1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Coherent per-device memory handling.
4 * Borrowed from i386
5 */
6 #include <linux/io.h>
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/dma-direct.h>
11 #include <linux/dma-map-ops.h>
12
13 struct dma_coherent_mem {
14 void *virt_base;
15 dma_addr_t device_base;
16 unsigned long pfn_base;
17 int size;
18 unsigned long *bitmap;
19 spinlock_t spinlock;
20 bool use_dev_dma_pfn_offset;
21 };
22
dev_get_coherent_memory(struct device * dev)23 static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
24 {
25 if (dev && dev->dma_mem)
26 return dev->dma_mem;
27 return NULL;
28 }
29
dma_get_device_base(struct device * dev,struct dma_coherent_mem * mem)30 static inline dma_addr_t dma_get_device_base(struct device *dev,
31 struct dma_coherent_mem * mem)
32 {
33 if (mem->use_dev_dma_pfn_offset)
34 return phys_to_dma(dev, PFN_PHYS(mem->pfn_base));
35 return mem->device_base;
36 }
37
dma_init_coherent_memory(phys_addr_t phys_addr,dma_addr_t device_addr,size_t size,bool use_dma_pfn_offset)38 static struct dma_coherent_mem *dma_init_coherent_memory(phys_addr_t phys_addr,
39 dma_addr_t device_addr, size_t size, bool use_dma_pfn_offset)
40 {
41 struct dma_coherent_mem *dma_mem;
42 int pages = size >> PAGE_SHIFT;
43 int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
44 void *mem_base;
45
46 if (!size)
47 return ERR_PTR(-EINVAL);
48
49 mem_base = memremap(phys_addr, size, MEMREMAP_WC);
50 if (!mem_base)
51 return ERR_PTR(-EINVAL);
52
53 dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
54 if (!dma_mem)
55 goto out_unmap_membase;
56 dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
57 if (!dma_mem->bitmap)
58 goto out_free_dma_mem;
59
60 dma_mem->virt_base = mem_base;
61 dma_mem->device_base = device_addr;
62 dma_mem->pfn_base = PFN_DOWN(phys_addr);
63 dma_mem->size = pages;
64 dma_mem->use_dev_dma_pfn_offset = use_dma_pfn_offset;
65 spin_lock_init(&dma_mem->spinlock);
66
67 return dma_mem;
68
69 out_free_dma_mem:
70 kfree(dma_mem);
71 out_unmap_membase:
72 memunmap(mem_base);
73 pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %zd MiB\n",
74 &phys_addr, size / SZ_1M);
75 return ERR_PTR(-ENOMEM);
76 }
77
_dma_release_coherent_memory(struct dma_coherent_mem * mem)78 static void _dma_release_coherent_memory(struct dma_coherent_mem *mem)
79 {
80 if (!mem)
81 return;
82
83 memunmap(mem->virt_base);
84 kfree(mem->bitmap);
85 kfree(mem);
86 }
87
dma_assign_coherent_memory(struct device * dev,struct dma_coherent_mem * mem)88 static int dma_assign_coherent_memory(struct device *dev,
89 struct dma_coherent_mem *mem)
90 {
91 if (!dev)
92 return -ENODEV;
93
94 if (dev->dma_mem)
95 return -EBUSY;
96
97 dev->dma_mem = mem;
98 return 0;
99 }
100
101 /*
102 * Declare a region of memory to be handed out by dma_alloc_coherent() when it
103 * is asked for coherent memory for this device. This shall only be used
104 * from platform code, usually based on the device tree description.
105 *
106 * phys_addr is the CPU physical address to which the memory is currently
107 * assigned (this will be ioremapped so the CPU can access the region).
108 *
109 * device_addr is the DMA address the device needs to be programmed with to
110 * actually address this memory (this will be handed out as the dma_addr_t in
111 * dma_alloc_coherent()).
112 *
113 * size is the size of the area (must be a multiple of PAGE_SIZE).
114 *
115 * As a simplification for the platforms, only *one* such region of memory may
116 * be declared per device.
117 */
dma_declare_coherent_memory(struct device * dev,phys_addr_t phys_addr,dma_addr_t device_addr,size_t size)118 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
119 dma_addr_t device_addr, size_t size)
120 {
121 struct dma_coherent_mem *mem;
122 int ret;
123
124 mem = dma_init_coherent_memory(phys_addr, device_addr, size, false);
125 if (IS_ERR(mem))
126 return PTR_ERR(mem);
127
128 ret = dma_assign_coherent_memory(dev, mem);
129 if (ret)
130 _dma_release_coherent_memory(mem);
131 return ret;
132 }
133
dma_release_coherent_memory(struct device * dev)134 void dma_release_coherent_memory(struct device *dev)
135 {
136 if (dev) {
137 _dma_release_coherent_memory(dev->dma_mem);
138 dev->dma_mem = NULL;
139 }
140 }
141
__dma_alloc_from_coherent(struct device * dev,struct dma_coherent_mem * mem,ssize_t size,dma_addr_t * dma_handle)142 static void *__dma_alloc_from_coherent(struct device *dev,
143 struct dma_coherent_mem *mem,
144 ssize_t size, dma_addr_t *dma_handle)
145 {
146 int order = get_order(size);
147 unsigned long flags;
148 int pageno;
149 void *ret;
150
151 spin_lock_irqsave(&mem->spinlock, flags);
152
153 if (unlikely(size > ((dma_addr_t)mem->size << PAGE_SHIFT)))
154 goto err;
155
156 pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
157 if (unlikely(pageno < 0))
158 goto err;
159
160 /*
161 * Memory was found in the coherent area.
162 */
163 *dma_handle = dma_get_device_base(dev, mem) +
164 ((dma_addr_t)pageno << PAGE_SHIFT);
165 ret = mem->virt_base + ((dma_addr_t)pageno << PAGE_SHIFT);
166 spin_unlock_irqrestore(&mem->spinlock, flags);
167 memset(ret, 0, size);
168 return ret;
169 err:
170 spin_unlock_irqrestore(&mem->spinlock, flags);
171 return NULL;
172 }
173
174 /**
175 * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool
176 * @dev: device from which we allocate memory
177 * @size: size of requested memory area
178 * @dma_handle: This will be filled with the correct dma handle
179 * @ret: This pointer will be filled with the virtual address
180 * to allocated area.
181 *
182 * This function should be only called from per-arch dma_alloc_coherent()
183 * to support allocation from per-device coherent memory pools.
184 *
185 * Returns 0 if dma_alloc_coherent should continue with allocating from
186 * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
187 */
dma_alloc_from_dev_coherent(struct device * dev,ssize_t size,dma_addr_t * dma_handle,void ** ret)188 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
189 dma_addr_t *dma_handle, void **ret)
190 {
191 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
192
193 if (!mem)
194 return 0;
195
196 *ret = __dma_alloc_from_coherent(dev, mem, size, dma_handle);
197 return 1;
198 }
199
__dma_release_from_coherent(struct dma_coherent_mem * mem,int order,void * vaddr)200 static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
201 int order, void *vaddr)
202 {
203 if (mem && vaddr >= mem->virt_base && vaddr <
204 (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
205 int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
206 unsigned long flags;
207
208 spin_lock_irqsave(&mem->spinlock, flags);
209 bitmap_release_region(mem->bitmap, page, order);
210 spin_unlock_irqrestore(&mem->spinlock, flags);
211 return 1;
212 }
213 return 0;
214 }
215
216 /**
217 * dma_release_from_dev_coherent() - free memory to device coherent memory pool
218 * @dev: device from which the memory was allocated
219 * @order: the order of pages allocated
220 * @vaddr: virtual address of allocated pages
221 *
222 * This checks whether the memory was allocated from the per-device
223 * coherent memory pool and if so, releases that memory.
224 *
225 * Returns 1 if we correctly released the memory, or 0 if the caller should
226 * proceed with releasing memory from generic pools.
227 */
dma_release_from_dev_coherent(struct device * dev,int order,void * vaddr)228 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
229 {
230 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
231
232 return __dma_release_from_coherent(mem, order, vaddr);
233 }
234
__dma_mmap_from_coherent(struct dma_coherent_mem * mem,struct vm_area_struct * vma,void * vaddr,size_t size,int * ret)235 static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
236 struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
237 {
238 if (mem && vaddr >= mem->virt_base && vaddr + size <=
239 (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
240 unsigned long off = vma->vm_pgoff;
241 int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
242 unsigned long user_count = vma_pages(vma);
243 int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
244
245 *ret = -ENXIO;
246 if (off < count && user_count <= count - off) {
247 unsigned long pfn = mem->pfn_base + start + off;
248 *ret = remap_pfn_range(vma, vma->vm_start, pfn,
249 user_count << PAGE_SHIFT,
250 vma->vm_page_prot);
251 }
252 return 1;
253 }
254 return 0;
255 }
256
257 /**
258 * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool
259 * @dev: device from which the memory was allocated
260 * @vma: vm_area for the userspace memory
261 * @vaddr: cpu address returned by dma_alloc_from_dev_coherent
262 * @size: size of the memory buffer allocated
263 * @ret: result from remap_pfn_range()
264 *
265 * This checks whether the memory was allocated from the per-device
266 * coherent memory pool and if so, maps that memory to the provided vma.
267 *
268 * Returns 1 if @vaddr belongs to the device coherent pool and the caller
269 * should return @ret, or 0 if they should proceed with mapping memory from
270 * generic areas.
271 */
dma_mmap_from_dev_coherent(struct device * dev,struct vm_area_struct * vma,void * vaddr,size_t size,int * ret)272 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
273 void *vaddr, size_t size, int *ret)
274 {
275 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
276
277 return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
278 }
279
280 #ifdef CONFIG_DMA_GLOBAL_POOL
281 static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
282
dma_alloc_from_global_coherent(struct device * dev,ssize_t size,dma_addr_t * dma_handle)283 void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size,
284 dma_addr_t *dma_handle)
285 {
286 if (!dma_coherent_default_memory)
287 return NULL;
288
289 return __dma_alloc_from_coherent(dev, dma_coherent_default_memory, size,
290 dma_handle);
291 }
292
dma_release_from_global_coherent(int order,void * vaddr)293 int dma_release_from_global_coherent(int order, void *vaddr)
294 {
295 if (!dma_coherent_default_memory)
296 return 0;
297
298 return __dma_release_from_coherent(dma_coherent_default_memory, order,
299 vaddr);
300 }
301
dma_mmap_from_global_coherent(struct vm_area_struct * vma,void * vaddr,size_t size,int * ret)302 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
303 size_t size, int *ret)
304 {
305 if (!dma_coherent_default_memory)
306 return 0;
307
308 return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
309 vaddr, size, ret);
310 }
311
dma_init_global_coherent(phys_addr_t phys_addr,size_t size)312 int dma_init_global_coherent(phys_addr_t phys_addr, size_t size)
313 {
314 struct dma_coherent_mem *mem;
315
316 mem = dma_init_coherent_memory(phys_addr, phys_addr, size, true);
317 if (IS_ERR(mem))
318 return PTR_ERR(mem);
319 dma_coherent_default_memory = mem;
320 pr_info("DMA: default coherent area is set\n");
321 return 0;
322 }
323 #endif /* CONFIG_DMA_GLOBAL_POOL */
324
325 /*
326 * Support for reserved memory regions defined in device tree
327 */
328 #ifdef CONFIG_OF_RESERVED_MEM
329 #include <linux/of.h>
330 #include <linux/of_fdt.h>
331 #include <linux/of_reserved_mem.h>
332
333 #ifdef CONFIG_DMA_GLOBAL_POOL
334 static struct reserved_mem *dma_reserved_default_memory __initdata;
335 #endif
336
rmem_dma_device_init(struct reserved_mem * rmem,struct device * dev)337 static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
338 {
339 if (!rmem->priv) {
340 struct dma_coherent_mem *mem;
341
342 mem = dma_init_coherent_memory(rmem->base, rmem->base,
343 rmem->size, true);
344 if (IS_ERR(mem))
345 return PTR_ERR(mem);
346 rmem->priv = mem;
347 }
348 dma_assign_coherent_memory(dev, rmem->priv);
349 return 0;
350 }
351
rmem_dma_device_release(struct reserved_mem * rmem,struct device * dev)352 static void rmem_dma_device_release(struct reserved_mem *rmem,
353 struct device *dev)
354 {
355 if (dev)
356 dev->dma_mem = NULL;
357 }
358
359 static const struct reserved_mem_ops rmem_dma_ops = {
360 .device_init = rmem_dma_device_init,
361 .device_release = rmem_dma_device_release,
362 };
363
rmem_dma_setup(struct reserved_mem * rmem)364 static int __init rmem_dma_setup(struct reserved_mem *rmem)
365 {
366 unsigned long node = rmem->fdt_node;
367
368 if (of_get_flat_dt_prop(node, "reusable", NULL))
369 return -EINVAL;
370
371 #ifdef CONFIG_ARM
372 if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
373 pr_err("Reserved memory: regions without no-map are not yet supported\n");
374 return -EINVAL;
375 }
376 #endif
377
378 #ifdef CONFIG_DMA_GLOBAL_POOL
379 if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
380 WARN(dma_reserved_default_memory,
381 "Reserved memory: region for default DMA coherent area is redefined\n");
382 dma_reserved_default_memory = rmem;
383 }
384 #endif
385
386 rmem->ops = &rmem_dma_ops;
387 pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
388 &rmem->base, (unsigned long)rmem->size / SZ_1M);
389 return 0;
390 }
391
392 #ifdef CONFIG_DMA_GLOBAL_POOL
dma_init_reserved_memory(void)393 static int __init dma_init_reserved_memory(void)
394 {
395 if (!dma_reserved_default_memory)
396 return -ENOMEM;
397 return dma_init_global_coherent(dma_reserved_default_memory->base,
398 dma_reserved_default_memory->size);
399 }
400 core_initcall(dma_init_reserved_memory);
401 #endif /* CONFIG_DMA_GLOBAL_POOL */
402
403 RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
404 #endif
405