• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/mutex.h>
44 #include <linux/netdevice.h>
45 #include <linux/rcupdate.h>
46 #include <linux/android_kabi.h>
47 
48 #include <net/net_namespace.h>
49 #include <net/tcp.h>
50 #include <net/strparser.h>
51 #include <crypto/aead.h>
52 #include <uapi/linux/tls.h>
53 
54 
55 /* Maximum data size carried in a TLS record */
56 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
57 
58 #define TLS_HEADER_SIZE			5
59 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
60 
61 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
62 
63 #define TLS_RECORD_TYPE_DATA		0x17
64 
65 #define TLS_AAD_SPACE_SIZE		13
66 
67 #define MAX_IV_SIZE			16
68 #define TLS_MAX_REC_SEQ_SIZE		8
69 
70 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
71  *
72  * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
73  *
74  * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
75  * Hence b0 contains (3 - 1) = 2.
76  */
77 #define TLS_AES_CCM_IV_B0_BYTE		2
78 
79 #define __TLS_INC_STATS(net, field)				\
80 	__SNMP_INC_STATS((net)->mib.tls_statistics, field)
81 #define TLS_INC_STATS(net, field)				\
82 	SNMP_INC_STATS((net)->mib.tls_statistics, field)
83 #define TLS_DEC_STATS(net, field)				\
84 	SNMP_DEC_STATS((net)->mib.tls_statistics, field)
85 
86 enum {
87 	TLS_BASE,
88 	TLS_SW,
89 	TLS_HW,
90 	TLS_HW_RECORD,
91 	TLS_NUM_CONFIG,
92 };
93 
94 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
95  * allocated or mapped for each TLS record. After encryption, the records are
96  * stores in a linked list.
97  */
98 struct tls_rec {
99 	struct list_head list;
100 	int tx_ready;
101 	int tx_flags;
102 
103 	struct sk_msg msg_plaintext;
104 	struct sk_msg msg_encrypted;
105 
106 	/* AAD | msg_plaintext.sg.data | sg_tag */
107 	struct scatterlist sg_aead_in[2];
108 	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
109 	struct scatterlist sg_aead_out[2];
110 
111 	char content_type;
112 	struct scatterlist sg_content_type;
113 
114 	char aad_space[TLS_AAD_SPACE_SIZE];
115 	u8 iv_data[MAX_IV_SIZE];
116 	struct aead_request aead_req;
117 
118 	ANDROID_KABI_RESERVE(1);
119 
120 	u8 aead_req_ctx[];
121 };
122 
123 struct tx_work {
124 	struct delayed_work work;
125 	struct sock *sk;
126 };
127 
128 struct tls_sw_context_tx {
129 	struct crypto_aead *aead_send;
130 	struct crypto_wait async_wait;
131 	struct tx_work tx_work;
132 	struct tls_rec *open_rec;
133 	struct list_head tx_list;
134 	atomic_t encrypt_pending;
135 	/* protect crypto_wait with encrypt_pending */
136 	spinlock_t encrypt_compl_lock;
137 	int async_notify;
138 	u8 async_capable:1;
139 
140 #define BIT_TX_SCHEDULED	0
141 #define BIT_TX_CLOSING		1
142 	unsigned long tx_bitmask;
143 
144 	ANDROID_KABI_RESERVE(1);
145 };
146 
147 struct tls_sw_context_rx {
148 	struct crypto_aead *aead_recv;
149 	struct crypto_wait async_wait;
150 	struct strparser strp;
151 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
152 	void (*saved_data_ready)(struct sock *sk);
153 
154 	struct sk_buff *recv_pkt;
155 	u8 async_capable:1;
156 	atomic_t decrypt_pending;
157 	/* protect crypto_wait with decrypt_pending*/
158 	spinlock_t decrypt_compl_lock;
159 	bool async_notify;
160 
161 	ANDROID_KABI_RESERVE(1);
162 };
163 
164 struct tls_record_info {
165 	struct list_head list;
166 	u32 end_seq;
167 	int len;
168 	int num_frags;
169 	skb_frag_t frags[MAX_SKB_FRAGS];
170 };
171 
172 struct tls_offload_context_tx {
173 	struct crypto_aead *aead_send;
174 	spinlock_t lock;	/* protects records list */
175 	struct list_head records_list;
176 	struct tls_record_info *open_record;
177 	struct tls_record_info *retransmit_hint;
178 	u64 hint_record_sn;
179 	u64 unacked_record_sn;
180 
181 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
182 	void (*sk_destruct)(struct sock *sk);
183 	struct work_struct destruct_work;
184 	struct tls_context *ctx;
185 	u8 driver_state[] __aligned(8);
186 	/* The TLS layer reserves room for driver specific state
187 	 * Currently the belief is that there is not enough
188 	 * driver specific state to justify another layer of indirection
189 	 */
190 #define TLS_DRIVER_STATE_SIZE_TX	16
191 };
192 
193 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
194 	(sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
195 
196 enum tls_context_flags {
197 	/* tls_device_down was called after the netdev went down, device state
198 	 * was released, and kTLS works in software, even though rx_conf is
199 	 * still TLS_HW (needed for transition).
200 	 */
201 	TLS_RX_DEV_DEGRADED = 0,
202 	/* Unlike RX where resync is driven entirely by the core in TX only
203 	 * the driver knows when things went out of sync, so we need the flag
204 	 * to be atomic.
205 	 */
206 	TLS_TX_SYNC_SCHED = 1,
207 	/* tls_dev_del was called for the RX side, device state was released,
208 	 * but tls_ctx->netdev might still be kept, because TX-side driver
209 	 * resources might not be released yet. Used to prevent the second
210 	 * tls_dev_del call in tls_device_down if it happens simultaneously.
211 	 */
212 	TLS_RX_DEV_CLOSED = 2,
213 };
214 
215 struct cipher_context {
216 	char *iv;
217 	char *rec_seq;
218 };
219 
220 union tls_crypto_context {
221 	struct tls_crypto_info info;
222 	union {
223 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
224 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
225 		struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
226 	};
227 };
228 
229 struct tls_prot_info {
230 	u16 version;
231 	u16 cipher_type;
232 	u16 prepend_size;
233 	u16 tag_size;
234 	u16 overhead_size;
235 	u16 iv_size;
236 	u16 salt_size;
237 	u16 rec_seq_size;
238 	u16 aad_size;
239 	u16 tail_size;
240 };
241 
242 struct tls_context {
243 	/* read-only cache line */
244 	struct tls_prot_info prot_info;
245 
246 	u8 tx_conf:3;
247 	u8 rx_conf:3;
248 
249 	int (*push_pending_record)(struct sock *sk, int flags);
250 	void (*sk_write_space)(struct sock *sk);
251 
252 	void *priv_ctx_tx;
253 	void *priv_ctx_rx;
254 
255 	struct net_device *netdev;
256 
257 	/* rw cache line */
258 	struct cipher_context tx;
259 	struct cipher_context rx;
260 
261 	struct scatterlist *partially_sent_record;
262 	u16 partially_sent_offset;
263 
264 	bool in_tcp_sendpages;
265 	bool pending_open_record_frags;
266 
267 	struct mutex tx_lock; /* protects partially_sent_* fields and
268 			       * per-type TX fields
269 			       */
270 	unsigned long flags;
271 
272 	/* cache cold stuff */
273 	struct proto *sk_proto;
274 	struct sock *sk;
275 
276 	void (*sk_destruct)(struct sock *sk);
277 
278 	union tls_crypto_context crypto_send;
279 	union tls_crypto_context crypto_recv;
280 
281 	struct list_head list;
282 	refcount_t refcount;
283 	struct rcu_head rcu;
284 };
285 
286 enum tls_offload_ctx_dir {
287 	TLS_OFFLOAD_CTX_DIR_RX,
288 	TLS_OFFLOAD_CTX_DIR_TX,
289 };
290 
291 struct tlsdev_ops {
292 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
293 			   enum tls_offload_ctx_dir direction,
294 			   struct tls_crypto_info *crypto_info,
295 			   u32 start_offload_tcp_sn);
296 	void (*tls_dev_del)(struct net_device *netdev,
297 			    struct tls_context *ctx,
298 			    enum tls_offload_ctx_dir direction);
299 	int (*tls_dev_resync)(struct net_device *netdev,
300 			      struct sock *sk, u32 seq, u8 *rcd_sn,
301 			      enum tls_offload_ctx_dir direction);
302 
303 	ANDROID_KABI_RESERVE(1);
304 	ANDROID_KABI_RESERVE(2);
305 	ANDROID_KABI_RESERVE(3);
306 	ANDROID_KABI_RESERVE(4);
307 
308 };
309 
310 enum tls_offload_sync_type {
311 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
312 	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
313 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
314 };
315 
316 #define TLS_DEVICE_RESYNC_NH_START_IVAL		2
317 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
318 
319 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX		13
320 struct tls_offload_resync_async {
321 	atomic64_t req;
322 	u16 loglen;
323 	u16 rcd_delta;
324 	u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
325 };
326 
327 struct tls_offload_context_rx {
328 	/* sw must be the first member of tls_offload_context_rx */
329 	struct tls_sw_context_rx sw;
330 	enum tls_offload_sync_type resync_type;
331 	/* this member is set regardless of resync_type, to avoid branches */
332 	u8 resync_nh_reset:1;
333 	/* CORE_NEXT_HINT-only member, but use the hole here */
334 	u8 resync_nh_do_now:1;
335 	union {
336 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
337 		struct {
338 			atomic64_t resync_req;
339 		};
340 		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
341 		struct {
342 			u32 decrypted_failed;
343 			u32 decrypted_tgt;
344 		} resync_nh;
345 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
346 		struct {
347 			struct tls_offload_resync_async *resync_async;
348 		};
349 	};
350 	u8 driver_state[] __aligned(8);
351 	/* The TLS layer reserves room for driver specific state
352 	 * Currently the belief is that there is not enough
353 	 * driver specific state to justify another layer of indirection
354 	 */
355 #define TLS_DRIVER_STATE_SIZE_RX	8
356 };
357 
358 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
359 	(sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
360 
361 struct tls_context *tls_ctx_create(struct sock *sk);
362 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
363 void update_sk_prot(struct sock *sk, struct tls_context *ctx);
364 
365 int wait_on_pending_writer(struct sock *sk, long *timeo);
366 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
367 		int __user *optlen);
368 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
369 		  unsigned int optlen);
370 void tls_err_abort(struct sock *sk, int err);
371 
372 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
373 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
374 void tls_sw_strparser_done(struct tls_context *tls_ctx);
375 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
376 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
377 			   int offset, size_t size, int flags);
378 int tls_sw_sendpage(struct sock *sk, struct page *page,
379 		    int offset, size_t size, int flags);
380 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
381 void tls_sw_release_resources_tx(struct sock *sk);
382 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
383 void tls_sw_free_resources_rx(struct sock *sk);
384 void tls_sw_release_resources_rx(struct sock *sk);
385 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
386 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
387 		   int nonblock, int flags, int *addr_len);
388 bool tls_sw_sock_is_readable(struct sock *sk);
389 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
390 			   struct pipe_inode_info *pipe,
391 			   size_t len, unsigned int flags);
392 
393 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
394 int tls_device_sendpage(struct sock *sk, struct page *page,
395 			int offset, size_t size, int flags);
396 int tls_tx_records(struct sock *sk, int flags);
397 
398 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
399 				       u32 seq, u64 *p_record_sn);
400 
tls_record_is_start_marker(struct tls_record_info * rec)401 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
402 {
403 	return rec->len == 0;
404 }
405 
tls_record_start_seq(struct tls_record_info * rec)406 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
407 {
408 	return rec->end_seq - rec->len;
409 }
410 
411 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
412 		struct scatterlist *sg, u16 first_offset,
413 		int flags);
414 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
415 			    int flags);
416 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
417 
tls_msg(struct sk_buff * skb)418 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
419 {
420 	struct sk_skb_cb *scb = (struct sk_skb_cb *)skb->cb;
421 
422 	return &scb->tls;
423 }
424 
tls_is_partially_sent_record(struct tls_context * ctx)425 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
426 {
427 	return !!ctx->partially_sent_record;
428 }
429 
tls_is_pending_open_record(struct tls_context * tls_ctx)430 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
431 {
432 	return tls_ctx->pending_open_record_frags;
433 }
434 
is_tx_ready(struct tls_sw_context_tx * ctx)435 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
436 {
437 	struct tls_rec *rec;
438 
439 	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
440 	if (!rec)
441 		return false;
442 
443 	return READ_ONCE(rec->tx_ready);
444 }
445 
tls_user_config(struct tls_context * ctx,bool tx)446 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
447 {
448 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
449 
450 	switch (config) {
451 	case TLS_BASE:
452 		return TLS_CONF_BASE;
453 	case TLS_SW:
454 		return TLS_CONF_SW;
455 	case TLS_HW:
456 		return TLS_CONF_HW;
457 	case TLS_HW_RECORD:
458 		return TLS_CONF_HW_RECORD;
459 	}
460 	return 0;
461 }
462 
463 struct sk_buff *
464 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
465 		      struct sk_buff *skb);
466 struct sk_buff *
467 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
468 			 struct sk_buff *skb);
469 
tls_is_sk_tx_device_offloaded(struct sock * sk)470 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
471 {
472 #ifdef CONFIG_SOCK_VALIDATE_XMIT
473 	return sk_fullsock(sk) &&
474 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
475 	       &tls_validate_xmit_skb);
476 #else
477 	return false;
478 #endif
479 }
480 
tls_bigint_increment(unsigned char * seq,int len)481 static inline bool tls_bigint_increment(unsigned char *seq, int len)
482 {
483 	int i;
484 
485 	for (i = len - 1; i >= 0; i--) {
486 		++seq[i];
487 		if (seq[i] != 0)
488 			break;
489 	}
490 
491 	return (i == -1);
492 }
493 
tls_bigint_subtract(unsigned char * seq,int n)494 static inline void tls_bigint_subtract(unsigned char *seq, int  n)
495 {
496 	u64 rcd_sn;
497 	__be64 *p;
498 
499 	BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8);
500 
501 	p = (__be64 *)seq;
502 	rcd_sn = be64_to_cpu(*p);
503 	*p = cpu_to_be64(rcd_sn - n);
504 }
505 
tls_get_ctx(const struct sock * sk)506 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
507 {
508 	struct inet_connection_sock *icsk = inet_csk(sk);
509 
510 	/* Use RCU on icsk_ulp_data only for sock diag code,
511 	 * TLS data path doesn't need rcu_dereference().
512 	 */
513 	return (__force void *)icsk->icsk_ulp_data;
514 }
515 
tls_advance_record_sn(struct sock * sk,struct tls_prot_info * prot,struct cipher_context * ctx)516 static inline void tls_advance_record_sn(struct sock *sk,
517 					 struct tls_prot_info *prot,
518 					 struct cipher_context *ctx)
519 {
520 	if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
521 		tls_err_abort(sk, -EBADMSG);
522 
523 	if (prot->version != TLS_1_3_VERSION &&
524 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
525 		tls_bigint_increment(ctx->iv + prot->salt_size,
526 				     prot->iv_size);
527 }
528 
tls_fill_prepend(struct tls_context * ctx,char * buf,size_t plaintext_len,unsigned char record_type)529 static inline void tls_fill_prepend(struct tls_context *ctx,
530 			     char *buf,
531 			     size_t plaintext_len,
532 			     unsigned char record_type)
533 {
534 	struct tls_prot_info *prot = &ctx->prot_info;
535 	size_t pkt_len, iv_size = prot->iv_size;
536 
537 	pkt_len = plaintext_len + prot->tag_size;
538 	if (prot->version != TLS_1_3_VERSION &&
539 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) {
540 		pkt_len += iv_size;
541 
542 		memcpy(buf + TLS_NONCE_OFFSET,
543 		       ctx->tx.iv + prot->salt_size, iv_size);
544 	}
545 
546 	/* we cover nonce explicit here as well, so buf should be of
547 	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
548 	 */
549 	buf[0] = prot->version == TLS_1_3_VERSION ?
550 		   TLS_RECORD_TYPE_DATA : record_type;
551 	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
552 	buf[1] = TLS_1_2_VERSION_MINOR;
553 	buf[2] = TLS_1_2_VERSION_MAJOR;
554 	/* we can use IV for nonce explicit according to spec */
555 	buf[3] = pkt_len >> 8;
556 	buf[4] = pkt_len & 0xFF;
557 }
558 
tls_make_aad(char * buf,size_t size,char * record_sequence,unsigned char record_type,struct tls_prot_info * prot)559 static inline void tls_make_aad(char *buf,
560 				size_t size,
561 				char *record_sequence,
562 				unsigned char record_type,
563 				struct tls_prot_info *prot)
564 {
565 	if (prot->version != TLS_1_3_VERSION) {
566 		memcpy(buf, record_sequence, prot->rec_seq_size);
567 		buf += 8;
568 	} else {
569 		size += prot->tag_size;
570 	}
571 
572 	buf[0] = prot->version == TLS_1_3_VERSION ?
573 		  TLS_RECORD_TYPE_DATA : record_type;
574 	buf[1] = TLS_1_2_VERSION_MAJOR;
575 	buf[2] = TLS_1_2_VERSION_MINOR;
576 	buf[3] = size >> 8;
577 	buf[4] = size & 0xFF;
578 }
579 
xor_iv_with_seq(struct tls_prot_info * prot,char * iv,char * seq)580 static inline void xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq)
581 {
582 	int i;
583 
584 	if (prot->version == TLS_1_3_VERSION ||
585 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
586 		for (i = 0; i < 8; i++)
587 			iv[i + 4] ^= seq[i];
588 	}
589 }
590 
591 
tls_sw_ctx_rx(const struct tls_context * tls_ctx)592 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
593 		const struct tls_context *tls_ctx)
594 {
595 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
596 }
597 
tls_sw_ctx_tx(const struct tls_context * tls_ctx)598 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
599 		const struct tls_context *tls_ctx)
600 {
601 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
602 }
603 
604 static inline struct tls_offload_context_tx *
tls_offload_ctx_tx(const struct tls_context * tls_ctx)605 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
606 {
607 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
608 }
609 
tls_sw_has_ctx_tx(const struct sock * sk)610 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
611 {
612 	struct tls_context *ctx = tls_get_ctx(sk);
613 
614 	if (!ctx)
615 		return false;
616 	return !!tls_sw_ctx_tx(ctx);
617 }
618 
tls_sw_has_ctx_rx(const struct sock * sk)619 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
620 {
621 	struct tls_context *ctx = tls_get_ctx(sk);
622 
623 	if (!ctx)
624 		return false;
625 	return !!tls_sw_ctx_rx(ctx);
626 }
627 
628 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
629 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
630 
631 static inline struct tls_offload_context_rx *
tls_offload_ctx_rx(const struct tls_context * tls_ctx)632 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
633 {
634 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
635 }
636 
637 #if IS_ENABLED(CONFIG_TLS_DEVICE)
__tls_driver_ctx(struct tls_context * tls_ctx,enum tls_offload_ctx_dir direction)638 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
639 				     enum tls_offload_ctx_dir direction)
640 {
641 	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
642 		return tls_offload_ctx_tx(tls_ctx)->driver_state;
643 	else
644 		return tls_offload_ctx_rx(tls_ctx)->driver_state;
645 }
646 
647 static inline void *
tls_driver_ctx(const struct sock * sk,enum tls_offload_ctx_dir direction)648 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
649 {
650 	return __tls_driver_ctx(tls_get_ctx(sk), direction);
651 }
652 #endif
653 
654 #define RESYNC_REQ BIT(0)
655 #define RESYNC_REQ_ASYNC BIT(1)
656 /* The TLS context is valid until sk_destruct is called */
tls_offload_rx_resync_request(struct sock * sk,__be32 seq)657 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
658 {
659 	struct tls_context *tls_ctx = tls_get_ctx(sk);
660 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
661 
662 	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
663 }
664 
665 /* Log all TLS record header TCP sequences in [seq, seq+len] */
666 static inline void
tls_offload_rx_resync_async_request_start(struct sock * sk,__be32 seq,u16 len)667 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
668 {
669 	struct tls_context *tls_ctx = tls_get_ctx(sk);
670 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
671 
672 	atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
673 		     ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
674 	rx_ctx->resync_async->loglen = 0;
675 	rx_ctx->resync_async->rcd_delta = 0;
676 }
677 
678 static inline void
tls_offload_rx_resync_async_request_end(struct sock * sk,__be32 seq)679 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
680 {
681 	struct tls_context *tls_ctx = tls_get_ctx(sk);
682 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
683 
684 	atomic64_set(&rx_ctx->resync_async->req,
685 		     ((u64)ntohl(seq) << 32) | RESYNC_REQ);
686 }
687 
688 static inline void
tls_offload_rx_resync_set_type(struct sock * sk,enum tls_offload_sync_type type)689 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
690 {
691 	struct tls_context *tls_ctx = tls_get_ctx(sk);
692 
693 	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
694 }
695 
696 /* Driver's seq tracking has to be disabled until resync succeeded */
tls_offload_tx_resync_pending(struct sock * sk)697 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
698 {
699 	struct tls_context *tls_ctx = tls_get_ctx(sk);
700 	bool ret;
701 
702 	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
703 	smp_mb__after_atomic();
704 	return ret;
705 }
706 
707 int __net_init tls_proc_init(struct net *net);
708 void __net_exit tls_proc_fini(struct net *net);
709 
710 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
711 		      unsigned char *record_type);
712 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
713 		struct scatterlist *sgout);
714 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
715 
716 int tls_sw_fallback_init(struct sock *sk,
717 			 struct tls_offload_context_tx *offload_ctx,
718 			 struct tls_crypto_info *crypto_info);
719 
720 #ifdef CONFIG_TLS_DEVICE
721 int tls_device_init(void);
722 void tls_device_cleanup(void);
723 void tls_device_sk_destruct(struct sock *sk);
724 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
725 void tls_device_free_resources_tx(struct sock *sk);
726 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
727 void tls_device_offload_cleanup_rx(struct sock *sk);
728 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
729 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
730 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
731 			 struct sk_buff *skb, struct strp_msg *rxm);
732 
tls_is_sk_rx_device_offloaded(struct sock * sk)733 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
734 {
735 	if (!sk_fullsock(sk) ||
736 	    smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
737 		return false;
738 	return tls_get_ctx(sk)->rx_conf == TLS_HW;
739 }
740 #else
tls_device_init(void)741 static inline int tls_device_init(void) { return 0; }
tls_device_cleanup(void)742 static inline void tls_device_cleanup(void) {}
743 
744 static inline int
tls_set_device_offload(struct sock * sk,struct tls_context * ctx)745 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
746 {
747 	return -EOPNOTSUPP;
748 }
749 
tls_device_free_resources_tx(struct sock * sk)750 static inline void tls_device_free_resources_tx(struct sock *sk) {}
751 
752 static inline int
tls_set_device_offload_rx(struct sock * sk,struct tls_context * ctx)753 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
754 {
755 	return -EOPNOTSUPP;
756 }
757 
tls_device_offload_cleanup_rx(struct sock * sk)758 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
759 static inline void
tls_device_rx_resync_new_rec(struct sock * sk,u32 rcd_len,u32 seq)760 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
761 
762 static inline int
tls_device_decrypted(struct sock * sk,struct tls_context * tls_ctx,struct sk_buff * skb,struct strp_msg * rxm)763 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
764 		     struct sk_buff *skb, struct strp_msg *rxm)
765 {
766 	return 0;
767 }
768 #endif
769 #endif /* _TLS_OFFLOAD_H */
770