (skb->len > tcp_hdrlen(skb))
2199 		tp->data_segs_in += segs_in;
2200 }
2201 
2202 /*
2203  * TCP listen path runs lockless.
2204  * We forced "struct sock" to be const qualified to make sure
2205  * we don't modify one of its field by mistake.
2206  * Here, we increment sk_drops which is an atomic_t, so we can safely
2207  * make sock writable again.
2208  */
tcp_listendrop(const struct sock * sk)2209 static inline void tcp_listendrop(const struct sock *sk)
2210 {
2211 	atomic_inc(&((struct sock *)sk)->sk_drops);
2212 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2213 }
2214 
2215 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2216 
2217 /*
2218  * Interface for adding Upper Level Protocols over TCP
2219  */
2220 
2221 #define TCP_ULP_NAME_MAX	16
2222 #define TCP_ULP_MAX		128
2223 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2224 
2225 struct tcp_ulp_ops {
2226 	struct list_head	list;
2227 
2228 	/* initialize ulp */
2229 	int (*init)(struct sock *sk);
2230 	/* update ulp */
2231 	void (*update)(struct sock *sk, struct proto *p,
2232 		       void (*write_space)(struct sock *sk));
2233 	/* cleanup ulp */
2234 	void (*release)(struct sock *sk);
2235 	/* diagnostic */
2236 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2237 	size_t (*get_info_size)(const struct sock *sk);
2238 	/* clone ulp */
2239 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2240 		      const gfp_t priority);
2241 
2242 	char		name[TCP_ULP_NAME_MAX];
2243 	struct module	*owner;
2244 };
2245 int tcp_register_ulp(struct tcp_ulp_ops *type);
2246 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2247 int tcp_set_ulp(struct sock *sk, const char *name);
2248 void tcp_get_available_ulp(char *buf, size_t len);
2249 void tcp_cleanup_ulp(struct sock *sk);
2250 void tcp_update_ulp(struct sock *sk, struct proto *p,
2251 		    void (*write_space)(struct sock *sk));
2252 
2253 #define MODULE_ALIAS_TCP_ULP(name)				\
2254 	__MODULE_INFO(alias, alias_userspace, name);		\
2255 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2256 
2257 #ifdef CONFIG_NET_SOCK_MSG
2258 struct sk_msg;
2259 struct sk_psock;
2260 
2261 #ifdef CONFIG_BPF_SYSCALL
2262 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2263 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2264 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2265 #endif /* CONFIG_BPF_SYSCALL */
2266 
2267 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2268 			  struct sk_msg *msg, u32 bytes, int flags);
2269 #endif /* CONFIG_NET_SOCK_MSG */
2270 
2271 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
tcp_bpf_clone(const struct sock * sk,struct sock * newsk)2272 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2273 {
2274 }
2275 #endif
2276 
2277 #ifdef CONFIG_CGROUP_BPF
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2278 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2279 				      struct sk_buff *skb,
2280 				      unsigned int end_offset)
2281 {
2282 	skops->skb = skb;
2283 	skops->skb_data_end = skb->data + end_offset;
2284 }
2285 #else
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2286 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2287 				      struct sk_buff *skb,
2288 				      unsigned int end_offset)
2289 {
2290 }
2291 #endif
2292 
2293 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2294  * is < 0, then the BPF op failed (for example if the loaded BPF
2295  * program does not support the chosen operation or there is no BPF
2296  * program loaded).
2297  */
2298 #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2299 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2300 {
2301 	struct bpf_sock_ops_kern sock_ops;
2302 	int ret;
2303 
2304 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2305 	if (sk_fullsock(sk)) {
2306 		sock_ops.is_fullsock = 1;
2307 		sock_owned_by_me(sk);
2308 	}
2309 
2310 	sock_ops.sk = sk;
2311 	sock_ops.op = op;
2312 	if (nargs > 0)
2313 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2314 
2315 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2316 	if (ret == 0)
2317 		ret = sock_ops.reply;
2318 	else
2319 		ret = -1;
2320 	return ret;
2321 }
2322 
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2323 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2324 {
2325 	u32 args[2] = {arg1, arg2};
2326 
2327 	return tcp_call_bpf(sk, op, 2, args);
2328 }
2329 
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2330 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2331 				    u32 arg3)
2332 {
2333 	u32 args[3] = {arg1, arg2, arg3};
2334 
2335 	return tcp_call_bpf(sk, op, 3, args);
2336 }
2337 
2338 #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2339 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2340 {
2341 	return -EPERM;
2342 }
2343 
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2344 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2345 {
2346 	return -EPERM;
2347 }
2348 
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2349 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2350 				    u32 arg3)
2351 {
2352 	return -EPERM;
2353 }
2354 
2355 #endif
2356 
tcp_timeout_init(struct sock * sk)2357 static inline u32 tcp_timeout_init(struct sock *sk)
2358 {
2359 	int timeout;
2360 
2361 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2362 
2363 	if (timeout <= 0)
2364 		timeout = TCP_TIMEOUT_INIT;
2365 	return timeout;
2366 }
2367 
tcp_rwnd_init_bpf(struct sock * sk)2368 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2369 {
2370 	int rwnd;
2371 
2372 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2373 
2374 	if (rwnd < 0)
2375 		rwnd = 0;
2376 	return rwnd;
2377 }
2378 
tcp_bpf_ca_needs_ecn(struct sock * sk)2379 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2380 {
2381 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2382 }
2383 
tcp_bpf_rtt(struct sock * sk)2384 static inline void tcp_bpf_rtt(struct sock *sk)
2385 {
2386 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2387 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2388 }
2389 
2390 #if IS_ENABLED(CONFIG_SMC)
2391 extern struct static_key_false tcp_have_smc;
2392 #endif
2393 
2394 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2395 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2396 			     void (*cad)(struct sock *sk, u32 ack_seq));
2397 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2398 void clean_acked_data_flush(void);
2399 #endif
2400 
2401 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
tcp_add_tx_delay(struct sk_buff * skb,const struct tcp_sock * tp)2402 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2403 				    const struct tcp_sock *tp)
2404 {
2405 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2406 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2407 }
2408 
2409 /* Compute Earliest Departure Time for some control packets
2410  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2411  */
tcp_transmit_time(const struct sock * sk)2412 static inline u64 tcp_transmit_time(const struct sock *sk)
2413 {
2414 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2415 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2416 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2417 
2418 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2419 	}
2420 	return 0;
2421 }
2422 
2423 #endif	/* _TCP_H */
2424