1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25
26 #include "disasm.h"
27
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 [_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38
39 /* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all paths through the program, the length of the
51 * analysis is limited to 64k insn, which may be hit even if total number of
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
79 * Most of the time the registers have SCALAR_VALUE type, which
80 * means the register has some value, but it's not a valid pointer.
81 * (like pointer plus pointer becomes SCALAR_VALUE type)
82 *
83 * When verifier sees load or store instructions the type of base register
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns either pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
162 */
163
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
170 struct bpf_verifier_state st;
171 int insn_idx;
172 int prev_insn_idx;
173 struct bpf_verifier_stack_elem *next;
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
176 };
177
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
179 #define BPF_COMPLEXITY_LIMIT_STATES 64
180
181 #define BPF_MAP_KEY_POISON (1ULL << 63)
182 #define BPF_MAP_KEY_SEEN (1ULL << 62)
183
184 #define BPF_MAP_PTR_UNPRIV 1UL
185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,const struct bpf_map * map,bool unpriv)199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201 {
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230
bpf_pseudo_call(const struct bpf_insn * insn)231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 return insn->code == (BPF_JMP | BPF_CALL) &&
234 insn->src_reg == BPF_PSEUDO_CALL;
235 }
236
bpf_pseudo_kfunc_call(const struct bpf_insn * insn)237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238 {
239 return insn->code == (BPF_JMP | BPF_CALL) &&
240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241 }
242
243 struct bpf_call_arg_meta {
244 struct bpf_map *map_ptr;
245 bool raw_mode;
246 bool pkt_access;
247 int regno;
248 int access_size;
249 int mem_size;
250 u64 msize_max_value;
251 int ref_obj_id;
252 int map_uid;
253 int func_id;
254 struct btf *btf;
255 u32 btf_id;
256 struct btf *ret_btf;
257 u32 ret_btf_id;
258 u32 subprogno;
259 };
260
261 struct btf *btf_vmlinux;
262
263 static DEFINE_MUTEX(bpf_verifier_lock);
264
265 static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env * env,u32 insn_off)266 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
267 {
268 const struct bpf_line_info *linfo;
269 const struct bpf_prog *prog;
270 u32 i, nr_linfo;
271
272 prog = env->prog;
273 nr_linfo = prog->aux->nr_linfo;
274
275 if (!nr_linfo || insn_off >= prog->len)
276 return NULL;
277
278 linfo = prog->aux->linfo;
279 for (i = 1; i < nr_linfo; i++)
280 if (insn_off < linfo[i].insn_off)
281 break;
282
283 return &linfo[i - 1];
284 }
285
bpf_verifier_vlog(struct bpf_verifier_log * log,const char * fmt,va_list args)286 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
287 va_list args)
288 {
289 unsigned int n;
290
291 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
292
293 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
294 "verifier log line truncated - local buffer too short\n");
295
296 n = min(log->len_total - log->len_used - 1, n);
297 log->kbuf[n] = '\0';
298
299 if (log->level == BPF_LOG_KERNEL) {
300 pr_err("BPF:%s\n", log->kbuf);
301 return;
302 }
303 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
304 log->len_used += n;
305 else
306 log->ubuf = NULL;
307 }
308
bpf_vlog_reset(struct bpf_verifier_log * log,u32 new_pos)309 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
310 {
311 char zero = 0;
312
313 if (!bpf_verifier_log_needed(log))
314 return;
315
316 log->len_used = new_pos;
317 if (put_user(zero, log->ubuf + new_pos))
318 log->ubuf = NULL;
319 }
320
321 /* log_level controls verbosity level of eBPF verifier.
322 * bpf_verifier_log_write() is used to dump the verification trace to the log,
323 * so the user can figure out what's wrong with the program
324 */
bpf_verifier_log_write(struct bpf_verifier_env * env,const char * fmt,...)325 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
326 const char *fmt, ...)
327 {
328 va_list args;
329
330 if (!bpf_verifier_log_needed(&env->log))
331 return;
332
333 va_start(args, fmt);
334 bpf_verifier_vlog(&env->log, fmt, args);
335 va_end(args);
336 }
337 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
338
verbose(void * private_data,const char * fmt,...)339 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
340 {
341 struct bpf_verifier_env *env = private_data;
342 va_list args;
343
344 if (!bpf_verifier_log_needed(&env->log))
345 return;
346
347 va_start(args, fmt);
348 bpf_verifier_vlog(&env->log, fmt, args);
349 va_end(args);
350 }
351
bpf_log(struct bpf_verifier_log * log,const char * fmt,...)352 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
353 const char *fmt, ...)
354 {
355 va_list args;
356
357 if (!bpf_verifier_log_needed(log))
358 return;
359
360 va_start(args, fmt);
361 bpf_verifier_vlog(log, fmt, args);
362 va_end(args);
363 }
364
ltrim(const char * s)365 static const char *ltrim(const char *s)
366 {
367 while (isspace(*s))
368 s++;
369
370 return s;
371 }
372
verbose_linfo(struct bpf_verifier_env * env,u32 insn_off,const char * prefix_fmt,...)373 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
374 u32 insn_off,
375 const char *prefix_fmt, ...)
376 {
377 const struct bpf_line_info *linfo;
378
379 if (!bpf_verifier_log_needed(&env->log))
380 return;
381
382 linfo = find_linfo(env, insn_off);
383 if (!linfo || linfo == env->prev_linfo)
384 return;
385
386 if (prefix_fmt) {
387 va_list args;
388
389 va_start(args, prefix_fmt);
390 bpf_verifier_vlog(&env->log, prefix_fmt, args);
391 va_end(args);
392 }
393
394 verbose(env, "%s\n",
395 ltrim(btf_name_by_offset(env->prog->aux->btf,
396 linfo->line_off)));
397
398 env->prev_linfo = linfo;
399 }
400
verbose_invalid_scalar(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct tnum * range,const char * ctx,const char * reg_name)401 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
402 struct bpf_reg_state *reg,
403 struct tnum *range, const char *ctx,
404 const char *reg_name)
405 {
406 char tn_buf[48];
407
408 verbose(env, "At %s the register %s ", ctx, reg_name);
409 if (!tnum_is_unknown(reg->var_off)) {
410 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
411 verbose(env, "has value %s", tn_buf);
412 } else {
413 verbose(env, "has unknown scalar value");
414 }
415 tnum_strn(tn_buf, sizeof(tn_buf), *range);
416 verbose(env, " should have been in %s\n", tn_buf);
417 }
418
type_is_pkt_pointer(enum bpf_reg_type type)419 static bool type_is_pkt_pointer(enum bpf_reg_type type)
420 {
421 return type == PTR_TO_PACKET ||
422 type == PTR_TO_PACKET_META;
423 }
424
type_is_sk_pointer(enum bpf_reg_type type)425 static bool type_is_sk_pointer(enum bpf_reg_type type)
426 {
427 return type == PTR_TO_SOCKET ||
428 type == PTR_TO_SOCK_COMMON ||
429 type == PTR_TO_TCP_SOCK ||
430 type == PTR_TO_XDP_SOCK;
431 }
432
reg_type_not_null(enum bpf_reg_type type)433 static bool reg_type_not_null(enum bpf_reg_type type)
434 {
435 return type == PTR_TO_SOCKET ||
436 type == PTR_TO_TCP_SOCK ||
437 type == PTR_TO_MAP_VALUE ||
438 type == PTR_TO_MAP_KEY ||
439 type == PTR_TO_SOCK_COMMON;
440 }
441
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)442 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
443 {
444 return reg->type == PTR_TO_MAP_VALUE &&
445 map_value_has_spin_lock(reg->map_ptr);
446 }
447
reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)448 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
449 {
450 return base_type(type) == PTR_TO_SOCKET ||
451 base_type(type) == PTR_TO_TCP_SOCK ||
452 base_type(type) == PTR_TO_MEM;
453 }
454
type_is_rdonly_mem(u32 type)455 static bool type_is_rdonly_mem(u32 type)
456 {
457 return type & MEM_RDONLY;
458 }
459
arg_type_may_be_refcounted(enum bpf_arg_type type)460 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
461 {
462 return type == ARG_PTR_TO_SOCK_COMMON;
463 }
464
type_may_be_null(u32 type)465 static bool type_may_be_null(u32 type)
466 {
467 return type & PTR_MAYBE_NULL;
468 }
469
470 /* Determine whether the function releases some resources allocated by another
471 * function call. The first reference type argument will be assumed to be
472 * released by release_reference().
473 */
is_release_function(enum bpf_func_id func_id)474 static bool is_release_function(enum bpf_func_id func_id)
475 {
476 return func_id == BPF_FUNC_sk_release ||
477 func_id == BPF_FUNC_ringbuf_submit ||
478 func_id == BPF_FUNC_ringbuf_discard;
479 }
480
may_be_acquire_function(enum bpf_func_id func_id)481 static bool may_be_acquire_function(enum bpf_func_id func_id)
482 {
483 return func_id == BPF_FUNC_sk_lookup_tcp ||
484 func_id == BPF_FUNC_sk_lookup_udp ||
485 func_id == BPF_FUNC_skc_lookup_tcp ||
486 func_id == BPF_FUNC_map_lookup_elem ||
487 func_id == BPF_FUNC_ringbuf_reserve;
488 }
489
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)490 static bool is_acquire_function(enum bpf_func_id func_id,
491 const struct bpf_map *map)
492 {
493 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
494
495 if (func_id == BPF_FUNC_sk_lookup_tcp ||
496 func_id == BPF_FUNC_sk_lookup_udp ||
497 func_id == BPF_FUNC_skc_lookup_tcp ||
498 func_id == BPF_FUNC_ringbuf_reserve)
499 return true;
500
501 if (func_id == BPF_FUNC_map_lookup_elem &&
502 (map_type == BPF_MAP_TYPE_SOCKMAP ||
503 map_type == BPF_MAP_TYPE_SOCKHASH))
504 return true;
505
506 return false;
507 }
508
is_ptr_cast_function(enum bpf_func_id func_id)509 static bool is_ptr_cast_function(enum bpf_func_id func_id)
510 {
511 return func_id == BPF_FUNC_tcp_sock ||
512 func_id == BPF_FUNC_sk_fullsock ||
513 func_id == BPF_FUNC_skc_to_tcp_sock ||
514 func_id == BPF_FUNC_skc_to_tcp6_sock ||
515 func_id == BPF_FUNC_skc_to_udp6_sock ||
516 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
517 func_id == BPF_FUNC_skc_to_tcp_request_sock;
518 }
519
is_callback_calling_function(enum bpf_func_id func_id)520 static bool is_callback_calling_function(enum bpf_func_id func_id)
521 {
522 return func_id == BPF_FUNC_for_each_map_elem ||
523 func_id == BPF_FUNC_timer_set_callback;
524 }
525
is_cmpxchg_insn(const struct bpf_insn * insn)526 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
527 {
528 return BPF_CLASS(insn->code) == BPF_STX &&
529 BPF_MODE(insn->code) == BPF_ATOMIC &&
530 insn->imm == BPF_CMPXCHG;
531 }
532
533 /* string representation of 'enum bpf_reg_type'
534 *
535 * Note that reg_type_str() can not appear more than once in a single verbose()
536 * statement.
537 */
reg_type_str(struct bpf_verifier_env * env,enum bpf_reg_type type)538 static const char *reg_type_str(struct bpf_verifier_env *env,
539 enum bpf_reg_type type)
540 {
541 char postfix[16] = {0}, prefix[16] = {0};
542 static const char * const str[] = {
543 [NOT_INIT] = "?",
544 [SCALAR_VALUE] = "inv",
545 [PTR_TO_CTX] = "ctx",
546 [CONST_PTR_TO_MAP] = "map_ptr",
547 [PTR_TO_MAP_VALUE] = "map_value",
548 [PTR_TO_STACK] = "fp",
549 [PTR_TO_PACKET] = "pkt",
550 [PTR_TO_PACKET_META] = "pkt_meta",
551 [PTR_TO_PACKET_END] = "pkt_end",
552 [PTR_TO_FLOW_KEYS] = "flow_keys",
553 [PTR_TO_SOCKET] = "sock",
554 [PTR_TO_SOCK_COMMON] = "sock_common",
555 [PTR_TO_TCP_SOCK] = "tcp_sock",
556 [PTR_TO_TP_BUFFER] = "tp_buffer",
557 [PTR_TO_XDP_SOCK] = "xdp_sock",
558 [PTR_TO_BTF_ID] = "ptr_",
559 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
560 [PTR_TO_MEM] = "mem",
561 [PTR_TO_BUF] = "buf",
562 [PTR_TO_FUNC] = "func",
563 [PTR_TO_MAP_KEY] = "map_key",
564 };
565
566 if (type & PTR_MAYBE_NULL) {
567 if (base_type(type) == PTR_TO_BTF_ID ||
568 base_type(type) == PTR_TO_PERCPU_BTF_ID)
569 strncpy(postfix, "or_null_", 16);
570 else
571 strncpy(postfix, "_or_null", 16);
572 }
573
574 if (type & MEM_RDONLY)
575 strncpy(prefix, "rdonly_", 16);
576
577 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
578 prefix, str[base_type(type)], postfix);
579 return env->type_str_buf;
580 }
581
582 static char slot_type_char[] = {
583 [STACK_INVALID] = '?',
584 [STACK_SPILL] = 'r',
585 [STACK_MISC] = 'm',
586 [STACK_ZERO] = '0',
587 };
588
print_liveness(struct bpf_verifier_env * env,enum bpf_reg_liveness live)589 static void print_liveness(struct bpf_verifier_env *env,
590 enum bpf_reg_liveness live)
591 {
592 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
593 verbose(env, "_");
594 if (live & REG_LIVE_READ)
595 verbose(env, "r");
596 if (live & REG_LIVE_WRITTEN)
597 verbose(env, "w");
598 if (live & REG_LIVE_DONE)
599 verbose(env, "D");
600 }
601
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)602 static struct bpf_func_state *func(struct bpf_verifier_env *env,
603 const struct bpf_reg_state *reg)
604 {
605 struct bpf_verifier_state *cur = env->cur_state;
606
607 return cur->frame[reg->frameno];
608 }
609
kernel_type_name(const struct btf * btf,u32 id)610 static const char *kernel_type_name(const struct btf* btf, u32 id)
611 {
612 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
613 }
614
615 /* The reg state of a pointer or a bounded scalar was saved when
616 * it was spilled to the stack.
617 */
is_spilled_reg(const struct bpf_stack_state * stack)618 static bool is_spilled_reg(const struct bpf_stack_state *stack)
619 {
620 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
621 }
622
scrub_spilled_slot(u8 * stype)623 static void scrub_spilled_slot(u8 *stype)
624 {
625 if (*stype != STACK_INVALID)
626 *stype = STACK_MISC;
627 }
628
print_verifier_state(struct bpf_verifier_env * env,const struct bpf_func_state * state)629 static void print_verifier_state(struct bpf_verifier_env *env,
630 const struct bpf_func_state *state)
631 {
632 const struct bpf_reg_state *reg;
633 enum bpf_reg_type t;
634 int i;
635
636 if (state->frameno)
637 verbose(env, " frame%d:", state->frameno);
638 for (i = 0; i < MAX_BPF_REG; i++) {
639 reg = &state->regs[i];
640 t = reg->type;
641 if (t == NOT_INIT)
642 continue;
643 verbose(env, " R%d", i);
644 print_liveness(env, reg->live);
645 verbose(env, "=%s", reg_type_str(env, t));
646 if (t == SCALAR_VALUE && reg->precise)
647 verbose(env, "P");
648 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
649 tnum_is_const(reg->var_off)) {
650 /* reg->off should be 0 for SCALAR_VALUE */
651 verbose(env, "%lld", reg->var_off.value + reg->off);
652 } else {
653 if (base_type(t) == PTR_TO_BTF_ID ||
654 base_type(t) == PTR_TO_PERCPU_BTF_ID)
655 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
656 verbose(env, "(id=%d", reg->id);
657 if (reg_type_may_be_refcounted_or_null(t))
658 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
659 if (t != SCALAR_VALUE)
660 verbose(env, ",off=%d", reg->off);
661 if (type_is_pkt_pointer(t))
662 verbose(env, ",r=%d", reg->range);
663 else if (base_type(t) == CONST_PTR_TO_MAP ||
664 base_type(t) == PTR_TO_MAP_KEY ||
665 base_type(t) == PTR_TO_MAP_VALUE)
666 verbose(env, ",ks=%d,vs=%d",
667 reg->map_ptr->key_size,
668 reg->map_ptr->value_size);
669 if (tnum_is_const(reg->var_off)) {
670 /* Typically an immediate SCALAR_VALUE, but
671 * could be a pointer whose offset is too big
672 * for reg->off
673 */
674 verbose(env, ",imm=%llx", reg->var_off.value);
675 } else {
676 if (reg->smin_value != reg->umin_value &&
677 reg->smin_value != S64_MIN)
678 verbose(env, ",smin_value=%lld",
679 (long long)reg->smin_value);
680 if (reg->smax_value != reg->umax_value &&
681 reg->smax_value != S64_MAX)
682 verbose(env, ",smax_value=%lld",
683 (long long)reg->smax_value);
684 if (reg->umin_value != 0)
685 verbose(env, ",umin_value=%llu",
686 (unsigned long long)reg->umin_value);
687 if (reg->umax_value != U64_MAX)
688 verbose(env, ",umax_value=%llu",
689 (unsigned long long)reg->umax_value);
690 if (!tnum_is_unknown(reg->var_off)) {
691 char tn_buf[48];
692
693 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
694 verbose(env, ",var_off=%s", tn_buf);
695 }
696 if (reg->s32_min_value != reg->smin_value &&
697 reg->s32_min_value != S32_MIN)
698 verbose(env, ",s32_min_value=%d",
699 (int)(reg->s32_min_value));
700 if (reg->s32_max_value != reg->smax_value &&
701 reg->s32_max_value != S32_MAX)
702 verbose(env, ",s32_max_value=%d",
703 (int)(reg->s32_max_value));
704 if (reg->u32_min_value != reg->umin_value &&
705 reg->u32_min_value != U32_MIN)
706 verbose(env, ",u32_min_value=%d",
707 (int)(reg->u32_min_value));
708 if (reg->u32_max_value != reg->umax_value &&
709 reg->u32_max_value != U32_MAX)
710 verbose(env, ",u32_max_value=%d",
711 (int)(reg->u32_max_value));
712 }
713 verbose(env, ")");
714 }
715 }
716 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
717 char types_buf[BPF_REG_SIZE + 1];
718 bool valid = false;
719 int j;
720
721 for (j = 0; j < BPF_REG_SIZE; j++) {
722 if (state->stack[i].slot_type[j] != STACK_INVALID)
723 valid = true;
724 types_buf[j] = slot_type_char[
725 state->stack[i].slot_type[j]];
726 }
727 types_buf[BPF_REG_SIZE] = 0;
728 if (!valid)
729 continue;
730 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
731 print_liveness(env, state->stack[i].spilled_ptr.live);
732 if (is_spilled_reg(&state->stack[i])) {
733 reg = &state->stack[i].spilled_ptr;
734 t = reg->type;
735 verbose(env, "=%s", reg_type_str(env, t));
736 if (t == SCALAR_VALUE && reg->precise)
737 verbose(env, "P");
738 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
739 verbose(env, "%lld", reg->var_off.value + reg->off);
740 } else {
741 verbose(env, "=%s", types_buf);
742 }
743 }
744 if (state->acquired_refs && state->refs[0].id) {
745 verbose(env, " refs=%d", state->refs[0].id);
746 for (i = 1; i < state->acquired_refs; i++)
747 if (state->refs[i].id)
748 verbose(env, ",%d", state->refs[i].id);
749 }
750 if (state->in_callback_fn)
751 verbose(env, " cb");
752 if (state->in_async_callback_fn)
753 verbose(env, " async_cb");
754 verbose(env, "\n");
755 }
756
757 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
758 * small to hold src. This is different from krealloc since we don't want to preserve
759 * the contents of dst.
760 *
761 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
762 * not be allocated.
763 */
copy_array(void * dst,const void * src,size_t n,size_t size,gfp_t flags)764 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
765 {
766 size_t bytes;
767
768 if (ZERO_OR_NULL_PTR(src))
769 goto out;
770
771 if (unlikely(check_mul_overflow(n, size, &bytes)))
772 return NULL;
773
774 if (ksize(dst) < bytes) {
775 kfree(dst);
776 dst = kmalloc_track_caller(bytes, flags);
777 if (!dst)
778 return NULL;
779 }
780
781 memcpy(dst, src, bytes);
782 out:
783 return dst ? dst : ZERO_SIZE_PTR;
784 }
785
786 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
787 * small to hold new_n items. new items are zeroed out if the array grows.
788 *
789 * Contrary to krealloc_array, does not free arr if new_n is zero.
790 */
realloc_array(void * arr,size_t old_n,size_t new_n,size_t size)791 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
792 {
793 void *new_arr;
794
795 if (!new_n || old_n == new_n)
796 goto out;
797
798 new_arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
799 if (!new_arr) {
800 kfree(arr);
801 return NULL;
802 }
803 arr = new_arr;
804
805 if (new_n > old_n)
806 memset(arr + old_n * size, 0, (new_n - old_n) * size);
807
808 out:
809 return arr ? arr : ZERO_SIZE_PTR;
810 }
811
copy_reference_state(struct bpf_func_state * dst,const struct bpf_func_state * src)812 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
813 {
814 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
815 sizeof(struct bpf_reference_state), GFP_KERNEL);
816 if (!dst->refs)
817 return -ENOMEM;
818
819 dst->acquired_refs = src->acquired_refs;
820 return 0;
821 }
822
copy_stack_state(struct bpf_func_state * dst,const struct bpf_func_state * src)823 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
824 {
825 size_t n = src->allocated_stack / BPF_REG_SIZE;
826
827 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
828 GFP_KERNEL);
829 if (!dst->stack)
830 return -ENOMEM;
831
832 dst->allocated_stack = src->allocated_stack;
833 return 0;
834 }
835
resize_reference_state(struct bpf_func_state * state,size_t n)836 static int resize_reference_state(struct bpf_func_state *state, size_t n)
837 {
838 state->refs = realloc_array(state->refs, state->acquired_refs, n,
839 sizeof(struct bpf_reference_state));
840 if (!state->refs)
841 return -ENOMEM;
842
843 state->acquired_refs = n;
844 return 0;
845 }
846
grow_stack_state(struct bpf_func_state * state,int size)847 static int grow_stack_state(struct bpf_func_state *state, int size)
848 {
849 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
850
851 if (old_n >= n)
852 return 0;
853
854 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
855 if (!state->stack)
856 return -ENOMEM;
857
858 state->allocated_stack = size;
859 return 0;
860 }
861
862 /* Acquire a pointer id from the env and update the state->refs to include
863 * this new pointer reference.
864 * On success, returns a valid pointer id to associate with the register
865 * On failure, returns a negative errno.
866 */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)867 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
868 {
869 struct bpf_func_state *state = cur_func(env);
870 int new_ofs = state->acquired_refs;
871 int id, err;
872
873 err = resize_reference_state(state, state->acquired_refs + 1);
874 if (err)
875 return err;
876 id = ++env->id_gen;
877 state->refs[new_ofs].id = id;
878 state->refs[new_ofs].insn_idx = insn_idx;
879 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
880
881 return id;
882 }
883
884 /* release function corresponding to acquire_reference_state(). Idempotent. */
release_reference_state(struct bpf_func_state * state,int ptr_id)885 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
886 {
887 int i, last_idx;
888
889 last_idx = state->acquired_refs - 1;
890 for (i = 0; i < state->acquired_refs; i++) {
891 if (state->refs[i].id == ptr_id) {
892 /* Cannot release caller references in callbacks */
893 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
894 return -EINVAL;
895 if (last_idx && i != last_idx)
896 memcpy(&state->refs[i], &state->refs[last_idx],
897 sizeof(*state->refs));
898 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
899 state->acquired_refs--;
900 return 0;
901 }
902 }
903 return -EINVAL;
904 }
905
free_func_state(struct bpf_func_state * state)906 static void free_func_state(struct bpf_func_state *state)
907 {
908 if (!state)
909 return;
910 kfree(state->refs);
911 kfree(state->stack);
912 kfree(state);
913 }
914
clear_jmp_history(struct bpf_verifier_state * state)915 static void clear_jmp_history(struct bpf_verifier_state *state)
916 {
917 kfree(state->jmp_history);
918 state->jmp_history = NULL;
919 state->jmp_history_cnt = 0;
920 }
921
free_verifier_state(struct bpf_verifier_state * state,bool free_self)922 static void free_verifier_state(struct bpf_verifier_state *state,
923 bool free_self)
924 {
925 int i;
926
927 for (i = 0; i <= state->curframe; i++) {
928 free_func_state(state->frame[i]);
929 state->frame[i] = NULL;
930 }
931 clear_jmp_history(state);
932 if (free_self)
933 kfree(state);
934 }
935
936 /* copy verifier state from src to dst growing dst stack space
937 * when necessary to accommodate larger src stack
938 */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)939 static int copy_func_state(struct bpf_func_state *dst,
940 const struct bpf_func_state *src)
941 {
942 int err;
943
944 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
945 err = copy_reference_state(dst, src);
946 if (err)
947 return err;
948 return copy_stack_state(dst, src);
949 }
950
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)951 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
952 const struct bpf_verifier_state *src)
953 {
954 struct bpf_func_state *dst;
955 int i, err;
956
957 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
958 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
959 GFP_USER);
960 if (!dst_state->jmp_history)
961 return -ENOMEM;
962 dst_state->jmp_history_cnt = src->jmp_history_cnt;
963
964 /* if dst has more stack frames then src frame, free them */
965 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
966 free_func_state(dst_state->frame[i]);
967 dst_state->frame[i] = NULL;
968 }
969 dst_state->speculative = src->speculative;
970 dst_state->curframe = src->curframe;
971 dst_state->active_spin_lock = src->active_spin_lock;
972 dst_state->branches = src->branches;
973 dst_state->parent = src->parent;
974 dst_state->first_insn_idx = src->first_insn_idx;
975 dst_state->last_insn_idx = src->last_insn_idx;
976 for (i = 0; i <= src->curframe; i++) {
977 dst = dst_state->frame[i];
978 if (!dst) {
979 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
980 if (!dst)
981 return -ENOMEM;
982 dst_state->frame[i] = dst;
983 }
984 err = copy_func_state(dst, src->frame[i]);
985 if (err)
986 return err;
987 }
988 return 0;
989 }
990
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)991 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
992 {
993 while (st) {
994 u32 br = --st->branches;
995
996 /* WARN_ON(br > 1) technically makes sense here,
997 * but see comment in push_stack(), hence:
998 */
999 WARN_ONCE((int)br < 0,
1000 "BUG update_branch_counts:branches_to_explore=%d\n",
1001 br);
1002 if (br)
1003 break;
1004 st = st->parent;
1005 }
1006 }
1007
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)1008 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1009 int *insn_idx, bool pop_log)
1010 {
1011 struct bpf_verifier_state *cur = env->cur_state;
1012 struct bpf_verifier_stack_elem *elem, *head = env->head;
1013 int err;
1014
1015 if (env->head == NULL)
1016 return -ENOENT;
1017
1018 if (cur) {
1019 err = copy_verifier_state(cur, &head->st);
1020 if (err)
1021 return err;
1022 }
1023 if (pop_log)
1024 bpf_vlog_reset(&env->log, head->log_pos);
1025 if (insn_idx)
1026 *insn_idx = head->insn_idx;
1027 if (prev_insn_idx)
1028 *prev_insn_idx = head->prev_insn_idx;
1029 elem = head->next;
1030 free_verifier_state(&head->st, false);
1031 kfree(head);
1032 env->head = elem;
1033 env->stack_size--;
1034 return 0;
1035 }
1036
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)1037 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1038 int insn_idx, int prev_insn_idx,
1039 bool speculative)
1040 {
1041 struct bpf_verifier_state *cur = env->cur_state;
1042 struct bpf_verifier_stack_elem *elem;
1043 int err;
1044
1045 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1046 if (!elem)
1047 goto err;
1048
1049 elem->insn_idx = insn_idx;
1050 elem->prev_insn_idx = prev_insn_idx;
1051 elem->next = env->head;
1052 elem->log_pos = env->log.len_used;
1053 env->head = elem;
1054 env->stack_size++;
1055 err = copy_verifier_state(&elem->st, cur);
1056 if (err)
1057 goto err;
1058 elem->st.speculative |= speculative;
1059 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1060 verbose(env, "The sequence of %d jumps is too complex.\n",
1061 env->stack_size);
1062 goto err;
1063 }
1064 if (elem->st.parent) {
1065 ++elem->st.parent->branches;
1066 /* WARN_ON(branches > 2) technically makes sense here,
1067 * but
1068 * 1. speculative states will bump 'branches' for non-branch
1069 * instructions
1070 * 2. is_state_visited() heuristics may decide not to create
1071 * a new state for a sequence of branches and all such current
1072 * and cloned states will be pointing to a single parent state
1073 * which might have large 'branches' count.
1074 */
1075 }
1076 return &elem->st;
1077 err:
1078 free_verifier_state(env->cur_state, true);
1079 env->cur_state = NULL;
1080 /* pop all elements and return */
1081 while (!pop_stack(env, NULL, NULL, false));
1082 return NULL;
1083 }
1084
1085 #define CALLER_SAVED_REGS 6
1086 static const int caller_saved[CALLER_SAVED_REGS] = {
1087 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1088 };
1089
1090 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1091 struct bpf_reg_state *reg);
1092
1093 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)1094 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1095 {
1096 reg->var_off = tnum_const(imm);
1097 reg->smin_value = (s64)imm;
1098 reg->smax_value = (s64)imm;
1099 reg->umin_value = imm;
1100 reg->umax_value = imm;
1101
1102 reg->s32_min_value = (s32)imm;
1103 reg->s32_max_value = (s32)imm;
1104 reg->u32_min_value = (u32)imm;
1105 reg->u32_max_value = (u32)imm;
1106 }
1107
1108 /* Mark the unknown part of a register (variable offset or scalar value) as
1109 * known to have the value @imm.
1110 */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)1111 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1112 {
1113 /* Clear id, off, and union(map_ptr, range) */
1114 memset(((u8 *)reg) + sizeof(reg->type), 0,
1115 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1116 ___mark_reg_known(reg, imm);
1117 }
1118
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)1119 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1120 {
1121 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1122 reg->s32_min_value = (s32)imm;
1123 reg->s32_max_value = (s32)imm;
1124 reg->u32_min_value = (u32)imm;
1125 reg->u32_max_value = (u32)imm;
1126 }
1127
1128 /* Mark the 'variable offset' part of a register as zero. This should be
1129 * used only on registers holding a pointer type.
1130 */
__mark_reg_known_zero(struct bpf_reg_state * reg)1131 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1132 {
1133 __mark_reg_known(reg, 0);
1134 }
1135
__mark_reg_const_zero(struct bpf_reg_state * reg)1136 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1137 {
1138 __mark_reg_known(reg, 0);
1139 reg->type = SCALAR_VALUE;
1140 }
1141
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1142 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1143 struct bpf_reg_state *regs, u32 regno)
1144 {
1145 if (WARN_ON(regno >= MAX_BPF_REG)) {
1146 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1147 /* Something bad happened, let's kill all regs */
1148 for (regno = 0; regno < MAX_BPF_REG; regno++)
1149 __mark_reg_not_init(env, regs + regno);
1150 return;
1151 }
1152 __mark_reg_known_zero(regs + regno);
1153 }
1154
mark_ptr_not_null_reg(struct bpf_reg_state * reg)1155 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1156 {
1157 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1158 const struct bpf_map *map = reg->map_ptr;
1159
1160 if (map->inner_map_meta) {
1161 reg->type = CONST_PTR_TO_MAP;
1162 reg->map_ptr = map->inner_map_meta;
1163 /* transfer reg's id which is unique for every map_lookup_elem
1164 * as UID of the inner map.
1165 */
1166 if (map_value_has_timer(map->inner_map_meta))
1167 reg->map_uid = reg->id;
1168 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1169 reg->type = PTR_TO_XDP_SOCK;
1170 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1171 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1172 reg->type = PTR_TO_SOCKET;
1173 } else {
1174 reg->type = PTR_TO_MAP_VALUE;
1175 }
1176 return;
1177 }
1178
1179 reg->type &= ~PTR_MAYBE_NULL;
1180 }
1181
reg_is_pkt_pointer(const struct bpf_reg_state * reg)1182 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1183 {
1184 return type_is_pkt_pointer(reg->type);
1185 }
1186
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)1187 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1188 {
1189 return reg_is_pkt_pointer(reg) ||
1190 reg->type == PTR_TO_PACKET_END;
1191 }
1192
1193 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)1194 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1195 enum bpf_reg_type which)
1196 {
1197 /* The register can already have a range from prior markings.
1198 * This is fine as long as it hasn't been advanced from its
1199 * origin.
1200 */
1201 return reg->type == which &&
1202 reg->id == 0 &&
1203 reg->off == 0 &&
1204 tnum_equals_const(reg->var_off, 0);
1205 }
1206
1207 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)1208 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1209 {
1210 reg->smin_value = S64_MIN;
1211 reg->smax_value = S64_MAX;
1212 reg->umin_value = 0;
1213 reg->umax_value = U64_MAX;
1214
1215 reg->s32_min_value = S32_MIN;
1216 reg->s32_max_value = S32_MAX;
1217 reg->u32_min_value = 0;
1218 reg->u32_max_value = U32_MAX;
1219 }
1220
__mark_reg64_unbounded(struct bpf_reg_state * reg)1221 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1222 {
1223 reg->smin_value = S64_MIN;
1224 reg->smax_value = S64_MAX;
1225 reg->umin_value = 0;
1226 reg->umax_value = U64_MAX;
1227 }
1228
__mark_reg32_unbounded(struct bpf_reg_state * reg)1229 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1230 {
1231 reg->s32_min_value = S32_MIN;
1232 reg->s32_max_value = S32_MAX;
1233 reg->u32_min_value = 0;
1234 reg->u32_max_value = U32_MAX;
1235 }
1236
__update_reg32_bounds(struct bpf_reg_state * reg)1237 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1238 {
1239 struct tnum var32_off = tnum_subreg(reg->var_off);
1240
1241 /* min signed is max(sign bit) | min(other bits) */
1242 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1243 var32_off.value | (var32_off.mask & S32_MIN));
1244 /* max signed is min(sign bit) | max(other bits) */
1245 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1246 var32_off.value | (var32_off.mask & S32_MAX));
1247 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1248 reg->u32_max_value = min(reg->u32_max_value,
1249 (u32)(var32_off.value | var32_off.mask));
1250 }
1251
__update_reg64_bounds(struct bpf_reg_state * reg)1252 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1253 {
1254 /* min signed is max(sign bit) | min(other bits) */
1255 reg->smin_value = max_t(s64, reg->smin_value,
1256 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1257 /* max signed is min(sign bit) | max(other bits) */
1258 reg->smax_value = min_t(s64, reg->smax_value,
1259 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1260 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1261 reg->umax_value = min(reg->umax_value,
1262 reg->var_off.value | reg->var_off.mask);
1263 }
1264
__update_reg_bounds(struct bpf_reg_state * reg)1265 static void __update_reg_bounds(struct bpf_reg_state *reg)
1266 {
1267 __update_reg32_bounds(reg);
1268 __update_reg64_bounds(reg);
1269 }
1270
1271 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)1272 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1273 {
1274 /* Learn sign from signed bounds.
1275 * If we cannot cross the sign boundary, then signed and unsigned bounds
1276 * are the same, so combine. This works even in the negative case, e.g.
1277 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1278 */
1279 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1280 reg->s32_min_value = reg->u32_min_value =
1281 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1282 reg->s32_max_value = reg->u32_max_value =
1283 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1284 return;
1285 }
1286 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1287 * boundary, so we must be careful.
1288 */
1289 if ((s32)reg->u32_max_value >= 0) {
1290 /* Positive. We can't learn anything from the smin, but smax
1291 * is positive, hence safe.
1292 */
1293 reg->s32_min_value = reg->u32_min_value;
1294 reg->s32_max_value = reg->u32_max_value =
1295 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1296 } else if ((s32)reg->u32_min_value < 0) {
1297 /* Negative. We can't learn anything from the smax, but smin
1298 * is negative, hence safe.
1299 */
1300 reg->s32_min_value = reg->u32_min_value =
1301 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1302 reg->s32_max_value = reg->u32_max_value;
1303 }
1304 }
1305
__reg64_deduce_bounds(struct bpf_reg_state * reg)1306 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1307 {
1308 /* Learn sign from signed bounds.
1309 * If we cannot cross the sign boundary, then signed and unsigned bounds
1310 * are the same, so combine. This works even in the negative case, e.g.
1311 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1312 */
1313 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1314 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1315 reg->umin_value);
1316 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1317 reg->umax_value);
1318 return;
1319 }
1320 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1321 * boundary, so we must be careful.
1322 */
1323 if ((s64)reg->umax_value >= 0) {
1324 /* Positive. We can't learn anything from the smin, but smax
1325 * is positive, hence safe.
1326 */
1327 reg->smin_value = reg->umin_value;
1328 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1329 reg->umax_value);
1330 } else if ((s64)reg->umin_value < 0) {
1331 /* Negative. We can't learn anything from the smax, but smin
1332 * is negative, hence safe.
1333 */
1334 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1335 reg->umin_value);
1336 reg->smax_value = reg->umax_value;
1337 }
1338 }
1339
__reg_deduce_bounds(struct bpf_reg_state * reg)1340 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1341 {
1342 __reg32_deduce_bounds(reg);
1343 __reg64_deduce_bounds(reg);
1344 }
1345
1346 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)1347 static void __reg_bound_offset(struct bpf_reg_state *reg)
1348 {
1349 struct tnum var64_off = tnum_intersect(reg->var_off,
1350 tnum_range(reg->umin_value,
1351 reg->umax_value));
1352 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1353 tnum_range(reg->u32_min_value,
1354 reg->u32_max_value));
1355
1356 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1357 }
1358
reg_bounds_sync(struct bpf_reg_state * reg)1359 static void reg_bounds_sync(struct bpf_reg_state *reg)
1360 {
1361 /* We might have learned new bounds from the var_off. */
1362 __update_reg_bounds(reg);
1363 /* We might have learned something about the sign bit. */
1364 __reg_deduce_bounds(reg);
1365 /* We might have learned some bits from the bounds. */
1366 __reg_bound_offset(reg);
1367 /* Intersecting with the old var_off might have improved our bounds
1368 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1369 * then new var_off is (0; 0x7f...fc) which improves our umax.
1370 */
1371 __update_reg_bounds(reg);
1372 }
1373
__reg32_bound_s64(s32 a)1374 static bool __reg32_bound_s64(s32 a)
1375 {
1376 return a >= 0 && a <= S32_MAX;
1377 }
1378
__reg_assign_32_into_64(struct bpf_reg_state * reg)1379 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1380 {
1381 reg->umin_value = reg->u32_min_value;
1382 reg->umax_value = reg->u32_max_value;
1383
1384 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1385 * be positive otherwise set to worse case bounds and refine later
1386 * from tnum.
1387 */
1388 if (__reg32_bound_s64(reg->s32_min_value) &&
1389 __reg32_bound_s64(reg->s32_max_value)) {
1390 reg->smin_value = reg->s32_min_value;
1391 reg->smax_value = reg->s32_max_value;
1392 } else {
1393 reg->smin_value = 0;
1394 reg->smax_value = U32_MAX;
1395 }
1396 }
1397
__reg_combine_32_into_64(struct bpf_reg_state * reg)1398 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1399 {
1400 /* special case when 64-bit register has upper 32-bit register
1401 * zeroed. Typically happens after zext or <<32, >>32 sequence
1402 * allowing us to use 32-bit bounds directly,
1403 */
1404 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1405 __reg_assign_32_into_64(reg);
1406 } else {
1407 /* Otherwise the best we can do is push lower 32bit known and
1408 * unknown bits into register (var_off set from jmp logic)
1409 * then learn as much as possible from the 64-bit tnum
1410 * known and unknown bits. The previous smin/smax bounds are
1411 * invalid here because of jmp32 compare so mark them unknown
1412 * so they do not impact tnum bounds calculation.
1413 */
1414 __mark_reg64_unbounded(reg);
1415 }
1416 reg_bounds_sync(reg);
1417 }
1418
__reg64_bound_s32(s64 a)1419 static bool __reg64_bound_s32(s64 a)
1420 {
1421 return a >= S32_MIN && a <= S32_MAX;
1422 }
1423
__reg64_bound_u32(u64 a)1424 static bool __reg64_bound_u32(u64 a)
1425 {
1426 return a >= U32_MIN && a <= U32_MAX;
1427 }
1428
__reg_combine_64_into_32(struct bpf_reg_state * reg)1429 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1430 {
1431 __mark_reg32_unbounded(reg);
1432 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1433 reg->s32_min_value = (s32)reg->smin_value;
1434 reg->s32_max_value = (s32)reg->smax_value;
1435 }
1436 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1437 reg->u32_min_value = (u32)reg->umin_value;
1438 reg->u32_max_value = (u32)reg->umax_value;
1439 }
1440 reg_bounds_sync(reg);
1441 }
1442
1443 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1444 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1445 struct bpf_reg_state *reg)
1446 {
1447 /*
1448 * Clear type, id, off, and union(map_ptr, range) and
1449 * padding between 'type' and union
1450 */
1451 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1452 reg->type = SCALAR_VALUE;
1453 reg->var_off = tnum_unknown;
1454 reg->frameno = 0;
1455 reg->precise = !env->bpf_capable;
1456 __mark_reg_unbounded(reg);
1457 }
1458
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1459 static void mark_reg_unknown(struct bpf_verifier_env *env,
1460 struct bpf_reg_state *regs, u32 regno)
1461 {
1462 if (WARN_ON(regno >= MAX_BPF_REG)) {
1463 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1464 /* Something bad happened, let's kill all regs except FP */
1465 for (regno = 0; regno < BPF_REG_FP; regno++)
1466 __mark_reg_not_init(env, regs + regno);
1467 return;
1468 }
1469 __mark_reg_unknown(env, regs + regno);
1470 }
1471
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1472 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1473 struct bpf_reg_state *reg)
1474 {
1475 __mark_reg_unknown(env, reg);
1476 reg->type = NOT_INIT;
1477 }
1478
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1479 static void mark_reg_not_init(struct bpf_verifier_env *env,
1480 struct bpf_reg_state *regs, u32 regno)
1481 {
1482 if (WARN_ON(regno >= MAX_BPF_REG)) {
1483 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1484 /* Something bad happened, let's kill all regs except FP */
1485 for (regno = 0; regno < BPF_REG_FP; regno++)
1486 __mark_reg_not_init(env, regs + regno);
1487 return;
1488 }
1489 __mark_reg_not_init(env, regs + regno);
1490 }
1491
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,struct btf * btf,u32 btf_id)1492 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1493 struct bpf_reg_state *regs, u32 regno,
1494 enum bpf_reg_type reg_type,
1495 struct btf *btf, u32 btf_id)
1496 {
1497 if (reg_type == SCALAR_VALUE) {
1498 mark_reg_unknown(env, regs, regno);
1499 return;
1500 }
1501 mark_reg_known_zero(env, regs, regno);
1502 regs[regno].type = PTR_TO_BTF_ID;
1503 regs[regno].btf = btf;
1504 regs[regno].btf_id = btf_id;
1505 }
1506
1507 #define DEF_NOT_SUBREG (0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)1508 static void init_reg_state(struct bpf_verifier_env *env,
1509 struct bpf_func_state *state)
1510 {
1511 struct bpf_reg_state *regs = state->regs;
1512 int i;
1513
1514 for (i = 0; i < MAX_BPF_REG; i++) {
1515 mark_reg_not_init(env, regs, i);
1516 regs[i].live = REG_LIVE_NONE;
1517 regs[i].parent = NULL;
1518 regs[i].subreg_def = DEF_NOT_SUBREG;
1519 }
1520
1521 /* frame pointer */
1522 regs[BPF_REG_FP].type = PTR_TO_STACK;
1523 mark_reg_known_zero(env, regs, BPF_REG_FP);
1524 regs[BPF_REG_FP].frameno = state->frameno;
1525 }
1526
1527 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)1528 static void init_func_state(struct bpf_verifier_env *env,
1529 struct bpf_func_state *state,
1530 int callsite, int frameno, int subprogno)
1531 {
1532 state->callsite = callsite;
1533 state->frameno = frameno;
1534 state->subprogno = subprogno;
1535 init_reg_state(env, state);
1536 }
1537
1538 /* Similar to push_stack(), but for async callbacks */
push_async_cb(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,int subprog)1539 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1540 int insn_idx, int prev_insn_idx,
1541 int subprog)
1542 {
1543 struct bpf_verifier_stack_elem *elem;
1544 struct bpf_func_state *frame;
1545
1546 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1547 if (!elem)
1548 goto err;
1549
1550 elem->insn_idx = insn_idx;
1551 elem->prev_insn_idx = prev_insn_idx;
1552 elem->next = env->head;
1553 elem->log_pos = env->log.len_used;
1554 env->head = elem;
1555 env->stack_size++;
1556 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1557 verbose(env,
1558 "The sequence of %d jumps is too complex for async cb.\n",
1559 env->stack_size);
1560 goto err;
1561 }
1562 /* Unlike push_stack() do not copy_verifier_state().
1563 * The caller state doesn't matter.
1564 * This is async callback. It starts in a fresh stack.
1565 * Initialize it similar to do_check_common().
1566 */
1567 elem->st.branches = 1;
1568 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1569 if (!frame)
1570 goto err;
1571 init_func_state(env, frame,
1572 BPF_MAIN_FUNC /* callsite */,
1573 0 /* frameno within this callchain */,
1574 subprog /* subprog number within this prog */);
1575 elem->st.frame[0] = frame;
1576 return &elem->st;
1577 err:
1578 free_verifier_state(env->cur_state, true);
1579 env->cur_state = NULL;
1580 /* pop all elements and return */
1581 while (!pop_stack(env, NULL, NULL, false));
1582 return NULL;
1583 }
1584
1585
1586 enum reg_arg_type {
1587 SRC_OP, /* register is used as source operand */
1588 DST_OP, /* register is used as destination operand */
1589 DST_OP_NO_MARK /* same as above, check only, don't mark */
1590 };
1591
cmp_subprogs(const void * a,const void * b)1592 static int cmp_subprogs(const void *a, const void *b)
1593 {
1594 return ((struct bpf_subprog_info *)a)->start -
1595 ((struct bpf_subprog_info *)b)->start;
1596 }
1597
find_subprog(struct bpf_verifier_env * env,int off)1598 static int find_subprog(struct bpf_verifier_env *env, int off)
1599 {
1600 struct bpf_subprog_info *p;
1601
1602 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1603 sizeof(env->subprog_info[0]), cmp_subprogs);
1604 if (!p)
1605 return -ENOENT;
1606 return p - env->subprog_info;
1607
1608 }
1609
add_subprog(struct bpf_verifier_env * env,int off)1610 static int add_subprog(struct bpf_verifier_env *env, int off)
1611 {
1612 int insn_cnt = env->prog->len;
1613 int ret;
1614
1615 if (off >= insn_cnt || off < 0) {
1616 verbose(env, "call to invalid destination\n");
1617 return -EINVAL;
1618 }
1619 ret = find_subprog(env, off);
1620 if (ret >= 0)
1621 return ret;
1622 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1623 verbose(env, "too many subprograms\n");
1624 return -E2BIG;
1625 }
1626 /* determine subprog starts. The end is one before the next starts */
1627 env->subprog_info[env->subprog_cnt++].start = off;
1628 sort(env->subprog_info, env->subprog_cnt,
1629 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1630 return env->subprog_cnt - 1;
1631 }
1632
1633 struct bpf_kfunc_desc {
1634 struct btf_func_model func_model;
1635 u32 func_id;
1636 s32 imm;
1637 };
1638
1639 #define MAX_KFUNC_DESCS 256
1640 struct bpf_kfunc_desc_tab {
1641 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1642 u32 nr_descs;
1643 };
1644
kfunc_desc_cmp_by_id(const void * a,const void * b)1645 static int kfunc_desc_cmp_by_id(const void *a, const void *b)
1646 {
1647 const struct bpf_kfunc_desc *d0 = a;
1648 const struct bpf_kfunc_desc *d1 = b;
1649
1650 /* func_id is not greater than BTF_MAX_TYPE */
1651 return d0->func_id - d1->func_id;
1652 }
1653
1654 static const struct bpf_kfunc_desc *
find_kfunc_desc(const struct bpf_prog * prog,u32 func_id)1655 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id)
1656 {
1657 struct bpf_kfunc_desc desc = {
1658 .func_id = func_id,
1659 };
1660 struct bpf_kfunc_desc_tab *tab;
1661
1662 tab = prog->aux->kfunc_tab;
1663 return bsearch(&desc, tab->descs, tab->nr_descs,
1664 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id);
1665 }
1666
add_kfunc_call(struct bpf_verifier_env * env,u32 func_id)1667 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id)
1668 {
1669 const struct btf_type *func, *func_proto;
1670 struct bpf_kfunc_desc_tab *tab;
1671 struct bpf_prog_aux *prog_aux;
1672 struct bpf_kfunc_desc *desc;
1673 const char *func_name;
1674 unsigned long addr;
1675 int err;
1676
1677 prog_aux = env->prog->aux;
1678 tab = prog_aux->kfunc_tab;
1679 if (!tab) {
1680 if (!btf_vmlinux) {
1681 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1682 return -ENOTSUPP;
1683 }
1684
1685 if (!env->prog->jit_requested) {
1686 verbose(env, "JIT is required for calling kernel function\n");
1687 return -ENOTSUPP;
1688 }
1689
1690 if (!bpf_jit_supports_kfunc_call()) {
1691 verbose(env, "JIT does not support calling kernel function\n");
1692 return -ENOTSUPP;
1693 }
1694
1695 if (!env->prog->gpl_compatible) {
1696 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1697 return -EINVAL;
1698 }
1699
1700 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1701 if (!tab)
1702 return -ENOMEM;
1703 prog_aux->kfunc_tab = tab;
1704 }
1705
1706 if (find_kfunc_desc(env->prog, func_id))
1707 return 0;
1708
1709 if (tab->nr_descs == MAX_KFUNC_DESCS) {
1710 verbose(env, "too many different kernel function calls\n");
1711 return -E2BIG;
1712 }
1713
1714 func = btf_type_by_id(btf_vmlinux, func_id);
1715 if (!func || !btf_type_is_func(func)) {
1716 verbose(env, "kernel btf_id %u is not a function\n",
1717 func_id);
1718 return -EINVAL;
1719 }
1720 func_proto = btf_type_by_id(btf_vmlinux, func->type);
1721 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1722 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1723 func_id);
1724 return -EINVAL;
1725 }
1726
1727 func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
1728 addr = kallsyms_lookup_name(func_name);
1729 if (!addr) {
1730 verbose(env, "cannot find address for kernel function %s\n",
1731 func_name);
1732 return -EINVAL;
1733 }
1734
1735 desc = &tab->descs[tab->nr_descs++];
1736 desc->func_id = func_id;
1737 desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base;
1738 err = btf_distill_func_proto(&env->log, btf_vmlinux,
1739 func_proto, func_name,
1740 &desc->func_model);
1741 if (!err)
1742 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1743 kfunc_desc_cmp_by_id, NULL);
1744 return err;
1745 }
1746
kfunc_desc_cmp_by_imm(const void * a,const void * b)1747 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1748 {
1749 const struct bpf_kfunc_desc *d0 = a;
1750 const struct bpf_kfunc_desc *d1 = b;
1751
1752 if (d0->imm > d1->imm)
1753 return 1;
1754 else if (d0->imm < d1->imm)
1755 return -1;
1756 return 0;
1757 }
1758
sort_kfunc_descs_by_imm(struct bpf_prog * prog)1759 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1760 {
1761 struct bpf_kfunc_desc_tab *tab;
1762
1763 tab = prog->aux->kfunc_tab;
1764 if (!tab)
1765 return;
1766
1767 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1768 kfunc_desc_cmp_by_imm, NULL);
1769 }
1770
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)1771 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1772 {
1773 return !!prog->aux->kfunc_tab;
1774 }
1775
1776 const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)1777 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1778 const struct bpf_insn *insn)
1779 {
1780 const struct bpf_kfunc_desc desc = {
1781 .imm = insn->imm,
1782 };
1783 const struct bpf_kfunc_desc *res;
1784 struct bpf_kfunc_desc_tab *tab;
1785
1786 tab = prog->aux->kfunc_tab;
1787 res = bsearch(&desc, tab->descs, tab->nr_descs,
1788 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1789
1790 return res ? &res->func_model : NULL;
1791 }
1792
add_subprog_and_kfunc(struct bpf_verifier_env * env)1793 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1794 {
1795 struct bpf_subprog_info *subprog = env->subprog_info;
1796 struct bpf_insn *insn = env->prog->insnsi;
1797 int i, ret, insn_cnt = env->prog->len;
1798
1799 /* Add entry function. */
1800 ret = add_subprog(env, 0);
1801 if (ret)
1802 return ret;
1803
1804 for (i = 0; i < insn_cnt; i++, insn++) {
1805 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1806 !bpf_pseudo_kfunc_call(insn))
1807 continue;
1808
1809 if (!env->bpf_capable) {
1810 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1811 return -EPERM;
1812 }
1813
1814 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
1815 ret = add_subprog(env, i + insn->imm + 1);
1816 else
1817 ret = add_kfunc_call(env, insn->imm);
1818
1819 if (ret < 0)
1820 return ret;
1821 }
1822
1823 /* Add a fake 'exit' subprog which could simplify subprog iteration
1824 * logic. 'subprog_cnt' should not be increased.
1825 */
1826 subprog[env->subprog_cnt].start = insn_cnt;
1827
1828 if (env->log.level & BPF_LOG_LEVEL2)
1829 for (i = 0; i < env->subprog_cnt; i++)
1830 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1831
1832 return 0;
1833 }
1834
check_subprogs(struct bpf_verifier_env * env)1835 static int check_subprogs(struct bpf_verifier_env *env)
1836 {
1837 int i, subprog_start, subprog_end, off, cur_subprog = 0;
1838 struct bpf_subprog_info *subprog = env->subprog_info;
1839 struct bpf_insn *insn = env->prog->insnsi;
1840 int insn_cnt = env->prog->len;
1841
1842 /* now check that all jumps are within the same subprog */
1843 subprog_start = subprog[cur_subprog].start;
1844 subprog_end = subprog[cur_subprog + 1].start;
1845 for (i = 0; i < insn_cnt; i++) {
1846 u8 code = insn[i].code;
1847
1848 if (code == (BPF_JMP | BPF_CALL) &&
1849 insn[i].imm == BPF_FUNC_tail_call &&
1850 insn[i].src_reg != BPF_PSEUDO_CALL)
1851 subprog[cur_subprog].has_tail_call = true;
1852 if (BPF_CLASS(code) == BPF_LD &&
1853 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1854 subprog[cur_subprog].has_ld_abs = true;
1855 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1856 goto next;
1857 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1858 goto next;
1859 off = i + insn[i].off + 1;
1860 if (off < subprog_start || off >= subprog_end) {
1861 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1862 return -EINVAL;
1863 }
1864 next:
1865 if (i == subprog_end - 1) {
1866 /* to avoid fall-through from one subprog into another
1867 * the last insn of the subprog should be either exit
1868 * or unconditional jump back
1869 */
1870 if (code != (BPF_JMP | BPF_EXIT) &&
1871 code != (BPF_JMP | BPF_JA)) {
1872 verbose(env, "last insn is not an exit or jmp\n");
1873 return -EINVAL;
1874 }
1875 subprog_start = subprog_end;
1876 cur_subprog++;
1877 if (cur_subprog < env->subprog_cnt)
1878 subprog_end = subprog[cur_subprog + 1].start;
1879 }
1880 }
1881 return 0;
1882 }
1883
1884 /* Parentage chain of this register (or stack slot) should take care of all
1885 * issues like callee-saved registers, stack slot allocation time, etc.
1886 */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)1887 static int mark_reg_read(struct bpf_verifier_env *env,
1888 const struct bpf_reg_state *state,
1889 struct bpf_reg_state *parent, u8 flag)
1890 {
1891 bool writes = parent == state->parent; /* Observe write marks */
1892 int cnt = 0;
1893
1894 while (parent) {
1895 /* if read wasn't screened by an earlier write ... */
1896 if (writes && state->live & REG_LIVE_WRITTEN)
1897 break;
1898 if (parent->live & REG_LIVE_DONE) {
1899 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1900 reg_type_str(env, parent->type),
1901 parent->var_off.value, parent->off);
1902 return -EFAULT;
1903 }
1904 /* The first condition is more likely to be true than the
1905 * second, checked it first.
1906 */
1907 if ((parent->live & REG_LIVE_READ) == flag ||
1908 parent->live & REG_LIVE_READ64)
1909 /* The parentage chain never changes and
1910 * this parent was already marked as LIVE_READ.
1911 * There is no need to keep walking the chain again and
1912 * keep re-marking all parents as LIVE_READ.
1913 * This case happens when the same register is read
1914 * multiple times without writes into it in-between.
1915 * Also, if parent has the stronger REG_LIVE_READ64 set,
1916 * then no need to set the weak REG_LIVE_READ32.
1917 */
1918 break;
1919 /* ... then we depend on parent's value */
1920 parent->live |= flag;
1921 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1922 if (flag == REG_LIVE_READ64)
1923 parent->live &= ~REG_LIVE_READ32;
1924 state = parent;
1925 parent = state->parent;
1926 writes = true;
1927 cnt++;
1928 }
1929
1930 if (env->longest_mark_read_walk < cnt)
1931 env->longest_mark_read_walk = cnt;
1932 return 0;
1933 }
1934
1935 /* This function is supposed to be used by the following 32-bit optimization
1936 * code only. It returns TRUE if the source or destination register operates
1937 * on 64-bit, otherwise return FALSE.
1938 */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)1939 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1940 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1941 {
1942 u8 code, class, op;
1943
1944 code = insn->code;
1945 class = BPF_CLASS(code);
1946 op = BPF_OP(code);
1947 if (class == BPF_JMP) {
1948 /* BPF_EXIT for "main" will reach here. Return TRUE
1949 * conservatively.
1950 */
1951 if (op == BPF_EXIT)
1952 return true;
1953 if (op == BPF_CALL) {
1954 /* BPF to BPF call will reach here because of marking
1955 * caller saved clobber with DST_OP_NO_MARK for which we
1956 * don't care the register def because they are anyway
1957 * marked as NOT_INIT already.
1958 */
1959 if (insn->src_reg == BPF_PSEUDO_CALL)
1960 return false;
1961 /* Helper call will reach here because of arg type
1962 * check, conservatively return TRUE.
1963 */
1964 if (t == SRC_OP)
1965 return true;
1966
1967 return false;
1968 }
1969 }
1970
1971 if (class == BPF_ALU64 || class == BPF_JMP ||
1972 /* BPF_END always use BPF_ALU class. */
1973 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1974 return true;
1975
1976 if (class == BPF_ALU || class == BPF_JMP32)
1977 return false;
1978
1979 if (class == BPF_LDX) {
1980 if (t != SRC_OP)
1981 return BPF_SIZE(code) == BPF_DW;
1982 /* LDX source must be ptr. */
1983 return true;
1984 }
1985
1986 if (class == BPF_STX) {
1987 /* BPF_STX (including atomic variants) has multiple source
1988 * operands, one of which is a ptr. Check whether the caller is
1989 * asking about it.
1990 */
1991 if (t == SRC_OP && reg->type != SCALAR_VALUE)
1992 return true;
1993 return BPF_SIZE(code) == BPF_DW;
1994 }
1995
1996 if (class == BPF_LD) {
1997 u8 mode = BPF_MODE(code);
1998
1999 /* LD_IMM64 */
2000 if (mode == BPF_IMM)
2001 return true;
2002
2003 /* Both LD_IND and LD_ABS return 32-bit data. */
2004 if (t != SRC_OP)
2005 return false;
2006
2007 /* Implicit ctx ptr. */
2008 if (regno == BPF_REG_6)
2009 return true;
2010
2011 /* Explicit source could be any width. */
2012 return true;
2013 }
2014
2015 if (class == BPF_ST)
2016 /* The only source register for BPF_ST is a ptr. */
2017 return true;
2018
2019 /* Conservatively return true at default. */
2020 return true;
2021 }
2022
2023 /* Return the regno defined by the insn, or -1. */
insn_def_regno(const struct bpf_insn * insn)2024 static int insn_def_regno(const struct bpf_insn *insn)
2025 {
2026 switch (BPF_CLASS(insn->code)) {
2027 case BPF_JMP:
2028 case BPF_JMP32:
2029 case BPF_ST:
2030 return -1;
2031 case BPF_STX:
2032 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2033 (insn->imm & BPF_FETCH)) {
2034 if (insn->imm == BPF_CMPXCHG)
2035 return BPF_REG_0;
2036 else
2037 return insn->src_reg;
2038 } else {
2039 return -1;
2040 }
2041 default:
2042 return insn->dst_reg;
2043 }
2044 }
2045
2046 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)2047 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2048 {
2049 int dst_reg = insn_def_regno(insn);
2050
2051 if (dst_reg == -1)
2052 return false;
2053
2054 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2055 }
2056
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)2057 static void mark_insn_zext(struct bpf_verifier_env *env,
2058 struct bpf_reg_state *reg)
2059 {
2060 s32 def_idx = reg->subreg_def;
2061
2062 if (def_idx == DEF_NOT_SUBREG)
2063 return;
2064
2065 env->insn_aux_data[def_idx - 1].zext_dst = true;
2066 /* The dst will be zero extended, so won't be sub-register anymore. */
2067 reg->subreg_def = DEF_NOT_SUBREG;
2068 }
2069
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)2070 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2071 enum reg_arg_type t)
2072 {
2073 struct bpf_verifier_state *vstate = env->cur_state;
2074 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2075 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2076 struct bpf_reg_state *reg, *regs = state->regs;
2077 bool rw64;
2078
2079 if (regno >= MAX_BPF_REG) {
2080 verbose(env, "R%d is invalid\n", regno);
2081 return -EINVAL;
2082 }
2083
2084 reg = ®s[regno];
2085 rw64 = is_reg64(env, insn, regno, reg, t);
2086 if (t == SRC_OP) {
2087 /* check whether register used as source operand can be read */
2088 if (reg->type == NOT_INIT) {
2089 verbose(env, "R%d !read_ok\n", regno);
2090 return -EACCES;
2091 }
2092 /* We don't need to worry about FP liveness because it's read-only */
2093 if (regno == BPF_REG_FP)
2094 return 0;
2095
2096 if (rw64)
2097 mark_insn_zext(env, reg);
2098
2099 return mark_reg_read(env, reg, reg->parent,
2100 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2101 } else {
2102 /* check whether register used as dest operand can be written to */
2103 if (regno == BPF_REG_FP) {
2104 verbose(env, "frame pointer is read only\n");
2105 return -EACCES;
2106 }
2107 reg->live |= REG_LIVE_WRITTEN;
2108 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2109 if (t == DST_OP)
2110 mark_reg_unknown(env, regs, regno);
2111 }
2112 return 0;
2113 }
2114
2115 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur)2116 static int push_jmp_history(struct bpf_verifier_env *env,
2117 struct bpf_verifier_state *cur)
2118 {
2119 u32 cnt = cur->jmp_history_cnt;
2120 struct bpf_idx_pair *p;
2121
2122 cnt++;
2123 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2124 if (!p)
2125 return -ENOMEM;
2126 p[cnt - 1].idx = env->insn_idx;
2127 p[cnt - 1].prev_idx = env->prev_insn_idx;
2128 cur->jmp_history = p;
2129 cur->jmp_history_cnt = cnt;
2130 return 0;
2131 }
2132
2133 /* Backtrack one insn at a time. If idx is not at the top of recorded
2134 * history then previous instruction came from straight line execution.
2135 */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)2136 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2137 u32 *history)
2138 {
2139 u32 cnt = *history;
2140
2141 if (cnt && st->jmp_history[cnt - 1].idx == i) {
2142 i = st->jmp_history[cnt - 1].prev_idx;
2143 (*history)--;
2144 } else {
2145 i--;
2146 }
2147 return i;
2148 }
2149
disasm_kfunc_name(void * data,const struct bpf_insn * insn)2150 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2151 {
2152 const struct btf_type *func;
2153
2154 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2155 return NULL;
2156
2157 func = btf_type_by_id(btf_vmlinux, insn->imm);
2158 return btf_name_by_offset(btf_vmlinux, func->name_off);
2159 }
2160
2161 /* For given verifier state backtrack_insn() is called from the last insn to
2162 * the first insn. Its purpose is to compute a bitmask of registers and
2163 * stack slots that needs precision in the parent verifier state.
2164 */
backtrack_insn(struct bpf_verifier_env * env,int idx,u32 * reg_mask,u64 * stack_mask)2165 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2166 u32 *reg_mask, u64 *stack_mask)
2167 {
2168 const struct bpf_insn_cbs cbs = {
2169 .cb_call = disasm_kfunc_name,
2170 .cb_print = verbose,
2171 .private_data = env,
2172 };
2173 struct bpf_insn *insn = env->prog->insnsi + idx;
2174 u8 class = BPF_CLASS(insn->code);
2175 u8 opcode = BPF_OP(insn->code);
2176 u8 mode = BPF_MODE(insn->code);
2177 u32 dreg = 1u << insn->dst_reg;
2178 u32 sreg = 1u << insn->src_reg;
2179 u32 spi;
2180
2181 if (insn->code == 0)
2182 return 0;
2183 if (env->log.level & BPF_LOG_LEVEL) {
2184 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2185 verbose(env, "%d: ", idx);
2186 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2187 }
2188
2189 if (class == BPF_ALU || class == BPF_ALU64) {
2190 if (!(*reg_mask & dreg))
2191 return 0;
2192 if (opcode == BPF_END || opcode == BPF_NEG) {
2193 /* sreg is reserved and unused
2194 * dreg still need precision before this insn
2195 */
2196 return 0;
2197 } else if (opcode == BPF_MOV) {
2198 if (BPF_SRC(insn->code) == BPF_X) {
2199 /* dreg = sreg
2200 * dreg needs precision after this insn
2201 * sreg needs precision before this insn
2202 */
2203 *reg_mask &= ~dreg;
2204 *reg_mask |= sreg;
2205 } else {
2206 /* dreg = K
2207 * dreg needs precision after this insn.
2208 * Corresponding register is already marked
2209 * as precise=true in this verifier state.
2210 * No further markings in parent are necessary
2211 */
2212 *reg_mask &= ~dreg;
2213 }
2214 } else {
2215 if (BPF_SRC(insn->code) == BPF_X) {
2216 /* dreg += sreg
2217 * both dreg and sreg need precision
2218 * before this insn
2219 */
2220 *reg_mask |= sreg;
2221 } /* else dreg += K
2222 * dreg still needs precision before this insn
2223 */
2224 }
2225 } else if (class == BPF_LDX) {
2226 if (!(*reg_mask & dreg))
2227 return 0;
2228 *reg_mask &= ~dreg;
2229
2230 /* scalars can only be spilled into stack w/o losing precision.
2231 * Load from any other memory can be zero extended.
2232 * The desire to keep that precision is already indicated
2233 * by 'precise' mark in corresponding register of this state.
2234 * No further tracking necessary.
2235 */
2236 if (insn->src_reg != BPF_REG_FP)
2237 return 0;
2238
2239 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2240 * that [fp - off] slot contains scalar that needs to be
2241 * tracked with precision
2242 */
2243 spi = (-insn->off - 1) / BPF_REG_SIZE;
2244 if (spi >= 64) {
2245 verbose(env, "BUG spi %d\n", spi);
2246 WARN_ONCE(1, "verifier backtracking bug");
2247 return -EFAULT;
2248 }
2249 *stack_mask |= 1ull << spi;
2250 } else if (class == BPF_STX || class == BPF_ST) {
2251 if (*reg_mask & dreg)
2252 /* stx & st shouldn't be using _scalar_ dst_reg
2253 * to access memory. It means backtracking
2254 * encountered a case of pointer subtraction.
2255 */
2256 return -ENOTSUPP;
2257 /* scalars can only be spilled into stack */
2258 if (insn->dst_reg != BPF_REG_FP)
2259 return 0;
2260 spi = (-insn->off - 1) / BPF_REG_SIZE;
2261 if (spi >= 64) {
2262 verbose(env, "BUG spi %d\n", spi);
2263 WARN_ONCE(1, "verifier backtracking bug");
2264 return -EFAULT;
2265 }
2266 if (!(*stack_mask & (1ull << spi)))
2267 return 0;
2268 *stack_mask &= ~(1ull << spi);
2269 if (class == BPF_STX)
2270 *reg_mask |= sreg;
2271 } else if (class == BPF_JMP || class == BPF_JMP32) {
2272 if (opcode == BPF_CALL) {
2273 if (insn->src_reg == BPF_PSEUDO_CALL)
2274 return -ENOTSUPP;
2275 /* kfunc with imm==0 is invalid and fixup_kfunc_call will
2276 * catch this error later. Make backtracking conservative
2277 * with ENOTSUPP.
2278 */
2279 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
2280 return -ENOTSUPP;
2281 /* BPF helpers that invoke callback subprogs are
2282 * equivalent to BPF_PSEUDO_CALL above
2283 */
2284 if (insn->src_reg == 0 && is_callback_calling_function(insn->imm))
2285 return -ENOTSUPP;
2286 /* regular helper call sets R0 */
2287 *reg_mask &= ~1;
2288 if (*reg_mask & 0x3f) {
2289 /* if backtracing was looking for registers R1-R5
2290 * they should have been found already.
2291 */
2292 verbose(env, "BUG regs %x\n", *reg_mask);
2293 WARN_ONCE(1, "verifier backtracking bug");
2294 return -EFAULT;
2295 }
2296 } else if (opcode == BPF_EXIT) {
2297 return -ENOTSUPP;
2298 } else if (BPF_SRC(insn->code) == BPF_X) {
2299 if (!(*reg_mask & (dreg | sreg)))
2300 return 0;
2301 /* dreg <cond> sreg
2302 * Both dreg and sreg need precision before
2303 * this insn. If only sreg was marked precise
2304 * before it would be equally necessary to
2305 * propagate it to dreg.
2306 */
2307 *reg_mask |= (sreg | dreg);
2308 /* else dreg <cond> K
2309 * Only dreg still needs precision before
2310 * this insn, so for the K-based conditional
2311 * there is nothing new to be marked.
2312 */
2313 }
2314 } else if (class == BPF_LD) {
2315 if (!(*reg_mask & dreg))
2316 return 0;
2317 *reg_mask &= ~dreg;
2318 /* It's ld_imm64 or ld_abs or ld_ind.
2319 * For ld_imm64 no further tracking of precision
2320 * into parent is necessary
2321 */
2322 if (mode == BPF_IND || mode == BPF_ABS)
2323 /* to be analyzed */
2324 return -ENOTSUPP;
2325 }
2326 return 0;
2327 }
2328
2329 /* the scalar precision tracking algorithm:
2330 * . at the start all registers have precise=false.
2331 * . scalar ranges are tracked as normal through alu and jmp insns.
2332 * . once precise value of the scalar register is used in:
2333 * . ptr + scalar alu
2334 * . if (scalar cond K|scalar)
2335 * . helper_call(.., scalar, ...) where ARG_CONST is expected
2336 * backtrack through the verifier states and mark all registers and
2337 * stack slots with spilled constants that these scalar regisers
2338 * should be precise.
2339 * . during state pruning two registers (or spilled stack slots)
2340 * are equivalent if both are not precise.
2341 *
2342 * Note the verifier cannot simply walk register parentage chain,
2343 * since many different registers and stack slots could have been
2344 * used to compute single precise scalar.
2345 *
2346 * The approach of starting with precise=true for all registers and then
2347 * backtrack to mark a register as not precise when the verifier detects
2348 * that program doesn't care about specific value (e.g., when helper
2349 * takes register as ARG_ANYTHING parameter) is not safe.
2350 *
2351 * It's ok to walk single parentage chain of the verifier states.
2352 * It's possible that this backtracking will go all the way till 1st insn.
2353 * All other branches will be explored for needing precision later.
2354 *
2355 * The backtracking needs to deal with cases like:
2356 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2357 * r9 -= r8
2358 * r5 = r9
2359 * if r5 > 0x79f goto pc+7
2360 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2361 * r5 += 1
2362 * ...
2363 * call bpf_perf_event_output#25
2364 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2365 *
2366 * and this case:
2367 * r6 = 1
2368 * call foo // uses callee's r6 inside to compute r0
2369 * r0 += r6
2370 * if r0 == 0 goto
2371 *
2372 * to track above reg_mask/stack_mask needs to be independent for each frame.
2373 *
2374 * Also if parent's curframe > frame where backtracking started,
2375 * the verifier need to mark registers in both frames, otherwise callees
2376 * may incorrectly prune callers. This is similar to
2377 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2378 *
2379 * For now backtracking falls back into conservative marking.
2380 */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2381 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2382 struct bpf_verifier_state *st)
2383 {
2384 struct bpf_func_state *func;
2385 struct bpf_reg_state *reg;
2386 int i, j;
2387
2388 /* big hammer: mark all scalars precise in this path.
2389 * pop_stack may still get !precise scalars.
2390 * We also skip current state and go straight to first parent state,
2391 * because precision markings in current non-checkpointed state are
2392 * not needed. See why in the comment in __mark_chain_precision below.
2393 */
2394 for (st = st->parent; st; st = st->parent) {
2395 for (i = 0; i <= st->curframe; i++) {
2396 func = st->frame[i];
2397 for (j = 0; j < BPF_REG_FP; j++) {
2398 reg = &func->regs[j];
2399 if (reg->type != SCALAR_VALUE)
2400 continue;
2401 reg->precise = true;
2402 }
2403 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2404 if (!is_spilled_reg(&func->stack[j]))
2405 continue;
2406 reg = &func->stack[j].spilled_ptr;
2407 if (reg->type != SCALAR_VALUE)
2408 continue;
2409 reg->precise = true;
2410 }
2411 }
2412 }
2413 }
2414
mark_all_scalars_imprecise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2415 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2416 {
2417 struct bpf_func_state *func;
2418 struct bpf_reg_state *reg;
2419 int i, j;
2420
2421 for (i = 0; i <= st->curframe; i++) {
2422 func = st->frame[i];
2423 for (j = 0; j < BPF_REG_FP; j++) {
2424 reg = &func->regs[j];
2425 if (reg->type != SCALAR_VALUE)
2426 continue;
2427 reg->precise = false;
2428 }
2429 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2430 if (!is_spilled_reg(&func->stack[j]))
2431 continue;
2432 reg = &func->stack[j].spilled_ptr;
2433 if (reg->type != SCALAR_VALUE)
2434 continue;
2435 reg->precise = false;
2436 }
2437 }
2438 }
2439
2440 /*
2441 * __mark_chain_precision() backtracks BPF program instruction sequence and
2442 * chain of verifier states making sure that register *regno* (if regno >= 0)
2443 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
2444 * SCALARS, as well as any other registers and slots that contribute to
2445 * a tracked state of given registers/stack slots, depending on specific BPF
2446 * assembly instructions (see backtrack_insns() for exact instruction handling
2447 * logic). This backtracking relies on recorded jmp_history and is able to
2448 * traverse entire chain of parent states. This process ends only when all the
2449 * necessary registers/slots and their transitive dependencies are marked as
2450 * precise.
2451 *
2452 * One important and subtle aspect is that precise marks *do not matter* in
2453 * the currently verified state (current state). It is important to understand
2454 * why this is the case.
2455 *
2456 * First, note that current state is the state that is not yet "checkpointed",
2457 * i.e., it is not yet put into env->explored_states, and it has no children
2458 * states as well. It's ephemeral, and can end up either a) being discarded if
2459 * compatible explored state is found at some point or BPF_EXIT instruction is
2460 * reached or b) checkpointed and put into env->explored_states, branching out
2461 * into one or more children states.
2462 *
2463 * In the former case, precise markings in current state are completely
2464 * ignored by state comparison code (see regsafe() for details). Only
2465 * checkpointed ("old") state precise markings are important, and if old
2466 * state's register/slot is precise, regsafe() assumes current state's
2467 * register/slot as precise and checks value ranges exactly and precisely. If
2468 * states turn out to be compatible, current state's necessary precise
2469 * markings and any required parent states' precise markings are enforced
2470 * after the fact with propagate_precision() logic, after the fact. But it's
2471 * important to realize that in this case, even after marking current state
2472 * registers/slots as precise, we immediately discard current state. So what
2473 * actually matters is any of the precise markings propagated into current
2474 * state's parent states, which are always checkpointed (due to b) case above).
2475 * As such, for scenario a) it doesn't matter if current state has precise
2476 * markings set or not.
2477 *
2478 * Now, for the scenario b), checkpointing and forking into child(ren)
2479 * state(s). Note that before current state gets to checkpointing step, any
2480 * processed instruction always assumes precise SCALAR register/slot
2481 * knowledge: if precise value or range is useful to prune jump branch, BPF
2482 * verifier takes this opportunity enthusiastically. Similarly, when
2483 * register's value is used to calculate offset or memory address, exact
2484 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
2485 * what we mentioned above about state comparison ignoring precise markings
2486 * during state comparison, BPF verifier ignores and also assumes precise
2487 * markings *at will* during instruction verification process. But as verifier
2488 * assumes precision, it also propagates any precision dependencies across
2489 * parent states, which are not yet finalized, so can be further restricted
2490 * based on new knowledge gained from restrictions enforced by their children
2491 * states. This is so that once those parent states are finalized, i.e., when
2492 * they have no more active children state, state comparison logic in
2493 * is_state_visited() would enforce strict and precise SCALAR ranges, if
2494 * required for correctness.
2495 *
2496 * To build a bit more intuition, note also that once a state is checkpointed,
2497 * the path we took to get to that state is not important. This is crucial
2498 * property for state pruning. When state is checkpointed and finalized at
2499 * some instruction index, it can be correctly and safely used to "short
2500 * circuit" any *compatible* state that reaches exactly the same instruction
2501 * index. I.e., if we jumped to that instruction from a completely different
2502 * code path than original finalized state was derived from, it doesn't
2503 * matter, current state can be discarded because from that instruction
2504 * forward having a compatible state will ensure we will safely reach the
2505 * exit. States describe preconditions for further exploration, but completely
2506 * forget the history of how we got here.
2507 *
2508 * This also means that even if we needed precise SCALAR range to get to
2509 * finalized state, but from that point forward *that same* SCALAR register is
2510 * never used in a precise context (i.e., it's precise value is not needed for
2511 * correctness), it's correct and safe to mark such register as "imprecise"
2512 * (i.e., precise marking set to false). This is what we rely on when we do
2513 * not set precise marking in current state. If no child state requires
2514 * precision for any given SCALAR register, it's safe to dictate that it can
2515 * be imprecise. If any child state does require this register to be precise,
2516 * we'll mark it precise later retroactively during precise markings
2517 * propagation from child state to parent states.
2518 *
2519 * Skipping precise marking setting in current state is a mild version of
2520 * relying on the above observation. But we can utilize this property even
2521 * more aggressively by proactively forgetting any precise marking in the
2522 * current state (which we inherited from the parent state), right before we
2523 * checkpoint it and branch off into new child state. This is done by
2524 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
2525 * finalized states which help in short circuiting more future states.
2526 */
__mark_chain_precision(struct bpf_verifier_env * env,int frame,int regno,int spi)2527 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
2528 int spi)
2529 {
2530 struct bpf_verifier_state *st = env->cur_state;
2531 int first_idx = st->first_insn_idx;
2532 int last_idx = env->insn_idx;
2533 struct bpf_func_state *func;
2534 struct bpf_reg_state *reg;
2535 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2536 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2537 bool skip_first = true;
2538 bool new_marks = false;
2539 int i, err;
2540
2541 if (!env->bpf_capable)
2542 return 0;
2543
2544 /* Do sanity checks against current state of register and/or stack
2545 * slot, but don't set precise flag in current state, as precision
2546 * tracking in the current state is unnecessary.
2547 */
2548 func = st->frame[frame];
2549 if (regno >= 0) {
2550 reg = &func->regs[regno];
2551 if (reg->type != SCALAR_VALUE) {
2552 WARN_ONCE(1, "backtracing misuse");
2553 return -EFAULT;
2554 }
2555 new_marks = true;
2556 }
2557
2558 while (spi >= 0) {
2559 if (!is_spilled_reg(&func->stack[spi])) {
2560 stack_mask = 0;
2561 break;
2562 }
2563 reg = &func->stack[spi].spilled_ptr;
2564 if (reg->type != SCALAR_VALUE) {
2565 stack_mask = 0;
2566 break;
2567 }
2568 new_marks = true;
2569 break;
2570 }
2571
2572 if (!new_marks)
2573 return 0;
2574 if (!reg_mask && !stack_mask)
2575 return 0;
2576
2577 for (;;) {
2578 DECLARE_BITMAP(mask, 64);
2579 u32 history = st->jmp_history_cnt;
2580
2581 if (env->log.level & BPF_LOG_LEVEL)
2582 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2583
2584 if (last_idx < 0) {
2585 /* we are at the entry into subprog, which
2586 * is expected for global funcs, but only if
2587 * requested precise registers are R1-R5
2588 * (which are global func's input arguments)
2589 */
2590 if (st->curframe == 0 &&
2591 st->frame[0]->subprogno > 0 &&
2592 st->frame[0]->callsite == BPF_MAIN_FUNC &&
2593 stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
2594 bitmap_from_u64(mask, reg_mask);
2595 for_each_set_bit(i, mask, 32) {
2596 reg = &st->frame[0]->regs[i];
2597 if (reg->type != SCALAR_VALUE) {
2598 reg_mask &= ~(1u << i);
2599 continue;
2600 }
2601 reg->precise = true;
2602 }
2603 return 0;
2604 }
2605
2606 verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
2607 st->frame[0]->subprogno, reg_mask, stack_mask);
2608 WARN_ONCE(1, "verifier backtracking bug");
2609 return -EFAULT;
2610 }
2611
2612 for (i = last_idx;;) {
2613 if (skip_first) {
2614 err = 0;
2615 skip_first = false;
2616 } else {
2617 err = backtrack_insn(env, i, ®_mask, &stack_mask);
2618 }
2619 if (err == -ENOTSUPP) {
2620 mark_all_scalars_precise(env, st);
2621 return 0;
2622 } else if (err) {
2623 return err;
2624 }
2625 if (!reg_mask && !stack_mask)
2626 /* Found assignment(s) into tracked register in this state.
2627 * Since this state is already marked, just return.
2628 * Nothing to be tracked further in the parent state.
2629 */
2630 return 0;
2631 if (i == first_idx)
2632 break;
2633 i = get_prev_insn_idx(st, i, &history);
2634 if (i >= env->prog->len) {
2635 /* This can happen if backtracking reached insn 0
2636 * and there are still reg_mask or stack_mask
2637 * to backtrack.
2638 * It means the backtracking missed the spot where
2639 * particular register was initialized with a constant.
2640 */
2641 verbose(env, "BUG backtracking idx %d\n", i);
2642 WARN_ONCE(1, "verifier backtracking bug");
2643 return -EFAULT;
2644 }
2645 }
2646 st = st->parent;
2647 if (!st)
2648 break;
2649
2650 new_marks = false;
2651 func = st->frame[frame];
2652 bitmap_from_u64(mask, reg_mask);
2653 for_each_set_bit(i, mask, 32) {
2654 reg = &func->regs[i];
2655 if (reg->type != SCALAR_VALUE) {
2656 reg_mask &= ~(1u << i);
2657 continue;
2658 }
2659 if (!reg->precise)
2660 new_marks = true;
2661 reg->precise = true;
2662 }
2663
2664 bitmap_from_u64(mask, stack_mask);
2665 for_each_set_bit(i, mask, 64) {
2666 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2667 /* the sequence of instructions:
2668 * 2: (bf) r3 = r10
2669 * 3: (7b) *(u64 *)(r3 -8) = r0
2670 * 4: (79) r4 = *(u64 *)(r10 -8)
2671 * doesn't contain jmps. It's backtracked
2672 * as a single block.
2673 * During backtracking insn 3 is not recognized as
2674 * stack access, so at the end of backtracking
2675 * stack slot fp-8 is still marked in stack_mask.
2676 * However the parent state may not have accessed
2677 * fp-8 and it's "unallocated" stack space.
2678 * In such case fallback to conservative.
2679 */
2680 mark_all_scalars_precise(env, st);
2681 return 0;
2682 }
2683
2684 if (!is_spilled_reg(&func->stack[i])) {
2685 stack_mask &= ~(1ull << i);
2686 continue;
2687 }
2688 reg = &func->stack[i].spilled_ptr;
2689 if (reg->type != SCALAR_VALUE) {
2690 stack_mask &= ~(1ull << i);
2691 continue;
2692 }
2693 if (!reg->precise)
2694 new_marks = true;
2695 reg->precise = true;
2696 }
2697 if (env->log.level & BPF_LOG_LEVEL) {
2698 print_verifier_state(env, func);
2699 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2700 new_marks ? "didn't have" : "already had",
2701 reg_mask, stack_mask);
2702 }
2703
2704 if (!reg_mask && !stack_mask)
2705 break;
2706 if (!new_marks)
2707 break;
2708
2709 last_idx = st->last_insn_idx;
2710 first_idx = st->first_insn_idx;
2711 }
2712 return 0;
2713 }
2714
mark_chain_precision(struct bpf_verifier_env * env,int regno)2715 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2716 {
2717 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
2718 }
2719
mark_chain_precision_frame(struct bpf_verifier_env * env,int frame,int regno)2720 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
2721 {
2722 return __mark_chain_precision(env, frame, regno, -1);
2723 }
2724
mark_chain_precision_stack_frame(struct bpf_verifier_env * env,int frame,int spi)2725 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
2726 {
2727 return __mark_chain_precision(env, frame, -1, spi);
2728 }
2729
is_spillable_regtype(enum bpf_reg_type type)2730 static bool is_spillable_regtype(enum bpf_reg_type type)
2731 {
2732 switch (base_type(type)) {
2733 case PTR_TO_MAP_VALUE:
2734 case PTR_TO_STACK:
2735 case PTR_TO_CTX:
2736 case PTR_TO_PACKET:
2737 case PTR_TO_PACKET_META:
2738 case PTR_TO_PACKET_END:
2739 case PTR_TO_FLOW_KEYS:
2740 case CONST_PTR_TO_MAP:
2741 case PTR_TO_SOCKET:
2742 case PTR_TO_SOCK_COMMON:
2743 case PTR_TO_TCP_SOCK:
2744 case PTR_TO_XDP_SOCK:
2745 case PTR_TO_BTF_ID:
2746 case PTR_TO_BUF:
2747 case PTR_TO_PERCPU_BTF_ID:
2748 case PTR_TO_MEM:
2749 case PTR_TO_FUNC:
2750 case PTR_TO_MAP_KEY:
2751 return true;
2752 default:
2753 return false;
2754 }
2755 }
2756
2757 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)2758 static bool register_is_null(struct bpf_reg_state *reg)
2759 {
2760 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2761 }
2762
register_is_const(struct bpf_reg_state * reg)2763 static bool register_is_const(struct bpf_reg_state *reg)
2764 {
2765 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2766 }
2767
__is_scalar_unbounded(struct bpf_reg_state * reg)2768 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2769 {
2770 return tnum_is_unknown(reg->var_off) &&
2771 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2772 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2773 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2774 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2775 }
2776
register_is_bounded(struct bpf_reg_state * reg)2777 static bool register_is_bounded(struct bpf_reg_state *reg)
2778 {
2779 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2780 }
2781
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)2782 static bool __is_pointer_value(bool allow_ptr_leaks,
2783 const struct bpf_reg_state *reg)
2784 {
2785 if (allow_ptr_leaks)
2786 return false;
2787
2788 return reg->type != SCALAR_VALUE;
2789 }
2790
2791 /* Copy src state preserving dst->parent and dst->live fields */
copy_register_state(struct bpf_reg_state * dst,const struct bpf_reg_state * src)2792 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
2793 {
2794 struct bpf_reg_state *parent = dst->parent;
2795 enum bpf_reg_liveness live = dst->live;
2796
2797 *dst = *src;
2798 dst->parent = parent;
2799 dst->live = live;
2800 }
2801
save_register_state(struct bpf_func_state * state,int spi,struct bpf_reg_state * reg,int size)2802 static void save_register_state(struct bpf_func_state *state,
2803 int spi, struct bpf_reg_state *reg,
2804 int size)
2805 {
2806 int i;
2807
2808 copy_register_state(&state->stack[spi].spilled_ptr, reg);
2809 if (size == BPF_REG_SIZE)
2810 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2811
2812 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2813 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
2814
2815 /* size < 8 bytes spill */
2816 for (; i; i--)
2817 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
2818 }
2819
is_bpf_st_mem(struct bpf_insn * insn)2820 static bool is_bpf_st_mem(struct bpf_insn *insn)
2821 {
2822 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
2823 }
2824
2825 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2826 * stack boundary and alignment are checked in check_mem_access()
2827 */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)2828 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2829 /* stack frame we're writing to */
2830 struct bpf_func_state *state,
2831 int off, int size, int value_regno,
2832 int insn_idx)
2833 {
2834 struct bpf_func_state *cur; /* state of the current function */
2835 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2836 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
2837 struct bpf_reg_state *reg = NULL;
2838 u32 dst_reg = insn->dst_reg;
2839
2840 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
2841 if (err)
2842 return err;
2843 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2844 * so it's aligned access and [off, off + size) are within stack limits
2845 */
2846 if (!env->allow_ptr_leaks &&
2847 is_spilled_reg(&state->stack[spi]) &&
2848 size != BPF_REG_SIZE) {
2849 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2850 return -EACCES;
2851 }
2852
2853 cur = env->cur_state->frame[env->cur_state->curframe];
2854 if (value_regno >= 0)
2855 reg = &cur->regs[value_regno];
2856 if (!env->bypass_spec_v4) {
2857 bool sanitize = reg && is_spillable_regtype(reg->type);
2858
2859 for (i = 0; i < size; i++) {
2860 u8 type = state->stack[spi].slot_type[i];
2861
2862 if (type != STACK_MISC && type != STACK_ZERO) {
2863 sanitize = true;
2864 break;
2865 }
2866 }
2867
2868 if (sanitize)
2869 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2870 }
2871
2872 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2873 !register_is_null(reg) && env->bpf_capable) {
2874 if (dst_reg != BPF_REG_FP) {
2875 /* The backtracking logic can only recognize explicit
2876 * stack slot address like [fp - 8]. Other spill of
2877 * scalar via different register has to be conservative.
2878 * Backtrack from here and mark all registers as precise
2879 * that contributed into 'reg' being a constant.
2880 */
2881 err = mark_chain_precision(env, value_regno);
2882 if (err)
2883 return err;
2884 }
2885 save_register_state(state, spi, reg, size);
2886 /* Break the relation on a narrowing spill. */
2887 if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
2888 state->stack[spi].spilled_ptr.id = 0;
2889 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
2890 insn->imm != 0 && env->bpf_capable) {
2891 struct bpf_reg_state fake_reg = {};
2892
2893 __mark_reg_known(&fake_reg, insn->imm);
2894 fake_reg.type = SCALAR_VALUE;
2895 save_register_state(state, spi, &fake_reg, size);
2896 } else if (reg && is_spillable_regtype(reg->type)) {
2897 /* register containing pointer is being spilled into stack */
2898 if (size != BPF_REG_SIZE) {
2899 verbose_linfo(env, insn_idx, "; ");
2900 verbose(env, "invalid size of register spill\n");
2901 return -EACCES;
2902 }
2903 if (state != cur && reg->type == PTR_TO_STACK) {
2904 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2905 return -EINVAL;
2906 }
2907 save_register_state(state, spi, reg, size);
2908 } else {
2909 u8 type = STACK_MISC;
2910
2911 /* regular write of data into stack destroys any spilled ptr */
2912 state->stack[spi].spilled_ptr.type = NOT_INIT;
2913 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2914 if (is_spilled_reg(&state->stack[spi]))
2915 for (i = 0; i < BPF_REG_SIZE; i++)
2916 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
2917
2918 /* only mark the slot as written if all 8 bytes were written
2919 * otherwise read propagation may incorrectly stop too soon
2920 * when stack slots are partially written.
2921 * This heuristic means that read propagation will be
2922 * conservative, since it will add reg_live_read marks
2923 * to stack slots all the way to first state when programs
2924 * writes+reads less than 8 bytes
2925 */
2926 if (size == BPF_REG_SIZE)
2927 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2928
2929 /* when we zero initialize stack slots mark them as such */
2930 if ((reg && register_is_null(reg)) ||
2931 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
2932 /* backtracking doesn't work for STACK_ZERO yet. */
2933 err = mark_chain_precision(env, value_regno);
2934 if (err)
2935 return err;
2936 type = STACK_ZERO;
2937 }
2938
2939 /* Mark slots affected by this stack write. */
2940 for (i = 0; i < size; i++)
2941 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2942 type;
2943 }
2944 return 0;
2945 }
2946
2947 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2948 * known to contain a variable offset.
2949 * This function checks whether the write is permitted and conservatively
2950 * tracks the effects of the write, considering that each stack slot in the
2951 * dynamic range is potentially written to.
2952 *
2953 * 'off' includes 'regno->off'.
2954 * 'value_regno' can be -1, meaning that an unknown value is being written to
2955 * the stack.
2956 *
2957 * Spilled pointers in range are not marked as written because we don't know
2958 * what's going to be actually written. This means that read propagation for
2959 * future reads cannot be terminated by this write.
2960 *
2961 * For privileged programs, uninitialized stack slots are considered
2962 * initialized by this write (even though we don't know exactly what offsets
2963 * are going to be written to). The idea is that we don't want the verifier to
2964 * reject future reads that access slots written to through variable offsets.
2965 */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)2966 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2967 /* func where register points to */
2968 struct bpf_func_state *state,
2969 int ptr_regno, int off, int size,
2970 int value_regno, int insn_idx)
2971 {
2972 struct bpf_func_state *cur; /* state of the current function */
2973 int min_off, max_off;
2974 int i, err;
2975 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2976 bool writing_zero = false;
2977 /* set if the fact that we're writing a zero is used to let any
2978 * stack slots remain STACK_ZERO
2979 */
2980 bool zero_used = false;
2981
2982 cur = env->cur_state->frame[env->cur_state->curframe];
2983 ptr_reg = &cur->regs[ptr_regno];
2984 min_off = ptr_reg->smin_value + off;
2985 max_off = ptr_reg->smax_value + off + size;
2986 if (value_regno >= 0)
2987 value_reg = &cur->regs[value_regno];
2988 if (value_reg && register_is_null(value_reg))
2989 writing_zero = true;
2990
2991 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
2992 if (err)
2993 return err;
2994
2995
2996 /* Variable offset writes destroy any spilled pointers in range. */
2997 for (i = min_off; i < max_off; i++) {
2998 u8 new_type, *stype;
2999 int slot, spi;
3000
3001 slot = -i - 1;
3002 spi = slot / BPF_REG_SIZE;
3003 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3004
3005 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
3006 /* Reject the write if range we may write to has not
3007 * been initialized beforehand. If we didn't reject
3008 * here, the ptr status would be erased below (even
3009 * though not all slots are actually overwritten),
3010 * possibly opening the door to leaks.
3011 *
3012 * We do however catch STACK_INVALID case below, and
3013 * only allow reading possibly uninitialized memory
3014 * later for CAP_PERFMON, as the write may not happen to
3015 * that slot.
3016 */
3017 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3018 insn_idx, i);
3019 return -EINVAL;
3020 }
3021
3022 /* Erase all spilled pointers. */
3023 state->stack[spi].spilled_ptr.type = NOT_INIT;
3024
3025 /* Update the slot type. */
3026 new_type = STACK_MISC;
3027 if (writing_zero && *stype == STACK_ZERO) {
3028 new_type = STACK_ZERO;
3029 zero_used = true;
3030 }
3031 /* If the slot is STACK_INVALID, we check whether it's OK to
3032 * pretend that it will be initialized by this write. The slot
3033 * might not actually be written to, and so if we mark it as
3034 * initialized future reads might leak uninitialized memory.
3035 * For privileged programs, we will accept such reads to slots
3036 * that may or may not be written because, if we're reject
3037 * them, the error would be too confusing.
3038 */
3039 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3040 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3041 insn_idx, i);
3042 return -EINVAL;
3043 }
3044 *stype = new_type;
3045 }
3046 if (zero_used) {
3047 /* backtracking doesn't work for STACK_ZERO yet. */
3048 err = mark_chain_precision(env, value_regno);
3049 if (err)
3050 return err;
3051 }
3052 return 0;
3053 }
3054
3055 /* When register 'dst_regno' is assigned some values from stack[min_off,
3056 * max_off), we set the register's type according to the types of the
3057 * respective stack slots. If all the stack values are known to be zeros, then
3058 * so is the destination reg. Otherwise, the register is considered to be
3059 * SCALAR. This function does not deal with register filling; the caller must
3060 * ensure that all spilled registers in the stack range have been marked as
3061 * read.
3062 */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)3063 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3064 /* func where src register points to */
3065 struct bpf_func_state *ptr_state,
3066 int min_off, int max_off, int dst_regno)
3067 {
3068 struct bpf_verifier_state *vstate = env->cur_state;
3069 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3070 int i, slot, spi;
3071 u8 *stype;
3072 int zeros = 0;
3073
3074 for (i = min_off; i < max_off; i++) {
3075 slot = -i - 1;
3076 spi = slot / BPF_REG_SIZE;
3077 stype = ptr_state->stack[spi].slot_type;
3078 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3079 break;
3080 zeros++;
3081 }
3082 if (zeros == max_off - min_off) {
3083 /* any access_size read into register is zero extended,
3084 * so the whole register == const_zero
3085 */
3086 __mark_reg_const_zero(&state->regs[dst_regno]);
3087 /* backtracking doesn't support STACK_ZERO yet,
3088 * so mark it precise here, so that later
3089 * backtracking can stop here.
3090 * Backtracking may not need this if this register
3091 * doesn't participate in pointer adjustment.
3092 * Forward propagation of precise flag is not
3093 * necessary either. This mark is only to stop
3094 * backtracking. Any register that contributed
3095 * to const 0 was marked precise before spill.
3096 */
3097 state->regs[dst_regno].precise = true;
3098 } else {
3099 /* have read misc data from the stack */
3100 mark_reg_unknown(env, state->regs, dst_regno);
3101 }
3102 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3103 }
3104
3105 /* Read the stack at 'off' and put the results into the register indicated by
3106 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3107 * spilled reg.
3108 *
3109 * 'dst_regno' can be -1, meaning that the read value is not going to a
3110 * register.
3111 *
3112 * The access is assumed to be within the current stack bounds.
3113 */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)3114 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3115 /* func where src register points to */
3116 struct bpf_func_state *reg_state,
3117 int off, int size, int dst_regno)
3118 {
3119 struct bpf_verifier_state *vstate = env->cur_state;
3120 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3121 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3122 struct bpf_reg_state *reg;
3123 u8 *stype, type;
3124
3125 stype = reg_state->stack[spi].slot_type;
3126 reg = ®_state->stack[spi].spilled_ptr;
3127
3128 if (is_spilled_reg(®_state->stack[spi])) {
3129 u8 spill_size = 1;
3130
3131 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3132 spill_size++;
3133
3134 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3135 if (reg->type != SCALAR_VALUE) {
3136 verbose_linfo(env, env->insn_idx, "; ");
3137 verbose(env, "invalid size of register fill\n");
3138 return -EACCES;
3139 }
3140
3141 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3142 if (dst_regno < 0)
3143 return 0;
3144
3145 if (!(off % BPF_REG_SIZE) && size == spill_size) {
3146 /* The earlier check_reg_arg() has decided the
3147 * subreg_def for this insn. Save it first.
3148 */
3149 s32 subreg_def = state->regs[dst_regno].subreg_def;
3150
3151 copy_register_state(&state->regs[dst_regno], reg);
3152 state->regs[dst_regno].subreg_def = subreg_def;
3153 } else {
3154 for (i = 0; i < size; i++) {
3155 type = stype[(slot - i) % BPF_REG_SIZE];
3156 if (type == STACK_SPILL)
3157 continue;
3158 if (type == STACK_MISC)
3159 continue;
3160 verbose(env, "invalid read from stack off %d+%d size %d\n",
3161 off, i, size);
3162 return -EACCES;
3163 }
3164 mark_reg_unknown(env, state->regs, dst_regno);
3165 }
3166 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3167 return 0;
3168 }
3169
3170 if (dst_regno >= 0) {
3171 /* restore register state from stack */
3172 copy_register_state(&state->regs[dst_regno], reg);
3173 /* mark reg as written since spilled pointer state likely
3174 * has its liveness marks cleared by is_state_visited()
3175 * which resets stack/reg liveness for state transitions
3176 */
3177 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3178 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3179 /* If dst_regno==-1, the caller is asking us whether
3180 * it is acceptable to use this value as a SCALAR_VALUE
3181 * (e.g. for XADD).
3182 * We must not allow unprivileged callers to do that
3183 * with spilled pointers.
3184 */
3185 verbose(env, "leaking pointer from stack off %d\n",
3186 off);
3187 return -EACCES;
3188 }
3189 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3190 } else {
3191 for (i = 0; i < size; i++) {
3192 type = stype[(slot - i) % BPF_REG_SIZE];
3193 if (type == STACK_MISC)
3194 continue;
3195 if (type == STACK_ZERO)
3196 continue;
3197 verbose(env, "invalid read from stack off %d+%d size %d\n",
3198 off, i, size);
3199 return -EACCES;
3200 }
3201 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3202 if (dst_regno >= 0)
3203 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3204 }
3205 return 0;
3206 }
3207
3208 enum stack_access_src {
3209 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
3210 ACCESS_HELPER = 2, /* the access is performed by a helper */
3211 };
3212
3213 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3214 int regno, int off, int access_size,
3215 bool zero_size_allowed,
3216 enum stack_access_src type,
3217 struct bpf_call_arg_meta *meta);
3218
reg_state(struct bpf_verifier_env * env,int regno)3219 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3220 {
3221 return cur_regs(env) + regno;
3222 }
3223
3224 /* Read the stack at 'ptr_regno + off' and put the result into the register
3225 * 'dst_regno'.
3226 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3227 * but not its variable offset.
3228 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3229 *
3230 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3231 * filling registers (i.e. reads of spilled register cannot be detected when
3232 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3233 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3234 * offset; for a fixed offset check_stack_read_fixed_off should be used
3235 * instead.
3236 */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)3237 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3238 int ptr_regno, int off, int size, int dst_regno)
3239 {
3240 /* The state of the source register. */
3241 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3242 struct bpf_func_state *ptr_state = func(env, reg);
3243 int err;
3244 int min_off, max_off;
3245
3246 /* Note that we pass a NULL meta, so raw access will not be permitted.
3247 */
3248 err = check_stack_range_initialized(env, ptr_regno, off, size,
3249 false, ACCESS_DIRECT, NULL);
3250 if (err)
3251 return err;
3252
3253 min_off = reg->smin_value + off;
3254 max_off = reg->smax_value + off;
3255 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3256 return 0;
3257 }
3258
3259 /* check_stack_read dispatches to check_stack_read_fixed_off or
3260 * check_stack_read_var_off.
3261 *
3262 * The caller must ensure that the offset falls within the allocated stack
3263 * bounds.
3264 *
3265 * 'dst_regno' is a register which will receive the value from the stack. It
3266 * can be -1, meaning that the read value is not going to a register.
3267 */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)3268 static int check_stack_read(struct bpf_verifier_env *env,
3269 int ptr_regno, int off, int size,
3270 int dst_regno)
3271 {
3272 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3273 struct bpf_func_state *state = func(env, reg);
3274 int err;
3275 /* Some accesses are only permitted with a static offset. */
3276 bool var_off = !tnum_is_const(reg->var_off);
3277
3278 /* The offset is required to be static when reads don't go to a
3279 * register, in order to not leak pointers (see
3280 * check_stack_read_fixed_off).
3281 */
3282 if (dst_regno < 0 && var_off) {
3283 char tn_buf[48];
3284
3285 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3286 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3287 tn_buf, off, size);
3288 return -EACCES;
3289 }
3290 /* Variable offset is prohibited for unprivileged mode for simplicity
3291 * since it requires corresponding support in Spectre masking for stack
3292 * ALU. See also retrieve_ptr_limit(). The check in
3293 * check_stack_access_for_ptr_arithmetic() called by
3294 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
3295 * with variable offsets, therefore no check is required here. Further,
3296 * just checking it here would be insufficient as speculative stack
3297 * writes could still lead to unsafe speculative behaviour.
3298 */
3299 if (!var_off) {
3300 off += reg->var_off.value;
3301 err = check_stack_read_fixed_off(env, state, off, size,
3302 dst_regno);
3303 } else {
3304 /* Variable offset stack reads need more conservative handling
3305 * than fixed offset ones. Note that dst_regno >= 0 on this
3306 * branch.
3307 */
3308 err = check_stack_read_var_off(env, ptr_regno, off, size,
3309 dst_regno);
3310 }
3311 return err;
3312 }
3313
3314
3315 /* check_stack_write dispatches to check_stack_write_fixed_off or
3316 * check_stack_write_var_off.
3317 *
3318 * 'ptr_regno' is the register used as a pointer into the stack.
3319 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3320 * 'value_regno' is the register whose value we're writing to the stack. It can
3321 * be -1, meaning that we're not writing from a register.
3322 *
3323 * The caller must ensure that the offset falls within the maximum stack size.
3324 */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)3325 static int check_stack_write(struct bpf_verifier_env *env,
3326 int ptr_regno, int off, int size,
3327 int value_regno, int insn_idx)
3328 {
3329 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3330 struct bpf_func_state *state = func(env, reg);
3331 int err;
3332
3333 if (tnum_is_const(reg->var_off)) {
3334 off += reg->var_off.value;
3335 err = check_stack_write_fixed_off(env, state, off, size,
3336 value_regno, insn_idx);
3337 } else {
3338 /* Variable offset stack reads need more conservative handling
3339 * than fixed offset ones.
3340 */
3341 err = check_stack_write_var_off(env, state,
3342 ptr_regno, off, size,
3343 value_regno, insn_idx);
3344 }
3345 return err;
3346 }
3347
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)3348 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3349 int off, int size, enum bpf_access_type type)
3350 {
3351 struct bpf_reg_state *regs = cur_regs(env);
3352 struct bpf_map *map = regs[regno].map_ptr;
3353 u32 cap = bpf_map_flags_to_cap(map);
3354
3355 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3356 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3357 map->value_size, off, size);
3358 return -EACCES;
3359 }
3360
3361 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3362 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3363 map->value_size, off, size);
3364 return -EACCES;
3365 }
3366
3367 return 0;
3368 }
3369
3370 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)3371 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3372 int off, int size, u32 mem_size,
3373 bool zero_size_allowed)
3374 {
3375 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3376 struct bpf_reg_state *reg;
3377
3378 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3379 return 0;
3380
3381 reg = &cur_regs(env)[regno];
3382 switch (reg->type) {
3383 case PTR_TO_MAP_KEY:
3384 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3385 mem_size, off, size);
3386 break;
3387 case PTR_TO_MAP_VALUE:
3388 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3389 mem_size, off, size);
3390 break;
3391 case PTR_TO_PACKET:
3392 case PTR_TO_PACKET_META:
3393 case PTR_TO_PACKET_END:
3394 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3395 off, size, regno, reg->id, off, mem_size);
3396 break;
3397 case PTR_TO_MEM:
3398 default:
3399 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3400 mem_size, off, size);
3401 }
3402
3403 return -EACCES;
3404 }
3405
3406 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)3407 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3408 int off, int size, u32 mem_size,
3409 bool zero_size_allowed)
3410 {
3411 struct bpf_verifier_state *vstate = env->cur_state;
3412 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3413 struct bpf_reg_state *reg = &state->regs[regno];
3414 int err;
3415
3416 /* We may have adjusted the register pointing to memory region, so we
3417 * need to try adding each of min_value and max_value to off
3418 * to make sure our theoretical access will be safe.
3419 */
3420 if (env->log.level & BPF_LOG_LEVEL)
3421 print_verifier_state(env, state);
3422
3423 /* The minimum value is only important with signed
3424 * comparisons where we can't assume the floor of a
3425 * value is 0. If we are using signed variables for our
3426 * index'es we need to make sure that whatever we use
3427 * will have a set floor within our range.
3428 */
3429 if (reg->smin_value < 0 &&
3430 (reg->smin_value == S64_MIN ||
3431 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3432 reg->smin_value + off < 0)) {
3433 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3434 regno);
3435 return -EACCES;
3436 }
3437 err = __check_mem_access(env, regno, reg->smin_value + off, size,
3438 mem_size, zero_size_allowed);
3439 if (err) {
3440 verbose(env, "R%d min value is outside of the allowed memory range\n",
3441 regno);
3442 return err;
3443 }
3444
3445 /* If we haven't set a max value then we need to bail since we can't be
3446 * sure we won't do bad things.
3447 * If reg->umax_value + off could overflow, treat that as unbounded too.
3448 */
3449 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3450 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3451 regno);
3452 return -EACCES;
3453 }
3454 err = __check_mem_access(env, regno, reg->umax_value + off, size,
3455 mem_size, zero_size_allowed);
3456 if (err) {
3457 verbose(env, "R%d max value is outside of the allowed memory range\n",
3458 regno);
3459 return err;
3460 }
3461
3462 return 0;
3463 }
3464
3465 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)3466 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3467 int off, int size, bool zero_size_allowed)
3468 {
3469 struct bpf_verifier_state *vstate = env->cur_state;
3470 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3471 struct bpf_reg_state *reg = &state->regs[regno];
3472 struct bpf_map *map = reg->map_ptr;
3473 int err;
3474
3475 err = check_mem_region_access(env, regno, off, size, map->value_size,
3476 zero_size_allowed);
3477 if (err)
3478 return err;
3479
3480 if (map_value_has_spin_lock(map)) {
3481 u32 lock = map->spin_lock_off;
3482
3483 /* if any part of struct bpf_spin_lock can be touched by
3484 * load/store reject this program.
3485 * To check that [x1, x2) overlaps with [y1, y2)
3486 * it is sufficient to check x1 < y2 && y1 < x2.
3487 */
3488 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3489 lock < reg->umax_value + off + size) {
3490 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3491 return -EACCES;
3492 }
3493 }
3494 if (map_value_has_timer(map)) {
3495 u32 t = map->timer_off;
3496
3497 if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3498 t < reg->umax_value + off + size) {
3499 verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3500 return -EACCES;
3501 }
3502 }
3503 return err;
3504 }
3505
3506 #define MAX_PACKET_OFF 0xffff
3507
resolve_prog_type(struct bpf_prog * prog)3508 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3509 {
3510 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3511 }
3512
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)3513 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3514 const struct bpf_call_arg_meta *meta,
3515 enum bpf_access_type t)
3516 {
3517 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3518
3519 switch (prog_type) {
3520 /* Program types only with direct read access go here! */
3521 case BPF_PROG_TYPE_LWT_IN:
3522 case BPF_PROG_TYPE_LWT_OUT:
3523 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3524 case BPF_PROG_TYPE_SK_REUSEPORT:
3525 case BPF_PROG_TYPE_FLOW_DISSECTOR:
3526 case BPF_PROG_TYPE_CGROUP_SKB:
3527 if (t == BPF_WRITE)
3528 return false;
3529 fallthrough;
3530
3531 /* Program types with direct read + write access go here! */
3532 case BPF_PROG_TYPE_SCHED_CLS:
3533 case BPF_PROG_TYPE_SCHED_ACT:
3534 case BPF_PROG_TYPE_XDP:
3535 case BPF_PROG_TYPE_LWT_XMIT:
3536 case BPF_PROG_TYPE_SK_SKB:
3537 case BPF_PROG_TYPE_SK_MSG:
3538 if (meta)
3539 return meta->pkt_access;
3540
3541 env->seen_direct_write = true;
3542 return true;
3543
3544 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3545 if (t == BPF_WRITE)
3546 env->seen_direct_write = true;
3547
3548 return true;
3549
3550 default:
3551 return false;
3552 }
3553 }
3554
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)3555 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3556 int size, bool zero_size_allowed)
3557 {
3558 struct bpf_reg_state *regs = cur_regs(env);
3559 struct bpf_reg_state *reg = ®s[regno];
3560 int err;
3561
3562 /* We may have added a variable offset to the packet pointer; but any
3563 * reg->range we have comes after that. We are only checking the fixed
3564 * offset.
3565 */
3566
3567 /* We don't allow negative numbers, because we aren't tracking enough
3568 * detail to prove they're safe.
3569 */
3570 if (reg->smin_value < 0) {
3571 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3572 regno);
3573 return -EACCES;
3574 }
3575
3576 err = reg->range < 0 ? -EINVAL :
3577 __check_mem_access(env, regno, off, size, reg->range,
3578 zero_size_allowed);
3579 if (err) {
3580 verbose(env, "R%d offset is outside of the packet\n", regno);
3581 return err;
3582 }
3583
3584 /* __check_mem_access has made sure "off + size - 1" is within u16.
3585 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3586 * otherwise find_good_pkt_pointers would have refused to set range info
3587 * that __check_mem_access would have rejected this pkt access.
3588 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3589 */
3590 env->prog->aux->max_pkt_offset =
3591 max_t(u32, env->prog->aux->max_pkt_offset,
3592 off + reg->umax_value + size - 1);
3593
3594 return err;
3595 }
3596
3597 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type,struct btf ** btf,u32 * btf_id)3598 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3599 enum bpf_access_type t, enum bpf_reg_type *reg_type,
3600 struct btf **btf, u32 *btf_id)
3601 {
3602 struct bpf_insn_access_aux info = {
3603 .reg_type = *reg_type,
3604 .log = &env->log,
3605 };
3606
3607 if (env->ops->is_valid_access &&
3608 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3609 /* A non zero info.ctx_field_size indicates that this field is a
3610 * candidate for later verifier transformation to load the whole
3611 * field and then apply a mask when accessed with a narrower
3612 * access than actual ctx access size. A zero info.ctx_field_size
3613 * will only allow for whole field access and rejects any other
3614 * type of narrower access.
3615 */
3616 *reg_type = info.reg_type;
3617
3618 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
3619 *btf = info.btf;
3620 *btf_id = info.btf_id;
3621 } else {
3622 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3623 }
3624 /* remember the offset of last byte accessed in ctx */
3625 if (env->prog->aux->max_ctx_offset < off + size)
3626 env->prog->aux->max_ctx_offset = off + size;
3627 return 0;
3628 }
3629
3630 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3631 return -EACCES;
3632 }
3633
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)3634 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3635 int size)
3636 {
3637 if (size < 0 || off < 0 ||
3638 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3639 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3640 off, size);
3641 return -EACCES;
3642 }
3643 return 0;
3644 }
3645
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)3646 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3647 u32 regno, int off, int size,
3648 enum bpf_access_type t)
3649 {
3650 struct bpf_reg_state *regs = cur_regs(env);
3651 struct bpf_reg_state *reg = ®s[regno];
3652 struct bpf_insn_access_aux info = {};
3653 bool valid;
3654
3655 if (reg->smin_value < 0) {
3656 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3657 regno);
3658 return -EACCES;
3659 }
3660
3661 switch (reg->type) {
3662 case PTR_TO_SOCK_COMMON:
3663 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3664 break;
3665 case PTR_TO_SOCKET:
3666 valid = bpf_sock_is_valid_access(off, size, t, &info);
3667 break;
3668 case PTR_TO_TCP_SOCK:
3669 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3670 break;
3671 case PTR_TO_XDP_SOCK:
3672 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3673 break;
3674 default:
3675 valid = false;
3676 }
3677
3678
3679 if (valid) {
3680 env->insn_aux_data[insn_idx].ctx_field_size =
3681 info.ctx_field_size;
3682 return 0;
3683 }
3684
3685 verbose(env, "R%d invalid %s access off=%d size=%d\n",
3686 regno, reg_type_str(env, reg->type), off, size);
3687
3688 return -EACCES;
3689 }
3690
is_pointer_value(struct bpf_verifier_env * env,int regno)3691 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3692 {
3693 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3694 }
3695
is_ctx_reg(struct bpf_verifier_env * env,int regno)3696 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3697 {
3698 const struct bpf_reg_state *reg = reg_state(env, regno);
3699
3700 return reg->type == PTR_TO_CTX;
3701 }
3702
is_sk_reg(struct bpf_verifier_env * env,int regno)3703 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3704 {
3705 const struct bpf_reg_state *reg = reg_state(env, regno);
3706
3707 return type_is_sk_pointer(reg->type);
3708 }
3709
is_pkt_reg(struct bpf_verifier_env * env,int regno)3710 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3711 {
3712 const struct bpf_reg_state *reg = reg_state(env, regno);
3713
3714 return type_is_pkt_pointer(reg->type);
3715 }
3716
is_flow_key_reg(struct bpf_verifier_env * env,int regno)3717 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3718 {
3719 const struct bpf_reg_state *reg = reg_state(env, regno);
3720
3721 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3722 return reg->type == PTR_TO_FLOW_KEYS;
3723 }
3724
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)3725 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3726 const struct bpf_reg_state *reg,
3727 int off, int size, bool strict)
3728 {
3729 struct tnum reg_off;
3730 int ip_align;
3731
3732 /* Byte size accesses are always allowed. */
3733 if (!strict || size == 1)
3734 return 0;
3735
3736 /* For platforms that do not have a Kconfig enabling
3737 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3738 * NET_IP_ALIGN is universally set to '2'. And on platforms
3739 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3740 * to this code only in strict mode where we want to emulate
3741 * the NET_IP_ALIGN==2 checking. Therefore use an
3742 * unconditional IP align value of '2'.
3743 */
3744 ip_align = 2;
3745
3746 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3747 if (!tnum_is_aligned(reg_off, size)) {
3748 char tn_buf[48];
3749
3750 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3751 verbose(env,
3752 "misaligned packet access off %d+%s+%d+%d size %d\n",
3753 ip_align, tn_buf, reg->off, off, size);
3754 return -EACCES;
3755 }
3756
3757 return 0;
3758 }
3759
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)3760 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3761 const struct bpf_reg_state *reg,
3762 const char *pointer_desc,
3763 int off, int size, bool strict)
3764 {
3765 struct tnum reg_off;
3766
3767 /* Byte size accesses are always allowed. */
3768 if (!strict || size == 1)
3769 return 0;
3770
3771 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3772 if (!tnum_is_aligned(reg_off, size)) {
3773 char tn_buf[48];
3774
3775 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3776 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3777 pointer_desc, tn_buf, reg->off, off, size);
3778 return -EACCES;
3779 }
3780
3781 return 0;
3782 }
3783
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)3784 static int check_ptr_alignment(struct bpf_verifier_env *env,
3785 const struct bpf_reg_state *reg, int off,
3786 int size, bool strict_alignment_once)
3787 {
3788 bool strict = env->strict_alignment || strict_alignment_once;
3789 const char *pointer_desc = "";
3790
3791 switch (reg->type) {
3792 case PTR_TO_PACKET:
3793 case PTR_TO_PACKET_META:
3794 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3795 * right in front, treat it the very same way.
3796 */
3797 return check_pkt_ptr_alignment(env, reg, off, size, strict);
3798 case PTR_TO_FLOW_KEYS:
3799 pointer_desc = "flow keys ";
3800 break;
3801 case PTR_TO_MAP_KEY:
3802 pointer_desc = "key ";
3803 break;
3804 case PTR_TO_MAP_VALUE:
3805 pointer_desc = "value ";
3806 break;
3807 case PTR_TO_CTX:
3808 pointer_desc = "context ";
3809 break;
3810 case PTR_TO_STACK:
3811 pointer_desc = "stack ";
3812 /* The stack spill tracking logic in check_stack_write_fixed_off()
3813 * and check_stack_read_fixed_off() relies on stack accesses being
3814 * aligned.
3815 */
3816 strict = true;
3817 break;
3818 case PTR_TO_SOCKET:
3819 pointer_desc = "sock ";
3820 break;
3821 case PTR_TO_SOCK_COMMON:
3822 pointer_desc = "sock_common ";
3823 break;
3824 case PTR_TO_TCP_SOCK:
3825 pointer_desc = "tcp_sock ";
3826 break;
3827 case PTR_TO_XDP_SOCK:
3828 pointer_desc = "xdp_sock ";
3829 break;
3830 default:
3831 break;
3832 }
3833 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3834 strict);
3835 }
3836
update_stack_depth(struct bpf_verifier_env * env,const struct bpf_func_state * func,int off)3837 static int update_stack_depth(struct bpf_verifier_env *env,
3838 const struct bpf_func_state *func,
3839 int off)
3840 {
3841 u16 stack = env->subprog_info[func->subprogno].stack_depth;
3842
3843 if (stack >= -off)
3844 return 0;
3845
3846 /* update known max for given subprogram */
3847 env->subprog_info[func->subprogno].stack_depth = -off;
3848 return 0;
3849 }
3850
3851 /* starting from main bpf function walk all instructions of the function
3852 * and recursively walk all callees that given function can call.
3853 * Ignore jump and exit insns.
3854 * Since recursion is prevented by check_cfg() this algorithm
3855 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3856 */
check_max_stack_depth(struct bpf_verifier_env * env)3857 static int check_max_stack_depth(struct bpf_verifier_env *env)
3858 {
3859 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3860 struct bpf_subprog_info *subprog = env->subprog_info;
3861 struct bpf_insn *insn = env->prog->insnsi;
3862 bool tail_call_reachable = false;
3863 int ret_insn[MAX_CALL_FRAMES];
3864 int ret_prog[MAX_CALL_FRAMES];
3865 int j;
3866
3867 process_func:
3868 /* protect against potential stack overflow that might happen when
3869 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3870 * depth for such case down to 256 so that the worst case scenario
3871 * would result in 8k stack size (32 which is tailcall limit * 256 =
3872 * 8k).
3873 *
3874 * To get the idea what might happen, see an example:
3875 * func1 -> sub rsp, 128
3876 * subfunc1 -> sub rsp, 256
3877 * tailcall1 -> add rsp, 256
3878 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3879 * subfunc2 -> sub rsp, 64
3880 * subfunc22 -> sub rsp, 128
3881 * tailcall2 -> add rsp, 128
3882 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3883 *
3884 * tailcall will unwind the current stack frame but it will not get rid
3885 * of caller's stack as shown on the example above.
3886 */
3887 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3888 verbose(env,
3889 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3890 depth);
3891 return -EACCES;
3892 }
3893 /* round up to 32-bytes, since this is granularity
3894 * of interpreter stack size
3895 */
3896 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3897 if (depth > MAX_BPF_STACK) {
3898 verbose(env, "combined stack size of %d calls is %d. Too large\n",
3899 frame + 1, depth);
3900 return -EACCES;
3901 }
3902 continue_func:
3903 subprog_end = subprog[idx + 1].start;
3904 for (; i < subprog_end; i++) {
3905 int next_insn, sidx;
3906
3907 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3908 continue;
3909 /* remember insn and function to return to */
3910 ret_insn[frame] = i + 1;
3911 ret_prog[frame] = idx;
3912
3913 /* find the callee */
3914 next_insn = i + insn[i].imm + 1;
3915 sidx = find_subprog(env, next_insn);
3916 if (sidx < 0) {
3917 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3918 next_insn);
3919 return -EFAULT;
3920 }
3921 if (subprog[sidx].is_async_cb) {
3922 if (subprog[sidx].has_tail_call) {
3923 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
3924 return -EFAULT;
3925 }
3926 /* async callbacks don't increase bpf prog stack size unless called directly */
3927 if (!bpf_pseudo_call(insn + i))
3928 continue;
3929 }
3930 i = next_insn;
3931 idx = sidx;
3932
3933 if (subprog[idx].has_tail_call)
3934 tail_call_reachable = true;
3935
3936 frame++;
3937 if (frame >= MAX_CALL_FRAMES) {
3938 verbose(env, "the call stack of %d frames is too deep !\n",
3939 frame);
3940 return -E2BIG;
3941 }
3942 goto process_func;
3943 }
3944 /* if tail call got detected across bpf2bpf calls then mark each of the
3945 * currently present subprog frames as tail call reachable subprogs;
3946 * this info will be utilized by JIT so that we will be preserving the
3947 * tail call counter throughout bpf2bpf calls combined with tailcalls
3948 */
3949 if (tail_call_reachable)
3950 for (j = 0; j < frame; j++)
3951 subprog[ret_prog[j]].tail_call_reachable = true;
3952 if (subprog[0].tail_call_reachable)
3953 env->prog->aux->tail_call_reachable = true;
3954
3955 /* end of for() loop means the last insn of the 'subprog'
3956 * was reached. Doesn't matter whether it was JA or EXIT
3957 */
3958 if (frame == 0)
3959 return 0;
3960 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3961 frame--;
3962 i = ret_insn[frame];
3963 idx = ret_prog[frame];
3964 goto continue_func;
3965 }
3966
3967 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)3968 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3969 const struct bpf_insn *insn, int idx)
3970 {
3971 int start = idx + insn->imm + 1, subprog;
3972
3973 subprog = find_subprog(env, start);
3974 if (subprog < 0) {
3975 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3976 start);
3977 return -EFAULT;
3978 }
3979 return env->subprog_info[subprog].stack_depth;
3980 }
3981 #endif
3982
check_ctx_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)3983 int check_ctx_reg(struct bpf_verifier_env *env,
3984 const struct bpf_reg_state *reg, int regno)
3985 {
3986 /* Access to ctx or passing it to a helper is only allowed in
3987 * its original, unmodified form.
3988 */
3989
3990 if (reg->off) {
3991 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3992 regno, reg->off);
3993 return -EACCES;
3994 }
3995
3996 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3997 char tn_buf[48];
3998
3999 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4000 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
4001 return -EACCES;
4002 }
4003
4004 return 0;
4005 }
4006
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)4007 static int __check_buffer_access(struct bpf_verifier_env *env,
4008 const char *buf_info,
4009 const struct bpf_reg_state *reg,
4010 int regno, int off, int size)
4011 {
4012 if (off < 0) {
4013 verbose(env,
4014 "R%d invalid %s buffer access: off=%d, size=%d\n",
4015 regno, buf_info, off, size);
4016 return -EACCES;
4017 }
4018 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4019 char tn_buf[48];
4020
4021 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4022 verbose(env,
4023 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
4024 regno, off, tn_buf);
4025 return -EACCES;
4026 }
4027
4028 return 0;
4029 }
4030
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)4031 static int check_tp_buffer_access(struct bpf_verifier_env *env,
4032 const struct bpf_reg_state *reg,
4033 int regno, int off, int size)
4034 {
4035 int err;
4036
4037 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4038 if (err)
4039 return err;
4040
4041 if (off + size > env->prog->aux->max_tp_access)
4042 env->prog->aux->max_tp_access = off + size;
4043
4044 return 0;
4045 }
4046
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,const char * buf_info,u32 * max_access)4047 static int check_buffer_access(struct bpf_verifier_env *env,
4048 const struct bpf_reg_state *reg,
4049 int regno, int off, int size,
4050 bool zero_size_allowed,
4051 const char *buf_info,
4052 u32 *max_access)
4053 {
4054 int err;
4055
4056 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4057 if (err)
4058 return err;
4059
4060 if (off + size > *max_access)
4061 *max_access = off + size;
4062
4063 return 0;
4064 }
4065
4066 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)4067 static void zext_32_to_64(struct bpf_reg_state *reg)
4068 {
4069 reg->var_off = tnum_subreg(reg->var_off);
4070 __reg_assign_32_into_64(reg);
4071 }
4072
4073 /* truncate register to smaller size (in bytes)
4074 * must be called with size < BPF_REG_SIZE
4075 */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)4076 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4077 {
4078 u64 mask;
4079
4080 /* clear high bits in bit representation */
4081 reg->var_off = tnum_cast(reg->var_off, size);
4082
4083 /* fix arithmetic bounds */
4084 mask = ((u64)1 << (size * 8)) - 1;
4085 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4086 reg->umin_value &= mask;
4087 reg->umax_value &= mask;
4088 } else {
4089 reg->umin_value = 0;
4090 reg->umax_value = mask;
4091 }
4092 reg->smin_value = reg->umin_value;
4093 reg->smax_value = reg->umax_value;
4094
4095 /* If size is smaller than 32bit register the 32bit register
4096 * values are also truncated so we push 64-bit bounds into
4097 * 32-bit bounds. Above were truncated < 32-bits already.
4098 */
4099 if (size >= 4)
4100 return;
4101 __reg_combine_64_into_32(reg);
4102 }
4103
bpf_map_is_rdonly(const struct bpf_map * map)4104 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4105 {
4106 /* A map is considered read-only if the following condition are true:
4107 *
4108 * 1) BPF program side cannot change any of the map content. The
4109 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4110 * and was set at map creation time.
4111 * 2) The map value(s) have been initialized from user space by a
4112 * loader and then "frozen", such that no new map update/delete
4113 * operations from syscall side are possible for the rest of
4114 * the map's lifetime from that point onwards.
4115 * 3) Any parallel/pending map update/delete operations from syscall
4116 * side have been completed. Only after that point, it's safe to
4117 * assume that map value(s) are immutable.
4118 */
4119 return (map->map_flags & BPF_F_RDONLY_PROG) &&
4120 READ_ONCE(map->frozen) &&
4121 !bpf_map_write_active(map);
4122 }
4123
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val)4124 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4125 {
4126 void *ptr;
4127 u64 addr;
4128 int err;
4129
4130 err = map->ops->map_direct_value_addr(map, &addr, off);
4131 if (err)
4132 return err;
4133 ptr = (void *)(long)addr + off;
4134
4135 switch (size) {
4136 case sizeof(u8):
4137 *val = (u64)*(u8 *)ptr;
4138 break;
4139 case sizeof(u16):
4140 *val = (u64)*(u16 *)ptr;
4141 break;
4142 case sizeof(u32):
4143 *val = (u64)*(u32 *)ptr;
4144 break;
4145 case sizeof(u64):
4146 *val = *(u64 *)ptr;
4147 break;
4148 default:
4149 return -EINVAL;
4150 }
4151 return 0;
4152 }
4153
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)4154 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4155 struct bpf_reg_state *regs,
4156 int regno, int off, int size,
4157 enum bpf_access_type atype,
4158 int value_regno)
4159 {
4160 struct bpf_reg_state *reg = regs + regno;
4161 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4162 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4163 u32 btf_id;
4164 int ret;
4165
4166 if (off < 0) {
4167 verbose(env,
4168 "R%d is ptr_%s invalid negative access: off=%d\n",
4169 regno, tname, off);
4170 return -EACCES;
4171 }
4172 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4173 char tn_buf[48];
4174
4175 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4176 verbose(env,
4177 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4178 regno, tname, off, tn_buf);
4179 return -EACCES;
4180 }
4181
4182 if (env->ops->btf_struct_access) {
4183 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4184 off, size, atype, &btf_id);
4185 } else {
4186 if (atype != BPF_READ) {
4187 verbose(env, "only read is supported\n");
4188 return -EACCES;
4189 }
4190
4191 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4192 atype, &btf_id);
4193 }
4194
4195 if (ret < 0)
4196 return ret;
4197
4198 if (atype == BPF_READ && value_regno >= 0)
4199 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
4200
4201 return 0;
4202 }
4203
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)4204 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4205 struct bpf_reg_state *regs,
4206 int regno, int off, int size,
4207 enum bpf_access_type atype,
4208 int value_regno)
4209 {
4210 struct bpf_reg_state *reg = regs + regno;
4211 struct bpf_map *map = reg->map_ptr;
4212 const struct btf_type *t;
4213 const char *tname;
4214 u32 btf_id;
4215 int ret;
4216
4217 if (!btf_vmlinux) {
4218 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4219 return -ENOTSUPP;
4220 }
4221
4222 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4223 verbose(env, "map_ptr access not supported for map type %d\n",
4224 map->map_type);
4225 return -ENOTSUPP;
4226 }
4227
4228 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4229 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4230
4231 if (!env->allow_ptr_to_map_access) {
4232 verbose(env,
4233 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4234 tname);
4235 return -EPERM;
4236 }
4237
4238 if (off < 0) {
4239 verbose(env, "R%d is %s invalid negative access: off=%d\n",
4240 regno, tname, off);
4241 return -EACCES;
4242 }
4243
4244 if (atype != BPF_READ) {
4245 verbose(env, "only read from %s is supported\n", tname);
4246 return -EACCES;
4247 }
4248
4249 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
4250 if (ret < 0)
4251 return ret;
4252
4253 if (value_regno >= 0)
4254 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
4255
4256 return 0;
4257 }
4258
4259 /* Check that the stack access at the given offset is within bounds. The
4260 * maximum valid offset is -1.
4261 *
4262 * The minimum valid offset is -MAX_BPF_STACK for writes, and
4263 * -state->allocated_stack for reads.
4264 */
check_stack_slot_within_bounds(int off,struct bpf_func_state * state,enum bpf_access_type t)4265 static int check_stack_slot_within_bounds(int off,
4266 struct bpf_func_state *state,
4267 enum bpf_access_type t)
4268 {
4269 int min_valid_off;
4270
4271 if (t == BPF_WRITE)
4272 min_valid_off = -MAX_BPF_STACK;
4273 else
4274 min_valid_off = -state->allocated_stack;
4275
4276 if (off < min_valid_off || off > -1)
4277 return -EACCES;
4278 return 0;
4279 }
4280
4281 /* Check that the stack access at 'regno + off' falls within the maximum stack
4282 * bounds.
4283 *
4284 * 'off' includes `regno->offset`, but not its dynamic part (if any).
4285 */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum stack_access_src src,enum bpf_access_type type)4286 static int check_stack_access_within_bounds(
4287 struct bpf_verifier_env *env,
4288 int regno, int off, int access_size,
4289 enum stack_access_src src, enum bpf_access_type type)
4290 {
4291 struct bpf_reg_state *regs = cur_regs(env);
4292 struct bpf_reg_state *reg = regs + regno;
4293 struct bpf_func_state *state = func(env, reg);
4294 int min_off, max_off;
4295 int err;
4296 char *err_extra;
4297
4298 if (src == ACCESS_HELPER)
4299 /* We don't know if helpers are reading or writing (or both). */
4300 err_extra = " indirect access to";
4301 else if (type == BPF_READ)
4302 err_extra = " read from";
4303 else
4304 err_extra = " write to";
4305
4306 if (tnum_is_const(reg->var_off)) {
4307 min_off = reg->var_off.value + off;
4308 max_off = min_off + access_size;
4309 } else {
4310 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4311 reg->smin_value <= -BPF_MAX_VAR_OFF) {
4312 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4313 err_extra, regno);
4314 return -EACCES;
4315 }
4316 min_off = reg->smin_value + off;
4317 max_off = reg->smax_value + off + access_size;
4318 }
4319
4320 err = check_stack_slot_within_bounds(min_off, state, type);
4321 if (!err && max_off > 0)
4322 err = -EINVAL; /* out of stack access into non-negative offsets */
4323
4324 if (err) {
4325 if (tnum_is_const(reg->var_off)) {
4326 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4327 err_extra, regno, off, access_size);
4328 } else {
4329 char tn_buf[48];
4330
4331 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4332 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4333 err_extra, regno, tn_buf, access_size);
4334 }
4335 }
4336 return err;
4337 }
4338
4339 /* check whether memory at (regno + off) is accessible for t = (read | write)
4340 * if t==write, value_regno is a register which value is stored into memory
4341 * if t==read, value_regno is a register which will receive the value from memory
4342 * if t==write && value_regno==-1, some unknown value is stored into memory
4343 * if t==read && value_regno==-1, don't care what we read from memory
4344 */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once)4345 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4346 int off, int bpf_size, enum bpf_access_type t,
4347 int value_regno, bool strict_alignment_once)
4348 {
4349 struct bpf_reg_state *regs = cur_regs(env);
4350 struct bpf_reg_state *reg = regs + regno;
4351 struct bpf_func_state *state;
4352 int size, err = 0;
4353
4354 size = bpf_size_to_bytes(bpf_size);
4355 if (size < 0)
4356 return size;
4357
4358 /* alignment checks will add in reg->off themselves */
4359 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4360 if (err)
4361 return err;
4362
4363 /* for access checks, reg->off is just part of off */
4364 off += reg->off;
4365
4366 if (reg->type == PTR_TO_MAP_KEY) {
4367 if (t == BPF_WRITE) {
4368 verbose(env, "write to change key R%d not allowed\n", regno);
4369 return -EACCES;
4370 }
4371
4372 err = check_mem_region_access(env, regno, off, size,
4373 reg->map_ptr->key_size, false);
4374 if (err)
4375 return err;
4376 if (value_regno >= 0)
4377 mark_reg_unknown(env, regs, value_regno);
4378 } else if (reg->type == PTR_TO_MAP_VALUE) {
4379 if (t == BPF_WRITE && value_regno >= 0 &&
4380 is_pointer_value(env, value_regno)) {
4381 verbose(env, "R%d leaks addr into map\n", value_regno);
4382 return -EACCES;
4383 }
4384 err = check_map_access_type(env, regno, off, size, t);
4385 if (err)
4386 return err;
4387 err = check_map_access(env, regno, off, size, false);
4388 if (!err && t == BPF_READ && value_regno >= 0) {
4389 struct bpf_map *map = reg->map_ptr;
4390
4391 /* if map is read-only, track its contents as scalars */
4392 if (tnum_is_const(reg->var_off) &&
4393 bpf_map_is_rdonly(map) &&
4394 map->ops->map_direct_value_addr) {
4395 int map_off = off + reg->var_off.value;
4396 u64 val = 0;
4397
4398 err = bpf_map_direct_read(map, map_off, size,
4399 &val);
4400 if (err)
4401 return err;
4402
4403 regs[value_regno].type = SCALAR_VALUE;
4404 __mark_reg_known(®s[value_regno], val);
4405 } else {
4406 mark_reg_unknown(env, regs, value_regno);
4407 }
4408 }
4409 } else if (base_type(reg->type) == PTR_TO_MEM) {
4410 bool rdonly_mem = type_is_rdonly_mem(reg->type);
4411
4412 if (type_may_be_null(reg->type)) {
4413 verbose(env, "R%d invalid mem access '%s'\n", regno,
4414 reg_type_str(env, reg->type));
4415 return -EACCES;
4416 }
4417
4418 if (t == BPF_WRITE && rdonly_mem) {
4419 verbose(env, "R%d cannot write into %s\n",
4420 regno, reg_type_str(env, reg->type));
4421 return -EACCES;
4422 }
4423
4424 if (t == BPF_WRITE && value_regno >= 0 &&
4425 is_pointer_value(env, value_regno)) {
4426 verbose(env, "R%d leaks addr into mem\n", value_regno);
4427 return -EACCES;
4428 }
4429
4430 err = check_mem_region_access(env, regno, off, size,
4431 reg->mem_size, false);
4432 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
4433 mark_reg_unknown(env, regs, value_regno);
4434 } else if (reg->type == PTR_TO_CTX) {
4435 enum bpf_reg_type reg_type = SCALAR_VALUE;
4436 struct btf *btf = NULL;
4437 u32 btf_id = 0;
4438
4439 if (t == BPF_WRITE && value_regno >= 0 &&
4440 is_pointer_value(env, value_regno)) {
4441 verbose(env, "R%d leaks addr into ctx\n", value_regno);
4442 return -EACCES;
4443 }
4444
4445 err = check_ctx_reg(env, reg, regno);
4446 if (err < 0)
4447 return err;
4448
4449 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id);
4450 if (err)
4451 verbose_linfo(env, insn_idx, "; ");
4452 if (!err && t == BPF_READ && value_regno >= 0) {
4453 /* ctx access returns either a scalar, or a
4454 * PTR_TO_PACKET[_META,_END]. In the latter
4455 * case, we know the offset is zero.
4456 */
4457 if (reg_type == SCALAR_VALUE) {
4458 mark_reg_unknown(env, regs, value_regno);
4459 } else {
4460 mark_reg_known_zero(env, regs,
4461 value_regno);
4462 if (type_may_be_null(reg_type))
4463 regs[value_regno].id = ++env->id_gen;
4464 /* A load of ctx field could have different
4465 * actual load size with the one encoded in the
4466 * insn. When the dst is PTR, it is for sure not
4467 * a sub-register.
4468 */
4469 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4470 if (base_type(reg_type) == PTR_TO_BTF_ID) {
4471 regs[value_regno].btf = btf;
4472 regs[value_regno].btf_id = btf_id;
4473 }
4474 }
4475 regs[value_regno].type = reg_type;
4476 }
4477
4478 } else if (reg->type == PTR_TO_STACK) {
4479 /* Basic bounds checks. */
4480 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4481 if (err)
4482 return err;
4483
4484 state = func(env, reg);
4485 err = update_stack_depth(env, state, off);
4486 if (err)
4487 return err;
4488
4489 if (t == BPF_READ)
4490 err = check_stack_read(env, regno, off, size,
4491 value_regno);
4492 else
4493 err = check_stack_write(env, regno, off, size,
4494 value_regno, insn_idx);
4495 } else if (reg_is_pkt_pointer(reg)) {
4496 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4497 verbose(env, "cannot write into packet\n");
4498 return -EACCES;
4499 }
4500 if (t == BPF_WRITE && value_regno >= 0 &&
4501 is_pointer_value(env, value_regno)) {
4502 verbose(env, "R%d leaks addr into packet\n",
4503 value_regno);
4504 return -EACCES;
4505 }
4506 err = check_packet_access(env, regno, off, size, false);
4507 if (!err && t == BPF_READ && value_regno >= 0)
4508 mark_reg_unknown(env, regs, value_regno);
4509 } else if (reg->type == PTR_TO_FLOW_KEYS) {
4510 if (t == BPF_WRITE && value_regno >= 0 &&
4511 is_pointer_value(env, value_regno)) {
4512 verbose(env, "R%d leaks addr into flow keys\n",
4513 value_regno);
4514 return -EACCES;
4515 }
4516
4517 err = check_flow_keys_access(env, off, size);
4518 if (!err && t == BPF_READ && value_regno >= 0)
4519 mark_reg_unknown(env, regs, value_regno);
4520 } else if (type_is_sk_pointer(reg->type)) {
4521 if (t == BPF_WRITE) {
4522 verbose(env, "R%d cannot write into %s\n",
4523 regno, reg_type_str(env, reg->type));
4524 return -EACCES;
4525 }
4526 err = check_sock_access(env, insn_idx, regno, off, size, t);
4527 if (!err && value_regno >= 0)
4528 mark_reg_unknown(env, regs, value_regno);
4529 } else if (reg->type == PTR_TO_TP_BUFFER) {
4530 err = check_tp_buffer_access(env, reg, regno, off, size);
4531 if (!err && t == BPF_READ && value_regno >= 0)
4532 mark_reg_unknown(env, regs, value_regno);
4533 } else if (reg->type == PTR_TO_BTF_ID) {
4534 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4535 value_regno);
4536 } else if (reg->type == CONST_PTR_TO_MAP) {
4537 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4538 value_regno);
4539 } else if (base_type(reg->type) == PTR_TO_BUF) {
4540 bool rdonly_mem = type_is_rdonly_mem(reg->type);
4541 const char *buf_info;
4542 u32 *max_access;
4543
4544 if (rdonly_mem) {
4545 if (t == BPF_WRITE) {
4546 verbose(env, "R%d cannot write into %s\n",
4547 regno, reg_type_str(env, reg->type));
4548 return -EACCES;
4549 }
4550 buf_info = "rdonly";
4551 max_access = &env->prog->aux->max_rdonly_access;
4552 } else {
4553 buf_info = "rdwr";
4554 max_access = &env->prog->aux->max_rdwr_access;
4555 }
4556
4557 err = check_buffer_access(env, reg, regno, off, size, false,
4558 buf_info, max_access);
4559
4560 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
4561 mark_reg_unknown(env, regs, value_regno);
4562 } else {
4563 verbose(env, "R%d invalid mem access '%s'\n", regno,
4564 reg_type_str(env, reg->type));
4565 return -EACCES;
4566 }
4567
4568 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4569 regs[value_regno].type == SCALAR_VALUE) {
4570 /* b/h/w load zero-extends, mark upper bits as known 0 */
4571 coerce_reg_to_size(®s[value_regno], size);
4572 }
4573 return err;
4574 }
4575
check_atomic(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)4576 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4577 {
4578 int load_reg;
4579 int err;
4580
4581 switch (insn->imm) {
4582 case BPF_ADD:
4583 case BPF_ADD | BPF_FETCH:
4584 case BPF_AND:
4585 case BPF_AND | BPF_FETCH:
4586 case BPF_OR:
4587 case BPF_OR | BPF_FETCH:
4588 case BPF_XOR:
4589 case BPF_XOR | BPF_FETCH:
4590 case BPF_XCHG:
4591 case BPF_CMPXCHG:
4592 break;
4593 default:
4594 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4595 return -EINVAL;
4596 }
4597
4598 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4599 verbose(env, "invalid atomic operand size\n");
4600 return -EINVAL;
4601 }
4602
4603 /* check src1 operand */
4604 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4605 if (err)
4606 return err;
4607
4608 /* check src2 operand */
4609 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4610 if (err)
4611 return err;
4612
4613 if (insn->imm == BPF_CMPXCHG) {
4614 /* Check comparison of R0 with memory location */
4615 const u32 aux_reg = BPF_REG_0;
4616
4617 err = check_reg_arg(env, aux_reg, SRC_OP);
4618 if (err)
4619 return err;
4620
4621 if (is_pointer_value(env, aux_reg)) {
4622 verbose(env, "R%d leaks addr into mem\n", aux_reg);
4623 return -EACCES;
4624 }
4625 }
4626
4627 if (is_pointer_value(env, insn->src_reg)) {
4628 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4629 return -EACCES;
4630 }
4631
4632 if (is_ctx_reg(env, insn->dst_reg) ||
4633 is_pkt_reg(env, insn->dst_reg) ||
4634 is_flow_key_reg(env, insn->dst_reg) ||
4635 is_sk_reg(env, insn->dst_reg)) {
4636 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4637 insn->dst_reg,
4638 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
4639 return -EACCES;
4640 }
4641
4642 if (insn->imm & BPF_FETCH) {
4643 if (insn->imm == BPF_CMPXCHG)
4644 load_reg = BPF_REG_0;
4645 else
4646 load_reg = insn->src_reg;
4647
4648 /* check and record load of old value */
4649 err = check_reg_arg(env, load_reg, DST_OP);
4650 if (err)
4651 return err;
4652 } else {
4653 /* This instruction accesses a memory location but doesn't
4654 * actually load it into a register.
4655 */
4656 load_reg = -1;
4657 }
4658
4659 /* Check whether we can read the memory, with second call for fetch
4660 * case to simulate the register fill.
4661 */
4662 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4663 BPF_SIZE(insn->code), BPF_READ, -1, true);
4664 if (!err && load_reg >= 0)
4665 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4666 BPF_SIZE(insn->code), BPF_READ, load_reg,
4667 true);
4668 if (err)
4669 return err;
4670
4671 /* Check whether we can write into the same memory. */
4672 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4673 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4674 if (err)
4675 return err;
4676
4677 return 0;
4678 }
4679
4680 /* When register 'regno' is used to read the stack (either directly or through
4681 * a helper function) make sure that it's within stack boundary and, depending
4682 * on the access type, that all elements of the stack are initialized.
4683 *
4684 * 'off' includes 'regno->off', but not its dynamic part (if any).
4685 *
4686 * All registers that have been spilled on the stack in the slots within the
4687 * read offsets are marked as read.
4688 */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum stack_access_src type,struct bpf_call_arg_meta * meta)4689 static int check_stack_range_initialized(
4690 struct bpf_verifier_env *env, int regno, int off,
4691 int access_size, bool zero_size_allowed,
4692 enum stack_access_src type, struct bpf_call_arg_meta *meta)
4693 {
4694 struct bpf_reg_state *reg = reg_state(env, regno);
4695 struct bpf_func_state *state = func(env, reg);
4696 int err, min_off, max_off, i, j, slot, spi;
4697 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4698 enum bpf_access_type bounds_check_type;
4699 /* Some accesses can write anything into the stack, others are
4700 * read-only.
4701 */
4702 bool clobber = false;
4703
4704 if (access_size == 0 && !zero_size_allowed) {
4705 verbose(env, "invalid zero-sized read\n");
4706 return -EACCES;
4707 }
4708
4709 if (type == ACCESS_HELPER) {
4710 /* The bounds checks for writes are more permissive than for
4711 * reads. However, if raw_mode is not set, we'll do extra
4712 * checks below.
4713 */
4714 bounds_check_type = BPF_WRITE;
4715 clobber = true;
4716 } else {
4717 bounds_check_type = BPF_READ;
4718 }
4719 err = check_stack_access_within_bounds(env, regno, off, access_size,
4720 type, bounds_check_type);
4721 if (err)
4722 return err;
4723
4724
4725 if (tnum_is_const(reg->var_off)) {
4726 min_off = max_off = reg->var_off.value + off;
4727 } else {
4728 /* Variable offset is prohibited for unprivileged mode for
4729 * simplicity since it requires corresponding support in
4730 * Spectre masking for stack ALU.
4731 * See also retrieve_ptr_limit().
4732 */
4733 if (!env->bypass_spec_v1) {
4734 char tn_buf[48];
4735
4736 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4737 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4738 regno, err_extra, tn_buf);
4739 return -EACCES;
4740 }
4741 /* Only initialized buffer on stack is allowed to be accessed
4742 * with variable offset. With uninitialized buffer it's hard to
4743 * guarantee that whole memory is marked as initialized on
4744 * helper return since specific bounds are unknown what may
4745 * cause uninitialized stack leaking.
4746 */
4747 if (meta && meta->raw_mode)
4748 meta = NULL;
4749
4750 min_off = reg->smin_value + off;
4751 max_off = reg->smax_value + off;
4752 }
4753
4754 if (meta && meta->raw_mode) {
4755 meta->access_size = access_size;
4756 meta->regno = regno;
4757 return 0;
4758 }
4759
4760 for (i = min_off; i < max_off + access_size; i++) {
4761 u8 *stype;
4762
4763 slot = -i - 1;
4764 spi = slot / BPF_REG_SIZE;
4765 if (state->allocated_stack <= slot)
4766 goto err;
4767 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4768 if (*stype == STACK_MISC)
4769 goto mark;
4770 if (*stype == STACK_ZERO) {
4771 if (clobber) {
4772 /* helper can write anything into the stack */
4773 *stype = STACK_MISC;
4774 }
4775 goto mark;
4776 }
4777
4778 if (is_spilled_reg(&state->stack[spi]) &&
4779 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4780 goto mark;
4781
4782 if (is_spilled_reg(&state->stack[spi]) &&
4783 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4784 env->allow_ptr_leaks)) {
4785 if (clobber) {
4786 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4787 for (j = 0; j < BPF_REG_SIZE; j++)
4788 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
4789 }
4790 goto mark;
4791 }
4792
4793 err:
4794 if (tnum_is_const(reg->var_off)) {
4795 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4796 err_extra, regno, min_off, i - min_off, access_size);
4797 } else {
4798 char tn_buf[48];
4799
4800 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4801 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4802 err_extra, regno, tn_buf, i - min_off, access_size);
4803 }
4804 return -EACCES;
4805 mark:
4806 /* reading any byte out of 8-byte 'spill_slot' will cause
4807 * the whole slot to be marked as 'read'
4808 */
4809 mark_reg_read(env, &state->stack[spi].spilled_ptr,
4810 state->stack[spi].spilled_ptr.parent,
4811 REG_LIVE_READ64);
4812 }
4813 return update_stack_depth(env, state, min_off);
4814 }
4815
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,bool zero_size_allowed,struct bpf_call_arg_meta * meta)4816 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4817 int access_size, bool zero_size_allowed,
4818 struct bpf_call_arg_meta *meta)
4819 {
4820 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4821 const char *buf_info;
4822 u32 *max_access;
4823
4824 switch (base_type(reg->type)) {
4825 case PTR_TO_PACKET:
4826 case PTR_TO_PACKET_META:
4827 return check_packet_access(env, regno, reg->off, access_size,
4828 zero_size_allowed);
4829 case PTR_TO_MAP_KEY:
4830 if (meta && meta->raw_mode) {
4831 verbose(env, "R%d cannot write into %s\n", regno,
4832 reg_type_str(env, reg->type));
4833 return -EACCES;
4834 }
4835 return check_mem_region_access(env, regno, reg->off, access_size,
4836 reg->map_ptr->key_size, false);
4837 case PTR_TO_MAP_VALUE:
4838 if (check_map_access_type(env, regno, reg->off, access_size,
4839 meta && meta->raw_mode ? BPF_WRITE :
4840 BPF_READ))
4841 return -EACCES;
4842 return check_map_access(env, regno, reg->off, access_size,
4843 zero_size_allowed);
4844 case PTR_TO_MEM:
4845 if (type_is_rdonly_mem(reg->type)) {
4846 if (meta && meta->raw_mode) {
4847 verbose(env, "R%d cannot write into %s\n", regno,
4848 reg_type_str(env, reg->type));
4849 return -EACCES;
4850 }
4851 }
4852 return check_mem_region_access(env, regno, reg->off,
4853 access_size, reg->mem_size,
4854 zero_size_allowed);
4855 case PTR_TO_BUF:
4856 if (type_is_rdonly_mem(reg->type)) {
4857 if (meta && meta->raw_mode) {
4858 verbose(env, "R%d cannot write into %s\n", regno,
4859 reg_type_str(env, reg->type));
4860 return -EACCES;
4861 }
4862
4863 buf_info = "rdonly";
4864 max_access = &env->prog->aux->max_rdonly_access;
4865 } else {
4866 buf_info = "rdwr";
4867 max_access = &env->prog->aux->max_rdwr_access;
4868 }
4869 return check_buffer_access(env, reg, regno, reg->off,
4870 access_size, zero_size_allowed,
4871 buf_info, max_access);
4872 case PTR_TO_STACK:
4873 return check_stack_range_initialized(
4874 env,
4875 regno, reg->off, access_size,
4876 zero_size_allowed, ACCESS_HELPER, meta);
4877 default: /* scalar_value or invalid ptr */
4878 /* Allow zero-byte read from NULL, regardless of pointer type */
4879 if (zero_size_allowed && access_size == 0 &&
4880 register_is_null(reg))
4881 return 0;
4882
4883 verbose(env, "R%d type=%s ", regno,
4884 reg_type_str(env, reg->type));
4885 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
4886 return -EACCES;
4887 }
4888 }
4889
check_mem_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,u32 mem_size)4890 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4891 u32 regno, u32 mem_size)
4892 {
4893 if (register_is_null(reg))
4894 return 0;
4895
4896 if (type_may_be_null(reg->type)) {
4897 /* Assuming that the register contains a value check if the memory
4898 * access is safe. Temporarily save and restore the register's state as
4899 * the conversion shouldn't be visible to a caller.
4900 */
4901 const struct bpf_reg_state saved_reg = *reg;
4902 int rv;
4903
4904 mark_ptr_not_null_reg(reg);
4905 rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4906 *reg = saved_reg;
4907 return rv;
4908 }
4909
4910 return check_helper_mem_access(env, regno, mem_size, true, NULL);
4911 }
4912
4913 /* Implementation details:
4914 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4915 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4916 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4917 * value_or_null->value transition, since the verifier only cares about
4918 * the range of access to valid map value pointer and doesn't care about actual
4919 * address of the map element.
4920 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4921 * reg->id > 0 after value_or_null->value transition. By doing so
4922 * two bpf_map_lookups will be considered two different pointers that
4923 * point to different bpf_spin_locks.
4924 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4925 * dead-locks.
4926 * Since only one bpf_spin_lock is allowed the checks are simpler than
4927 * reg_is_refcounted() logic. The verifier needs to remember only
4928 * one spin_lock instead of array of acquired_refs.
4929 * cur_state->active_spin_lock remembers which map value element got locked
4930 * and clears it after bpf_spin_unlock.
4931 */
process_spin_lock(struct bpf_verifier_env * env,int regno,bool is_lock)4932 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4933 bool is_lock)
4934 {
4935 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4936 struct bpf_verifier_state *cur = env->cur_state;
4937 bool is_const = tnum_is_const(reg->var_off);
4938 struct bpf_map *map = reg->map_ptr;
4939 u64 val = reg->var_off.value;
4940
4941 if (!is_const) {
4942 verbose(env,
4943 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4944 regno);
4945 return -EINVAL;
4946 }
4947 if (!map->btf) {
4948 verbose(env,
4949 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4950 map->name);
4951 return -EINVAL;
4952 }
4953 if (!map_value_has_spin_lock(map)) {
4954 if (map->spin_lock_off == -E2BIG)
4955 verbose(env,
4956 "map '%s' has more than one 'struct bpf_spin_lock'\n",
4957 map->name);
4958 else if (map->spin_lock_off == -ENOENT)
4959 verbose(env,
4960 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4961 map->name);
4962 else
4963 verbose(env,
4964 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4965 map->name);
4966 return -EINVAL;
4967 }
4968 if (map->spin_lock_off != val + reg->off) {
4969 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4970 val + reg->off);
4971 return -EINVAL;
4972 }
4973 if (is_lock) {
4974 if (cur->active_spin_lock) {
4975 verbose(env,
4976 "Locking two bpf_spin_locks are not allowed\n");
4977 return -EINVAL;
4978 }
4979 cur->active_spin_lock = reg->id;
4980 } else {
4981 if (!cur->active_spin_lock) {
4982 verbose(env, "bpf_spin_unlock without taking a lock\n");
4983 return -EINVAL;
4984 }
4985 if (cur->active_spin_lock != reg->id) {
4986 verbose(env, "bpf_spin_unlock of different lock\n");
4987 return -EINVAL;
4988 }
4989 cur->active_spin_lock = 0;
4990 }
4991 return 0;
4992 }
4993
process_timer_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)4994 static int process_timer_func(struct bpf_verifier_env *env, int regno,
4995 struct bpf_call_arg_meta *meta)
4996 {
4997 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4998 bool is_const = tnum_is_const(reg->var_off);
4999 struct bpf_map *map = reg->map_ptr;
5000 u64 val = reg->var_off.value;
5001
5002 if (!is_const) {
5003 verbose(env,
5004 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
5005 regno);
5006 return -EINVAL;
5007 }
5008 if (!map->btf) {
5009 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
5010 map->name);
5011 return -EINVAL;
5012 }
5013 if (!map_value_has_timer(map)) {
5014 if (map->timer_off == -E2BIG)
5015 verbose(env,
5016 "map '%s' has more than one 'struct bpf_timer'\n",
5017 map->name);
5018 else if (map->timer_off == -ENOENT)
5019 verbose(env,
5020 "map '%s' doesn't have 'struct bpf_timer'\n",
5021 map->name);
5022 else
5023 verbose(env,
5024 "map '%s' is not a struct type or bpf_timer is mangled\n",
5025 map->name);
5026 return -EINVAL;
5027 }
5028 if (map->timer_off != val + reg->off) {
5029 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
5030 val + reg->off, map->timer_off);
5031 return -EINVAL;
5032 }
5033 if (meta->map_ptr) {
5034 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5035 return -EFAULT;
5036 }
5037 meta->map_uid = reg->map_uid;
5038 meta->map_ptr = map;
5039 return 0;
5040 }
5041
arg_type_is_mem_ptr(enum bpf_arg_type type)5042 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
5043 {
5044 return base_type(type) == ARG_PTR_TO_MEM ||
5045 base_type(type) == ARG_PTR_TO_UNINIT_MEM;
5046 }
5047
arg_type_is_mem_size(enum bpf_arg_type type)5048 static bool arg_type_is_mem_size(enum bpf_arg_type type)
5049 {
5050 return type == ARG_CONST_SIZE ||
5051 type == ARG_CONST_SIZE_OR_ZERO;
5052 }
5053
arg_type_is_alloc_size(enum bpf_arg_type type)5054 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
5055 {
5056 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
5057 }
5058
arg_type_is_int_ptr(enum bpf_arg_type type)5059 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
5060 {
5061 return type == ARG_PTR_TO_INT ||
5062 type == ARG_PTR_TO_LONG;
5063 }
5064
int_ptr_type_to_size(enum bpf_arg_type type)5065 static int int_ptr_type_to_size(enum bpf_arg_type type)
5066 {
5067 if (type == ARG_PTR_TO_INT)
5068 return sizeof(u32);
5069 else if (type == ARG_PTR_TO_LONG)
5070 return sizeof(u64);
5071
5072 return -EINVAL;
5073 }
5074
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)5075 static int resolve_map_arg_type(struct bpf_verifier_env *env,
5076 const struct bpf_call_arg_meta *meta,
5077 enum bpf_arg_type *arg_type)
5078 {
5079 if (!meta->map_ptr) {
5080 /* kernel subsystem misconfigured verifier */
5081 verbose(env, "invalid map_ptr to access map->type\n");
5082 return -EACCES;
5083 }
5084
5085 switch (meta->map_ptr->map_type) {
5086 case BPF_MAP_TYPE_SOCKMAP:
5087 case BPF_MAP_TYPE_SOCKHASH:
5088 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
5089 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
5090 } else {
5091 verbose(env, "invalid arg_type for sockmap/sockhash\n");
5092 return -EINVAL;
5093 }
5094 break;
5095
5096 default:
5097 break;
5098 }
5099 return 0;
5100 }
5101
5102 struct bpf_reg_types {
5103 const enum bpf_reg_type types[10];
5104 u32 *btf_id;
5105 };
5106
5107 static const struct bpf_reg_types map_key_value_types = {
5108 .types = {
5109 PTR_TO_STACK,
5110 PTR_TO_PACKET,
5111 PTR_TO_PACKET_META,
5112 PTR_TO_MAP_KEY,
5113 PTR_TO_MAP_VALUE,
5114 },
5115 };
5116
5117 static const struct bpf_reg_types sock_types = {
5118 .types = {
5119 PTR_TO_SOCK_COMMON,
5120 PTR_TO_SOCKET,
5121 PTR_TO_TCP_SOCK,
5122 PTR_TO_XDP_SOCK,
5123 },
5124 };
5125
5126 #ifdef CONFIG_NET
5127 static const struct bpf_reg_types btf_id_sock_common_types = {
5128 .types = {
5129 PTR_TO_SOCK_COMMON,
5130 PTR_TO_SOCKET,
5131 PTR_TO_TCP_SOCK,
5132 PTR_TO_XDP_SOCK,
5133 PTR_TO_BTF_ID,
5134 },
5135 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5136 };
5137 #endif
5138
5139 static const struct bpf_reg_types mem_types = {
5140 .types = {
5141 PTR_TO_STACK,
5142 PTR_TO_PACKET,
5143 PTR_TO_PACKET_META,
5144 PTR_TO_MAP_KEY,
5145 PTR_TO_MAP_VALUE,
5146 PTR_TO_MEM,
5147 PTR_TO_BUF,
5148 },
5149 };
5150
5151 static const struct bpf_reg_types int_ptr_types = {
5152 .types = {
5153 PTR_TO_STACK,
5154 PTR_TO_PACKET,
5155 PTR_TO_PACKET_META,
5156 PTR_TO_MAP_KEY,
5157 PTR_TO_MAP_VALUE,
5158 },
5159 };
5160
5161 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5162 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5163 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5164 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
5165 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5166 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5167 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
5168 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
5169 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5170 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
5171 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
5172 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
5173
5174 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
5175 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
5176 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
5177 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
5178 [ARG_CONST_SIZE] = &scalar_types,
5179 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
5180 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
5181 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
5182 [ARG_PTR_TO_CTX] = &context_types,
5183 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
5184 #ifdef CONFIG_NET
5185 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
5186 #endif
5187 [ARG_PTR_TO_SOCKET] = &fullsock_types,
5188 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
5189 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
5190 [ARG_PTR_TO_MEM] = &mem_types,
5191 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
5192 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
5193 [ARG_PTR_TO_INT] = &int_ptr_types,
5194 [ARG_PTR_TO_LONG] = &int_ptr_types,
5195 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
5196 [ARG_PTR_TO_FUNC] = &func_ptr_types,
5197 [ARG_PTR_TO_STACK] = &stack_ptr_types,
5198 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
5199 [ARG_PTR_TO_TIMER] = &timer_types,
5200 };
5201
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id)5202 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
5203 enum bpf_arg_type arg_type,
5204 const u32 *arg_btf_id)
5205 {
5206 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
5207 enum bpf_reg_type expected, type = reg->type;
5208 const struct bpf_reg_types *compatible;
5209 int i, j;
5210
5211 compatible = compatible_reg_types[base_type(arg_type)];
5212 if (!compatible) {
5213 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5214 return -EFAULT;
5215 }
5216
5217 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
5218 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
5219 *
5220 * Same for MAYBE_NULL:
5221 *
5222 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
5223 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
5224 *
5225 * Therefore we fold these flags depending on the arg_type before comparison.
5226 */
5227 if (arg_type & MEM_RDONLY)
5228 type &= ~MEM_RDONLY;
5229 if (arg_type & PTR_MAYBE_NULL)
5230 type &= ~PTR_MAYBE_NULL;
5231
5232 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5233 expected = compatible->types[i];
5234 if (expected == NOT_INIT)
5235 break;
5236
5237 if (type == expected)
5238 goto found;
5239 }
5240
5241 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
5242 for (j = 0; j + 1 < i; j++)
5243 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
5244 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
5245 return -EACCES;
5246
5247 found:
5248 if (reg->type == PTR_TO_BTF_ID) {
5249 if (!arg_btf_id) {
5250 if (!compatible->btf_id) {
5251 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5252 return -EFAULT;
5253 }
5254 arg_btf_id = compatible->btf_id;
5255 }
5256
5257 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5258 btf_vmlinux, *arg_btf_id)) {
5259 verbose(env, "R%d is of type %s but %s is expected\n",
5260 regno, kernel_type_name(reg->btf, reg->btf_id),
5261 kernel_type_name(btf_vmlinux, *arg_btf_id));
5262 return -EACCES;
5263 }
5264
5265 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5266 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
5267 regno);
5268 return -EACCES;
5269 }
5270 }
5271
5272 return 0;
5273 }
5274
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn)5275 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5276 struct bpf_call_arg_meta *meta,
5277 const struct bpf_func_proto *fn)
5278 {
5279 u32 regno = BPF_REG_1 + arg;
5280 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
5281 enum bpf_arg_type arg_type = fn->arg_type[arg];
5282 enum bpf_reg_type type = reg->type;
5283 int err = 0;
5284
5285 if (arg_type == ARG_DONTCARE)
5286 return 0;
5287
5288 err = check_reg_arg(env, regno, SRC_OP);
5289 if (err)
5290 return err;
5291
5292 if (arg_type == ARG_ANYTHING) {
5293 if (is_pointer_value(env, regno)) {
5294 verbose(env, "R%d leaks addr into helper function\n",
5295 regno);
5296 return -EACCES;
5297 }
5298 return 0;
5299 }
5300
5301 if (type_is_pkt_pointer(type) &&
5302 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
5303 verbose(env, "helper access to the packet is not allowed\n");
5304 return -EACCES;
5305 }
5306
5307 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
5308 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
5309 err = resolve_map_arg_type(env, meta, &arg_type);
5310 if (err)
5311 return err;
5312 }
5313
5314 if (register_is_null(reg) && type_may_be_null(arg_type))
5315 /* A NULL register has a SCALAR_VALUE type, so skip
5316 * type checking.
5317 */
5318 goto skip_type_check;
5319
5320 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
5321 if (err)
5322 return err;
5323
5324 if (type == PTR_TO_CTX) {
5325 err = check_ctx_reg(env, reg, regno);
5326 if (err < 0)
5327 return err;
5328 }
5329
5330 skip_type_check:
5331 if (reg->ref_obj_id) {
5332 if (meta->ref_obj_id) {
5333 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5334 regno, reg->ref_obj_id,
5335 meta->ref_obj_id);
5336 return -EFAULT;
5337 }
5338 meta->ref_obj_id = reg->ref_obj_id;
5339 }
5340
5341 if (arg_type == ARG_CONST_MAP_PTR) {
5342 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
5343 if (meta->map_ptr) {
5344 /* Use map_uid (which is unique id of inner map) to reject:
5345 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5346 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5347 * if (inner_map1 && inner_map2) {
5348 * timer = bpf_map_lookup_elem(inner_map1);
5349 * if (timer)
5350 * // mismatch would have been allowed
5351 * bpf_timer_init(timer, inner_map2);
5352 * }
5353 *
5354 * Comparing map_ptr is enough to distinguish normal and outer maps.
5355 */
5356 if (meta->map_ptr != reg->map_ptr ||
5357 meta->map_uid != reg->map_uid) {
5358 verbose(env,
5359 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5360 meta->map_uid, reg->map_uid);
5361 return -EINVAL;
5362 }
5363 }
5364 meta->map_ptr = reg->map_ptr;
5365 meta->map_uid = reg->map_uid;
5366 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
5367 /* bpf_map_xxx(..., map_ptr, ..., key) call:
5368 * check that [key, key + map->key_size) are within
5369 * stack limits and initialized
5370 */
5371 if (!meta->map_ptr) {
5372 /* in function declaration map_ptr must come before
5373 * map_key, so that it's verified and known before
5374 * we have to check map_key here. Otherwise it means
5375 * that kernel subsystem misconfigured verifier
5376 */
5377 verbose(env, "invalid map_ptr to access map->key\n");
5378 return -EACCES;
5379 }
5380 err = check_helper_mem_access(env, regno,
5381 meta->map_ptr->key_size, false,
5382 NULL);
5383 } else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
5384 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
5385 if (type_may_be_null(arg_type) && register_is_null(reg))
5386 return 0;
5387
5388 /* bpf_map_xxx(..., map_ptr, ..., value) call:
5389 * check [value, value + map->value_size) validity
5390 */
5391 if (!meta->map_ptr) {
5392 /* kernel subsystem misconfigured verifier */
5393 verbose(env, "invalid map_ptr to access map->value\n");
5394 return -EACCES;
5395 }
5396 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
5397 err = check_helper_mem_access(env, regno,
5398 meta->map_ptr->value_size, false,
5399 meta);
5400 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
5401 if (!reg->btf_id) {
5402 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5403 return -EACCES;
5404 }
5405 meta->ret_btf = reg->btf;
5406 meta->ret_btf_id = reg->btf_id;
5407 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
5408 if (meta->func_id == BPF_FUNC_spin_lock) {
5409 if (process_spin_lock(env, regno, true))
5410 return -EACCES;
5411 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
5412 if (process_spin_lock(env, regno, false))
5413 return -EACCES;
5414 } else {
5415 verbose(env, "verifier internal error\n");
5416 return -EFAULT;
5417 }
5418 } else if (arg_type == ARG_PTR_TO_TIMER) {
5419 if (process_timer_func(env, regno, meta))
5420 return -EACCES;
5421 } else if (arg_type == ARG_PTR_TO_FUNC) {
5422 meta->subprogno = reg->subprogno;
5423 } else if (arg_type_is_mem_ptr(arg_type)) {
5424 /* The access to this pointer is only checked when we hit the
5425 * next is_mem_size argument below.
5426 */
5427 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
5428 } else if (arg_type_is_mem_size(arg_type)) {
5429 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
5430
5431 /* This is used to refine r0 return value bounds for helpers
5432 * that enforce this value as an upper bound on return values.
5433 * See do_refine_retval_range() for helpers that can refine
5434 * the return value. C type of helper is u32 so we pull register
5435 * bound from umax_value however, if negative verifier errors
5436 * out. Only upper bounds can be learned because retval is an
5437 * int type and negative retvals are allowed.
5438 */
5439 meta->msize_max_value = reg->umax_value;
5440
5441 /* The register is SCALAR_VALUE; the access check
5442 * happens using its boundaries.
5443 */
5444 if (!tnum_is_const(reg->var_off))
5445 /* For unprivileged variable accesses, disable raw
5446 * mode so that the program is required to
5447 * initialize all the memory that the helper could
5448 * just partially fill up.
5449 */
5450 meta = NULL;
5451
5452 if (reg->smin_value < 0) {
5453 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5454 regno);
5455 return -EACCES;
5456 }
5457
5458 if (reg->umin_value == 0) {
5459 err = check_helper_mem_access(env, regno - 1, 0,
5460 zero_size_allowed,
5461 meta);
5462 if (err)
5463 return err;
5464 }
5465
5466 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5467 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5468 regno);
5469 return -EACCES;
5470 }
5471 err = check_helper_mem_access(env, regno - 1,
5472 reg->umax_value,
5473 zero_size_allowed, meta);
5474 if (!err)
5475 err = mark_chain_precision(env, regno);
5476 } else if (arg_type_is_alloc_size(arg_type)) {
5477 if (!tnum_is_const(reg->var_off)) {
5478 verbose(env, "R%d is not a known constant'\n",
5479 regno);
5480 return -EACCES;
5481 }
5482 meta->mem_size = reg->var_off.value;
5483 } else if (arg_type_is_int_ptr(arg_type)) {
5484 int size = int_ptr_type_to_size(arg_type);
5485
5486 err = check_helper_mem_access(env, regno, size, false, meta);
5487 if (err)
5488 return err;
5489 err = check_ptr_alignment(env, reg, 0, size, true);
5490 } else if (arg_type == ARG_PTR_TO_CONST_STR) {
5491 struct bpf_map *map = reg->map_ptr;
5492 int map_off;
5493 u64 map_addr;
5494 char *str_ptr;
5495
5496 if (!bpf_map_is_rdonly(map)) {
5497 verbose(env, "R%d does not point to a readonly map'\n", regno);
5498 return -EACCES;
5499 }
5500
5501 if (!tnum_is_const(reg->var_off)) {
5502 verbose(env, "R%d is not a constant address'\n", regno);
5503 return -EACCES;
5504 }
5505
5506 if (!map->ops->map_direct_value_addr) {
5507 verbose(env, "no direct value access support for this map type\n");
5508 return -EACCES;
5509 }
5510
5511 err = check_map_access(env, regno, reg->off,
5512 map->value_size - reg->off, false);
5513 if (err)
5514 return err;
5515
5516 map_off = reg->off + reg->var_off.value;
5517 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5518 if (err) {
5519 verbose(env, "direct value access on string failed\n");
5520 return err;
5521 }
5522
5523 str_ptr = (char *)(long)(map_addr);
5524 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5525 verbose(env, "string is not zero-terminated\n");
5526 return -EINVAL;
5527 }
5528 }
5529
5530 return err;
5531 }
5532
may_update_sockmap(struct bpf_verifier_env * env,int func_id)5533 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5534 {
5535 enum bpf_attach_type eatype = env->prog->expected_attach_type;
5536 enum bpf_prog_type type = resolve_prog_type(env->prog);
5537
5538 if (func_id != BPF_FUNC_map_update_elem)
5539 return false;
5540
5541 /* It's not possible to get access to a locked struct sock in these
5542 * contexts, so updating is safe.
5543 */
5544 switch (type) {
5545 case BPF_PROG_TYPE_TRACING:
5546 if (eatype == BPF_TRACE_ITER)
5547 return true;
5548 break;
5549 case BPF_PROG_TYPE_SOCKET_FILTER:
5550 case BPF_PROG_TYPE_SCHED_CLS:
5551 case BPF_PROG_TYPE_SCHED_ACT:
5552 case BPF_PROG_TYPE_XDP:
5553 case BPF_PROG_TYPE_SK_REUSEPORT:
5554 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5555 case BPF_PROG_TYPE_SK_LOOKUP:
5556 return true;
5557 default:
5558 break;
5559 }
5560
5561 verbose(env, "cannot update sockmap in this context\n");
5562 return false;
5563 }
5564
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)5565 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5566 {
5567 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5568 }
5569
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)5570 static int check_map_func_compatibility(struct bpf_verifier_env *env,
5571 struct bpf_map *map, int func_id)
5572 {
5573 if (!map)
5574 return 0;
5575
5576 /* We need a two way check, first is from map perspective ... */
5577 switch (map->map_type) {
5578 case BPF_MAP_TYPE_PROG_ARRAY:
5579 if (func_id != BPF_FUNC_tail_call)
5580 goto error;
5581 break;
5582 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5583 if (func_id != BPF_FUNC_perf_event_read &&
5584 func_id != BPF_FUNC_perf_event_output &&
5585 func_id != BPF_FUNC_skb_output &&
5586 func_id != BPF_FUNC_perf_event_read_value &&
5587 func_id != BPF_FUNC_xdp_output)
5588 goto error;
5589 break;
5590 case BPF_MAP_TYPE_RINGBUF:
5591 if (func_id != BPF_FUNC_ringbuf_output &&
5592 func_id != BPF_FUNC_ringbuf_reserve &&
5593 func_id != BPF_FUNC_ringbuf_query)
5594 goto error;
5595 break;
5596 case BPF_MAP_TYPE_STACK_TRACE:
5597 if (func_id != BPF_FUNC_get_stackid)
5598 goto error;
5599 break;
5600 case BPF_MAP_TYPE_CGROUP_ARRAY:
5601 if (func_id != BPF_FUNC_skb_under_cgroup &&
5602 func_id != BPF_FUNC_current_task_under_cgroup)
5603 goto error;
5604 break;
5605 case BPF_MAP_TYPE_CGROUP_STORAGE:
5606 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5607 if (func_id != BPF_FUNC_get_local_storage)
5608 goto error;
5609 break;
5610 case BPF_MAP_TYPE_DEVMAP:
5611 case BPF_MAP_TYPE_DEVMAP_HASH:
5612 if (func_id != BPF_FUNC_redirect_map &&
5613 func_id != BPF_FUNC_map_lookup_elem)
5614 goto error;
5615 break;
5616 /* Restrict bpf side of cpumap and xskmap, open when use-cases
5617 * appear.
5618 */
5619 case BPF_MAP_TYPE_CPUMAP:
5620 if (func_id != BPF_FUNC_redirect_map)
5621 goto error;
5622 break;
5623 case BPF_MAP_TYPE_XSKMAP:
5624 if (func_id != BPF_FUNC_redirect_map &&
5625 func_id != BPF_FUNC_map_lookup_elem)
5626 goto error;
5627 break;
5628 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5629 case BPF_MAP_TYPE_HASH_OF_MAPS:
5630 if (func_id != BPF_FUNC_map_lookup_elem)
5631 goto error;
5632 break;
5633 case BPF_MAP_TYPE_SOCKMAP:
5634 if (func_id != BPF_FUNC_sk_redirect_map &&
5635 func_id != BPF_FUNC_sock_map_update &&
5636 func_id != BPF_FUNC_map_delete_elem &&
5637 func_id != BPF_FUNC_msg_redirect_map &&
5638 func_id != BPF_FUNC_sk_select_reuseport &&
5639 func_id != BPF_FUNC_map_lookup_elem &&
5640 !may_update_sockmap(env, func_id))
5641 goto error;
5642 break;
5643 case BPF_MAP_TYPE_SOCKHASH:
5644 if (func_id != BPF_FUNC_sk_redirect_hash &&
5645 func_id != BPF_FUNC_sock_hash_update &&
5646 func_id != BPF_FUNC_map_delete_elem &&
5647 func_id != BPF_FUNC_msg_redirect_hash &&
5648 func_id != BPF_FUNC_sk_select_reuseport &&
5649 func_id != BPF_FUNC_map_lookup_elem &&
5650 !may_update_sockmap(env, func_id))
5651 goto error;
5652 break;
5653 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5654 if (func_id != BPF_FUNC_sk_select_reuseport)
5655 goto error;
5656 break;
5657 case BPF_MAP_TYPE_QUEUE:
5658 case BPF_MAP_TYPE_STACK:
5659 if (func_id != BPF_FUNC_map_peek_elem &&
5660 func_id != BPF_FUNC_map_pop_elem &&
5661 func_id != BPF_FUNC_map_push_elem)
5662 goto error;
5663 break;
5664 case BPF_MAP_TYPE_SK_STORAGE:
5665 if (func_id != BPF_FUNC_sk_storage_get &&
5666 func_id != BPF_FUNC_sk_storage_delete)
5667 goto error;
5668 break;
5669 case BPF_MAP_TYPE_INODE_STORAGE:
5670 if (func_id != BPF_FUNC_inode_storage_get &&
5671 func_id != BPF_FUNC_inode_storage_delete)
5672 goto error;
5673 break;
5674 case BPF_MAP_TYPE_TASK_STORAGE:
5675 if (func_id != BPF_FUNC_task_storage_get &&
5676 func_id != BPF_FUNC_task_storage_delete)
5677 goto error;
5678 break;
5679 default:
5680 break;
5681 }
5682
5683 /* ... and second from the function itself. */
5684 switch (func_id) {
5685 case BPF_FUNC_tail_call:
5686 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5687 goto error;
5688 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5689 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5690 return -EINVAL;
5691 }
5692 break;
5693 case BPF_FUNC_perf_event_read:
5694 case BPF_FUNC_perf_event_output:
5695 case BPF_FUNC_perf_event_read_value:
5696 case BPF_FUNC_skb_output:
5697 case BPF_FUNC_xdp_output:
5698 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5699 goto error;
5700 break;
5701 case BPF_FUNC_ringbuf_output:
5702 case BPF_FUNC_ringbuf_reserve:
5703 case BPF_FUNC_ringbuf_query:
5704 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5705 goto error;
5706 break;
5707 case BPF_FUNC_get_stackid:
5708 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5709 goto error;
5710 break;
5711 case BPF_FUNC_current_task_under_cgroup:
5712 case BPF_FUNC_skb_under_cgroup:
5713 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5714 goto error;
5715 break;
5716 case BPF_FUNC_redirect_map:
5717 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5718 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5719 map->map_type != BPF_MAP_TYPE_CPUMAP &&
5720 map->map_type != BPF_MAP_TYPE_XSKMAP)
5721 goto error;
5722 break;
5723 case BPF_FUNC_sk_redirect_map:
5724 case BPF_FUNC_msg_redirect_map:
5725 case BPF_FUNC_sock_map_update:
5726 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5727 goto error;
5728 break;
5729 case BPF_FUNC_sk_redirect_hash:
5730 case BPF_FUNC_msg_redirect_hash:
5731 case BPF_FUNC_sock_hash_update:
5732 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5733 goto error;
5734 break;
5735 case BPF_FUNC_get_local_storage:
5736 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5737 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5738 goto error;
5739 break;
5740 case BPF_FUNC_sk_select_reuseport:
5741 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5742 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5743 map->map_type != BPF_MAP_TYPE_SOCKHASH)
5744 goto error;
5745 break;
5746 case BPF_FUNC_map_peek_elem:
5747 case BPF_FUNC_map_pop_elem:
5748 case BPF_FUNC_map_push_elem:
5749 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5750 map->map_type != BPF_MAP_TYPE_STACK)
5751 goto error;
5752 break;
5753 case BPF_FUNC_sk_storage_get:
5754 case BPF_FUNC_sk_storage_delete:
5755 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5756 goto error;
5757 break;
5758 case BPF_FUNC_inode_storage_get:
5759 case BPF_FUNC_inode_storage_delete:
5760 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5761 goto error;
5762 break;
5763 case BPF_FUNC_task_storage_get:
5764 case BPF_FUNC_task_storage_delete:
5765 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5766 goto error;
5767 break;
5768 default:
5769 break;
5770 }
5771
5772 return 0;
5773 error:
5774 verbose(env, "cannot pass map_type %d into func %s#%d\n",
5775 map->map_type, func_id_name(func_id), func_id);
5776 return -EINVAL;
5777 }
5778
check_raw_mode_ok(const struct bpf_func_proto * fn)5779 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5780 {
5781 int count = 0;
5782
5783 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5784 count++;
5785 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5786 count++;
5787 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5788 count++;
5789 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5790 count++;
5791 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5792 count++;
5793
5794 /* We only support one arg being in raw mode at the moment,
5795 * which is sufficient for the helper functions we have
5796 * right now.
5797 */
5798 return count <= 1;
5799 }
5800
check_args_pair_invalid(enum bpf_arg_type arg_curr,enum bpf_arg_type arg_next)5801 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5802 enum bpf_arg_type arg_next)
5803 {
5804 return (arg_type_is_mem_ptr(arg_curr) &&
5805 !arg_type_is_mem_size(arg_next)) ||
5806 (!arg_type_is_mem_ptr(arg_curr) &&
5807 arg_type_is_mem_size(arg_next));
5808 }
5809
check_arg_pair_ok(const struct bpf_func_proto * fn)5810 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5811 {
5812 /* bpf_xxx(..., buf, len) call will access 'len'
5813 * bytes from memory 'buf'. Both arg types need
5814 * to be paired, so make sure there's no buggy
5815 * helper function specification.
5816 */
5817 if (arg_type_is_mem_size(fn->arg1_type) ||
5818 arg_type_is_mem_ptr(fn->arg5_type) ||
5819 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5820 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5821 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5822 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5823 return false;
5824
5825 return true;
5826 }
5827
check_refcount_ok(const struct bpf_func_proto * fn,int func_id)5828 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5829 {
5830 int count = 0;
5831
5832 if (arg_type_may_be_refcounted(fn->arg1_type))
5833 count++;
5834 if (arg_type_may_be_refcounted(fn->arg2_type))
5835 count++;
5836 if (arg_type_may_be_refcounted(fn->arg3_type))
5837 count++;
5838 if (arg_type_may_be_refcounted(fn->arg4_type))
5839 count++;
5840 if (arg_type_may_be_refcounted(fn->arg5_type))
5841 count++;
5842
5843 /* A reference acquiring function cannot acquire
5844 * another refcounted ptr.
5845 */
5846 if (may_be_acquire_function(func_id) && count)
5847 return false;
5848
5849 /* We only support one arg being unreferenced at the moment,
5850 * which is sufficient for the helper functions we have right now.
5851 */
5852 return count <= 1;
5853 }
5854
check_btf_id_ok(const struct bpf_func_proto * fn)5855 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5856 {
5857 int i;
5858
5859 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5860 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5861 return false;
5862
5863 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5864 return false;
5865 }
5866
5867 return true;
5868 }
5869
check_func_proto(const struct bpf_func_proto * fn,int func_id)5870 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5871 {
5872 return check_raw_mode_ok(fn) &&
5873 check_arg_pair_ok(fn) &&
5874 check_btf_id_ok(fn) &&
5875 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5876 }
5877
5878 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5879 * are now invalid, so turn them into unknown SCALAR_VALUE.
5880 */
clear_all_pkt_pointers(struct bpf_verifier_env * env)5881 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5882 {
5883 struct bpf_func_state *state;
5884 struct bpf_reg_state *reg;
5885
5886 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
5887 if (reg_is_pkt_pointer_any(reg))
5888 __mark_reg_unknown(env, reg);
5889 }));
5890 }
5891
5892 enum {
5893 AT_PKT_END = -1,
5894 BEYOND_PKT_END = -2,
5895 };
5896
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)5897 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5898 {
5899 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5900 struct bpf_reg_state *reg = &state->regs[regn];
5901
5902 if (reg->type != PTR_TO_PACKET)
5903 /* PTR_TO_PACKET_META is not supported yet */
5904 return;
5905
5906 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5907 * How far beyond pkt_end it goes is unknown.
5908 * if (!range_open) it's the case of pkt >= pkt_end
5909 * if (range_open) it's the case of pkt > pkt_end
5910 * hence this pointer is at least 1 byte bigger than pkt_end
5911 */
5912 if (range_open)
5913 reg->range = BEYOND_PKT_END;
5914 else
5915 reg->range = AT_PKT_END;
5916 }
5917
5918 /* The pointer with the specified id has released its reference to kernel
5919 * resources. Identify all copies of the same pointer and clear the reference.
5920 */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)5921 static int release_reference(struct bpf_verifier_env *env,
5922 int ref_obj_id)
5923 {
5924 struct bpf_func_state *state;
5925 struct bpf_reg_state *reg;
5926 int err;
5927
5928 err = release_reference_state(cur_func(env), ref_obj_id);
5929 if (err)
5930 return err;
5931
5932 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
5933 if (reg->ref_obj_id == ref_obj_id) {
5934 if (!env->allow_ptr_leaks)
5935 __mark_reg_not_init(env, reg);
5936 else
5937 __mark_reg_unknown(env, reg);
5938 }
5939 }));
5940
5941 return 0;
5942 }
5943
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)5944 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5945 struct bpf_reg_state *regs)
5946 {
5947 int i;
5948
5949 /* after the call registers r0 - r5 were scratched */
5950 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5951 mark_reg_not_init(env, regs, caller_saved[i]);
5952 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5953 }
5954 }
5955
5956 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5957 struct bpf_func_state *caller,
5958 struct bpf_func_state *callee,
5959 int insn_idx);
5960
5961 static int set_callee_state(struct bpf_verifier_env *env,
5962 struct bpf_func_state *caller,
5963 struct bpf_func_state *callee, int insn_idx);
5964
__check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx,int subprog,set_callee_state_fn set_callee_state_cb)5965 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5966 int *insn_idx, int subprog,
5967 set_callee_state_fn set_callee_state_cb)
5968 {
5969 struct bpf_verifier_state *state = env->cur_state;
5970 struct bpf_func_info_aux *func_info_aux;
5971 struct bpf_func_state *caller, *callee;
5972 int err;
5973 bool is_global = false;
5974
5975 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5976 verbose(env, "the call stack of %d frames is too deep\n",
5977 state->curframe + 2);
5978 return -E2BIG;
5979 }
5980
5981 caller = state->frame[state->curframe];
5982 if (state->frame[state->curframe + 1]) {
5983 verbose(env, "verifier bug. Frame %d already allocated\n",
5984 state->curframe + 1);
5985 return -EFAULT;
5986 }
5987
5988 func_info_aux = env->prog->aux->func_info_aux;
5989 if (func_info_aux)
5990 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5991 err = btf_check_subprog_arg_match(env, subprog, caller->regs);
5992 if (err == -EFAULT)
5993 return err;
5994 if (is_global) {
5995 if (err) {
5996 verbose(env, "Caller passes invalid args into func#%d\n",
5997 subprog);
5998 return err;
5999 } else {
6000 if (env->log.level & BPF_LOG_LEVEL)
6001 verbose(env,
6002 "Func#%d is global and valid. Skipping.\n",
6003 subprog);
6004 clear_caller_saved_regs(env, caller->regs);
6005
6006 /* All global functions return a 64-bit SCALAR_VALUE */
6007 mark_reg_unknown(env, caller->regs, BPF_REG_0);
6008 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6009
6010 /* continue with next insn after call */
6011 return 0;
6012 }
6013 }
6014
6015 /* set_callee_state is used for direct subprog calls, but we are
6016 * interested in validating only BPF helpers that can call subprogs as
6017 * callbacks
6018 */
6019 if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) {
6020 verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n",
6021 func_id_name(insn->imm), insn->imm);
6022 return -EFAULT;
6023 }
6024
6025 if (insn->code == (BPF_JMP | BPF_CALL) &&
6026 insn->src_reg == 0 &&
6027 insn->imm == BPF_FUNC_timer_set_callback) {
6028 struct bpf_verifier_state *async_cb;
6029
6030 /* there is no real recursion here. timer callbacks are async */
6031 env->subprog_info[subprog].is_async_cb = true;
6032 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
6033 *insn_idx, subprog);
6034 if (!async_cb)
6035 return -EFAULT;
6036 callee = async_cb->frame[0];
6037 callee->async_entry_cnt = caller->async_entry_cnt + 1;
6038
6039 /* Convert bpf_timer_set_callback() args into timer callback args */
6040 err = set_callee_state_cb(env, caller, callee, *insn_idx);
6041 if (err)
6042 return err;
6043
6044 clear_caller_saved_regs(env, caller->regs);
6045 mark_reg_unknown(env, caller->regs, BPF_REG_0);
6046 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6047 /* continue with next insn after call */
6048 return 0;
6049 }
6050
6051 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
6052 if (!callee)
6053 return -ENOMEM;
6054 state->frame[state->curframe + 1] = callee;
6055
6056 /* callee cannot access r0, r6 - r9 for reading and has to write
6057 * into its own stack before reading from it.
6058 * callee can read/write into caller's stack
6059 */
6060 init_func_state(env, callee,
6061 /* remember the callsite, it will be used by bpf_exit */
6062 *insn_idx /* callsite */,
6063 state->curframe + 1 /* frameno within this callchain */,
6064 subprog /* subprog number within this prog */);
6065
6066 /* Transfer references to the callee */
6067 err = copy_reference_state(callee, caller);
6068 if (err)
6069 goto err_out;
6070
6071 err = set_callee_state_cb(env, caller, callee, *insn_idx);
6072 if (err)
6073 goto err_out;
6074
6075 clear_caller_saved_regs(env, caller->regs);
6076
6077 /* only increment it after check_reg_arg() finished */
6078 state->curframe++;
6079
6080 /* and go analyze first insn of the callee */
6081 *insn_idx = env->subprog_info[subprog].start - 1;
6082
6083 if (env->log.level & BPF_LOG_LEVEL) {
6084 verbose(env, "caller:\n");
6085 print_verifier_state(env, caller);
6086 verbose(env, "callee:\n");
6087 print_verifier_state(env, callee);
6088 }
6089 return 0;
6090
6091 err_out:
6092 free_func_state(callee);
6093 state->frame[state->curframe + 1] = NULL;
6094 return err;
6095 }
6096
map_set_for_each_callback_args(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee)6097 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6098 struct bpf_func_state *caller,
6099 struct bpf_func_state *callee)
6100 {
6101 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6102 * void *callback_ctx, u64 flags);
6103 * callback_fn(struct bpf_map *map, void *key, void *value,
6104 * void *callback_ctx);
6105 */
6106 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6107
6108 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6109 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6110 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6111
6112 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6113 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6114 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6115
6116 /* pointer to stack or null */
6117 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6118
6119 /* unused */
6120 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6121 return 0;
6122 }
6123
set_callee_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)6124 static int set_callee_state(struct bpf_verifier_env *env,
6125 struct bpf_func_state *caller,
6126 struct bpf_func_state *callee, int insn_idx)
6127 {
6128 int i;
6129
6130 /* copy r1 - r5 args that callee can access. The copy includes parent
6131 * pointers, which connects us up to the liveness chain
6132 */
6133 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6134 callee->regs[i] = caller->regs[i];
6135 return 0;
6136 }
6137
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)6138 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6139 int *insn_idx)
6140 {
6141 int subprog, target_insn;
6142
6143 target_insn = *insn_idx + insn->imm + 1;
6144 subprog = find_subprog(env, target_insn);
6145 if (subprog < 0) {
6146 verbose(env, "verifier bug. No program starts at insn %d\n",
6147 target_insn);
6148 return -EFAULT;
6149 }
6150
6151 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6152 }
6153
set_map_elem_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)6154 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6155 struct bpf_func_state *caller,
6156 struct bpf_func_state *callee,
6157 int insn_idx)
6158 {
6159 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6160 struct bpf_map *map;
6161 int err;
6162
6163 if (bpf_map_ptr_poisoned(insn_aux)) {
6164 verbose(env, "tail_call abusing map_ptr\n");
6165 return -EINVAL;
6166 }
6167
6168 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6169 if (!map->ops->map_set_for_each_callback_args ||
6170 !map->ops->map_for_each_callback) {
6171 verbose(env, "callback function not allowed for map\n");
6172 return -ENOTSUPP;
6173 }
6174
6175 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6176 if (err)
6177 return err;
6178
6179 callee->in_callback_fn = true;
6180 return 0;
6181 }
6182
set_timer_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)6183 static int set_timer_callback_state(struct bpf_verifier_env *env,
6184 struct bpf_func_state *caller,
6185 struct bpf_func_state *callee,
6186 int insn_idx)
6187 {
6188 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6189
6190 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6191 * callback_fn(struct bpf_map *map, void *key, void *value);
6192 */
6193 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6194 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6195 callee->regs[BPF_REG_1].map_ptr = map_ptr;
6196
6197 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6198 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6199 callee->regs[BPF_REG_2].map_ptr = map_ptr;
6200
6201 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6202 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6203 callee->regs[BPF_REG_3].map_ptr = map_ptr;
6204
6205 /* unused */
6206 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6207 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6208 callee->in_async_callback_fn = true;
6209 return 0;
6210 }
6211
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)6212 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6213 {
6214 struct bpf_verifier_state *state = env->cur_state;
6215 struct bpf_func_state *caller, *callee;
6216 struct bpf_reg_state *r0;
6217 int err;
6218
6219 callee = state->frame[state->curframe];
6220 r0 = &callee->regs[BPF_REG_0];
6221 if (r0->type == PTR_TO_STACK) {
6222 /* technically it's ok to return caller's stack pointer
6223 * (or caller's caller's pointer) back to the caller,
6224 * since these pointers are valid. Only current stack
6225 * pointer will be invalid as soon as function exits,
6226 * but let's be conservative
6227 */
6228 verbose(env, "cannot return stack pointer to the caller\n");
6229 return -EINVAL;
6230 }
6231
6232 caller = state->frame[state->curframe - 1];
6233 if (callee->in_callback_fn) {
6234 /* enforce R0 return value range [0, 1]. */
6235 struct tnum range = tnum_range(0, 1);
6236
6237 if (r0->type != SCALAR_VALUE) {
6238 verbose(env, "R0 not a scalar value\n");
6239 return -EACCES;
6240 }
6241
6242 /* we are going to rely on register's precise value */
6243 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
6244 err = err ?: mark_chain_precision(env, BPF_REG_0);
6245 if (err)
6246 return err;
6247
6248 if (!tnum_in(range, r0->var_off)) {
6249 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6250 return -EINVAL;
6251 }
6252 } else {
6253 /* return to the caller whatever r0 had in the callee */
6254 caller->regs[BPF_REG_0] = *r0;
6255 }
6256
6257 /* callback_fn frame should have released its own additions to parent's
6258 * reference state at this point, or check_reference_leak would
6259 * complain, hence it must be the same as the caller. There is no need
6260 * to copy it back.
6261 */
6262 if (!callee->in_callback_fn) {
6263 /* Transfer references to the caller */
6264 err = copy_reference_state(caller, callee);
6265 if (err)
6266 return err;
6267 }
6268
6269 *insn_idx = callee->callsite + 1;
6270 if (env->log.level & BPF_LOG_LEVEL) {
6271 verbose(env, "returning from callee:\n");
6272 print_verifier_state(env, callee);
6273 verbose(env, "to caller at %d:\n", *insn_idx);
6274 print_verifier_state(env, caller);
6275 }
6276 /* clear everything in the callee */
6277 free_func_state(callee);
6278 state->frame[state->curframe--] = NULL;
6279 return 0;
6280 }
6281
do_refine_retval_range(struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)6282 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6283 int func_id,
6284 struct bpf_call_arg_meta *meta)
6285 {
6286 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
6287
6288 if (ret_type != RET_INTEGER ||
6289 (func_id != BPF_FUNC_get_stack &&
6290 func_id != BPF_FUNC_get_task_stack &&
6291 func_id != BPF_FUNC_probe_read_str &&
6292 func_id != BPF_FUNC_probe_read_kernel_str &&
6293 func_id != BPF_FUNC_probe_read_user_str))
6294 return;
6295
6296 ret_reg->smax_value = meta->msize_max_value;
6297 ret_reg->s32_max_value = meta->msize_max_value;
6298 ret_reg->smin_value = -MAX_ERRNO;
6299 ret_reg->s32_min_value = -MAX_ERRNO;
6300 reg_bounds_sync(ret_reg);
6301 }
6302
6303 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)6304 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6305 int func_id, int insn_idx)
6306 {
6307 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6308 struct bpf_map *map = meta->map_ptr;
6309
6310 if (func_id != BPF_FUNC_tail_call &&
6311 func_id != BPF_FUNC_map_lookup_elem &&
6312 func_id != BPF_FUNC_map_update_elem &&
6313 func_id != BPF_FUNC_map_delete_elem &&
6314 func_id != BPF_FUNC_map_push_elem &&
6315 func_id != BPF_FUNC_map_pop_elem &&
6316 func_id != BPF_FUNC_map_peek_elem &&
6317 func_id != BPF_FUNC_for_each_map_elem &&
6318 func_id != BPF_FUNC_redirect_map)
6319 return 0;
6320
6321 if (map == NULL) {
6322 verbose(env, "kernel subsystem misconfigured verifier\n");
6323 return -EINVAL;
6324 }
6325
6326 /* In case of read-only, some additional restrictions
6327 * need to be applied in order to prevent altering the
6328 * state of the map from program side.
6329 */
6330 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
6331 (func_id == BPF_FUNC_map_delete_elem ||
6332 func_id == BPF_FUNC_map_update_elem ||
6333 func_id == BPF_FUNC_map_push_elem ||
6334 func_id == BPF_FUNC_map_pop_elem)) {
6335 verbose(env, "write into map forbidden\n");
6336 return -EACCES;
6337 }
6338
6339 if (!BPF_MAP_PTR(aux->map_ptr_state))
6340 bpf_map_ptr_store(aux, meta->map_ptr,
6341 !meta->map_ptr->bypass_spec_v1);
6342 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
6343 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
6344 !meta->map_ptr->bypass_spec_v1);
6345 return 0;
6346 }
6347
6348 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)6349 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6350 int func_id, int insn_idx)
6351 {
6352 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6353 struct bpf_reg_state *regs = cur_regs(env), *reg;
6354 struct bpf_map *map = meta->map_ptr;
6355 u64 val, max;
6356 int err;
6357
6358 if (func_id != BPF_FUNC_tail_call)
6359 return 0;
6360 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
6361 verbose(env, "kernel subsystem misconfigured verifier\n");
6362 return -EINVAL;
6363 }
6364
6365 reg = ®s[BPF_REG_3];
6366 val = reg->var_off.value;
6367 max = map->max_entries;
6368
6369 if (!(register_is_const(reg) && val < max)) {
6370 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6371 return 0;
6372 }
6373
6374 err = mark_chain_precision(env, BPF_REG_3);
6375 if (err)
6376 return err;
6377 if (bpf_map_key_unseen(aux))
6378 bpf_map_key_store(aux, val);
6379 else if (!bpf_map_key_poisoned(aux) &&
6380 bpf_map_key_immediate(aux) != val)
6381 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6382 return 0;
6383 }
6384
check_reference_leak(struct bpf_verifier_env * env)6385 static int check_reference_leak(struct bpf_verifier_env *env)
6386 {
6387 struct bpf_func_state *state = cur_func(env);
6388 bool refs_lingering = false;
6389 int i;
6390
6391 if (state->frameno && !state->in_callback_fn)
6392 return 0;
6393
6394 for (i = 0; i < state->acquired_refs; i++) {
6395 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
6396 continue;
6397 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
6398 state->refs[i].id, state->refs[i].insn_idx);
6399 refs_lingering = true;
6400 }
6401 return refs_lingering ? -EINVAL : 0;
6402 }
6403
check_bpf_snprintf_call(struct bpf_verifier_env * env,struct bpf_reg_state * regs)6404 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
6405 struct bpf_reg_state *regs)
6406 {
6407 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3];
6408 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5];
6409 struct bpf_map *fmt_map = fmt_reg->map_ptr;
6410 struct bpf_bprintf_data data = {};
6411 int err, fmt_map_off, num_args;
6412 u64 fmt_addr;
6413 char *fmt;
6414
6415 /* data must be an array of u64 */
6416 if (data_len_reg->var_off.value % 8)
6417 return -EINVAL;
6418 num_args = data_len_reg->var_off.value / 8;
6419
6420 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
6421 * and map_direct_value_addr is set.
6422 */
6423 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
6424 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
6425 fmt_map_off);
6426 if (err) {
6427 verbose(env, "verifier bug\n");
6428 return -EFAULT;
6429 }
6430 fmt = (char *)(long)fmt_addr + fmt_map_off;
6431
6432 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
6433 * can focus on validating the format specifiers.
6434 */
6435 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
6436 if (err < 0)
6437 verbose(env, "Invalid format string\n");
6438
6439 return err;
6440 }
6441
check_get_func_ip(struct bpf_verifier_env * env)6442 static int check_get_func_ip(struct bpf_verifier_env *env)
6443 {
6444 enum bpf_attach_type eatype = env->prog->expected_attach_type;
6445 enum bpf_prog_type type = resolve_prog_type(env->prog);
6446 int func_id = BPF_FUNC_get_func_ip;
6447
6448 if (type == BPF_PROG_TYPE_TRACING) {
6449 if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT &&
6450 eatype != BPF_MODIFY_RETURN) {
6451 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
6452 func_id_name(func_id), func_id);
6453 return -ENOTSUPP;
6454 }
6455 return 0;
6456 } else if (type == BPF_PROG_TYPE_KPROBE) {
6457 return 0;
6458 }
6459
6460 verbose(env, "func %s#%d not supported for program type %d\n",
6461 func_id_name(func_id), func_id, type);
6462 return -ENOTSUPP;
6463 }
6464
check_helper_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)6465 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6466 int *insn_idx_p)
6467 {
6468 const struct bpf_func_proto *fn = NULL;
6469 enum bpf_return_type ret_type;
6470 enum bpf_type_flag ret_flag;
6471 struct bpf_reg_state *regs;
6472 struct bpf_call_arg_meta meta;
6473 int insn_idx = *insn_idx_p;
6474 bool changes_data;
6475 int i, err, func_id;
6476
6477 /* find function prototype */
6478 func_id = insn->imm;
6479 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
6480 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
6481 func_id);
6482 return -EINVAL;
6483 }
6484
6485 if (env->ops->get_func_proto)
6486 fn = env->ops->get_func_proto(func_id, env->prog);
6487 if (!fn) {
6488 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
6489 func_id);
6490 return -EINVAL;
6491 }
6492
6493 /* eBPF programs must be GPL compatible to use GPL-ed functions */
6494 if (!env->prog->gpl_compatible && fn->gpl_only) {
6495 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
6496 return -EINVAL;
6497 }
6498
6499 if (fn->allowed && !fn->allowed(env->prog)) {
6500 verbose(env, "helper call is not allowed in probe\n");
6501 return -EINVAL;
6502 }
6503
6504 /* With LD_ABS/IND some JITs save/restore skb from r1. */
6505 changes_data = bpf_helper_changes_pkt_data(fn->func);
6506 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
6507 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
6508 func_id_name(func_id), func_id);
6509 return -EINVAL;
6510 }
6511
6512 memset(&meta, 0, sizeof(meta));
6513 meta.pkt_access = fn->pkt_access;
6514
6515 err = check_func_proto(fn, func_id);
6516 if (err) {
6517 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
6518 func_id_name(func_id), func_id);
6519 return err;
6520 }
6521
6522 meta.func_id = func_id;
6523 /* check args */
6524 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6525 err = check_func_arg(env, i, &meta, fn);
6526 if (err)
6527 return err;
6528 }
6529
6530 err = record_func_map(env, &meta, func_id, insn_idx);
6531 if (err)
6532 return err;
6533
6534 err = record_func_key(env, &meta, func_id, insn_idx);
6535 if (err)
6536 return err;
6537
6538 /* Mark slots with STACK_MISC in case of raw mode, stack offset
6539 * is inferred from register state.
6540 */
6541 for (i = 0; i < meta.access_size; i++) {
6542 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6543 BPF_WRITE, -1, false);
6544 if (err)
6545 return err;
6546 }
6547
6548 if (func_id == BPF_FUNC_tail_call) {
6549 err = check_reference_leak(env);
6550 if (err) {
6551 verbose(env, "tail_call would lead to reference leak\n");
6552 return err;
6553 }
6554 } else if (is_release_function(func_id)) {
6555 err = release_reference(env, meta.ref_obj_id);
6556 if (err) {
6557 verbose(env, "func %s#%d reference has not been acquired before\n",
6558 func_id_name(func_id), func_id);
6559 return err;
6560 }
6561 }
6562
6563 regs = cur_regs(env);
6564
6565 /* check that flags argument in get_local_storage(map, flags) is 0,
6566 * this is required because get_local_storage() can't return an error.
6567 */
6568 if (func_id == BPF_FUNC_get_local_storage &&
6569 !register_is_null(®s[BPF_REG_2])) {
6570 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6571 return -EINVAL;
6572 }
6573
6574 if (func_id == BPF_FUNC_for_each_map_elem) {
6575 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6576 set_map_elem_callback_state);
6577 if (err < 0)
6578 return -EINVAL;
6579 }
6580
6581 if (func_id == BPF_FUNC_timer_set_callback) {
6582 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6583 set_timer_callback_state);
6584 if (err < 0)
6585 return -EINVAL;
6586 }
6587
6588 if (func_id == BPF_FUNC_snprintf) {
6589 err = check_bpf_snprintf_call(env, regs);
6590 if (err < 0)
6591 return err;
6592 }
6593
6594 /* reset caller saved regs */
6595 for (i = 0; i < CALLER_SAVED_REGS; i++) {
6596 mark_reg_not_init(env, regs, caller_saved[i]);
6597 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6598 }
6599
6600 /* helper call returns 64-bit value. */
6601 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6602
6603 /* update return register (already marked as written above) */
6604 ret_type = fn->ret_type;
6605 ret_flag = type_flag(fn->ret_type);
6606 if (ret_type == RET_INTEGER) {
6607 /* sets type to SCALAR_VALUE */
6608 mark_reg_unknown(env, regs, BPF_REG_0);
6609 } else if (ret_type == RET_VOID) {
6610 regs[BPF_REG_0].type = NOT_INIT;
6611 } else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) {
6612 /* There is no offset yet applied, variable or fixed */
6613 mark_reg_known_zero(env, regs, BPF_REG_0);
6614 /* remember map_ptr, so that check_map_access()
6615 * can check 'value_size' boundary of memory access
6616 * to map element returned from bpf_map_lookup_elem()
6617 */
6618 if (meta.map_ptr == NULL) {
6619 verbose(env,
6620 "kernel subsystem misconfigured verifier\n");
6621 return -EINVAL;
6622 }
6623 regs[BPF_REG_0].map_ptr = meta.map_ptr;
6624 regs[BPF_REG_0].map_uid = meta.map_uid;
6625 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
6626 if (!type_may_be_null(ret_type) &&
6627 map_value_has_spin_lock(meta.map_ptr)) {
6628 regs[BPF_REG_0].id = ++env->id_gen;
6629 }
6630 } else if (base_type(ret_type) == RET_PTR_TO_SOCKET) {
6631 mark_reg_known_zero(env, regs, BPF_REG_0);
6632 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
6633 } else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) {
6634 mark_reg_known_zero(env, regs, BPF_REG_0);
6635 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
6636 } else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) {
6637 mark_reg_known_zero(env, regs, BPF_REG_0);
6638 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
6639 } else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) {
6640 mark_reg_known_zero(env, regs, BPF_REG_0);
6641 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
6642 regs[BPF_REG_0].mem_size = meta.mem_size;
6643 } else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) {
6644 const struct btf_type *t;
6645
6646 mark_reg_known_zero(env, regs, BPF_REG_0);
6647 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6648 if (!btf_type_is_struct(t)) {
6649 u32 tsize;
6650 const struct btf_type *ret;
6651 const char *tname;
6652
6653 /* resolve the type size of ksym. */
6654 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6655 if (IS_ERR(ret)) {
6656 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6657 verbose(env, "unable to resolve the size of type '%s': %ld\n",
6658 tname, PTR_ERR(ret));
6659 return -EINVAL;
6660 }
6661 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
6662 regs[BPF_REG_0].mem_size = tsize;
6663 } else {
6664 /* MEM_RDONLY may be carried from ret_flag, but it
6665 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
6666 * it will confuse the check of PTR_TO_BTF_ID in
6667 * check_mem_access().
6668 */
6669 ret_flag &= ~MEM_RDONLY;
6670
6671 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
6672 regs[BPF_REG_0].btf = meta.ret_btf;
6673 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6674 }
6675 } else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) {
6676 int ret_btf_id;
6677
6678 mark_reg_known_zero(env, regs, BPF_REG_0);
6679 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
6680 ret_btf_id = *fn->ret_btf_id;
6681 if (ret_btf_id == 0) {
6682 verbose(env, "invalid return type %u of func %s#%d\n",
6683 base_type(ret_type), func_id_name(func_id),
6684 func_id);
6685 return -EINVAL;
6686 }
6687 /* current BPF helper definitions are only coming from
6688 * built-in code with type IDs from vmlinux BTF
6689 */
6690 regs[BPF_REG_0].btf = btf_vmlinux;
6691 regs[BPF_REG_0].btf_id = ret_btf_id;
6692 } else {
6693 verbose(env, "unknown return type %u of func %s#%d\n",
6694 base_type(ret_type), func_id_name(func_id), func_id);
6695 return -EINVAL;
6696 }
6697
6698 if (type_may_be_null(regs[BPF_REG_0].type))
6699 regs[BPF_REG_0].id = ++env->id_gen;
6700
6701 if (is_ptr_cast_function(func_id)) {
6702 /* For release_reference() */
6703 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6704 } else if (is_acquire_function(func_id, meta.map_ptr)) {
6705 int id = acquire_reference_state(env, insn_idx);
6706
6707 if (id < 0)
6708 return id;
6709 /* For mark_ptr_or_null_reg() */
6710 regs[BPF_REG_0].id = id;
6711 /* For release_reference() */
6712 regs[BPF_REG_0].ref_obj_id = id;
6713 }
6714
6715 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6716
6717 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6718 if (err)
6719 return err;
6720
6721 if ((func_id == BPF_FUNC_get_stack ||
6722 func_id == BPF_FUNC_get_task_stack) &&
6723 !env->prog->has_callchain_buf) {
6724 const char *err_str;
6725
6726 #ifdef CONFIG_PERF_EVENTS
6727 err = get_callchain_buffers(sysctl_perf_event_max_stack);
6728 err_str = "cannot get callchain buffer for func %s#%d\n";
6729 #else
6730 err = -ENOTSUPP;
6731 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6732 #endif
6733 if (err) {
6734 verbose(env, err_str, func_id_name(func_id), func_id);
6735 return err;
6736 }
6737
6738 env->prog->has_callchain_buf = true;
6739 }
6740
6741 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6742 env->prog->call_get_stack = true;
6743
6744 if (func_id == BPF_FUNC_get_func_ip) {
6745 if (check_get_func_ip(env))
6746 return -ENOTSUPP;
6747 env->prog->call_get_func_ip = true;
6748 }
6749
6750 if (changes_data)
6751 clear_all_pkt_pointers(env);
6752 return 0;
6753 }
6754
6755 /* mark_btf_func_reg_size() is used when the reg size is determined by
6756 * the BTF func_proto's return value size and argument.
6757 */
mark_btf_func_reg_size(struct bpf_verifier_env * env,u32 regno,size_t reg_size)6758 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6759 size_t reg_size)
6760 {
6761 struct bpf_reg_state *reg = &cur_regs(env)[regno];
6762
6763 if (regno == BPF_REG_0) {
6764 /* Function return value */
6765 reg->live |= REG_LIVE_WRITTEN;
6766 reg->subreg_def = reg_size == sizeof(u64) ?
6767 DEF_NOT_SUBREG : env->insn_idx + 1;
6768 } else {
6769 /* Function argument */
6770 if (reg_size == sizeof(u64)) {
6771 mark_insn_zext(env, reg);
6772 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6773 } else {
6774 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6775 }
6776 }
6777 }
6778
check_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn)6779 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6780 {
6781 const struct btf_type *t, *func, *func_proto, *ptr_type;
6782 struct bpf_reg_state *regs = cur_regs(env);
6783 const char *func_name, *ptr_type_name;
6784 u32 i, nargs, func_id, ptr_type_id;
6785 const struct btf_param *args;
6786 int err;
6787
6788 func_id = insn->imm;
6789 func = btf_type_by_id(btf_vmlinux, func_id);
6790 func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
6791 func_proto = btf_type_by_id(btf_vmlinux, func->type);
6792
6793 if (!env->ops->check_kfunc_call ||
6794 !env->ops->check_kfunc_call(func_id)) {
6795 verbose(env, "calling kernel function %s is not allowed\n",
6796 func_name);
6797 return -EACCES;
6798 }
6799
6800 /* Check the arguments */
6801 err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs);
6802 if (err)
6803 return err;
6804
6805 for (i = 0; i < CALLER_SAVED_REGS; i++)
6806 mark_reg_not_init(env, regs, caller_saved[i]);
6807
6808 /* Check return type */
6809 t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL);
6810 if (btf_type_is_scalar(t)) {
6811 mark_reg_unknown(env, regs, BPF_REG_0);
6812 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6813 } else if (btf_type_is_ptr(t)) {
6814 ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type,
6815 &ptr_type_id);
6816 if (!btf_type_is_struct(ptr_type)) {
6817 ptr_type_name = btf_name_by_offset(btf_vmlinux,
6818 ptr_type->name_off);
6819 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6820 func_name, btf_type_str(ptr_type),
6821 ptr_type_name);
6822 return -EINVAL;
6823 }
6824 mark_reg_known_zero(env, regs, BPF_REG_0);
6825 regs[BPF_REG_0].btf = btf_vmlinux;
6826 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6827 regs[BPF_REG_0].btf_id = ptr_type_id;
6828 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6829 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6830
6831 nargs = btf_type_vlen(func_proto);
6832 args = (const struct btf_param *)(func_proto + 1);
6833 for (i = 0; i < nargs; i++) {
6834 u32 regno = i + 1;
6835
6836 t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL);
6837 if (btf_type_is_ptr(t))
6838 mark_btf_func_reg_size(env, regno, sizeof(void *));
6839 else
6840 /* scalar. ensured by btf_check_kfunc_arg_match() */
6841 mark_btf_func_reg_size(env, regno, t->size);
6842 }
6843
6844 return 0;
6845 }
6846
signed_add_overflows(s64 a,s64 b)6847 static bool signed_add_overflows(s64 a, s64 b)
6848 {
6849 /* Do the add in u64, where overflow is well-defined */
6850 s64 res = (s64)((u64)a + (u64)b);
6851
6852 if (b < 0)
6853 return res > a;
6854 return res < a;
6855 }
6856
signed_add32_overflows(s32 a,s32 b)6857 static bool signed_add32_overflows(s32 a, s32 b)
6858 {
6859 /* Do the add in u32, where overflow is well-defined */
6860 s32 res = (s32)((u32)a + (u32)b);
6861
6862 if (b < 0)
6863 return res > a;
6864 return res < a;
6865 }
6866
signed_sub_overflows(s64 a,s64 b)6867 static bool signed_sub_overflows(s64 a, s64 b)
6868 {
6869 /* Do the sub in u64, where overflow is well-defined */
6870 s64 res = (s64)((u64)a - (u64)b);
6871
6872 if (b < 0)
6873 return res < a;
6874 return res > a;
6875 }
6876
signed_sub32_overflows(s32 a,s32 b)6877 static bool signed_sub32_overflows(s32 a, s32 b)
6878 {
6879 /* Do the sub in u32, where overflow is well-defined */
6880 s32 res = (s32)((u32)a - (u32)b);
6881
6882 if (b < 0)
6883 return res < a;
6884 return res > a;
6885 }
6886
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)6887 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6888 const struct bpf_reg_state *reg,
6889 enum bpf_reg_type type)
6890 {
6891 bool known = tnum_is_const(reg->var_off);
6892 s64 val = reg->var_off.value;
6893 s64 smin = reg->smin_value;
6894
6895 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6896 verbose(env, "math between %s pointer and %lld is not allowed\n",
6897 reg_type_str(env, type), val);
6898 return false;
6899 }
6900
6901 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6902 verbose(env, "%s pointer offset %d is not allowed\n",
6903 reg_type_str(env, type), reg->off);
6904 return false;
6905 }
6906
6907 if (smin == S64_MIN) {
6908 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6909 reg_type_str(env, type));
6910 return false;
6911 }
6912
6913 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6914 verbose(env, "value %lld makes %s pointer be out of bounds\n",
6915 smin, reg_type_str(env, type));
6916 return false;
6917 }
6918
6919 return true;
6920 }
6921
cur_aux(struct bpf_verifier_env * env)6922 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6923 {
6924 return &env->insn_aux_data[env->insn_idx];
6925 }
6926
6927 enum {
6928 REASON_BOUNDS = -1,
6929 REASON_TYPE = -2,
6930 REASON_PATHS = -3,
6931 REASON_LIMIT = -4,
6932 REASON_STACK = -5,
6933 };
6934
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)6935 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6936 u32 *alu_limit, bool mask_to_left)
6937 {
6938 u32 max = 0, ptr_limit = 0;
6939
6940 switch (ptr_reg->type) {
6941 case PTR_TO_STACK:
6942 /* Offset 0 is out-of-bounds, but acceptable start for the
6943 * left direction, see BPF_REG_FP. Also, unknown scalar
6944 * offset where we would need to deal with min/max bounds is
6945 * currently prohibited for unprivileged.
6946 */
6947 max = MAX_BPF_STACK + mask_to_left;
6948 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6949 break;
6950 case PTR_TO_MAP_VALUE:
6951 max = ptr_reg->map_ptr->value_size;
6952 ptr_limit = (mask_to_left ?
6953 ptr_reg->smin_value :
6954 ptr_reg->umax_value) + ptr_reg->off;
6955 break;
6956 default:
6957 return REASON_TYPE;
6958 }
6959
6960 if (ptr_limit >= max)
6961 return REASON_LIMIT;
6962 *alu_limit = ptr_limit;
6963 return 0;
6964 }
6965
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)6966 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6967 const struct bpf_insn *insn)
6968 {
6969 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6970 }
6971
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)6972 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6973 u32 alu_state, u32 alu_limit)
6974 {
6975 /* If we arrived here from different branches with different
6976 * state or limits to sanitize, then this won't work.
6977 */
6978 if (aux->alu_state &&
6979 (aux->alu_state != alu_state ||
6980 aux->alu_limit != alu_limit))
6981 return REASON_PATHS;
6982
6983 /* Corresponding fixup done in do_misc_fixups(). */
6984 aux->alu_state = alu_state;
6985 aux->alu_limit = alu_limit;
6986 return 0;
6987 }
6988
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)6989 static int sanitize_val_alu(struct bpf_verifier_env *env,
6990 struct bpf_insn *insn)
6991 {
6992 struct bpf_insn_aux_data *aux = cur_aux(env);
6993
6994 if (can_skip_alu_sanitation(env, insn))
6995 return 0;
6996
6997 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6998 }
6999
sanitize_needed(u8 opcode)7000 static bool sanitize_needed(u8 opcode)
7001 {
7002 return opcode == BPF_ADD || opcode == BPF_SUB;
7003 }
7004
7005 struct bpf_sanitize_info {
7006 struct bpf_insn_aux_data aux;
7007 bool mask_to_left;
7008 };
7009
7010 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)7011 sanitize_speculative_path(struct bpf_verifier_env *env,
7012 const struct bpf_insn *insn,
7013 u32 next_idx, u32 curr_idx)
7014 {
7015 struct bpf_verifier_state *branch;
7016 struct bpf_reg_state *regs;
7017
7018 branch = push_stack(env, next_idx, curr_idx, true);
7019 if (branch && insn) {
7020 regs = branch->frame[branch->curframe]->regs;
7021 if (BPF_SRC(insn->code) == BPF_K) {
7022 mark_reg_unknown(env, regs, insn->dst_reg);
7023 } else if (BPF_SRC(insn->code) == BPF_X) {
7024 mark_reg_unknown(env, regs, insn->dst_reg);
7025 mark_reg_unknown(env, regs, insn->src_reg);
7026 }
7027 }
7028 return branch;
7029 }
7030
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)7031 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
7032 struct bpf_insn *insn,
7033 const struct bpf_reg_state *ptr_reg,
7034 const struct bpf_reg_state *off_reg,
7035 struct bpf_reg_state *dst_reg,
7036 struct bpf_sanitize_info *info,
7037 const bool commit_window)
7038 {
7039 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
7040 struct bpf_verifier_state *vstate = env->cur_state;
7041 bool off_is_imm = tnum_is_const(off_reg->var_off);
7042 bool off_is_neg = off_reg->smin_value < 0;
7043 bool ptr_is_dst_reg = ptr_reg == dst_reg;
7044 u8 opcode = BPF_OP(insn->code);
7045 u32 alu_state, alu_limit;
7046 struct bpf_reg_state tmp;
7047 bool ret;
7048 int err;
7049
7050 if (can_skip_alu_sanitation(env, insn))
7051 return 0;
7052
7053 /* We already marked aux for masking from non-speculative
7054 * paths, thus we got here in the first place. We only care
7055 * to explore bad access from here.
7056 */
7057 if (vstate->speculative)
7058 goto do_sim;
7059
7060 if (!commit_window) {
7061 if (!tnum_is_const(off_reg->var_off) &&
7062 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
7063 return REASON_BOUNDS;
7064
7065 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
7066 (opcode == BPF_SUB && !off_is_neg);
7067 }
7068
7069 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
7070 if (err < 0)
7071 return err;
7072
7073 if (commit_window) {
7074 /* In commit phase we narrow the masking window based on
7075 * the observed pointer move after the simulated operation.
7076 */
7077 alu_state = info->aux.alu_state;
7078 alu_limit = abs(info->aux.alu_limit - alu_limit);
7079 } else {
7080 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
7081 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7082 alu_state |= ptr_is_dst_reg ?
7083 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
7084
7085 /* Limit pruning on unknown scalars to enable deep search for
7086 * potential masking differences from other program paths.
7087 */
7088 if (!off_is_imm)
7089 env->explore_alu_limits = true;
7090 }
7091
7092 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
7093 if (err < 0)
7094 return err;
7095 do_sim:
7096 /* If we're in commit phase, we're done here given we already
7097 * pushed the truncated dst_reg into the speculative verification
7098 * stack.
7099 *
7100 * Also, when register is a known constant, we rewrite register-based
7101 * operation to immediate-based, and thus do not need masking (and as
7102 * a consequence, do not need to simulate the zero-truncation either).
7103 */
7104 if (commit_window || off_is_imm)
7105 return 0;
7106
7107 /* Simulate and find potential out-of-bounds access under
7108 * speculative execution from truncation as a result of
7109 * masking when off was not within expected range. If off
7110 * sits in dst, then we temporarily need to move ptr there
7111 * to simulate dst (== 0) +/-= ptr. Needed, for example,
7112 * for cases where we use K-based arithmetic in one direction
7113 * and truncated reg-based in the other in order to explore
7114 * bad access.
7115 */
7116 if (!ptr_is_dst_reg) {
7117 tmp = *dst_reg;
7118 copy_register_state(dst_reg, ptr_reg);
7119 }
7120 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
7121 env->insn_idx);
7122 if (!ptr_is_dst_reg && ret)
7123 *dst_reg = tmp;
7124 return !ret ? REASON_STACK : 0;
7125 }
7126
sanitize_mark_insn_seen(struct bpf_verifier_env * env)7127 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
7128 {
7129 struct bpf_verifier_state *vstate = env->cur_state;
7130
7131 /* If we simulate paths under speculation, we don't update the
7132 * insn as 'seen' such that when we verify unreachable paths in
7133 * the non-speculative domain, sanitize_dead_code() can still
7134 * rewrite/sanitize them.
7135 */
7136 if (!vstate->speculative)
7137 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7138 }
7139
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)7140 static int sanitize_err(struct bpf_verifier_env *env,
7141 const struct bpf_insn *insn, int reason,
7142 const struct bpf_reg_state *off_reg,
7143 const struct bpf_reg_state *dst_reg)
7144 {
7145 static const char *err = "pointer arithmetic with it prohibited for !root";
7146 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
7147 u32 dst = insn->dst_reg, src = insn->src_reg;
7148
7149 switch (reason) {
7150 case REASON_BOUNDS:
7151 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
7152 off_reg == dst_reg ? dst : src, err);
7153 break;
7154 case REASON_TYPE:
7155 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
7156 off_reg == dst_reg ? src : dst, err);
7157 break;
7158 case REASON_PATHS:
7159 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
7160 dst, op, err);
7161 break;
7162 case REASON_LIMIT:
7163 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
7164 dst, op, err);
7165 break;
7166 case REASON_STACK:
7167 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
7168 dst, err);
7169 break;
7170 default:
7171 verbose(env, "verifier internal error: unknown reason (%d)\n",
7172 reason);
7173 break;
7174 }
7175
7176 return -EACCES;
7177 }
7178
7179 /* check that stack access falls within stack limits and that 'reg' doesn't
7180 * have a variable offset.
7181 *
7182 * Variable offset is prohibited for unprivileged mode for simplicity since it
7183 * requires corresponding support in Spectre masking for stack ALU. See also
7184 * retrieve_ptr_limit().
7185 *
7186 *
7187 * 'off' includes 'reg->off'.
7188 */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)7189 static int check_stack_access_for_ptr_arithmetic(
7190 struct bpf_verifier_env *env,
7191 int regno,
7192 const struct bpf_reg_state *reg,
7193 int off)
7194 {
7195 if (!tnum_is_const(reg->var_off)) {
7196 char tn_buf[48];
7197
7198 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7199 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
7200 regno, tn_buf, off);
7201 return -EACCES;
7202 }
7203
7204 if (off >= 0 || off < -MAX_BPF_STACK) {
7205 verbose(env, "R%d stack pointer arithmetic goes out of range, "
7206 "prohibited for !root; off=%d\n", regno, off);
7207 return -EACCES;
7208 }
7209
7210 return 0;
7211 }
7212
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)7213 static int sanitize_check_bounds(struct bpf_verifier_env *env,
7214 const struct bpf_insn *insn,
7215 const struct bpf_reg_state *dst_reg)
7216 {
7217 u32 dst = insn->dst_reg;
7218
7219 /* For unprivileged we require that resulting offset must be in bounds
7220 * in order to be able to sanitize access later on.
7221 */
7222 if (env->bypass_spec_v1)
7223 return 0;
7224
7225 switch (dst_reg->type) {
7226 case PTR_TO_STACK:
7227 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
7228 dst_reg->off + dst_reg->var_off.value))
7229 return -EACCES;
7230 break;
7231 case PTR_TO_MAP_VALUE:
7232 if (check_map_access(env, dst, dst_reg->off, 1, false)) {
7233 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
7234 "prohibited for !root\n", dst);
7235 return -EACCES;
7236 }
7237 break;
7238 default:
7239 break;
7240 }
7241
7242 return 0;
7243 }
7244
7245 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
7246 * Caller should also handle BPF_MOV case separately.
7247 * If we return -EACCES, caller may want to try again treating pointer as a
7248 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
7249 */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)7250 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
7251 struct bpf_insn *insn,
7252 const struct bpf_reg_state *ptr_reg,
7253 const struct bpf_reg_state *off_reg)
7254 {
7255 struct bpf_verifier_state *vstate = env->cur_state;
7256 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7257 struct bpf_reg_state *regs = state->regs, *dst_reg;
7258 bool known = tnum_is_const(off_reg->var_off);
7259 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
7260 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
7261 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
7262 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
7263 struct bpf_sanitize_info info = {};
7264 u8 opcode = BPF_OP(insn->code);
7265 u32 dst = insn->dst_reg;
7266 int ret;
7267
7268 dst_reg = ®s[dst];
7269
7270 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
7271 smin_val > smax_val || umin_val > umax_val) {
7272 /* Taint dst register if offset had invalid bounds derived from
7273 * e.g. dead branches.
7274 */
7275 __mark_reg_unknown(env, dst_reg);
7276 return 0;
7277 }
7278
7279 if (BPF_CLASS(insn->code) != BPF_ALU64) {
7280 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
7281 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7282 __mark_reg_unknown(env, dst_reg);
7283 return 0;
7284 }
7285
7286 verbose(env,
7287 "R%d 32-bit pointer arithmetic prohibited\n",
7288 dst);
7289 return -EACCES;
7290 }
7291
7292 if (ptr_reg->type & PTR_MAYBE_NULL) {
7293 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
7294 dst, reg_type_str(env, ptr_reg->type));
7295 return -EACCES;
7296 }
7297
7298 switch (base_type(ptr_reg->type)) {
7299 case PTR_TO_FLOW_KEYS:
7300 if (known)
7301 break;
7302 fallthrough;
7303 case CONST_PTR_TO_MAP:
7304 /* smin_val represents the known value */
7305 if (known && smin_val == 0 && opcode == BPF_ADD)
7306 break;
7307 fallthrough;
7308 case PTR_TO_PACKET_END:
7309 case PTR_TO_SOCKET:
7310 case PTR_TO_SOCK_COMMON:
7311 case PTR_TO_TCP_SOCK:
7312 case PTR_TO_XDP_SOCK:
7313 reject:
7314 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
7315 dst, reg_type_str(env, ptr_reg->type));
7316 return -EACCES;
7317 default:
7318 if (type_may_be_null(ptr_reg->type))
7319 goto reject;
7320 break;
7321 }
7322
7323 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
7324 * The id may be overwritten later if we create a new variable offset.
7325 */
7326 dst_reg->type = ptr_reg->type;
7327 dst_reg->id = ptr_reg->id;
7328
7329 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
7330 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
7331 return -EINVAL;
7332
7333 /* pointer types do not carry 32-bit bounds at the moment. */
7334 __mark_reg32_unbounded(dst_reg);
7335
7336 if (sanitize_needed(opcode)) {
7337 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
7338 &info, false);
7339 if (ret < 0)
7340 return sanitize_err(env, insn, ret, off_reg, dst_reg);
7341 }
7342
7343 switch (opcode) {
7344 case BPF_ADD:
7345 /* We can take a fixed offset as long as it doesn't overflow
7346 * the s32 'off' field
7347 */
7348 if (known && (ptr_reg->off + smin_val ==
7349 (s64)(s32)(ptr_reg->off + smin_val))) {
7350 /* pointer += K. Accumulate it into fixed offset */
7351 dst_reg->smin_value = smin_ptr;
7352 dst_reg->smax_value = smax_ptr;
7353 dst_reg->umin_value = umin_ptr;
7354 dst_reg->umax_value = umax_ptr;
7355 dst_reg->var_off = ptr_reg->var_off;
7356 dst_reg->off = ptr_reg->off + smin_val;
7357 dst_reg->raw = ptr_reg->raw;
7358 break;
7359 }
7360 /* A new variable offset is created. Note that off_reg->off
7361 * == 0, since it's a scalar.
7362 * dst_reg gets the pointer type and since some positive
7363 * integer value was added to the pointer, give it a new 'id'
7364 * if it's a PTR_TO_PACKET.
7365 * this creates a new 'base' pointer, off_reg (variable) gets
7366 * added into the variable offset, and we copy the fixed offset
7367 * from ptr_reg.
7368 */
7369 if (signed_add_overflows(smin_ptr, smin_val) ||
7370 signed_add_overflows(smax_ptr, smax_val)) {
7371 dst_reg->smin_value = S64_MIN;
7372 dst_reg->smax_value = S64_MAX;
7373 } else {
7374 dst_reg->smin_value = smin_ptr + smin_val;
7375 dst_reg->smax_value = smax_ptr + smax_val;
7376 }
7377 if (umin_ptr + umin_val < umin_ptr ||
7378 umax_ptr + umax_val < umax_ptr) {
7379 dst_reg->umin_value = 0;
7380 dst_reg->umax_value = U64_MAX;
7381 } else {
7382 dst_reg->umin_value = umin_ptr + umin_val;
7383 dst_reg->umax_value = umax_ptr + umax_val;
7384 }
7385 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
7386 dst_reg->off = ptr_reg->off;
7387 dst_reg->raw = ptr_reg->raw;
7388 if (reg_is_pkt_pointer(ptr_reg)) {
7389 dst_reg->id = ++env->id_gen;
7390 /* something was added to pkt_ptr, set range to zero */
7391 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7392 }
7393 break;
7394 case BPF_SUB:
7395 if (dst_reg == off_reg) {
7396 /* scalar -= pointer. Creates an unknown scalar */
7397 verbose(env, "R%d tried to subtract pointer from scalar\n",
7398 dst);
7399 return -EACCES;
7400 }
7401 /* We don't allow subtraction from FP, because (according to
7402 * test_verifier.c test "invalid fp arithmetic", JITs might not
7403 * be able to deal with it.
7404 */
7405 if (ptr_reg->type == PTR_TO_STACK) {
7406 verbose(env, "R%d subtraction from stack pointer prohibited\n",
7407 dst);
7408 return -EACCES;
7409 }
7410 if (known && (ptr_reg->off - smin_val ==
7411 (s64)(s32)(ptr_reg->off - smin_val))) {
7412 /* pointer -= K. Subtract it from fixed offset */
7413 dst_reg->smin_value = smin_ptr;
7414 dst_reg->smax_value = smax_ptr;
7415 dst_reg->umin_value = umin_ptr;
7416 dst_reg->umax_value = umax_ptr;
7417 dst_reg->var_off = ptr_reg->var_off;
7418 dst_reg->id = ptr_reg->id;
7419 dst_reg->off = ptr_reg->off - smin_val;
7420 dst_reg->raw = ptr_reg->raw;
7421 break;
7422 }
7423 /* A new variable offset is created. If the subtrahend is known
7424 * nonnegative, then any reg->range we had before is still good.
7425 */
7426 if (signed_sub_overflows(smin_ptr, smax_val) ||
7427 signed_sub_overflows(smax_ptr, smin_val)) {
7428 /* Overflow possible, we know nothing */
7429 dst_reg->smin_value = S64_MIN;
7430 dst_reg->smax_value = S64_MAX;
7431 } else {
7432 dst_reg->smin_value = smin_ptr - smax_val;
7433 dst_reg->smax_value = smax_ptr - smin_val;
7434 }
7435 if (umin_ptr < umax_val) {
7436 /* Overflow possible, we know nothing */
7437 dst_reg->umin_value = 0;
7438 dst_reg->umax_value = U64_MAX;
7439 } else {
7440 /* Cannot overflow (as long as bounds are consistent) */
7441 dst_reg->umin_value = umin_ptr - umax_val;
7442 dst_reg->umax_value = umax_ptr - umin_val;
7443 }
7444 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
7445 dst_reg->off = ptr_reg->off;
7446 dst_reg->raw = ptr_reg->raw;
7447 if (reg_is_pkt_pointer(ptr_reg)) {
7448 dst_reg->id = ++env->id_gen;
7449 /* something was added to pkt_ptr, set range to zero */
7450 if (smin_val < 0)
7451 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7452 }
7453 break;
7454 case BPF_AND:
7455 case BPF_OR:
7456 case BPF_XOR:
7457 /* bitwise ops on pointers are troublesome, prohibit. */
7458 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
7459 dst, bpf_alu_string[opcode >> 4]);
7460 return -EACCES;
7461 default:
7462 /* other operators (e.g. MUL,LSH) produce non-pointer results */
7463 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
7464 dst, bpf_alu_string[opcode >> 4]);
7465 return -EACCES;
7466 }
7467
7468 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
7469 return -EINVAL;
7470 reg_bounds_sync(dst_reg);
7471 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
7472 return -EACCES;
7473 if (sanitize_needed(opcode)) {
7474 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
7475 &info, true);
7476 if (ret < 0)
7477 return sanitize_err(env, insn, ret, off_reg, dst_reg);
7478 }
7479
7480 return 0;
7481 }
7482
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7483 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
7484 struct bpf_reg_state *src_reg)
7485 {
7486 s32 smin_val = src_reg->s32_min_value;
7487 s32 smax_val = src_reg->s32_max_value;
7488 u32 umin_val = src_reg->u32_min_value;
7489 u32 umax_val = src_reg->u32_max_value;
7490
7491 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
7492 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
7493 dst_reg->s32_min_value = S32_MIN;
7494 dst_reg->s32_max_value = S32_MAX;
7495 } else {
7496 dst_reg->s32_min_value += smin_val;
7497 dst_reg->s32_max_value += smax_val;
7498 }
7499 if (dst_reg->u32_min_value + umin_val < umin_val ||
7500 dst_reg->u32_max_value + umax_val < umax_val) {
7501 dst_reg->u32_min_value = 0;
7502 dst_reg->u32_max_value = U32_MAX;
7503 } else {
7504 dst_reg->u32_min_value += umin_val;
7505 dst_reg->u32_max_value += umax_val;
7506 }
7507 }
7508
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7509 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
7510 struct bpf_reg_state *src_reg)
7511 {
7512 s64 smin_val = src_reg->smin_value;
7513 s64 smax_val = src_reg->smax_value;
7514 u64 umin_val = src_reg->umin_value;
7515 u64 umax_val = src_reg->umax_value;
7516
7517 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
7518 signed_add_overflows(dst_reg->smax_value, smax_val)) {
7519 dst_reg->smin_value = S64_MIN;
7520 dst_reg->smax_value = S64_MAX;
7521 } else {
7522 dst_reg->smin_value += smin_val;
7523 dst_reg->smax_value += smax_val;
7524 }
7525 if (dst_reg->umin_value + umin_val < umin_val ||
7526 dst_reg->umax_value + umax_val < umax_val) {
7527 dst_reg->umin_value = 0;
7528 dst_reg->umax_value = U64_MAX;
7529 } else {
7530 dst_reg->umin_value += umin_val;
7531 dst_reg->umax_value += umax_val;
7532 }
7533 }
7534
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7535 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7536 struct bpf_reg_state *src_reg)
7537 {
7538 s32 smin_val = src_reg->s32_min_value;
7539 s32 smax_val = src_reg->s32_max_value;
7540 u32 umin_val = src_reg->u32_min_value;
7541 u32 umax_val = src_reg->u32_max_value;
7542
7543 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7544 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7545 /* Overflow possible, we know nothing */
7546 dst_reg->s32_min_value = S32_MIN;
7547 dst_reg->s32_max_value = S32_MAX;
7548 } else {
7549 dst_reg->s32_min_value -= smax_val;
7550 dst_reg->s32_max_value -= smin_val;
7551 }
7552 if (dst_reg->u32_min_value < umax_val) {
7553 /* Overflow possible, we know nothing */
7554 dst_reg->u32_min_value = 0;
7555 dst_reg->u32_max_value = U32_MAX;
7556 } else {
7557 /* Cannot overflow (as long as bounds are consistent) */
7558 dst_reg->u32_min_value -= umax_val;
7559 dst_reg->u32_max_value -= umin_val;
7560 }
7561 }
7562
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7563 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7564 struct bpf_reg_state *src_reg)
7565 {
7566 s64 smin_val = src_reg->smin_value;
7567 s64 smax_val = src_reg->smax_value;
7568 u64 umin_val = src_reg->umin_value;
7569 u64 umax_val = src_reg->umax_value;
7570
7571 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7572 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7573 /* Overflow possible, we know nothing */
7574 dst_reg->smin_value = S64_MIN;
7575 dst_reg->smax_value = S64_MAX;
7576 } else {
7577 dst_reg->smin_value -= smax_val;
7578 dst_reg->smax_value -= smin_val;
7579 }
7580 if (dst_reg->umin_value < umax_val) {
7581 /* Overflow possible, we know nothing */
7582 dst_reg->umin_value = 0;
7583 dst_reg->umax_value = U64_MAX;
7584 } else {
7585 /* Cannot overflow (as long as bounds are consistent) */
7586 dst_reg->umin_value -= umax_val;
7587 dst_reg->umax_value -= umin_val;
7588 }
7589 }
7590
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7591 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7592 struct bpf_reg_state *src_reg)
7593 {
7594 s32 smin_val = src_reg->s32_min_value;
7595 u32 umin_val = src_reg->u32_min_value;
7596 u32 umax_val = src_reg->u32_max_value;
7597
7598 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7599 /* Ain't nobody got time to multiply that sign */
7600 __mark_reg32_unbounded(dst_reg);
7601 return;
7602 }
7603 /* Both values are positive, so we can work with unsigned and
7604 * copy the result to signed (unless it exceeds S32_MAX).
7605 */
7606 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7607 /* Potential overflow, we know nothing */
7608 __mark_reg32_unbounded(dst_reg);
7609 return;
7610 }
7611 dst_reg->u32_min_value *= umin_val;
7612 dst_reg->u32_max_value *= umax_val;
7613 if (dst_reg->u32_max_value > S32_MAX) {
7614 /* Overflow possible, we know nothing */
7615 dst_reg->s32_min_value = S32_MIN;
7616 dst_reg->s32_max_value = S32_MAX;
7617 } else {
7618 dst_reg->s32_min_value = dst_reg->u32_min_value;
7619 dst_reg->s32_max_value = dst_reg->u32_max_value;
7620 }
7621 }
7622
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7623 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7624 struct bpf_reg_state *src_reg)
7625 {
7626 s64 smin_val = src_reg->smin_value;
7627 u64 umin_val = src_reg->umin_value;
7628 u64 umax_val = src_reg->umax_value;
7629
7630 if (smin_val < 0 || dst_reg->smin_value < 0) {
7631 /* Ain't nobody got time to multiply that sign */
7632 __mark_reg64_unbounded(dst_reg);
7633 return;
7634 }
7635 /* Both values are positive, so we can work with unsigned and
7636 * copy the result to signed (unless it exceeds S64_MAX).
7637 */
7638 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7639 /* Potential overflow, we know nothing */
7640 __mark_reg64_unbounded(dst_reg);
7641 return;
7642 }
7643 dst_reg->umin_value *= umin_val;
7644 dst_reg->umax_value *= umax_val;
7645 if (dst_reg->umax_value > S64_MAX) {
7646 /* Overflow possible, we know nothing */
7647 dst_reg->smin_value = S64_MIN;
7648 dst_reg->smax_value = S64_MAX;
7649 } else {
7650 dst_reg->smin_value = dst_reg->umin_value;
7651 dst_reg->smax_value = dst_reg->umax_value;
7652 }
7653 }
7654
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7655 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7656 struct bpf_reg_state *src_reg)
7657 {
7658 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7659 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7660 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7661 s32 smin_val = src_reg->s32_min_value;
7662 u32 umax_val = src_reg->u32_max_value;
7663
7664 if (src_known && dst_known) {
7665 __mark_reg32_known(dst_reg, var32_off.value);
7666 return;
7667 }
7668
7669 /* We get our minimum from the var_off, since that's inherently
7670 * bitwise. Our maximum is the minimum of the operands' maxima.
7671 */
7672 dst_reg->u32_min_value = var32_off.value;
7673 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7674 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7675 /* Lose signed bounds when ANDing negative numbers,
7676 * ain't nobody got time for that.
7677 */
7678 dst_reg->s32_min_value = S32_MIN;
7679 dst_reg->s32_max_value = S32_MAX;
7680 } else {
7681 /* ANDing two positives gives a positive, so safe to
7682 * cast result into s64.
7683 */
7684 dst_reg->s32_min_value = dst_reg->u32_min_value;
7685 dst_reg->s32_max_value = dst_reg->u32_max_value;
7686 }
7687 }
7688
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7689 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7690 struct bpf_reg_state *src_reg)
7691 {
7692 bool src_known = tnum_is_const(src_reg->var_off);
7693 bool dst_known = tnum_is_const(dst_reg->var_off);
7694 s64 smin_val = src_reg->smin_value;
7695 u64 umax_val = src_reg->umax_value;
7696
7697 if (src_known && dst_known) {
7698 __mark_reg_known(dst_reg, dst_reg->var_off.value);
7699 return;
7700 }
7701
7702 /* We get our minimum from the var_off, since that's inherently
7703 * bitwise. Our maximum is the minimum of the operands' maxima.
7704 */
7705 dst_reg->umin_value = dst_reg->var_off.value;
7706 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7707 if (dst_reg->smin_value < 0 || smin_val < 0) {
7708 /* Lose signed bounds when ANDing negative numbers,
7709 * ain't nobody got time for that.
7710 */
7711 dst_reg->smin_value = S64_MIN;
7712 dst_reg->smax_value = S64_MAX;
7713 } else {
7714 /* ANDing two positives gives a positive, so safe to
7715 * cast result into s64.
7716 */
7717 dst_reg->smin_value = dst_reg->umin_value;
7718 dst_reg->smax_value = dst_reg->umax_value;
7719 }
7720 /* We may learn something more from the var_off */
7721 __update_reg_bounds(dst_reg);
7722 }
7723
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7724 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7725 struct bpf_reg_state *src_reg)
7726 {
7727 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7728 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7729 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7730 s32 smin_val = src_reg->s32_min_value;
7731 u32 umin_val = src_reg->u32_min_value;
7732
7733 if (src_known && dst_known) {
7734 __mark_reg32_known(dst_reg, var32_off.value);
7735 return;
7736 }
7737
7738 /* We get our maximum from the var_off, and our minimum is the
7739 * maximum of the operands' minima
7740 */
7741 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7742 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7743 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7744 /* Lose signed bounds when ORing negative numbers,
7745 * ain't nobody got time for that.
7746 */
7747 dst_reg->s32_min_value = S32_MIN;
7748 dst_reg->s32_max_value = S32_MAX;
7749 } else {
7750 /* ORing two positives gives a positive, so safe to
7751 * cast result into s64.
7752 */
7753 dst_reg->s32_min_value = dst_reg->u32_min_value;
7754 dst_reg->s32_max_value = dst_reg->u32_max_value;
7755 }
7756 }
7757
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7758 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7759 struct bpf_reg_state *src_reg)
7760 {
7761 bool src_known = tnum_is_const(src_reg->var_off);
7762 bool dst_known = tnum_is_const(dst_reg->var_off);
7763 s64 smin_val = src_reg->smin_value;
7764 u64 umin_val = src_reg->umin_value;
7765
7766 if (src_known && dst_known) {
7767 __mark_reg_known(dst_reg, dst_reg->var_off.value);
7768 return;
7769 }
7770
7771 /* We get our maximum from the var_off, and our minimum is the
7772 * maximum of the operands' minima
7773 */
7774 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7775 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7776 if (dst_reg->smin_value < 0 || smin_val < 0) {
7777 /* Lose signed bounds when ORing negative numbers,
7778 * ain't nobody got time for that.
7779 */
7780 dst_reg->smin_value = S64_MIN;
7781 dst_reg->smax_value = S64_MAX;
7782 } else {
7783 /* ORing two positives gives a positive, so safe to
7784 * cast result into s64.
7785 */
7786 dst_reg->smin_value = dst_reg->umin_value;
7787 dst_reg->smax_value = dst_reg->umax_value;
7788 }
7789 /* We may learn something more from the var_off */
7790 __update_reg_bounds(dst_reg);
7791 }
7792
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7793 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7794 struct bpf_reg_state *src_reg)
7795 {
7796 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7797 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7798 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7799 s32 smin_val = src_reg->s32_min_value;
7800
7801 if (src_known && dst_known) {
7802 __mark_reg32_known(dst_reg, var32_off.value);
7803 return;
7804 }
7805
7806 /* We get both minimum and maximum from the var32_off. */
7807 dst_reg->u32_min_value = var32_off.value;
7808 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7809
7810 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7811 /* XORing two positive sign numbers gives a positive,
7812 * so safe to cast u32 result into s32.
7813 */
7814 dst_reg->s32_min_value = dst_reg->u32_min_value;
7815 dst_reg->s32_max_value = dst_reg->u32_max_value;
7816 } else {
7817 dst_reg->s32_min_value = S32_MIN;
7818 dst_reg->s32_max_value = S32_MAX;
7819 }
7820 }
7821
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7822 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7823 struct bpf_reg_state *src_reg)
7824 {
7825 bool src_known = tnum_is_const(src_reg->var_off);
7826 bool dst_known = tnum_is_const(dst_reg->var_off);
7827 s64 smin_val = src_reg->smin_value;
7828
7829 if (src_known && dst_known) {
7830 /* dst_reg->var_off.value has been updated earlier */
7831 __mark_reg_known(dst_reg, dst_reg->var_off.value);
7832 return;
7833 }
7834
7835 /* We get both minimum and maximum from the var_off. */
7836 dst_reg->umin_value = dst_reg->var_off.value;
7837 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7838
7839 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7840 /* XORing two positive sign numbers gives a positive,
7841 * so safe to cast u64 result into s64.
7842 */
7843 dst_reg->smin_value = dst_reg->umin_value;
7844 dst_reg->smax_value = dst_reg->umax_value;
7845 } else {
7846 dst_reg->smin_value = S64_MIN;
7847 dst_reg->smax_value = S64_MAX;
7848 }
7849
7850 __update_reg_bounds(dst_reg);
7851 }
7852
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)7853 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7854 u64 umin_val, u64 umax_val)
7855 {
7856 /* We lose all sign bit information (except what we can pick
7857 * up from var_off)
7858 */
7859 dst_reg->s32_min_value = S32_MIN;
7860 dst_reg->s32_max_value = S32_MAX;
7861 /* If we might shift our top bit out, then we know nothing */
7862 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7863 dst_reg->u32_min_value = 0;
7864 dst_reg->u32_max_value = U32_MAX;
7865 } else {
7866 dst_reg->u32_min_value <<= umin_val;
7867 dst_reg->u32_max_value <<= umax_val;
7868 }
7869 }
7870
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7871 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7872 struct bpf_reg_state *src_reg)
7873 {
7874 u32 umax_val = src_reg->u32_max_value;
7875 u32 umin_val = src_reg->u32_min_value;
7876 /* u32 alu operation will zext upper bits */
7877 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7878
7879 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7880 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7881 /* Not required but being careful mark reg64 bounds as unknown so
7882 * that we are forced to pick them up from tnum and zext later and
7883 * if some path skips this step we are still safe.
7884 */
7885 __mark_reg64_unbounded(dst_reg);
7886 __update_reg32_bounds(dst_reg);
7887 }
7888
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)7889 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7890 u64 umin_val, u64 umax_val)
7891 {
7892 /* Special case <<32 because it is a common compiler pattern to sign
7893 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7894 * positive we know this shift will also be positive so we can track
7895 * bounds correctly. Otherwise we lose all sign bit information except
7896 * what we can pick up from var_off. Perhaps we can generalize this
7897 * later to shifts of any length.
7898 */
7899 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7900 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7901 else
7902 dst_reg->smax_value = S64_MAX;
7903
7904 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7905 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7906 else
7907 dst_reg->smin_value = S64_MIN;
7908
7909 /* If we might shift our top bit out, then we know nothing */
7910 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7911 dst_reg->umin_value = 0;
7912 dst_reg->umax_value = U64_MAX;
7913 } else {
7914 dst_reg->umin_value <<= umin_val;
7915 dst_reg->umax_value <<= umax_val;
7916 }
7917 }
7918
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7919 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7920 struct bpf_reg_state *src_reg)
7921 {
7922 u64 umax_val = src_reg->umax_value;
7923 u64 umin_val = src_reg->umin_value;
7924
7925 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
7926 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7927 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7928
7929 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7930 /* We may learn something more from the var_off */
7931 __update_reg_bounds(dst_reg);
7932 }
7933
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7934 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7935 struct bpf_reg_state *src_reg)
7936 {
7937 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7938 u32 umax_val = src_reg->u32_max_value;
7939 u32 umin_val = src_reg->u32_min_value;
7940
7941 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7942 * be negative, then either:
7943 * 1) src_reg might be zero, so the sign bit of the result is
7944 * unknown, so we lose our signed bounds
7945 * 2) it's known negative, thus the unsigned bounds capture the
7946 * signed bounds
7947 * 3) the signed bounds cross zero, so they tell us nothing
7948 * about the result
7949 * If the value in dst_reg is known nonnegative, then again the
7950 * unsigned bounds capture the signed bounds.
7951 * Thus, in all cases it suffices to blow away our signed bounds
7952 * and rely on inferring new ones from the unsigned bounds and
7953 * var_off of the result.
7954 */
7955 dst_reg->s32_min_value = S32_MIN;
7956 dst_reg->s32_max_value = S32_MAX;
7957
7958 dst_reg->var_off = tnum_rshift(subreg, umin_val);
7959 dst_reg->u32_min_value >>= umax_val;
7960 dst_reg->u32_max_value >>= umin_val;
7961
7962 __mark_reg64_unbounded(dst_reg);
7963 __update_reg32_bounds(dst_reg);
7964 }
7965
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7966 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7967 struct bpf_reg_state *src_reg)
7968 {
7969 u64 umax_val = src_reg->umax_value;
7970 u64 umin_val = src_reg->umin_value;
7971
7972 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7973 * be negative, then either:
7974 * 1) src_reg might be zero, so the sign bit of the result is
7975 * unknown, so we lose our signed bounds
7976 * 2) it's known negative, thus the unsigned bounds capture the
7977 * signed bounds
7978 * 3) the signed bounds cross zero, so they tell us nothing
7979 * about the result
7980 * If the value in dst_reg is known nonnegative, then again the
7981 * unsigned bounds capture the signed bounds.
7982 * Thus, in all cases it suffices to blow away our signed bounds
7983 * and rely on inferring new ones from the unsigned bounds and
7984 * var_off of the result.
7985 */
7986 dst_reg->smin_value = S64_MIN;
7987 dst_reg->smax_value = S64_MAX;
7988 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7989 dst_reg->umin_value >>= umax_val;
7990 dst_reg->umax_value >>= umin_val;
7991
7992 /* Its not easy to operate on alu32 bounds here because it depends
7993 * on bits being shifted in. Take easy way out and mark unbounded
7994 * so we can recalculate later from tnum.
7995 */
7996 __mark_reg32_unbounded(dst_reg);
7997 __update_reg_bounds(dst_reg);
7998 }
7999
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8000 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
8001 struct bpf_reg_state *src_reg)
8002 {
8003 u64 umin_val = src_reg->u32_min_value;
8004
8005 /* Upon reaching here, src_known is true and
8006 * umax_val is equal to umin_val.
8007 */
8008 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
8009 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
8010
8011 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
8012
8013 /* blow away the dst_reg umin_value/umax_value and rely on
8014 * dst_reg var_off to refine the result.
8015 */
8016 dst_reg->u32_min_value = 0;
8017 dst_reg->u32_max_value = U32_MAX;
8018
8019 __mark_reg64_unbounded(dst_reg);
8020 __update_reg32_bounds(dst_reg);
8021 }
8022
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8023 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
8024 struct bpf_reg_state *src_reg)
8025 {
8026 u64 umin_val = src_reg->umin_value;
8027
8028 /* Upon reaching here, src_known is true and umax_val is equal
8029 * to umin_val.
8030 */
8031 dst_reg->smin_value >>= umin_val;
8032 dst_reg->smax_value >>= umin_val;
8033
8034 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
8035
8036 /* blow away the dst_reg umin_value/umax_value and rely on
8037 * dst_reg var_off to refine the result.
8038 */
8039 dst_reg->umin_value = 0;
8040 dst_reg->umax_value = U64_MAX;
8041
8042 /* Its not easy to operate on alu32 bounds here because it depends
8043 * on bits being shifted in from upper 32-bits. Take easy way out
8044 * and mark unbounded so we can recalculate later from tnum.
8045 */
8046 __mark_reg32_unbounded(dst_reg);
8047 __update_reg_bounds(dst_reg);
8048 }
8049
8050 /* WARNING: This function does calculations on 64-bit values, but the actual
8051 * execution may occur on 32-bit values. Therefore, things like bitshifts
8052 * need extra checks in the 32-bit case.
8053 */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)8054 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
8055 struct bpf_insn *insn,
8056 struct bpf_reg_state *dst_reg,
8057 struct bpf_reg_state src_reg)
8058 {
8059 struct bpf_reg_state *regs = cur_regs(env);
8060 u8 opcode = BPF_OP(insn->code);
8061 bool src_known;
8062 s64 smin_val, smax_val;
8063 u64 umin_val, umax_val;
8064 s32 s32_min_val, s32_max_val;
8065 u32 u32_min_val, u32_max_val;
8066 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
8067 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
8068 int ret;
8069
8070 smin_val = src_reg.smin_value;
8071 smax_val = src_reg.smax_value;
8072 umin_val = src_reg.umin_value;
8073 umax_val = src_reg.umax_value;
8074
8075 s32_min_val = src_reg.s32_min_value;
8076 s32_max_val = src_reg.s32_max_value;
8077 u32_min_val = src_reg.u32_min_value;
8078 u32_max_val = src_reg.u32_max_value;
8079
8080 if (alu32) {
8081 src_known = tnum_subreg_is_const(src_reg.var_off);
8082 if ((src_known &&
8083 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
8084 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
8085 /* Taint dst register if offset had invalid bounds
8086 * derived from e.g. dead branches.
8087 */
8088 __mark_reg_unknown(env, dst_reg);
8089 return 0;
8090 }
8091 } else {
8092 src_known = tnum_is_const(src_reg.var_off);
8093 if ((src_known &&
8094 (smin_val != smax_val || umin_val != umax_val)) ||
8095 smin_val > smax_val || umin_val > umax_val) {
8096 /* Taint dst register if offset had invalid bounds
8097 * derived from e.g. dead branches.
8098 */
8099 __mark_reg_unknown(env, dst_reg);
8100 return 0;
8101 }
8102 }
8103
8104 if (!src_known &&
8105 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
8106 __mark_reg_unknown(env, dst_reg);
8107 return 0;
8108 }
8109
8110 if (sanitize_needed(opcode)) {
8111 ret = sanitize_val_alu(env, insn);
8112 if (ret < 0)
8113 return sanitize_err(env, insn, ret, NULL, NULL);
8114 }
8115
8116 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
8117 * There are two classes of instructions: The first class we track both
8118 * alu32 and alu64 sign/unsigned bounds independently this provides the
8119 * greatest amount of precision when alu operations are mixed with jmp32
8120 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
8121 * and BPF_OR. This is possible because these ops have fairly easy to
8122 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
8123 * See alu32 verifier tests for examples. The second class of
8124 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
8125 * with regards to tracking sign/unsigned bounds because the bits may
8126 * cross subreg boundaries in the alu64 case. When this happens we mark
8127 * the reg unbounded in the subreg bound space and use the resulting
8128 * tnum to calculate an approximation of the sign/unsigned bounds.
8129 */
8130 switch (opcode) {
8131 case BPF_ADD:
8132 scalar32_min_max_add(dst_reg, &src_reg);
8133 scalar_min_max_add(dst_reg, &src_reg);
8134 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
8135 break;
8136 case BPF_SUB:
8137 scalar32_min_max_sub(dst_reg, &src_reg);
8138 scalar_min_max_sub(dst_reg, &src_reg);
8139 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
8140 break;
8141 case BPF_MUL:
8142 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
8143 scalar32_min_max_mul(dst_reg, &src_reg);
8144 scalar_min_max_mul(dst_reg, &src_reg);
8145 break;
8146 case BPF_AND:
8147 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
8148 scalar32_min_max_and(dst_reg, &src_reg);
8149 scalar_min_max_and(dst_reg, &src_reg);
8150 break;
8151 case BPF_OR:
8152 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
8153 scalar32_min_max_or(dst_reg, &src_reg);
8154 scalar_min_max_or(dst_reg, &src_reg);
8155 break;
8156 case BPF_XOR:
8157 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
8158 scalar32_min_max_xor(dst_reg, &src_reg);
8159 scalar_min_max_xor(dst_reg, &src_reg);
8160 break;
8161 case BPF_LSH:
8162 if (umax_val >= insn_bitness) {
8163 /* Shifts greater than 31 or 63 are undefined.
8164 * This includes shifts by a negative number.
8165 */
8166 mark_reg_unknown(env, regs, insn->dst_reg);
8167 break;
8168 }
8169 if (alu32)
8170 scalar32_min_max_lsh(dst_reg, &src_reg);
8171 else
8172 scalar_min_max_lsh(dst_reg, &src_reg);
8173 break;
8174 case BPF_RSH:
8175 if (umax_val >= insn_bitness) {
8176 /* Shifts greater than 31 or 63 are undefined.
8177 * This includes shifts by a negative number.
8178 */
8179 mark_reg_unknown(env, regs, insn->dst_reg);
8180 break;
8181 }
8182 if (alu32)
8183 scalar32_min_max_rsh(dst_reg, &src_reg);
8184 else
8185 scalar_min_max_rsh(dst_reg, &src_reg);
8186 break;
8187 case BPF_ARSH:
8188 if (umax_val >= insn_bitness) {
8189 /* Shifts greater than 31 or 63 are undefined.
8190 * This includes shifts by a negative number.
8191 */
8192 mark_reg_unknown(env, regs, insn->dst_reg);
8193 break;
8194 }
8195 if (alu32)
8196 scalar32_min_max_arsh(dst_reg, &src_reg);
8197 else
8198 scalar_min_max_arsh(dst_reg, &src_reg);
8199 break;
8200 default:
8201 mark_reg_unknown(env, regs, insn->dst_reg);
8202 break;
8203 }
8204
8205 /* ALU32 ops are zero extended into 64bit register */
8206 if (alu32)
8207 zext_32_to_64(dst_reg);
8208 reg_bounds_sync(dst_reg);
8209 return 0;
8210 }
8211
8212 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
8213 * and var_off.
8214 */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)8215 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
8216 struct bpf_insn *insn)
8217 {
8218 struct bpf_verifier_state *vstate = env->cur_state;
8219 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8220 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
8221 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
8222 u8 opcode = BPF_OP(insn->code);
8223 int err;
8224
8225 dst_reg = ®s[insn->dst_reg];
8226 src_reg = NULL;
8227 if (dst_reg->type != SCALAR_VALUE)
8228 ptr_reg = dst_reg;
8229 else
8230 /* Make sure ID is cleared otherwise dst_reg min/max could be
8231 * incorrectly propagated into other registers by find_equal_scalars()
8232 */
8233 dst_reg->id = 0;
8234 if (BPF_SRC(insn->code) == BPF_X) {
8235 src_reg = ®s[insn->src_reg];
8236 if (src_reg->type != SCALAR_VALUE) {
8237 if (dst_reg->type != SCALAR_VALUE) {
8238 /* Combining two pointers by any ALU op yields
8239 * an arbitrary scalar. Disallow all math except
8240 * pointer subtraction
8241 */
8242 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
8243 mark_reg_unknown(env, regs, insn->dst_reg);
8244 return 0;
8245 }
8246 verbose(env, "R%d pointer %s pointer prohibited\n",
8247 insn->dst_reg,
8248 bpf_alu_string[opcode >> 4]);
8249 return -EACCES;
8250 } else {
8251 /* scalar += pointer
8252 * This is legal, but we have to reverse our
8253 * src/dest handling in computing the range
8254 */
8255 err = mark_chain_precision(env, insn->dst_reg);
8256 if (err)
8257 return err;
8258 return adjust_ptr_min_max_vals(env, insn,
8259 src_reg, dst_reg);
8260 }
8261 } else if (ptr_reg) {
8262 /* pointer += scalar */
8263 err = mark_chain_precision(env, insn->src_reg);
8264 if (err)
8265 return err;
8266 return adjust_ptr_min_max_vals(env, insn,
8267 dst_reg, src_reg);
8268 } else if (dst_reg->precise) {
8269 /* if dst_reg is precise, src_reg should be precise as well */
8270 err = mark_chain_precision(env, insn->src_reg);
8271 if (err)
8272 return err;
8273 }
8274 } else {
8275 /* Pretend the src is a reg with a known value, since we only
8276 * need to be able to read from this state.
8277 */
8278 off_reg.type = SCALAR_VALUE;
8279 __mark_reg_known(&off_reg, insn->imm);
8280 src_reg = &off_reg;
8281 if (ptr_reg) /* pointer += K */
8282 return adjust_ptr_min_max_vals(env, insn,
8283 ptr_reg, src_reg);
8284 }
8285
8286 /* Got here implies adding two SCALAR_VALUEs */
8287 if (WARN_ON_ONCE(ptr_reg)) {
8288 print_verifier_state(env, state);
8289 verbose(env, "verifier internal error: unexpected ptr_reg\n");
8290 return -EINVAL;
8291 }
8292 if (WARN_ON(!src_reg)) {
8293 print_verifier_state(env, state);
8294 verbose(env, "verifier internal error: no src_reg\n");
8295 return -EINVAL;
8296 }
8297 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
8298 }
8299
8300 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)8301 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
8302 {
8303 struct bpf_reg_state *regs = cur_regs(env);
8304 u8 opcode = BPF_OP(insn->code);
8305 int err;
8306
8307 if (opcode == BPF_END || opcode == BPF_NEG) {
8308 if (opcode == BPF_NEG) {
8309 if (BPF_SRC(insn->code) != 0 ||
8310 insn->src_reg != BPF_REG_0 ||
8311 insn->off != 0 || insn->imm != 0) {
8312 verbose(env, "BPF_NEG uses reserved fields\n");
8313 return -EINVAL;
8314 }
8315 } else {
8316 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
8317 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
8318 BPF_CLASS(insn->code) == BPF_ALU64) {
8319 verbose(env, "BPF_END uses reserved fields\n");
8320 return -EINVAL;
8321 }
8322 }
8323
8324 /* check src operand */
8325 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8326 if (err)
8327 return err;
8328
8329 if (is_pointer_value(env, insn->dst_reg)) {
8330 verbose(env, "R%d pointer arithmetic prohibited\n",
8331 insn->dst_reg);
8332 return -EACCES;
8333 }
8334
8335 /* check dest operand */
8336 err = check_reg_arg(env, insn->dst_reg, DST_OP);
8337 if (err)
8338 return err;
8339
8340 } else if (opcode == BPF_MOV) {
8341
8342 if (BPF_SRC(insn->code) == BPF_X) {
8343 if (insn->imm != 0 || insn->off != 0) {
8344 verbose(env, "BPF_MOV uses reserved fields\n");
8345 return -EINVAL;
8346 }
8347
8348 /* check src operand */
8349 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8350 if (err)
8351 return err;
8352 } else {
8353 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8354 verbose(env, "BPF_MOV uses reserved fields\n");
8355 return -EINVAL;
8356 }
8357 }
8358
8359 /* check dest operand, mark as required later */
8360 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8361 if (err)
8362 return err;
8363
8364 if (BPF_SRC(insn->code) == BPF_X) {
8365 struct bpf_reg_state *src_reg = regs + insn->src_reg;
8366 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
8367
8368 if (BPF_CLASS(insn->code) == BPF_ALU64) {
8369 /* case: R1 = R2
8370 * copy register state to dest reg
8371 */
8372 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
8373 /* Assign src and dst registers the same ID
8374 * that will be used by find_equal_scalars()
8375 * to propagate min/max range.
8376 */
8377 src_reg->id = ++env->id_gen;
8378 copy_register_state(dst_reg, src_reg);
8379 dst_reg->live |= REG_LIVE_WRITTEN;
8380 dst_reg->subreg_def = DEF_NOT_SUBREG;
8381 } else {
8382 /* R1 = (u32) R2 */
8383 if (is_pointer_value(env, insn->src_reg)) {
8384 verbose(env,
8385 "R%d partial copy of pointer\n",
8386 insn->src_reg);
8387 return -EACCES;
8388 } else if (src_reg->type == SCALAR_VALUE) {
8389 copy_register_state(dst_reg, src_reg);
8390 /* Make sure ID is cleared otherwise
8391 * dst_reg min/max could be incorrectly
8392 * propagated into src_reg by find_equal_scalars()
8393 */
8394 dst_reg->id = 0;
8395 dst_reg->live |= REG_LIVE_WRITTEN;
8396 dst_reg->subreg_def = env->insn_idx + 1;
8397 } else {
8398 mark_reg_unknown(env, regs,
8399 insn->dst_reg);
8400 }
8401 zext_32_to_64(dst_reg);
8402 reg_bounds_sync(dst_reg);
8403 }
8404 } else {
8405 /* case: R = imm
8406 * remember the value we stored into this reg
8407 */
8408 /* clear any state __mark_reg_known doesn't set */
8409 mark_reg_unknown(env, regs, insn->dst_reg);
8410 regs[insn->dst_reg].type = SCALAR_VALUE;
8411 if (BPF_CLASS(insn->code) == BPF_ALU64) {
8412 __mark_reg_known(regs + insn->dst_reg,
8413 insn->imm);
8414 } else {
8415 __mark_reg_known(regs + insn->dst_reg,
8416 (u32)insn->imm);
8417 }
8418 }
8419
8420 } else if (opcode > BPF_END) {
8421 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
8422 return -EINVAL;
8423
8424 } else { /* all other ALU ops: and, sub, xor, add, ... */
8425
8426 if (BPF_SRC(insn->code) == BPF_X) {
8427 if (insn->imm != 0 || insn->off != 0) {
8428 verbose(env, "BPF_ALU uses reserved fields\n");
8429 return -EINVAL;
8430 }
8431 /* check src1 operand */
8432 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8433 if (err)
8434 return err;
8435 } else {
8436 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8437 verbose(env, "BPF_ALU uses reserved fields\n");
8438 return -EINVAL;
8439 }
8440 }
8441
8442 /* check src2 operand */
8443 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8444 if (err)
8445 return err;
8446
8447 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
8448 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
8449 verbose(env, "div by zero\n");
8450 return -EINVAL;
8451 }
8452
8453 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
8454 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
8455 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
8456
8457 if (insn->imm < 0 || insn->imm >= size) {
8458 verbose(env, "invalid shift %d\n", insn->imm);
8459 return -EINVAL;
8460 }
8461 }
8462
8463 /* check dest operand */
8464 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8465 if (err)
8466 return err;
8467
8468 return adjust_reg_min_max_vals(env, insn);
8469 }
8470
8471 return 0;
8472 }
8473
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)8474 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
8475 struct bpf_reg_state *dst_reg,
8476 enum bpf_reg_type type,
8477 bool range_right_open)
8478 {
8479 struct bpf_func_state *state;
8480 struct bpf_reg_state *reg;
8481 int new_range;
8482
8483 if (dst_reg->off < 0 ||
8484 (dst_reg->off == 0 && range_right_open))
8485 /* This doesn't give us any range */
8486 return;
8487
8488 if (dst_reg->umax_value > MAX_PACKET_OFF ||
8489 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
8490 /* Risk of overflow. For instance, ptr + (1<<63) may be less
8491 * than pkt_end, but that's because it's also less than pkt.
8492 */
8493 return;
8494
8495 new_range = dst_reg->off;
8496 if (range_right_open)
8497 new_range++;
8498
8499 /* Examples for register markings:
8500 *
8501 * pkt_data in dst register:
8502 *
8503 * r2 = r3;
8504 * r2 += 8;
8505 * if (r2 > pkt_end) goto <handle exception>
8506 * <access okay>
8507 *
8508 * r2 = r3;
8509 * r2 += 8;
8510 * if (r2 < pkt_end) goto <access okay>
8511 * <handle exception>
8512 *
8513 * Where:
8514 * r2 == dst_reg, pkt_end == src_reg
8515 * r2=pkt(id=n,off=8,r=0)
8516 * r3=pkt(id=n,off=0,r=0)
8517 *
8518 * pkt_data in src register:
8519 *
8520 * r2 = r3;
8521 * r2 += 8;
8522 * if (pkt_end >= r2) goto <access okay>
8523 * <handle exception>
8524 *
8525 * r2 = r3;
8526 * r2 += 8;
8527 * if (pkt_end <= r2) goto <handle exception>
8528 * <access okay>
8529 *
8530 * Where:
8531 * pkt_end == dst_reg, r2 == src_reg
8532 * r2=pkt(id=n,off=8,r=0)
8533 * r3=pkt(id=n,off=0,r=0)
8534 *
8535 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
8536 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8537 * and [r3, r3 + 8-1) respectively is safe to access depending on
8538 * the check.
8539 */
8540
8541 /* If our ids match, then we must have the same max_value. And we
8542 * don't care about the other reg's fixed offset, since if it's too big
8543 * the range won't allow anything.
8544 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8545 */
8546 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
8547 if (reg->type == type && reg->id == dst_reg->id)
8548 /* keep the maximum range already checked */
8549 reg->range = max(reg->range, new_range);
8550 }));
8551 }
8552
is_branch32_taken(struct bpf_reg_state * reg,u32 val,u8 opcode)8553 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
8554 {
8555 struct tnum subreg = tnum_subreg(reg->var_off);
8556 s32 sval = (s32)val;
8557
8558 switch (opcode) {
8559 case BPF_JEQ:
8560 if (tnum_is_const(subreg))
8561 return !!tnum_equals_const(subreg, val);
8562 break;
8563 case BPF_JNE:
8564 if (tnum_is_const(subreg))
8565 return !tnum_equals_const(subreg, val);
8566 break;
8567 case BPF_JSET:
8568 if ((~subreg.mask & subreg.value) & val)
8569 return 1;
8570 if (!((subreg.mask | subreg.value) & val))
8571 return 0;
8572 break;
8573 case BPF_JGT:
8574 if (reg->u32_min_value > val)
8575 return 1;
8576 else if (reg->u32_max_value <= val)
8577 return 0;
8578 break;
8579 case BPF_JSGT:
8580 if (reg->s32_min_value > sval)
8581 return 1;
8582 else if (reg->s32_max_value <= sval)
8583 return 0;
8584 break;
8585 case BPF_JLT:
8586 if (reg->u32_max_value < val)
8587 return 1;
8588 else if (reg->u32_min_value >= val)
8589 return 0;
8590 break;
8591 case BPF_JSLT:
8592 if (reg->s32_max_value < sval)
8593 return 1;
8594 else if (reg->s32_min_value >= sval)
8595 return 0;
8596 break;
8597 case BPF_JGE:
8598 if (reg->u32_min_value >= val)
8599 return 1;
8600 else if (reg->u32_max_value < val)
8601 return 0;
8602 break;
8603 case BPF_JSGE:
8604 if (reg->s32_min_value >= sval)
8605 return 1;
8606 else if (reg->s32_max_value < sval)
8607 return 0;
8608 break;
8609 case BPF_JLE:
8610 if (reg->u32_max_value <= val)
8611 return 1;
8612 else if (reg->u32_min_value > val)
8613 return 0;
8614 break;
8615 case BPF_JSLE:
8616 if (reg->s32_max_value <= sval)
8617 return 1;
8618 else if (reg->s32_min_value > sval)
8619 return 0;
8620 break;
8621 }
8622
8623 return -1;
8624 }
8625
8626
is_branch64_taken(struct bpf_reg_state * reg,u64 val,u8 opcode)8627 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8628 {
8629 s64 sval = (s64)val;
8630
8631 switch (opcode) {
8632 case BPF_JEQ:
8633 if (tnum_is_const(reg->var_off))
8634 return !!tnum_equals_const(reg->var_off, val);
8635 break;
8636 case BPF_JNE:
8637 if (tnum_is_const(reg->var_off))
8638 return !tnum_equals_const(reg->var_off, val);
8639 break;
8640 case BPF_JSET:
8641 if ((~reg->var_off.mask & reg->var_off.value) & val)
8642 return 1;
8643 if (!((reg->var_off.mask | reg->var_off.value) & val))
8644 return 0;
8645 break;
8646 case BPF_JGT:
8647 if (reg->umin_value > val)
8648 return 1;
8649 else if (reg->umax_value <= val)
8650 return 0;
8651 break;
8652 case BPF_JSGT:
8653 if (reg->smin_value > sval)
8654 return 1;
8655 else if (reg->smax_value <= sval)
8656 return 0;
8657 break;
8658 case BPF_JLT:
8659 if (reg->umax_value < val)
8660 return 1;
8661 else if (reg->umin_value >= val)
8662 return 0;
8663 break;
8664 case BPF_JSLT:
8665 if (reg->smax_value < sval)
8666 return 1;
8667 else if (reg->smin_value >= sval)
8668 return 0;
8669 break;
8670 case BPF_JGE:
8671 if (reg->umin_value >= val)
8672 return 1;
8673 else if (reg->umax_value < val)
8674 return 0;
8675 break;
8676 case BPF_JSGE:
8677 if (reg->smin_value >= sval)
8678 return 1;
8679 else if (reg->smax_value < sval)
8680 return 0;
8681 break;
8682 case BPF_JLE:
8683 if (reg->umax_value <= val)
8684 return 1;
8685 else if (reg->umin_value > val)
8686 return 0;
8687 break;
8688 case BPF_JSLE:
8689 if (reg->smax_value <= sval)
8690 return 1;
8691 else if (reg->smin_value > sval)
8692 return 0;
8693 break;
8694 }
8695
8696 return -1;
8697 }
8698
8699 /* compute branch direction of the expression "if (reg opcode val) goto target;"
8700 * and return:
8701 * 1 - branch will be taken and "goto target" will be executed
8702 * 0 - branch will not be taken and fall-through to next insn
8703 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8704 * range [0,10]
8705 */
is_branch_taken(struct bpf_reg_state * reg,u64 val,u8 opcode,bool is_jmp32)8706 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8707 bool is_jmp32)
8708 {
8709 if (__is_pointer_value(false, reg)) {
8710 if (!reg_type_not_null(reg->type))
8711 return -1;
8712
8713 /* If pointer is valid tests against zero will fail so we can
8714 * use this to direct branch taken.
8715 */
8716 if (val != 0)
8717 return -1;
8718
8719 switch (opcode) {
8720 case BPF_JEQ:
8721 return 0;
8722 case BPF_JNE:
8723 return 1;
8724 default:
8725 return -1;
8726 }
8727 }
8728
8729 if (is_jmp32)
8730 return is_branch32_taken(reg, val, opcode);
8731 return is_branch64_taken(reg, val, opcode);
8732 }
8733
flip_opcode(u32 opcode)8734 static int flip_opcode(u32 opcode)
8735 {
8736 /* How can we transform "a <op> b" into "b <op> a"? */
8737 static const u8 opcode_flip[16] = {
8738 /* these stay the same */
8739 [BPF_JEQ >> 4] = BPF_JEQ,
8740 [BPF_JNE >> 4] = BPF_JNE,
8741 [BPF_JSET >> 4] = BPF_JSET,
8742 /* these swap "lesser" and "greater" (L and G in the opcodes) */
8743 [BPF_JGE >> 4] = BPF_JLE,
8744 [BPF_JGT >> 4] = BPF_JLT,
8745 [BPF_JLE >> 4] = BPF_JGE,
8746 [BPF_JLT >> 4] = BPF_JGT,
8747 [BPF_JSGE >> 4] = BPF_JSLE,
8748 [BPF_JSGT >> 4] = BPF_JSLT,
8749 [BPF_JSLE >> 4] = BPF_JSGE,
8750 [BPF_JSLT >> 4] = BPF_JSGT
8751 };
8752 return opcode_flip[opcode >> 4];
8753 }
8754
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)8755 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8756 struct bpf_reg_state *src_reg,
8757 u8 opcode)
8758 {
8759 struct bpf_reg_state *pkt;
8760
8761 if (src_reg->type == PTR_TO_PACKET_END) {
8762 pkt = dst_reg;
8763 } else if (dst_reg->type == PTR_TO_PACKET_END) {
8764 pkt = src_reg;
8765 opcode = flip_opcode(opcode);
8766 } else {
8767 return -1;
8768 }
8769
8770 if (pkt->range >= 0)
8771 return -1;
8772
8773 switch (opcode) {
8774 case BPF_JLE:
8775 /* pkt <= pkt_end */
8776 fallthrough;
8777 case BPF_JGT:
8778 /* pkt > pkt_end */
8779 if (pkt->range == BEYOND_PKT_END)
8780 /* pkt has at last one extra byte beyond pkt_end */
8781 return opcode == BPF_JGT;
8782 break;
8783 case BPF_JLT:
8784 /* pkt < pkt_end */
8785 fallthrough;
8786 case BPF_JGE:
8787 /* pkt >= pkt_end */
8788 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8789 return opcode == BPF_JGE;
8790 break;
8791 }
8792 return -1;
8793 }
8794
8795 /* Adjusts the register min/max values in the case that the dst_reg is the
8796 * variable register that we are working on, and src_reg is a constant or we're
8797 * simply doing a BPF_K check.
8798 * In JEQ/JNE cases we also adjust the var_off values.
8799 */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)8800 static void reg_set_min_max(struct bpf_reg_state *true_reg,
8801 struct bpf_reg_state *false_reg,
8802 u64 val, u32 val32,
8803 u8 opcode, bool is_jmp32)
8804 {
8805 struct tnum false_32off = tnum_subreg(false_reg->var_off);
8806 struct tnum false_64off = false_reg->var_off;
8807 struct tnum true_32off = tnum_subreg(true_reg->var_off);
8808 struct tnum true_64off = true_reg->var_off;
8809 s64 sval = (s64)val;
8810 s32 sval32 = (s32)val32;
8811
8812 /* If the dst_reg is a pointer, we can't learn anything about its
8813 * variable offset from the compare (unless src_reg were a pointer into
8814 * the same object, but we don't bother with that.
8815 * Since false_reg and true_reg have the same type by construction, we
8816 * only need to check one of them for pointerness.
8817 */
8818 if (__is_pointer_value(false, false_reg))
8819 return;
8820
8821 switch (opcode) {
8822 /* JEQ/JNE comparison doesn't change the register equivalence.
8823 *
8824 * r1 = r2;
8825 * if (r1 == 42) goto label;
8826 * ...
8827 * label: // here both r1 and r2 are known to be 42.
8828 *
8829 * Hence when marking register as known preserve it's ID.
8830 */
8831 case BPF_JEQ:
8832 if (is_jmp32) {
8833 __mark_reg32_known(true_reg, val32);
8834 true_32off = tnum_subreg(true_reg->var_off);
8835 } else {
8836 ___mark_reg_known(true_reg, val);
8837 true_64off = true_reg->var_off;
8838 }
8839 break;
8840 case BPF_JNE:
8841 if (is_jmp32) {
8842 __mark_reg32_known(false_reg, val32);
8843 false_32off = tnum_subreg(false_reg->var_off);
8844 } else {
8845 ___mark_reg_known(false_reg, val);
8846 false_64off = false_reg->var_off;
8847 }
8848 break;
8849 case BPF_JSET:
8850 if (is_jmp32) {
8851 false_32off = tnum_and(false_32off, tnum_const(~val32));
8852 if (is_power_of_2(val32))
8853 true_32off = tnum_or(true_32off,
8854 tnum_const(val32));
8855 } else {
8856 false_64off = tnum_and(false_64off, tnum_const(~val));
8857 if (is_power_of_2(val))
8858 true_64off = tnum_or(true_64off,
8859 tnum_const(val));
8860 }
8861 break;
8862 case BPF_JGE:
8863 case BPF_JGT:
8864 {
8865 if (is_jmp32) {
8866 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
8867 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8868
8869 false_reg->u32_max_value = min(false_reg->u32_max_value,
8870 false_umax);
8871 true_reg->u32_min_value = max(true_reg->u32_min_value,
8872 true_umin);
8873 } else {
8874 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
8875 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8876
8877 false_reg->umax_value = min(false_reg->umax_value, false_umax);
8878 true_reg->umin_value = max(true_reg->umin_value, true_umin);
8879 }
8880 break;
8881 }
8882 case BPF_JSGE:
8883 case BPF_JSGT:
8884 {
8885 if (is_jmp32) {
8886 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
8887 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8888
8889 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8890 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8891 } else {
8892 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
8893 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8894
8895 false_reg->smax_value = min(false_reg->smax_value, false_smax);
8896 true_reg->smin_value = max(true_reg->smin_value, true_smin);
8897 }
8898 break;
8899 }
8900 case BPF_JLE:
8901 case BPF_JLT:
8902 {
8903 if (is_jmp32) {
8904 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
8905 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8906
8907 false_reg->u32_min_value = max(false_reg->u32_min_value,
8908 false_umin);
8909 true_reg->u32_max_value = min(true_reg->u32_max_value,
8910 true_umax);
8911 } else {
8912 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
8913 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8914
8915 false_reg->umin_value = max(false_reg->umin_value, false_umin);
8916 true_reg->umax_value = min(true_reg->umax_value, true_umax);
8917 }
8918 break;
8919 }
8920 case BPF_JSLE:
8921 case BPF_JSLT:
8922 {
8923 if (is_jmp32) {
8924 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
8925 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8926
8927 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8928 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8929 } else {
8930 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
8931 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8932
8933 false_reg->smin_value = max(false_reg->smin_value, false_smin);
8934 true_reg->smax_value = min(true_reg->smax_value, true_smax);
8935 }
8936 break;
8937 }
8938 default:
8939 return;
8940 }
8941
8942 if (is_jmp32) {
8943 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8944 tnum_subreg(false_32off));
8945 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8946 tnum_subreg(true_32off));
8947 __reg_combine_32_into_64(false_reg);
8948 __reg_combine_32_into_64(true_reg);
8949 } else {
8950 false_reg->var_off = false_64off;
8951 true_reg->var_off = true_64off;
8952 __reg_combine_64_into_32(false_reg);
8953 __reg_combine_64_into_32(true_reg);
8954 }
8955 }
8956
8957 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
8958 * the variable reg.
8959 */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)8960 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
8961 struct bpf_reg_state *false_reg,
8962 u64 val, u32 val32,
8963 u8 opcode, bool is_jmp32)
8964 {
8965 opcode = flip_opcode(opcode);
8966 /* This uses zero as "not present in table"; luckily the zero opcode,
8967 * BPF_JA, can't get here.
8968 */
8969 if (opcode)
8970 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
8971 }
8972
8973 /* Regs are known to be equal, so intersect their min/max/var_off */
__reg_combine_min_max(struct bpf_reg_state * src_reg,struct bpf_reg_state * dst_reg)8974 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8975 struct bpf_reg_state *dst_reg)
8976 {
8977 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8978 dst_reg->umin_value);
8979 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8980 dst_reg->umax_value);
8981 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8982 dst_reg->smin_value);
8983 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8984 dst_reg->smax_value);
8985 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8986 dst_reg->var_off);
8987 reg_bounds_sync(src_reg);
8988 reg_bounds_sync(dst_reg);
8989 }
8990
reg_combine_min_max(struct bpf_reg_state * true_src,struct bpf_reg_state * true_dst,struct bpf_reg_state * false_src,struct bpf_reg_state * false_dst,u8 opcode)8991 static void reg_combine_min_max(struct bpf_reg_state *true_src,
8992 struct bpf_reg_state *true_dst,
8993 struct bpf_reg_state *false_src,
8994 struct bpf_reg_state *false_dst,
8995 u8 opcode)
8996 {
8997 switch (opcode) {
8998 case BPF_JEQ:
8999 __reg_combine_min_max(true_src, true_dst);
9000 break;
9001 case BPF_JNE:
9002 __reg_combine_min_max(false_src, false_dst);
9003 break;
9004 }
9005 }
9006
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)9007 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
9008 struct bpf_reg_state *reg, u32 id,
9009 bool is_null)
9010 {
9011 if (type_may_be_null(reg->type) && reg->id == id &&
9012 !WARN_ON_ONCE(!reg->id)) {
9013 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
9014 !tnum_equals_const(reg->var_off, 0) ||
9015 reg->off)) {
9016 /* Old offset (both fixed and variable parts) should
9017 * have been known-zero, because we don't allow pointer
9018 * arithmetic on pointers that might be NULL. If we
9019 * see this happening, don't convert the register.
9020 */
9021 return;
9022 }
9023 if (is_null) {
9024 reg->type = SCALAR_VALUE;
9025 /* We don't need id and ref_obj_id from this point
9026 * onwards anymore, thus we should better reset it,
9027 * so that state pruning has chances to take effect.
9028 */
9029 reg->id = 0;
9030 reg->ref_obj_id = 0;
9031
9032 return;
9033 }
9034
9035 mark_ptr_not_null_reg(reg);
9036
9037 if (!reg_may_point_to_spin_lock(reg)) {
9038 /* For not-NULL ptr, reg->ref_obj_id will be reset
9039 * in release_reference().
9040 *
9041 * reg->id is still used by spin_lock ptr. Other
9042 * than spin_lock ptr type, reg->id can be reset.
9043 */
9044 reg->id = 0;
9045 }
9046 }
9047 }
9048
9049 /* The logic is similar to find_good_pkt_pointers(), both could eventually
9050 * be folded together at some point.
9051 */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)9052 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
9053 bool is_null)
9054 {
9055 struct bpf_func_state *state = vstate->frame[vstate->curframe];
9056 struct bpf_reg_state *regs = state->regs, *reg;
9057 u32 ref_obj_id = regs[regno].ref_obj_id;
9058 u32 id = regs[regno].id;
9059
9060 if (ref_obj_id && ref_obj_id == id && is_null)
9061 /* regs[regno] is in the " == NULL" branch.
9062 * No one could have freed the reference state before
9063 * doing the NULL check.
9064 */
9065 WARN_ON_ONCE(release_reference_state(state, id));
9066
9067 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
9068 mark_ptr_or_null_reg(state, reg, id, is_null);
9069 }));
9070 }
9071
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)9072 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
9073 struct bpf_reg_state *dst_reg,
9074 struct bpf_reg_state *src_reg,
9075 struct bpf_verifier_state *this_branch,
9076 struct bpf_verifier_state *other_branch)
9077 {
9078 if (BPF_SRC(insn->code) != BPF_X)
9079 return false;
9080
9081 /* Pointers are always 64-bit. */
9082 if (BPF_CLASS(insn->code) == BPF_JMP32)
9083 return false;
9084
9085 switch (BPF_OP(insn->code)) {
9086 case BPF_JGT:
9087 if ((dst_reg->type == PTR_TO_PACKET &&
9088 src_reg->type == PTR_TO_PACKET_END) ||
9089 (dst_reg->type == PTR_TO_PACKET_META &&
9090 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9091 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
9092 find_good_pkt_pointers(this_branch, dst_reg,
9093 dst_reg->type, false);
9094 mark_pkt_end(other_branch, insn->dst_reg, true);
9095 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9096 src_reg->type == PTR_TO_PACKET) ||
9097 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9098 src_reg->type == PTR_TO_PACKET_META)) {
9099 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
9100 find_good_pkt_pointers(other_branch, src_reg,
9101 src_reg->type, true);
9102 mark_pkt_end(this_branch, insn->src_reg, false);
9103 } else {
9104 return false;
9105 }
9106 break;
9107 case BPF_JLT:
9108 if ((dst_reg->type == PTR_TO_PACKET &&
9109 src_reg->type == PTR_TO_PACKET_END) ||
9110 (dst_reg->type == PTR_TO_PACKET_META &&
9111 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9112 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
9113 find_good_pkt_pointers(other_branch, dst_reg,
9114 dst_reg->type, true);
9115 mark_pkt_end(this_branch, insn->dst_reg, false);
9116 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9117 src_reg->type == PTR_TO_PACKET) ||
9118 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9119 src_reg->type == PTR_TO_PACKET_META)) {
9120 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
9121 find_good_pkt_pointers(this_branch, src_reg,
9122 src_reg->type, false);
9123 mark_pkt_end(other_branch, insn->src_reg, true);
9124 } else {
9125 return false;
9126 }
9127 break;
9128 case BPF_JGE:
9129 if ((dst_reg->type == PTR_TO_PACKET &&
9130 src_reg->type == PTR_TO_PACKET_END) ||
9131 (dst_reg->type == PTR_TO_PACKET_META &&
9132 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9133 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
9134 find_good_pkt_pointers(this_branch, dst_reg,
9135 dst_reg->type, true);
9136 mark_pkt_end(other_branch, insn->dst_reg, false);
9137 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9138 src_reg->type == PTR_TO_PACKET) ||
9139 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9140 src_reg->type == PTR_TO_PACKET_META)) {
9141 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
9142 find_good_pkt_pointers(other_branch, src_reg,
9143 src_reg->type, false);
9144 mark_pkt_end(this_branch, insn->src_reg, true);
9145 } else {
9146 return false;
9147 }
9148 break;
9149 case BPF_JLE:
9150 if ((dst_reg->type == PTR_TO_PACKET &&
9151 src_reg->type == PTR_TO_PACKET_END) ||
9152 (dst_reg->type == PTR_TO_PACKET_META &&
9153 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9154 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
9155 find_good_pkt_pointers(other_branch, dst_reg,
9156 dst_reg->type, false);
9157 mark_pkt_end(this_branch, insn->dst_reg, true);
9158 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9159 src_reg->type == PTR_TO_PACKET) ||
9160 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9161 src_reg->type == PTR_TO_PACKET_META)) {
9162 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
9163 find_good_pkt_pointers(this_branch, src_reg,
9164 src_reg->type, true);
9165 mark_pkt_end(other_branch, insn->src_reg, false);
9166 } else {
9167 return false;
9168 }
9169 break;
9170 default:
9171 return false;
9172 }
9173
9174 return true;
9175 }
9176
find_equal_scalars(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg)9177 static void find_equal_scalars(struct bpf_verifier_state *vstate,
9178 struct bpf_reg_state *known_reg)
9179 {
9180 struct bpf_func_state *state;
9181 struct bpf_reg_state *reg;
9182
9183 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
9184 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9185 copy_register_state(reg, known_reg);
9186 }));
9187 }
9188
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)9189 static int check_cond_jmp_op(struct bpf_verifier_env *env,
9190 struct bpf_insn *insn, int *insn_idx)
9191 {
9192 struct bpf_verifier_state *this_branch = env->cur_state;
9193 struct bpf_verifier_state *other_branch;
9194 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
9195 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
9196 u8 opcode = BPF_OP(insn->code);
9197 bool is_jmp32;
9198 int pred = -1;
9199 int err;
9200
9201 /* Only conditional jumps are expected to reach here. */
9202 if (opcode == BPF_JA || opcode > BPF_JSLE) {
9203 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
9204 return -EINVAL;
9205 }
9206
9207 if (BPF_SRC(insn->code) == BPF_X) {
9208 if (insn->imm != 0) {
9209 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
9210 return -EINVAL;
9211 }
9212
9213 /* check src1 operand */
9214 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9215 if (err)
9216 return err;
9217
9218 if (is_pointer_value(env, insn->src_reg)) {
9219 verbose(env, "R%d pointer comparison prohibited\n",
9220 insn->src_reg);
9221 return -EACCES;
9222 }
9223 src_reg = ®s[insn->src_reg];
9224 } else {
9225 if (insn->src_reg != BPF_REG_0) {
9226 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
9227 return -EINVAL;
9228 }
9229 }
9230
9231 /* check src2 operand */
9232 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9233 if (err)
9234 return err;
9235
9236 dst_reg = ®s[insn->dst_reg];
9237 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
9238
9239 if (BPF_SRC(insn->code) == BPF_K) {
9240 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
9241 } else if (src_reg->type == SCALAR_VALUE &&
9242 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
9243 pred = is_branch_taken(dst_reg,
9244 tnum_subreg(src_reg->var_off).value,
9245 opcode,
9246 is_jmp32);
9247 } else if (src_reg->type == SCALAR_VALUE &&
9248 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
9249 pred = is_branch_taken(dst_reg,
9250 src_reg->var_off.value,
9251 opcode,
9252 is_jmp32);
9253 } else if (reg_is_pkt_pointer_any(dst_reg) &&
9254 reg_is_pkt_pointer_any(src_reg) &&
9255 !is_jmp32) {
9256 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
9257 }
9258
9259 if (pred >= 0) {
9260 /* If we get here with a dst_reg pointer type it is because
9261 * above is_branch_taken() special cased the 0 comparison.
9262 */
9263 if (!__is_pointer_value(false, dst_reg))
9264 err = mark_chain_precision(env, insn->dst_reg);
9265 if (BPF_SRC(insn->code) == BPF_X && !err &&
9266 !__is_pointer_value(false, src_reg))
9267 err = mark_chain_precision(env, insn->src_reg);
9268 if (err)
9269 return err;
9270 }
9271
9272 if (pred == 1) {
9273 /* Only follow the goto, ignore fall-through. If needed, push
9274 * the fall-through branch for simulation under speculative
9275 * execution.
9276 */
9277 if (!env->bypass_spec_v1 &&
9278 !sanitize_speculative_path(env, insn, *insn_idx + 1,
9279 *insn_idx))
9280 return -EFAULT;
9281 *insn_idx += insn->off;
9282 return 0;
9283 } else if (pred == 0) {
9284 /* Only follow the fall-through branch, since that's where the
9285 * program will go. If needed, push the goto branch for
9286 * simulation under speculative execution.
9287 */
9288 if (!env->bypass_spec_v1 &&
9289 !sanitize_speculative_path(env, insn,
9290 *insn_idx + insn->off + 1,
9291 *insn_idx))
9292 return -EFAULT;
9293 return 0;
9294 }
9295
9296 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
9297 false);
9298 if (!other_branch)
9299 return -EFAULT;
9300 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
9301
9302 /* detect if we are comparing against a constant value so we can adjust
9303 * our min/max values for our dst register.
9304 * this is only legit if both are scalars (or pointers to the same
9305 * object, I suppose, but we don't support that right now), because
9306 * otherwise the different base pointers mean the offsets aren't
9307 * comparable.
9308 */
9309 if (BPF_SRC(insn->code) == BPF_X) {
9310 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
9311
9312 if (dst_reg->type == SCALAR_VALUE &&
9313 src_reg->type == SCALAR_VALUE) {
9314 if (tnum_is_const(src_reg->var_off) ||
9315 (is_jmp32 &&
9316 tnum_is_const(tnum_subreg(src_reg->var_off))))
9317 reg_set_min_max(&other_branch_regs[insn->dst_reg],
9318 dst_reg,
9319 src_reg->var_off.value,
9320 tnum_subreg(src_reg->var_off).value,
9321 opcode, is_jmp32);
9322 else if (tnum_is_const(dst_reg->var_off) ||
9323 (is_jmp32 &&
9324 tnum_is_const(tnum_subreg(dst_reg->var_off))))
9325 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
9326 src_reg,
9327 dst_reg->var_off.value,
9328 tnum_subreg(dst_reg->var_off).value,
9329 opcode, is_jmp32);
9330 else if (!is_jmp32 &&
9331 (opcode == BPF_JEQ || opcode == BPF_JNE))
9332 /* Comparing for equality, we can combine knowledge */
9333 reg_combine_min_max(&other_branch_regs[insn->src_reg],
9334 &other_branch_regs[insn->dst_reg],
9335 src_reg, dst_reg, opcode);
9336 if (src_reg->id &&
9337 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
9338 find_equal_scalars(this_branch, src_reg);
9339 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
9340 }
9341
9342 }
9343 } else if (dst_reg->type == SCALAR_VALUE) {
9344 reg_set_min_max(&other_branch_regs[insn->dst_reg],
9345 dst_reg, insn->imm, (u32)insn->imm,
9346 opcode, is_jmp32);
9347 }
9348
9349 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
9350 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
9351 find_equal_scalars(this_branch, dst_reg);
9352 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
9353 }
9354
9355 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
9356 * NOTE: these optimizations below are related with pointer comparison
9357 * which will never be JMP32.
9358 */
9359 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
9360 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
9361 type_may_be_null(dst_reg->type)) {
9362 /* Mark all identical registers in each branch as either
9363 * safe or unknown depending R == 0 or R != 0 conditional.
9364 */
9365 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
9366 opcode == BPF_JNE);
9367 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
9368 opcode == BPF_JEQ);
9369 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
9370 this_branch, other_branch) &&
9371 is_pointer_value(env, insn->dst_reg)) {
9372 verbose(env, "R%d pointer comparison prohibited\n",
9373 insn->dst_reg);
9374 return -EACCES;
9375 }
9376 if (env->log.level & BPF_LOG_LEVEL)
9377 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
9378 return 0;
9379 }
9380
9381 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)9382 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
9383 {
9384 struct bpf_insn_aux_data *aux = cur_aux(env);
9385 struct bpf_reg_state *regs = cur_regs(env);
9386 struct bpf_reg_state *dst_reg;
9387 struct bpf_map *map;
9388 int err;
9389
9390 if (BPF_SIZE(insn->code) != BPF_DW) {
9391 verbose(env, "invalid BPF_LD_IMM insn\n");
9392 return -EINVAL;
9393 }
9394 if (insn->off != 0) {
9395 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
9396 return -EINVAL;
9397 }
9398
9399 err = check_reg_arg(env, insn->dst_reg, DST_OP);
9400 if (err)
9401 return err;
9402
9403 dst_reg = ®s[insn->dst_reg];
9404 if (insn->src_reg == 0) {
9405 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
9406
9407 dst_reg->type = SCALAR_VALUE;
9408 __mark_reg_known(®s[insn->dst_reg], imm);
9409 return 0;
9410 }
9411
9412 /* All special src_reg cases are listed below. From this point onwards
9413 * we either succeed and assign a corresponding dst_reg->type after
9414 * zeroing the offset, or fail and reject the program.
9415 */
9416 mark_reg_known_zero(env, regs, insn->dst_reg);
9417
9418 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
9419 dst_reg->type = aux->btf_var.reg_type;
9420 switch (base_type(dst_reg->type)) {
9421 case PTR_TO_MEM:
9422 dst_reg->mem_size = aux->btf_var.mem_size;
9423 break;
9424 case PTR_TO_BTF_ID:
9425 case PTR_TO_PERCPU_BTF_ID:
9426 dst_reg->btf = aux->btf_var.btf;
9427 dst_reg->btf_id = aux->btf_var.btf_id;
9428 break;
9429 default:
9430 verbose(env, "bpf verifier is misconfigured\n");
9431 return -EFAULT;
9432 }
9433 return 0;
9434 }
9435
9436 if (insn->src_reg == BPF_PSEUDO_FUNC) {
9437 struct bpf_prog_aux *aux = env->prog->aux;
9438 u32 subprogno = find_subprog(env,
9439 env->insn_idx + insn->imm + 1);
9440
9441 if (!aux->func_info) {
9442 verbose(env, "missing btf func_info\n");
9443 return -EINVAL;
9444 }
9445 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
9446 verbose(env, "callback function not static\n");
9447 return -EINVAL;
9448 }
9449
9450 dst_reg->type = PTR_TO_FUNC;
9451 dst_reg->subprogno = subprogno;
9452 return 0;
9453 }
9454
9455 map = env->used_maps[aux->map_index];
9456 dst_reg->map_ptr = map;
9457
9458 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
9459 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
9460 dst_reg->type = PTR_TO_MAP_VALUE;
9461 dst_reg->off = aux->map_off;
9462 if (map_value_has_spin_lock(map))
9463 dst_reg->id = ++env->id_gen;
9464 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
9465 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
9466 dst_reg->type = CONST_PTR_TO_MAP;
9467 } else {
9468 verbose(env, "bpf verifier is misconfigured\n");
9469 return -EINVAL;
9470 }
9471
9472 return 0;
9473 }
9474
may_access_skb(enum bpf_prog_type type)9475 static bool may_access_skb(enum bpf_prog_type type)
9476 {
9477 switch (type) {
9478 case BPF_PROG_TYPE_SOCKET_FILTER:
9479 case BPF_PROG_TYPE_SCHED_CLS:
9480 case BPF_PROG_TYPE_SCHED_ACT:
9481 return true;
9482 default:
9483 return false;
9484 }
9485 }
9486
9487 /* verify safety of LD_ABS|LD_IND instructions:
9488 * - they can only appear in the programs where ctx == skb
9489 * - since they are wrappers of function calls, they scratch R1-R5 registers,
9490 * preserve R6-R9, and store return value into R0
9491 *
9492 * Implicit input:
9493 * ctx == skb == R6 == CTX
9494 *
9495 * Explicit input:
9496 * SRC == any register
9497 * IMM == 32-bit immediate
9498 *
9499 * Output:
9500 * R0 - 8/16/32-bit skb data converted to cpu endianness
9501 */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)9502 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
9503 {
9504 struct bpf_reg_state *regs = cur_regs(env);
9505 static const int ctx_reg = BPF_REG_6;
9506 u8 mode = BPF_MODE(insn->code);
9507 int i, err;
9508
9509 if (!may_access_skb(resolve_prog_type(env->prog))) {
9510 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
9511 return -EINVAL;
9512 }
9513
9514 if (!env->ops->gen_ld_abs) {
9515 verbose(env, "bpf verifier is misconfigured\n");
9516 return -EINVAL;
9517 }
9518
9519 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
9520 BPF_SIZE(insn->code) == BPF_DW ||
9521 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
9522 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
9523 return -EINVAL;
9524 }
9525
9526 /* check whether implicit source operand (register R6) is readable */
9527 err = check_reg_arg(env, ctx_reg, SRC_OP);
9528 if (err)
9529 return err;
9530
9531 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9532 * gen_ld_abs() may terminate the program at runtime, leading to
9533 * reference leak.
9534 */
9535 err = check_reference_leak(env);
9536 if (err) {
9537 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9538 return err;
9539 }
9540
9541 if (env->cur_state->active_spin_lock) {
9542 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9543 return -EINVAL;
9544 }
9545
9546 if (regs[ctx_reg].type != PTR_TO_CTX) {
9547 verbose(env,
9548 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9549 return -EINVAL;
9550 }
9551
9552 if (mode == BPF_IND) {
9553 /* check explicit source operand */
9554 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9555 if (err)
9556 return err;
9557 }
9558
9559 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg);
9560 if (err < 0)
9561 return err;
9562
9563 /* reset caller saved regs to unreadable */
9564 for (i = 0; i < CALLER_SAVED_REGS; i++) {
9565 mark_reg_not_init(env, regs, caller_saved[i]);
9566 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9567 }
9568
9569 /* mark destination R0 register as readable, since it contains
9570 * the value fetched from the packet.
9571 * Already marked as written above.
9572 */
9573 mark_reg_unknown(env, regs, BPF_REG_0);
9574 /* ld_abs load up to 32-bit skb data. */
9575 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9576 return 0;
9577 }
9578
check_return_code(struct bpf_verifier_env * env)9579 static int check_return_code(struct bpf_verifier_env *env)
9580 {
9581 struct tnum enforce_attach_type_range = tnum_unknown;
9582 const struct bpf_prog *prog = env->prog;
9583 struct bpf_reg_state *reg;
9584 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
9585 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9586 int err;
9587 struct bpf_func_state *frame = env->cur_state->frame[0];
9588 const bool is_subprog = frame->subprogno;
9589
9590 /* LSM and struct_ops func-ptr's return type could be "void" */
9591 if (!is_subprog &&
9592 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9593 prog_type == BPF_PROG_TYPE_LSM) &&
9594 !prog->aux->attach_func_proto->type)
9595 return 0;
9596
9597 /* eBPF calling convention is such that R0 is used
9598 * to return the value from eBPF program.
9599 * Make sure that it's readable at this time
9600 * of bpf_exit, which means that program wrote
9601 * something into it earlier
9602 */
9603 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9604 if (err)
9605 return err;
9606
9607 if (is_pointer_value(env, BPF_REG_0)) {
9608 verbose(env, "R0 leaks addr as return value\n");
9609 return -EACCES;
9610 }
9611
9612 reg = cur_regs(env) + BPF_REG_0;
9613
9614 if (frame->in_async_callback_fn) {
9615 /* enforce return zero from async callbacks like timer */
9616 if (reg->type != SCALAR_VALUE) {
9617 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
9618 reg_type_str(env, reg->type));
9619 return -EINVAL;
9620 }
9621
9622 if (!tnum_in(const_0, reg->var_off)) {
9623 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
9624 return -EINVAL;
9625 }
9626 return 0;
9627 }
9628
9629 if (is_subprog) {
9630 if (reg->type != SCALAR_VALUE) {
9631 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9632 reg_type_str(env, reg->type));
9633 return -EINVAL;
9634 }
9635 return 0;
9636 }
9637
9638 switch (prog_type) {
9639 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9640 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9641 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9642 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9643 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9644 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9645 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9646 range = tnum_range(1, 1);
9647 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9648 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9649 range = tnum_range(0, 3);
9650 break;
9651 case BPF_PROG_TYPE_CGROUP_SKB:
9652 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9653 range = tnum_range(0, 3);
9654 enforce_attach_type_range = tnum_range(2, 3);
9655 }
9656 break;
9657 case BPF_PROG_TYPE_CGROUP_SOCK:
9658 case BPF_PROG_TYPE_SOCK_OPS:
9659 case BPF_PROG_TYPE_CGROUP_DEVICE:
9660 case BPF_PROG_TYPE_CGROUP_SYSCTL:
9661 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9662 break;
9663 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9664 if (!env->prog->aux->attach_btf_id)
9665 return 0;
9666 range = tnum_const(0);
9667 break;
9668 case BPF_PROG_TYPE_TRACING:
9669 switch (env->prog->expected_attach_type) {
9670 case BPF_TRACE_FENTRY:
9671 case BPF_TRACE_FEXIT:
9672 range = tnum_const(0);
9673 break;
9674 case BPF_TRACE_RAW_TP:
9675 case BPF_MODIFY_RETURN:
9676 return 0;
9677 case BPF_TRACE_ITER:
9678 break;
9679 default:
9680 return -ENOTSUPP;
9681 }
9682 break;
9683 case BPF_PROG_TYPE_SK_LOOKUP:
9684 range = tnum_range(SK_DROP, SK_PASS);
9685 break;
9686 case BPF_PROG_TYPE_EXT:
9687 /* freplace program can return anything as its return value
9688 * depends on the to-be-replaced kernel func or bpf program.
9689 */
9690 default:
9691 return 0;
9692 }
9693
9694 if (reg->type != SCALAR_VALUE) {
9695 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9696 reg_type_str(env, reg->type));
9697 return -EINVAL;
9698 }
9699
9700 if (!tnum_in(range, reg->var_off)) {
9701 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9702 return -EINVAL;
9703 }
9704
9705 if (!tnum_is_unknown(enforce_attach_type_range) &&
9706 tnum_in(enforce_attach_type_range, reg->var_off))
9707 env->prog->enforce_expected_attach_type = 1;
9708 return 0;
9709 }
9710
9711 /* non-recursive DFS pseudo code
9712 * 1 procedure DFS-iterative(G,v):
9713 * 2 label v as discovered
9714 * 3 let S be a stack
9715 * 4 S.push(v)
9716 * 5 while S is not empty
9717 * 6 t <- S.pop()
9718 * 7 if t is what we're looking for:
9719 * 8 return t
9720 * 9 for all edges e in G.adjacentEdges(t) do
9721 * 10 if edge e is already labelled
9722 * 11 continue with the next edge
9723 * 12 w <- G.adjacentVertex(t,e)
9724 * 13 if vertex w is not discovered and not explored
9725 * 14 label e as tree-edge
9726 * 15 label w as discovered
9727 * 16 S.push(w)
9728 * 17 continue at 5
9729 * 18 else if vertex w is discovered
9730 * 19 label e as back-edge
9731 * 20 else
9732 * 21 // vertex w is explored
9733 * 22 label e as forward- or cross-edge
9734 * 23 label t as explored
9735 * 24 S.pop()
9736 *
9737 * convention:
9738 * 0x10 - discovered
9739 * 0x11 - discovered and fall-through edge labelled
9740 * 0x12 - discovered and fall-through and branch edges labelled
9741 * 0x20 - explored
9742 */
9743
9744 enum {
9745 DISCOVERED = 0x10,
9746 EXPLORED = 0x20,
9747 FALLTHROUGH = 1,
9748 BRANCH = 2,
9749 };
9750
state_htab_size(struct bpf_verifier_env * env)9751 static u32 state_htab_size(struct bpf_verifier_env *env)
9752 {
9753 return env->prog->len;
9754 }
9755
explored_state(struct bpf_verifier_env * env,int idx)9756 static struct bpf_verifier_state_list **explored_state(
9757 struct bpf_verifier_env *env,
9758 int idx)
9759 {
9760 struct bpf_verifier_state *cur = env->cur_state;
9761 struct bpf_func_state *state = cur->frame[cur->curframe];
9762
9763 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9764 }
9765
init_explored_state(struct bpf_verifier_env * env,int idx)9766 static void init_explored_state(struct bpf_verifier_env *env, int idx)
9767 {
9768 env->insn_aux_data[idx].prune_point = true;
9769 }
9770
9771 enum {
9772 DONE_EXPLORING = 0,
9773 KEEP_EXPLORING = 1,
9774 };
9775
9776 /* t, w, e - match pseudo-code above:
9777 * t - index of current instruction
9778 * w - next instruction
9779 * e - edge
9780 */
push_insn(int t,int w,int e,struct bpf_verifier_env * env,bool loop_ok)9781 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9782 bool loop_ok)
9783 {
9784 int *insn_stack = env->cfg.insn_stack;
9785 int *insn_state = env->cfg.insn_state;
9786
9787 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9788 return DONE_EXPLORING;
9789
9790 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9791 return DONE_EXPLORING;
9792
9793 if (w < 0 || w >= env->prog->len) {
9794 verbose_linfo(env, t, "%d: ", t);
9795 verbose(env, "jump out of range from insn %d to %d\n", t, w);
9796 return -EINVAL;
9797 }
9798
9799 if (e == BRANCH)
9800 /* mark branch target for state pruning */
9801 init_explored_state(env, w);
9802
9803 if (insn_state[w] == 0) {
9804 /* tree-edge */
9805 insn_state[t] = DISCOVERED | e;
9806 insn_state[w] = DISCOVERED;
9807 if (env->cfg.cur_stack >= env->prog->len)
9808 return -E2BIG;
9809 insn_stack[env->cfg.cur_stack++] = w;
9810 return KEEP_EXPLORING;
9811 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9812 if (loop_ok && env->bpf_capable)
9813 return DONE_EXPLORING;
9814 verbose_linfo(env, t, "%d: ", t);
9815 verbose_linfo(env, w, "%d: ", w);
9816 verbose(env, "back-edge from insn %d to %d\n", t, w);
9817 return -EINVAL;
9818 } else if (insn_state[w] == EXPLORED) {
9819 /* forward- or cross-edge */
9820 insn_state[t] = DISCOVERED | e;
9821 } else {
9822 verbose(env, "insn state internal bug\n");
9823 return -EFAULT;
9824 }
9825 return DONE_EXPLORING;
9826 }
9827
visit_func_call_insn(int t,int insn_cnt,struct bpf_insn * insns,struct bpf_verifier_env * env,bool visit_callee)9828 static int visit_func_call_insn(int t, int insn_cnt,
9829 struct bpf_insn *insns,
9830 struct bpf_verifier_env *env,
9831 bool visit_callee)
9832 {
9833 int ret;
9834
9835 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9836 if (ret)
9837 return ret;
9838
9839 if (t + 1 < insn_cnt)
9840 init_explored_state(env, t + 1);
9841 if (visit_callee) {
9842 init_explored_state(env, t);
9843 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
9844 /* It's ok to allow recursion from CFG point of
9845 * view. __check_func_call() will do the actual
9846 * check.
9847 */
9848 bpf_pseudo_func(insns + t));
9849 }
9850 return ret;
9851 }
9852
9853 /* Visits the instruction at index t and returns one of the following:
9854 * < 0 - an error occurred
9855 * DONE_EXPLORING - the instruction was fully explored
9856 * KEEP_EXPLORING - there is still work to be done before it is fully explored
9857 */
visit_insn(int t,int insn_cnt,struct bpf_verifier_env * env)9858 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9859 {
9860 struct bpf_insn *insns = env->prog->insnsi;
9861 int ret;
9862
9863 if (bpf_pseudo_func(insns + t))
9864 return visit_func_call_insn(t, insn_cnt, insns, env, true);
9865
9866 /* All non-branch instructions have a single fall-through edge. */
9867 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9868 BPF_CLASS(insns[t].code) != BPF_JMP32)
9869 return push_insn(t, t + 1, FALLTHROUGH, env, false);
9870
9871 switch (BPF_OP(insns[t].code)) {
9872 case BPF_EXIT:
9873 return DONE_EXPLORING;
9874
9875 case BPF_CALL:
9876 if (insns[t].imm == BPF_FUNC_timer_set_callback)
9877 /* Mark this call insn to trigger is_state_visited() check
9878 * before call itself is processed by __check_func_call().
9879 * Otherwise new async state will be pushed for further
9880 * exploration.
9881 */
9882 init_explored_state(env, t);
9883 return visit_func_call_insn(t, insn_cnt, insns, env,
9884 insns[t].src_reg == BPF_PSEUDO_CALL);
9885
9886 case BPF_JA:
9887 if (BPF_SRC(insns[t].code) != BPF_K)
9888 return -EINVAL;
9889
9890 /* unconditional jump with single edge */
9891 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9892 true);
9893 if (ret)
9894 return ret;
9895
9896 /* unconditional jmp is not a good pruning point,
9897 * but it's marked, since backtracking needs
9898 * to record jmp history in is_state_visited().
9899 */
9900 init_explored_state(env, t + insns[t].off + 1);
9901 /* tell verifier to check for equivalent states
9902 * after every call and jump
9903 */
9904 if (t + 1 < insn_cnt)
9905 init_explored_state(env, t + 1);
9906
9907 return ret;
9908
9909 default:
9910 /* conditional jump with two edges */
9911 init_explored_state(env, t);
9912 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9913 if (ret)
9914 return ret;
9915
9916 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9917 }
9918 }
9919
9920 /* non-recursive depth-first-search to detect loops in BPF program
9921 * loop == back-edge in directed graph
9922 */
check_cfg(struct bpf_verifier_env * env)9923 static int check_cfg(struct bpf_verifier_env *env)
9924 {
9925 int insn_cnt = env->prog->len;
9926 int *insn_stack, *insn_state;
9927 int ret = 0;
9928 int i;
9929
9930 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9931 if (!insn_state)
9932 return -ENOMEM;
9933
9934 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9935 if (!insn_stack) {
9936 kvfree(insn_state);
9937 return -ENOMEM;
9938 }
9939
9940 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9941 insn_stack[0] = 0; /* 0 is the first instruction */
9942 env->cfg.cur_stack = 1;
9943
9944 while (env->cfg.cur_stack > 0) {
9945 int t = insn_stack[env->cfg.cur_stack - 1];
9946
9947 ret = visit_insn(t, insn_cnt, env);
9948 switch (ret) {
9949 case DONE_EXPLORING:
9950 insn_state[t] = EXPLORED;
9951 env->cfg.cur_stack--;
9952 break;
9953 case KEEP_EXPLORING:
9954 break;
9955 default:
9956 if (ret > 0) {
9957 verbose(env, "visit_insn internal bug\n");
9958 ret = -EFAULT;
9959 }
9960 goto err_free;
9961 }
9962 }
9963
9964 if (env->cfg.cur_stack < 0) {
9965 verbose(env, "pop stack internal bug\n");
9966 ret = -EFAULT;
9967 goto err_free;
9968 }
9969
9970 for (i = 0; i < insn_cnt; i++) {
9971 if (insn_state[i] != EXPLORED) {
9972 verbose(env, "unreachable insn %d\n", i);
9973 ret = -EINVAL;
9974 goto err_free;
9975 }
9976 }
9977 ret = 0; /* cfg looks good */
9978
9979 err_free:
9980 kvfree(insn_state);
9981 kvfree(insn_stack);
9982 env->cfg.insn_state = env->cfg.insn_stack = NULL;
9983 return ret;
9984 }
9985
check_abnormal_return(struct bpf_verifier_env * env)9986 static int check_abnormal_return(struct bpf_verifier_env *env)
9987 {
9988 int i;
9989
9990 for (i = 1; i < env->subprog_cnt; i++) {
9991 if (env->subprog_info[i].has_ld_abs) {
9992 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9993 return -EINVAL;
9994 }
9995 if (env->subprog_info[i].has_tail_call) {
9996 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9997 return -EINVAL;
9998 }
9999 }
10000 return 0;
10001 }
10002
10003 /* The minimum supported BTF func info size */
10004 #define MIN_BPF_FUNCINFO_SIZE 8
10005 #define MAX_FUNCINFO_REC_SIZE 252
10006
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)10007 static int check_btf_func(struct bpf_verifier_env *env,
10008 const union bpf_attr *attr,
10009 bpfptr_t uattr)
10010 {
10011 const struct btf_type *type, *func_proto, *ret_type;
10012 u32 i, nfuncs, urec_size, min_size;
10013 u32 krec_size = sizeof(struct bpf_func_info);
10014 struct bpf_func_info *krecord;
10015 struct bpf_func_info_aux *info_aux = NULL;
10016 struct bpf_prog *prog;
10017 const struct btf *btf;
10018 bpfptr_t urecord;
10019 u32 prev_offset = 0;
10020 bool scalar_return;
10021 int ret = -ENOMEM;
10022
10023 nfuncs = attr->func_info_cnt;
10024 if (!nfuncs) {
10025 if (check_abnormal_return(env))
10026 return -EINVAL;
10027 return 0;
10028 }
10029
10030 if (nfuncs != env->subprog_cnt) {
10031 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
10032 return -EINVAL;
10033 }
10034
10035 urec_size = attr->func_info_rec_size;
10036 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
10037 urec_size > MAX_FUNCINFO_REC_SIZE ||
10038 urec_size % sizeof(u32)) {
10039 verbose(env, "invalid func info rec size %u\n", urec_size);
10040 return -EINVAL;
10041 }
10042
10043 prog = env->prog;
10044 btf = prog->aux->btf;
10045
10046 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
10047 min_size = min_t(u32, krec_size, urec_size);
10048
10049 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
10050 if (!krecord)
10051 return -ENOMEM;
10052 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
10053 if (!info_aux)
10054 goto err_free;
10055
10056 for (i = 0; i < nfuncs; i++) {
10057 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
10058 if (ret) {
10059 if (ret == -E2BIG) {
10060 verbose(env, "nonzero tailing record in func info");
10061 /* set the size kernel expects so loader can zero
10062 * out the rest of the record.
10063 */
10064 if (copy_to_bpfptr_offset(uattr,
10065 offsetof(union bpf_attr, func_info_rec_size),
10066 &min_size, sizeof(min_size)))
10067 ret = -EFAULT;
10068 }
10069 goto err_free;
10070 }
10071
10072 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
10073 ret = -EFAULT;
10074 goto err_free;
10075 }
10076
10077 /* check insn_off */
10078 ret = -EINVAL;
10079 if (i == 0) {
10080 if (krecord[i].insn_off) {
10081 verbose(env,
10082 "nonzero insn_off %u for the first func info record",
10083 krecord[i].insn_off);
10084 goto err_free;
10085 }
10086 } else if (krecord[i].insn_off <= prev_offset) {
10087 verbose(env,
10088 "same or smaller insn offset (%u) than previous func info record (%u)",
10089 krecord[i].insn_off, prev_offset);
10090 goto err_free;
10091 }
10092
10093 if (env->subprog_info[i].start != krecord[i].insn_off) {
10094 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
10095 goto err_free;
10096 }
10097
10098 /* check type_id */
10099 type = btf_type_by_id(btf, krecord[i].type_id);
10100 if (!type || !btf_type_is_func(type)) {
10101 verbose(env, "invalid type id %d in func info",
10102 krecord[i].type_id);
10103 goto err_free;
10104 }
10105 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
10106
10107 func_proto = btf_type_by_id(btf, type->type);
10108 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
10109 /* btf_func_check() already verified it during BTF load */
10110 goto err_free;
10111 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
10112 scalar_return =
10113 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
10114 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
10115 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
10116 goto err_free;
10117 }
10118 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
10119 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
10120 goto err_free;
10121 }
10122
10123 prev_offset = krecord[i].insn_off;
10124 bpfptr_add(&urecord, urec_size);
10125 }
10126
10127 prog->aux->func_info = krecord;
10128 prog->aux->func_info_cnt = nfuncs;
10129 prog->aux->func_info_aux = info_aux;
10130 return 0;
10131
10132 err_free:
10133 kvfree(krecord);
10134 kfree(info_aux);
10135 return ret;
10136 }
10137
adjust_btf_func(struct bpf_verifier_env * env)10138 static void adjust_btf_func(struct bpf_verifier_env *env)
10139 {
10140 struct bpf_prog_aux *aux = env->prog->aux;
10141 int i;
10142
10143 if (!aux->func_info)
10144 return;
10145
10146 for (i = 0; i < env->subprog_cnt; i++)
10147 aux->func_info[i].insn_off = env->subprog_info[i].start;
10148 }
10149
10150 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
10151 sizeof(((struct bpf_line_info *)(0))->line_col))
10152 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
10153
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)10154 static int check_btf_line(struct bpf_verifier_env *env,
10155 const union bpf_attr *attr,
10156 bpfptr_t uattr)
10157 {
10158 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
10159 struct bpf_subprog_info *sub;
10160 struct bpf_line_info *linfo;
10161 struct bpf_prog *prog;
10162 const struct btf *btf;
10163 bpfptr_t ulinfo;
10164 int err;
10165
10166 nr_linfo = attr->line_info_cnt;
10167 if (!nr_linfo)
10168 return 0;
10169 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
10170 return -EINVAL;
10171
10172 rec_size = attr->line_info_rec_size;
10173 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
10174 rec_size > MAX_LINEINFO_REC_SIZE ||
10175 rec_size & (sizeof(u32) - 1))
10176 return -EINVAL;
10177
10178 /* Need to zero it in case the userspace may
10179 * pass in a smaller bpf_line_info object.
10180 */
10181 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
10182 GFP_KERNEL | __GFP_NOWARN);
10183 if (!linfo)
10184 return -ENOMEM;
10185
10186 prog = env->prog;
10187 btf = prog->aux->btf;
10188
10189 s = 0;
10190 sub = env->subprog_info;
10191 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
10192 expected_size = sizeof(struct bpf_line_info);
10193 ncopy = min_t(u32, expected_size, rec_size);
10194 for (i = 0; i < nr_linfo; i++) {
10195 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
10196 if (err) {
10197 if (err == -E2BIG) {
10198 verbose(env, "nonzero tailing record in line_info");
10199 if (copy_to_bpfptr_offset(uattr,
10200 offsetof(union bpf_attr, line_info_rec_size),
10201 &expected_size, sizeof(expected_size)))
10202 err = -EFAULT;
10203 }
10204 goto err_free;
10205 }
10206
10207 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
10208 err = -EFAULT;
10209 goto err_free;
10210 }
10211
10212 /*
10213 * Check insn_off to ensure
10214 * 1) strictly increasing AND
10215 * 2) bounded by prog->len
10216 *
10217 * The linfo[0].insn_off == 0 check logically falls into
10218 * the later "missing bpf_line_info for func..." case
10219 * because the first linfo[0].insn_off must be the
10220 * first sub also and the first sub must have
10221 * subprog_info[0].start == 0.
10222 */
10223 if ((i && linfo[i].insn_off <= prev_offset) ||
10224 linfo[i].insn_off >= prog->len) {
10225 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
10226 i, linfo[i].insn_off, prev_offset,
10227 prog->len);
10228 err = -EINVAL;
10229 goto err_free;
10230 }
10231
10232 if (!prog->insnsi[linfo[i].insn_off].code) {
10233 verbose(env,
10234 "Invalid insn code at line_info[%u].insn_off\n",
10235 i);
10236 err = -EINVAL;
10237 goto err_free;
10238 }
10239
10240 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
10241 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
10242 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
10243 err = -EINVAL;
10244 goto err_free;
10245 }
10246
10247 if (s != env->subprog_cnt) {
10248 if (linfo[i].insn_off == sub[s].start) {
10249 sub[s].linfo_idx = i;
10250 s++;
10251 } else if (sub[s].start < linfo[i].insn_off) {
10252 verbose(env, "missing bpf_line_info for func#%u\n", s);
10253 err = -EINVAL;
10254 goto err_free;
10255 }
10256 }
10257
10258 prev_offset = linfo[i].insn_off;
10259 bpfptr_add(&ulinfo, rec_size);
10260 }
10261
10262 if (s != env->subprog_cnt) {
10263 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
10264 env->subprog_cnt - s, s);
10265 err = -EINVAL;
10266 goto err_free;
10267 }
10268
10269 prog->aux->linfo = linfo;
10270 prog->aux->nr_linfo = nr_linfo;
10271
10272 return 0;
10273
10274 err_free:
10275 kvfree(linfo);
10276 return err;
10277 }
10278
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)10279 static int check_btf_info(struct bpf_verifier_env *env,
10280 const union bpf_attr *attr,
10281 bpfptr_t uattr)
10282 {
10283 struct btf *btf;
10284 int err;
10285
10286 if (!attr->func_info_cnt && !attr->line_info_cnt) {
10287 if (check_abnormal_return(env))
10288 return -EINVAL;
10289 return 0;
10290 }
10291
10292 btf = btf_get_by_fd(attr->prog_btf_fd);
10293 if (IS_ERR(btf))
10294 return PTR_ERR(btf);
10295 if (btf_is_kernel(btf)) {
10296 btf_put(btf);
10297 return -EACCES;
10298 }
10299 env->prog->aux->btf = btf;
10300
10301 err = check_btf_func(env, attr, uattr);
10302 if (err)
10303 return err;
10304
10305 err = check_btf_line(env, attr, uattr);
10306 if (err)
10307 return err;
10308
10309 return 0;
10310 }
10311
10312 /* check %cur's range satisfies %old's */
range_within(struct bpf_reg_state * old,struct bpf_reg_state * cur)10313 static bool range_within(struct bpf_reg_state *old,
10314 struct bpf_reg_state *cur)
10315 {
10316 return old->umin_value <= cur->umin_value &&
10317 old->umax_value >= cur->umax_value &&
10318 old->smin_value <= cur->smin_value &&
10319 old->smax_value >= cur->smax_value &&
10320 old->u32_min_value <= cur->u32_min_value &&
10321 old->u32_max_value >= cur->u32_max_value &&
10322 old->s32_min_value <= cur->s32_min_value &&
10323 old->s32_max_value >= cur->s32_max_value;
10324 }
10325
10326 /* If in the old state two registers had the same id, then they need to have
10327 * the same id in the new state as well. But that id could be different from
10328 * the old state, so we need to track the mapping from old to new ids.
10329 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
10330 * regs with old id 5 must also have new id 9 for the new state to be safe. But
10331 * regs with a different old id could still have new id 9, we don't care about
10332 * that.
10333 * So we look through our idmap to see if this old id has been seen before. If
10334 * so, we require the new id to match; otherwise, we add the id pair to the map.
10335 */
check_ids(u32 old_id,u32 cur_id,struct bpf_id_pair * idmap)10336 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
10337 {
10338 unsigned int i;
10339
10340 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
10341 if (!idmap[i].old) {
10342 /* Reached an empty slot; haven't seen this id before */
10343 idmap[i].old = old_id;
10344 idmap[i].cur = cur_id;
10345 return true;
10346 }
10347 if (idmap[i].old == old_id)
10348 return idmap[i].cur == cur_id;
10349 }
10350 /* We ran out of idmap slots, which should be impossible */
10351 WARN_ON_ONCE(1);
10352 return false;
10353 }
10354
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)10355 static void clean_func_state(struct bpf_verifier_env *env,
10356 struct bpf_func_state *st)
10357 {
10358 enum bpf_reg_liveness live;
10359 int i, j;
10360
10361 for (i = 0; i < BPF_REG_FP; i++) {
10362 live = st->regs[i].live;
10363 /* liveness must not touch this register anymore */
10364 st->regs[i].live |= REG_LIVE_DONE;
10365 if (!(live & REG_LIVE_READ))
10366 /* since the register is unused, clear its state
10367 * to make further comparison simpler
10368 */
10369 __mark_reg_not_init(env, &st->regs[i]);
10370 }
10371
10372 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
10373 live = st->stack[i].spilled_ptr.live;
10374 /* liveness must not touch this stack slot anymore */
10375 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
10376 if (!(live & REG_LIVE_READ)) {
10377 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
10378 for (j = 0; j < BPF_REG_SIZE; j++)
10379 st->stack[i].slot_type[j] = STACK_INVALID;
10380 }
10381 }
10382 }
10383
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)10384 static void clean_verifier_state(struct bpf_verifier_env *env,
10385 struct bpf_verifier_state *st)
10386 {
10387 int i;
10388
10389 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
10390 /* all regs in this state in all frames were already marked */
10391 return;
10392
10393 for (i = 0; i <= st->curframe; i++)
10394 clean_func_state(env, st->frame[i]);
10395 }
10396
10397 /* the parentage chains form a tree.
10398 * the verifier states are added to state lists at given insn and
10399 * pushed into state stack for future exploration.
10400 * when the verifier reaches bpf_exit insn some of the verifer states
10401 * stored in the state lists have their final liveness state already,
10402 * but a lot of states will get revised from liveness point of view when
10403 * the verifier explores other branches.
10404 * Example:
10405 * 1: r0 = 1
10406 * 2: if r1 == 100 goto pc+1
10407 * 3: r0 = 2
10408 * 4: exit
10409 * when the verifier reaches exit insn the register r0 in the state list of
10410 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
10411 * of insn 2 and goes exploring further. At the insn 4 it will walk the
10412 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
10413 *
10414 * Since the verifier pushes the branch states as it sees them while exploring
10415 * the program the condition of walking the branch instruction for the second
10416 * time means that all states below this branch were already explored and
10417 * their final liveness marks are already propagated.
10418 * Hence when the verifier completes the search of state list in is_state_visited()
10419 * we can call this clean_live_states() function to mark all liveness states
10420 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
10421 * will not be used.
10422 * This function also clears the registers and stack for states that !READ
10423 * to simplify state merging.
10424 *
10425 * Important note here that walking the same branch instruction in the callee
10426 * doesn't meant that the states are DONE. The verifier has to compare
10427 * the callsites
10428 */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)10429 static void clean_live_states(struct bpf_verifier_env *env, int insn,
10430 struct bpf_verifier_state *cur)
10431 {
10432 struct bpf_verifier_state_list *sl;
10433 int i;
10434
10435 sl = *explored_state(env, insn);
10436 while (sl) {
10437 if (sl->state.branches)
10438 goto next;
10439 if (sl->state.insn_idx != insn ||
10440 sl->state.curframe != cur->curframe)
10441 goto next;
10442 for (i = 0; i <= cur->curframe; i++)
10443 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
10444 goto next;
10445 clean_verifier_state(env, &sl->state);
10446 next:
10447 sl = sl->next;
10448 }
10449 }
10450
10451 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_id_pair * idmap)10452 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
10453 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
10454 {
10455 bool equal;
10456
10457 if (!(rold->live & REG_LIVE_READ))
10458 /* explored state didn't use this */
10459 return true;
10460
10461 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
10462
10463 if (rold->type == PTR_TO_STACK)
10464 /* two stack pointers are equal only if they're pointing to
10465 * the same stack frame, since fp-8 in foo != fp-8 in bar
10466 */
10467 return equal && rold->frameno == rcur->frameno;
10468
10469 if (equal)
10470 return true;
10471
10472 if (rold->type == NOT_INIT)
10473 /* explored state can't have used this */
10474 return true;
10475 if (rcur->type == NOT_INIT)
10476 return false;
10477 switch (base_type(rold->type)) {
10478 case SCALAR_VALUE:
10479 if (env->explore_alu_limits)
10480 return false;
10481 if (rcur->type == SCALAR_VALUE) {
10482 if (!rold->precise)
10483 return true;
10484 /* new val must satisfy old val knowledge */
10485 return range_within(rold, rcur) &&
10486 tnum_in(rold->var_off, rcur->var_off);
10487 } else {
10488 /* We're trying to use a pointer in place of a scalar.
10489 * Even if the scalar was unbounded, this could lead to
10490 * pointer leaks because scalars are allowed to leak
10491 * while pointers are not. We could make this safe in
10492 * special cases if root is calling us, but it's
10493 * probably not worth the hassle.
10494 */
10495 return false;
10496 }
10497 case PTR_TO_MAP_KEY:
10498 case PTR_TO_MAP_VALUE:
10499 /* a PTR_TO_MAP_VALUE could be safe to use as a
10500 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
10501 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
10502 * checked, doing so could have affected others with the same
10503 * id, and we can't check for that because we lost the id when
10504 * we converted to a PTR_TO_MAP_VALUE.
10505 */
10506 if (type_may_be_null(rold->type)) {
10507 if (!type_may_be_null(rcur->type))
10508 return false;
10509 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10510 return false;
10511 /* Check our ids match any regs they're supposed to */
10512 return check_ids(rold->id, rcur->id, idmap);
10513 }
10514
10515 /* If the new min/max/var_off satisfy the old ones and
10516 * everything else matches, we are OK.
10517 * 'id' is not compared, since it's only used for maps with
10518 * bpf_spin_lock inside map element and in such cases if
10519 * the rest of the prog is valid for one map element then
10520 * it's valid for all map elements regardless of the key
10521 * used in bpf_map_lookup()
10522 */
10523 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
10524 range_within(rold, rcur) &&
10525 tnum_in(rold->var_off, rcur->var_off);
10526 case PTR_TO_PACKET_META:
10527 case PTR_TO_PACKET:
10528 if (rcur->type != rold->type)
10529 return false;
10530 /* We must have at least as much range as the old ptr
10531 * did, so that any accesses which were safe before are
10532 * still safe. This is true even if old range < old off,
10533 * since someone could have accessed through (ptr - k), or
10534 * even done ptr -= k in a register, to get a safe access.
10535 */
10536 if (rold->range > rcur->range)
10537 return false;
10538 /* If the offsets don't match, we can't trust our alignment;
10539 * nor can we be sure that we won't fall out of range.
10540 */
10541 if (rold->off != rcur->off)
10542 return false;
10543 /* id relations must be preserved */
10544 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10545 return false;
10546 /* new val must satisfy old val knowledge */
10547 return range_within(rold, rcur) &&
10548 tnum_in(rold->var_off, rcur->var_off);
10549 case PTR_TO_CTX:
10550 case CONST_PTR_TO_MAP:
10551 case PTR_TO_PACKET_END:
10552 case PTR_TO_FLOW_KEYS:
10553 case PTR_TO_SOCKET:
10554 case PTR_TO_SOCK_COMMON:
10555 case PTR_TO_TCP_SOCK:
10556 case PTR_TO_XDP_SOCK:
10557 /* Only valid matches are exact, which memcmp() above
10558 * would have accepted
10559 */
10560 default:
10561 /* Don't know what's going on, just say it's not safe */
10562 return false;
10563 }
10564
10565 /* Shouldn't get here; if we do, say it's not safe */
10566 WARN_ON_ONCE(1);
10567 return false;
10568 }
10569
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_id_pair * idmap)10570 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
10571 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
10572 {
10573 int i, spi;
10574
10575 /* walk slots of the explored stack and ignore any additional
10576 * slots in the current stack, since explored(safe) state
10577 * didn't use them
10578 */
10579 for (i = 0; i < old->allocated_stack; i++) {
10580 spi = i / BPF_REG_SIZE;
10581
10582 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10583 i += BPF_REG_SIZE - 1;
10584 /* explored state didn't use this */
10585 continue;
10586 }
10587
10588 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10589 continue;
10590
10591 /* explored stack has more populated slots than current stack
10592 * and these slots were used
10593 */
10594 if (i >= cur->allocated_stack)
10595 return false;
10596
10597 /* if old state was safe with misc data in the stack
10598 * it will be safe with zero-initialized stack.
10599 * The opposite is not true
10600 */
10601 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10602 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10603 continue;
10604 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10605 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10606 /* Ex: old explored (safe) state has STACK_SPILL in
10607 * this stack slot, but current has STACK_MISC ->
10608 * this verifier states are not equivalent,
10609 * return false to continue verification of this path
10610 */
10611 return false;
10612 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
10613 continue;
10614 if (!is_spilled_reg(&old->stack[spi]))
10615 continue;
10616 if (!regsafe(env, &old->stack[spi].spilled_ptr,
10617 &cur->stack[spi].spilled_ptr, idmap))
10618 /* when explored and current stack slot are both storing
10619 * spilled registers, check that stored pointers types
10620 * are the same as well.
10621 * Ex: explored safe path could have stored
10622 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10623 * but current path has stored:
10624 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10625 * such verifier states are not equivalent.
10626 * return false to continue verification of this path
10627 */
10628 return false;
10629 }
10630 return true;
10631 }
10632
refsafe(struct bpf_func_state * old,struct bpf_func_state * cur)10633 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10634 {
10635 if (old->acquired_refs != cur->acquired_refs)
10636 return false;
10637 return !memcmp(old->refs, cur->refs,
10638 sizeof(*old->refs) * old->acquired_refs);
10639 }
10640
10641 /* compare two verifier states
10642 *
10643 * all states stored in state_list are known to be valid, since
10644 * verifier reached 'bpf_exit' instruction through them
10645 *
10646 * this function is called when verifier exploring different branches of
10647 * execution popped from the state stack. If it sees an old state that has
10648 * more strict register state and more strict stack state then this execution
10649 * branch doesn't need to be explored further, since verifier already
10650 * concluded that more strict state leads to valid finish.
10651 *
10652 * Therefore two states are equivalent if register state is more conservative
10653 * and explored stack state is more conservative than the current one.
10654 * Example:
10655 * explored current
10656 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10657 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10658 *
10659 * In other words if current stack state (one being explored) has more
10660 * valid slots than old one that already passed validation, it means
10661 * the verifier can stop exploring and conclude that current state is valid too
10662 *
10663 * Similarly with registers. If explored state has register type as invalid
10664 * whereas register type in current state is meaningful, it means that
10665 * the current state will reach 'bpf_exit' instruction safely
10666 */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur)10667 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
10668 struct bpf_func_state *cur)
10669 {
10670 int i;
10671
10672 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10673 for (i = 0; i < MAX_BPF_REG; i++)
10674 if (!regsafe(env, &old->regs[i], &cur->regs[i],
10675 env->idmap_scratch))
10676 return false;
10677
10678 if (!stacksafe(env, old, cur, env->idmap_scratch))
10679 return false;
10680
10681 if (!refsafe(old, cur))
10682 return false;
10683
10684 return true;
10685 }
10686
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)10687 static bool states_equal(struct bpf_verifier_env *env,
10688 struct bpf_verifier_state *old,
10689 struct bpf_verifier_state *cur)
10690 {
10691 int i;
10692
10693 if (old->curframe != cur->curframe)
10694 return false;
10695
10696 /* Verification state from speculative execution simulation
10697 * must never prune a non-speculative execution one.
10698 */
10699 if (old->speculative && !cur->speculative)
10700 return false;
10701
10702 if (old->active_spin_lock != cur->active_spin_lock)
10703 return false;
10704
10705 /* for states to be equal callsites have to be the same
10706 * and all frame states need to be equivalent
10707 */
10708 for (i = 0; i <= old->curframe; i++) {
10709 if (old->frame[i]->callsite != cur->frame[i]->callsite)
10710 return false;
10711 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
10712 return false;
10713 }
10714 return true;
10715 }
10716
10717 /* Return 0 if no propagation happened. Return negative error code if error
10718 * happened. Otherwise, return the propagated bit.
10719 */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)10720 static int propagate_liveness_reg(struct bpf_verifier_env *env,
10721 struct bpf_reg_state *reg,
10722 struct bpf_reg_state *parent_reg)
10723 {
10724 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10725 u8 flag = reg->live & REG_LIVE_READ;
10726 int err;
10727
10728 /* When comes here, read flags of PARENT_REG or REG could be any of
10729 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10730 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10731 */
10732 if (parent_flag == REG_LIVE_READ64 ||
10733 /* Or if there is no read flag from REG. */
10734 !flag ||
10735 /* Or if the read flag from REG is the same as PARENT_REG. */
10736 parent_flag == flag)
10737 return 0;
10738
10739 err = mark_reg_read(env, reg, parent_reg, flag);
10740 if (err)
10741 return err;
10742
10743 return flag;
10744 }
10745
10746 /* A write screens off any subsequent reads; but write marks come from the
10747 * straight-line code between a state and its parent. When we arrive at an
10748 * equivalent state (jump target or such) we didn't arrive by the straight-line
10749 * code, so read marks in the state must propagate to the parent regardless
10750 * of the state's write marks. That's what 'parent == state->parent' comparison
10751 * in mark_reg_read() is for.
10752 */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)10753 static int propagate_liveness(struct bpf_verifier_env *env,
10754 const struct bpf_verifier_state *vstate,
10755 struct bpf_verifier_state *vparent)
10756 {
10757 struct bpf_reg_state *state_reg, *parent_reg;
10758 struct bpf_func_state *state, *parent;
10759 int i, frame, err = 0;
10760
10761 if (vparent->curframe != vstate->curframe) {
10762 WARN(1, "propagate_live: parent frame %d current frame %d\n",
10763 vparent->curframe, vstate->curframe);
10764 return -EFAULT;
10765 }
10766 /* Propagate read liveness of registers... */
10767 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10768 for (frame = 0; frame <= vstate->curframe; frame++) {
10769 parent = vparent->frame[frame];
10770 state = vstate->frame[frame];
10771 parent_reg = parent->regs;
10772 state_reg = state->regs;
10773 /* We don't need to worry about FP liveness, it's read-only */
10774 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10775 err = propagate_liveness_reg(env, &state_reg[i],
10776 &parent_reg[i]);
10777 if (err < 0)
10778 return err;
10779 if (err == REG_LIVE_READ64)
10780 mark_insn_zext(env, &parent_reg[i]);
10781 }
10782
10783 /* Propagate stack slots. */
10784 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10785 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10786 parent_reg = &parent->stack[i].spilled_ptr;
10787 state_reg = &state->stack[i].spilled_ptr;
10788 err = propagate_liveness_reg(env, state_reg,
10789 parent_reg);
10790 if (err < 0)
10791 return err;
10792 }
10793 }
10794 return 0;
10795 }
10796
10797 /* find precise scalars in the previous equivalent state and
10798 * propagate them into the current state
10799 */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)10800 static int propagate_precision(struct bpf_verifier_env *env,
10801 const struct bpf_verifier_state *old)
10802 {
10803 struct bpf_reg_state *state_reg;
10804 struct bpf_func_state *state;
10805 int i, err = 0, fr;
10806
10807 for (fr = old->curframe; fr >= 0; fr--) {
10808 state = old->frame[fr];
10809 state_reg = state->regs;
10810 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10811 if (state_reg->type != SCALAR_VALUE ||
10812 !state_reg->precise ||
10813 !(state_reg->live & REG_LIVE_READ))
10814 continue;
10815 if (env->log.level & BPF_LOG_LEVEL2)
10816 verbose(env, "frame %d: propagating r%d\n", fr, i);
10817 err = mark_chain_precision_frame(env, fr, i);
10818 if (err < 0)
10819 return err;
10820 }
10821
10822 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10823 if (!is_spilled_reg(&state->stack[i]))
10824 continue;
10825 state_reg = &state->stack[i].spilled_ptr;
10826 if (state_reg->type != SCALAR_VALUE ||
10827 !state_reg->precise ||
10828 !(state_reg->live & REG_LIVE_READ))
10829 continue;
10830 if (env->log.level & BPF_LOG_LEVEL2)
10831 verbose(env, "frame %d: propagating fp%d\n",
10832 fr, (-i - 1) * BPF_REG_SIZE);
10833 err = mark_chain_precision_stack_frame(env, fr, i);
10834 if (err < 0)
10835 return err;
10836 }
10837 }
10838 return 0;
10839 }
10840
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)10841 static bool states_maybe_looping(struct bpf_verifier_state *old,
10842 struct bpf_verifier_state *cur)
10843 {
10844 struct bpf_func_state *fold, *fcur;
10845 int i, fr = cur->curframe;
10846
10847 if (old->curframe != fr)
10848 return false;
10849
10850 fold = old->frame[fr];
10851 fcur = cur->frame[fr];
10852 for (i = 0; i < MAX_BPF_REG; i++)
10853 if (memcmp(&fold->regs[i], &fcur->regs[i],
10854 offsetof(struct bpf_reg_state, parent)))
10855 return false;
10856 return true;
10857 }
10858
10859
is_state_visited(struct bpf_verifier_env * env,int insn_idx)10860 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
10861 {
10862 struct bpf_verifier_state_list *new_sl;
10863 struct bpf_verifier_state_list *sl, **pprev;
10864 struct bpf_verifier_state *cur = env->cur_state, *new;
10865 int i, j, err, states_cnt = 0;
10866 bool add_new_state = env->test_state_freq ? true : false;
10867
10868 cur->last_insn_idx = env->prev_insn_idx;
10869 if (!env->insn_aux_data[insn_idx].prune_point)
10870 /* this 'insn_idx' instruction wasn't marked, so we will not
10871 * be doing state search here
10872 */
10873 return 0;
10874
10875 /* bpf progs typically have pruning point every 4 instructions
10876 * http://vger.kernel.org/bpfconf2019.html#session-1
10877 * Do not add new state for future pruning if the verifier hasn't seen
10878 * at least 2 jumps and at least 8 instructions.
10879 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10880 * In tests that amounts to up to 50% reduction into total verifier
10881 * memory consumption and 20% verifier time speedup.
10882 */
10883 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10884 env->insn_processed - env->prev_insn_processed >= 8)
10885 add_new_state = true;
10886
10887 pprev = explored_state(env, insn_idx);
10888 sl = *pprev;
10889
10890 clean_live_states(env, insn_idx, cur);
10891
10892 while (sl) {
10893 states_cnt++;
10894 if (sl->state.insn_idx != insn_idx)
10895 goto next;
10896
10897 if (sl->state.branches) {
10898 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
10899
10900 if (frame->in_async_callback_fn &&
10901 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
10902 /* Different async_entry_cnt means that the verifier is
10903 * processing another entry into async callback.
10904 * Seeing the same state is not an indication of infinite
10905 * loop or infinite recursion.
10906 * But finding the same state doesn't mean that it's safe
10907 * to stop processing the current state. The previous state
10908 * hasn't yet reached bpf_exit, since state.branches > 0.
10909 * Checking in_async_callback_fn alone is not enough either.
10910 * Since the verifier still needs to catch infinite loops
10911 * inside async callbacks.
10912 */
10913 } else if (states_maybe_looping(&sl->state, cur) &&
10914 states_equal(env, &sl->state, cur)) {
10915 verbose_linfo(env, insn_idx, "; ");
10916 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10917 return -EINVAL;
10918 }
10919 /* if the verifier is processing a loop, avoid adding new state
10920 * too often, since different loop iterations have distinct
10921 * states and may not help future pruning.
10922 * This threshold shouldn't be too low to make sure that
10923 * a loop with large bound will be rejected quickly.
10924 * The most abusive loop will be:
10925 * r1 += 1
10926 * if r1 < 1000000 goto pc-2
10927 * 1M insn_procssed limit / 100 == 10k peak states.
10928 * This threshold shouldn't be too high either, since states
10929 * at the end of the loop are likely to be useful in pruning.
10930 */
10931 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10932 env->insn_processed - env->prev_insn_processed < 100)
10933 add_new_state = false;
10934 goto miss;
10935 }
10936 if (states_equal(env, &sl->state, cur)) {
10937 sl->hit_cnt++;
10938 /* reached equivalent register/stack state,
10939 * prune the search.
10940 * Registers read by the continuation are read by us.
10941 * If we have any write marks in env->cur_state, they
10942 * will prevent corresponding reads in the continuation
10943 * from reaching our parent (an explored_state). Our
10944 * own state will get the read marks recorded, but
10945 * they'll be immediately forgotten as we're pruning
10946 * this state and will pop a new one.
10947 */
10948 err = propagate_liveness(env, &sl->state, cur);
10949
10950 /* if previous state reached the exit with precision and
10951 * current state is equivalent to it (except precsion marks)
10952 * the precision needs to be propagated back in
10953 * the current state.
10954 */
10955 err = err ? : push_jmp_history(env, cur);
10956 err = err ? : propagate_precision(env, &sl->state);
10957 if (err)
10958 return err;
10959 return 1;
10960 }
10961 miss:
10962 /* when new state is not going to be added do not increase miss count.
10963 * Otherwise several loop iterations will remove the state
10964 * recorded earlier. The goal of these heuristics is to have
10965 * states from some iterations of the loop (some in the beginning
10966 * and some at the end) to help pruning.
10967 */
10968 if (add_new_state)
10969 sl->miss_cnt++;
10970 /* heuristic to determine whether this state is beneficial
10971 * to keep checking from state equivalence point of view.
10972 * Higher numbers increase max_states_per_insn and verification time,
10973 * but do not meaningfully decrease insn_processed.
10974 */
10975 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10976 /* the state is unlikely to be useful. Remove it to
10977 * speed up verification
10978 */
10979 *pprev = sl->next;
10980 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
10981 u32 br = sl->state.branches;
10982
10983 WARN_ONCE(br,
10984 "BUG live_done but branches_to_explore %d\n",
10985 br);
10986 free_verifier_state(&sl->state, false);
10987 kfree(sl);
10988 env->peak_states--;
10989 } else {
10990 /* cannot free this state, since parentage chain may
10991 * walk it later. Add it for free_list instead to
10992 * be freed at the end of verification
10993 */
10994 sl->next = env->free_list;
10995 env->free_list = sl;
10996 }
10997 sl = *pprev;
10998 continue;
10999 }
11000 next:
11001 pprev = &sl->next;
11002 sl = *pprev;
11003 }
11004
11005 if (env->max_states_per_insn < states_cnt)
11006 env->max_states_per_insn = states_cnt;
11007
11008 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
11009 return push_jmp_history(env, cur);
11010
11011 if (!add_new_state)
11012 return push_jmp_history(env, cur);
11013
11014 /* There were no equivalent states, remember the current one.
11015 * Technically the current state is not proven to be safe yet,
11016 * but it will either reach outer most bpf_exit (which means it's safe)
11017 * or it will be rejected. When there are no loops the verifier won't be
11018 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
11019 * again on the way to bpf_exit.
11020 * When looping the sl->state.branches will be > 0 and this state
11021 * will not be considered for equivalence until branches == 0.
11022 */
11023 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
11024 if (!new_sl)
11025 return -ENOMEM;
11026 env->total_states++;
11027 env->peak_states++;
11028 env->prev_jmps_processed = env->jmps_processed;
11029 env->prev_insn_processed = env->insn_processed;
11030
11031 /* forget precise markings we inherited, see __mark_chain_precision */
11032 if (env->bpf_capable)
11033 mark_all_scalars_imprecise(env, cur);
11034
11035 /* add new state to the head of linked list */
11036 new = &new_sl->state;
11037 err = copy_verifier_state(new, cur);
11038 if (err) {
11039 free_verifier_state(new, false);
11040 kfree(new_sl);
11041 return err;
11042 }
11043 new->insn_idx = insn_idx;
11044 WARN_ONCE(new->branches != 1,
11045 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
11046
11047 cur->parent = new;
11048 cur->first_insn_idx = insn_idx;
11049 clear_jmp_history(cur);
11050 new_sl->next = *explored_state(env, insn_idx);
11051 *explored_state(env, insn_idx) = new_sl;
11052 /* connect new state to parentage chain. Current frame needs all
11053 * registers connected. Only r6 - r9 of the callers are alive (pushed
11054 * to the stack implicitly by JITs) so in callers' frames connect just
11055 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
11056 * the state of the call instruction (with WRITTEN set), and r0 comes
11057 * from callee with its full parentage chain, anyway.
11058 */
11059 /* clear write marks in current state: the writes we did are not writes
11060 * our child did, so they don't screen off its reads from us.
11061 * (There are no read marks in current state, because reads always mark
11062 * their parent and current state never has children yet. Only
11063 * explored_states can get read marks.)
11064 */
11065 for (j = 0; j <= cur->curframe; j++) {
11066 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
11067 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
11068 for (i = 0; i < BPF_REG_FP; i++)
11069 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
11070 }
11071
11072 /* all stack frames are accessible from callee, clear them all */
11073 for (j = 0; j <= cur->curframe; j++) {
11074 struct bpf_func_state *frame = cur->frame[j];
11075 struct bpf_func_state *newframe = new->frame[j];
11076
11077 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
11078 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
11079 frame->stack[i].spilled_ptr.parent =
11080 &newframe->stack[i].spilled_ptr;
11081 }
11082 }
11083 return 0;
11084 }
11085
11086 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)11087 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
11088 {
11089 switch (base_type(type)) {
11090 case PTR_TO_CTX:
11091 case PTR_TO_SOCKET:
11092 case PTR_TO_SOCK_COMMON:
11093 case PTR_TO_TCP_SOCK:
11094 case PTR_TO_XDP_SOCK:
11095 case PTR_TO_BTF_ID:
11096 return false;
11097 default:
11098 return true;
11099 }
11100 }
11101
11102 /* If an instruction was previously used with particular pointer types, then we
11103 * need to be careful to avoid cases such as the below, where it may be ok
11104 * for one branch accessing the pointer, but not ok for the other branch:
11105 *
11106 * R1 = sock_ptr
11107 * goto X;
11108 * ...
11109 * R1 = some_other_valid_ptr;
11110 * goto X;
11111 * ...
11112 * R2 = *(u32 *)(R1 + 0);
11113 */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)11114 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
11115 {
11116 return src != prev && (!reg_type_mismatch_ok(src) ||
11117 !reg_type_mismatch_ok(prev));
11118 }
11119
do_check(struct bpf_verifier_env * env)11120 static int do_check(struct bpf_verifier_env *env)
11121 {
11122 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11123 struct bpf_verifier_state *state = env->cur_state;
11124 struct bpf_insn *insns = env->prog->insnsi;
11125 struct bpf_reg_state *regs;
11126 int insn_cnt = env->prog->len;
11127 bool do_print_state = false;
11128 int prev_insn_idx = -1;
11129
11130 for (;;) {
11131 struct bpf_insn *insn;
11132 u8 class;
11133 int err;
11134
11135 env->prev_insn_idx = prev_insn_idx;
11136 if (env->insn_idx >= insn_cnt) {
11137 verbose(env, "invalid insn idx %d insn_cnt %d\n",
11138 env->insn_idx, insn_cnt);
11139 return -EFAULT;
11140 }
11141
11142 insn = &insns[env->insn_idx];
11143 class = BPF_CLASS(insn->code);
11144
11145 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
11146 verbose(env,
11147 "BPF program is too large. Processed %d insn\n",
11148 env->insn_processed);
11149 return -E2BIG;
11150 }
11151
11152 err = is_state_visited(env, env->insn_idx);
11153 if (err < 0)
11154 return err;
11155 if (err == 1) {
11156 /* found equivalent state, can prune the search */
11157 if (env->log.level & BPF_LOG_LEVEL) {
11158 if (do_print_state)
11159 verbose(env, "\nfrom %d to %d%s: safe\n",
11160 env->prev_insn_idx, env->insn_idx,
11161 env->cur_state->speculative ?
11162 " (speculative execution)" : "");
11163 else
11164 verbose(env, "%d: safe\n", env->insn_idx);
11165 }
11166 goto process_bpf_exit;
11167 }
11168
11169 if (signal_pending(current))
11170 return -EAGAIN;
11171
11172 if (need_resched())
11173 cond_resched();
11174
11175 if (env->log.level & BPF_LOG_LEVEL2 ||
11176 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
11177 if (env->log.level & BPF_LOG_LEVEL2)
11178 verbose(env, "%d:", env->insn_idx);
11179 else
11180 verbose(env, "\nfrom %d to %d%s:",
11181 env->prev_insn_idx, env->insn_idx,
11182 env->cur_state->speculative ?
11183 " (speculative execution)" : "");
11184 print_verifier_state(env, state->frame[state->curframe]);
11185 do_print_state = false;
11186 }
11187
11188 if (env->log.level & BPF_LOG_LEVEL) {
11189 const struct bpf_insn_cbs cbs = {
11190 .cb_call = disasm_kfunc_name,
11191 .cb_print = verbose,
11192 .private_data = env,
11193 };
11194
11195 verbose_linfo(env, env->insn_idx, "; ");
11196 verbose(env, "%d: ", env->insn_idx);
11197 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
11198 }
11199
11200 if (bpf_prog_is_dev_bound(env->prog->aux)) {
11201 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
11202 env->prev_insn_idx);
11203 if (err)
11204 return err;
11205 }
11206
11207 regs = cur_regs(env);
11208 sanitize_mark_insn_seen(env);
11209 prev_insn_idx = env->insn_idx;
11210
11211 if (class == BPF_ALU || class == BPF_ALU64) {
11212 err = check_alu_op(env, insn);
11213 if (err)
11214 return err;
11215
11216 } else if (class == BPF_LDX) {
11217 enum bpf_reg_type *prev_src_type, src_reg_type;
11218
11219 /* check for reserved fields is already done */
11220
11221 /* check src operand */
11222 err = check_reg_arg(env, insn->src_reg, SRC_OP);
11223 if (err)
11224 return err;
11225
11226 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
11227 if (err)
11228 return err;
11229
11230 src_reg_type = regs[insn->src_reg].type;
11231
11232 /* check that memory (src_reg + off) is readable,
11233 * the state of dst_reg will be updated by this func
11234 */
11235 err = check_mem_access(env, env->insn_idx, insn->src_reg,
11236 insn->off, BPF_SIZE(insn->code),
11237 BPF_READ, insn->dst_reg, false);
11238 if (err)
11239 return err;
11240
11241 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11242
11243 if (*prev_src_type == NOT_INIT) {
11244 /* saw a valid insn
11245 * dst_reg = *(u32 *)(src_reg + off)
11246 * save type to validate intersecting paths
11247 */
11248 *prev_src_type = src_reg_type;
11249
11250 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
11251 /* ABuser program is trying to use the same insn
11252 * dst_reg = *(u32*) (src_reg + off)
11253 * with different pointer types:
11254 * src_reg == ctx in one branch and
11255 * src_reg == stack|map in some other branch.
11256 * Reject it.
11257 */
11258 verbose(env, "same insn cannot be used with different pointers\n");
11259 return -EINVAL;
11260 }
11261
11262 } else if (class == BPF_STX) {
11263 enum bpf_reg_type *prev_dst_type, dst_reg_type;
11264
11265 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
11266 err = check_atomic(env, env->insn_idx, insn);
11267 if (err)
11268 return err;
11269 env->insn_idx++;
11270 continue;
11271 }
11272
11273 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
11274 verbose(env, "BPF_STX uses reserved fields\n");
11275 return -EINVAL;
11276 }
11277
11278 /* check src1 operand */
11279 err = check_reg_arg(env, insn->src_reg, SRC_OP);
11280 if (err)
11281 return err;
11282 /* check src2 operand */
11283 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11284 if (err)
11285 return err;
11286
11287 dst_reg_type = regs[insn->dst_reg].type;
11288
11289 /* check that memory (dst_reg + off) is writeable */
11290 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11291 insn->off, BPF_SIZE(insn->code),
11292 BPF_WRITE, insn->src_reg, false);
11293 if (err)
11294 return err;
11295
11296 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11297
11298 if (*prev_dst_type == NOT_INIT) {
11299 *prev_dst_type = dst_reg_type;
11300 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
11301 verbose(env, "same insn cannot be used with different pointers\n");
11302 return -EINVAL;
11303 }
11304
11305 } else if (class == BPF_ST) {
11306 if (BPF_MODE(insn->code) != BPF_MEM ||
11307 insn->src_reg != BPF_REG_0) {
11308 verbose(env, "BPF_ST uses reserved fields\n");
11309 return -EINVAL;
11310 }
11311 /* check src operand */
11312 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11313 if (err)
11314 return err;
11315
11316 if (is_ctx_reg(env, insn->dst_reg)) {
11317 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
11318 insn->dst_reg,
11319 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
11320 return -EACCES;
11321 }
11322
11323 /* check that memory (dst_reg + off) is writeable */
11324 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11325 insn->off, BPF_SIZE(insn->code),
11326 BPF_WRITE, -1, false);
11327 if (err)
11328 return err;
11329
11330 } else if (class == BPF_JMP || class == BPF_JMP32) {
11331 u8 opcode = BPF_OP(insn->code);
11332
11333 env->jmps_processed++;
11334 if (opcode == BPF_CALL) {
11335 if (BPF_SRC(insn->code) != BPF_K ||
11336 insn->off != 0 ||
11337 (insn->src_reg != BPF_REG_0 &&
11338 insn->src_reg != BPF_PSEUDO_CALL &&
11339 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
11340 insn->dst_reg != BPF_REG_0 ||
11341 class == BPF_JMP32) {
11342 verbose(env, "BPF_CALL uses reserved fields\n");
11343 return -EINVAL;
11344 }
11345
11346 if (env->cur_state->active_spin_lock &&
11347 (insn->src_reg == BPF_PSEUDO_CALL ||
11348 insn->imm != BPF_FUNC_spin_unlock)) {
11349 verbose(env, "function calls are not allowed while holding a lock\n");
11350 return -EINVAL;
11351 }
11352 if (insn->src_reg == BPF_PSEUDO_CALL)
11353 err = check_func_call(env, insn, &env->insn_idx);
11354 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
11355 err = check_kfunc_call(env, insn);
11356 else
11357 err = check_helper_call(env, insn, &env->insn_idx);
11358 if (err)
11359 return err;
11360 } else if (opcode == BPF_JA) {
11361 if (BPF_SRC(insn->code) != BPF_K ||
11362 insn->imm != 0 ||
11363 insn->src_reg != BPF_REG_0 ||
11364 insn->dst_reg != BPF_REG_0 ||
11365 class == BPF_JMP32) {
11366 verbose(env, "BPF_JA uses reserved fields\n");
11367 return -EINVAL;
11368 }
11369
11370 env->insn_idx += insn->off + 1;
11371 continue;
11372
11373 } else if (opcode == BPF_EXIT) {
11374 if (BPF_SRC(insn->code) != BPF_K ||
11375 insn->imm != 0 ||
11376 insn->src_reg != BPF_REG_0 ||
11377 insn->dst_reg != BPF_REG_0 ||
11378 class == BPF_JMP32) {
11379 verbose(env, "BPF_EXIT uses reserved fields\n");
11380 return -EINVAL;
11381 }
11382
11383 if (env->cur_state->active_spin_lock) {
11384 verbose(env, "bpf_spin_unlock is missing\n");
11385 return -EINVAL;
11386 }
11387
11388 /* We must do check_reference_leak here before
11389 * prepare_func_exit to handle the case when
11390 * state->curframe > 0, it may be a callback
11391 * function, for which reference_state must
11392 * match caller reference state when it exits.
11393 */
11394 err = check_reference_leak(env);
11395 if (err)
11396 return err;
11397
11398 if (state->curframe) {
11399 /* exit from nested function */
11400 err = prepare_func_exit(env, &env->insn_idx);
11401 if (err)
11402 return err;
11403 do_print_state = true;
11404 continue;
11405 }
11406
11407 err = check_return_code(env);
11408 if (err)
11409 return err;
11410 process_bpf_exit:
11411 update_branch_counts(env, env->cur_state);
11412 err = pop_stack(env, &prev_insn_idx,
11413 &env->insn_idx, pop_log);
11414 if (err < 0) {
11415 if (err != -ENOENT)
11416 return err;
11417 break;
11418 } else {
11419 do_print_state = true;
11420 continue;
11421 }
11422 } else {
11423 err = check_cond_jmp_op(env, insn, &env->insn_idx);
11424 if (err)
11425 return err;
11426 }
11427 } else if (class == BPF_LD) {
11428 u8 mode = BPF_MODE(insn->code);
11429
11430 if (mode == BPF_ABS || mode == BPF_IND) {
11431 err = check_ld_abs(env, insn);
11432 if (err)
11433 return err;
11434
11435 } else if (mode == BPF_IMM) {
11436 err = check_ld_imm(env, insn);
11437 if (err)
11438 return err;
11439
11440 env->insn_idx++;
11441 sanitize_mark_insn_seen(env);
11442 } else {
11443 verbose(env, "invalid BPF_LD mode\n");
11444 return -EINVAL;
11445 }
11446 } else {
11447 verbose(env, "unknown insn class %d\n", class);
11448 return -EINVAL;
11449 }
11450
11451 env->insn_idx++;
11452 }
11453
11454 return 0;
11455 }
11456
find_btf_percpu_datasec(struct btf * btf)11457 static int find_btf_percpu_datasec(struct btf *btf)
11458 {
11459 const struct btf_type *t;
11460 const char *tname;
11461 int i, n;
11462
11463 /*
11464 * Both vmlinux and module each have their own ".data..percpu"
11465 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
11466 * types to look at only module's own BTF types.
11467 */
11468 n = btf_nr_types(btf);
11469 if (btf_is_module(btf))
11470 i = btf_nr_types(btf_vmlinux);
11471 else
11472 i = 1;
11473
11474 for(; i < n; i++) {
11475 t = btf_type_by_id(btf, i);
11476 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
11477 continue;
11478
11479 tname = btf_name_by_offset(btf, t->name_off);
11480 if (!strcmp(tname, ".data..percpu"))
11481 return i;
11482 }
11483
11484 return -ENOENT;
11485 }
11486
11487 /* replace pseudo btf_id with kernel symbol address */
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)11488 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
11489 struct bpf_insn *insn,
11490 struct bpf_insn_aux_data *aux)
11491 {
11492 const struct btf_var_secinfo *vsi;
11493 const struct btf_type *datasec;
11494 struct btf_mod_pair *btf_mod;
11495 const struct btf_type *t;
11496 const char *sym_name;
11497 bool percpu = false;
11498 u32 type, id = insn->imm;
11499 struct btf *btf;
11500 s32 datasec_id;
11501 u64 addr;
11502 int i, btf_fd, err;
11503
11504 btf_fd = insn[1].imm;
11505 if (btf_fd) {
11506 btf = btf_get_by_fd(btf_fd);
11507 if (IS_ERR(btf)) {
11508 verbose(env, "invalid module BTF object FD specified.\n");
11509 return -EINVAL;
11510 }
11511 } else {
11512 if (!btf_vmlinux) {
11513 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
11514 return -EINVAL;
11515 }
11516 btf = btf_vmlinux;
11517 btf_get(btf);
11518 }
11519
11520 t = btf_type_by_id(btf, id);
11521 if (!t) {
11522 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
11523 err = -ENOENT;
11524 goto err_put;
11525 }
11526
11527 if (!btf_type_is_var(t)) {
11528 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
11529 err = -EINVAL;
11530 goto err_put;
11531 }
11532
11533 sym_name = btf_name_by_offset(btf, t->name_off);
11534 addr = kallsyms_lookup_name(sym_name);
11535 if (!addr) {
11536 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
11537 sym_name);
11538 err = -ENOENT;
11539 goto err_put;
11540 }
11541
11542 datasec_id = find_btf_percpu_datasec(btf);
11543 if (datasec_id > 0) {
11544 datasec = btf_type_by_id(btf, datasec_id);
11545 for_each_vsi(i, datasec, vsi) {
11546 if (vsi->type == id) {
11547 percpu = true;
11548 break;
11549 }
11550 }
11551 }
11552
11553 insn[0].imm = (u32)addr;
11554 insn[1].imm = addr >> 32;
11555
11556 type = t->type;
11557 t = btf_type_skip_modifiers(btf, type, NULL);
11558 if (percpu) {
11559 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
11560 aux->btf_var.btf = btf;
11561 aux->btf_var.btf_id = type;
11562 } else if (!btf_type_is_struct(t)) {
11563 const struct btf_type *ret;
11564 const char *tname;
11565 u32 tsize;
11566
11567 /* resolve the type size of ksym. */
11568 ret = btf_resolve_size(btf, t, &tsize);
11569 if (IS_ERR(ret)) {
11570 tname = btf_name_by_offset(btf, t->name_off);
11571 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11572 tname, PTR_ERR(ret));
11573 err = -EINVAL;
11574 goto err_put;
11575 }
11576 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
11577 aux->btf_var.mem_size = tsize;
11578 } else {
11579 aux->btf_var.reg_type = PTR_TO_BTF_ID;
11580 aux->btf_var.btf = btf;
11581 aux->btf_var.btf_id = type;
11582 }
11583
11584 /* check whether we recorded this BTF (and maybe module) already */
11585 for (i = 0; i < env->used_btf_cnt; i++) {
11586 if (env->used_btfs[i].btf == btf) {
11587 btf_put(btf);
11588 return 0;
11589 }
11590 }
11591
11592 if (env->used_btf_cnt >= MAX_USED_BTFS) {
11593 err = -E2BIG;
11594 goto err_put;
11595 }
11596
11597 btf_mod = &env->used_btfs[env->used_btf_cnt];
11598 btf_mod->btf = btf;
11599 btf_mod->module = NULL;
11600
11601 /* if we reference variables from kernel module, bump its refcount */
11602 if (btf_is_module(btf)) {
11603 btf_mod->module = btf_try_get_module(btf);
11604 if (!btf_mod->module) {
11605 err = -ENXIO;
11606 goto err_put;
11607 }
11608 }
11609
11610 env->used_btf_cnt++;
11611
11612 return 0;
11613 err_put:
11614 btf_put(btf);
11615 return err;
11616 }
11617
check_map_prealloc(struct bpf_map * map)11618 static int check_map_prealloc(struct bpf_map *map)
11619 {
11620 return (map->map_type != BPF_MAP_TYPE_HASH &&
11621 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11622 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11623 !(map->map_flags & BPF_F_NO_PREALLOC);
11624 }
11625
is_tracing_prog_type(enum bpf_prog_type type)11626 static bool is_tracing_prog_type(enum bpf_prog_type type)
11627 {
11628 switch (type) {
11629 case BPF_PROG_TYPE_KPROBE:
11630 case BPF_PROG_TYPE_TRACEPOINT:
11631 case BPF_PROG_TYPE_PERF_EVENT:
11632 case BPF_PROG_TYPE_RAW_TRACEPOINT:
11633 return true;
11634 default:
11635 return false;
11636 }
11637 }
11638
is_preallocated_map(struct bpf_map * map)11639 static bool is_preallocated_map(struct bpf_map *map)
11640 {
11641 if (!check_map_prealloc(map))
11642 return false;
11643 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11644 return false;
11645 return true;
11646 }
11647
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)11648 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11649 struct bpf_map *map,
11650 struct bpf_prog *prog)
11651
11652 {
11653 enum bpf_prog_type prog_type = resolve_prog_type(prog);
11654 /*
11655 * Validate that trace type programs use preallocated hash maps.
11656 *
11657 * For programs attached to PERF events this is mandatory as the
11658 * perf NMI can hit any arbitrary code sequence.
11659 *
11660 * All other trace types using preallocated hash maps are unsafe as
11661 * well because tracepoint or kprobes can be inside locked regions
11662 * of the memory allocator or at a place where a recursion into the
11663 * memory allocator would see inconsistent state.
11664 *
11665 * On RT enabled kernels run-time allocation of all trace type
11666 * programs is strictly prohibited due to lock type constraints. On
11667 * !RT kernels it is allowed for backwards compatibility reasons for
11668 * now, but warnings are emitted so developers are made aware of
11669 * the unsafety and can fix their programs before this is enforced.
11670 */
11671 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11672 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11673 verbose(env, "perf_event programs can only use preallocated hash map\n");
11674 return -EINVAL;
11675 }
11676 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11677 verbose(env, "trace type programs can only use preallocated hash map\n");
11678 return -EINVAL;
11679 }
11680 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11681 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11682 }
11683
11684 if (map_value_has_spin_lock(map)) {
11685 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11686 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11687 return -EINVAL;
11688 }
11689
11690 if (is_tracing_prog_type(prog_type)) {
11691 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11692 return -EINVAL;
11693 }
11694
11695 if (prog->aux->sleepable) {
11696 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11697 return -EINVAL;
11698 }
11699 }
11700
11701 if (map_value_has_timer(map)) {
11702 if (is_tracing_prog_type(prog_type)) {
11703 verbose(env, "tracing progs cannot use bpf_timer yet\n");
11704 return -EINVAL;
11705 }
11706 }
11707
11708 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11709 !bpf_offload_prog_map_match(prog, map)) {
11710 verbose(env, "offload device mismatch between prog and map\n");
11711 return -EINVAL;
11712 }
11713
11714 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11715 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11716 return -EINVAL;
11717 }
11718
11719 if (prog->aux->sleepable)
11720 switch (map->map_type) {
11721 case BPF_MAP_TYPE_HASH:
11722 case BPF_MAP_TYPE_LRU_HASH:
11723 case BPF_MAP_TYPE_ARRAY:
11724 case BPF_MAP_TYPE_PERCPU_HASH:
11725 case BPF_MAP_TYPE_PERCPU_ARRAY:
11726 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11727 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11728 case BPF_MAP_TYPE_HASH_OF_MAPS:
11729 if (!is_preallocated_map(map)) {
11730 verbose(env,
11731 "Sleepable programs can only use preallocated maps\n");
11732 return -EINVAL;
11733 }
11734 break;
11735 case BPF_MAP_TYPE_RINGBUF:
11736 break;
11737 default:
11738 verbose(env,
11739 "Sleepable programs can only use array, hash, and ringbuf maps\n");
11740 return -EINVAL;
11741 }
11742
11743 return 0;
11744 }
11745
bpf_map_is_cgroup_storage(struct bpf_map * map)11746 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11747 {
11748 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11749 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11750 }
11751
11752 /* find and rewrite pseudo imm in ld_imm64 instructions:
11753 *
11754 * 1. if it accesses map FD, replace it with actual map pointer.
11755 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11756 *
11757 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11758 */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)11759 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11760 {
11761 struct bpf_insn *insn = env->prog->insnsi;
11762 int insn_cnt = env->prog->len;
11763 int i, j, err;
11764
11765 err = bpf_prog_calc_tag(env->prog);
11766 if (err)
11767 return err;
11768
11769 for (i = 0; i < insn_cnt; i++, insn++) {
11770 if (BPF_CLASS(insn->code) == BPF_LDX &&
11771 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11772 verbose(env, "BPF_LDX uses reserved fields\n");
11773 return -EINVAL;
11774 }
11775
11776 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11777 struct bpf_insn_aux_data *aux;
11778 struct bpf_map *map;
11779 struct fd f;
11780 u64 addr;
11781 u32 fd;
11782
11783 if (i == insn_cnt - 1 || insn[1].code != 0 ||
11784 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11785 insn[1].off != 0) {
11786 verbose(env, "invalid bpf_ld_imm64 insn\n");
11787 return -EINVAL;
11788 }
11789
11790 if (insn[0].src_reg == 0)
11791 /* valid generic load 64-bit imm */
11792 goto next_insn;
11793
11794 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11795 aux = &env->insn_aux_data[i];
11796 err = check_pseudo_btf_id(env, insn, aux);
11797 if (err)
11798 return err;
11799 goto next_insn;
11800 }
11801
11802 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11803 aux = &env->insn_aux_data[i];
11804 aux->ptr_type = PTR_TO_FUNC;
11805 goto next_insn;
11806 }
11807
11808 /* In final convert_pseudo_ld_imm64() step, this is
11809 * converted into regular 64-bit imm load insn.
11810 */
11811 switch (insn[0].src_reg) {
11812 case BPF_PSEUDO_MAP_VALUE:
11813 case BPF_PSEUDO_MAP_IDX_VALUE:
11814 break;
11815 case BPF_PSEUDO_MAP_FD:
11816 case BPF_PSEUDO_MAP_IDX:
11817 if (insn[1].imm == 0)
11818 break;
11819 fallthrough;
11820 default:
11821 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
11822 return -EINVAL;
11823 }
11824
11825 switch (insn[0].src_reg) {
11826 case BPF_PSEUDO_MAP_IDX_VALUE:
11827 case BPF_PSEUDO_MAP_IDX:
11828 if (bpfptr_is_null(env->fd_array)) {
11829 verbose(env, "fd_idx without fd_array is invalid\n");
11830 return -EPROTO;
11831 }
11832 if (copy_from_bpfptr_offset(&fd, env->fd_array,
11833 insn[0].imm * sizeof(fd),
11834 sizeof(fd)))
11835 return -EFAULT;
11836 break;
11837 default:
11838 fd = insn[0].imm;
11839 break;
11840 }
11841
11842 f = fdget(fd);
11843 map = __bpf_map_get(f);
11844 if (IS_ERR(map)) {
11845 verbose(env, "fd %d is not pointing to valid bpf_map\n",
11846 insn[0].imm);
11847 return PTR_ERR(map);
11848 }
11849
11850 err = check_map_prog_compatibility(env, map, env->prog);
11851 if (err) {
11852 fdput(f);
11853 return err;
11854 }
11855
11856 aux = &env->insn_aux_data[i];
11857 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11858 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
11859 addr = (unsigned long)map;
11860 } else {
11861 u32 off = insn[1].imm;
11862
11863 if (off >= BPF_MAX_VAR_OFF) {
11864 verbose(env, "direct value offset of %u is not allowed\n", off);
11865 fdput(f);
11866 return -EINVAL;
11867 }
11868
11869 if (!map->ops->map_direct_value_addr) {
11870 verbose(env, "no direct value access support for this map type\n");
11871 fdput(f);
11872 return -EINVAL;
11873 }
11874
11875 err = map->ops->map_direct_value_addr(map, &addr, off);
11876 if (err) {
11877 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11878 map->value_size, off);
11879 fdput(f);
11880 return err;
11881 }
11882
11883 aux->map_off = off;
11884 addr += off;
11885 }
11886
11887 insn[0].imm = (u32)addr;
11888 insn[1].imm = addr >> 32;
11889
11890 /* check whether we recorded this map already */
11891 for (j = 0; j < env->used_map_cnt; j++) {
11892 if (env->used_maps[j] == map) {
11893 aux->map_index = j;
11894 fdput(f);
11895 goto next_insn;
11896 }
11897 }
11898
11899 if (env->used_map_cnt >= MAX_USED_MAPS) {
11900 fdput(f);
11901 return -E2BIG;
11902 }
11903
11904 /* hold the map. If the program is rejected by verifier,
11905 * the map will be released by release_maps() or it
11906 * will be used by the valid program until it's unloaded
11907 * and all maps are released in free_used_maps()
11908 */
11909 bpf_map_inc(map);
11910
11911 aux->map_index = env->used_map_cnt;
11912 env->used_maps[env->used_map_cnt++] = map;
11913
11914 if (bpf_map_is_cgroup_storage(map) &&
11915 bpf_cgroup_storage_assign(env->prog->aux, map)) {
11916 verbose(env, "only one cgroup storage of each type is allowed\n");
11917 fdput(f);
11918 return -EBUSY;
11919 }
11920
11921 fdput(f);
11922 next_insn:
11923 insn++;
11924 i++;
11925 continue;
11926 }
11927
11928 /* Basic sanity check before we invest more work here. */
11929 if (!bpf_opcode_in_insntable(insn->code)) {
11930 verbose(env, "unknown opcode %02x\n", insn->code);
11931 return -EINVAL;
11932 }
11933 }
11934
11935 /* now all pseudo BPF_LD_IMM64 instructions load valid
11936 * 'struct bpf_map *' into a register instead of user map_fd.
11937 * These pointers will be used later by verifier to validate map access.
11938 */
11939 return 0;
11940 }
11941
11942 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)11943 static void release_maps(struct bpf_verifier_env *env)
11944 {
11945 __bpf_free_used_maps(env->prog->aux, env->used_maps,
11946 env->used_map_cnt);
11947 }
11948
11949 /* drop refcnt of maps used by the rejected program */
release_btfs(struct bpf_verifier_env * env)11950 static void release_btfs(struct bpf_verifier_env *env)
11951 {
11952 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11953 env->used_btf_cnt);
11954 }
11955
11956 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)11957 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
11958 {
11959 struct bpf_insn *insn = env->prog->insnsi;
11960 int insn_cnt = env->prog->len;
11961 int i;
11962
11963 for (i = 0; i < insn_cnt; i++, insn++) {
11964 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11965 continue;
11966 if (insn->src_reg == BPF_PSEUDO_FUNC)
11967 continue;
11968 insn->src_reg = 0;
11969 }
11970 }
11971
11972 /* single env->prog->insni[off] instruction was replaced with the range
11973 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
11974 * [0, off) and [off, end) to new locations, so the patched range stays zero
11975 */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)11976 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
11977 struct bpf_insn_aux_data *new_data,
11978 struct bpf_prog *new_prog, u32 off, u32 cnt)
11979 {
11980 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
11981 struct bpf_insn *insn = new_prog->insnsi;
11982 u32 old_seen = old_data[off].seen;
11983 u32 prog_len;
11984 int i;
11985
11986 /* aux info at OFF always needs adjustment, no matter fast path
11987 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11988 * original insn at old prog.
11989 */
11990 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11991
11992 if (cnt == 1)
11993 return;
11994 prog_len = new_prog->len;
11995
11996 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11997 memcpy(new_data + off + cnt - 1, old_data + off,
11998 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
11999 for (i = off; i < off + cnt - 1; i++) {
12000 /* Expand insni[off]'s seen count to the patched range. */
12001 new_data[i].seen = old_seen;
12002 new_data[i].zext_dst = insn_has_def32(env, insn + i);
12003 }
12004 env->insn_aux_data = new_data;
12005 vfree(old_data);
12006 }
12007
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)12008 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
12009 {
12010 int i;
12011
12012 if (len == 1)
12013 return;
12014 /* NOTE: fake 'exit' subprog should be updated as well. */
12015 for (i = 0; i <= env->subprog_cnt; i++) {
12016 if (env->subprog_info[i].start <= off)
12017 continue;
12018 env->subprog_info[i].start += len - 1;
12019 }
12020 }
12021
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)12022 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
12023 {
12024 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
12025 int i, sz = prog->aux->size_poke_tab;
12026 struct bpf_jit_poke_descriptor *desc;
12027
12028 for (i = 0; i < sz; i++) {
12029 desc = &tab[i];
12030 if (desc->insn_idx <= off)
12031 continue;
12032 desc->insn_idx += len - 1;
12033 }
12034 }
12035
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)12036 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
12037 const struct bpf_insn *patch, u32 len)
12038 {
12039 struct bpf_prog *new_prog;
12040 struct bpf_insn_aux_data *new_data = NULL;
12041
12042 if (len > 1) {
12043 new_data = vzalloc(array_size(env->prog->len + len - 1,
12044 sizeof(struct bpf_insn_aux_data)));
12045 if (!new_data)
12046 return NULL;
12047 }
12048
12049 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
12050 if (IS_ERR(new_prog)) {
12051 if (PTR_ERR(new_prog) == -ERANGE)
12052 verbose(env,
12053 "insn %d cannot be patched due to 16-bit range\n",
12054 env->insn_aux_data[off].orig_idx);
12055 vfree(new_data);
12056 return NULL;
12057 }
12058 adjust_insn_aux_data(env, new_data, new_prog, off, len);
12059 adjust_subprog_starts(env, off, len);
12060 adjust_poke_descs(new_prog, off, len);
12061 return new_prog;
12062 }
12063
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)12064 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
12065 u32 off, u32 cnt)
12066 {
12067 int i, j;
12068
12069 /* find first prog starting at or after off (first to remove) */
12070 for (i = 0; i < env->subprog_cnt; i++)
12071 if (env->subprog_info[i].start >= off)
12072 break;
12073 /* find first prog starting at or after off + cnt (first to stay) */
12074 for (j = i; j < env->subprog_cnt; j++)
12075 if (env->subprog_info[j].start >= off + cnt)
12076 break;
12077 /* if j doesn't start exactly at off + cnt, we are just removing
12078 * the front of previous prog
12079 */
12080 if (env->subprog_info[j].start != off + cnt)
12081 j--;
12082
12083 if (j > i) {
12084 struct bpf_prog_aux *aux = env->prog->aux;
12085 int move;
12086
12087 /* move fake 'exit' subprog as well */
12088 move = env->subprog_cnt + 1 - j;
12089
12090 memmove(env->subprog_info + i,
12091 env->subprog_info + j,
12092 sizeof(*env->subprog_info) * move);
12093 env->subprog_cnt -= j - i;
12094
12095 /* remove func_info */
12096 if (aux->func_info) {
12097 move = aux->func_info_cnt - j;
12098
12099 memmove(aux->func_info + i,
12100 aux->func_info + j,
12101 sizeof(*aux->func_info) * move);
12102 aux->func_info_cnt -= j - i;
12103 /* func_info->insn_off is set after all code rewrites,
12104 * in adjust_btf_func() - no need to adjust
12105 */
12106 }
12107 } else {
12108 /* convert i from "first prog to remove" to "first to adjust" */
12109 if (env->subprog_info[i].start == off)
12110 i++;
12111 }
12112
12113 /* update fake 'exit' subprog as well */
12114 for (; i <= env->subprog_cnt; i++)
12115 env->subprog_info[i].start -= cnt;
12116
12117 return 0;
12118 }
12119
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)12120 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
12121 u32 cnt)
12122 {
12123 struct bpf_prog *prog = env->prog;
12124 u32 i, l_off, l_cnt, nr_linfo;
12125 struct bpf_line_info *linfo;
12126
12127 nr_linfo = prog->aux->nr_linfo;
12128 if (!nr_linfo)
12129 return 0;
12130
12131 linfo = prog->aux->linfo;
12132
12133 /* find first line info to remove, count lines to be removed */
12134 for (i = 0; i < nr_linfo; i++)
12135 if (linfo[i].insn_off >= off)
12136 break;
12137
12138 l_off = i;
12139 l_cnt = 0;
12140 for (; i < nr_linfo; i++)
12141 if (linfo[i].insn_off < off + cnt)
12142 l_cnt++;
12143 else
12144 break;
12145
12146 /* First live insn doesn't match first live linfo, it needs to "inherit"
12147 * last removed linfo. prog is already modified, so prog->len == off
12148 * means no live instructions after (tail of the program was removed).
12149 */
12150 if (prog->len != off && l_cnt &&
12151 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
12152 l_cnt--;
12153 linfo[--i].insn_off = off + cnt;
12154 }
12155
12156 /* remove the line info which refer to the removed instructions */
12157 if (l_cnt) {
12158 memmove(linfo + l_off, linfo + i,
12159 sizeof(*linfo) * (nr_linfo - i));
12160
12161 prog->aux->nr_linfo -= l_cnt;
12162 nr_linfo = prog->aux->nr_linfo;
12163 }
12164
12165 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
12166 for (i = l_off; i < nr_linfo; i++)
12167 linfo[i].insn_off -= cnt;
12168
12169 /* fix up all subprogs (incl. 'exit') which start >= off */
12170 for (i = 0; i <= env->subprog_cnt; i++)
12171 if (env->subprog_info[i].linfo_idx > l_off) {
12172 /* program may have started in the removed region but
12173 * may not be fully removed
12174 */
12175 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
12176 env->subprog_info[i].linfo_idx -= l_cnt;
12177 else
12178 env->subprog_info[i].linfo_idx = l_off;
12179 }
12180
12181 return 0;
12182 }
12183
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)12184 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
12185 {
12186 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12187 unsigned int orig_prog_len = env->prog->len;
12188 int err;
12189
12190 if (bpf_prog_is_dev_bound(env->prog->aux))
12191 bpf_prog_offload_remove_insns(env, off, cnt);
12192
12193 err = bpf_remove_insns(env->prog, off, cnt);
12194 if (err)
12195 return err;
12196
12197 err = adjust_subprog_starts_after_remove(env, off, cnt);
12198 if (err)
12199 return err;
12200
12201 err = bpf_adj_linfo_after_remove(env, off, cnt);
12202 if (err)
12203 return err;
12204
12205 memmove(aux_data + off, aux_data + off + cnt,
12206 sizeof(*aux_data) * (orig_prog_len - off - cnt));
12207
12208 return 0;
12209 }
12210
12211 /* The verifier does more data flow analysis than llvm and will not
12212 * explore branches that are dead at run time. Malicious programs can
12213 * have dead code too. Therefore replace all dead at-run-time code
12214 * with 'ja -1'.
12215 *
12216 * Just nops are not optimal, e.g. if they would sit at the end of the
12217 * program and through another bug we would manage to jump there, then
12218 * we'd execute beyond program memory otherwise. Returning exception
12219 * code also wouldn't work since we can have subprogs where the dead
12220 * code could be located.
12221 */
sanitize_dead_code(struct bpf_verifier_env * env)12222 static void sanitize_dead_code(struct bpf_verifier_env *env)
12223 {
12224 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12225 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
12226 struct bpf_insn *insn = env->prog->insnsi;
12227 const int insn_cnt = env->prog->len;
12228 int i;
12229
12230 for (i = 0; i < insn_cnt; i++) {
12231 if (aux_data[i].seen)
12232 continue;
12233 memcpy(insn + i, &trap, sizeof(trap));
12234 aux_data[i].zext_dst = false;
12235 }
12236 }
12237
insn_is_cond_jump(u8 code)12238 static bool insn_is_cond_jump(u8 code)
12239 {
12240 u8 op;
12241
12242 if (BPF_CLASS(code) == BPF_JMP32)
12243 return true;
12244
12245 if (BPF_CLASS(code) != BPF_JMP)
12246 return false;
12247
12248 op = BPF_OP(code);
12249 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
12250 }
12251
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)12252 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
12253 {
12254 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12255 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12256 struct bpf_insn *insn = env->prog->insnsi;
12257 const int insn_cnt = env->prog->len;
12258 int i;
12259
12260 for (i = 0; i < insn_cnt; i++, insn++) {
12261 if (!insn_is_cond_jump(insn->code))
12262 continue;
12263
12264 if (!aux_data[i + 1].seen)
12265 ja.off = insn->off;
12266 else if (!aux_data[i + 1 + insn->off].seen)
12267 ja.off = 0;
12268 else
12269 continue;
12270
12271 if (bpf_prog_is_dev_bound(env->prog->aux))
12272 bpf_prog_offload_replace_insn(env, i, &ja);
12273
12274 memcpy(insn, &ja, sizeof(ja));
12275 }
12276 }
12277
opt_remove_dead_code(struct bpf_verifier_env * env)12278 static int opt_remove_dead_code(struct bpf_verifier_env *env)
12279 {
12280 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12281 int insn_cnt = env->prog->len;
12282 int i, err;
12283
12284 for (i = 0; i < insn_cnt; i++) {
12285 int j;
12286
12287 j = 0;
12288 while (i + j < insn_cnt && !aux_data[i + j].seen)
12289 j++;
12290 if (!j)
12291 continue;
12292
12293 err = verifier_remove_insns(env, i, j);
12294 if (err)
12295 return err;
12296 insn_cnt = env->prog->len;
12297 }
12298
12299 return 0;
12300 }
12301
opt_remove_nops(struct bpf_verifier_env * env)12302 static int opt_remove_nops(struct bpf_verifier_env *env)
12303 {
12304 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12305 struct bpf_insn *insn = env->prog->insnsi;
12306 int insn_cnt = env->prog->len;
12307 int i, err;
12308
12309 for (i = 0; i < insn_cnt; i++) {
12310 if (memcmp(&insn[i], &ja, sizeof(ja)))
12311 continue;
12312
12313 err = verifier_remove_insns(env, i, 1);
12314 if (err)
12315 return err;
12316 insn_cnt--;
12317 i--;
12318 }
12319
12320 return 0;
12321 }
12322
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)12323 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
12324 const union bpf_attr *attr)
12325 {
12326 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
12327 struct bpf_insn_aux_data *aux = env->insn_aux_data;
12328 int i, patch_len, delta = 0, len = env->prog->len;
12329 struct bpf_insn *insns = env->prog->insnsi;
12330 struct bpf_prog *new_prog;
12331 bool rnd_hi32;
12332
12333 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
12334 zext_patch[1] = BPF_ZEXT_REG(0);
12335 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
12336 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
12337 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
12338 for (i = 0; i < len; i++) {
12339 int adj_idx = i + delta;
12340 struct bpf_insn insn;
12341 int load_reg;
12342
12343 insn = insns[adj_idx];
12344 load_reg = insn_def_regno(&insn);
12345 if (!aux[adj_idx].zext_dst) {
12346 u8 code, class;
12347 u32 imm_rnd;
12348
12349 if (!rnd_hi32)
12350 continue;
12351
12352 code = insn.code;
12353 class = BPF_CLASS(code);
12354 if (load_reg == -1)
12355 continue;
12356
12357 /* NOTE: arg "reg" (the fourth one) is only used for
12358 * BPF_STX + SRC_OP, so it is safe to pass NULL
12359 * here.
12360 */
12361 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
12362 if (class == BPF_LD &&
12363 BPF_MODE(code) == BPF_IMM)
12364 i++;
12365 continue;
12366 }
12367
12368 /* ctx load could be transformed into wider load. */
12369 if (class == BPF_LDX &&
12370 aux[adj_idx].ptr_type == PTR_TO_CTX)
12371 continue;
12372
12373 imm_rnd = get_random_int();
12374 rnd_hi32_patch[0] = insn;
12375 rnd_hi32_patch[1].imm = imm_rnd;
12376 rnd_hi32_patch[3].dst_reg = load_reg;
12377 patch = rnd_hi32_patch;
12378 patch_len = 4;
12379 goto apply_patch_buffer;
12380 }
12381
12382 /* Add in an zero-extend instruction if a) the JIT has requested
12383 * it or b) it's a CMPXCHG.
12384 *
12385 * The latter is because: BPF_CMPXCHG always loads a value into
12386 * R0, therefore always zero-extends. However some archs'
12387 * equivalent instruction only does this load when the
12388 * comparison is successful. This detail of CMPXCHG is
12389 * orthogonal to the general zero-extension behaviour of the
12390 * CPU, so it's treated independently of bpf_jit_needs_zext.
12391 */
12392 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
12393 continue;
12394
12395 /* Zero-extension is done by the caller. */
12396 if (bpf_pseudo_kfunc_call(&insn))
12397 continue;
12398
12399 if (WARN_ON(load_reg == -1)) {
12400 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
12401 return -EFAULT;
12402 }
12403
12404 zext_patch[0] = insn;
12405 zext_patch[1].dst_reg = load_reg;
12406 zext_patch[1].src_reg = load_reg;
12407 patch = zext_patch;
12408 patch_len = 2;
12409 apply_patch_buffer:
12410 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
12411 if (!new_prog)
12412 return -ENOMEM;
12413 env->prog = new_prog;
12414 insns = new_prog->insnsi;
12415 aux = env->insn_aux_data;
12416 delta += patch_len - 1;
12417 }
12418
12419 return 0;
12420 }
12421
12422 /* convert load instructions that access fields of a context type into a
12423 * sequence of instructions that access fields of the underlying structure:
12424 * struct __sk_buff -> struct sk_buff
12425 * struct bpf_sock_ops -> struct sock
12426 */
convert_ctx_accesses(struct bpf_verifier_env * env)12427 static int convert_ctx_accesses(struct bpf_verifier_env *env)
12428 {
12429 const struct bpf_verifier_ops *ops = env->ops;
12430 int i, cnt, size, ctx_field_size, delta = 0;
12431 const int insn_cnt = env->prog->len;
12432 struct bpf_insn insn_buf[16], *insn;
12433 u32 target_size, size_default, off;
12434 struct bpf_prog *new_prog;
12435 enum bpf_access_type type;
12436 bool is_narrower_load;
12437
12438 if (ops->gen_prologue || env->seen_direct_write) {
12439 if (!ops->gen_prologue) {
12440 verbose(env, "bpf verifier is misconfigured\n");
12441 return -EINVAL;
12442 }
12443 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
12444 env->prog);
12445 if (cnt >= ARRAY_SIZE(insn_buf)) {
12446 verbose(env, "bpf verifier is misconfigured\n");
12447 return -EINVAL;
12448 } else if (cnt) {
12449 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
12450 if (!new_prog)
12451 return -ENOMEM;
12452
12453 env->prog = new_prog;
12454 delta += cnt - 1;
12455 }
12456 }
12457
12458 if (bpf_prog_is_dev_bound(env->prog->aux))
12459 return 0;
12460
12461 insn = env->prog->insnsi + delta;
12462
12463 for (i = 0; i < insn_cnt; i++, insn++) {
12464 bpf_convert_ctx_access_t convert_ctx_access;
12465 bool ctx_access;
12466
12467 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
12468 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
12469 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
12470 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
12471 type = BPF_READ;
12472 ctx_access = true;
12473 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
12474 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
12475 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
12476 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
12477 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
12478 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
12479 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
12480 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
12481 type = BPF_WRITE;
12482 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
12483 } else {
12484 continue;
12485 }
12486
12487 if (type == BPF_WRITE &&
12488 env->insn_aux_data[i + delta].sanitize_stack_spill) {
12489 struct bpf_insn patch[] = {
12490 *insn,
12491 BPF_ST_NOSPEC(),
12492 };
12493
12494 cnt = ARRAY_SIZE(patch);
12495 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
12496 if (!new_prog)
12497 return -ENOMEM;
12498
12499 delta += cnt - 1;
12500 env->prog = new_prog;
12501 insn = new_prog->insnsi + i + delta;
12502 continue;
12503 }
12504
12505 if (!ctx_access)
12506 continue;
12507
12508 switch (env->insn_aux_data[i + delta].ptr_type) {
12509 case PTR_TO_CTX:
12510 if (!ops->convert_ctx_access)
12511 continue;
12512 convert_ctx_access = ops->convert_ctx_access;
12513 break;
12514 case PTR_TO_SOCKET:
12515 case PTR_TO_SOCK_COMMON:
12516 convert_ctx_access = bpf_sock_convert_ctx_access;
12517 break;
12518 case PTR_TO_TCP_SOCK:
12519 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
12520 break;
12521 case PTR_TO_XDP_SOCK:
12522 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
12523 break;
12524 case PTR_TO_BTF_ID:
12525 if (type == BPF_READ) {
12526 insn->code = BPF_LDX | BPF_PROBE_MEM |
12527 BPF_SIZE((insn)->code);
12528 env->prog->aux->num_exentries++;
12529 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
12530 verbose(env, "Writes through BTF pointers are not allowed\n");
12531 return -EINVAL;
12532 }
12533 continue;
12534 default:
12535 continue;
12536 }
12537
12538 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
12539 size = BPF_LDST_BYTES(insn);
12540
12541 /* If the read access is a narrower load of the field,
12542 * convert to a 4/8-byte load, to minimum program type specific
12543 * convert_ctx_access changes. If conversion is successful,
12544 * we will apply proper mask to the result.
12545 */
12546 is_narrower_load = size < ctx_field_size;
12547 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
12548 off = insn->off;
12549 if (is_narrower_load) {
12550 u8 size_code;
12551
12552 if (type == BPF_WRITE) {
12553 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
12554 return -EINVAL;
12555 }
12556
12557 size_code = BPF_H;
12558 if (ctx_field_size == 4)
12559 size_code = BPF_W;
12560 else if (ctx_field_size == 8)
12561 size_code = BPF_DW;
12562
12563 insn->off = off & ~(size_default - 1);
12564 insn->code = BPF_LDX | BPF_MEM | size_code;
12565 }
12566
12567 target_size = 0;
12568 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12569 &target_size);
12570 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12571 (ctx_field_size && !target_size)) {
12572 verbose(env, "bpf verifier is misconfigured\n");
12573 return -EINVAL;
12574 }
12575
12576 if (is_narrower_load && size < target_size) {
12577 u8 shift = bpf_ctx_narrow_access_offset(
12578 off, size, size_default) * 8;
12579 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
12580 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
12581 return -EINVAL;
12582 }
12583 if (ctx_field_size <= 4) {
12584 if (shift)
12585 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12586 insn->dst_reg,
12587 shift);
12588 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
12589 (1 << size * 8) - 1);
12590 } else {
12591 if (shift)
12592 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12593 insn->dst_reg,
12594 shift);
12595 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
12596 (1ULL << size * 8) - 1);
12597 }
12598 }
12599
12600 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12601 if (!new_prog)
12602 return -ENOMEM;
12603
12604 delta += cnt - 1;
12605
12606 /* keep walking new program and skip insns we just inserted */
12607 env->prog = new_prog;
12608 insn = new_prog->insnsi + i + delta;
12609 }
12610
12611 return 0;
12612 }
12613
jit_subprogs(struct bpf_verifier_env * env)12614 static int jit_subprogs(struct bpf_verifier_env *env)
12615 {
12616 struct bpf_prog *prog = env->prog, **func, *tmp;
12617 int i, j, subprog_start, subprog_end = 0, len, subprog;
12618 struct bpf_map *map_ptr;
12619 struct bpf_insn *insn;
12620 void *old_bpf_func;
12621 int err, num_exentries;
12622
12623 if (env->subprog_cnt <= 1)
12624 return 0;
12625
12626 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12627 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
12628 continue;
12629
12630 /* Upon error here we cannot fall back to interpreter but
12631 * need a hard reject of the program. Thus -EFAULT is
12632 * propagated in any case.
12633 */
12634 subprog = find_subprog(env, i + insn->imm + 1);
12635 if (subprog < 0) {
12636 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12637 i + insn->imm + 1);
12638 return -EFAULT;
12639 }
12640 /* temporarily remember subprog id inside insn instead of
12641 * aux_data, since next loop will split up all insns into funcs
12642 */
12643 insn->off = subprog;
12644 /* remember original imm in case JIT fails and fallback
12645 * to interpreter will be needed
12646 */
12647 env->insn_aux_data[i].call_imm = insn->imm;
12648 /* point imm to __bpf_call_base+1 from JITs point of view */
12649 insn->imm = 1;
12650 if (bpf_pseudo_func(insn))
12651 /* jit (e.g. x86_64) may emit fewer instructions
12652 * if it learns a u32 imm is the same as a u64 imm.
12653 * Force a non zero here.
12654 */
12655 insn[1].imm = 1;
12656 }
12657
12658 err = bpf_prog_alloc_jited_linfo(prog);
12659 if (err)
12660 goto out_undo_insn;
12661
12662 err = -ENOMEM;
12663 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12664 if (!func)
12665 goto out_undo_insn;
12666
12667 for (i = 0; i < env->subprog_cnt; i++) {
12668 subprog_start = subprog_end;
12669 subprog_end = env->subprog_info[i + 1].start;
12670
12671 len = subprog_end - subprog_start;
12672 /* bpf_prog_run() doesn't call subprogs directly,
12673 * hence main prog stats include the runtime of subprogs.
12674 * subprogs don't have IDs and not reachable via prog_get_next_id
12675 * func[i]->stats will never be accessed and stays NULL
12676 */
12677 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12678 if (!func[i])
12679 goto out_free;
12680 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12681 len * sizeof(struct bpf_insn));
12682 func[i]->type = prog->type;
12683 func[i]->len = len;
12684 if (bpf_prog_calc_tag(func[i]))
12685 goto out_free;
12686 func[i]->is_func = 1;
12687 func[i]->aux->func_idx = i;
12688 /* Below members will be freed only at prog->aux */
12689 func[i]->aux->btf = prog->aux->btf;
12690 func[i]->aux->func_info = prog->aux->func_info;
12691 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
12692 func[i]->aux->poke_tab = prog->aux->poke_tab;
12693 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
12694
12695 for (j = 0; j < prog->aux->size_poke_tab; j++) {
12696 struct bpf_jit_poke_descriptor *poke;
12697
12698 poke = &prog->aux->poke_tab[j];
12699 if (poke->insn_idx < subprog_end &&
12700 poke->insn_idx >= subprog_start)
12701 poke->aux = func[i]->aux;
12702 }
12703
12704 func[i]->aux->name[0] = 'F';
12705 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12706 func[i]->jit_requested = 1;
12707 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12708 func[i]->aux->linfo = prog->aux->linfo;
12709 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12710 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12711 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12712 num_exentries = 0;
12713 insn = func[i]->insnsi;
12714 for (j = 0; j < func[i]->len; j++, insn++) {
12715 if (BPF_CLASS(insn->code) == BPF_LDX &&
12716 BPF_MODE(insn->code) == BPF_PROBE_MEM)
12717 num_exentries++;
12718 }
12719 func[i]->aux->num_exentries = num_exentries;
12720 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12721 func[i] = bpf_int_jit_compile(func[i]);
12722 if (!func[i]->jited) {
12723 err = -ENOTSUPP;
12724 goto out_free;
12725 }
12726 cond_resched();
12727 }
12728
12729 /* at this point all bpf functions were successfully JITed
12730 * now populate all bpf_calls with correct addresses and
12731 * run last pass of JIT
12732 */
12733 for (i = 0; i < env->subprog_cnt; i++) {
12734 insn = func[i]->insnsi;
12735 for (j = 0; j < func[i]->len; j++, insn++) {
12736 if (bpf_pseudo_func(insn)) {
12737 subprog = insn->off;
12738 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12739 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12740 continue;
12741 }
12742 if (!bpf_pseudo_call(insn))
12743 continue;
12744 subprog = insn->off;
12745 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
12746 __bpf_call_base;
12747 }
12748
12749 /* we use the aux data to keep a list of the start addresses
12750 * of the JITed images for each function in the program
12751 *
12752 * for some architectures, such as powerpc64, the imm field
12753 * might not be large enough to hold the offset of the start
12754 * address of the callee's JITed image from __bpf_call_base
12755 *
12756 * in such cases, we can lookup the start address of a callee
12757 * by using its subprog id, available from the off field of
12758 * the call instruction, as an index for this list
12759 */
12760 func[i]->aux->func = func;
12761 func[i]->aux->func_cnt = env->subprog_cnt;
12762 }
12763 for (i = 0; i < env->subprog_cnt; i++) {
12764 old_bpf_func = func[i]->bpf_func;
12765 tmp = bpf_int_jit_compile(func[i]);
12766 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12767 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12768 err = -ENOTSUPP;
12769 goto out_free;
12770 }
12771 cond_resched();
12772 }
12773
12774 /* finally lock prog and jit images for all functions and
12775 * populate kallsysm. Begin at the first subprogram, since
12776 * bpf_prog_load will add the kallsyms for the main program.
12777 */
12778 for (i = 1; i < env->subprog_cnt; i++) {
12779 bpf_prog_lock_ro(func[i]);
12780 bpf_prog_kallsyms_add(func[i]);
12781 }
12782
12783 /* Last step: make now unused interpreter insns from main
12784 * prog consistent for later dump requests, so they can
12785 * later look the same as if they were interpreted only.
12786 */
12787 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12788 if (bpf_pseudo_func(insn)) {
12789 insn[0].imm = env->insn_aux_data[i].call_imm;
12790 insn[1].imm = insn->off;
12791 insn->off = 0;
12792 continue;
12793 }
12794 if (!bpf_pseudo_call(insn))
12795 continue;
12796 insn->off = env->insn_aux_data[i].call_imm;
12797 subprog = find_subprog(env, i + insn->off + 1);
12798 insn->imm = subprog;
12799 }
12800
12801 prog->jited = 1;
12802 prog->bpf_func = func[0]->bpf_func;
12803 prog->aux->extable = func[0]->aux->extable;
12804 prog->aux->num_exentries = func[0]->aux->num_exentries;
12805 prog->aux->func = func;
12806 prog->aux->func_cnt = env->subprog_cnt;
12807 bpf_prog_jit_attempt_done(prog);
12808 return 0;
12809 out_free:
12810 /* We failed JIT'ing, so at this point we need to unregister poke
12811 * descriptors from subprogs, so that kernel is not attempting to
12812 * patch it anymore as we're freeing the subprog JIT memory.
12813 */
12814 for (i = 0; i < prog->aux->size_poke_tab; i++) {
12815 map_ptr = prog->aux->poke_tab[i].tail_call.map;
12816 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12817 }
12818 /* At this point we're guaranteed that poke descriptors are not
12819 * live anymore. We can just unlink its descriptor table as it's
12820 * released with the main prog.
12821 */
12822 for (i = 0; i < env->subprog_cnt; i++) {
12823 if (!func[i])
12824 continue;
12825 func[i]->aux->poke_tab = NULL;
12826 bpf_jit_free(func[i]);
12827 }
12828 kfree(func);
12829 out_undo_insn:
12830 /* cleanup main prog to be interpreted */
12831 prog->jit_requested = 0;
12832 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12833 if (!bpf_pseudo_call(insn))
12834 continue;
12835 insn->off = 0;
12836 insn->imm = env->insn_aux_data[i].call_imm;
12837 }
12838 bpf_prog_jit_attempt_done(prog);
12839 return err;
12840 }
12841
fixup_call_args(struct bpf_verifier_env * env)12842 static int fixup_call_args(struct bpf_verifier_env *env)
12843 {
12844 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12845 struct bpf_prog *prog = env->prog;
12846 struct bpf_insn *insn = prog->insnsi;
12847 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
12848 int i, depth;
12849 #endif
12850 int err = 0;
12851
12852 if (env->prog->jit_requested &&
12853 !bpf_prog_is_dev_bound(env->prog->aux)) {
12854 err = jit_subprogs(env);
12855 if (err == 0)
12856 return 0;
12857 if (err == -EFAULT)
12858 return err;
12859 }
12860 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12861 if (has_kfunc_call) {
12862 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12863 return -EINVAL;
12864 }
12865 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12866 /* When JIT fails the progs with bpf2bpf calls and tail_calls
12867 * have to be rejected, since interpreter doesn't support them yet.
12868 */
12869 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12870 return -EINVAL;
12871 }
12872 for (i = 0; i < prog->len; i++, insn++) {
12873 if (bpf_pseudo_func(insn)) {
12874 /* When JIT fails the progs with callback calls
12875 * have to be rejected, since interpreter doesn't support them yet.
12876 */
12877 verbose(env, "callbacks are not allowed in non-JITed programs\n");
12878 return -EINVAL;
12879 }
12880
12881 if (!bpf_pseudo_call(insn))
12882 continue;
12883 depth = get_callee_stack_depth(env, insn, i);
12884 if (depth < 0)
12885 return depth;
12886 bpf_patch_call_args(insn, depth);
12887 }
12888 err = 0;
12889 #endif
12890 return err;
12891 }
12892
fixup_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn)12893 static int fixup_kfunc_call(struct bpf_verifier_env *env,
12894 struct bpf_insn *insn)
12895 {
12896 const struct bpf_kfunc_desc *desc;
12897
12898 /* insn->imm has the btf func_id. Replace it with
12899 * an address (relative to __bpf_base_call).
12900 */
12901 desc = find_kfunc_desc(env->prog, insn->imm);
12902 if (!desc) {
12903 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12904 insn->imm);
12905 return -EFAULT;
12906 }
12907
12908 insn->imm = desc->imm;
12909
12910 return 0;
12911 }
12912
12913 /* Do various post-verification rewrites in a single program pass.
12914 * These rewrites simplify JIT and interpreter implementations.
12915 */
do_misc_fixups(struct bpf_verifier_env * env)12916 static int do_misc_fixups(struct bpf_verifier_env *env)
12917 {
12918 struct bpf_prog *prog = env->prog;
12919 bool expect_blinding = bpf_jit_blinding_enabled(prog);
12920 enum bpf_prog_type prog_type = resolve_prog_type(prog);
12921 struct bpf_insn *insn = prog->insnsi;
12922 const struct bpf_func_proto *fn;
12923 const int insn_cnt = prog->len;
12924 const struct bpf_map_ops *ops;
12925 struct bpf_insn_aux_data *aux;
12926 struct bpf_insn insn_buf[16];
12927 struct bpf_prog *new_prog;
12928 struct bpf_map *map_ptr;
12929 int i, ret, cnt, delta = 0;
12930
12931 for (i = 0; i < insn_cnt; i++, insn++) {
12932 /* Make divide-by-zero exceptions impossible. */
12933 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12934 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12935 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
12936 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
12937 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
12938 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12939 struct bpf_insn *patchlet;
12940 struct bpf_insn chk_and_div[] = {
12941 /* [R,W]x div 0 -> 0 */
12942 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12943 BPF_JNE | BPF_K, insn->src_reg,
12944 0, 2, 0),
12945 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12946 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12947 *insn,
12948 };
12949 struct bpf_insn chk_and_mod[] = {
12950 /* [R,W]x mod 0 -> [R,W]x */
12951 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12952 BPF_JEQ | BPF_K, insn->src_reg,
12953 0, 1 + (is64 ? 0 : 1), 0),
12954 *insn,
12955 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12956 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
12957 };
12958
12959 patchlet = isdiv ? chk_and_div : chk_and_mod;
12960 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
12961 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
12962
12963 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
12964 if (!new_prog)
12965 return -ENOMEM;
12966
12967 delta += cnt - 1;
12968 env->prog = prog = new_prog;
12969 insn = new_prog->insnsi + i + delta;
12970 continue;
12971 }
12972
12973 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
12974 if (BPF_CLASS(insn->code) == BPF_LD &&
12975 (BPF_MODE(insn->code) == BPF_ABS ||
12976 BPF_MODE(insn->code) == BPF_IND)) {
12977 cnt = env->ops->gen_ld_abs(insn, insn_buf);
12978 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12979 verbose(env, "bpf verifier is misconfigured\n");
12980 return -EINVAL;
12981 }
12982
12983 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12984 if (!new_prog)
12985 return -ENOMEM;
12986
12987 delta += cnt - 1;
12988 env->prog = prog = new_prog;
12989 insn = new_prog->insnsi + i + delta;
12990 continue;
12991 }
12992
12993 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
12994 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12995 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12996 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12997 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
12998 struct bpf_insn *patch = &insn_buf[0];
12999 bool issrc, isneg, isimm;
13000 u32 off_reg;
13001
13002 aux = &env->insn_aux_data[i + delta];
13003 if (!aux->alu_state ||
13004 aux->alu_state == BPF_ALU_NON_POINTER)
13005 continue;
13006
13007 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
13008 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
13009 BPF_ALU_SANITIZE_SRC;
13010 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
13011
13012 off_reg = issrc ? insn->src_reg : insn->dst_reg;
13013 if (isimm) {
13014 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13015 } else {
13016 if (isneg)
13017 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13018 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13019 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
13020 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
13021 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
13022 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
13023 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
13024 }
13025 if (!issrc)
13026 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
13027 insn->src_reg = BPF_REG_AX;
13028 if (isneg)
13029 insn->code = insn->code == code_add ?
13030 code_sub : code_add;
13031 *patch++ = *insn;
13032 if (issrc && isneg && !isimm)
13033 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13034 cnt = patch - insn_buf;
13035
13036 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13037 if (!new_prog)
13038 return -ENOMEM;
13039
13040 delta += cnt - 1;
13041 env->prog = prog = new_prog;
13042 insn = new_prog->insnsi + i + delta;
13043 continue;
13044 }
13045
13046 if (insn->code != (BPF_JMP | BPF_CALL))
13047 continue;
13048 if (insn->src_reg == BPF_PSEUDO_CALL)
13049 continue;
13050 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
13051 ret = fixup_kfunc_call(env, insn);
13052 if (ret)
13053 return ret;
13054 continue;
13055 }
13056
13057 if (insn->imm == BPF_FUNC_get_route_realm)
13058 prog->dst_needed = 1;
13059 if (insn->imm == BPF_FUNC_get_prandom_u32)
13060 bpf_user_rnd_init_once();
13061 if (insn->imm == BPF_FUNC_override_return)
13062 prog->kprobe_override = 1;
13063 if (insn->imm == BPF_FUNC_tail_call) {
13064 /* If we tail call into other programs, we
13065 * cannot make any assumptions since they can
13066 * be replaced dynamically during runtime in
13067 * the program array.
13068 */
13069 prog->cb_access = 1;
13070 if (!allow_tail_call_in_subprogs(env))
13071 prog->aux->stack_depth = MAX_BPF_STACK;
13072 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
13073
13074 /* mark bpf_tail_call as different opcode to avoid
13075 * conditional branch in the interpreter for every normal
13076 * call and to prevent accidental JITing by JIT compiler
13077 * that doesn't support bpf_tail_call yet
13078 */
13079 insn->imm = 0;
13080 insn->code = BPF_JMP | BPF_TAIL_CALL;
13081
13082 aux = &env->insn_aux_data[i + delta];
13083 if (env->bpf_capable && !expect_blinding &&
13084 prog->jit_requested &&
13085 !bpf_map_key_poisoned(aux) &&
13086 !bpf_map_ptr_poisoned(aux) &&
13087 !bpf_map_ptr_unpriv(aux)) {
13088 struct bpf_jit_poke_descriptor desc = {
13089 .reason = BPF_POKE_REASON_TAIL_CALL,
13090 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
13091 .tail_call.key = bpf_map_key_immediate(aux),
13092 .insn_idx = i + delta,
13093 };
13094
13095 ret = bpf_jit_add_poke_descriptor(prog, &desc);
13096 if (ret < 0) {
13097 verbose(env, "adding tail call poke descriptor failed\n");
13098 return ret;
13099 }
13100
13101 insn->imm = ret + 1;
13102 continue;
13103 }
13104
13105 if (!bpf_map_ptr_unpriv(aux))
13106 continue;
13107
13108 /* instead of changing every JIT dealing with tail_call
13109 * emit two extra insns:
13110 * if (index >= max_entries) goto out;
13111 * index &= array->index_mask;
13112 * to avoid out-of-bounds cpu speculation
13113 */
13114 if (bpf_map_ptr_poisoned(aux)) {
13115 verbose(env, "tail_call abusing map_ptr\n");
13116 return -EINVAL;
13117 }
13118
13119 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
13120 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
13121 map_ptr->max_entries, 2);
13122 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
13123 container_of(map_ptr,
13124 struct bpf_array,
13125 map)->index_mask);
13126 insn_buf[2] = *insn;
13127 cnt = 3;
13128 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13129 if (!new_prog)
13130 return -ENOMEM;
13131
13132 delta += cnt - 1;
13133 env->prog = prog = new_prog;
13134 insn = new_prog->insnsi + i + delta;
13135 continue;
13136 }
13137
13138 if (insn->imm == BPF_FUNC_timer_set_callback) {
13139 /* The verifier will process callback_fn as many times as necessary
13140 * with different maps and the register states prepared by
13141 * set_timer_callback_state will be accurate.
13142 *
13143 * The following use case is valid:
13144 * map1 is shared by prog1, prog2, prog3.
13145 * prog1 calls bpf_timer_init for some map1 elements
13146 * prog2 calls bpf_timer_set_callback for some map1 elements.
13147 * Those that were not bpf_timer_init-ed will return -EINVAL.
13148 * prog3 calls bpf_timer_start for some map1 elements.
13149 * Those that were not both bpf_timer_init-ed and
13150 * bpf_timer_set_callback-ed will return -EINVAL.
13151 */
13152 struct bpf_insn ld_addrs[2] = {
13153 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
13154 };
13155
13156 insn_buf[0] = ld_addrs[0];
13157 insn_buf[1] = ld_addrs[1];
13158 insn_buf[2] = *insn;
13159 cnt = 3;
13160
13161 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13162 if (!new_prog)
13163 return -ENOMEM;
13164
13165 delta += cnt - 1;
13166 env->prog = prog = new_prog;
13167 insn = new_prog->insnsi + i + delta;
13168 goto patch_call_imm;
13169 }
13170
13171 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
13172 * and other inlining handlers are currently limited to 64 bit
13173 * only.
13174 */
13175 if (prog->jit_requested && BITS_PER_LONG == 64 &&
13176 (insn->imm == BPF_FUNC_map_lookup_elem ||
13177 insn->imm == BPF_FUNC_map_update_elem ||
13178 insn->imm == BPF_FUNC_map_delete_elem ||
13179 insn->imm == BPF_FUNC_map_push_elem ||
13180 insn->imm == BPF_FUNC_map_pop_elem ||
13181 insn->imm == BPF_FUNC_map_peek_elem ||
13182 insn->imm == BPF_FUNC_redirect_map)) {
13183 aux = &env->insn_aux_data[i + delta];
13184 if (bpf_map_ptr_poisoned(aux))
13185 goto patch_call_imm;
13186
13187 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
13188 ops = map_ptr->ops;
13189 if (insn->imm == BPF_FUNC_map_lookup_elem &&
13190 ops->map_gen_lookup) {
13191 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
13192 if (cnt == -EOPNOTSUPP)
13193 goto patch_map_ops_generic;
13194 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13195 verbose(env, "bpf verifier is misconfigured\n");
13196 return -EINVAL;
13197 }
13198
13199 new_prog = bpf_patch_insn_data(env, i + delta,
13200 insn_buf, cnt);
13201 if (!new_prog)
13202 return -ENOMEM;
13203
13204 delta += cnt - 1;
13205 env->prog = prog = new_prog;
13206 insn = new_prog->insnsi + i + delta;
13207 continue;
13208 }
13209
13210 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
13211 (void *(*)(struct bpf_map *map, void *key))NULL));
13212 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
13213 (int (*)(struct bpf_map *map, void *key))NULL));
13214 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
13215 (int (*)(struct bpf_map *map, void *key, void *value,
13216 u64 flags))NULL));
13217 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
13218 (int (*)(struct bpf_map *map, void *value,
13219 u64 flags))NULL));
13220 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
13221 (int (*)(struct bpf_map *map, void *value))NULL));
13222 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
13223 (int (*)(struct bpf_map *map, void *value))NULL));
13224 BUILD_BUG_ON(!__same_type(ops->map_redirect,
13225 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
13226
13227 patch_map_ops_generic:
13228 switch (insn->imm) {
13229 case BPF_FUNC_map_lookup_elem:
13230 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
13231 __bpf_call_base;
13232 continue;
13233 case BPF_FUNC_map_update_elem:
13234 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
13235 __bpf_call_base;
13236 continue;
13237 case BPF_FUNC_map_delete_elem:
13238 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
13239 __bpf_call_base;
13240 continue;
13241 case BPF_FUNC_map_push_elem:
13242 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
13243 __bpf_call_base;
13244 continue;
13245 case BPF_FUNC_map_pop_elem:
13246 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
13247 __bpf_call_base;
13248 continue;
13249 case BPF_FUNC_map_peek_elem:
13250 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
13251 __bpf_call_base;
13252 continue;
13253 case BPF_FUNC_redirect_map:
13254 insn->imm = BPF_CAST_CALL(ops->map_redirect) -
13255 __bpf_call_base;
13256 continue;
13257 }
13258
13259 goto patch_call_imm;
13260 }
13261
13262 /* Implement bpf_jiffies64 inline. */
13263 if (prog->jit_requested && BITS_PER_LONG == 64 &&
13264 insn->imm == BPF_FUNC_jiffies64) {
13265 struct bpf_insn ld_jiffies_addr[2] = {
13266 BPF_LD_IMM64(BPF_REG_0,
13267 (unsigned long)&jiffies),
13268 };
13269
13270 insn_buf[0] = ld_jiffies_addr[0];
13271 insn_buf[1] = ld_jiffies_addr[1];
13272 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
13273 BPF_REG_0, 0);
13274 cnt = 3;
13275
13276 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
13277 cnt);
13278 if (!new_prog)
13279 return -ENOMEM;
13280
13281 delta += cnt - 1;
13282 env->prog = prog = new_prog;
13283 insn = new_prog->insnsi + i + delta;
13284 continue;
13285 }
13286
13287 /* Implement bpf_get_func_ip inline. */
13288 if (prog_type == BPF_PROG_TYPE_TRACING &&
13289 insn->imm == BPF_FUNC_get_func_ip) {
13290 /* Load IP address from ctx - 8 */
13291 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13292
13293 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13294 if (!new_prog)
13295 return -ENOMEM;
13296
13297 env->prog = prog = new_prog;
13298 insn = new_prog->insnsi + i + delta;
13299 continue;
13300 }
13301
13302 patch_call_imm:
13303 fn = env->ops->get_func_proto(insn->imm, env->prog);
13304 /* all functions that have prototype and verifier allowed
13305 * programs to call them, must be real in-kernel functions
13306 */
13307 if (!fn->func) {
13308 verbose(env,
13309 "kernel subsystem misconfigured func %s#%d\n",
13310 func_id_name(insn->imm), insn->imm);
13311 return -EFAULT;
13312 }
13313 insn->imm = fn->func - __bpf_call_base;
13314 }
13315
13316 /* Since poke tab is now finalized, publish aux to tracker. */
13317 for (i = 0; i < prog->aux->size_poke_tab; i++) {
13318 map_ptr = prog->aux->poke_tab[i].tail_call.map;
13319 if (!map_ptr->ops->map_poke_track ||
13320 !map_ptr->ops->map_poke_untrack ||
13321 !map_ptr->ops->map_poke_run) {
13322 verbose(env, "bpf verifier is misconfigured\n");
13323 return -EINVAL;
13324 }
13325
13326 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
13327 if (ret < 0) {
13328 verbose(env, "tracking tail call prog failed\n");
13329 return ret;
13330 }
13331 }
13332
13333 sort_kfunc_descs_by_imm(env->prog);
13334
13335 return 0;
13336 }
13337
free_states(struct bpf_verifier_env * env)13338 static void free_states(struct bpf_verifier_env *env)
13339 {
13340 struct bpf_verifier_state_list *sl, *sln;
13341 int i;
13342
13343 sl = env->free_list;
13344 while (sl) {
13345 sln = sl->next;
13346 free_verifier_state(&sl->state, false);
13347 kfree(sl);
13348 sl = sln;
13349 }
13350 env->free_list = NULL;
13351
13352 if (!env->explored_states)
13353 return;
13354
13355 for (i = 0; i < state_htab_size(env); i++) {
13356 sl = env->explored_states[i];
13357
13358 while (sl) {
13359 sln = sl->next;
13360 free_verifier_state(&sl->state, false);
13361 kfree(sl);
13362 sl = sln;
13363 }
13364 env->explored_states[i] = NULL;
13365 }
13366 }
13367
do_check_common(struct bpf_verifier_env * env,int subprog)13368 static int do_check_common(struct bpf_verifier_env *env, int subprog)
13369 {
13370 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
13371 struct bpf_verifier_state *state;
13372 struct bpf_reg_state *regs;
13373 int ret, i;
13374
13375 env->prev_linfo = NULL;
13376 env->pass_cnt++;
13377
13378 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
13379 if (!state)
13380 return -ENOMEM;
13381 state->curframe = 0;
13382 state->speculative = false;
13383 state->branches = 1;
13384 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
13385 if (!state->frame[0]) {
13386 kfree(state);
13387 return -ENOMEM;
13388 }
13389 env->cur_state = state;
13390 init_func_state(env, state->frame[0],
13391 BPF_MAIN_FUNC /* callsite */,
13392 0 /* frameno */,
13393 subprog);
13394 state->first_insn_idx = env->subprog_info[subprog].start;
13395 state->last_insn_idx = -1;
13396
13397 regs = state->frame[state->curframe]->regs;
13398 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
13399 ret = btf_prepare_func_args(env, subprog, regs);
13400 if (ret)
13401 goto out;
13402 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
13403 if (regs[i].type == PTR_TO_CTX)
13404 mark_reg_known_zero(env, regs, i);
13405 else if (regs[i].type == SCALAR_VALUE)
13406 mark_reg_unknown(env, regs, i);
13407 else if (base_type(regs[i].type) == PTR_TO_MEM) {
13408 const u32 mem_size = regs[i].mem_size;
13409
13410 mark_reg_known_zero(env, regs, i);
13411 regs[i].mem_size = mem_size;
13412 regs[i].id = ++env->id_gen;
13413 }
13414 }
13415 } else {
13416 /* 1st arg to a function */
13417 regs[BPF_REG_1].type = PTR_TO_CTX;
13418 mark_reg_known_zero(env, regs, BPF_REG_1);
13419 ret = btf_check_subprog_arg_match(env, subprog, regs);
13420 if (ret == -EFAULT)
13421 /* unlikely verifier bug. abort.
13422 * ret == 0 and ret < 0 are sadly acceptable for
13423 * main() function due to backward compatibility.
13424 * Like socket filter program may be written as:
13425 * int bpf_prog(struct pt_regs *ctx)
13426 * and never dereference that ctx in the program.
13427 * 'struct pt_regs' is a type mismatch for socket
13428 * filter that should be using 'struct __sk_buff'.
13429 */
13430 goto out;
13431 }
13432
13433 ret = do_check(env);
13434 out:
13435 /* check for NULL is necessary, since cur_state can be freed inside
13436 * do_check() under memory pressure.
13437 */
13438 if (env->cur_state) {
13439 free_verifier_state(env->cur_state, true);
13440 env->cur_state = NULL;
13441 }
13442 while (!pop_stack(env, NULL, NULL, false));
13443 if (!ret && pop_log)
13444 bpf_vlog_reset(&env->log, 0);
13445 free_states(env);
13446 return ret;
13447 }
13448
13449 /* Verify all global functions in a BPF program one by one based on their BTF.
13450 * All global functions must pass verification. Otherwise the whole program is rejected.
13451 * Consider:
13452 * int bar(int);
13453 * int foo(int f)
13454 * {
13455 * return bar(f);
13456 * }
13457 * int bar(int b)
13458 * {
13459 * ...
13460 * }
13461 * foo() will be verified first for R1=any_scalar_value. During verification it
13462 * will be assumed that bar() already verified successfully and call to bar()
13463 * from foo() will be checked for type match only. Later bar() will be verified
13464 * independently to check that it's safe for R1=any_scalar_value.
13465 */
do_check_subprogs(struct bpf_verifier_env * env)13466 static int do_check_subprogs(struct bpf_verifier_env *env)
13467 {
13468 struct bpf_prog_aux *aux = env->prog->aux;
13469 int i, ret;
13470
13471 if (!aux->func_info)
13472 return 0;
13473
13474 for (i = 1; i < env->subprog_cnt; i++) {
13475 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
13476 continue;
13477 env->insn_idx = env->subprog_info[i].start;
13478 WARN_ON_ONCE(env->insn_idx == 0);
13479 ret = do_check_common(env, i);
13480 if (ret) {
13481 return ret;
13482 } else if (env->log.level & BPF_LOG_LEVEL) {
13483 verbose(env,
13484 "Func#%d is safe for any args that match its prototype\n",
13485 i);
13486 }
13487 }
13488 return 0;
13489 }
13490
do_check_main(struct bpf_verifier_env * env)13491 static int do_check_main(struct bpf_verifier_env *env)
13492 {
13493 int ret;
13494
13495 env->insn_idx = 0;
13496 ret = do_check_common(env, 0);
13497 if (!ret)
13498 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
13499 return ret;
13500 }
13501
13502
print_verification_stats(struct bpf_verifier_env * env)13503 static void print_verification_stats(struct bpf_verifier_env *env)
13504 {
13505 int i;
13506
13507 if (env->log.level & BPF_LOG_STATS) {
13508 verbose(env, "verification time %lld usec\n",
13509 div_u64(env->verification_time, 1000));
13510 verbose(env, "stack depth ");
13511 for (i = 0; i < env->subprog_cnt; i++) {
13512 u32 depth = env->subprog_info[i].stack_depth;
13513
13514 verbose(env, "%d", depth);
13515 if (i + 1 < env->subprog_cnt)
13516 verbose(env, "+");
13517 }
13518 verbose(env, "\n");
13519 }
13520 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
13521 "total_states %d peak_states %d mark_read %d\n",
13522 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
13523 env->max_states_per_insn, env->total_states,
13524 env->peak_states, env->longest_mark_read_walk);
13525 }
13526
check_struct_ops_btf_id(struct bpf_verifier_env * env)13527 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
13528 {
13529 const struct btf_type *t, *func_proto;
13530 const struct bpf_struct_ops *st_ops;
13531 const struct btf_member *member;
13532 struct bpf_prog *prog = env->prog;
13533 u32 btf_id, member_idx;
13534 const char *mname;
13535
13536 if (!prog->gpl_compatible) {
13537 verbose(env, "struct ops programs must have a GPL compatible license\n");
13538 return -EINVAL;
13539 }
13540
13541 btf_id = prog->aux->attach_btf_id;
13542 st_ops = bpf_struct_ops_find(btf_id);
13543 if (!st_ops) {
13544 verbose(env, "attach_btf_id %u is not a supported struct\n",
13545 btf_id);
13546 return -ENOTSUPP;
13547 }
13548
13549 t = st_ops->type;
13550 member_idx = prog->expected_attach_type;
13551 if (member_idx >= btf_type_vlen(t)) {
13552 verbose(env, "attach to invalid member idx %u of struct %s\n",
13553 member_idx, st_ops->name);
13554 return -EINVAL;
13555 }
13556
13557 member = &btf_type_member(t)[member_idx];
13558 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
13559 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
13560 NULL);
13561 if (!func_proto) {
13562 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
13563 mname, member_idx, st_ops->name);
13564 return -EINVAL;
13565 }
13566
13567 if (st_ops->check_member) {
13568 int err = st_ops->check_member(t, member);
13569
13570 if (err) {
13571 verbose(env, "attach to unsupported member %s of struct %s\n",
13572 mname, st_ops->name);
13573 return err;
13574 }
13575 }
13576
13577 prog->aux->attach_func_proto = func_proto;
13578 prog->aux->attach_func_name = mname;
13579 env->ops = st_ops->verifier_ops;
13580
13581 return 0;
13582 }
13583 #define SECURITY_PREFIX "security_"
13584
check_attach_modify_return(unsigned long addr,const char * func_name)13585 static int check_attach_modify_return(unsigned long addr, const char *func_name)
13586 {
13587 if (within_error_injection_list(addr) ||
13588 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
13589 return 0;
13590
13591 return -EINVAL;
13592 }
13593
13594 /* list of non-sleepable functions that are otherwise on
13595 * ALLOW_ERROR_INJECTION list
13596 */
13597 BTF_SET_START(btf_non_sleepable_error_inject)
13598 /* Three functions below can be called from sleepable and non-sleepable context.
13599 * Assume non-sleepable from bpf safety point of view.
13600 */
BTF_ID(func,__add_to_page_cache_locked)13601 BTF_ID(func, __add_to_page_cache_locked)
13602 BTF_ID(func, should_fail_alloc_page)
13603 BTF_ID(func, should_failslab)
13604 BTF_SET_END(btf_non_sleepable_error_inject)
13605
13606 static int check_non_sleepable_error_inject(u32 btf_id)
13607 {
13608 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
13609 }
13610
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)13611 int bpf_check_attach_target(struct bpf_verifier_log *log,
13612 const struct bpf_prog *prog,
13613 const struct bpf_prog *tgt_prog,
13614 u32 btf_id,
13615 struct bpf_attach_target_info *tgt_info)
13616 {
13617 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
13618 const char prefix[] = "btf_trace_";
13619 int ret = 0, subprog = -1, i;
13620 const struct btf_type *t;
13621 bool conservative = true;
13622 const char *tname;
13623 struct btf *btf;
13624 long addr = 0;
13625
13626 if (!btf_id) {
13627 bpf_log(log, "Tracing programs must provide btf_id\n");
13628 return -EINVAL;
13629 }
13630 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
13631 if (!btf) {
13632 bpf_log(log,
13633 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13634 return -EINVAL;
13635 }
13636 t = btf_type_by_id(btf, btf_id);
13637 if (!t) {
13638 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
13639 return -EINVAL;
13640 }
13641 tname = btf_name_by_offset(btf, t->name_off);
13642 if (!tname) {
13643 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13644 return -EINVAL;
13645 }
13646 if (tgt_prog) {
13647 struct bpf_prog_aux *aux = tgt_prog->aux;
13648
13649 for (i = 0; i < aux->func_info_cnt; i++)
13650 if (aux->func_info[i].type_id == btf_id) {
13651 subprog = i;
13652 break;
13653 }
13654 if (subprog == -1) {
13655 bpf_log(log, "Subprog %s doesn't exist\n", tname);
13656 return -EINVAL;
13657 }
13658 conservative = aux->func_info_aux[subprog].unreliable;
13659 if (prog_extension) {
13660 if (conservative) {
13661 bpf_log(log,
13662 "Cannot replace static functions\n");
13663 return -EINVAL;
13664 }
13665 if (!prog->jit_requested) {
13666 bpf_log(log,
13667 "Extension programs should be JITed\n");
13668 return -EINVAL;
13669 }
13670 }
13671 if (!tgt_prog->jited) {
13672 bpf_log(log, "Can attach to only JITed progs\n");
13673 return -EINVAL;
13674 }
13675 if (tgt_prog->type == prog->type) {
13676 /* Cannot fentry/fexit another fentry/fexit program.
13677 * Cannot attach program extension to another extension.
13678 * It's ok to attach fentry/fexit to extension program.
13679 */
13680 bpf_log(log, "Cannot recursively attach\n");
13681 return -EINVAL;
13682 }
13683 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13684 prog_extension &&
13685 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13686 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13687 /* Program extensions can extend all program types
13688 * except fentry/fexit. The reason is the following.
13689 * The fentry/fexit programs are used for performance
13690 * analysis, stats and can be attached to any program
13691 * type except themselves. When extension program is
13692 * replacing XDP function it is necessary to allow
13693 * performance analysis of all functions. Both original
13694 * XDP program and its program extension. Hence
13695 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13696 * allowed. If extending of fentry/fexit was allowed it
13697 * would be possible to create long call chain
13698 * fentry->extension->fentry->extension beyond
13699 * reasonable stack size. Hence extending fentry is not
13700 * allowed.
13701 */
13702 bpf_log(log, "Cannot extend fentry/fexit\n");
13703 return -EINVAL;
13704 }
13705 } else {
13706 if (prog_extension) {
13707 bpf_log(log, "Cannot replace kernel functions\n");
13708 return -EINVAL;
13709 }
13710 }
13711
13712 switch (prog->expected_attach_type) {
13713 case BPF_TRACE_RAW_TP:
13714 if (tgt_prog) {
13715 bpf_log(log,
13716 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13717 return -EINVAL;
13718 }
13719 if (!btf_type_is_typedef(t)) {
13720 bpf_log(log, "attach_btf_id %u is not a typedef\n",
13721 btf_id);
13722 return -EINVAL;
13723 }
13724 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13725 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13726 btf_id, tname);
13727 return -EINVAL;
13728 }
13729 tname += sizeof(prefix) - 1;
13730 t = btf_type_by_id(btf, t->type);
13731 if (!btf_type_is_ptr(t))
13732 /* should never happen in valid vmlinux build */
13733 return -EINVAL;
13734 t = btf_type_by_id(btf, t->type);
13735 if (!btf_type_is_func_proto(t))
13736 /* should never happen in valid vmlinux build */
13737 return -EINVAL;
13738
13739 break;
13740 case BPF_TRACE_ITER:
13741 if (!btf_type_is_func(t)) {
13742 bpf_log(log, "attach_btf_id %u is not a function\n",
13743 btf_id);
13744 return -EINVAL;
13745 }
13746 t = btf_type_by_id(btf, t->type);
13747 if (!btf_type_is_func_proto(t))
13748 return -EINVAL;
13749 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13750 if (ret)
13751 return ret;
13752 break;
13753 default:
13754 if (!prog_extension)
13755 return -EINVAL;
13756 fallthrough;
13757 case BPF_MODIFY_RETURN:
13758 case BPF_LSM_MAC:
13759 case BPF_TRACE_FENTRY:
13760 case BPF_TRACE_FEXIT:
13761 if (!btf_type_is_func(t)) {
13762 bpf_log(log, "attach_btf_id %u is not a function\n",
13763 btf_id);
13764 return -EINVAL;
13765 }
13766 if (prog_extension &&
13767 btf_check_type_match(log, prog, btf, t))
13768 return -EINVAL;
13769 t = btf_type_by_id(btf, t->type);
13770 if (!btf_type_is_func_proto(t))
13771 return -EINVAL;
13772
13773 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13774 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13775 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13776 return -EINVAL;
13777
13778 if (tgt_prog && conservative)
13779 t = NULL;
13780
13781 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13782 if (ret < 0)
13783 return ret;
13784
13785 if (tgt_prog) {
13786 if (subprog == 0)
13787 addr = (long) tgt_prog->bpf_func;
13788 else
13789 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
13790 } else {
13791 addr = kallsyms_lookup_name(tname);
13792 if (!addr) {
13793 bpf_log(log,
13794 "The address of function %s cannot be found\n",
13795 tname);
13796 return -ENOENT;
13797 }
13798 }
13799
13800 if (prog->aux->sleepable) {
13801 ret = -EINVAL;
13802 switch (prog->type) {
13803 case BPF_PROG_TYPE_TRACING:
13804 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
13805 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13806 */
13807 if (!check_non_sleepable_error_inject(btf_id) &&
13808 within_error_injection_list(addr))
13809 ret = 0;
13810 break;
13811 case BPF_PROG_TYPE_LSM:
13812 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
13813 * Only some of them are sleepable.
13814 */
13815 if (bpf_lsm_is_sleepable_hook(btf_id))
13816 ret = 0;
13817 break;
13818 default:
13819 break;
13820 }
13821 if (ret) {
13822 bpf_log(log, "%s is not sleepable\n", tname);
13823 return ret;
13824 }
13825 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
13826 if (tgt_prog) {
13827 bpf_log(log, "can't modify return codes of BPF programs\n");
13828 return -EINVAL;
13829 }
13830 ret = check_attach_modify_return(addr, tname);
13831 if (ret) {
13832 bpf_log(log, "%s() is not modifiable\n", tname);
13833 return ret;
13834 }
13835 }
13836
13837 break;
13838 }
13839 tgt_info->tgt_addr = addr;
13840 tgt_info->tgt_name = tname;
13841 tgt_info->tgt_type = t;
13842 return 0;
13843 }
13844
BTF_SET_START(btf_id_deny)13845 BTF_SET_START(btf_id_deny)
13846 BTF_ID_UNUSED
13847 #ifdef CONFIG_SMP
13848 BTF_ID(func, migrate_disable)
13849 BTF_ID(func, migrate_enable)
13850 #endif
13851 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13852 BTF_ID(func, rcu_read_unlock_strict)
13853 #endif
13854 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
13855 BTF_ID(func, preempt_count_add)
13856 BTF_ID(func, preempt_count_sub)
13857 #endif
13858 BTF_SET_END(btf_id_deny)
13859
13860 static int check_attach_btf_id(struct bpf_verifier_env *env)
13861 {
13862 struct bpf_prog *prog = env->prog;
13863 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
13864 struct bpf_attach_target_info tgt_info = {};
13865 u32 btf_id = prog->aux->attach_btf_id;
13866 struct bpf_trampoline *tr;
13867 int ret;
13868 u64 key;
13869
13870 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13871 if (prog->aux->sleepable)
13872 /* attach_btf_id checked to be zero already */
13873 return 0;
13874 verbose(env, "Syscall programs can only be sleepable\n");
13875 return -EINVAL;
13876 }
13877
13878 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13879 prog->type != BPF_PROG_TYPE_LSM) {
13880 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13881 return -EINVAL;
13882 }
13883
13884 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13885 return check_struct_ops_btf_id(env);
13886
13887 if (prog->type != BPF_PROG_TYPE_TRACING &&
13888 prog->type != BPF_PROG_TYPE_LSM &&
13889 prog->type != BPF_PROG_TYPE_EXT)
13890 return 0;
13891
13892 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13893 if (ret)
13894 return ret;
13895
13896 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
13897 /* to make freplace equivalent to their targets, they need to
13898 * inherit env->ops and expected_attach_type for the rest of the
13899 * verification
13900 */
13901 env->ops = bpf_verifier_ops[tgt_prog->type];
13902 prog->expected_attach_type = tgt_prog->expected_attach_type;
13903 }
13904
13905 /* store info about the attachment target that will be used later */
13906 prog->aux->attach_func_proto = tgt_info.tgt_type;
13907 prog->aux->attach_func_name = tgt_info.tgt_name;
13908
13909 if (tgt_prog) {
13910 prog->aux->saved_dst_prog_type = tgt_prog->type;
13911 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13912 }
13913
13914 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13915 prog->aux->attach_btf_trace = true;
13916 return 0;
13917 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13918 if (!bpf_iter_prog_supported(prog))
13919 return -EINVAL;
13920 return 0;
13921 }
13922
13923 if (prog->type == BPF_PROG_TYPE_LSM) {
13924 ret = bpf_lsm_verify_prog(&env->log, prog);
13925 if (ret < 0)
13926 return ret;
13927 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
13928 btf_id_set_contains(&btf_id_deny, btf_id)) {
13929 return -EINVAL;
13930 }
13931
13932 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
13933 tr = bpf_trampoline_get(key, &tgt_info);
13934 if (!tr)
13935 return -ENOMEM;
13936
13937 prog->aux->dst_trampoline = tr;
13938 return 0;
13939 }
13940
bpf_get_btf_vmlinux(void)13941 struct btf *bpf_get_btf_vmlinux(void)
13942 {
13943 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13944 mutex_lock(&bpf_verifier_lock);
13945 if (!btf_vmlinux)
13946 btf_vmlinux = btf_parse_vmlinux();
13947 mutex_unlock(&bpf_verifier_lock);
13948 }
13949 return btf_vmlinux;
13950 }
13951
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,bpfptr_t uattr)13952 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
13953 {
13954 u64 start_time = ktime_get_ns();
13955 struct bpf_verifier_env *env;
13956 struct bpf_verifier_log *log;
13957 int i, len, ret = -EINVAL;
13958 bool is_priv;
13959
13960 /* no program is valid */
13961 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13962 return -EINVAL;
13963
13964 /* 'struct bpf_verifier_env' can be global, but since it's not small,
13965 * allocate/free it every time bpf_check() is called
13966 */
13967 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
13968 if (!env)
13969 return -ENOMEM;
13970 log = &env->log;
13971
13972 len = (*prog)->len;
13973 env->insn_aux_data =
13974 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
13975 ret = -ENOMEM;
13976 if (!env->insn_aux_data)
13977 goto err_free_env;
13978 for (i = 0; i < len; i++)
13979 env->insn_aux_data[i].orig_idx = i;
13980 env->prog = *prog;
13981 env->ops = bpf_verifier_ops[env->prog->type];
13982 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
13983 is_priv = bpf_capable();
13984
13985 bpf_get_btf_vmlinux();
13986
13987 /* grab the mutex to protect few globals used by verifier */
13988 if (!is_priv)
13989 mutex_lock(&bpf_verifier_lock);
13990
13991 if (attr->log_level || attr->log_buf || attr->log_size) {
13992 /* user requested verbose verifier output
13993 * and supplied buffer to store the verification trace
13994 */
13995 log->level = attr->log_level;
13996 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13997 log->len_total = attr->log_size;
13998
13999 /* log attributes have to be sane */
14000 if (!bpf_verifier_log_attr_valid(log)) {
14001 ret = -EINVAL;
14002 goto err_unlock;
14003 }
14004 }
14005
14006 if (IS_ERR(btf_vmlinux)) {
14007 /* Either gcc or pahole or kernel are broken. */
14008 verbose(env, "in-kernel BTF is malformed\n");
14009 ret = PTR_ERR(btf_vmlinux);
14010 goto skip_full_check;
14011 }
14012
14013 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
14014 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
14015 env->strict_alignment = true;
14016 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
14017 env->strict_alignment = false;
14018
14019 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
14020 env->allow_uninit_stack = bpf_allow_uninit_stack();
14021 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
14022 env->bypass_spec_v1 = bpf_bypass_spec_v1();
14023 env->bypass_spec_v4 = bpf_bypass_spec_v4();
14024 env->bpf_capable = bpf_capable();
14025
14026 if (is_priv)
14027 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
14028
14029 env->explored_states = kvcalloc(state_htab_size(env),
14030 sizeof(struct bpf_verifier_state_list *),
14031 GFP_USER);
14032 ret = -ENOMEM;
14033 if (!env->explored_states)
14034 goto skip_full_check;
14035
14036 ret = add_subprog_and_kfunc(env);
14037 if (ret < 0)
14038 goto skip_full_check;
14039
14040 ret = check_subprogs(env);
14041 if (ret < 0)
14042 goto skip_full_check;
14043
14044 ret = check_btf_info(env, attr, uattr);
14045 if (ret < 0)
14046 goto skip_full_check;
14047
14048 ret = check_attach_btf_id(env);
14049 if (ret)
14050 goto skip_full_check;
14051
14052 ret = resolve_pseudo_ldimm64(env);
14053 if (ret < 0)
14054 goto skip_full_check;
14055
14056 if (bpf_prog_is_dev_bound(env->prog->aux)) {
14057 ret = bpf_prog_offload_verifier_prep(env->prog);
14058 if (ret)
14059 goto skip_full_check;
14060 }
14061
14062 ret = check_cfg(env);
14063 if (ret < 0)
14064 goto skip_full_check;
14065
14066 ret = do_check_subprogs(env);
14067 ret = ret ?: do_check_main(env);
14068
14069 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
14070 ret = bpf_prog_offload_finalize(env);
14071
14072 skip_full_check:
14073 kvfree(env->explored_states);
14074
14075 if (ret == 0)
14076 ret = check_max_stack_depth(env);
14077
14078 /* instruction rewrites happen after this point */
14079 if (is_priv) {
14080 if (ret == 0)
14081 opt_hard_wire_dead_code_branches(env);
14082 if (ret == 0)
14083 ret = opt_remove_dead_code(env);
14084 if (ret == 0)
14085 ret = opt_remove_nops(env);
14086 } else {
14087 if (ret == 0)
14088 sanitize_dead_code(env);
14089 }
14090
14091 if (ret == 0)
14092 /* program is valid, convert *(u32*)(ctx + off) accesses */
14093 ret = convert_ctx_accesses(env);
14094
14095 if (ret == 0)
14096 ret = do_misc_fixups(env);
14097
14098 /* do 32-bit optimization after insn patching has done so those patched
14099 * insns could be handled correctly.
14100 */
14101 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
14102 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
14103 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
14104 : false;
14105 }
14106
14107 if (ret == 0)
14108 ret = fixup_call_args(env);
14109
14110 env->verification_time = ktime_get_ns() - start_time;
14111 print_verification_stats(env);
14112
14113 if (log->level && bpf_verifier_log_full(log))
14114 ret = -ENOSPC;
14115 if (log->level && !log->ubuf) {
14116 ret = -EFAULT;
14117 goto err_release_maps;
14118 }
14119
14120 if (ret)
14121 goto err_release_maps;
14122
14123 if (env->used_map_cnt) {
14124 /* if program passed verifier, update used_maps in bpf_prog_info */
14125 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
14126 sizeof(env->used_maps[0]),
14127 GFP_KERNEL);
14128
14129 if (!env->prog->aux->used_maps) {
14130 ret = -ENOMEM;
14131 goto err_release_maps;
14132 }
14133
14134 memcpy(env->prog->aux->used_maps, env->used_maps,
14135 sizeof(env->used_maps[0]) * env->used_map_cnt);
14136 env->prog->aux->used_map_cnt = env->used_map_cnt;
14137 }
14138 if (env->used_btf_cnt) {
14139 /* if program passed verifier, update used_btfs in bpf_prog_aux */
14140 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
14141 sizeof(env->used_btfs[0]),
14142 GFP_KERNEL);
14143 if (!env->prog->aux->used_btfs) {
14144 ret = -ENOMEM;
14145 goto err_release_maps;
14146 }
14147
14148 memcpy(env->prog->aux->used_btfs, env->used_btfs,
14149 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
14150 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
14151 }
14152 if (env->used_map_cnt || env->used_btf_cnt) {
14153 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
14154 * bpf_ld_imm64 instructions
14155 */
14156 convert_pseudo_ld_imm64(env);
14157 }
14158
14159 adjust_btf_func(env);
14160
14161 err_release_maps:
14162 if (!env->prog->aux->used_maps)
14163 /* if we didn't copy map pointers into bpf_prog_info, release
14164 * them now. Otherwise free_used_maps() will release them.
14165 */
14166 release_maps(env);
14167 if (!env->prog->aux->used_btfs)
14168 release_btfs(env);
14169
14170 /* extension progs temporarily inherit the attach_type of their targets
14171 for verification purposes, so set it back to zero before returning
14172 */
14173 if (env->prog->type == BPF_PROG_TYPE_EXT)
14174 env->prog->expected_attach_type = 0;
14175
14176 *prog = env->prog;
14177 err_unlock:
14178 if (!is_priv)
14179 mutex_unlock(&bpf_verifier_lock);
14180 vfree(env->insn_aux_data);
14181 err_free_env:
14182 kfree(env);
14183 return ret;
14184 }
14185